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7 Outline of Online Appendix A

References to sections with section numbers[6]or less refer to sections of the main paper. Sim-
ilarly, all equations, theorems, and lemmas with section numbers @or less refer to results in the
main paper.

Section provides simulation results for the size and power of the misspecification index (MI),
SPURI1, and SPUR2 tests in misspecified and correctly-specified versions of two models. (The MI
test is the two-sided test obtained by inverting the MI CI CI,, A(«) defined in ) The first
model is a lower/upper bound model. The second model is a missing data model. Section (8 also
assesses the sensitivity to the tuning parameters of the rejection probabilities of the two-sided MI
and SPUR2 tests under the null and alternative hypotheses in the lower /upper bound model.

Section |§| provides derivations for two formulae for the missing data model that are employed
in Section[8]

Section |10| concerns the empirical illustration in the main paper. It assesses the sensitivity of
the MI and SPUR2 CI’s to changes in the tuning parameters, provides simulated power results
for a simplified version of the model, shows how the moment inequalities in are obtained,
and describes the initial values used in the optimization problems that deliver GMS and SPUR
projection CI’s.

Section establishes the uniform consistency, under correct model specification and misspeci-
fication, of an estimator of the MR-identified set. Rate of convergence results for this set estimator
are also given using arguments similar to those in Chernozhukov, Hong, and Tamer (2007).

Section [12|shows, using the simple lower/upper model, that subsampling a SPUR test statistic
does not necessarily deliver correct asymptotic size under model misspecification.

We note that Appendix D of Andrews and Kwon (2022) provides some additional results: (i)
an alternative interpretation of the identified set @M% (F), (ii) the equivalence of the SPUR test
statistic to a recentered test statistic, as has been considered in Chernozhukov, Hong, and Tamer
(2007), when the “max” S function is employed, and (iii) extensions of the results of the paper
to non-i.i.d. observations, to tests with weighted moment inequalities, and to tests without the
standard-deviation normalization.

Let [z]_ := max{—x,0} (> 0) for x € R.

8 Simulation Results

In this section, we provide Monte Carlo simulation results that illustrate the performance of

the misspecification index tests, SPURI1 tests, and SPUR2 tests. When the model under consider-



ation is correctly specified, we compare SPUR1 and SPUR2 tests to the standard GMS test. We
consider two simple models under various levels of misspecification (i.e., different values of r}?:)
All simulation results are based on 1,000 simulation repetitions, 500 bootstrap replications, a sam-
ple size of n = 250, k, = 7, = (Inn)'/2, and S(-) = S1(-). The GMS function ¢(-) employed is
(&) = 00l(§; > 1) for j < k. The significance level is fixed at o = .05 with oy = .005 and ap = .045

for the SPUR2 test.

8.1 Lower/Upper Bound Model
8.1.1 The Model

We consider a simple model where the means of the observations impose lower and upper bounds
on a scalar parameter. The data {W;}i<, are i.i.d. with W; = (Wjy, ..., Wi)" ~ N(u, Ix), where
w=(p1,..., k) € RF and I, denotes the k x k identity matrix. We consider k = 2, 4, and 8. The
parameter space O is taken to be [—20, 20]. We consider various configurations of ;. When T%lf > 0,
the MR-identified set is always a singleton in this model, but it may have different lengths when
rilflf = 0. Accordingly, when r}‘f = 0 we consider configurations that correspond to different lengths

of the MR-identified set.

For k = 2, the population moment inequalities are
EFWil < A andf < EFVI/Z'Q. (81)

The model is identifiably misspecified (i.e., ©7(F) is empty) if and only if p; > po. In this model,
AR = (11 — p12) /2 and 78 = [11 — p2] /2, where [2]4 := max{x,0}. We take u = (r, —r)’ for each
r € {.5,1,2,5} as the misspecified cases. We have ritf = r and ©MF(F) = {0} in these cases. For
the correctly-specified cases, we take u = (—¢,0)’ for each ¢ € {0,.5,1,2}. Here the MR-identified
set is OME(F) = [¢,0], which has length ¢, and Altf = —¢/2.

For k = 4, the moment inequalities are
ErWin <0, EpWia <0, 0 < EpW;3, and0 < EpWiy. (82)

Identifiable misspecification arises if and only if max{y1, uo} > min{us, p4}. In this model, Al =

inf __

(max{p1, po}—min{pus, pa})/2 and r' = [max{p1, po} —min{pg, pa })4 /2. For k = 4, many different

configurations of u are possible for a given value of r}?f > (0 or a given length of the MR-~identified

set when ril?f = 0. Accordingly, we consider several scenarios for k = 4. For the misspecified cases,

7w 7«

we consider five different scenarios: “binding,” “almost binding,” “somewhat slack,” “very slack,”



and “slack/almost binding.” In each scenario, we consider r}?f = .5 and 1. Regardless of the
scenario and the value of ri#f, the MR-identified set is ©F(F) = {0}. For the correctly-specified
cases and k = 4, we consider the same five scenarios as for the misspecified cases. However, the
definitions are slightly different in the correctly-specified cases The MR-identified set takes the
form ©ME(F) = [-£,0] for each £ € {0,.5,1}.

For k = 8, the moment inequalities are

EFWZJSQfOI‘lS]SZlaHd

0 S EFWij for 5 S j S 8. (8.3)

The definition of each scenario is analogous to the k = 4 cases, with each entry repeated twice.
That is, if u* = (u1, po, p3, a)’ € R* is the mean vector used under some scenario for k = 4, then

u® = (1, pa, pio, i, 13, 143, M4, f14)) € RS is the mean vector used in the same scenario for k = 8.

8.1.2 Rejection Probabilities of the Misspecification Index Test and the
SPUR1 and SPUR2 Tests

Figure gives the simulated rejection probabilities of nominal .05 two-sided tests concern-
ing the misspecification index Ai}‘f for k = 2. Each plot shows, for different values of A%‘f €
{-5,-2,—-1,-.5,,0,.5,1,2,5}, the rejection probabilities of the MI test of Hj : Ailfif = Ay versus
Hy Ailflf # A for a range of Ay values and a fixed Ailflf Value The two-sided MI test rejects
Hy if Ag ¢ CI, A(.05), which is defined in . Figure gives simulation results for the MI test
for k = 4 under the “binding” and “very slack” scenarios, which are the two extreme scenarios.

bY A3

For brevity, the MI test results for the “almost binding,” “somewhat slack,” and “slack/almost
binding” scenarios are not reported because they lie between the two extreme scenarios and the
results for the latter two scenarios do not differ very much. Similarly, and for the same reasons,
for k£ = 8, Figure gives simulation results for the MI test for the “binding” and “very slack”

scenarios only, which are the two extreme scenarios.

28For given r > 0, the mean vectors y in the five misspecified scenarios are (i) “binding”: p = (r,r, —r, —r)’, (ii)
“almost binding”: p = (r,r —.1,—r +.1,—7r)’, (iii) “somewhat slack”: pu = (r,r — .5, —r + .5, —r)’, (iv) “very slack”:
p=(r,r—1,—r+1,—r), and (v) “slack/almost binding”: u = (r,7 — .1, —r + 1, —r)’. In each scenario, r*f = r and
the MR-identified set is @M (F) = {0}.

29For given £ > 0, the mean vectors p in the five correctly-specified scenarios are (i) “binding”: u = (—¢, —¢,0,0)’,
(ii) “almost binding”: p = (=€ — .1,—£,0,.1)", (iii) “somewhat slack”: p = (=€ — .5,—£,0,.5)", (iv) “very slack”:
p=(—L—1,-£,0,1), and (v) “slack/almost binding”: u = (=€ — 1,—£,0,.1)". In all scenarios, @M (F) = [, 0]
and the MR~identified set has length £.

30That is, Figure reports power for a fixed true AR value and the null value being A for a range of Ag values.
This differs from, but is no less informative than, a conventional power function that considers a fixed null value and
a range of true alternative values.
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Figure 8.1: Rejection probabilities of tests concerning the misspecification index A for k = 2.
Each plot shows, for different values of Ai}lf, the rejection probabilities of the nominal .05 two-sided

misspecification index test of the null hypothesis Hy : AiI?f = Ay for a range of Ag values and a
fixed Ai}lf value. The two-sided misspecification index test rejects Hy if Ag ¢ C1I,, A(.05), which is
defined in (4.3).

Figures show that the rejection probabilities of the MI test are well behaved. They
monotonically increase in |Ag — AR{| to 1 for positive values of Ag — Al and negative values of
Ay — A}?‘f. In several scenarios, the plots are relatively flat to the immediate right of the point
Ag — Ailf}f = 0. This implies that it is difficult to reject the null hypothesis of a low level of
misspecification when the truth is a correctly-specified singleton identified set. For the cases with
k = 4 and 8, power is highest in the “binding” scenarios, but the differences across the different
slackness scenarios are not very large. The MI test has noticeably higher power for Ai}lf close to
zero, i.e., for Ai}lf € {—1,-.5,0,.5,1}, than for large |Ailf$f|, i.e., for Ailfif € {—5,-2,2,5}. This is
advantageous when one is interested in determining whether Ai}lf is nonnegative versus positive.
Looking at the rejection probabilities for Ag — Ai}lf = 0, we see that the MI test has correct size,
but under-rejects with the null rejection probabilities being close to 0 in the cases considered.

Figure [8.4] gives the simulated rejection probabilities, i.e., power, of the SPUR1 and SPUR2
tests for a range of null values 6y > 0 for the misspecified cases for k = 2 Figure provides the
simulated rejection probabilities of the SPUR1, SPUR2, and standard GMS tests in the correctly-
specified models for k = 2 for fixed ©ME(F) = [—¢,0] for a range of null hypothesis values 6y > 0

for ¢ € {0,.5,1,2}. Figure gives the simulation results for the SPUR1 and SPUR2 tests for the

31That is, Figurereports power for the true 6 being 0, which is in ©7(F) = {0}, and the null being 6y > 0 for
a range of 6y values. This differs from, but is no less informative than, a conventional power function that considers
a fixed null value and a range of true alternative values.
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Figure 8.2: Rejection probabilities of tests concerning the misspecification index A}?f for k = 4.
Each plot shows, for different values of Ailf—,lf, the rejection probabilities of the nominal .05 two-sided
misspecification index test of the null hypothesis Hy : Ai;%f = /A for a range of Ag values and a
fixed Ai}lf value. The two-sided misspecification index test rejects Hy if Ag ¢ C1I,, A(.05), which is

defined in (4.3). Results are given for the binding and very slack scenarios.
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Figure 8.3: Rejection probabilities of tests concerning the misspecification index A}?f for k = 8.
Each plot shows, for different values of Ailf—,lf, the rejection probabilities of the nominal .05 two-sided
misspecification index test of the null hypothesis Hy : Ai;%f = /A for a range of Ag values and a
fixed Ai}lf value. The two-sided misspecification index test rejects Hy if Ag ¢ C1I,, A(.05), which is

defined in (4.3). Results are given for the binding and very slack scenarios.
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Figure 8.4: Rejection probabilities of tests concerning 6 for misspecified cases for k = 2. Each
plot shows, for different values of r?f, the rejection probabilities of the nominal .05 SPUR1 and
SPUR2 tests for the null hypothesis Hy : 8 = 0y for a range of 6y values and fixed identified set
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misspecified cases for £ = 4 in the “binding,” “almost binding,” “somewhat slack,” “very slack,”
and “slack/almost binding” scenarios. Figure gives the corresponding results for the correctly-
specified models for k& = 4. Figures [8.8| and give the simulation results for the SPUR1 and
SPUR2 tests for £k = 8 for all five slackness scenarios in the misspecified and correctly specified
scenarios, respectively.

Figures and [8.8] show that the performance of the two tests, SPUR1 and SPUR2, is
quite similar under misspecification (i.e., r}?f > 0), which is what we expect given the discussion in
Section Looking at the rejection probability at §y = 0, we see that both tests have correct size,
but under-reject with the null rejection probabilities being close to 0. The rejection probabilities
increase to 1 fairly quickly as the distance between the null value and the MR~identified set increases.

The tests perform better in terms of power when rilflf is smaller, but they perform reasonably well

even when rilflf is as large as 5, which is five times the standard deviation of the moment functions.
Additionally, for the cases with kK = 4 and 8, we see that the performance of the tests does not
differ much across the different scenarios.

For the correctly-specified cases, we focus on the comparison of the SPUR1 and SPUR2 tests
with the standard GMS test, which is known to perform well in such cases. From the discussion in

Section we expect the SPUR2 and standard GMS tests to exhibit similar performance when
the length of the identified set is large enough. Indeed, in Figure we see that when the length
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Figure 8.5: Rejection probabilities of tests concerning 6 for correctly specified cases for k£ = 2. Each
plot shows, for different lengths ¢ of the identified set, the rejection probabilities of the nominal
.05 SPUR1, SPUR2, and standard GMS tests for the null hypothesis Hy : 8 = 6y for a range of 6
values and identified set ©(F) = [/, 0].

of the identified set is .5 the rejection probabilities of the two tests are very close to each other, and
when the length is greater than .5 all three tests are essentially indistinguishable. We can also see
that the SPUR2 test catches up to the standard GMS test under shorter identified sets than the
SPURI1 test does, which shows its adaptive nature. However, when the identified set is a singleton,
the SPUR1 and SPUR2 tests are more conservative than the standard GMS test under the null
and have lower power over a wide range of positive 6y values. Essentially the same occurs when
k = 4. That is, for each of the scenarios, the SPUR1 and SPUR2 tests are more conservative when
the identified set has length 0, the SPUR2 test performs similarly to the standard GMS test when
the length is .5, and all three tests are indistinguishable when the length is greater than .5. Again,
this exhibits the adaptive nature of the SPUR2 test. The pattern for k£ = 8 is similar, although
there is a larger gap between the power of the SPUR2 and GMS tests. When k = 4 and 8, the
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discrepancy between the standard GMS test and the SPUR1 and SPUR2 tests is largest in the
“binding” scenario.

In sum, (i) when the model is misspecified, the SPUR1 and SPUR2 tests perform quite similarly,
with their rejection probabilities reaching 1 fairly quickly as the distance between the null value
and the MR-identified set increases, and (ii) when the model is correctly specified, the SPUR2 test
performs similarly to the GMS test provided the identified set is not too short, and likewise for the
SPURI1 test for somewhat longer identified sets. Thus, the SPUR2 test performs better than the
SPURI1 test when the identified set is small, but not too small.

8.1.3 Sensitivity to Tuning Parameters

Now, we assess the sensitivity to the tuning parameters of the rejection probabilities of the
two-sided MI and SPUR2 tests under the null and alternative hypotheses. The baseline values for
the tuning parameters are: 7, pgse = Kn pase = (I n)/2, a1 pgse = -005 (when oo = .05), tpase = 1076,
and Bypgse = 1000. We alter these tuning parameters one at a time. For 7,, we consider ¢;7, pase
for ¢, = .5,2; for Ky, we consider ¢k, pase for ¢ = .5,2; for aq, we consider oy = .0025, .01; for ¢,
which affects both the standard deviation in and the quantile, see the paragraph containing
, we alter the value of ¢ separately using tsg = 0.5,107% and tg = 0.0,0.01; and for B, we
consider B = 500, 2000. The changes in the tuning parameters that we consider are relatively large.
In most cases, they correspond to halving or doubling the value.

We consider 40 different data generating processes (DGP’s) for the MI test results: 8 DGP’s
have k = 2 moment inequalities, 16 have k = 4, and 16 have k = 8; 20 DGP’s are correctly specified
(for which A™ € {—5,—1,—.5,0}) and 20 DGP’s are misspecified with A™f € {.5,1,2,5}; and 25
DGP’s have a singleton MR~identified set and 15 DGP’s have an MR~identified set with positive
length). For k = 4,8, we consider two different scenarios defined above: b="*“binding” and vs=*“very
slack.”

Tablesand provide the results for the MI test. The nominal .05 two-sided MI test rejects
Hy : Ailfif = Ay if Ag ¢ CI, A(.05). Each entry in these tables shows the difference in the average
rejection probabilities between a given change in a tuning parameter and the baseline value. The
average is taken over 1,000 (equally spaced) values of Ag such that Ag — ARt € [~1,1]. For the
tuning parameters 7,, Ly, tq, and B, Tables and show that there is very little sensitivity of
the rejection probabilities. For these tuning parameters, the differences are .00 in 261 cases and .01
in absolute value in the remaining 59 cases. For the tuning parameter k,,, there is some sensitivity,
but it is relatively small in most cases. The differences are .03 or less in absolute value in 65 of 80

cases and .06 or less in absolute value in 73 of 80 cases. Differences in rejection probabilities that
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Table 8.1: Tuning parameter sensitivity: Rejection probability differences for the misspecification
index test based on the two-sided CI for the misspecification index.

;=05 ¢;,=2 ¢,=05 C=2 1sq=0.5  15q =108

k=2, Alnf—_5 0.01  —0.01 0.04  —0.03 0.00 0.00
k=2, Alnf=_1 0.00 0.00 0.0l  —0.01 0.00 0.00
k=2, Alnf—=_0.5 0.00 0.00 0.01 0.00 0.00 0.00
k=2, Alnf=( 0.00 0.00 0.01 0.00 0.00 0.00
k=2, Alnf=0.5 0.00 0.00 0.01 0.00 0.00 0.00
k=2, Alnf=1 0.00 0.00 0.01 0.00 0.00 0.00
k=2, Alnf=2 0.01 0.00 0.01 0.00 0.00 0.00
k=2, Alnf=5 0.01  —0.01 0.02  —0.01 0.00 0.00
k=4, Alff=_5 1 0.01  —0.01 0.08  —0.06 0.00 0.00
k=4, Altf=_5vs 0.01  —0.01 0.05 —0.10 0.00 0.00
k=4, Alff=_1 1} 0.00 0.00 0.02  —0.02 0.00 0.00
k=4, Altf="1vs 0.00 0.00 0.01 0.00 0.00 0.00
k=4, Altf=10.5 b 0.00 0.00 0.02  —0.01 0.00 0.00
k=4, Alff=0.5, vs 0.00 0.00 0.01 0.00 0.00 0.00
k=4, Alf=0 b 0.00 0.00 0.02  —0.01 0.00 0.00
k=4, Alff=0, vs 0.00 0.00 0.01 0.00 0.00 0.00
k=4, Alnf=0.5 b 0.00 0.00 0.02  —0.01 0.00 0.00
k=4, Alf=0.5, vs 0.00 0.00 0.01 0.00 0.00 0.00
k=4, Alf=1 b 0.00 0.00 0.02  —0.01 0.00 0.00
k=4, Alff=1 vs 0.00 0.00 0.01 0.00 0.00 0.00
k=4, Altf=2 1} 0.00 0.00 0.03  —0.01 0.00 0.00
k=4, Altf=2 v 0.01 0.00 0.01 0.00 0.00 0.00
k=4, Alf=5 1} 0.01  —0.01 0.06  —0.03 0.00 0.00
k=4, Altf=5 v 0.01  —0.01 0.03  —0.02 0.00 0.00
k=8, Altf=_5 1 0.01 0.00 0.11 —0.08 0.00 0.00
k=8, Alf=175 vs 0.01 0.00 0.09 —0.13 0.00 0.00
k=8, Altf=_1 0.00 0.00 0.04  —0.03 0.00 0.00
k=8, Altf=_1vs 0.00 0.00 0.02  —0.01 0.00 0.00
k=8, Altf=_0.5 b 0.00 0.00 0.03  —0.02 0.00 0.00
k=8, Altf=_0.5, vs 0.00 0.00 0.02  —0.01 0.00 0.00
k=8, Alnf=0, b 0.00 0.00 0.03  —0.02 0.00 0.00
k=8, Alf=0, vs 0.00 0.00 0.02  —0.01 0.00 0.00
k=8, Alnf=0.5, b 0.00 0.00 0.03  —0.01 0.00 0.00
k=8, Altf=0.5, vs 0.00 0.00 0.02  —0.01 0.00 0.00
k=8, Alf=1 p 0.00 0.00 0.03  —0.02 0.00 0.00
k=8, Alf=1 vs 0.00 0.00 0.02  —0.01 0.00 0.00
k=8, Altf=2 1} 0.00 0.00 0.04  —0.02 0.00 0.00
k=8, Altf=2 v 0.00 0.00 0.03  —0.01 0.00 0.00
k=8, Alf=5 h 0.01 0.00 0.09 —0.04 0.00 0.00
k=8, Altf=5 v 0.01  —0.01 0.06  —0.03 0.00 0.00
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Table 8.2: Tuning parameter sensitivity: Rejection probability differences for the misspecification
index test based on the two-sided CI for the misspecification index (continued).

;=0  1,=0.01 B=500 B=2,000

k=2, Alnf=_5 0.00  —0.01 0.00 0.00
k=2, Alnf=_1 0.00  —0.01 0.00 0.00
k=2, Alf=0.5 0.00  —0.01 0.00 0.00
k=2, Alnf=0 0.00  —0.01 0.00 0.00
k=2, Alnf=0.5 0.00  —0.01 0.00 0.00
k=2, Alnf=1 0.00  —0.01 0.00 0.00
k=2, Alnf=2 0.00  —0.01 0.00 0.00
k=2, Alnf=5 0.00  —0.01 0.00 0.00
k=4, Altf=_5 b 0.00  —0.01 0.00 0.00
k=4, Alff=5vs 0.00  —0.01 0.00 0.00
k=4, Alff=_1 b 0.00 —0.01 0.00 0.00
k=4, Alff=1 vs 0.00  —0.01 0.00 0.00
k=4, Altf=0.5 b 0.00  —0.01 0.00 0.00
k=4, Alff=0.5 vs 0.00  —0.01 0.00 0.00
k=4, Alf=0, b 0.00  —0.01 0.00 0.00
k=4, Alf=0, vs 0.00  —0.01 0.00 0.00
k=4, Alff=0.5 b 0.00  —0.01 0.00 0.00
k=4, Alff=0.5, vs 0.00  —0.01 0.00 0.00
k=4, Alf=1 b 0.00 —0.01 0.00 0.00
k=4, Altf=1 vs 0.00  —0.01 0.00 0.00
k=4, Altf=2 1 0.00  —0.01 0.00 0.00
k=4, Altf=2 v 0.00  —0.01 0.00 0.00
k=4, Alf=5 1 0.00  —0.01 0.00 0.00
k=4, Alff=5 v 0.00  —0.01 0.00 0.00
k=8, Altf=_75 b} 0.00  —0.01 0.00 0.00
k=8, Altf=_5vs 0.00  —0.01 0.00 0.00
k=8, Altf=_1 b 0.00  —0.01 0.00 0.00
k=8, Altf=1 vs 0.00  —0.01 0.00 0.00
k=8, Altf=0.5 b 0.00  —0.01 0.00 0.00
k=8, Altf=0.5 vs 0.00  —0.01 0.00 0.00
k=8, Alnf=0, b 0.00  —0.01 0.00 0.00
k=8, Alf=0, vs 0.00  —0.01 0.00 0.00
k=8, Alff=0.5 b 0.00  —0.01 0.00 0.00
k=8, Alf=0.5, vs 0.00  —0.01 0.00 0.00
k=8, Alf=1 b 0.00  —0.01 0.00 0.00
k=8, Alf=1 vs 0.00  —0.01 0.00 0.00
k=8, Altf=2 1} 0.00  —0.01 0.00 0.00
k=8, Altf=2 v 0.00  —0.01 0.00 0.00
k=8, Alf=5 b 0.00  —0.01 0.00 0.00
k=8, Alf=5 vs 0.00  —0.01 0.00 0.00
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are .007 or greater in absolute value are highlighted in boldface. There are 7 out of 80 cases for
¢ = .5,2 in boldface.

Next, we assess the sensitivity to the tuning parameters of the rejection probabilities of the
SPUR2 test under the null and alternative hypotheses. We consider 33 different DGP’s for the
SPUR2 test results: 8 DGP’s have £ = 2 moment inequalities and 25 have k£ = 4; 19 DGP’s
are correctly specified (for which 7 := ™ = 0) and 14 DGP’s are misspecified with r = r*f ¢
{:5,1,2}; and 20 DGP’s have a point-identified set (i.e., length=0) and 13 DGP’s have a non-
degenerate identified set (i.e., length € {.5,1,2}). For k = 4, we consider the five different scenarios
defined above: b=“binding,” ab=*“almost binding,” ss=“somewhat slack,” vs=“very slack,” and
sab="“slack/almost binding.

In Tables we report the differences between the rejection probability of the SPUR2 test
based on the altered tuning parameter value and the rejection probability based on the baseline
tuning parameter value for each DGP. The null rejection probabilities considered are those for
the case where the null value 6y = 0 is on the boundary of the MR-identified set. For rejection
probabilities under the alternative hypothesis, we take the true value of 6 to be 0 and report
averages of the rejection probabilities over null 6y values in the interval [0,.3], which corresponds
to the relevant range of the rejection probabilities.

Tables and report null rejection probability differences. They show that there is very
little sensitivity of the null rejection probabilities to the changes in 7, a1, ts4, tq, and B. All values
are .005 or less in absolute value, and all but 24 out of 330 are .002 or less in absolute value. There
is more sensitivity in Tablesand to Ky, than the other tuning parameters. There are 47 out
of 66 cases that are .005 or less in absolute value. Differences in rejection probabilities that are .010
or greater in absolute value are highlighted in boldface. There are 10 out of 66 cases for ¢, = .5,2
in boldface. Eight of these correspond to ¢, = .5. In consequence, we recommend not using a &,

12 For ¢, = 2, only 5 out of 33 cases exceed .005 in absolute value, with

value as small as .5(Inn)
a maximum of .015. So, the null rejection probabilities are not very sensitive to a doubling of the
value of k.

The results for the average rejection probabilities under the alternative hypothesis are reported
in Tables and For the tuning parameters 7,, a1, tgq, tq, and B, the results are similar to
those in Tables and That is, the average rejection probability differences are small. All
are .02 or less in absolute value, and all but 10 out of 330 are .00 or .01 in absolute value. For
kn, the average differences in some cases are substantially larger. Differences that exceed .05 are

highlighted in boldface. There are 39 out of 66 values for ¢, = .5,2 in boldface. The higher level

of sensitivity to x, occurs in the DGP’s that have point-identified sets. Decreasing «,, increases
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Table 8.3: Tuning parameter sensitivity: SPUR2 null rejection probability comparisons with base-
line.

DGP ¢=0.5 =2 ¢.,=0.5 =2 as=0.0475  @y=0.04
k=2, r=0, length=0 0.000 0.000 0.001 -0.001 0.000 0.000
k=2, r=0, length=0.5 0.005 0.000  0.011 -0.002 -0.002 0.001
k=2, r=0, length=1 0.000 0.000 0.000 0.000 0.001 -0.004
k=2, r=0, length=2 0.000 0.000 0.000 0.000 0.001 -0.004
k=2, r=0.5, length=0 0.000 0.000 0.002  -0.001 0.000 0.000
k=2, r=1, length=0 0.000 0.000 0.007 0.000 0.000 0.000
k=2, r=2, length=0 0.000 0.000 0.005 0.000 0.000 0.000
k=2, r=5, length=0 0.000 0.000 0.006  -0.001 0.000 -0.001
k=4, r=0, length=0, b 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=0, length=0, ab 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=0, length=0, ss 0.000 0.000 0.001 -0.001 0.000 0.000
k=4, r=0, length=0, vs 0.000 0.000 0.001 -0.001 0.000 0.000
k=4, r=0, length=0, sab 0.000 0.000 0.000  -0.001 0.000 0.000
k=4, r=0, length=0.5, b 0.001 0.000  0.023 -0.015 -0.005 0.002
k=4, r=0, length=0.5, ab 0.000 0.000 0.022 -0.011 0.000 -0.002
k=4, r=0, length=0.5, ss 0.000 0.000 0.014 -0.005 -0.003 0.004
k=4, r=0, length=0.5, vs 0.000 0.000  0.014 -0.004 -0.003 0.004
k=4, r=0, length=0.5, sab 0.000 0.000  0.021 -0.009 0.002 -0.001
k=4, r=0, length=1, b 0.000 0.000 0.002 0.000 0.003 -0.002
k=4, r=0, length=1, ab 0.000 0.000 0.015 -0.007 0.003 -0.003
k=4, r=0, length=1, ss 0.000 0.000 0.000 0.000 0.001 -0.005
k=4, r=0, length=1, vs 0.000 0.000 0.000 0.000 0.001 -0.005
k=4, r=0, length=1, sab 0.000 0.000 0.015 -0.007 0.003 -0.003
k=4, r=0.5, length=0, b 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=0.5, length=0, ab 0.000 0.000 0.002 0.000 0.000 0.000
k=4, r=0.5, length=0, ss 0.000 0.000 0.008 0.000 0.000 0.000
k=4, r=0.5, length=0, vs 0.000 0.000 0.008 0.000 0.000 0.000
k=4, r=0.5, length=0, sab 0.000 0.000 0.005 0.000 0.000 0.000
k=4, r=1, length=0, b 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=1, length=0, ab 0.000 0.000 0.001 0.000 0.000 0.000
k=4, r=1, length=0, ss 0.000 0.000 0.004  -0.001 0.000 -0.001
k=4, r=1, length=0, vs 0.000 0.000 0.004 -0.001 0.000 -0.001
k=4, r=1, length=0, sab 0.000 0.000 0.002  -0.001 0.000 -0.001

power (and the null rejection probabilities), whereas increasing r, decreases power (and the null
rejection probabilities). The recommended value of k,, aims to achieve high power subject to the

null rejection probability being less than or equal to a.
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Table 8.4: Tuning parameter sensitivity: SPUR2 null rejection probability comparisons with base-
line (continued).

DGP Lsa=0.5  154=10"%  1,=0 (,=0.01 B=500 B=2,000
k=2, r=0, length=0 0.000 0.000 0.000  0.000 0.000 0.000
k=2, r=0, length=0.5 -0.001 0.000 0.000  -0.002  -0.001 -0.002
k=2, r=0, length=1 0.000 0.000 0.000  0.000  -0.002 -0.001
k=2, r=0, length=2 0.000 0.000 0.000  0.000  -0.002 -0.001
k=2, r=0.5, length=0 0.000 0.000 0.000  0.000 0.000 0.000
k=2, r=1, length=0 0.000 0.000 0.000  0.000 0.000 0.000
k=2, r=2, length=0 0.000 0.000 0.000  0.000 0.001 0.001
k=2, r=5, length=0 0.000 0.000 0.000  0.000 0.001 0.000
k=4, r=0, length=0, b 0.000 0.000 0.000  0.000 0.000 0.000
k=4, r=0, length=0, ab 0.000 0.000 0.000  0.000 0.000 0.000
k=4, r=0, length=0, ss 0.000 0.000 0.000  0.000 0.000 0.000
k=4, r=0, length=0, vs 0.000 0.000 0.000  0.000 0.000 0.000
k=4, r=0, length=0, sab 0.000 0.000 0.000  0.000 0.000 0.000
k=4, r=0, length=0.5, b -0.001 0.000 0.000  -0.005 0.000  -0.003
k=4, r=0, length=0.5, ab ~ -0.001 0.000 0.000  -0.001 0.000  -0.001
k=4, r=0, length=0.5, ss -0.001 0.000 0.000  -0.004 0.002  -0.003
k=4, r=0, length=0.5, vs ~ -0.001 0.000 0.000  -0.004 0.002  -0.003
k=4, r=0, length=0.5, sab ~ -0.001 0.000 0.000  -0.001 0.000  -0.001
k=4, r=0, length=1, b 0.000 0.000 0.000  0.000  -0.003 0.001
k=4, r=0, length=1, ab 0.000 0.000 0.000  0.000 0.001 0.000
k=4, r=0, length=1, ss 0.000 0.000 0.000  0.000 0.002  -0.003
k=4, r=0, length=1, vs 0.000 0.000 0.000  0.000 0.002  -0.003
k=4, r=0, length=1, sab 0.000 0.000 0.000  0.000 0.001 0.000
k=4, r=0.5, length=0, b 0.000 0.000 0.000  0.000 0.000 0.000
k=4, r=0.5, length=0, ab 0.000 0.000 0.000  0.000 0.000 0.000
k=4, r=0.5, length=0, ss 0.000 0.000 0.000  0.000 0.001 0.001
k=4, r=0.5, length=0, vs 0.000 0.000 0.000  0.000 0.001 0.001
k=4, r=0.5, length=0, sab  0.000 0.000 0.000  0.000 0.001 0.001
k=4, r=1, length=0, b 0.000 0.000 0.000  0.000 0.000 0.000
k=4, r=1, length=0, ab 0.000 0.000 0.000  0.000 0.000 0.000
k=4, r=1, length=0, ss 0.000 0.000 0.000  0.000 0.000 0.000
k=4, r=1, length=0, vs 0.000 0.000 0.000  0.000 0.000 0.000
k=4, r=1, length=0, sab 0.000 0.000 0.000  0.000 0.000 0.000
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Table 8.5: Tuning parameter sensitivity: SPUR2 average power comparisons with baseline.

DGP =05  c¢;=2 ¢.,=05 c,=2 a=0.0475 «@9=0.04
k=2, r=0, length=0 0.00 0.01 0.07 -0.09 0.01 -0.02
k=2, r=0, length=0.5 0.00 0.00 0.01 -0.01 0.00 -0.01
k=2, r=0, length=1 0.00 0.00 0.00 0.00 0.01 -0.01
k=2, r=0, length=2 0.00 0.00 0.00 0.00 0.01 -0.01
k=2, r=0.5, length=0 0.00 0.00 0.12 -0.09 0.01 -0.02
k=2, r=1, length=0 0.00 0.00 0.13 -0.09 0.01 -0.02
k=2, r=2, length=0 0.00 0.00 0.13 -0.07 0.01 -0.02
k=2, r=5, length=0 0.00 0.00 0.03 -0.01 0.00 0.00
k=4, r=0, length=0, b 0.00 0.01 0.15 -0.07 0.00 -0.01
k=4, r=0, length=0, ab 0.00 0.01 0.15 -0.09 0.01 -0.01
k=4, r=0, length=0, ss 0.00 0.01 0.07 -0.11 0.01 -0.01
k=4, r=0, length=0, vs 0.00 0.01 0.07 -0.09 0.01 -0.01
k=4, r=0, length=0, sab 0.00 0.01 0.14 -0.07 0.01 -0.01
k=4, r=0, length=0.5, b 0.00 0.00 0.03 -0.06 -0.01 0.00
k=4, r=0, length=0.5, ab 0.00 0.00 0.02 -0.04 0.00 0.00
k=4, r=0, length=0.5, ss 0.00 0.00 0.01 -0.02 0.00 -0.01
k=4, r=0, length=0.5, vs 0.00 0.00 0.01 -0.01 0.00 -0.01
k=4, r=0, length=0.5, sab 0.00 0.00 0.02 -0.02 0.00 -0.01
k=4, r=0, length=1, b 0.00 0.00 0.00 0.00 0.00 -0.01
k=4, r=0, length=1, ab 0.00 0.00 0.01 0.00 0.00 -0.01
k=4, r=0, length=1, ss 0.00 0.00 0.00 -0.01 0.01 -0.01
k=4, r=0, length=1, vs 0.00 0.00 0.00 0.00 0.01 -0.01
k=4, r=0, length=1, sab 0.00 0.00 0.01 0.00 0.00 -0.01
k=4, r=0.5, length=0, b 0.00 0.00 0.18 -0.07 0.01 -0.01
k=4, r=0.5, length=0, ab 0.00 0.01 0.20 -0.08 0.01 -0.01
k=4, r=0.5, length=0, ss 0.00 0.00 0.11 -0.14 0.01 -0.02
k=4, r=0.5, length=0, vs 0.00 0.00 0.11 -0.09 0.01 -0.02
k=4, r=0.5, length=0, sab 0.00 0.02 0.14 -0.14 0.01 -0.01
k=4, r=1, length=0, b 0.00 0.00 0.21 -0.07 0.01 -0.01
k=4, r=1, length=0, ab 0.00 0.01 0.22 -0.08 0.01 -0.01
k=4, r=1, length=0, ss 0.00 0.00 0.13 -0.18 0.01 -0.02
k=4, r=1, length=0, vs 0.00 0.00 0.13 -0.09 0.01 -0.02
k=4, r=1, length=0, sab 0.00 0.01 0.16 -0.14 0.01 -0.02
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Table 8.6: Tuning parameter sensitivity: SPUR2 average power comparisons with baseline (contin-

ued).

DGP Lsa=0.5  154=10"% 1,=0 (,=0.01 B=500 B=2,000
k=2, r=0, length=0 -0.01 0.00 0.00 0.00 0.00 0.00
k=2, r=0, length=0.5 0.00 0.00 0.00 0.00 0.00 0.00
k=2, r=0, length=1 0.00 0.00 0.00 0.00 0.00 0.00
k=2, r=0, length=2 0.00 0.00 0.00 0.00 0.00 0.00
k=2, r=0.5, length=0 0.00 0.00 0.00 0.00 0.00 0.00
k=2, r=1, length=0 0.00 0.00 0.00 0.00 0.00 0.00
k=2, r=2, length=0 0.00 0.00 0.00 0.00 0.00 0.00
k=2, r=5, length=0 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0, b 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0, ab -0.01 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0, ss -0.01 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0, vs -0.01 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0, sab -0.01 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0.5, b 0.00 0.00 0.00  -0.01 0.00 0.00
k=4, r=0, length=0.5, ab 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0.5, ss 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0.5, vs 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0.5, sab ~ 0.00 0.00 0.00  -0.01 0.00 0.00
k=4, r=0, length=1, b 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=1, ab 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=1, ss 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=1, vs 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=1, sab 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0.5, length=0, b 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0.5, length=0, ab 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0.5, length=0, ss 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0.5, length=0, vs 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0.5, length=0, sab ~ 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=1, length=0, b 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=1, length=0, ab 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=1, length=0, ss 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=1, length=0, vs 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=1, length=0, sab 0.00 0.00 0.00 0.00 0.00 0.00
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8.2 Missing Data Model

In this subsection, we revisit the missing data model that BCS use in their simulations. The
specification of the model closely follows BCS, but we consider a somewhat different data generating
process Example 2.1 of BCS provides motivation for the model. Let {W; = (Y;Z;, Z;, Xi) }i<n
be the i.i.d data. Here, Z; ~ Bernoulli(p,) is the indicator of whether the outcome variable Y; is

missing. It is independent of (Y;, X;). The conditional distribution of Y; given X is
Y;‘Xz = X1~ N(O, 1), Y;‘Xz = X9 ~ N((l + F)/pz, 1), and Y;|XZ = I3 ~~ N(O, 1), (84)

with P(X; = z1) = P(X; = x2) = P(X; = z3) = 1/3. The parameter space is © = [-20,20] X

[—20,20]. The moment functions are

ml(Wi,G) = (91 — }/;Zl)l{Xz = .7}1},
mo(Wi,0) = (1 — 61 — Y;Z;))1{X; = 22}, and
m3(Wi, 9) = (92 — }/;Zl)l{Xz = .7,‘3} for 6 = (91, 92)/. (8.5)

The value of 7 determines whether the model is misspecified. When 7 < 0, the model is correctly
specified, which implies that r%‘f = 0, and the MR-identified set is @7 (F) = [0, —7] x [0, 00). When
7 > 0, the model is misspecified and some calculations show that

1/2
inf _ ?2/3

m (pi/Q + (1 +7)2(1/ps — 1) +pz)1/2)2 +2r2/3

(8.6)

For 7 > 0, it can be shown that the MR-identified set is @M (F) = {61 (7)} x [61(7), 00), where

1/2~

o1 (7 — pz T , 8.7
10 Pt 4 (1 +7)2(1/p. — 1) + o)1/ &7

See Section@below for the derivations of and (8.7).

We take p, = .8 throughout. We consider values of 7 that cover both misspecified and correctly-
specified cases. As above, we simulate rejection probabilities for a fixed data generating process
and a range of null hypothesis values 6y = (6p1,002)’, where Hy : § = 6. For the null values, we
consider s fixed at 9{ (¥) when 7 > 0 and at 0 when 7 < 0, and we consider a range of 6p; values.

Accordingly, the z—axes in Figures and correspond to the first element of the null vector.

32A different data generating process is employed to ensure that the random variable Y Z is nonnegative, which is
an implication of the structure of the missing data model.
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Figure 8.10: Rejection probabilities of tests concerning # under misspecification for the missing
data model. The figure shows the rejection probabilities the nominal .05 SPUR1 and SPUR2 tests

for the null hypothesis Hy : 6 = 0y for a range of 6y; values and a fixed identified set, for four
different 7 values.

Figure reports the simulated rejection probabilities for the misspecified cases with ¥ = .1,
.2, .5, and 1 Here, the MR~identified set is {0} x [0,00). As in the lower/upper bound model,
the SPUR1 and SPUR2 tests perform quite similarly, as expected. Also, the rejection probabilities
increase to 1 fairly quickly as the distance between the null value and the MR-identified set increases,
and the performance is better for smaller values of 7 (or, equivalently, smaller values of r}‘f).

Figure provides the results under correct specification. Here, we see that when 7 = 0,
which implies that the identified set contains no slack points, the standard GMS test performs
better than the SPUR1 and SPUR2 tests, which is expected. In this case, the SPUR1 and SPUR2
tests have almost identical rejection probabilities. Also, the difference between the standard GMS
test and the SPUR2 test decreases quickly as the identified set gets larger (i.e., as 7 become more
negative) and, hence, contains more slack points. The SPUR2 test is essentially on par with the
standard GMS test when 7 is —1. The difference in power between the standard GMS test and the
SPURI test also decreases to some extent as the identified set get larger. But, the SPURI1 test
has lower power (similar to the 7 = —1 case) even for r values in the range of [—2, —5] (based on
results not reported in Figure. Overall, the four plots show how the SPUR2 test adapts, and
eventually behaves very much like the standard GMS test as the identified set gets larger.

33By , these 7 values correspond (approximately) to r2f = .03, .07, .14, and .24, respectively.
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Figure 8.11: Rejection probabilities of tests concerning 8 under correct specification for the missing
data model. Each plot shows the rejection probabilities the nominal .05 SPUR1, SPUR2, and
standard GMS tests for the null hypothesis Hy : # = 6y and a range of 6y; values, for one of the
four 7 values considered. The shaded region in each plot delineates the identified set.

9 Detalils for the Missing Data Model

In this section, we provide additional details for the missing data model considered in Section

Specifically, we provide derivations for , (8.7)), and the line following (8.7), which gives an
expression for the MR-identified set.

Let p; := P(X; = xj) > 0 for j < 3. In the simulations, we take p; = 1/3 for j < 3. Some

calculations give

Ermi(W,0) = p101,
Epmy(W,0) = —p2(61 +7), and
EFTI’L:J,(W,G) = p392. (9.1)
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In consequence, the model is misspecified if and only if 7 > 0, as stated in Section Ifr <0,
rilflf =0.

Now, suppose 7 > 0. Additional calculations give

Varp (mi(W,0)) = (p1 — p))0; + p1p-,
Varp (ma(W,0)) = (p2 — p3) (61 +7)° + p2 (1 +7)*(1/p- — 1) + p:) , and
Varg (m3(W,0)) = (ps — p3)05 + p3p.. (9.2)

We relax the (standardized) inequalities by r. Then, by (9.1) and (9.2), the inequalities are

p1bh .
((pr = pDOF +prp)t/? = 7
p2(61 +7)
_ > —r, and
((p2 = p3) (01 +7)2 +pa((1L+7)2(1/p — 1) +ps))Y/2
P36z > . (9.3)

((ps — p3)03 + psp-)'/? —

By definition, riﬁf is the smallest r > 0 such that there exists some 6§ € © that satisfies lD The
third inequality does not play a role in determining rilflf. Hence, we focus on finding the smallest
r > 0 such that there exists some 6; that satisfies the first two inequalities.

For arbitrary numbers a, b, and ¢ with ¢ > 0 and b > 0, consider the function

01 +c

h(61) = (a(61 + c)2 _|_b)1/2'

(9.4)

Calculation of the first derivative of h(-) shows that h(-) is strictly increasing. This implies that
the left-hand sides of the first and second inequalities in are strictly increasing and strictly
decreasing functions of 6, respectively. Hence, if we let 6, (r) and 01 (r) denote the ; values that
solve the first and second inequalities as equalities, respectively, then 6; satisfies the two inequalities
if and only if 6, lies in [0, (r), 1(r)], where this interval is defined to be empty if 0 (r) > 01(r).

Some algebra gives

B s 1/2
= <<p1/r2 - 1>>> .

oo (D2 - D)\
01(r) = < Py PO R— > —T. (9.5)
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Hence, if r is such that

;e <(1+?)2(1/pz -1 +pz>1/2+ ( p- ))1/2, (9.6)

p2/r?+py—1 p1/r2+p—1

then the MR-identified set under the relaxation r is non-empty. Since the right-hand side is increas-
ing in 7, 718 must solve as an equality. That is, 72 is the value of r that makes 8, (r) = 0;(r).

Assuming p; = po, this gives

1/2
‘ )
Tl}?f — — p1ir 3 (97)
(P + (U +72(1/pe = D) +9:)72) "+ (1= p1)7?
Taking p; = p2 = 1/3 gives .
Plugging the expression for r}‘f in place of r in || gives
' o pl/Q?
0, (") = 01(rp") = =75 - = 0{(7). (9-8)

p2' "+ ((1 +?‘I)2(1/pz -1) +pz)l/2

Thus, the only 0; value that satisfies with r = ritf is §; = 01(7). This gives .

Now, plugging in r}lf in place of r in the third inequality of and taking p; = p2 = p3 = 1/3,
one can see that any 6y such that 6y > 0{(7) satisfies (with 78 in place of r). This shows
that OMR(F) = {61(7)} x [61(F), 00).

10 Empirical Illustration

10.1 Sensitivity to Tuning Parameters

The baseline and altered values of the tuning parameters are the same as in Section
Table reports the differences between the MI CI lower and upper bounds when computed
with altered values of the tuning parameters compared to the baseline tuning parameters, where
the tuning parameters are altered one at a time. The results in Table are for o = .025. The
corresponding results for a = .05 are identical except that for Ai,?’fL(.O5) and B = 2000 the difference
is .000, rather than —.001. Table shows very little sensitivity to the tuning parameters 7, isq,
tq, and B. There is very little sensitivity of the MI CI lower bound to &,,. There is some sensitivity
of the MI CI upper bound to k,. But the magnitudes are only —.014 and .013 for ¢, = .5 and 2,
respectively, which is fairly small.

Table reports the differences between the SPUR2 CI lower bounds when computed with
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altered values of the tuning parameters compared to the baseline tuning parameters, where the
tuning parameters are altered one at a time. Tablem provides analogous results for the SPUR2
CI upper bounds.

Tables and [10.3]show relatively low sensitivity in general to the tuning parameters 7, a1,
Lsds g, and B. There is more sensitivity to x,. Halving or doubling x,, alters the SPUR2 CI lower

and upper bounds by an amount typically in the range of 0.000 to 0.350 in absolute value.

Table 10.1: Tuning parameter sensitivity: Misspecification index CI lower and upper bound com-
parisons with baseline.

c¢,=0.5 cr=2 c.=0.5 Cr=2 leg = 1078 154=0.5
3%(.025) 0.000 0.000 0.000 —0.001 0.000 0.000
Agfo(.o25) —0.001 0.001 —0.014 0.013 0.000 0.000

;=0  1,=0.01 B=500 B=2,000

Alnf (.025) 0.000 0.000 0.000  —0.001
At (025) 0.000 0.000 0.000 0.000

10.2 Power Results for a Simplified Entry Game Model

In this section, we report power results for MI and SPUR2 tests based on a simplified version
of the entry game model considered in Section [6] The goal is to provide some numerical evidence
that the SPUR2 test does not suffer from severe power issues, in a setting designed to mimic the
empirical illustration. The model employed is the same as in Section [6] but it is simplified by
assuming there is only one observed (market-level, binary) covariate X;; = Xfize, which we refer to
as “size,” and by assuming that the unobserved shocks are uncorrelated across types so that p = 0.

As in Section@ the moment inequalities are

E[1(Y; = (0,0), X; = x) — Poo(, 0)ps] > 0,
E[Poo(@,0)ps — 1(Y; = (0,0)', X; = z)] > 0,
E[1(Y; = (0,1)", X; = ) — Py (2,0)ps] > 0,
E[Poi(z,0)p: — 1(Y; = (0,1)', X; = x)] >0,
EN(Y; = (1,1), X; = 2) — Pu(=,0)p;] > 0,
E[Pi(z,0)p. —1(Y; = (1,1), X; = x)] > 0, (10.1)

but now with just = € {0, 1}, which results in 12 moment inequalities. Here, we define the quantities
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Table 10.2: Tuning parameter sensitivity: SPUR2 CI lower bound comparisons with baseline.

c=0.5 cr=2 c.=0.5 Ck=2 a9=0.0475 as=0.04

ﬁﬁ%’ét 0.000 0.000 0.000 0.000 0.000 0.000
Bi‘éec —0.002 0.000 0.176 —0.216 0.027 —0.036
Bﬁéeé 0.070 0.000 0.327 —0.285 0.087 —0.019
YLCC 0.004 —0.020 0.207 —0.293 0.031 0.000
BS’KS‘J 0.018 0.000 0.088 —0.115 0.000 —0.024
550135 0.011 —0.009 0.280 —0.210 0.086 —0.008
683?5 0.034 0.000 0.150 —0.167 0.049 0.000
YOA 0.058 0.000 0.268 —0.262 0.116 —0.014
P 0.000 0.000 0.000 0.000 0.000 0.000

1sg=1078 tsa=0.5 tg=0 tg=0.01 B=500 B=2,000

Bﬁ%lét 0.000 0.000 0.000 0.000 0.000 0.000
Bréc 0.013 0.000 0.023 0.000 —0.055 0.010
,BEE?% 0.000 0.000 0.000 —0.005 —0.084 0.063
YLCC 0.009 —0.016 0.000 0.000 0.017 —0.031
BEgRst 0.019 0.000 0.001 0.000 —0.029 0.024
Bsoiff 0.016 —0.003 0.066 —0.009 —0.006 0.029
BEN 0.000 —0.009 0.058 0.000 0.043 0.025
YOoA 0.000 0.000 0.000 0.000 0.041 0.111

p 0.000 0.000 0.000 0.000 0.000 0.000

Pyo(x,0), Pyi(z,0), etc. as in Section@ but with the simplified version of x.

We consider the case where there is no intercept term in X;, which yields Sroc = Biiéec and
Boa = ﬂgﬁf, and we suppose that vyrocc = Y04 = 7. The parameter spaces for Broc, Boa, and ¥y
are [—5,5], [=5, 5], and [0, 4], respectively, and thus © = [-5,5] x [=5,5] x [0,4].

For this model, we consider two different data generating processes (DGP’s), i.e., two different
joint distributions of Y; and X;. The observed covariates are drawn from a Bernoulli distribution
with probability .6 (i.e., p; = .6) under both DGP’s. The sample size is set to n = 7,882, which is

the same as the sample size in the empirical illustration. Data is simulated from a given DGP with

500 simulation repetitions. The MI tests/CI’s and SPUR2 projection tests/CI’s are constructed

using the tuning parameters recommended in Sections|4.7.1|and|5.6.1}

Let py o = P(Y; = y, X = x) denote the joint distribution of the outcome given the covariate.
The first DGP is defined by p(0y0 = -1, po,0y,1 = -05, po,1y,0 = -2, Po,1y,1 = -4, Pa,1y,0 = -06,
and p(; 11 = .1. This DGP is chosen to match the empirical marginal distribution of Y; in the
empirical illustration. The marginal distribution of Y; in the first DGP is P(Y; = (0,0)") = .15,
P(Y; = (0,0)") = .6, and P(Y; = (1,1)") = .15. The corresponding probabilities from the empirical
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Table 10.3: Tuning parameter sensitivity: SPUR2 CI upper bound comparisons with baseline.

c-=0.5 cr=2 cx=0.5 Cr=2 as=0.0475 as=0.04

ﬁﬁ%’ét —0.015 0.001 —0.366 0.245 —0.019 0.000
Bi‘éec —0.012 0.000 —0.213 0.056 0.000 0.007
Bﬁéeé —0.001 0.000 —0.181 0.166 —0.072 0.068
YLCC 0.000 0.000 0.000 0.000 0.000 0.000
BE)OXS‘J —0.068 0.000 —0.150 0.060 —0.078 0.000
550135 0.000 0.019 —0.168 0.574 —0.003 0.088
68165 0.000 0.017 —0.326 0.250 —0.060 0.000
YOA 0.000 0.000 0.000 0.000 0.000 0.000
P 0.000 0.000 0.000 0.000 0.000 0.000

1sg=1078 tsa=0.5 tg=0 tg=0.01 B=500 B=2,000

Best —0.002 0.001  —0.024 0.001 0.027 ~0.017
Biize,  —0.007 0.000  —0.014 0.000  —0.049 —0.042
BPS —0.001 0.000  —0.042 0.000 —0.011 —0.041
oc 0.000 0.000 0.000 0.000 0.000 0.000
Beonst 0.000 0.000  —0.099 0.009 —0.049 —0.061
gz —0.012 0.000  —0.012 0.000 0.173 0.117
BRS0.186 0.000  —0.174 0.028 0.089 ~0.091
Yo 0.000 0.000 0.000 0.000 0.000 0.000

p 0.000 0.000 0.000 0.000 0.000 0.000

marginal distribution are .153, .614, and .160. Under the first DGP, the (population) MI is Ailflf =
0.133, approximately, and the model is misspecified. The smallest hyperrectangle that contains the
true MR-identified set ©ME(F) is approximately [—.473,.230] x [.661,1.648] x [.624,.624]. Note
that, for example, [—.473,.230] is simply the projection of @M% (F) onto the first element of 6.

The MI in the first DGP is larger than the estimated MI value in the empirical illustration.
In consequence, we consider a second DGP with a smaller value of Ai}lf. This second DGP is
defined by p0y0 = 1075, p(o,0y,1 = 0425, po1y,0 = 1425, p1y 1 = 4075, p 1y = 0425,
and p(; 1,1 = .1075. Here, too, the marginal distribution of Y; is similar to what is observed in
the empirical illustration. Under this DGP, the (population) MI is Al = 024, approximately,
which is similar to the estimate of .023 for the case of p = 0 in the empirical illustration. For
the second DGP, the smallest hyperrectangle that contains the true MR~identified set @y R(F)is
approximately [—.376, —.157] x [1.101, 1.300] x [.440, .505].

We simulate the power of the MI and SPUR2 tests under the two DGP’s.

Figure shows the simulated rejection probabilities of the nominal .05 two-sided MI test of
the null hypothesis Hy : Ailflf = Ay for varying values of Ag. As shown in the figure, under both
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DGP’s, the test (based on the two-sided MI CI) has correct size and its rejection probabilities
approach 1 reasonably quickly as the difference between the null value Ay and the true value Ai}}f

becomes larger in absolute value.
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Figure 10.1: Rejection probabilities of tests concerning the misspecification index under the two
DGP’s. The two graphs show the rejection probabilities of the nominal .05 two-sided misspecifica-
tion index test of the null hypothesis Hy : Ai}?f = Ay for 1,000 (equally spaced) values of Ay such
that Ag — ALt € [-.2,.2].

Next, we consider the SPUR2 tests. Under the first DGP with Ail?f = .133, the three graphs in
Figure show the rejection probabilities for the null hypotheses

Hoproo: (Brecos Boa,v) € OFF(F) for some (Boa, ),
Hopos: (Bree,Boap,y) € O (F) for some (Broc, ) and

Hoy: (Brec, Boasv) € ©7F(F) for some (Brec, Boa), (10.2)

respectively, for varying null values Sr.cc 0, Boa,0, and v and fixed true values. Note that inverting
each of the tests gives the projection CI's for Brcc, Boa, and v, respectively. The gray shaded
regions show the (projected) MR-identified sets@ Figure shows that the MI test has correct
size and has nontrivial power against alternatives fairly close to the (projected) MR-identified set
with the rejection probabilities approaching 1 reasonably quickly as the alternative becomes further

away from the MR-identified set.

34When the (projected) MR-identified set is a singleton, the shaded area appears as a short vertical line below the
power curve in the graph.
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Under the second DGP with Ai}?f = .024, the three graphs in Figure show the rejection
probabilities for the null hypotheses Hy g, .., Hog,,, and Ho, respectively, for varying null val-
ues Brcc,, Boay, and 9. Here too, the results demonstrate correct size and reasonable power

properties of the test based on the SPUR2 projection CI’s.
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Figure 10.2: Rejection probabilities of the test based on the SPUR2 projection CI’s for the null
hypotheses Ho g, .., Ho g, and Hg, under the first DGP (Alnf = 133).
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Figure 10.3: Rejection probabilities of the test based on the SPUR2 projection CI’s for the null
hypotheses Hy 3, ».» Ho,5,, and Hg, under the second DGP (Ailflf =.024).

10.3 Moment Inequalities in the Empirical Illustration

Here we show how the moment inequalities in (i for the empirical illustration are obtained.
As stated in the paper, we assume complete information so that the players observe g; in addition
to everything the econometrician observes, and that the market outcome is determined by a pure

strategy Nash equilibrium. Given these assumptions, the model implies the following (conditional)
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moment inequalities:

N

E[1(Y; = (0,0))|X;] = P(eirce < —XircoBuees gi,0a < —Xjoafoa)
E[(Y; = (0,1)")|X;] > P(eirce < =X pocBuce, €i,0a > =X oaBonr)

+P(eiLce € [-X] LocBree; —rce — XipccBrocl, €i0a = —voa — Xi oaBoa)
EN(Y; = (0,1)")]X;] < P(eirce < —yee — Xipocbree, €,0a > =X, oaBoa)
E[1(Y; = (1,0)")|X;] > P(eirce > —X| pocBPuee, €i,0a < —X{oaBoar)

+P(eiLce > —yee — XiLocbree, €ioa € [—X] oaBoa, —v0a — X] oaBoal)
EN(Y; = (1,0))|X;] <P(eirce > —Xipcchroc, €i,0a < —voa — Xioaboa)

EN(Y; = (1,1)")|X;] = P(eiLcc > —yree — Xipocbreo, €i,0a = —yoa — X oaboa).  (10.3)
Because

BL(Y; = (1,0))]X]
= 1 - E[1(¥; = (0,0))]X;] - E[1(Y; = (0,1))|X;] - EL(Y; = (1L,1))|X)],  (10.4)

we omit the moment inequalities corresponding to E[1(Y; = (1,0)")| X;], which leaves us with two
moment equalities and two moment inequalities. Writing the two moment equalities as four moment
inequalities, the model can be written as six conditional moment inequalities.

Since X; is discrete with its support X consisting of only 23 = 8 different values, the six
conditional moment inequalities can be transformed into k£ = 48 unconditional moment inequalities.

For x = (zpcc,zoa)’ € X, define p, := P(X; = x) and

Poo(z,0) :==P(&iLcc

Py (2,0) :=P(e;ncc < —w1,0cBLocs €i.0a > —2oaBoA)

IN

—21ceBrocs €.0a < —ToaBoa)

+ P(eiLce € [—21ccBrec, —1ce — orecBrec], €,0a = —v0a — ToaBoa)
Po1(z,0) :=P(eiLcc < —ce — orecBLees €i,0a > —ToaBoA)

Pyi1(z,0) :=P(g;Lcc > —yLce — 2L,ocBLocs €,0A = —Y0A — oA BOA)- (10.5)
Consider, for example, the conditional moment inequality
E[L(Y; = (0,0)") — Poo(X;,0)|Xi] > 0,
which corresponds to one of the moment inequalities resulting from rewriting the first line of
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as two inequalities. This is equivalent to

E[1(Y; = (0,0)) — Poo(X:,0)|X; = 2] > 0 Vo € X
& E[(Y; = (0,0), X; = x) — Pyo(x,0)ps] > 0V € X, (10.6)

where the first equivalence holds because Pyy(X;,0)1(X; = ) = Pyo(x,0)1(X; = x) due to the
independence between X; and ¢;. Following Kaido, Molinari, and Stoye (2019), we take p, to be
known@ As is evident from the expression in the last line, an implication of this assumption is that
the data and parameters become additively separable. Hence, is equivalent to the following

moment inequality model:

E[1(Y; = (0,0), X; = @) — Poo(, 0)ps] > 0,
E[Poo(x,0)ps — 1(Y; = (0,0)', X; = z)] > 0,
E[(Y; = (0,1)", X; = 2) — Pyy(2,0)ps] > 0,
E[Poi(z,0)p, — 1(Y; = (0,1)', X; = x)] >0,
E(Y;=(1,1), X; = 2) — Pu(=,0)p;] 0,
E[Pyi(x,0)p, — 1(Y; = (1,1)", X; = 2)] >0, (10.7)

for all z € X, which are the moment inequalities given in (6.2). In practice, we take the empirical
distribution of X; to be the true distribution and plug it in place of p,, as in Kaido, Molinari, and

Stoye (2019).

10.4 Initial Values for Computation of the Projection CI’s

This section describes the initial values that are used for computing projection CI’s of the GMS,
SPURI1, and SPUR2 types in the empirical illustration. These choices work well in the empirical

illustration, however, in other models it’s not clear how well they will work. Define the argmin

35If p, is unknown, one can use the expression in the second line of 1} as the moment inequalities.
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parameter values for the GMS and SPURI1 projection Cl’s:

QGMS‘” 1= argmingegby s.t. Spsta(0) < crams(0,1 —a),
QGMSCL Y= argmingcg — 04 s.t. Sy s1a(0) < Cnams (6,1 — ),
HSPURl al . _ arg mingegfy s.t. Sn(0) < ¢,(0,1 —a), and
goPURLGY . argmingeg — O s.t. Sp(0) < (6,1 — ) (10.8)

for a =1, ...,dy. We refer to the first two problems as the GMS projection problems and the latter
two as the SPURI1 projection problems.

To calculate the projection CI’s reported in Table 2 for the empirical illustration (and to calcu-
late projection CI’s in general, as described in Section 5.2), one must calculate (GGMSCLZ HGMS“ )
for a = .05 (for the GMS projection CI) and o = .045 (to construct the SPUR2 projection CI), and
(HSPURl al GSPURI @Y for a = .045. Calculating such quantities amounts to solving non-linear,
non-convex constrained optimization problems. Hence, the choice of the initial values is relevant.
An added difficulty is that finding points in the feasible set is not trivial in this context. Here, we
introduce a systematic way to find feasible values, and make a recommendation on how to choose
the initial values based on this method.

We make use of the following two quantities: 9% := arg mingeco max;<j ﬁnj(ﬁ) and 9%7;” =
arg mingeg Sy, std(0) using the Si(-) function For now, we presume that these quantities are
well-defined in the sense that the argmin sets are singleton sets. Below, we discuss the choice of
initial values when G)g”lit := arg mingeg Sy, std(f) is found to contain multiple points, which typically
holds when the model is correctly specified with a non-singleton identified set The quantities
Q”“t and Ggﬁ“ are “likely” to lie in the feasible sets for the GMS and SPUR1 projection problems,
respectively.

HGMS 4! e recommend using initial values i, 9””’5 nd HGMS'” for 7 € To5 =

To calculate
{1,.2,..., 5}. The last set of initial values always belong to the feasible set due to the smaller
nominal coverage than the desired coverage of .95. We consider analogous initial values for the
calculation of HGMsa “. To calculate 9%\;{5’“’[, we recommend adding GGMsal to the set of initial

values considered, and thus using %%, Gfg’?t, and GGMsal for 7 € Tgs5 as the initial values. To

36Calculation of 0””t can be done using standard software with initial values drawn from a Sobol sequence in ©,
as we do to calculate 9"”"5. For example, in the empirical illustration, we use a Sobol sequence with 100 points for
both X" and 65**.

37We maintain the presumption that arg mingee max;<x 3"]'(9) is a singleton set because this is typically the case.
However, if this is not the case, one can use a similar method to the one described for arg mingeo Sn,sta(6).

3 The points 075! for 7 € Tos = {.1,.2,...,.5} are computed by first calculating 05! for + = .5 using the
initial values 0% and G””t Then, chkfs art for T = .4 is computed using the initial values 65, 0%’;“, and GF;MS’“’Z.

gEMS.al

values are computed inductively, using %%, 9%’;”, and {GGMS ol s 17 e Tos}

The remaining Lo
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calculate 9%{:5(] Rl’a’l, we consider the initial values used to calculate G%é‘gs’al and also

HSPURl,a,l HGMS,aJ
1-7 1-71

T € 7955, where is defined analogously to using the SPUR test statistic in place

of the GMS test statistic throughout

OGMSG, l 0GMS,(1,I7 a,nd QSPUR].,(I,I

Hence, to calculate 955 955 ,one uses 7, 8, and 14 initial values, respec-

tively. These initial values are also obtained by solving optimization problems using multiple initial

values. Overall, one ends up running the optimizer 27 times to compute , an additional 8

times (35 total) for Ggggs’a’l, and an additional 21 times (56 total) for 9215?1%1 ol

When arg mingeg Sp,std(6) is not a singleton, the procedure provided above is modified by

choosing suitable points from arg mingcg Sn,Std(e) Let @gi” denote the set of parameter values

that obtain the same minimum value based on some set of initial values and write m™# .= |G)”“t|

For example, in the adjusted empirical illustration, we use 100 initial values drawn according to

a Sobol sequence in © to calculate mingeg Sy st4(¢). Using these 100 initial values, we found

m'™* = 17 different optimal points that obtain the same minimum value of zero. Here, (:)gi’t is

the set of these 17 points. Let HZS?“;m denote the point in (:)gi’t that has the mth smallest ath

component. For example, 9@’;“; 1 is the point in (:)gmt with the smallest ath component.

When arg mingeg Sy, sta() is not a singleton, to calculate , we recommend using the

init
S1,a,m

HGMsal for 7 € Tos ={.1,.2,...,.5}. The idea is to choose points from (:)?S‘Tt that are likely to be

following initial values: first 10 points from a Sobol sequence in @, GXL”, 0 form=1,...,5,and

closest to the optimum. Since the objective here is to minimize the ath component, we choose points
that have small ath components. The quantity QGMS @l ig calculated in a slightly different way

than above, but we abuse notation and keep notation same as above@ We recommend analogous

init
S1,a,m for

it it it GMS,a,u GMS,a,l
m =m™t mmit 1 m™t—4, and 07", for € Tos = {.1,.2,...,.5}. To calculate 6 5~"",

we recommend adding HGMS'” to the set of initial values considered. To calculate 9%?5[] Rl’a’l, we

initial values for the calculation of HGMsa “: first 10 points from a Sobol sequence, Q””t 0

recommend using the initial values used to calculate Hgé‘gs’a’l and also foTU Rlal ¢or 7 € T o955,

where HSPURl ! is defined analogously to GGMsal using the SPUR test statistic in place of the

39 Calculation of OSPURI ol for 1 € T.o55 is done in an analogous “inductive” way to that of HGMS @l for 1 € Tos5,
but here Gcﬁ/s’“’l with 7/ > 7 are used as initial values as well. That is, gorURLal
gznzt egiit7 {HGMSal T > 7_77_ c 7—955}7 and {9SPUR1 ,a,l 7_/ > T, 7_/ e 7—955}

“OThe GMS CS is typically contained in the SPUR1 CS, and thus the {0GMS o 1}767*95, initial values are typically
gSEURLal

is calculated using initial values

feasible for the SPUR1 CS. The reverse is not true, which is why we do not recommend using, for example,
as an initial value when computing GGMS’G’Z

1Our recommendation is based on experimentation with an adjusted version of the empirical illustration. The
adjustment is to add .05 to the (standardized) moments to force the model to be correctly specified with a moderately
large identified set. Accordingly, arg mingee Sn,st4(0) is not a singleton under this adjustment.

2The points 75! for 7 € Tos = {.1,.2,...,.5} are computed by first calculating 055! for + = .5 using the

GMS,a,l ind GMS,a,l
initial values 5% and 93’?271 Then, 7.7 for T = .4 is computed using the initial values 8% 93’;2’;,1, and 05",

The remaining 055! values are computed inductively, using %%, 05", |, and {GIGE\{,S @' > 7€ Tos)
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GMS test statistic throughout.

11 Uniform Consistency and Rate of Convergence of @n

This section shows that the set estimator @n, defined in , is uniformly consistent for the
MR-identified set ©ME(F)). It also establishes the rate of convergence of O, to OME(F,) under
the Hausdorff distance d H@ These results are similar to results in Theorem 3.1 of Chernozhukov,
Hong, and Tamer (2007).

All limits are as the sample size n — oco. Let Og)(l) denote random functions that are O,(1)

uniformly over 6 € ©.

11.1 Uniform Consistency of @n

The following result shows that the set estimator @n is uniformly consistent for the MR-
identified set ©ME(F) over F € P with respect to the Hausdorff metric dy. The result is similar
to results in Theorem 3.1 of CHT except that it applies under both correct model specification
and misspecification, and it establishes uniform over F' € P consistency, rather than pointwise in
F' consistency.

For § € © and A C ©, define the distance between 6 and A as d(6, A) := infgc 4 ||0 — ¢'||. For
any € > 0 and F' € P, define

O (F):={0 € ©:d(0,0) (F)) <e}. (11.1)

The set GKR(F ) is an e-expansion of the MR-identified set ©MZ(F).
For any F € P, inf@ee\e%ER(F) max;<y [Epm;j(W,0)]— —rBf > 0 for all ¢ > 0 under Assumption
A.0 by the definitions of r}?f and @KR(F ). The following Assumption A.9 requires that this positive

quantity is bounded away from zero over F' € P.
Assumption A.9. For all € > 0, infrep infycg\garr(p) max;<p [Epmj(W,0)]- — rint > 0.
We are not aware of any interesting models that fail Assumption A.9.

Uniform consistency of ©,, for OME(F) is established in the following theorem.

Theorem 11.1 Suppose Assumptions A.0-A.5 and A.9 hold and the positive constants {7 }n>1

*The Hausdorff distance between two non-empty sets ©1 and O3 in © is du (01, 02) := max{supy, ¢, info,ceo,
|61 — 62]], supy, e, info,ce, [|61 — O2]}.
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that appear in 1} satisfy 7, — oo and 7, /n'/? = o(1). Then, for all & > 0,

lim sup Pp(dg(0n, OME(F)) >¢e) =0.

n—oo Fep
Comments. (i). If Assumption A.9 fails to hold, the result of Theorem holds with Py in
place of P for any Py C P for which Assumption A.9 holds with Py in place of P. In particular, for
a fixed distribution F' € P, the result of Theorem holds with Py = {F} in place of P because
Assumption A.9 automatically holds in this case.

(ii). The proofs of Theorem and Lemma below are given in online Appendix B.

11.2 Consistency and Rate of Convergence of ©,, under {Fotus1

Next, we establish consistency and rate of convergence results for @n under a drifting sequence
of distributions {F,},>1. These results are similar to results in Theorem 3.1 of Chernozhukov,
Hong, and Tamer (2007), which apply to a fixed distribution F. The proofs also are similar.

The following assumption ensures that infae@\@KR () Maxj<k [Er,m;(W,0)]- —r}?j is bounded

away from zero under {F},},>1, where the set @%R(Fn) is defined in l|

Assumption C.9. For all € > 0,

lim inf inf  max [Ep m;(W,0)]_ —rzf | > 0.
n—00 <ee®\®f}{§(Fn) i<k (B iy (W 0) F”>

The following minorant condition for the population moments is similar to (4.1) of
Chernozhukov, Hong, and Tamer (2007). It is used to determine the rate of convergence of dg(©,,,

OME(F,)) to zero.

Assumption C.10. There exist positive constants C, ¢, and - such that for all § € © and n > 1,

wmax|Ep, iy (W, )] — 72 > O (min{d(6, 0} (E,)), £}

i<

Typically, Assumption C.10 holds with v = 1.

Part (a) of the following lemma is used in the proof of Theorem given below. Part (b)

provides a rate of convergence result for ©,,.

Lemma 11.2 Suppose Assumptions A.0, C.4, C.5, C.7, and C.9 hold under {F,}n>1. Suppose the
positive constants {1y }n>1 that appear in satisfy 7, — oo and T,/n'/? = o(1). Then,

() it (B, OYF(F,)) = 0,(1) and

(b) d (O, OME(F,)) = O,((tn/n'/?)1/7) provided Assumption C.10 also holds.
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Comment. When F,, = F for all n > 1 for some F € P, Assumption C.9 holds by the definitions
of rinf and @%_R(F ) under Assumption A.0. In consequence, Lemma a) establishes the result
of Theorem with suppcp deleted and without imposing Assumption A.9.

12 Problems with Subsampling SPUR and Recentered Test

Statistics under Model Misspecification

Next, we show that subsampling a SPUR test statistic or a recentered test statistic does not
necessarily deliver correct asymptotic size under identifiable model misspecification. We consider
the simple lower/upper bound model on a scalar parameter 6 discussed in Section Thus, the
observations {W;}i<, are ii.d. with W; = (W1, Wia)' ~ N(u, Is), where u = (u1, u2)’ € R?. The
population moment inequalities are EpW;; < fand 6 < EpW,s. In this model, Aij%f = (1 — p2)/2
and % = [y — o]+ /2, where [x]4 := max{z,0}. The model is misspecified when 3 > .

The null hypothesis of interest is Hy : § = 0. We consider null distributions F' for which the
model is misspecified and p = (¢/n'/?, —c¢/n'/?)’ for some ¢ > 0, which implies that ©MF(F) = {0}
and 7t = ¢/n'/2.

We consider a SPUR test statistic based on the “max” function S4. As shown in Section

this is equivalent to a recentered “max” test statistic, i.e., S, (0) = San,Recen(0), where the latter is

defined in li In the present case, we have

Sp(0) = nl/? max{Wy,1 — 0,0 — W2,0} — nl/? inf max{W,1 — 0,0 — W 2,0}
0cO

(12.1)

_ _ Wo — Wy
= pl/? max{W,1 — 0,0 — W,1,0} — n'/? max {12,0} ,

2

where W, = n~' 3% Wij for j = 1,2. Let (Z1, Za) ~ N(0y,15). Then, n!/2W,; £ 7, + ¢
and n'/ 2W o 4 —Zo — ¢, where « Ly denotes equality in distribution, and the two variables are

independent. The test statistic evaluated at the null value 6 = 0 satisfies

Z+ Z
Sn(0) 4 max{Z + ¢, Zy + ¢,0} — max {1;2 +c, O}

W+ Z
= max{Zy, Zs, —c} — max {1;2, —c} . (12.2)
If ¢ is very large, the two summands are essentially max{Z;, Z2} and —%, which simplifies the
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distribution. Hence, we consider the case where ¢ = ¢,, — 00 as n — oo. In this case, under Hy,

AR

Sn(O) —d maX{Zl, Zg} — 5

=: S as n — oo. (12.3)

We consider subsampling with a subsampling size b,, that satisfies b,/n — 0. The subsample

statistic S, (0) satisfies: under Hy,

W e W1 —W
S, (0) = by/? max{Wy, 1, =W,,2,0} — b/ maX{W:O}

Z1+ Zo

4 max{Z; + (bn/n)"?¢c, Zo + (bp/n)"?c,0} — max{ 5

+ (bn /)2, 0}
= max{Z, Zo, —(bn/n)"/%c} — max {21—522, —(bn/n)l/Zc}

7+ 7
—q max{Zy, Z3,0} — max {1;2 0} =: SSuboos (12.4)

where the convergence in distribution holds for ¢ = ¢, that satisfies ¢,, — oo and ¢, = o((n/b,)?).
In consequence, the nominal level o subsampling critical value converges in probability to the 1 — «
quantile of Sgyp o0, denoted by cvgypoo(1 — @), see Andrews and Guggenberger (2010, Thm. 1(ii)
and Lem. 5) for details.

Simulations of NRPgypoo() = P(Sec > CUsuboo(l — ) yield NRPgypo0(.10) = .152,
NRPsypo0(.05) = .078, and NRPgyp(.01) = .016 (using 100 million simulation repetitions).
These values give lower bounds on the asymptotic sizes of the subsampling test for a = .10, .05,
and .01. In each case, the lower bound is slightly larger than 150% of the nominal level of the test.
Hence, the subsampling test does not have correct (uniform) asymptotic size in this model.

Because the subsampling test does not have correct asymptotic size under misspecification in
one of the simplest moment inequality models in the literature, we conclude that subsampling a
SPUR test statistic or recentered test statistic does not necessarily deliver correct asymptotic size

under misspecification in moment inequality models.
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13 Outline of Online Appendix B

Appendix B proves the results of the paper for SPUR1 and SPUR2 tests and confidence sets
(CS’s).

References to sections with section numbers|[6]or less refer to sections of the main paper. Sim-
ilarly, all equations, theorems, and lemmas with section numbers [6]or less refer to results in the
main paper. BCS abbreviates Bugni, Canay, and Shi (2015).

Section of Appendix B states some additional assumptions used in Sections and For
ease of reference, all of the assumptions used in the paper and Appendix B are listed in the last
section of Appendix B, Section

Section provides the asymptotic distribution of the SPUR test statistic under drifting se-
quences of distributions, using the approach in BCS.

Section states Lemma which gives sufficient conditions for Assumptions NLA and CA,
and proves Lemmas|15.1} [15.2] and [16.1}

Section proves Theorem which gives the asymptotic distribution of the SPUR test

statistic.

Sections prove the main results of the paper for SPUR1 and SPUR2 tests and CS’s.

Sectionstates Theorem which is the key ingredient to the proof of Theoremand the
Comment to Theorem which provide asymptotic level results for SPUR1 and SPUR2 tests and
CS’s. Theoremm provides asymptotic null rejection probability (NRP) results for the nominal
level @ SPURI test ¢, spur1(6n), defined in 1) under drifting subsequences of distributions and
parameter values. Section proves Lemmas which are used in the proof of Theorem
18.1

Section proves Theorem which shows that the SPUR2 tests and CS’s have correct
asymptotic level, using Theoremm Section also proves analogous results for SPURI tests
and CS’s.

Section proves Theorem and Lemma stated in online Appendix A, which give
uniform consistency and rate of convergence results for the estimator @n of the MR-identified set.

All limits are as the sample size n — 00. Let Rj4o) := RU {£oo} and R := R U {+o0}.
Let || - || denote the Euclidean norm for vectors and the Frobenious norm for matrices. Let [z]_ :=
max{—x,0} (> 0) and [2]4 := max{z,0} (> 0) for # € R. Let 0§ (1) and Of (1) denote quantities

that are o,(1) and O,(1), respectively, uniformly over 6 € ©.



14 Additional Assumptions

Here, we state some additional assumptions used in Sections [5.5] and [4.6] Assumption S.1 is
stated in a footnote in Section[4.1] The population-standard-deviation-normalized sample moments

are

m; (W, 0)

Vi <k, 14.1
() j < (14.1)

Mn;(0) == Zm] Wi, 0), where m;(W,0) :=
i=1

and my,(0) := (Mp1(0), ..., mpx(0))’. The corresponding population-normalized sample moment em-

pirical process and sample second-central-moment empirical process are

v (0) := 02 (M (0) — Epin(9)), G5, (0) : —12 m;(Wi, 0) — Epmj(W,0))2,
0.2
vg;(0) := n'/? UZ"J((:)) - 1) =n"1/2 Z[(mj(wi, 0) — Epm;(W,0))* — 1] Vj < k, and
Fj i=1
V(o
vn(0) 1= 1;7((6)) , (14.2)

where the superscripts m and o denote mean and variance, respectively. Let v,%(0) and vy ;(0)
denote the jth elements of v])*(0) and v7(0), respectively, for j = 1,...,k. The variance matrix of

vn(0) is Qp (), which is defined in (5.10).
The covariance kernel Qg (6, 6") of 1,(0) is defined as follows: for 6,6" € ©,

!/

MW,0) = Epin(W,0) | ([ i(W,0) = Bem(W.0) \ poere 1439

QF(Q, 0’) = EF
m? (W, 0) m? (W, 0')

where m(W, 8) and m? (W, 0) are defined in and EpmJ(W,0) = 0 for j <k, V0 € ©.

Assumption A.3. The empirical process v, () is asymptotically pp-equicontinuous on © uniformly
in F e P[]
Assumption A.4. The covariance kernel Qp(6,0') satisfies: for all F' € P,

im0 SUP||(9,,0,)— (02,04 <5 |2 (01, 01) — QU (62,605)]] = 0.

Assumption A.5. Erpm(W,0) is equicontinuous on © over F' € P. That is, limsjosuppcp
SUp||g—g||<s || EFM(W, 0) — Epm(W, 0')|| = 0.

In (4.19)—(4.24) and (5.7)—(5.12), the constants {ky, }n>1 and {7, },>1 must satisfy:

“That is, lims—o limsup,,_, .. SUuppcp Pi(sup,,,. g.0)<s |[Vn(0) — vn(0")]]) = 0, where Pf denotes outer probability
and pr(0,0') :=||[Varr(vn(0) — vn(6'))]].




Assumption A.6. (i) k, — oo and (ii) 7, — o0.
For correct asymptotic level of CI, ar(«), the constant , in (5.15) must satisfy:
Assumption A.7. (i) &, — oo and (ii) k,/n*/? = 0.

Let Ap(f) := maxj<; Ap;j(f). The set of minimizers of Ap(f) over © is Ouin(F) = {8 €
O : Ap(f) = AR} For the lower-bound CI CI, ar(c) only, we impose the following minorant
condition on O, (F). It is analogous to the minorant conditions in CHT, BCS, and Bugni, Canay,

and Shi (2017) for the identified set.

Assumption A.8. (i) For all F € P and 0 € ©, Ap(f) — ARt > cmin{s, infgeg ) 10— 0|}
for constants ¢,d > 0, (ii) © is convex, and (iii) Epm(W,0) is differentiable in 6 for all F' € P
and {Mp(0) := (0/00')Epm(W,0) : F € P} is equicontinuous, i.c., lims_ SUP e SUP (g 7). 10—7]| <6
|1Mp(0) — Mp(8)|| = 0.

15 Asymptotic Distribution of the SPUR Test Statistic

The EGMS critical value for the SPURI test defined above is constructed based on the asymp-
totic distribution of S, (6y) under drifting sequences of null distributions {F,},>1 for which 6y €
@y R(Fn) for n > 1. In this section, we establish this asymptotic distribution. For power properties,
we also establish the asymptotic distribution under local and global alternatives as well.

One obtains a CS for § € ©ME(F) by inverting tests based on S, () for 6y € ©. To obtain
uniform asymptotic coverage probability results, we need the asymptotic distribution of S, (6,)
under drifting sequences of null values {6, }»>1 and distributions {F},},>1. For this reason, in the

results below, we consider the statistic
S, := Sn(6y) for testing Hy : 6,, € OME(F,). (15.1)

The results cover models that may be correctly specified or misspecified. The form of the asymptotic
null distribution is important in order to understand the definition of the EGMS critical value given
in Section [4.4] above.

The proofs of the asymptotic level results for SPUR tests and CS’s show that it suffices to
determine the asymptotic null rejection probabilities of tests under sequences or subsequences of
distributions F;, that satisfy certain conditions. These conditions are Assumptions C.1, C.3, C.4,
C.7, and C.8 introduced below, which depend only on deterministic quantities and can be made
to hold for certain subsequences using the fact that any sequence in a compact metric set has a

convergent subsequence. For this reason, we do not provide sufficient conditions for these conditions



and these conditions do not appear in the statements of the asymptotic level results in Theorem

A1l

15.1 High-Level Convergence Assumptions

The components 7,,(0) and A, of S, () in are centered and scaled such that they have
asymptotic distributions. We obtain the asymptotic distribution of A, using a similar approach
to that in BCS. The results are also closely related to the asymptotic distribution results for the
supremum of a moment inequality objective function in CHT, Theorems 4.2 and 5.2. The results
given below differ from these results in that they allow for model misspecification.

Let Rjio) = R U {+00,—00}. As in BCS, for any z1,22 € R‘[li*oo} for some positive integer
ax, let d(z1,m2) == (3275 (P(z15) — ®(w2,5))?)"/2, where ® : Riiog) = [0,1], ®(y) is the standard
normal distribution function at y for y € R, ®(—o0) := 0, and ®(c0) := 1. The space (R?ﬂ:m] ,d) is a
compact metric space. Convergence in (R?i*oo] ,d) to a point in R% implies convergence under the

Euclidean norm. Let S(© x R

[ ioo}) denote the space of non-empty compact subsets of the metric

space (© X Rfﬁm},d), where d is defined with a, = dg + 2k. Let = denote weak convergence of a
sequence of stochastic processes in the sense of van der Vaart and Wellner (1996). Let — 5 denote
convergence in Hausdorff distance (under d) for elements of S(© x Rfﬁoo]). For any b,¢,m € RF,
including by, b*, b, £, which arise below, let b;, £;, m; denote the jth elements of b, £, m, respectively.

To obtain the asymptotic distribution of A,, we use the following sets:

Anp = {(975,5) € O x R . b; = nV2([Epimi(W,0)]- — ¥, ¢; = n'/2Epimn; (W, 0) Vj < k}
(15.2)
for n > 1. For (0,b,£) € Ay F, b; is the difference between the magnitude of violation of the jth

moment at 6, [Epm;(W,0)]_, and the minimal relaxation, ri#{, scaled by n'/2, and ¢; is the jth

1/2

moment at ¢ scaled by n'/“. The quantities b; and ¢; can be positive, negative, or zero.

For n > 0, define
O(F) i= {6 € © : max[Epin;(W,0) + ] < n/n'/?}. (15.3)
Jj<

The set ©7(F) is an n/n'/?-expansion of the MR-identified set ©MF(F). It depends on n, but this
is suppressed. One can also write ©7(F) as {0 € © : max;<ix[Epm;(W,0)]- — ritf < n/n1/2}
For n > 0, define AZ7Fn as in 1) with ©7(F,) in place of ©. By definition, AZ’Fn C A p,.

We employ the following “convergence” assumptions that apply to a drifting sequence of null

“This holds because for b,c > 0, [a + b]— < c if and only if [a]- — b < c.



values {0, }n>1, as in (15.1), and distributions {F}, },>1.

Assumption C.1. 6, — 0 for some 0, € O.

Assumption C.2. n1/2EFnﬁzj(VV, 0n) — Ljoo for some ljoo € Ritog) Vi < k.
Assumption C.3. n'/2(Eg,m;(W,0,) + r}?j) — hjoo for some hjoo € Riiog) Vi < k.

Assumption C.4. supycg ||Er,m(W,0) — m(0)|| — 0 for some nonrandom bounded continuous

RF-valued function m(-) on ©.

Assumption C.5. v,(-) :== (W), v3()") = G(-) := (G™(-),G(-)") as n — oo, where {G(0) :
6 € ©} is a mean zero R?*-valued Gaussian process with some covariance kernel Q4 (-, -), bounded

continuous sample paths a.s., and G™(6), G?(0) € RF.
Assumption C.6. ﬁn(é?n) —p Qoo for some Qo € V.

Assumption C.7. A, p, =g A for some non-empty set A € S(© x R[Qfoo]).

Assumption C.8. AZ"Fn — g A for some non-empty set A; € S(O x R[Zﬁoo})’ where {1, }n>11s a

sequence of positive constants for which n,, — co.

All of the limit quantities above, i.e., O, {joo}j<k, €tc., depend on {6,}n>1 and {F,}n>1.
Assumptions A.1-A.4, C.1, and uniform convergence of the covariance kernel Qg (-,-) to a con-
tinuous limit function Q4 (+,-) are sufficient conditions for Assumptions C.5 and C.6, with 2 in
Assumption C.6 equal to the upper left k& x k& submatrix of Qo (00, 0 ), see Lemma in online
Appendix B. Assumption C.7 is a generalization of assumption (iii) in Theorem 3.1 of BCS to allow
for model misspecification. Assumption C.8 is used to simplify the asymptotic distribution of .S,,.

Let

Mjoo = M;j(0so) for j < k and m(6) = (mq(6), ..., mg(6))". (15.4)

The values ljoo, hjoo, and Mjo in Assumptions C.2 and C.3 and (15.4) have the following

properties.

Lemma 15.1 (a) Under Assumption C.3, if 0, € ©ME(F,) for all n large, then hjoo > 0 Vj < k,
(b) under Assumptions C.2 and C.3, jooc < hjoo Vj < k, (c) under Assumptions C.1, C.2, and
CA, |Mjoo| < [ljoo| and if [ljo| < 00, then Mmjoe = 0 Vj < k, and (d) under Assumptions C.1-
Cd, if 0, € @ﬁ\/[R(Fn) for all n large and the model is correctly specified, then hjoo = lje and
hjoos Ljoos Mijss > 0 V5 < k.

Comment. By Lemma a), under the null hypothesis Hy in (4.1), hjoc > 0 Vj < k.

The elements (0, b, ¢) of A in Assumption C.7 have the following properties.



Lemma 15.2 Under {F,}n>1, (a) maxj<pby;(0) > 0 V0 € O, Vn > 1, where by;(0) :=
nY2([Ep,m;(W,0)]- — r}lnf), (b) V(0,b,€) € A, maxj<pb; > 0 provided Assumption C.7 holds,
(¢) 30, € © with max;<j bnj(gn) = 0Vn > 1 provided Assumption A.0 holds, (d) 3(6,b,0) € A with
maxjgkgj = 0 provided Assumptions A.0 and C.7 hold, and (e) ¥(0,b,¢) € A, |{;| < oo implies
m;(0) = 0 Vj <k provided Assumptions C.4 and C.7 hold.

Comment. Lemma a)—(d) are used to show that the asymptotic distribution of A,, is in R
a.s. Lemma a) and (b) are key properties that are utilized when constructing a stochastic
lower bound on the asymptotic distribution of A,,. Lemma C) implies that the MR-identified
set is non-empty under Assumption A.0 for all n > 1. Lemma e) is used to show that the

asymptotic distribution of A,, simplifies somewhat in some scenarios.

Next, we state assumptions that specify whether {6, }n,>1 is a sequence of parameter values (i)
in the MR-identified set or n=1/2-local to the MR-identified set, i.e., a null or n=/2-local alter-
native (NLA) sequence, or (ii) non-n~'/2-local to the MR-identified set, which yields a consistent

alternative (CA) sequence.
Assumption NLA. minj<j hjo > —00.
Assumption CA. minj< hjo = —00.

Two alternative sufficient conditions for Assumption NLA are: Assumption N: 0,, € ©ME(F,)
Vn > 1, and Assumption LA: The null values {6,},>1 and distributions {F,},>1 satisfy: (i)
165, — 01| = O(n~1/2) for some sequence {07, € OME(F,)}>1, (ii) n/2(Eg, m;(W, 01,,) +riph) —
hrjeo for some hyjoo € Ripog) Vi < k, and (iil) Epm(W,0) is Lipschitz on © uniformly over P, i.e.,
there exists a constant K < oo such that ||[Epm(W, 01) — Epm(W, 62)|| < K||01 — 02|| V01,02 € O,
VF € P. Under Assumption N, minj<j hjoo > 0. A “fixed alternative” (FA) sufficient condition for
Assumption CA is: Assumption FA: (i) (6,, F,) = (04, Fy) € © x P does not depend on n > 1 and
(ii) Ep,m;(W,0,) + it < 0 for some j < k:

15.2 Asymptotic Distribution of S,

For notational simplicity, we use the following conventions: for any scalars v € R and ¢ = +o0,

where v may be deterministic or random and c is deterministic, we let

v+c=c, [V+c]- —[c]- =0 when ¢ = +oo, and [v + ¢|]- — [¢]- = —v when ¢ = —oo (15.5)

46The sufficiency of these conditions is established in Section|16|in online Appendix B.

4"This notation is motivated by the fact that for finite deterministic scalar constants v and ¢, for v fixed,
limestoo(V + ¢) = liMey 400 ¢, limes o ([ + )= — [¢]=]) = 0, and lime,—oo([v 4+ ¢]= — [c]-) = —v, and analo-
gous convergence in probability results hold when v is random.



(0), vp3(0), and v;7;(0) denote the jth elements of G™(0), G7(0), v;;'(), and

n

Let G7'(9), GY

v2(0), respectively. Let

m m g o mo m 1 ~ 0'
mo m 1 -~
G777 (0) == G(0) — §mj(9)G7 (0), and
mo m 1 -~ a
vny () := Vi (0) — 5 (0)vr;(0) (15.6)
for j < k and 64 as in Assumption C.1. Define
Tjoo = G} + hjoo for j <k and T := (Tioos s Thoo)'s (15.7)

where we employ the notational convention in . Thus, we have: Tjoo = o0 if fjoo = 00
(because hjo, > ljoo = 00 by Lemmal|15.1(c)), Tjoo = G’.” + hjoo if [€joo| < 00 (because joo| < 00
implies that mj. = 0 by Lemma c)), and Tjo is finite and as in with mjee # 0 if
ljoo = —00 and |hjso| < 00. As noted above, under Hy, hjo > 0 for j < k.

If the model is correctly specified and 6, € ©MF(F,) for n large, then T}_ simplifies to

T;., = G;-’ZO + o (15.8)

because, in this case, hjo = {joo (by Lemma-d oo € [—00,0) cannot occur (because liso >0
by Lemma d)), [4joo] < 00 implies that m o = 0 (by Lemma|15.1[c)), and £jo (= hjoo) = 00
implies GJ° — (Mjoo/2)G]_ + hjoo = 00 = G + Ljoo (by the notational convention in (15.5)).
The following quantities arise with the asymptotic distribution of A,:
An<An,Fn) = (G,b,éi)reljff\n,pn rjnff ([ Vnj (9) +¢; ] [ej]— + bj) s

As := Ax(A), and Ajoo := Aso(Ag), where

As(A) := o IljrgeA max (IGT7(0) + £5] - — [5]- + b;) - (15.9)

We show that A, = A,(Anr,) + 0p(1) =4 As as n — oo in Lemma in online Appendix
B and Theorem below. The term in parentheses in the definition of A, (A) equals b; when

l; = 400 (because [V + c]- — [c]J- = 0 for v € R and ¢ = 400 by definition in (15.5)); equals
[GTH(0) + €5]— — [¢5]— + bj when [{;] < oo (because |¢;]| < oo implies m;(¢) = 0 for (6,b,¢) € A by
Lemma|15.2[e)); and equals —G7*?(0) + b; when {; = —oc (because [v +¢c]- —[c]- = —vforv € R

and ¢ = —oo by definition in (15.5)).



The asymptotic distribution of the SPUR statistic S, under the null hypothesis and n~1/2-local

alternatives is the distribution of
Soo 1= S (Too + Acoli, Q0), which is equal to Sreo : = S(Two + Aok, Qoo) (15.10)

under Assumption C.8.

Theorem 15.3 (a) Under {F,}n>1 and Assumptions C.1 and C.3-C.5, T,,(6,) —a Too,
(b) under {Fy,}n>1 and Assumptions A.0, C.4, C.5, and C.7, A, =4 Ao,
c¢) under Assumptions A.0 and C.7, A € R a.s.,
d) under Assumptions C.1 and C.3-C.5 and NLA, Tjo > —00 a.s. Vj < k,
under {Fy,}n>1 and Assumptions A.0, C.1 and C.3—-C.7, NLA, and S.1(iii), Sy, =4 Seo,
under Assumptions A.0, C.1, and C.3-C.8, Assc = Also a.5. and Soo = Sise @.S.,

[§]

(
(
(e)
(f)
(g) under Assumptions C.1 and C.3-C.5, and CA, Tjoo = —00 a.s. for some j <k,

(h) under {Fy, }n>1 and Assumptions A.0, C.1 and C.3-C.7, CA, S.1(iii), S.2, and S.3, S,, — 00,
and

(i) the convergence results in parts (a)—(e) hold jointly.

Comments. (i). Under correct model specification, it = 0, A,, = n!/27f (see ), nt/2pint
is the same as the model specification test statistic in BCS when their function S(m, ) equals
max;<x[m;|—, and the asymptotic distribution of A, given in Theorem b) can be shown to
reduce to the same distribution as the asymptotic null distribution of the specification test statistic
given in Theorem 3.1 of BCS. In addition, in the correctly specified case, A, = nl/ 27inf oquals
CHT’s statistic infgecg a,@Qn(0) for moment inequality models when @, (6) is the “max” sample
objective function defined by max;<x[fn;(0)]- (and a, = n'/?) and CHT provide the asymptotic
distribution of infypcg a,@n(#) under correct specification and for a fixed true distribution (rather
than a drifting sequence of distributions as in Theorem b)) Theorem b) extends these
results to allow for model misspecification.

(ii). The asymptotic distributions in Theorem depend on the localization parameters hjoo

and /j, which are not consistently estimable, and m o, which is consistently estimable. Under

“8The asymptotic distribution of Chernozhukov, Hong, and Tamer’s (2007) statistic infgco an@.(0) is given in
their Theorems 4.2(2) and 5.2(2) by the difference between C in their (4.8) and (4.7) or the difference between C(0)
in their (5.6) and (5.5). Their definition of the identified set on p. 1265 assumes correct model specification, as
do their equation (4.5) and Assumption M.2. The function £(#) in their Theorem 4.2 only takes values of —co or
0 due to their asymptotics being for a fixed true distribution, as opposed to a drifting sequence of distributions.
Because Chernozhukov, Hong, and Tamer (2007) consider “<” inequalities, whereas the present paper considers “>”
inequalities, the sample moments enter the statistics with different signs in the two papers.



the null hypothesis Hy in (4.1), hje > 0 for all j < k. The asymptotic distribution also depends
on the (bj,¢;) values, which appear in the limit sets A and Ay, and are not consistently estimable.
For the purposes of inference (i.e., obtaining a critical value), one needs a stochastic lower bound
on the distribution of the vector sum T4, + Ax 1y for the case when hjo > 0 for all j < k.

(iii). Theorem c) is important because it implies that adding A to Tjo cannot result in
adding +o00 to —oo or —oo to 4o00.

(iv). Theorem f) is important because it implies that parameters (6,b,¢) € A\A; do not
contribute to the infimum in A.. This means that when constructing a critical value for a test
based on S, one only needs to find a lower bound on Aj..

(v). The stochastic process G7(-) enters Soo (through G7'?(-)). Thus, the asymptotic distribu-
tion of S, depends on the randomness due to the estimation of the standard deviation of the jth

sample moment by ,;(#) for j < k. Under correct model specification, this is not the case.

For any subsequence {gy }n>1 of {n},>1, Theorem and its proof hold with ¢, in place of n
throughout, including the assumptions. To prove Theorem b), we use a similar proof to the
proof of Theorem 3.1 of BCS with S(m, ) = max;<;[m;]_ in their proof. The statistic A,(An,F,)
depends on b,,;(0) := n'/2[Ep,m;(W,0)] - —nl/zr%‘f, 0 (0) := n'2Ep, m;(W,0), vys(6), and v :(0),
whereas the statistic in BCS only depends on £,,;(0) and 7%(6).

The asymptotic distribution S7, of the SPUR statistic under Hg explains the form of the
critical value for the SPURI test in Section The Gaussian quantities G7'7 and G;-”U(-) in
and are approximated by the bootstrap quantities f/\;;jb(Q) and ﬁ:bj () in . The constant
hjoso in is nonnegative under Hy and is lower bounded by the GMS quantity ¢(&,;(f)) in
(4.19). The random quantities [G}'7(0) + ¢;]— — [¢;]— for (0,b,¢) € As in are lower bounded
by >?Zj,b(9) for 6 € ©,, defined in (4.21), which appears in A} , in (4.25). The infimum is taken over

9, in Ay, because Ay depends on the limit of ©7"(F,) and it is shown that 6, > 0" (F,) wp—1.
The elements b; in the vectors b = (b1, ..., b)’ for (0,b,¢) € A in l' are lower bounded by an(ﬁ)
in general and by the better GMS-type lower bound w(ffj(Q)) when j = j; is such that b;, > 0 of

which there is at least one by Lemma|15.2(b). We show that j; € jnB(H) wp—1, so A , is defined

to allow j; to be any of the values in jnB(H) and a minimum over j; € jnB(Q) is taken to get a
lower bound. Imposing the property in Lemma b) is important because otherwise the EGMS

critical value would slowly diverge in probability to co as n — oo.

16 Lemma and Proofs of Lemmas [15.1} and

The following is a sufficient condition for Assumption NLA, which first appears in Section



Assumption LA. The null values {6, },>1 and distributions {F,},>1 satisfy: (i) ||6, — Orm|| =
O(n~1/2) for some sequence {07, € OME(F,)Y,>1, (i) n'/?(Eg,m;(W, 91n)+7“i}17f) — hJjoo for some
hrjoo € Ritog) Vi < k, and (iii) Epm(W,0) is Lipschitz on © uniformly over P, i.e., there exists a
constant K < oo such that ||[Epm(W, 61) — Epm(W, 02)|| < K||61 — 02|| V61,02 € ©, VF € P.

Under Assumption LA, {60, },>1 is a sequence of n~1/2

-local alternatives to the null hypothesis
Vn > 1. Assumption LA(ii) is the same as Assumption C.3 with {6, },>1 replaced by some sequence
{0rn}n>1 in the MR-identified set(s). Hence, by Lemma a), hijoo > 0Vj < k.

A sufficient condition for Assumption CA is the following fixed alternative assumption.

Assumption FA. The null values {6, },>1 and distributions {F}, },,>1 satisfy: (i) The distributions
F, = F, € P and the null values 6,, = 6, € © do not depend on n > 1 and (ii) Ep, m;(W, 6,)+rpf <

0 for some j < k.

Lemma 16.1 Under Assumption C.3, (a) Assumption N implies Assumption NLA, (b) Assump-
tion LA implies Assumption NLA, and (c) Assumption FA implies Assumption CA.

Proof of Lemma Part (a) holds because 7‘}?5 > 0 by its definition in . The first result
in part (b) holds because n'/?
nY2Ep, im;(W,0,) = O(1), which implies that Moo := M;(foo) = limy_y00 Er, m; (W, 0,) = 0, using
Assumptions C.1, C.2, and C.4.

Now, we prove part (c). If & € OME(F), then rp(0) = ritf (by the definition of ©MZ(F) in

(3.6)), 7#;(0) < ritf Vj < k (by the definition of 7#;(6) in (3.5)), and 7#;(0) = rif for some j < k.

> 1. The second result in part (b) holds because |¢jo| < 0o implies

In consequence,

0 = max(rg;(0) — ) = max(max{—Epm;(W,0),0} — b

i<k i<k
> max(— Epig (W, 0) — rist) = — min(Egiii; (W, 0) + rith), (16.1)
i<k i<k

where the second equality holds by the definition of 7r;(f) and the inequality is trivial.
Using (16.1), if 6, € ©MF(F,) for n large, then

< limi . 1/2 ~ inf
0< lgggéfl}lglgn (Ep,m;(W,0,) +rE)

— min limi 1/2 o~ infy _ . )
= minliminf n"=(Ep, m; (W, 0n) + 15, ) = min hjoo, (16.2)

where the first equality holds by a subsequence argument and the second equality uses Assumption

C.3. This establishes part (c).
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Lastly, we prove part (d). If § € ©MF(F) and the model is correctly specified, then
rif = max rp;(0) = max max{—Epm(W,8),0} = 0, (16.3)
Jj<k i<k

where the first two equalities hold by the definitions of ritf and r rj(0) in 1) and the last equality
holds because Epm(W,0) > 0; V8 € OME(F) by correct model specification, see 1'

Equation li implies that under correct model specification, if 6, € ©ME(F,) for all n large,
then

hjso = limn'/2(Ep, m;(W,0,) + i) = limn!'/2 Ep, i (W, 0,) = Ljoo Vi < k. (16.4)

We have hjoo, ljoo, Mjoo > 0 under correct model specification when 6, € @?/[R(Fn) for all n
large, because the moment inequalities all hold at 6, € OV E(F,), i.e., Eg,mj(W,0,) > 0, under

correct model specification. This completes the proof of part (d). O

Proof of Lemma m Because ri}lf = infpce maxj< rr;(0) for all F' and 6 € O, see lb we

have

max(rp;(0) — r’) > 0, (16.5)
J<k

which establishes part (a).

Any (0,b,0) € A is the limit of some sequence (6y,bn,%,) € Ay, because Ay, p, —g A by
Assumption C.7. That is, b, — b and maxj<j b,; — maxj<jb;. This and (16.5) applied with
(0,F) = (0, F,,) give

0< Y2 (g, — rinfy = by — b 16.6
< maxn (17, (On) —TR,) max by — maxb;, (16.6)

which proves part (b) of the lemma.

Next, we prove part (¢). The function rg, (0) — r}?j is lower semi-continuous on © (since
Erm;(W,6) is upper semi-continuous on © by Assumption A.0(ii)) and [z]_ := max{—=z,0}, © is
compact by Assumption A.0(i), and a lower semi-continuous function on a compact set achieves its
infimum. Hence, there exists 6,, € © such that r(6,) = 8t ¥n > 1, which establishes part (c).

For part (d), let (én,Bn,Zn) € Ay, r, be such that gn € @?/[R(Fn) Vn > 1. Such (§n,3n,z7n) exist
because OME(F,) is non-empty Vn > 1 by part (c). There exists a subsequence {gy }n>1 of {n},>1
and a (0,b,0) € © x R[Qioo] such that d((éqn,an,an), (6,b,€)) — 0 because (O x Rffoo},d) is a

11



compact metric space under Assumption A.0(i). We have (5, b, Z) € A by the following argument;:

0< inf d((6,0,0),(0,0,0) < inf d((8,0,4), (B, bg,:q,)) + d((Bg,,bg,:g,), (6,0, 0))

(6,b,0)eA (6,b,0)eA
-0, (16.7)

where the second inequality holds by the triangle inequality and the convergence holds using
Assumption C.7 (i.e., Apr, —a A). Thus, infigypen d((0,0,€), (0,0,€)) = 0. This implies that
(6,b,0) € A, because A is a compact subset of (6 x R[Qﬁoo}, d) by Assumption C.7, d((6,b,¢), (6,b,0))

is a continuous function of (0, b, ¢), and a continuous function on a compact set attains its infimum.
Since 6, € OME(F,), e, (0,) = r}?j Vn > 1. Hence, for all n > 1,

max by; = max n'/2([Ep, (W, 00)]— — ) = n'/2(rp, (0,) — ri&)) =0, (16.8)
J<k J<k " "

where the first equality holds by the definition of A, r, in 1) and the second equality holds by

the expression for rr(6) in (3.5). We obtain

r;lga]zcbj = T}Ln;o r;lgalzcbnj =0, (16.9)

which proves part (d) of the lemma since (6,b,¢) € A.
Given any (6*,b*,£*) € A, there exists a sequence { (0}, b%,05) € Ay, F, }n>1 such that (6, b5, 07)

n*vnr*n n»“nrTn

— (07,0",£%) because A, r, —n A by Assumption C.7. Hence, if |£7] < oo, we have
175 (6%)] = lim | Ep, m; (W, 6;)| = lim(n™"/2(|65] + o(1))) = 0, (16.10)

where the first equality uses Assumption C.4. This establishes part (e). O

Proof of Lemma Under Assumption N, Lemma a) implies that hje > 0 Vj < k,
which establishes Assumption NLA and part (a).
Now, we establish part (b). Under Assumption LA, for all j < k, we have

n'2|Eg, iv;(W, 0,) — B, ij(W, 0pm)| < Kn'/?[6n, — 61| = O(1), (16.11)

where the inequality holds by Assumption LA(iii) and the equality holds by Assumption LA(i). In

12



consequence, for all j < k, we have

hjoo = lim nl/Q(EFnﬁlj(VV, Qn) + Tlf%f)

n—oo

= lim n'2(Ep,m;j(W,01,) + 782 4+ O(1) = hyjes + O(1) > O(1), (16.12)

n—oo

where the first equality holds by Assumption C.3, the second equality holds by (16.11)), the third
equality holds by Assumption LA(ii), and the inequality holds by Lemma|15.1{a) with 7, in place
of 6,, using Assumption LA(ii) in place of Assumption C.3. This completes the proof of part (b).

Under Assumption FA, we have

min hjo = minlimn'/2(Ep, m; (W, 60.) + rify = —o0, (16.13)
J<k J<k

where the second equality holds because Ep, m;(W,0,) + ri}‘f < 0 for some j < k by Assumption
FA(ii). Thus, Assumption CA holds, which establishes part (c¢). O

17 Proof of Theorem [15.3
The proof of Theorem b) uses the following lemma.
Lemma 17.1 Suppose Assumptions C.4 and C.5 hold. Under {F,}n>1, we have
(a) Dnj(0) = v (0) + 05 (1) Vj < k and (b) A, = An(An,p,) + 0p(1).

Proof of Lemma For a given distribution F, define

vt (6) :=n!/? <<m - 1) (i%’;((z)) - 1>>I. (17.1)

0)7

which is centered at the sample quantity 7,;(0), see (4.2), whereas the latter depends on 3%7”-(9),

Note that v3'(6) differs from vZ(0) (defined in (14.2)) because the former depends on Eij(

which is centered at the population quantity Epm;(W,0). The following calculations show that

13



~9
o-(
_ /2 ( 2nJ

OF,j

()

9

= 0 V2N (770 (Wi, 0) = 7 (0))% — 1]

i=1

_ n71/2 Zn: [(m](mje) . Ean](W 9))2 — 1} — n1/2(7’7znj(9) — EFnﬁ](W (9))2

i=1

—n 2 (9))?, and

Vo1 (0) = vg;(0) + 09(1)

n,

Vj < k, where the last equality holds by Assumption C.5.
By (17.2), Assumption C.5, and the continuous mapping theorem, for all j < k,

sup
[I<(C]

0cO

onj(0)

‘We have

aai(0)
‘712!«“”]'(9)
0F,;(0)
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0cO

—1‘ —p 0.

an;(0)
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O Fnj
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1
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)

(17.2)

VZJT(H) = supn~'/? ‘ng(g)} + 0p®(n71/2) —p 0, and so,
0co

(17.3)

(17.4)

where the second equality holds by the following mean-value expansion, (14 z)'/2 =1+ (1/2)(1+

T)~'/2z, where |Z| < |z, with z := ﬁij(ﬁ)/a%nj(ﬁ) — 1 and supgeg |z| < supgee lﬁﬁj(G)/U%nj(Q) -

1| = 0p(1) by (17.3), and the last equality uses (17.2) and Assumption C.5.

For all 7 < k, we have

Unj(0) := nl/? (M (0) — Ep,m;(W,0))

= (140.(1)) (y;;;

= U (0) + o5 (1),

where v7%(0) := n'/2(M,;(0) — Ep,m; (W, 0)), M (0) = (Gnj(0)/0F,;(0))7n;(0) is defined in

nj

(®)

1
—ZE

2

_ k()
/U\nj(e)

5 (W, )01, (6) + o§?<1>)

(vi506) ~ x> (

(17.5)

14.1

in online Appendix A, the second equality holds by (17.4), and the third equality holds by the
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definition of 177 (¢) in (15.6) and Assumptions C.4 and C.5. This proves part (a).
To prove part (b), we have

sup ‘ [V (0) + 02 (1) + 4] — [v7e (60) + @-]_\ = 09(1) (17.6)
[jGR
because the function x(v,c) := [v+ c]- — [c]- for v,c € R1 satisfies
X(v, 0)] < |vl. (17.7)

This holds because (i) if ¢ < 0 and v + ¢ < 0, then x(v,¢) = |v|, (ii) if ¢ < 0 and v + ¢ > 0, then
v > —cand x(v,c) = |c| < |v|, and (iii) if ¢ > 0, then x(v,c) = [v + |- < [v]- < |v].
We have

nV/2 (o (0) — ipf)
= nl/? ([mm-(e)], - r;alj) (17.8)

- ([yga(e) + 02 Eg, iy (W,0)] [0 B (W,0)] -+ 5050, Fn)> +09(1),

where s,,;(0, F) := n'/2([Epm;(W,0)]_ — ri2f), using (]17.5[) and dl?.Gb.
For given (6,b,¢) € Ay, F,, where A, p, is defined in (15.2)), we have

n'2Ep, m(W,0) = £; and s,,;(0, F,)) = b;. (17.9)

Using (17.8) and (17.9), we obtain

A, := inf maxn'/? (? (0 —rinf)
" geo <k ni(0) =7,

- (e,b,zi)relf\nfn geys (/57 (0) + €3] = 1651~ + b;) + 0p(1)

= Ap(An.p,) + 0p(1), (17.10)

where the first equality holds by the definitions in (4.4]) and (4.12) and the last equality holds by
the definition in (15.9). This proves part (b). O

Proof of Theorem m First, we prove part (a). For j < k, we show that
! (i (0n) + 18 —d Tjoo (17.11)

and the convergence holds jointly over j < k. Stacking these results for j = 1, ..., k gives T},(6,,) —q
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T using the definitions of T),(6,) and Tw in (4.12) and (15.7), respectively.
We have

: mai(0)
nl/? (fﬁnj(@) + r}?f) = pl/? 7? i) + T}é‘f>

nj ()
or;(0) = or;(0) =
= Kinj aF =~ Kop, aF K3p, 7F7 h
8nj(9) 1 ](9 )+ Unj(g) 2 J(e )+ 3 J(e ) where
~ mp(0)  Epm;i(W,0)
Kin;(0, F ::n1/2<mj( — L )
s (%, £) or;(0) or;(0)
[/(\'2nj(9’F) = —pl/2 <U”j(9) _ 1) EFL(W’H), and
or;(0) or;j(0)
Epm; .
K3nj(0, F) := n'/? (FmJ(W’ ) —i—?”lzf-}f) : (17.12)
or;j(0)
By Assumption C.3,
K3nj(9n7Fn) — hjoo- (1713)
By (17.4) and Assumption C.5,
e 1. 17.14
an(en) o ( ! )

Given (17.14)), to prove part (a), it remains to determine the asymptotic distributions of I?lnj (On, F)
and Kgnj(en, Fn)

We have
1/2 8721«] (en) ot o © o
W\ Gy ) T ) = 0+ ) a 6T (17.15)
nJ n

where the two equalities hold by (17.2) and the convergence holds by Assumption C.5 (which implies
stochastic equicontinuity of {vJ(-)},>1) and Assumption C.1. Equation (17.15) and the é-method
applied with the function g(z) = 2'/2, for which ¢(z)|,—1 = 1/2, give

1/2 6\”'(9”) I
nV/ (o—Fjj(@n) _ 1) 4 565 (17.16)

By Assumptions C.1 and C.4, Ep,mj(W,0,) = m;(0,) + o(1) = m;j(fx) := Mjoo. This and

(117.16) give

_ P
Konj(On, Fn) —a ——5=GF_. (17.17)

We have
Kinj (0, Fn) =02 (i (0n) — Ep,minj(0n)) = vi5(0n) —a G, (17.18)
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where I/;’.Z}
Combining the results in (17.12)(17.14), (17.17), (17.18) and, for the case where hjo, = £00,
the fact that G7" —m;jcG7_/2 = Oy(1) (by Assumptions C.4 and C.5), establishes (17.11). The

results in (17.11) for 5 < k hold jointly because they are all based on the convergence result in

(0,,) denotes the jth element of v7*(6,) and the convergence holds by Assumption C.5.

Assumption C.5. This completes the proof of part (a).
Next, we prove part (b). By Lemma b), it suffices to show

An(An,Fn) —d Aoo (17.19)

Let D be the space of functions from © to R?*. Let Dy be the subset of uniformly continuous
functions in D. For a nonstochastic function v(-) € D, let v(0) = (v™(0)',v7(0)")’, and let v]"(0)
and 7 (f) denote the jth elements of v™(0) and v7(0), respectively. Define

O = inf max[r().0.0 + b,
g(v(s)) := (9,Ii),IgeAI§l§aI§ [7;(v(-),0,€) + bj], where

T](”(')?&@ = [V;‘na(e) +£j]f - [fj], and
v (8) = v (6) — %mj(e)ug(e). (17.20)

For the stochastic processes v, (:) and G(-), we can write
Ap(AnF,) = gn(vn(+)) and A = A (A) = g(G()). (17.21)

We want to show that g, (v,(+)) —4 g(G(+)). By Assumption C.5, v,(-) = G(:) for v,(-) € D
a.s. and G(-) € Dy a.s. We use the extended CMT, see van der Vaart and Wellner (1996, Theorem
1.11.1), to establish the desired result, as in the proof of Theorem 3.1 in BCS. The extended CMT
requires showing: for any deterministic sequence {v,(-) € D},>1 and deterministic v(-) € Dy such
that supycg ||vn(0) — v(0)|| — 0, we have g, (v, (-)) = g(v(+)). (For notational simplicity, we abuse
notation here and consider a deterministic v, (-) that differs from the random v, (-) in Assumption
C.5.) Once we have shown this, the proof of part (b) is complete.

Let {vy(-) € D}p>1 and v(-) € Dy be deterministic and satisfy supgeg ||vn(0) — v(6)|| — 0. We

show

(i) Hminf g,(v(-)) > g(v(-)) and (i) limsup ga(va() < g(v()). (17.22)

n—oo n—oo

First, we establish (i) in (17.22). There exists a subsequence {ay }n>1 of {n},>1 and there exists
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a sequence {(0q,,ba,:la,) € Aq,,F,, tn>1 such that

lim inf gn(Vn()) = lim gan(Van(')) and

n—00 n—00
i, G (v (1) = i, e (750, (), B o) B (17.23)

where by, ; denotes the jth element of b, . Also, there exists a subsequence {ey, }n>1 of {an}n>1 and

0,b,0) € © x R?* . such that
[£00]

d ((Be,, be,,, Le, ), (6,b,0)) = 0, (17.24)

where d is defined in Section [15.1} by compactness of the metric space (0 X R?foo],d) under As-
sumption A.0(i). We have (6,b,7) € A by the same argument as used to show (6,b, ) € A in (16.7)
(but without the requirement that 6,, € OME(F, ) Vn > 1) using (17.24) and Assumption C.7.

For all j <k,

lim Tj(yen(')79€n7€en) = Tjoo(V('), 5 ) € R, where

n—o0

Tioo(V(+),0,0) := —1/;”"(5) if /; = —o0
0 if Zj = 400
= [V;w@) + gj]— - [ij]—
= 7i(v(-),0,0), (17.25)

the equality on the first line holds by v (0) — v(6) = (v™(0)',v7(6)’)" uniformly over 6 € © (by
assumption), (17.24), (v, + cp]— — [cn]— — —v as (vp,cn) — (v, —00) for v € R, and [vy, + ¢, —
[cn]— — 0 as (vp, cn) — (v, +00) for v € R, the equality on the third line holds using the notational
convention in , the equality on the last line holds by the definition of 7;(v(-),0,¢) in ,
and “€ R” in the first line holds using the right-hand side (rhs) expression on the second line
because v () is finite since v(-) is assumed to be in D, x(v,c) := [v + ] — [c]- for v,c € R

j
satisfies |x(v,¢)| < |v| as shown in (17.7), and 7;(8) is finite by Assumption C.4.
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Now, we have

liminf g,(v,(-)) = lim max [Tj(l/en(-),een,ﬁen) +benj]

n—o0 n—oo j<k

= max [7;((-),8,0) + b;]

> inf . . .
2, nf  mex [7;(v(-), 0, £) + bj]

= g(v()), (17.26)

where the first equality holds by (17.23]) and the fact that {ey,},>1 is a subsequence of {ay}n>1,
the second equality holds by (17.25) (using the notational convention in l| if Ej = #oo for any
j < k), the inequality holds because (#,b,f) € A by the paragraph containing (17.24), and the last

equality holds by the definition of g(v(-)) in (17.20). This establishes result (i) in (17.22).
Next, we establish result (i) in (17.22). There exists (7, b,¢1) € A such that

g(v()) = max [ (v(), 67, €1) + b]] (17.27)

<k

because A is compact under the metric d, defined in Section m (since it is assumed to be an
element of S(O x R[Qikoo])) and 7j(v(-),0,¢) + b; is a continuous function of (6,b,¢) under d that
takes values in the extended real line. By Assumption C.7, A, r,, =g A. Hence, there is a sequence
{(04, 0}, 01) € Ay, k, Y1 such that d((6h,bh, £), (01,67, 7)) = 0. We obtain
lim su vp(+)) := limsu inf max [7;(vn(+),0,£) + b;
n_wop In(vn(-)) n_)oop 000 5 jglz([ i (vn () ) 5]

; (v (). 05 ¢t t
< limsup rjnsalz( [T](Vn() 0.0 )+bn]]

n—oo e
_ o) gt ot b
= max [T](y(),e Vi )+b]}

=g (), (17.28)

where the inequality holds because (HL,bL,ZIL) € Ap F, Vn > 1, the second equality holds using
d((65, b5, %), (67,1, 7)) — 0 and with (vn (), 04, €4) and (v(-), 67, €1 in place of (ve, (-), Be, ,
le,) and (v(-),0,0), respectively, and the last equality holds by . This establishes result (ii)
in and completes the proof of part (b).

Now we prove part (c). We have
A = inf max ([G]7(0) + €] — [(;]- +bj) > —o0 as. (17.29)

(0,b,0)eA j<k

because (I) max;<yb; > 0 V(6,b,£) € A by Lemma b) and (II) supgpen [G7(0) + £5]- —
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[¢]-| < supgee |G (0)] < oo a.s. (because x(v,c) := [V + |- — [c]- satisfies [x(v,c)| < [v] as
shown in (17.7), |[v +¢]- = [d]-| == 0if v € R and ¢ = +o0, |[v + - —[¢]-| := —vifv € R
and ¢ = —oo using , and supgecg |G7'7(0)] < oo a.s. since G(-) is bounded on © a.s. by
Assumption C.5 and m;(-) is bounded on © by Assumption C.4).

To obtain the other half of part (c), i.e., A < 00 a.s., we use Lemma d). We have

A := (H,IIJ,Ié)fGA r;lgg{ (IGT(0) + £5] - — [5]- + bj)
< max ([Gj 0) + 05— — [0, + bj) < oo as., (17.30)

where (5, E, Z) € A is as in Lemma d), the first equality holds by the definition of A in ,
the first inequality holds because (5, 3, Z) € A, and last inequality holds because (I) max; <y Ej =0
by Lemma d) and (II) sup(gp gen [[GT7(0) + £5]— — [¢;]-| < oo a.s. by (II) following .
This completes the proof of part (c).

Now we prove part (d). Under Assumption NLA, for all j < k, we have

Tjoo := G270 + hjoo > —00 a.s., (17.31)

where the first equality holds by and the inequality holds because |G§’;f| < o0 a.s. by the
definitions in and 1) and Assumptions C.4 and C.5, and hjo, > —oo by Assumption
NLA.

Part (e) follows from the convergence results for 7),(6,) and A, in parts (a) and (b), the
convergence result for Qn(Gn) in Assumption C.6, the definition of S, := S, (6,) in and 1)
the continuity of S(m,2) at all m € Rﬁoo] and Q € ¥ by Assumption S.1(iii), and the fact that
Tjoo > —00 Vj < k and A € R by parts (c) and (d).

Now, we establish part (f). If A = Az, then part (f) holds immediately. So, we suppose that
A\A7 is not empty. We show that for any (6*,b*,¢*) € A\Aj,

r?glz( [Tj(G(-), 0%, ") + bﬂ = o0 a.s., (17.32)
where 7;(v(-),0,£) is defined in . Since A € R a.s. by part (c), and Ay = infigp pyen
max;<y [7j(G(-),0,€) + b;] by , implies that Ao, = A a.s., which establishes the first
result in part (f). The second result in part (f) follows from the first result provided the quantities
0o, Teo, and 2 are well defined, which requires Assumptions C.1, C.3, and C.6.

For part (f), it remains to show . By Assumption C.8, A; is compact. For any
(0*,b*,0*) € A\Aj, there is a neighborhood of (6*,b*,¢*) that lies in A\A; and there exists a
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sequence {(0;,0},¢5) € Ay F, tn>1 such that d((6;;,0},¢5,), (6%,0%,£*)) — 0 by Assumption C.7. In
consequence, for n large, (60;,,b5,,6;) ¢ A}z . In turn, this implies that 0}, ¢ ©7"(F,) for n large
using the definition of A" following .
Now, 0 ¢ ©"(F,) for all n large implies
r§1<a§( n'2[Ep, i (W,07) + riff_ >, for all n large,

max nl/Z(—EFnﬁlj(W, 0;) — T‘I}%f) — 00, and

J<k
1}1;1;{ bj = lim 15121? by, j = lim 1}12]§<n1/2([EFnﬁ1j(W, 0r)]- — r}?‘j) = 00, (17.33)

where the first line holds by the definition of ©7(F) in , the first line implies that min;<y
Er,m;(W,0;) + 7’}?5 < 0 for all n large, which is used to obtain the second line, the second line
also uses 1, — oo by Assumption C.8, the first equality in the third line holds by the convergence
result for {(6;,07,05)}n>1 in the previous paragraph, the second equality in the third line holds
by (6;,b;,¢7) € Ap r, and the definition of A, r in (15.2), and the third equality in the third
line follows from the second line because minj<y Er,m;(W,0;) + ri?: < 0 for n large implies
min;< Fp,m;(W,0;) < 0 for n large, since r?j >0 by .

The result max;< bj = oo in || implies that holds because |7;(G(-), 0%, £*)| < oo
a.s. (using Assumptions C.4 and C.5, the definition of 7;(v(-),0,£) in , and explanation (II)
following ) This completes the proof of part (f).

Part (g) holds because Tjoo := GJ'7 + hjoo = —00 for some j < k by , Assumption CA,
and the notational convention in .

Next, we prove part (h). We have T,;(0),) —p hjoo = —00 for some j < k by parts (a) and (g)
and A, =4 As € R by parts (b) and (c). Thus,

G 1= m<i£1(Tnj(9n) + A,) —p —00. (17.34)

Using this, we obtain

~

S = Sulbn) = S (Tu(0n) + Anli, 2u(60) ) = 5a XS ([Tal0n) + Anlnl/Isnl, O (61) )

> le X mi 0 — e 1X [ mi . )
> foP i S (5,80(60)) = fol* (i (c5: 00) 4 0,(1)) 00, (1739

where ¢; is a k-vector of co’s but with —1 as its jth element, the second equality holds by 1)
the third equality holds with x > 0 by Assumption S.3, the inequality holds with probability that

goes to one as n — oo (wp—1) because (T5,j(0n) + An)/|sn| = —1 for some j < k wp—1 by the
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definition of ¢, and ¢, —, —o0, S(m, ) is nonincreasing in m for all @ € ¥ by Assumption S.1(i),
and [T5,(0,) + Anlk]/|sn| < 0o Vj < k, the last equality holds by Assumptions C.6 and S.1(iii), and
the convergence holds because minj<j S (¢j, ) > 0 by Assumption S.2 and the fact that c; has
a negative element for all j < k, |¢,| =, oo and x > 0.

Lastly, the results in parts (a)—(e) hold jointly because they are all based on the convergence

result in Assumption C.5, which establishes part (i). O

18 Asymptotic Null Rejection Probabilities of SPUR1 Tests

This section provides a theorem, Theorem that is the key ingredient to the proof of The-
orem It provides asymptotic NRP bounds for the nominal level & SPUR1 test ¢y, spuri(6n),
defined in , under drifting subsequences of distributions and parameter values. The first sub-
section gives various definitions and assumptions concerning the bootstrap. The second subsection

states Theorem The third subsection states several lemmas that are used in the proof of

Theorem The fourth subsection provides the proof of Theorem using these lemmas.

18.1 Definitions and Assumptions Concerning the Bootstrap

As noted in Theorem|[5.1] as is standard in the literature, the asymptotics for the bootstrap are
given for the case where the number of bootstrap repetitions B equals infinity. (If one considered
finite B, then all of the asymptotic results would hold provided B — oo as n — o0.) With B = oo,
the bootstrap critical value ¢, (0,1 —«), defined just above , is the 1 —a conditional quantile of
Sy, »(0) given the sample {W; }i<y, plus ¢, rather than the 1 — a sample quantile of {5}, ,(0)}y<p plus
¢. For notational simplicity, we replace the bth bootstrap sample {W};};<, by a generic bootstrap
sample {W*}i<p (which is an i.i.d. bootstrap sample drawn with replacement from the original
sample {W;}i<,) and we drop the subscripts b from the definition of S ,(f) in and other
bootstrap quantities. Specifically, the B = oo definitions of S;(6) and 7;,;(f) are as follows. Let

Var*(-) denote the {W;*};<p-bootstrap variance conditional on the original sample {W;};<,. Define

My 0)
i (0) = 02 | s — i (0) |
(0) <%(G) i ))

$1(0) i= 5 (T3(0) + A1, 2(6))
sdi;(0) := max{Var*(n'/?(in; (0) + 70(6)))/?, 1},
sdy,;(0) 1= max{Var*(n'/?m,;(0))"/2,.}, and
sdi;(0) := max{Var* (n'/?([f,;(0)] - — 7 (0)))"/2, 0} (18.1)

22



for j < k, where mj(6), 5;2(0), T;(6), and A, are defined as in (4.17), , and (4.25) with

{W; }i<n in place of {W} }i<, and b deleted throughout, and ¢ is the very small positive constant
employed in (4.16). In addition, J,(0) is defined as J,p(6) is defined in (4.24), but with sds,,;(6)

in place of sd3,;p(6).

The bootstrap sample {W*};<, depends on {W;}i<,, and on some other independent random
variables {(; }i<n that are used to construct the bootstrap sample {W;*};<,. To establish the asymp-
totic properties of the bootstrap critical values for a given sequence of distributions {F}, },>1, it is
convenient to have a single probability space (€2, F, Py) on which all of the random vectors {W;}i<,
for n > 1 and the bootstrap random variables (or vectors) {(; }i<n for all m > 1 are defined. Since F,
changes with n, this requires that we consider triangular arrays of random vectors, not sequences.
Let {Whiti<nn>1 := {Wy;i : © < n,n > 1} be a triangular array of random vectors on (2, F, P,)
such that, for each n > 1, {Wy; }i<p has the same distribution as {W;}i<,, ~i.i.d. F),. Analogously,
let {Cniti<n,n>1 be a triangular array of bootstrap random variables (or vectors) on (2, F, Py, ) such
that for each n > 1, {(pn;}i<n has the same distribution as {(;}i<n and {(pi}i<nn>1 is independent
of {Whi}i<nm>1-

For notational simplicity, but with some abuse of notation, we let all of the sample size n
statistics being considered for n > 1, including Sy, S} (6,), and ¢,(0,,1 — «), which are defined
as functions of {W;}i<y, and {(;}i<n, also denote the corresponding statistics defined when using
the triangular arrays {Wp;}i<nn>1 and {Cpiti<nn>1. For events that only depend on n random
vectors for a single n, such as S} (0,) € B, for some fixed set B, C R, we have P (S;(0,) €
B,) = Pr,(S}(0,) € By). But, for events that depend on statistics for multiple values of n, such as
{S5(65) }n>1, we use the probability space (2, F, Py). In particular, when we condition on the entire
triangular array {Wp;}i<nn>1, we need to use (€, F, Py ). The limit process G(-) in Assumptions
C.5 and BC.3 (stated below) and statistics that depend on it, such as So, and S} ., are defined on
a different probability space.

For 6 € ©, define

Jn(0) := argmax b,,;(6), where by;(0) = n/2([Ep,m;(W,0)]_ — ria! ) (18.2)
i<k

By Lemma a),
bnjn(é) (9) >0V0eoO. (18.3)

We employ the following high-level bootstrap convergence (BC) assumptions, which apply to a

drifting sequence of null values {6,,},,>1 and distributions {F}, },>1. (These assumptions are verified

49Tf the arg max is not unique, j,(6) is defined to be the smallest arg max.
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below under primitive conditions.) Define

Al o= {(9, b,b*.0,5%) € @1 (F,) x R x {1,....k} by = n"/2(|Ep, iy (W, 0)]_ — i),

b = (uhn) " 'by, £ = 02 B,y (W,0) Vj < k, j* = jn(e)}, (18.4)

where {n,},>1 is as in Assumption C.8, {kp}n>1 is as in || and ¢ > 0 is the lower bound on
sdy,;p(0), defined following (4.22) using (4.16). Let S(© x R‘Fikoo] x {1,...,k}) denote the space of

compact subsets of the metric space (O x Rf’i:ol], d), where the metric d is defined in Section|15.1

with a, = dy + 3k + 1. The first two assumptions are used for upper bounds on asymptotic null

rejection probabilities, which come from a lower bound on the bootstrap test statistic.
Assumption BC.1. (wr,) " 'n'/2(Ep,m;(W,0,) + rinh) — h7 oo for some hy . € Riio) Vi < k.
Assumption BC.2. A;t’}n —pg A} for some non-empty set A7 € S(O© x Rf’ioo] x {1,...,k}) for
some constants {n, }n>1 that satisfy n, — oo and 7, /7, — 0 for {7, },>1 as in Assumption A.6(ii).

Note that Assumptions BC.1 and BC.2 can always be made to hold for some subsequence
{an}n>1 of {n},>1 because any sequence in a compact set has a convergent subsequence.

Let {17(f) € R?* : 6§ € ©} be a bootstrap version of the stochastic process (v™(-),v31(0)')

defined in (14.2) and (17.1). It is defined as follows:

Vg (0) = n/2 (7(0) = in (6)) , 77y5(0) 1= Enj(e)’ g (0) i= ™ Y m; (W, 0),
" i=1
1o ((Th3(0) N i - ,
30) = n? (S5 1) ) = Ym0V 0) — 7 0)* ¥ <
nj i=1
Vi (8) = (VK (0), s Vi (0))'s and v (6) = (V7 (6, 7 (6))' (185)

where {W}i<,, is the bootstrap sample defined just above (18.1). We employ the following boot-

strap convergence (BC) assumption.
Assumption BC.3. {1} (-)[{Whyi}i<nn>1} = G(-) a.s.[Pg], where G(-) is as in Assumption C.5.

Assumption BC.3 is verified below for i.i.d. observations using Lemma D.2(8) of BCS under
Assumptions A.1-A.4. To allow the general results to apply to non-i.i.d. observations, including
time series observations, we employ Assumption BC.3 here, rather than impose Assumptions A.1-
A4

The GMS function ¢ : R — R[4 defined in is upper bounded by the function
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QOT : R[+oo] — R[Jroo] defined by

Pl(€) ==o00l(€ 2 1)+ (§/(L-€)L0 <€ < 1) (18.6)

for some arbitrary ¢ > 0. The function o' satisfies: (i) ¢f(£) > (&) > 0 V€ € Riyo), (i) ol is
nondecreasing and continuous under the metric d, and (iii) ¢f(¢) = 0 V&€ < 0 and ¢f(00) = oo,
where the metric d is defined in Section with a. = 1.

For § € O, define a lower bound (wp—1) random variable, S}, (6), on the EGMS bootstrap
statistic S} (6) to be

~

St (0):= S (Tzn(e) +Azn1k,9n(9)) . where
Tt (0) = D5;(0) + @' (61nj (0)) Vi < K,
T7(0) := (Ti1ns oo Tin)s E1ng () := (vrin) ™ 0" /2 (0 (0) + T (6)),

o . o 1/2 ~ C s
A=, nl i (00,2 B g (W 0)) 10 # 5 0))bs 0

15 = 5u(8)¢' (€1;(0)) ) . and

Eni(0) 1 = ()0 ([ (0)]- — 7i) (18.7)

for 1;, := (1,...,1)’ € R* and x(v,¢) := [v + ¢]- — [c]—. The function x(v,c) is defined for ¢ = +o0
as in (15.5) and x(v,¢) is continuous on R X R[+. under d.

The asymptotic distribution of the lower bound random variable S}, (6,) is

SToo i =S (T oo + Aloolk, Qo) , Where
T[*/joo = G;nog + @T(hzjoo) Vj <k, T[*/oo = (Tzloo’ "'7T[*,koo)/7 and

* o . mo ] . N Lk + * '
Aloo (e,b,b*f?]f*)elx; max (X(Gj (0),4;) +1(J # 57)b; +1(j = 77)¢" (b )) (18.8)

for A7 as in Assumption BC.2.
Let ¢roo(1 — o) denote the 1 — « quantile of S} _ (with no ¢ added on).
Let —, denote uniform convergence over ©2. We consider sequences {Fn}n>1 for which the

covariance kernel converges uniformly.

Assumption C.11. Q, (+,-) =4 Qoo(-, ) for some continuous R?**?*-valued function Qu(,-) on

02

The covariance kernel of G(-) in Assumption C.5 is Q(+,-) and the matrix 2o in Assumption

C.6 is the upper left k x k submatrix of Qs (0o, Ooo)-

25



18.2 Statement of Theorem [18.1]

The following theorem shows that the nominal level a@ SPURI1 test has asymptotic NRP’s
equal to « or less for certain subsequences of distributions {F}, },>1 and parameters {6, },>1 in the

identified sets {@?/[R(Fn)}nzl.

Theorem 18.1 For o € (0,1) and for sequences {Fy,}n>1 and {0y }n>1 that satisfy Assumptions
A.0,A.6,BC.1-BC.3, C.1,C.3-C.8, N, and S.1 for a subsequence {py }n>1 in place of {n}n>1, there
exists a subsequence {an}n>1 of {pn}n>1 for which the nominal level o« SPURL test ¢p, spur1(0n)
for testing Hy : 0,, € O©ME(F,) satisfies

limsupPr, (¢a,,sPuR1(0a,) =1) < o
n—oo

18.3 Lemmas Used in the Proof of Theorem [18.1]

The following three lemmas are used in the proof of Theorem m The EGMS critical values
are based on the bootstrap random variables S} (6,). In the following lemmas, the “lower bound”
random variables S}, (0), T7,,.(¢), and A7, are defined in ; the asymptotic distributions of
these random variables ST, 17, and A7 are defined in ; and the quantile cro0(1 — )
is defined following . As stated above, we assume that all of the sample size n statistics for
n > 1 are functions of the triangular arrays {Wy;}i<nn>1 and {(ni}i<nn>1 that are defined on

a single probability space (£, F, Py). The limit process G(-) in Assumptions C.5 and BC.3 and

*

T oos are defined on a different probability space.

statistics that depend on it, such as S, and S
Let X >g7 Y denote that X is stochastically greater than or equal to Y. That is, P(Y > z) <
P(X > z) for all x € R.

The following lemma provides the asymptotic distribution of S}, (6,).

Lemma 18.2 For sequences {Fy,}n>1 and {0, }n>1 that satisfy Assumptions A.0, A.6, BC.1-BC.3,
C.1, C4-C.7, and S.1 for a subsequence {pp}n>1 in place of {n}n>1, there exists a subsequence
{an}n>1 of {pntn>1 for which (a) {T}, ;(0a,){Whiti<nn>1} —a T 00 a-5.[Py] Vi <k, (b) {A7,,
K Whitisnnz1}—d Al a-5.[Pgl, and (c) {S7,, (Ba, ) {Whiticnnz1} —a Sio a.5.[Pg] and ST €

[0,00) a.s.
The following lemma establishes the lower bounding properties of S}, (6,) for S} (6,).

Lemma 18.3 For sequences {Fy,}n>1 and {0y }n>1 that satisfy Assumptions A.0, A.6, BC.2, C4,

C.5, C.7, and S.1(i) for a subsequence {py }n>1 in place of {n}n>1,(a) Py(T7, ;(0) > T, (0) V0 € O]
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{Whiticnn>1) = 1 Vj < k wp—1 under Py, (b) PV(A*Lpn > A;n|{Wni}i§n,n21) =1 wp—1 under
Py, and (c) Py(S7,,(0) < Sp.(0) V0 € O{Whiti<nn>1) =1 wp—1 under Pg,.

The following lemma applies to sequences {6, },>1 of null parameter values (i.e., those that

satisfy Assumption N). Note that S7o is defined in (15.10).

Lemma 18.4 For sequences {Fy,}n>1 and {0y }n>1 that satisfy Assumptions A.6, BC.1-BC.3, C.1,
C.3-C.5, C.8, and N for a subsequence {pp}n>1 in place of {n}n,>1, we have: for all sample real-
izations, (&) T o < Tjoo Vi < k, (b) A] o < Aloo, and (c) ST, > Sico provided Assumptions C.6

and S.1(i) also hold for the subsequence {pp}n>1.

18.4 Proof of Theorem [18.1

Proof of Theorem Let ¢oo = Coo(l — ) denote the 1 — a quantile of Sy, (without ¢
added on). For notational simplicity, let S := Sy (0,), S7,, := S7,,(0n); CLoo = CLoo(l — ), and
Cp := Cp(On,1—a). Let ¢, denote the 1 —a conditional quantile of S}, (0,,) given {W;}i<n n>1 plus
t. Note that ¢z, is random, depends on the conditioning value of {Wp;}i<nn>1, and has ¢ added
on, whereas cr is the 1 — o conditional (or unconditional) quantile of S} __, which is nonrandom
and does not depend on {W,;}i<pn n>1 by its definition following , and does not have ¢ added
on.

The assumptions of the theorem include all of the assumptions imposed in Lemmas c),
c), andc) and Theorem(f). Hence, the results of these lemmas and theorem hold. For
notational simplicity, we replace {ay}n>1 by {n}n>1 and presume that the results of these lemmas
and theorem hold for {n},>;. By Lemma c), S}, < S with probability one (with respect to
the bootstrap randomness) conditional on {W;}i<pn>1. Hence, the 1 — a conditional quantile of
S7,, given {Wy;}i<nn>1 plus ¢, which is €1y, is less than or equal to the 1 — a conditional quantile
of S} given {Wp,;}i<nn>1 plus ¢, which is ¢,, as a consequence of the definition of a quantile. That
is, ¢rn < ¢, wp—1, which implies that ¢, < ¢, + 0,(1), where the 0,(1) term refers to randomness

in the sample. This gives
limsup Pr, (¢n(0n) = 1) = limsup Pp, (Sp, > ¢,) < limsup P, (S, + 0p(1) > €rp). (18.9)

n—oo n—oo n—oo

Now, take an arbitrary € > 0. Then, there exists ¢* € (0,¢) such that cp o, — £* is a continuity
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point of S7__. We have

lim sup PV(SLn < CLoo — 5|{an}z<n n>1) < limsup PV(SLn < Croo — € ’{Wm}z<n n>1)
n—00 n—00

= P(St.. < croo — %)

<l-a (18.10)

a.s.[Py], where the equality holds by Lemma|18.2[c) and the last inequality holds by the definition

of the 1 — o quantile ¢ of S . Because cr, is the 1 — a conditional quantile of S}, given

{Whiti<nn>1 plus ¢, if
P (87, < croo — eE{Whiticnn>1) <1 —«, then croo — e < ¢y — . (18.11)

By (18.10), the first condition in (18.11) holds for n sufficiently large a.s.[Py]. Hence, the same
is true for the second condition in (18.11). That is, Py (¢t + ¢ — € < ¢, for n large) = 1, or
equivalently,

Py ( lim 1(croe + ¢ — € <€) = 1) ~1. (18.12)

n—oo

By the dominated convergence theorem, this implies that

lim Py (croo +t—€<Crp) =1 (18.13)

n—oo

for all € > 0, which also can be written as lim, o Pr, (CLoo +t—€ < ) = 1.

Next, we have: for all € > 0,

limsup Pg, (S, + 0p(1) > ¢rp)

n—o0

(
= limsup Pr, ( 1) >¢rn & cpoo +t—e<Crp)
n—o0

(

(

(1)
Sn + 0p(1)
(1)
(1)

< limsup Pg

n
n—0o0

Sn+0p(1) > croo+t—€ & Croo +t—e < CLpn)

= limsup P, (S + 0p(1) > Croo + 1 —¢€) (18.14)

n—o0

where the two equalities hold using (18.13) and the inequality is straightforward.
By Theorem e), we have
Sp —d Soo (18.15)

using Assumptions A.0, C.1, C.3-C.7, S.1(iii), and NLA, where Assumption NLA holds because
Assumptions C.3 and N imply Assumption NLA by Lemma Consider a sequence {&, }m>1
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such that cpo + ¢ — €, is a continuity point of Sy, for all m > 1 and &,, | 0. Then, we have

limsup Pg, (Sy, + 0p(1) > ¢ry) < lim limsup Pp, (Sy, + 0p(1) > croo + ¢ —€m)

n—00 m—00 noco

lim P(Seo > Croo +t—Em)

m—00

lim P(Sec > Coo + L —Em)

m—o0

< a, (18.16)

IN

where the first inequality holds by (18.14), the equality holds by (18.15) and the definition of

{€m }m>1, the second inequality holds because croc > co follows from S} > Sis for all sample
realizations by Lemma ¢) and S7s = Seo by Theorem f), and the last inequality holds
by the definition of the 1 — a quantile ¢, of S because ¢ — €, > 0 for m large. Equations
and (18.16) complete the proof. [

19 Proofs of Lemmas

19.1 Proof of Lemma |18.2

Proof of Lemma First, we prove part (a). For all j < k, we have

n? (7 (0) — B, i (W, 0)) = O9(1), (19.1)

by (17.5) and Assumption C.5. Hence, we obtain

sup [ (6) — 7 (6)] = 0,(1) (19.2)
0O

using Assumption C.4. Now, we use the result that for any sequence of random variables { X}, }n>1
on (2, F, Py) for which X,, —, 0, there exists a subsequence {c,},>1 of {n},>1 such that X, — 0
a.s.[Py], e.g., see Theorem 9.2.1 of Dudley (1989). We apply this result with the original se-
quence {n},>1 replaced by some subsequence {p, },>1. Using this and , given any subsequence

{pn}n>1 of {n}n>1, there exists a subsequence {cy}n>1 of {pn}n>1 such that
zug e, j(0) —m;(0)| = o(1) a.s.[Pg]. (19.3)
€

By the continuity of m;(#) (Assumption C.4) and 6,, = 6~ (Assumption C.1), (19.3) gives

ey (e, ) = i(000) 2.8.[Po). (19.4)
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Conditional on {Wy;}i<nn>1, for the subsequence {cy, }n>1, we have

5 (9
cl/? (A”J(") — 1) —q 5G7_ as[Py] Vj <k (19.5)
Ocpj (0c,.)
This holds by the delta method, as in (17.16|) with 3;';?(9”) and Egj(Qn) in place of E%j(ﬁn) and
a%n j (0,), respectively, and using Assumption BC.3 in place of (17.15).
Next, suppressing the dependence of various quantities on 6., for notational simplicity, we have:

conditional on {Wy;}i<nn>1,

~ o _ ~
_ [ Pend <01/2 (anj My ) M,y 1/2 Oc,j ~ Ocuj )
= " =~ =~ :
Oc,j Ocnj Ocnj Ocnj Ocnj
_ [ 9ens ymE 61/2 Cn] UC"j
- S Cnj cnjtn .
Gcnj UC7L]

1.
—a G, = 5ol = G as.[Py] (19.6)

Vj < k, where mjo = m;j(f) by || Gy = GT'(0x) and G7,, = G7(0) by || the
second equality holds by algebra, the third equality uses the definition of v"(f,,) in th the

convergence holds by ((19.4), (19.5), and Assumptions BC.3 and C.1, and the last equality holds by
(115.6).

We have Tf,,(0n) = Ti5 + ¢l Elm ) by (18.1), (18.7), and (19.6), and T}, = G +
(hzjoo) by 1] for all j < k. By (1 , there exists a subsequence {Cn}nZI of {pn }n>1 for which
{2270, [{iWhi ti<nn>1} —a G727 a.s.[Pv]. Hence, part (a) holds if there exists a subsequence

{an}nzl of {Cn}nzl for which

{6 (€100 (a, ){Waiticnnz1} = @1 (1] joo) a.8.[Py] Vi < k. (19.7)
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We have
28 (0n) = ma ([ 2 (i (0n) = By (W, 00)) "'/ B, i (W, ,)]
~ [ 02 B, (W, 00)] +— i 02 B, (W, 00) )

= max <op(1) + [k Y2 Ep, i (W, Hn)]_>

J<k

= op(1) + I}lg}z([mglnl/zEFnﬁlj(W, 0n)]—

= 0p(1) + . 0?1, (6n), (19.8)

where the first equality holds by the definition of 7,(6,) in , the second equality holds be-
cause n'/2(M,i(0n) — Ep,m;j(W,0,)) = Opy(1) by , Kn — 00 by Assumption A.6(i), and
Ix(v,c)] == |[v+ |- —[c]-| < |v| for v,c € R by , the third equality holds because the left-
hand side is less than or equal to max <y 0p(1) + max;<x[k; 'n/2Er,m;(W,0,)]_ and is greater
than or equal to o0,(1) + [, 'n'/2Ep,m;, (W, 6,)]-, where j, is such that [Eg,m;, (W,0,)]- =
max;j<i|[Er,m;(W,0,)]—, and the last equality holds by the definition of rf, (6,) in .

In turn, we obtain

1nj(bn) 1= (L’in)ilnl/z (Mg (On) + 7 (6n))
= (mn)_lnl/Q (mnj (0n) — EFnﬁzj(VVa 0n))
+(thn) Y2 (B, mj(W,0,) + 17, (62)) + 0,(1)

—p hljoo (19.9)

for j < k, where the first equality holds by definition (see and the discussion in the para-
graph containing ), the second equality holds by , and the convergence holds using
12 (i (0n) — Eg,mj(W,0,)) = Op(1), ki, — 00, and Assumption BC.1.

Equation and the continuity of ¢f(¢) at all £ € Ri4o (by property (ii) of ot stated
following ) give d(goT(flnj(Hn)),gDT(h*Ljoo)) —p 0 for j < k. Now, we use the result that
for any sequence of random variables {X,},>1 on (Q,F, Pv) for which X,, —, 0, there exists a
subsequence {ay}n>1 of {¢,}n>1 such that X,, — 0 a.s.[Py]. Thus, there exists a subsequence
{an}n>1 of {pn}n>1 such that holds, which completes the proof of part (a).

Now, we prove part (b). Define

Mo () = v (0) — 1mj(e)u“*(e) Vi < k. (19.10)

1% 5 nj

We show that under {F, },,>1, conditional on {Wp;}i<p n>1, for the subsequence {cy, }n>1 of {pptn>1
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defined above,

21618 ,5(0) — v 75 (0)] = 0p(1) a.s.[Py]. (19.11)

This, Assumption BC.3, (19.3), and the continuous mapping theorem give: under {F,},>1, condi-
tional on {Wp;}i<nn>1, for the subsequence {c, }n>1 of {pn}tn>1,

Ur () =vl () 405 (1) = GP() as. [Pyl (19.12)

cnJ CnJ

The proof of (19.11) is quite similar to (17.4) and (17.5), but with bootstrap quantities in place
of original sample quantities. By the same argument as in 1} with & :(0) and G,;(f) in place

of () and oF, (), respectively, we obtain

5.0
e (EZ;EQ; B 1) - %”Zf(a) +0; (1) as.[Py), (19.13)

using Assumption BC.3 in place of Assumption C.5 and (17.2). Next, we have: conditional on

{Whiti<nn>1, for the subsequence {cp}n>1,
Sk (pY . 172 mcnj( s _ Ocnj mE g\ 1/2 [ “cnj _1
7,,0) = o (a:,,j<9> mww)) Zetgy (50 @ (2205 1))
= (1+05(1)) <ug;;(9) — (0w (0) +o§>(1)> = U7 (0) + 05 (1) a.s.[Py],
(19.14)

where the third equality holds by (19.3)) and (19.13)), and the fourth equality holds by the definition

of v;,:7*(#) in (19.10) and Assumption BC.3. This proves (19.11).

Next, we have

/25 (py — 0F,5(0) m 1/2 ~
n mn](g) 877,](9) (an(‘g) +n Ean](W7 9))
= B0 (0) + n'/*Br,m;(W,6), where (19.15)
o R (0) s s (Tng(0) N\ omg(0) L e
ons0) = 500 O T @) ) Ggte) P =00

where 1%(0) denotes the jth element of v;'(¢) defined in (14.2), and the second equality on the
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last line holds by Assumptions C.4 and C.5 and (17.4). Now, we have

02 ([ (0)] - = 7327) = 0/ 2([fang (O)]- = [Briiy (W, 0)]-) = /(7528 = ri80) + by (0)
= c?nj(H) + bp;(6), where
dnj(0) := X(@nj(0), nY2Ep, i (W, 0)) — n'/2(Ff —i2h) = 09(1),  (19.16)

n n p

the first equality uses the definition b,;(0) := n'/2([Eg,m;(W,0)]- — rigf) in , the second
equality uses x(v,c) := [V + |- — [c]—, and the second equality on the last line holds because

IX(v,¢)| < [v] Yv,c € R by (17.7), ©yj(8) = O (1) by (19.15), and nt/2(7inf — pinh) .= 4, = 0,(1)

by (4.12) and Theorem|15.3(b) (which uses Assumptions A.0, C.4, C.5, and C.7).
For b} = (tkn) V2 ([Ep,mi(W,0)] - — rj?f) as in A*"" (defined in (18.4)), we obtain

00y (0) 1= () 02 ([ ()] = FF) = (ur) ™l (8) + 0], (19.17)

where the first equality holds by definition, see (18.7), and the second equality holds by (19.16).

Using (19.15)), (19.17), and the definition of AZ?”H, we can write A7, in 1i as

AL = £ a 0),4;) + 1(5 # j*)b; 19.18
L (6,b,b KTJH)GA*"” I§1<]§ X, ( ), 45) (J #J7)b; ( )

110 = )¢ () s (0) + 15 )
where (0,0;,0},¢;,7%) € A "I’}n implies that b; := by;(0), b} = (thin) 105, £ = Y 2ER, M (W, 0),
and j* := j,(0), and x(v,c) = [v + ¢]-— []-.
We have (mn)_lc?nj(O) = og(l) by (19.15), (19.16), and Assumption A.6(i). Hence, by the

same argument as used to establish (19.3), there exists a subsequence {a, },>1 (different from that

in the proof of part (a)) of {¢y},>1 for which

sup | (tka, ) " dayj(0)] = 0 a.s.[Py]. (19.19)
0cO

In addition, by (19.12), under {F},},>1, conditional on {Wp;}i<nn>1, the subsequence {a, }n>1
of {pn}n>1 is such that

Up ()= vl () 409 (1) = G(-) as.[Pyl. (19.20)

anj
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Define

A= ooty T (XO27(0). £) +1G # 3)by + 10 = )¢} (10 (6) +5}) . where
g (0) = (k)" g (0) and pa(0) = (1 (6), oy i (6))'. (19.21)

By (19.18), (19.20), and (19.21), we obtain:
Ay, = A3, +op(1) as [Py, (19.22)

using the continuity of ¢f on R4 o] by property (ii) of ot stated following lh and the continuity
of x(v,¢) on R x R[4 under d. Hence, to establish part (b), it suffices to show: conditional on

{Whiti<nn>1, for the subsequence {a,}n>1,
(A0 Waikignnz1 } 4 A 25 [P, (19.23)

To prove , we use a similar (but more complicated) argument to that used to prove
Theorem b) based on the extended continuous mapping theorem. As above, let D be the
space of functions from © to R?*. Let Dy be the subset of uniformly continuous functions in D. For
nonstochastic functions v(-) € D and u(-) : © — R¥ with u(0) = (u1(0), ..., ux(0))’, define

GO )= et e (00,0 +1G £ 570

10 = 1) (13- (8) + 03))

GO u() = it (1 (20),0,6) 16 # )by

10 = )2} (13 (0) +05)) (19.24)

where v(0) = (v™(0)',v7(0)"), v;"(0) and v{(f) denote the jth elements of v™(0) and v7(0),

respectively, and 7;(v(-),0,¢) is defined in (17.20). Note that

A3 = Gu (), () and Afo = GG (), poo()), (19.25)

where fioo(+) is the nonrandom function that equals 0y for all § € ©.

We want to show {Ga, (v, () fan (D Waihicnnst} —a GG() () asPyl, where
{02, (){Whitiznns1} = G() as.[Py] by Assumption BC.3 and supyee |[fta, (6) — fine (9)]] = 0(1)
a.s.[Pg] by and the definition of u, () following . We use the extended CMT to
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establish this result. For notational simplicity, we employ n, rather than a,, in the proof of this
result. The extended CMT requires showing that for any deterministic sequences {vy,(:) € D},>1
and {un() : © — R*},>1 and deterministic v(-) € Dy such that supgeg ||vn(6) — v(0)|| — 0 and
supgeo ||1n(0) — 1o (0)|| = 0, we have gn (v, (+), n(-)) = g(v(), oo (+)). (For notational simplicity,
we abuse notation here and consider a deterministic v, (-) that differs from the random v,(+) in
Assumption C.5.) Once we have shown this, the proof of part (b) is complete.

The proof of g, (Vn(+), pn(-)) = g(¥(+), poo(+)) is an extension of the proof of g, (v, () — g(v(-))

in li in the proof of Theorem b). We show

(i) lim inf an(l/n()nun()) > g(”(')’MOO(')) and

n—o0

(ii) lim sup gn(Vn(')hun(')) < g(V(')auoo('))' (19'26)

n—oo

First, we establish (i) in (19.26). There exists a subsequence {¢p }n>1 of {n},>1 and a sequence
{(écn,BCn,BZn,ZCnJ;) € Ai:f}%c }n>1 such that

hnn_lgoréf gn(”n()?ﬂn()) = nli_{glogcn(ycn(.)7/’l’cn(.)) and

lim gcn(ycn(')vﬂcn(')) = lim max (Tj(ycn(')agcnyzcn) + 1(] 7é jzn)gcnj (19'27)

n—o0 n—oo j<k

+10 = Je )¢ (g2 (Be,) + EZJ;)) ;

and chj denote the jth elements of b, , b, and £, , respectively. Also, there

T Tk
where b, ;, b, s .

exists a subsequence {g, }n>1 of {¢n}n>1 and (6,0,0°,4,77) € © x Rf’ioo} x {1, ..., k} such that

%k

A (@B By L T)s @.57,27)) = 0, (19.28)

where d is defined in Section|15.1| by compactness of the metric space (© X Rf’foo] x {1,....,k},d)

under Assumption A.0(i). We have (6,b, b, 7, 3*) € A7 by the same argument as used to show
(6,b,0) € A in (but without the requirement that 6, € OME(F, ) Vn > 1) using
and Assumption BC.2.

For all 5 <k,

lim 7;(vg, (-), 0, €q,) = 75(v(-),0,0) € R (19.29)

n—oo

by (17.25) using v, () — v() uniformly over 6 € © (by assumption) and (19.28).
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In addition, we have, for all j < k,

1(j # an) i = LG # 7 )b and
LG = Ja)¢' (nge (0g,) + 8,5, ) = 1 = 7" (B5), (19.30)

where the first line holds by (19.28)) and the second line holds by (19.28)), supgcg ||1q, (6) —11oo (0)|| =
0, and the continuity of ¢! on R[4 o) under d by property (ii) of o' stated following 1) and the

fact that d(ng(,ujzn (0,,) + bqnj ), f (5})) — 0 implies that SDT(ME:M 0,,) + bqnj ) — @T(E}) (as a

sequence of numbers in R[+oo]) even if of (5}) = +00.

Now, we have

liminf g, (vn(-), n ("))

= tim max (7300, (), 0, lg.) + 10 # T, bgug + 16 = T )¢ (52 () +53,7:.))

n—oo j<k

= i (5 (L8 + 10 £+ 16 = 7)1 (5))

J=

> . ] ) . N C_ xy f *
2 onpihecns T (TJ(V( ):0,6) +1(7 # j7)bj +1(7 = J7)¢" (b; ))

= G(), poc (), (19.31)

where the first equality holds by (19.27) and the fact that {gy, },>1 is a subsequence of {¢, },>1, the
second equality holds by (19.29) (using the notational convention that v + ¢ = ¢ when v € R and

¢ = +oo if b; = +oo for any j < k) and (19.30), the inequality holds because (0, b,b,0,57) € Ay
by the paragraph containing (19.28), and the last equality holds by the definition of g(v(-), u(-)) in

(19.24) with u(-) = peo(+). This establishes result (i) in (19.26).
Next, we establish result (i) in (19.26). There exists (67, b, b, ¢f, i) € A% such that

G/C).p1ae()) = max (v, 01,6 +1G # 51000 + 1 = 5701 0]7.)) (19.:32)

because A7 is compact under the metric d defined in Section with a, = dg + 3k + 1 (since it
is assumed to be an element of S(O x Rf’ikoo] x{1,...,k})) and 7;(v(-),0,0) + 1(j # j*)b; + 1(j =

7)ol (b7+) is a continuous function of (6, b, b*, £, j*) under d that takes values in the extended real line

using property (ii) of ' stated following (18.6). By Assumption BC.2, A:;"}} — g A}. Hence, there is
a sequence {(0};, bh, bl eh, i ) e A*"" . }n>1 such that d((ﬁ,t, bh, b, el b ), (6,61, b1 41, 5T%)) — 0.
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We obtain

lim sup gn (vn(+), n(+))

n—oo
:= limsu inf max (7; (vp(+),0,0) + 1(5 # 7%)b;
MIP eenm TE (75 (wn (), 0,€) +1(3 # J*)b;
10 = )" (n+ (6) + B5-))

tim sup mae (75 (v (), 81 04) + 1G5 7 34, + 161 = 3176 (1,50 6) + 017.) )

n—oo ]S n
= max (7y(v(). 07.00) + 1 # 779} +16 = 5 (B11)

g(v (), oo (1)), (19.33)

IN

where the inequality holds because (0;&, b;ﬂ, b;r{k,ﬁl, j;;*) € AZ’Z’;H Vn > 1, the second equality holds
using d((6h, b%, bl 05, 55%), (67, 61, b 01, 51%)) = 0, (19.29) with (v,,(-), 6}, €h) and (v(-),61,¢) in

place of (v, (), 04,,04,) and (v(-),0,¢), respectively, and (19.30) with (Gjlj,bilj,bz,éij,jjl*) and
(9;,b},b;*,£;,ﬁ*) in place of (gqnj,7%]-,5;”]»,2%]-,3;) and (éj,Bj,Bj,Zj,j*), respectively, and the

last equality holds by . This establishes result (ii) in and completes the proof of part
(b).

For notational simplicity, we let the subsequence {ay, },,>1 of {py }n>1 differ in the proofs of parts
(a) and (b). However, by taking successive subsequences across the proofs of parts (a) and (b), we
can obtain a single subsequence {ay}n>1 of {pp}n>1 for which both parts (a) and (b) (and part
(d)) hold, as stated in the theorem.

The convergence result of part (c) follows from parts (a) and (b), Qn(6,) —p Qoo (by Assumption
C.6), the continuity of S(m, ) by Assumption S.1(iii), and the continuous mapping theorem. We
have S}, > 0 a.s. by Assumption S.1(ii). The function S(m, Q) can be arbitrarily large only if m;
is arbitrarily small (i.e., m; is negative and arbitrarily large in absolute value) for some j < k, by
Assumption S.1(i). We have T}, and A7 (defined in ) are in R a.s. by Assumptions C.4
and C.5 and the definition of ¢! in , and x(G7*7(0),¢;) > —|G}?(0)| (because x(v,c) > —|v|
by ) This yields S} . < oo a.s., which completes the proof of part (c). O

19.2 Proof of Lemma [18.3

The proof of Lemma uses the following lemma. The set ©(F) for a positive constant 7
is defined in 1| by O7(F) := {0 € © : maxj<x[Epm;(W,0) + rif]_ < n/n'/2}. The set O, is
defined in (4.20) by O, := {0 € © : max;j<x[fin;(0) + 7] < 7,,/n!/?}.

Lemma 19.1 Suppose that under {Fy,}n>1 and {0, }n>1, Assumptions A.0, C.4, C.5, and C.7 are

37



satisfied. Let {nn}n>1 and {m,}n>1 be any sequences of positive constants that satisfy T, — oo and
Mn/Tn — 0. Then,
Pr, (6, 2 01(F,)) — 1.

Proof of Lemma m For notational simplicity, we replace {pn}n>1 by {n}n>1 throughout
the proof of this lemma. Part (c) follows from parts (a) and (b) using the definitions of S} (6,,)
and S}, (6n) in and , and using Assumption S.1(i), which requires that S(m, ) is
nonincreasing in m € R* V(m, Q) € Rﬁoo} x W,

To prove part (a), note that 77, .(f) and T;,(f) only differ because the former depends on

©T(&1n;(0)), whereas the latter depends on ¢(&,;(6)). We have

o1 (E1nj(0)) 2 @1 (€n5(9)) 2 (6ns(6)), (19.34)

where the first inequality holds because (a) if &,;(#) < 0, then ¢(£,;(6)) = 0 by properties (i)
and (ii) of o' stated following and ¢'(&1,7(0)) > 0 by properties (ii) and (iii) of ¢! stated
following , and (b) if £,;(6) > 0, then &1,;(0) > &,;(0) == (sd*{nj(G)Rn)_lnl/Q(fﬁnj(G) +7.(0))
(since sdy,;(#) > ¢ > 0 by its definition following ) and o' is nondecreasing by property
(ii) stated following , and the second inequality holds by property (i) stated following .
Hence, T}

holds.
Next, we prove part (b). By definition, see (4.25)), the text following (18.1), and (18.7), we have

(0n) > T;j(en) for all sample and bootstrap realizations, Vj < k, ¥n > 1, and part (a)

nj

L . ~x 1/2 ~ C
Al = pca ) X (X(%(G)’n P2 Ep, i (W,0)) +1(j # jn(6))bn; (6)

+1(j = jn(e))goT(gfnj(e))) and

A= inf min max (V5,(0) + 107 # 1)bn (0)
0€8, j1€Tn(0) I=k

+1(5 = j1)e(&5(0))) - (19.35)

The bootstrap random variables A}, and A} differ in five ways. Specifically, A7, versus (vs.) A%
are defined with (i) infpcgm g,y vs. infy g , (ii) @T(ﬁﬁj(@) vs. ¢ 7’%(9)), (iii) by (0) vs. an(H),

(iv) X(ﬁ;‘bj(H),nl/QEFnﬁlj(VV, 0)) vs. X5;(0), and (v) j = jn(0) or j # jn(f) vs. min; 7 )

with
J=J10rj#j.
Lemma applies because Lemma|18.3|imposes Assumptions A.0, C.4, C.5, and C.7, 7,, = oo

by Assumptions A.6(ii), and 1, /7, — 0 by Assumption BC.2. By Lemma|19.1} for any bootstrap
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random function K7 (0),

P. inf K (0)> inf K (0
v (666’}“(&) O)2 oK)

{Wm-},-<n7n>1> =1 wp — 1 under Pg,. (19.36)

By the definitions of fi“nj (#) in 1i and 5;;1]. (#) in and sdy,,;(0) > ¢ (by construction; see
(18.1)), we have |£f‘nj(9)] > | 7’?](9)| and 5{31].(0) and 5;‘]-(0) have the same sign for all sample and
bootstrap realizations. For any 6 € O, for all sample and bootstrap realizations with 57’14]- () >0,

we have

P& (0)) < T (605(0)) < 9T (&0),;(0)), (19.37)

where the first inequality holds by property (i) of ¢ stated following lb and the second inequality
holds by property (ii) of ¢! stated following lb and 57’%(9) < ff‘nj (0). Next, for all sample and
bootstrap realizations with 52‘]- (#) < 0, we have fﬁlj (#) < 0 and this implies that

P(&5(0)) < T (&5(0)) = 0= o1 (&1),;(0)), (19.38)

where the first inequality holds by property (i) of ¢!, the first equality holds by property (iii) of
o! and 5% (6) < 0, and the second equality holds by property (iii) of ¢! and §fnj(9) < 0. Hence,
o( 7’;‘](9)) < @T(gﬁj (#)) for all sample and bootstrap realizations, for all € ©.

We have

byj(0) :=n'/? ([ﬁ”tm’(@)]— - Fﬁlf) — 8%, (0)kn = dnj(0) + i (0) — sd5,;(0) s, and so,

o~

sup (gnj(ﬁ) - bnj(H)) < sup (dnj(H) - mn> —p —00, (19.39)
e fco

where the first equality in the first line holds by definition, see (4.22), the second equality holds

by (19.16), and the second line follows from the first line, the last line of (19.16), sdgnj(Q) > by
definition, and k, — oo (by Assumption A.6(i)) and the inequality on the second line holds for

all bootstrap realizations because c/l\nj(Q) does not depend on any bootstrap quantities. Equation

(119.39) implies that

~

sup (bn;j(0) — bpj(0)) < 0Vj <k, for all bootstrap realizations, wp — 1 under Py.  (19.40)
0cO

Now, we show

Py (x(73;(0), 0" 2B iy (W,0)) 2 35(6) 0 € O{Woibigunz1 ) =1wp = 1. (19.41)
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The function x(v,c) := [v+ ¢]— — [¢]— is nondecreasing in ¢ for v > 0, is zero for all ¢ for v = 0,
and is nonincreasing in ¢ for v < 0. The function x(v,c) satisfies these monotonicity properties
because, (i) for v > 0, x(v,c) := —v (< 0) for ¢ < —v, x(v,¢) := ¢ (< 0) for ¢ € [-v,0), and
x(v,¢) :==0 for ¢ > 0, and (ii) for v < 0, x(v,¢) := —v (> 0) for ¢ < 0, x(v,¢) := —v — ¢ (> 0) for
ce[0,v), and x(v,c) :=0 for ¢ > —v.

Using these properties of x(v, ¢) and the definition of x(v, ¢, ¢c2) in , we obtain: for v > 0,
x(v,c1,02) = x(v,c1) < x(v,¢) Ve > ¢1. And, for v < 0, x(v,c1,c2) = x(v,¢2) < x(v,¢) Ve < co.
These results yield: for all 7;(6) > 0,

Rnd (0) := x (D (0), 12705 (0) = sd,(0)1n, /200 (0) + 53,5 (0) i)

(®)

= (72;(0), 0M2005(0) = s, (01 )
(®)
(®)

< x (a;;j 0), n}2f,;(0) - mn)
< x (75(0), n'*Ep,im;(W,0)) (19.42)
provided n'/2Ep, m;(W,0) > n'/2@,,;(0) — tr,, where the first inequality holds because sds,,;(0) > o
and x(v, ¢) is nondecreasing in ¢ for v > 0, as stated above. Similarly, for v} (6) <0,
Rag(0) = x (72500, 02000 (0) + s, (05 )
< x (75(0), 0205 (0) + )
< x (750, n'*Ep,i;(W,0)) (19.43)

provided n'/2Eg, m;(W,0) < n'/2m,;(0) + tky.
By (19.15), which uses Assumptions C.4 and C.5, n'/2m,;(0) = n'/2Eg,m;(W,0) + O;?(l).

Hence,
liminf P, (nl/QEanj(W, 0) € [0/ 20 (0) — vrin, 0" 2703 (0) + mn} Vo € @) =1 (19.44)

using k, — 0o by Assumption A.6(i). The combination of (19.42)—(19.44) establishes (19.41).

Define
Z* = inf . A*-G, 1/2E ~W/,9 +1 . . an
b 96@1§%(Fn)jlgﬁe)r?§§ (X(V”J( ),m £, (W, 0)) + 107 7 j1)bn;j (6)

10 = )¢ (66 (0)) ) - (19.45)
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Combining f and gives
P (A}, > AL {Waitican>1) = 1 wp — 1 under P (19.46)
Next, we show that
P (jin(0) € Jn(0) V0 € O{Wyi}icnns1) = 1 wp — 1 under P, (19.47)

where j,(0) := arg max;<y, by;(0) is defined in 1i and J,(0) := {j € {1,....k} : Tnj(0) > 7p(0) —

sd}‘;nj(@)n_lmmn} is defined following (18.1)) using (4.24). We have j,(6) € jn(6’) iff 75, (0)(0) >
?n(ﬂ)—sdg;njn(e) (0)n=12k,, if n1/2(?njn(9) (0) =70y —n1/2(7, () —7F) > —ik,, because sdgnjn(e)(G) >

¢ by definition. By (19.16), n'/2(;(60) —7i2f) = by;(6) +OF (1) Vi < k (since 7ij(8) = [ (6)]- by
). Hence, n'/2(max;<g 7, (0) — 7iM) = max;j<g by; (0) + OP(1). Taking j = jn(6), these results
combine to give nl/Q(?njn(g)(H) —7infy _ pl/2(7,(0) — 7infy = bujn(0)(0) — max;<i by;(0) + OF(1) =
Og) (1) using the definition of j,(0), where the Og) (1) term does not depend on any bootstrap
quantities. Since O;?(l) > —uky, holds wp—1 using Assumption A.6(i) (i.e., kK — 00), is
proved.

For a suitably defined random function w(ji,0) on {1,...,k} x ©, A}, and A}, can be written
as infpcgm () w(jn(0),0) and infycgum () min;

]lefn
w(j1,0) when j,(0) € J,(#) and the latter event satisfies (19.47), we obtain

) w(j1,0), respectively. Since w(j,(0),6) >

mi

njlej\n(e)

PV( *Ln > Z*Ln|{Wni}i§n,n21) =1 wp — 1 under PV' (1948)

This and (19.46) establish the result of part (b) of the lemma. [

Proof of Lemma We have

Pp, (0,207 (F,)) > Pp, [ sup  maxn'/?[f,;(0) + 7 <7,
0cO (F,) ISk

= Pp, sup  maxnt/?([,;(0)] — Ay <7, |, (19.49)
0cOI (F,) ISk

where the inequality holds by the definition of @n and the equality holds because for b,¢ > 0,
[a+b]- < cifand only if [a] - — b < ¢. To see this, first note that [a + b < c and [a]- — b < ¢ are
equivalent to max{—a — b — ¢, —c} < 0 and max{—a — b — ¢, —b — ¢} < 0, respectively. The “only
if” part follows by observing that max{—a — b — ¢, —c} > max{—a — b — ¢, —b — c}. Now, suppose

[a]— — b < ¢ so that either (i) a > 0 or (ii) a < 0 and —a — b < ¢. If (i) is the case, [a+b]- =0 < ¢,
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and if (ii) is the case, [a + b]- = max{—a — b,0} < max{c,0} <ec.

We have
sup  maxn'/? ([ (0)]- — )
gcon (F,) ISk
= sup  maxn'/2([n;(0)]- — 7B +n'A(rpl —7)
0O (F,) I<k
= sup maxn (i (6)]- — ) + O,(1)

0O (F,) I=k

= sup max ([VVTJ‘U(Q) +n!?Ep, iy (W,0)] - — [n'/?Eg, i (W, 6)] -
0cO (F,) I<k

1 (B, iy (W, 0)] - = 7)) + Op(1)

< sup  max |y, (0)] 4 nn + Op(1)
9ce (F,) I<k

= 0,(1) + 7n, (19.50)

where the second equality holds by Theorem b) (which requires Assumptions A.0, C.4, C.5,
and C.7), the third equality holds by (17.5) and (17.6)), the inequality holds by the definition of

O©7"(Fy), the same reasoning as given following (19.49), and (17.7), and the last equality holds by
Assumption C.5.

It follows that

P, [ sup  maxn! (g (0)- - ) <
9eO (Fy,) ISk
> PFn(Op(l) + 10 < 7h)
= Pr,(Op(1/70) +mn/70 < 1)

= 1, (19.51)

where the convergence holds because 7, — oo and 7, /7, — 0. Combining this with (19.49) gives

the result of the lemma. [J

19.3 Proof of Lemma [18.4]

Proof of Lemma m The lemma depends on Tjoo, T700s Aloos Afogs Sices and 7, which
are defined in (15.7), (15.9), (15.10), and (18.8). The first four quantities are well-defined under
Assumptions A.6, BC.1-BC.3, C.1, C.3-C.5, and C.8. The last two quantities, which appear in

part (c), are well-defined under these assumptions plus Assumptions C.6 and S.1(i). Hence, these

assumptions are imposed in Lemma [18.4
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We prove part (a) first. We have
Tt oo = GT2 + 01 (M} joo) < G + hjso = Tjoo (19.52)

for all sample realizations, where the inequality holds because (i) hjo > 0 by Lemma a)

(which imposes Assumptions C.3 and N), (ii) cpT(thoo) < hjs holds immediately if hjo =

oo, and (iii) if 0 < hjeo < oo, then hj, = 0 (since n'/2(Ep,m;(W,0,) + r2') = hjo and
(Lﬂn)_1n1/2(EFnﬁlj(VV, 0n) —l—r?j) — h¥

Ljoo Py Assumptions C.3 and BC.1, and k, — o), hy. . =0

Ljoo
) < hjoo.

implies @T(hzjoo) = 0 by property (iii) of ' stated following (18.6), and hence, goT(hzjoo

Now, establish part (b), i.e., A7 < Areo. We can write A} = il’lf(ab’b*’g’j*)eA? K (6,b,b%, ¢,
7*) and Ajeo = inf(gp pyen, K(0,b,£) for random functions Kp(-) and K (-) defined in (19.54) below.
To show A} < Aj, it suffices to show that for any (6,b,¢) € A there exists (6,b,0*,¢,7*) € A}
for which K, (0,b,0*,¢,j*) < K(0,b,¢) for all sample realizations.

To this end, we claim: Given any (6, b,¢) € Ay, there exists an element (6,b,b*, ¢, j*) € A}.

This claim is proved as follows. By Assumption C.8, given any (0,b,¢) € Ay, there exists a
sequence {(0,,b,,0,) € AZ?Fn}nzl such that d((0p,by,0y), (0,b,€)) — 0, where 6,, € ©7"(F,) for
all n > 1 by the definition of AZ"Fn following (15.3). Given {f,},>1, consider the corresponding

sequence {(0,,, by, b, n, 55 € AZZ’}H}nzl for A;"I’;n defined in (18.4), where by, := (thp) onj, 4k =

arg max;<g Enj, and j» is the smallest arg max value if the arg max is not unique. By Assumption
BC.2, A:?;in — g A} for A} compact (under d). In consequence, there exist a subsequence {uy, }n>1
of {n},>1 and an element (6, b,b*, ¢, j*) of A} for which

(O > bu > b3y L5 g ), (6,0,6%,2,5)) — 0 and (0,b,0) = (6,b,0), (19.53)

where the equality holds because d((0y,bn, %), (0,b,¢)) — 0, which completes the proof of the
claim.
Given any (0,b,¢) € Ay, take (0,b,0*,¢,5*) € A} as in the previous paragraph. Then, we have
Kp(0.0.6°,.5°) := max (\(G7(0).45) + 10 # 5" +10G = )¢/ (5-))
< max [x(GJ*(0), ;) + bj] :== K(0,b,¢) (19.54)

J<k

for all sample realizations, where the first and last equalities hold by the definitions of A7 and

Ajs and the inequality holds because, as we show below, ng(b;-*) < bj«. As argued above, (19.54

implies that A7 < Ajo, which we set out to prove.

Next, we show ng(b;f*) < b;+. For notational simplicity, suppose (19.53) holds with n in place
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of u,. We have j; — j* by , and hence, j* = j* for n large (because j¥ € {1,...,k}), where
g% = jn(Bn) by the definition of AZ™. in for jn(@,) defined in . We have b,j — b;
and by,; — b7 by (19.53), where by; = by;(6,) and bl; = (1) "'y by the definition of A for
bnj(0) defined in . Hence, we have byj: — bj+ and bljz — bj., where b ;. = (thin) Tbnjr =
(thin)~1h (En)@") >0 for all n > 1 by (18.3). This and x,, — oo (by Assumption A.6(i)) imply
that b > b;f* > 0. In addition, it implies that if 0 < b;» < oo, then b’;-* = 0 (since K, — o0). Hence,

njn

we obtain: if 0 < bj+ < oo, then goT(b;f*) = 0 < bj+ because ¢'(0) = 0 by property (iii) of ¢! stated
following . On the other hand, if b = oo, then @T(b}) < 0o = bj. by the definition of ot (),
which completes the proof of part (b).

Part (c) is implied by parts (a) and (b) using the definitions of S} and Sio in and
, respectively, and Assumption S.1(i). O

20 Proof of Theorem /4.1

Theoremshows that the SPUR2 test and CS have correct asymptotic level. The SPURI test
and CS have correct level under the same conditions. This Section proves the results of Theorem
[4.1] for both SPUR1 and SPUR2 tests and CS’s.

The proof of Theorem uses the following lemma, which provides sufficient conditions for
Assumptions C.5 and C.6 to hold for the case of i.i.d. observations. This lemma is based on

Lemma D.2 of BCS.

Lemma 20.1 (a) Assumptions A.0-A.4 and C.11 imply Assumption C.5 with the covariance ker-
nel of G(+) in Assumption C.5 equal to Qs(+,+). (b) Assumptions A.0-A.4, C.1, and C.11 imply
Assumption C.6 with Qo in Assumption C.6 equal to the upper left k x k submatriz of Qoo (Ooo, Ooo)-

Comment. For any subsequence {¢,}n>1 of {n},>1, Lemma holds with ¢, in place of n
throughout, including the assumptions. (The proof just needs to be changed by replacing n by ¢,
throughout.)

Proof of Theorem |4.1] First, we prove the result of part (b) for the C'S,, sprr1 CS (which is
not stated as a result in Theorem b), but is needed below in the proof of Theorem b) for
the CSp spure CS). Let ¢,,(0) abbreviate ¢, spyri(6). There always exist sequences {F), },>1 and
{6, € @yR(Fn)}nzl and a subsequence {gy }n>1 of {n},>1 such that

lmint jnf, _inf | Pr(60(6) = 0) = Hmint Pr, (60(6n) = 0) = 1 Pr, (9, (9,) = 0)-~ (20.1)
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The left-hand side expression equals the uniform coverage probability in Theorem b) using the
definition of the SPUR1 CS in . By , it suffices to show that the rhs of isl—aor
greater with {gn}n>1 replaced by some subsequence {ay}n,>1 of {gn}n>1 (because the limit under
the subsequence {ay}n,>1 is the same as the limit under the original subsequence {gy}n>1). The
rhs of defined with {an}n>1 is 1 — a or greater by Theorem m provided the assumptions
of Theorem hold for some subsequence {p,}n>1 of {gn}n>1. Hence, it remains to verify that
Assumptions BC.1-BC.3, C.1, and C.3-C.8 hold for some subsequence {pp}n>1 (of {gn}n>1) in
place of {n}p>1 (because Assumptions A.0, A.6, and S.1, which are imposed in Theorem are
also imposed in the present theorem, and Assumption N, which is imposed in Theorem holds
because 0, € OME(F, ) Vn > 1in by construction).

Under Assumptions A.4 and A.5, by Lemma D.7 of BCS, given {gy}n>1, there exists a sub-

RF*k_valued function Qs on ©2, and a continuous

sequence {uy}n>1 of {gn}n>1, a continuous
R*-valued function m on O for which (i) Q Fu, —u oo, Where —, denotes uniform convergence
(over ©% in this case), (ii) Ep,, m(W,-) —, m(-), and hence, Assumption C.4 holds for the sub-
sequence {up}n>1, and (iii) Assumptions C.7, C.8, and BC.2 hold for the subsequence {up}n>1.
Strictly speaking, Lemma D.7 of BCS only establishes g, — (2o and the subsequence versions
of Assumptions C.7 and C.8, but Er, m(W,-) —, m(-) and the subsequence version of Assump-
tion BC.2 are established in the same ways as Qp, —y Qoo (but using Assumption A.5 in place of
Assumption A.4) and the subsequence versions of Assumptions C.7 and C.8, respectively.

Assumption C.1 holds for a subsequence {1y, }n>1 of {uy, }n>1 because {0, }n>1 is a sequence in
the compact set © (by Assumption A.0(i)).

Assumptions C.5 and C.6 hold for the subsequence {uy,},>1 by applying a subsequence version
of Lemma, which imposes Assumptions A.0-A.4, C.1, and C.11. Assumptions A.0-A.4 are
imposed in the present theorem and the subsequence version of Assumption C.11 holds by (i) above.

Assumptions C.3 and BC.1 hold for a subsequence {pp}n>1 of {up}n>1 because
{ﬂ,lz/Q(EFEnﬁl(W 0..)+ T}?an)}nzl and {ngﬁ,ll/Q(EFﬂnﬁ’L(W, Oxu,) + T}?an)}nzl are sequences taking

Y Yun

values in Rﬁtoo]’ which is compact under d (defined in Section [15.1|with a, = k).

Assumption BC.3 holds for the subsequence {p,}n>1 by Lemma D.2(8) of BCS because As-

sumptions A.1-A.4 of this paper imply Assumptions A.1-A.4 of BCS and Qp, —, o implies
Qr,

» = Qoo (because {pp}n>1 is a subsequence of {uy}n>1).

This concludes the proof that the assumptions employed in Theorem hold for the subse-
quence {py tn>1 of {gn}n>1, which completes the proof of part (b) for C'S,, spur1.

The proof of part (a) for the SPURI test is essentially the same as that of part (b) for the
SPURI1 CS, but with 6; in place of 6, Vn > 1.
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Next, we prove part (b) for the SPUR2 CS. Let {F,}n>1 and {6,},>1 denote sequences of

distributions in P for which

limsupsup sup  Pr(¢nspur2(0) =1) =limsup P, (¢n spur2(6n) = 1). (20.2)
n—oo FeP ge@?IR(F) N—00
Such sequences always exists. The left-hand side expression in (20.2) equals one minus the uniform
coverage probability in Theorem b) using the definition of the SPUR2 CS in (4.8).

We use the following Bonferroni argument. We have

limsup Pp, (¢n,spur2(6n) = 1)

n—oo

< limsup Pr,(¢én,spure(tn) =1 & T?f <Tmhup(a1))

n—oo
+limsup Pr, (pn.spur2(0n) =1 & ri2 > 7, yp(ar))
n—0c0
< limsup PF, (¢n7SPUR2(9n) =1& T‘}fﬂlf < Tn Up(Oq)) + a1, (20.3)
n—oo

where the second inequality holds because Theorem a) which states that liminf,, . infpep
Pr(AR € CI, av(a1)) > 1 — ay, implies limsup,,_, PFn(rmf > rpup(aq)) < aj since r}f)j =
max{Amf 0} and 7, yp(a) == max{Amf (), 0} yield rmf > rpup(on) iff A}?j > max{ﬁiﬁny(a),O}
and the latter implies Amf > Amf u(a).

inf

First, consider the case where 7' > 0 for all n large. Then, r}?‘: < Tpup(on) implies that

0 < T up(on) and ¢ spur2(0n, a2) < épn spUR1(0n, a2) using 1l In this case, under {F}, }n>1
and {6, },>1, the rhs of ( -i is less than or equal to

limsup Pr, (¢n,spurt(On,a2) =1) + a1 < as+ o1 = a, (20.4)

n—oo

where the inequality holds because the nominal level as test ¢y, sprr1(6n, @2) has asymptotic size
ag or less by Theorem b) for the SPUR1 CS (which allows for drifting sequences of null values
0r).

Next, consider the case where rmf 0 for all n large. Under {F),},>1 and {6 }n>1, the rhs of

(20.3) is less than or equal to

limsup Pp, (¢n,cms(On,a2) =1) + a1 < ag + a1 = «a, (20.5)

n—o0

where the inequality holds because the model is correctly specified (i.e. T}?f = 0) for n large and

the ¢ cars(0n, az) test has asymptotic size o or less in this case. The latter holds by the same

argument as used to prove Theorem b) for the SPUR1 CS (which allows for drifting sequences
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of null values 6,,), but with the test statistic S, () defined in (4.5) with 7i* replaced by the true
value rﬁf = 0 and with the EGMS bootstrap statistic replaced by the GMS bootstrap statistic
Sn.aus(0) defined just above , which is suitable because r}?j =0.

The result of part (b) for the SPUR2 CS holds because the rhs of for the sequence
{Fn}n>11s a or less by considering subsequences of {n} where either or applies.

The proof of part (a) for the SPUR2 test is analogous to that of part (b) for the SPUR2 CS
with 6y in place of 6,, Vn > 1. [

Proof of Lemma First, we verify Assumption C.5 using Lemma D.2(1) of BCS, which
imposes their Assumptions A.1-A.4 and M.2 and QFp, —, 2o for some 2. Assumptions A.1-A.4
in this paper imply A.1-A.4 in BCS, Assumption A.0(i) is the same as BCS’s M.2, and Assumption
C.11 implies Qp, —y Qoo. Lemma D.2(1) of BCS gives v'(-) = G™(-), whereas Assumption C.5
concerns vy, (+) := (v(-)',v2(-)"). However, by the same argument as in the proof of Lemma D.2(1)

applied to vy,(+), rather than v]*(-), we obtain
vn() = G(), (20.6)

where G(-) is as in Assumption C.5, using equicontinuity of v,(-) in our Assumption A.3, rather
than of ©)7"(-) in BCS’s Assumption A.2, and using 4 + a finite moments in our Assumption A.2,
rather than 2+ a finite moments in BCS’s Assumption A.3. Hence, Assumption C.5 holds and part
(a) is established.

Next, we verify Assumption C.6. Lemma D.2(5) of BCS gives supycg 11920 () —Qo11(6, ) | —p 0,
where Q4011(0,6) denotes the upper left k x k submatrix of Q4 (6,0), because Assumptions A.1—-
A4 in this paper imply Assumptions A.1-A.4 of BCS and Qp, —, Qoo by Assumption C.11. By
Assumption C.1, 6, — 0., and by Assumption C.11, Q. (6, 8’) is continuous on ©2. These results
combine to yield ﬁn(en) —p Qo011 (00, O00) 1= Qoo, wWhich verifies Assumption C.6 and establishes
part (b). O

21 Proofs of Lemma [11.2] and Theorem [11.1]

The proof of Lemma b) uses the following lemma, which shows that Assumption C.10
implies a similar minorant condition on the sample analogue of the left-hand side of Assumption

C.10.

Lemma 21.1 Suppose Assumptions A.0, C.4, C.5, C.7, and C.10 hold under { F}, }n>1. Then, there

exist positive constants K, €, and v such that for any § € (0,1) there exists positive constants kg
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and Ns such that

max([n; (0)] - =) > k- (min{d(0, 07F(F,)), €})

for all 0 € {0 € © : d(0,0ME(F,)) > (ks/n*/?)Y/7} with probability at least 1 — & for all n > N.

Proof of Lemma The proof is similar to that of Theorem 3.1 of Chernozhukov, Hong, and
Tamer (2007). For part (a), we have

sup  d(6,0,)=0wp—1 (21.1)
9cOMR(F,)

because OME(F,) C ©,, wp — 1 by Lemma ( ) (which requires Assumptions A.0, C.4, C.5,
and C.7). For part (a), it remains to show sup, g d(0, OME(F,)) = 0p(1).
By Assumption C.9, for arbitrary € > 0, we have

:= lim inf f E inf > 0. 21.2
(c:=limin Gee\g}m( 22 [Er,m;i(W,0)]- — 1, >0 (21.2)

Next, we have

sup max n1/2([EF mji(W,0)]- — 7‘}?:)
969
= sup man! (B, i1y (W, 0)] -~ [ng O)) + g O] — 728+ 72— i)
96®n
= sup maxn V2 ([Ep, i (W, 0)]— — [ (0)]— + [ (0)]— — ) + Op(1)
96@ =
< sup maxn/2([Ep, (W, 0)] — [Fing(8)]-) + 7 + Op(1)
9e6, Ik
= sup max ([n/2 B,y (W,0))- — 37(6) + ' B, 72y V,0)]) + 7o+ Op(1)
Oe @n
< sup max‘u ()| + 70 + Op(1)
9e6, Ik
= Op(l) + T, (21.3)

where the second equality holds by Theorem [15.3(b) (which requires Assumptions A.0, C.4, C.5,
and C.7), the first inequality holds by the definition of ©,, and the same reasoning as given following
(19.49), the third equality holds by (17.5) and (17.6), the second inequality holds by , and
the last equality holds by Assumption C.5.

By (21.3)), we have

sup ma]z([EF m;(W,0)]- —riff <0 L(1/nY %) 4 7, /0% = 0,(1), (21.4)
66, 7=
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where the equality holds because 7, /n'/2 = o(1). Combining (21.2) and (21.4), it follows that

lim P, inf max [Erp m;(W,0)]_ > sup max [Ep m,;(W,60)]_
Fp <9€9\9§V{ER(F71) i<k [ F, ]( )] eeépn i<k [ Fy ]( )] )

lim Pp, ((:/2 > 0p(1))

— 1. (21.5)

Y

Thus, lim Pp, (6, C ©}F(F,)) = 1 and sup,_g _d(f, O} (F,)) < ¢ wp— 1. Since ¢ > 0 is
arbitrary, we have sup, g d(0, OME(F,)) = 0,(1), which completes the proof of part (a).

For part (b), take the positive constants (k,¢,7,d, N, ks) as in Lemma m We can take
N} > N such that 27, > k- ks and &, := (27,/(n'/?k))'/7 < ¢ for n > N}, because 7, — oo and
/0% = o(1). As defined, e, > (r5/n'/?)}/7 for n > N}. Hence,

O\ c {9 € ©:d(0, 0 (F,)) > (rs/n/?)/7} (21.6)
forn> N g. In consequence, with probability at least 1 — § for n > N g, we have
inf max ([T (0)]— — 7)) > £ inf min{d(0, OME(E,)),e})”
seonabin (1) TR ([ (0)] - = 777) = 969\9%(&)( {d(0,07 " (Fy)),})
> k- (min{ey,, e})?
=kK-g)
.= 27, /n'/?
> 75 /n/?
> sup max([finy (0)] — 7), (21.7)
0c6, I=F
where the first inequality holds by Lemma and (21.6)), the second inequality holds by the
definition of @%ff(Fn), the first equality holds by the definition of Ny, the second equality holds
by the definition of ¢, and the last holds inequality by the definition of (:)n

Equation (21.7) implies ©,, C @%E(F”)’ and hence, sup,._g d(9,0ME(F,)) < &, with proba-

bility at least 1 — ¢ for n > Nj. Combining this with (21.1)) gives

dr(On, O} (F)) = Oplen) = Op((7u/n"/*)M7), (21.8)

which completes the proof of part (b). O

Proof of Lemma|21.1} By (19.50) with © in place of ©7"(F,,) throughout and with [E, m;(W, 0)]_
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— r}?j in place of 7, in the last two lines (which makes the inequality into an equality), we have

max ([ ()] - — Fi") = max[Ep,m; (0)]- — il + Oy (1/n'/?) (21.9)
i<k 1<k

using Assumptions A.0, C.4, C.5, and C.7. Hence, for any ¢ € (0, 1), there exist positive constants
ks and Ny such that with probability at least 1 — §, we have
max([mn; (6)]- — mt) > C - (min{d(0, 01" (F,)), €))7 + Op (1/n'?)
J<
> C - (min{d(0, 0ME(F,)),e})Y — (C/2)ks/n*/? (21.10)

for all # € © and n > Ngs, where C, ¢, and v are as in Assumption C.10 and the first inequality
uses (21.9) and Assumption C.10. Without loss in generality, we can take N5 > (rs/€7)%. Hence,
ks/N. 61 2 <er,

For all n > Ng, we have
ks /n'? < (min{d(9, 0ME(F,)),e})? (21.11)

for all 6 € {# € © : d(0,0ME(F,)) > (ks/n'/?)*/7}. Combining (21.10) and (21.11) establishes the
lemma with k = C/2. O

Proof of Theorem Let an arbitrary € > 0 be given. There always exists a sequence
{F, € P}p>1 (that may depend on ¢) such that

lim sup sup Pp(dg(0n, OV E(F)) > €) = limsup Pp, (dg(0n, OME(F,)) > ¢). (21.12)

n—oo FeP n—o0

There always exists a subsequence {wy, }>1 of {n}y>1 such that

limsup P, (d(©,, OYF(F,)) > ¢) = lim Pg,, (dg (O, , OF(F,,)) > ¢). (21.13)

n—oo

Given any subsequence {an}n>1 of {wy}n>1, there exists a subsequence {uy}n>1 of {an}n>1
such that Assumptions C.4, C.7, and C.11 (defined in online Appendix B) hold for the subsequence
{tn}n>1 by the proof of Theoremin Section in online Appendix B, which uses Lemma D.7
of BCS and relies on Assumptions A.4 and A.5. Given Assumption A.9, Assumption C.9 also holds
for the subsequence {uy},>1. By Lemma in Section |20|in online Appendix B, Assumptions
A.0-A.4 and C.11 imply Assumption C.5. Hence, Assumptions C.4, C.5, C.7, and C.9 hold for
the subsequence {uy, },>1. In consequence, by Lemma a) applied with n replaced by w,,, which
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utilizes Assumptions A.0, C.4, C.5, C.7, and C.9, we have
lim Pr, di(O,,, 01 (F,)) >¢) =0. (21.14)

This implies that the same result holds for the subsequence {wy}n>1, which completes the proof

using (21.12) and (21.13) because ¢ > 0 is arbitrary. [J

22 Online Appendix B Assumptions

For ease of reference, we state all of the assumptions used in the paper and online Appendix B
here.
Assumption A.0. (i) © is compact and non-empty and (ii) Epm;(W, ) is upper semi-continuous
on OVj <k VFeP.
Assumption A.1l. The observations Wi, ...,W,, are i.i.d. under F' and {m;(-,0) : W — R} and
{ﬁl?(, ) : W — R} are measurable classes of functions indexed by # € © Vj < k, VF € P.
Assumption A.2. For some a > 0, suppep Er supgee |[m(W, 0)|[41* < oo.
Assumption A.3. The empirical process v, (-) is asymptotically pp-equicontinuous on © uniformly
in F'eP.
Assumption A.4. The covariance kernel Qg (6,0') satisfies: for all F' € P,

lims—,0 SUP||(9,,0,) (62,04 <5 |2 (01, 01) — Qp (62, 05)]] = 0.
Assumption A.5. Epm(W,0) is equicontinuous on © over F' € P. That is, limsosuppep
sup|jg—g||<s |[Erm(W,0) — Epm(W,6")|| = 0.

Assumption A.6. (i) k, — oo. (ii) 7, — o0.

Let U := cl({QF(0) : 0 € ©,F € P}), where cl(-) denotes the closure of a set and Qp(0) :=
Corrp(m(W,0)) € RE*F,
Assumption S.1. (i) S(m, ) is nonincreasing in m € Rﬁoo] vQ e v,

(ii) S(m, Q) > 0 ¥m € R*, ¥Q € ¥, and

(iii) S(m, Q) is continuous at all m € Rﬁoo] and Q) € V.
Assumption S.2. S(m,Q) > 0 iff m; < 0 for some j < k, VQ2 € V.
Assumption S.3. For some x > 0, S(am, Q) = aXS(m,Q) Va > 0, ¥m € R*, vQ € V.
Assumption S.4. For all h € (—o0,00]¥, all Q € ¥, and Z ~ N(0, ), the distribution function
of S(Z + h,Q) at € R is (i) continuous for = > 0, (ii) strictly increasing for x > 0 unless
h=(c0,...,0) € Rf“ioo], and (iii) less than 1/2 for x = 0 if h; = 0 for some j < k.
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The following assumptions apply to a drifting sequence of null values {6, }»>1 and distributions
{Fntn>1.
Assumption C.1. 6, — 0, for some 0, € ©.
Assumption C.2. nl/QEpnﬁzj(VV, On) — Ljoo for some ljoe € Rto) Vi < k.
Assumption C.3. n'/2(Ep, m;(W,0,) + B0 = hjoo for some hjos € Ripoo) Vi < k.
Assumption C.4. supycg ||Er,m(W,0) — m(0)|| — 0 for some nonrandom bounded continuous
RF-valued function m(-) on ©.
Assumption C.5. v,(-) := ('), v3()") = G(-) := (G™(-),G(-)) as n — oo, where {G(0) :

6 € ©} is a mean zero R?*-valued Gaussian process with bounded continuous sample paths a.s.
and G™(0),G?(0) € RF.

Assumption C.6. ﬁn(Hn) —p Qoo for some Qo € V.

Assumption C.7. A, i, — g A for some non-empty set A € S(© x R[Qioo])

Assumption C.8. A" wF, —H A for some non-empty set A; € S(O x R[zﬁoo}) where {7, }n>1 1s a
sequence of positive constants for which n,, — co.

Assumption C.9. For all € > 0,

lim inf inf max [Ep m;(W,0 — it} 5,
n—»00 (eee\eyf(m%k By (W.0)- F”)

Assumption C.10. There exist positive constants C, €, and - such that for all § € © and n > 1,

m<ax[EF m;(W,0)] - mj > C - (min{d(#, 0V E(F},)),e})".
i<
Assumption C.11. Qf (-,-) =4 Qso(-,-) for some continuous R?**2k_valued function Q. (-, ) on
02

The following assumptions apply to a drifting sequence of null values {6, },>1 and distributions
{Fn}nZL
Assumption BC.1. (tr,) " 'n'/?(Ep,mj(W,0,) +T}?f) = oo
Assumption BC.2. A*”"n — g A7 for some non-empty set A} € S(O© x R x {1,...,k}) for

for some hj ;. € Ritoo) VJ < k.

some constants {7, },>1 that satisfy n, — oo and n,, /7, — 0 for {7, },>1 as in Assumptlon AL6(ii).

Assumption BC.3. {1} (-)[{Whyi}i<nn>1} = G(-) a.s.[Pg], where G(-) is as in Assumption C.5.

Assumption NLA. minj<j hjoo > —00.

Assumption CA. minj< hjo = —00.

Assumption N. 6, € OME(F,) vn > 1.

Assumption LA. The null values {6, },>1 and distributions {F,}n>1 satisfy: (i) ||0n — Orm|| =
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O(n~1/2) for some sequence {07, € OME(F,)Y,>1, (i) n'/2(Eg,m;(W, 91n)+ri}?£) — hrjoo for some
hrjoo € Ritog) Vi < k, and (iii) Epm(W,0) is Lipschitz on © uniformly over P, i.e., there exists a
constant K < oo such that ||[Epm(W, 61) — Erm(W, 62)|| < K||61 — 02|| V61,02 € ©, VF € P.
Assumption FA. The null values {6, },>1 and distributions {F},},>1 satisfy: (i) F,, = Fix € P
and 6, = 6, € © do not depend on n > 1 and (ii) Ep,m;(W,6,) 4+ ri#f < 0 for some j < k.

Assumption SLK. The sequence {F}},>1 is such that nl/QAil?j — —00.

Assumption MM. The sequence {F},},>1 is such that nl/QAil?f — 00.
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23 Outline of Online Appendix C

Online Appendix C proves the results of the paper for the misspecification index confidence
intervals (CI’s).

References to sections with section numbers[6]or less refer to sections of the main paper. Simi-
larly, all equations, theorems, and lemmas with section numbers|[6|or less refer to results in the main
paper. Let BCS15 abbreviate Bugni, Canay, and Shi (2015) and BCS17 abbreviate Bugni, Canay,
and Shi (2017). For ease of reference, the assumptions used in the paper and online Appendix C
are listed in the last section of online Appendix C, Section

Sectionprovides an equivalent condition to Assumption SLK, which is employed in Theorem
It also provides a set of sufficient conditions for Assumption SLK.

Section provides the asymptotic distribution of ﬁ;?f under certain drifting sequences of
distributions {F},},>1 under some high-level conditions, which are verified below. The asymptotic
distribution results are used below to prove Theorem which establishes the correct asymptotic
size of the MI CI's CI, ap (), CInar(), and CI, a(a).

Section (26| proves Lemma and Theorem which gives the asymptotic distribution of
Aint,

Section proves Theorem |5.1] which establishes the correct asymptotic size of the upper- and
lower-bound CI’s for Ai}?f.

Section proves Theorem which gives conditions for the upper-bound CI to contain only
negative values wp—1 and conditions for the lower-bound CI to contain only positive values wp—1.

Section 29| proves Corollary which establishes the correct asymptotic size of the tests con-
cerning AR and conditions for the consistency of the tests.

Section shows that the upper-bound CI CI, any(«) includes positive values of Ailflf wp—1
when the model is misspecified and n'/ 2Ailf{f — 0.

All limits are as the sample size n — oo. Let og)(l) and 01? (1) denote random functions that
are op(1) and O,(1) uniformly over 6 € ©, respectively. Let Ry := RU {Foo} and Ri ) =

RU{+o0}. Let || - || denote the Euclidean norm for vectors and the Frobenious norm for matrices.

24 Equivalent and Sufficient Conditions for Assumption SLK
First, we give an equivalent condition to Assumption SLK (under Assumption A.0).

Lemma 24.1 Suppose Assumption A.0 holds. Then, the sequence {Fy}n>1 satisfies Assumption
SLK if and only if there exists a sequence {01 € O1(F,)}n>1 for which n'/?Eg, m;(W,0L) — oo



Vi < k.

Next, we give some sufficient conditions for Assumption SLK. For any 01, 04 C O, the Hausdorff

distance between ©1 and ©s is

dp(©1,02) = max{ sup inf ||#; — 62|, sup inf [|6; — 92H} . (24.1)
0,€0, 02€02 020, 01€01

If ©1 C O3, dy(O1,02) = supy,ce, info,co,||01 — B2, because supy, g, infg,co,||f1 — 2| = 0 in

this case. The following assumption states that the identified set ©;(F;,) does not shrink to the

Omin(Frn) set too quickly.

Assumption SLK.1. The sequence {F),},>1 is such that {O(F},)},>1 are nonempty and lim,,
n2dg (Omin(Fy), 01(F,)) = cc.

For example, when Oy, (F},) is a singleton and ©;(F},) is such that its diagonal does not shrink at

rate n~1/2 or faster, Assumption SLK.1 holds

Lemma 24.2 Suppose the sequence {Fy,}n>1 satisfies Assumptions A.0, A.8(i), and SLK.1, and
the model is correctly specified for each F, in the sequence. Then, {F,}n>1 satisfies Assumption

SLK.

Comment. Lemma still holds if dy(Omin(Fr),O1(F,)) is replaced by (dg(Omin(Fr),
©r(Fy)))? in Assumption SLK.1 and infgeq =m0 — 0| is replaced by infgeg .m0 — 0|7 in
Assumption A.8(i), for any g > 0.

Proof of Lemma Suppose there exists a sequence {0 € ©;(F,)},>1 for which
nY2Ep, m;(W,0L) — oo Vj < k. Then,

n1/2Aifplj <n'?Ap, (0]) = max —n'2Ep i (W,605) = — Ijn<1]1;1 n'2Bp m(W,0L) — —00, (24.2)
where the inequality holds by the definition of A}?j and the divergence holds by the assumption.
To show the converse, suppose Assumption SLK holds. By Assumption A.0, ©pin(F;,) is non-
empty for all n > 1. For any sequence {(9,11 € Omin(Fn) tn>1,
m<i£1n1/2Epnﬁzj(VV, 0L = —n'2Ap, (01) = —nl/QAiIfwf — 00, (24.3)
J<
where the first equality holds by the definition of Ap,(-), the second inequality holds because
0! € Onin(F,), and the divergence holds by Assumption SLK. This completes the proof. (]

*0The diagonal of a set A C RF is defined as sup, yeallz —yll-



Proof of Lemma|24.2} Define d(6, Omin(F7)) = infgeg . (m) 6—8||. Since Opin(F) € OME(F,)

©;(F,) (where the second equality holds by assumption), we have

di(Omin(F,),01(F,)) = sup _ inf [|0—08] = sup d(6,Omm(FL)), (24.4)

0€O(Fy) 0€Omin(Fn) 0€O(Fy)

where the first equality follows from the sentence following (24.1) and the second equality holds
by definition. Note that d(#, Omin(F},)) is continuous in # and O;(F),) is compact by Assumption

A.0. Hence, there exists a sequence {5{1 € ©1(Fy)}n>1 such that 57{ achieves the supremum on the

right-hand side (rhs) of (24.4). It follows that
A0, Omin(Fp)) = sup  d(0,Omin(F,)) = di(Omin(Fn), O1(Fp)). (24.5)

0c0;(F,)

We have

A%:gAFm—cmm{a, uf u@i—er}
)

ée@min(Fn
< —cmin {(5, ~inf 6! —HH}
Ge@min(Fn)
= —cmin{d, dg(Omin(Fr), O1(Fp))}, (24.6)

where the first inequality holds by Assumption A.8(i), the second inequality holds because the
model is assumed to be correctly specified and 971 € O;(F,), and the equality holds by 1}
Multiplying both sides of (24.6) by n'/? and taking the limsup,, .. gives

limsup n'/2Af < —cmin{lim inf n'/25, lim
n—00 n n—00 n—

inf n'2dp (Omin(Fn), O1(Fp))} — —oco,  (24.7)

where the divergence holds by Assumption SLK.1. Thus, n'/ QAiIE’Tf — —oo and Assumption SLK
holds. O

25 Asymptotic Distribution of the Estimator A

In this section, we obtain the asymptotic distribution of ﬁ‘,{‘f under certain drifting sequences
of distributions {F, },,>1. The asymptotic distribution is obtained under some high-level conditions
which are verified below. The results are used below to prove Theorem which establishes the
correct asymptotic size of the MI CI's CI, av (), Cl, ar(c), and CI, a(c).



25.1 High-Level Convergence Assumptions

Asin BCS15, for any 1, 9 € R‘ﬁoo] for some positive integer ax, let d(z1, z2) = (Z?;1(<I>(m17j)—
D (w2,;))?)"/2, where & : Riiog) — [0,1], ®(y) is the standard normal distribution function at y for
y € R, ®(—o0) := 0, and ®(c0) := 1. The space (Ré:oo] ,d) is a compact metric space. Convergence
in (Rf;oo],d) to a point in R% implies convergence under the Euclidean norm. Let S(© x Rﬁ:oo])
denote the space of non-empty compact subsets of the metric space (© X Rf“ioo],d), where d is
defined with a. = dy + k. Let = denote weak convergence of a sequence of stochastic processes in
the sense of van der Vaart and Wellner (1996). Let — g denote convergence in Hausdorff distance
(under d) for elements of S(© x Rﬁ:oo])' We use the convention that v + ¢ = ¢ when v € R and
¢ = +o00. For any e, m € R* that arise below, let ej, m; denote the jth elements of e, m, respectively.

The recentered and rescaled estimator Aﬁf is
Apa = nl/2 (&{“’" - Aig%j) . (25.1)

To obtain the asymptotic distribution of A, A, we use the following sets:

An,A,F = {(0,6) €0 x Rk e = n1/2 (AF](Q) — A}?f)} . (25.2)
Define
<k

Note that Al = infycg Ap(0), see (5.1)).

The set of minimizers of Ap(6) over © is
Omin(F) := {0 € © : Ap(h) = AlBf}. (25.4)

Under Assumption A.0, Opin(F) is non-empty. Note that Opin(F') is a subset of @?/[R(F) and
equals ©ME(F) when AR > 0. For n > 0, define ©". (F) := {0 € © : Ap(h) < ARf +5/n1/2}.
The set O .

suppressed for notational simplicity. For n > 0, define AZ7 AE, 8S Ay, F, is defined in , but
with ©". (F,) in place of ©.

min

(F) is an n/n'/?-expansion of the minimizer set Oy (F). It depends on n, but this is

The asymptotic distribution of A, A utilizes the following Assumptions C.4, C.5, C.12, and
C.13. These are high-level “convergence” assumptions that apply to a drifting sequence of distribu-
tions {F), }n>1. They are verified below using subsequence arguments when establishing the correct

asymptotic size of the CI’s for Aij%f. Hence, they do not appear in the asymptotic size results stated



below.

Assumption C.4. supgcg ||Er,m(W,0) — m(0)|| — 0 for some nonrandom bounded continuous

RF-valued function m(-) on ©.

Assumption C.5. v,(-) := (v'(),v3()") = G(-) := (G™(-),G(-)") as n — oo, where {G(0) :
6 € ©} is a mean zero R?*-valued Gaussian process with bounded continuous sample paths a.s.

and G™(0), G (0) € RF.

Assumption C.12. A, A 5, =g Aa for some non-empty set Ap € S(O© x Rfioo])'

Assumption C.13. AZ?A,F,L — 1 AA min for some non-empty set Aamin € S(O X Rf’ioo]), where

{nNn}n>1 is a sequence of positive constants for which 1, — oco.

The elements (6, ¢e) of Ax and AA min in Assumptions C.12 and C.13 have the following prop-

erties.

Lemma 25.1 Under {F,}n>1, (2) max;j<y €,;(0) > 00 € ©,Yn > 1, where e,;(0) := n'/2(Ap, ;(0)
— Ai}‘j), (b) V(f,e) € Aa, maxj<pe; > 0 provided Assumption C.12 holds, (c) 30, € © with
max;<y enj(gn) =0 Vn > 1 provided Assumption A.0 holds, (d) 3(5,6) € Aa with maxj<€e; =0
provided Assumptions A.0 and C.12 hold, and (e) 3((3,@) € AAmin with maxj<e; = 0 provided
Assumptions A.0 and C.13 hold.

Comments. (i). Lemmais used to show that the asymptotic distribution of A, A is in R
a.s.

(ii). Lemma a) and (b) are important because they allow one to obtain a (finite) lower
bound on the asymptotic distribution of A, .

(iii). Lemma c)—(e) are important because they allow one to obtain a (finite) upper bound

on the asymptotic distribution of A, A.

The following quantities arise with the asymptotic distribution of A, o. Define

: m 1 o
Analnan) = int e (<00) + 3 00500) + ;) and
: m 1 o
Asor = Ao a(An) 1= o, max (_Gj (0) + 5m;(0)G5(0) + 6j) (25.5)

for Aa in Assumption C.12. Let coo A(1 — @) denote the 1 — o quantile of Ao A and c__ (1 — )
denote the 1 — o quantile of —As, A. We show below that A, A = Ap A(AnAF,) +0p(1) =4 Aso,A

under suitable sequences {F}, },>1. Define

Aoo,A min ‘= Aoo,A (AA min) (256)



as in (25.5) with AA min in place of A, for Aa min as in Assumption C.13.

25.2 Asymptotic Distribution of A, A

The asymptotic distribution of A,, A is given in the following theorem.

Theorem 25.2 (a) Under {F,}n>1 and Assumptions A.0, C.4, C.5, and C.12, Ay A —q Ao,
(b) under Assumptions A.0 and C.12, Axx A € R a.s., and
(c) under Assumptions A.0 and C.4, C.5, C.12, and C.13, A A = Ao, Amin a.S.

Comments. (i). Theorem b) is important because it implies that a critical value for an
upper-bound or lower-bound CI based on the asymptotic distribution of A, A is finite.

(ii). Theorem c) implies that the parameters (6,e) € Aa\AA min do not contribute to the
infimum in A A. This is useful when constructing critical values.

(iii). The quantity G(-) appears in Ao A because, under model misspecification, the asymp-
totic distribution of A, o depends on the randomness due to the estimation of the standard devi-
ation of the jth sample moment by 7,;(#). Under correct model specification, it does not.

(iv). For any subsequence {gy, }n>1 of {n}n>1, Theoremand its proof hold with g, in place
of n throughout, including the assumptions.

(v). The proof of Theorem a) is similar proof to the proof of Theorem 3.1 of BCS15
with S(m,Q) = minj<,m; in their proof. The statistic A, A(Ana.F,) depends on e,;(0) :=
n'2(Ap,;(0) — Aiﬁf), vi(0), and v7,(6), whereas the statistic in BCS15 depends on £,,;(0) :=

—nl/ZAFnj(H) and V;Z}(Q).

26 Proofs of Lemma and Theorem

Proof of Lemma Because Ai}?f := infgce max;< Apj(0), for all F and 6 € O,

max(Ap;(0) — AR > 0, (26.1)
<k

which establishes part (a).

Any (0,e) € A is the limit of some sequence (0,,€,) € Ay A r, because Ay A r, —H Aa by
Assumption C.12. That is, e, — e and max;<je,; — max;<je;j. This and applied with
(0,F) = (0, F,) give

1/2 inf
0 < maxn'(Ap,;(0n) — AF]) = maxen; — maxe;, (26.2)



which proves part (b) of the lemma.

Next, we prove part (c¢). The function Ap, (0) — A}?: is lower semi-continuous on O (since
Erm;(W,6) is upper semi-continuous on © by Assumption A.0(ii)), © is compact by Assumption
A.0(i), and a lower semi-continuous function on a compact set achieves its infimum. Hence, there
exists 6, € © such that Ap(f,) = ARt v > 1, which establishes part (c).

For part (d), let (6y,¢,) € An AR, be such that Ap(6,) = At v > 1. Such (O, &) exist
by part (c). There exists a subsequence {qn}n>1 of {n},>1 and a (6,¢) € O x Rf“ioo] such that
d((84,,€4,), (6,€)) — 0 because (© x Rf,
We have (6,€) € Ax by the following argument:

},d) is a compact metric space under Assumption A.0(i).

0< inf d((6,e),(6,8) < inf d((0e),(04,.8,)) +d((04,,¢,), (6,8) >0,  (26.3)
(0,e)eAn (0,e)EAA

where the second inequality holds by the triangle inequality and the convergence of the first sum-
mand holds using Assumption C.12 (i.e., Ay A, = Aa). Thus, infgyen, d((0,¢), (6,€)) = 0.

This implies that (6,¢) € Aa, because Ax is a compact subset of (6 x RF

[Eoo] d) by Assumption

C.12, d((6, €), (8,€)) is a continuous function of (6, ¢), and a continuous function on a compact set
attains its infimum.
By the definition of gn, AFn(gn) = A}?j Vn > 1. Hence, for all n > 1,
max &,; = maxn'/?(Ap, ;(0,) — AR = nY2(Ap, (6,) — AR = 0, (26.4)
J<k J<k
where the first equality holds by the definition of A, A, in (25.2) and the second equality holds
by the definition of Ax(6) in (25.3). We obtain

maxe; = lim maxe,; =0, (26.5)
<k n—roo j<k
which proves part (d) of the lemma since (6,¢) € Aa.

The proof of part (e) extends that of part (d). For (f,,&,) defined as above, we have 6, €
O™ (F,) because Ap(0,) = AR and so, (6,,¢,) € AY\ f, ¥n > 1 using the definition of A) A 1
following 1) Next, we have (5, €) € AA min by the same argument as used to show (5, €) € Ap in
(26.3), but with Aa min in place of Aa, with the convergence holding using Assumption C.13 (i.e.,
AZTA, £, P H AAmin), rather than Assumption C.12, and using the fact that Aamin is a compact
subset of (O x Rf“ioo}, d) by Assumption C.13. Finally, max;<j e; = 0 by (26.5), which establishes
part (e) because (6, €) € AAmin in the present case. [J

The proof of Theorem a) uses the following Lemma.



Lemma 26.1 Suppose Assumptions C.4 and C.5 hold. Under {Fy}n>1,
An,A = An,A(An,A,Fn) + Op(]-)'
Proof of Lemma We have

N in M (0 in
n1/2 (An](e) - AFf> — n1/2 <_ — ](( ) _ AFf>

onj(0)
or;(0) or;(0) =
= = Ki,;(0,F) 4+ = Koni(0,F) 4+ Kepni (0, F), where
O-nj(e) 1 J( ) O'nj(g) 2 J( ) ]( )

I?1nj(9, F):= —n'/? (mnj(ﬂ) _ Brm;(W, 9)> ="

or;(0) or;(0) i (0):
)

~ oni(0 Eprm;(W,0)
Kopi(0, F) := nl/? Tnj( B Rt AN
2nj (6, F) = n <0Fj(9) opi(0) and
or;(0)

For given (6,¢e) € Ap A F, Kenj(0,F) = e; for j < k.

For a given distribution F, define

co= (G0 (Gg-) e

Note that VZT(G) differs from vJ(0) (defined in |i in online Appendix B) because the former

depends on 2 .(#), which is centered at the sample quantity 7,;(6), see (4.2), whereas the lat-
nj J
2

ter depends on 07,,;(6), which is centered at the population quantity Epm;(W,0). The following
calculations show that v°1(6) = v7. () — n_l/z(uffj(ﬁ))Q:

nj nj

oy (0) = /2 ( fF(fg)) - 1) =n 12 Z (25 (W3, 6) = 15 (6))* = 1]
=nt? Z (2 (Wi, 0) — Ep, i (W,0))* = 1] = 0!/ (ii0;(8) — Ep, i; (W, 6))*
= ygj(e)ziln—lﬂ(yg}(e))% and
vpl(8) = v5;(0) + op (1) (26.8)

for j < k, where the last equality holds by Assumption C.5.



By (26.8), Assumption C.5, and the continuous mapping theorem, for all j < k,

72 .(0)
nj 1l — 1/2 |, 01 _ —1/2 O, —1/2
sup 1 supn v,:(0)| =supn vy + o0, (n —, 0, and so,
oo |07, ;(0) 9o 1O = 9o v O)] + 0y ) =
or,5(0) ‘

sup | — — 1} —, 0. 26.9

6co | Tnj(0) P ( )
We have

R 52 1/2
() - (0 ()

— 0+ op (1))"1/*nl/? (6’2”'(9) - 1)

2 J%nj(H)
1 g
= 3V (0) + oy (1), (26.10)

where the second equality holds by the following mean-value expansion, (1 +z)%/2 =1+ (1/2)(1 +
T)~ Y2z, where \x| < |z|, with z := 52 (0 )/o% J(G) — 1 and supgeg |z| < supgeg ]?t\flj(e)/a%nj(ﬁ) —
1| = 0p(1) by (26.9), and the last equality uses and Assumption C.5.

By Assumption C.4, Ep,m;(W,0) = m;(6) + 0@(1)7 where 0°(1) denotes a term that is o(1)
uniformly over § € ©. Combining this, , and with the definition of I?an(H,Fn) in
gives

0 1
T )Kgn](Q Fn) = -m;(0) - vy, (0) + 0](?(1) for j < k. (26.11)
on;j(0) 2
In addition, li Assumption C.5, and the definition of K 1nj (6, F) in lj give
UF”](G)KM (0, F,) = —"(0) + 02 (1) for j < k. (26.12)
on;(6) 7 i P N

Thus, we have

OFnj (9)
Onj (0)
: m 1. Y
= pods T <_an(‘9) +5m;5(0) - v (0) + ej> +0p(1)
= Apa(Anar,) + 0p(1), (26.13)

or(0) ~
Apa = glg(gr?gz<< 9 Kinj(0, Fp) + —=

Kgnj ((9 Fn) + Kenj(ea Fn))

where the first equality holds by (26.6), the second equality holds by (26.11), (26.12)), and the
definition of A, A F, in (25.2), and the last equality holds by the definition of A, A(Ap.a F,) in
(125.5). O



Proof of Theorem First, we prove part (a). By Lemma [26.1] it suffices to show
Ana(AnaF,) —d Asoa- (26.14)

Let D be the space of functions from © to R?*. Let Dy be the subset of uniformly continuous

functions in D. For v(-) € D, define

gulv() = int  ma [ (4(),0) e
o)) = inf max[ry((),0) +c;], where
mi(v(+),0) == —vj"(0) + %ﬁj(e)u;?(e), (26.15)

v(f) = (v™(0),v7(0))', and v}*(0) and v7(0) denote the jth elements of v™(¢) and v7(¢), respec-
tively. Note that

An,A(An,A,Fn) = gn(”n()) and Aoo,A = Aoo,A(AA) = g(G()) (26'16)

We want to show g, (vn(-)) =4 9(G(-)). By Assumption C.5, v,(-) = G(-) for v, () € D a.s. and
G(-) € Dy a.s. We use the extended CMT, see van der Vaart and Wellner (1996, Theorem 1.11.1),
to establish the desired result, as in the proof of Theorem 3.1 in BCS15. The extended CMT
requires showing: for any deterministic sequence {v,(-) € D},>1 and deterministic v(-) € Dy such
that supgeg ||vn(0) — v(0)|| = 0, we have g, (vn(-)) = g(v(-)). (For notational simplicity, we abuse
notation here and consider a deterministic v, (-) that differs from the random v, (-) in Assumption
C.5.) Once we have shown this, the proof of part (a) is complete.

Let {vy(-) € D}p>1 and v(-) € Dy be deterministic and satisfy supgeg ||vn(0) — v(0)|| — 0. We

show

(i) T inf gn (va(-)) > g(v()) and (i) Timsup ga(va(5) < g(u(). (26.17)

n— n—00

First, we establish (i) in (26.17). There exists a subsequence {ay }n>1 of {n},>1 and there exists

a sequence {(0,,,€a,) € Aa,,A,F, tn>1 such that

lim sup gn(Vn()) = lim gan(Van(')) and

n—+00 n—00
lim ga,, (va, () = lim max (75 (Van (), 0a,,) + €ans] - (26.18)

where €, ; denotes the jth element of €,,. Also, there exists a subsequence {gy }»n>1 of {ay}»>1 and

10



(0,e) € © x ngioo] such that

d ((04,,24.), (0,2)) = 0, (26.19)

where d is defined in the paragraph before (25.1), by compactness of the metric space (0 x R¥ . d)

[£00]’

under Assumption A.0(i). We have (0,€) € Ax by the same argument as used to show (6,¢) € Aa

in (but without the requirement that Ap(6,) = At vn > 1) using (26.19) and Assumption
C.12.

For all 5 <k,

_ A _

Tim 750, (),8,) =~V (@) + S, (D)7 B) =y (v(),9) € R, (26.20)

the first equality holds by v, (0) = v(0) = (v"™(0)’,v7(6)")" uniformly over 6 € © (by assumption)

and (26.19), the last equality holds by the definition of 7;(v(-), ) in (26.15)), and “c R” holds because

71(0) and v (0) are finite since v(-) is assumed to be in D and m;(0) is finite by Assumption C.4.

vj

Now, we have

lim sup gn(va() = lim max [7;(v, (), 0s,) + Eoui]

= max [7;(v(), 0) + )]

> inf (00.8) +e
Z o dnf, max|n(v(),0) + e

=g (), (26.21)

where the first equality holds by and the fact that {¢,}n>1 is a subsequence of {a,}n>1,
the second equality holds by (using the notational convention that v + ¢ = ¢ when v € R
and ¢ = $oo if €; = £o0 for any j < k), the inequality holds because (6,€) € Aa by the paragraph
containing , and the last equality holds by the definition of g(v(-)) in . This establishes

result (i) in (26.17).

Next, we establish result (i) in (26.17). There exists (67, e') € Aa such that

9(v()) = max |75(v(),6) + ] (26.22)

because Ap is compact under the metric d, defined in the paragraph before (25.1)) with a, = dg + k
(since it is assumed to be an element of S(© x Rf“ioo])) and 7;(v(-),0) + €; is a continuous function

of (6, e) under d that takes values in the extended real line. By Assumption C.12, Ay A F, =1 AA.

11



Hence, there is a sequence {(0;&, e,tb) € Ay A F, Jn>1 such that d((G;Q,eL), (67,eT)) — 0. We obtain

liminf gn(vp(+)) := liminf inf (), 0 ,
gl on(nC)):= Bmigt ) (I, R oln(),0) F e

IN

lim inf max [T](Vn() ol) + eJr ]

n—oo  j<k Ton
_ (w(-). 0 T}
max [TJ(V( ),0") +¢;

= g(w()), (26.23)

where the inequality holds because (GIL,eL) € ApaF, Vn > 1, the second equality holds using
d((@L,eIL),(GT,eT)) — 0 and with (vn(-),05) and (v(-),6") in place of (Vg (+),04,,) and
(v(-), ), respectively, and the last equality holds by . This establishes result (ii) in
and completes the proof of part (a).

Now we prove part (b). We have

Ason = inf max (—G}n(ﬁ) +3

1.
(0,e)eAn <k 7mj(9)G?(9) + €j> > —00 a.s. (26.24)

because (I) maxj<pe; > 0 V(f,e) € A by Lemma .b (II) suppep |GT*(0)] < oo as. by
Assumption C.5, and (III) supyeg [m;(0)G(0)] < oo a.s. because mj;(-) is bounded on © by
Assumption C.4 and |G{(+)[ is bounded on © a.s. by Assumption C.5.

To obtain the other half of part (b), i.e., Ao A < 00 a.s., we use Lemma d). We have

: m 1 o
Ao 1= (G,Q)HEfAA I?Salg( <—Gj (0) + §mj(9)Gj 0) + €j>

< max (—G] (0) + 1mj(Q)G (0) + e]> < 00 a.s., (26.25)
where (5 €) € A is as in Lemma .d the first equality holds by the definition of Ax A in
, the first inequality holds because (9 €) € Ax by Lemma|25.1{d), and last inequality holds
because (I) maxj<ie; = 0 by Lemma [25.1(d), (II) supgpee |G;”( )| < o0 a.s. by (II) following
, and (III) supgeg [m;(0)GY(0)] < oo as. by (III) following li This completes the
proof of part (b).

Now, we establish part (c¢). If AA = AAmin, then part (c) holds immediately. So, we suppose
that AA\AA min is not empty. We show that for any (6*,e*) € AA\AA min,

max [75(G(-),0") + €] = ¢ as., (26.26)

where 7;(v(-),0) is defined in (26.15). Since A A € R a.s. by part (b), and As A = infy )en
J ) (7)6 A

12



max;<y [7j(G(-),0) + ¢;] by , implies that Aog A = Ao Amin a.S., which establishes
part (c).

For part (c), it remains to show . By Assumption C.13, AAmin is compact. For any
(0*,e*) € AA\AA min, there is a neighborhood of (6*,e*) that lies in AA\AA min and there exists

a sequence {(0;,er) € Ay A F,}n>1 such that d((6},€}), (6%, e*)) — 0 by Assumption C.12. In

consequence, for n large, (65, ¢e5) & A" f . In turn, this implies that 6 ¢ O
using the definition of A"\ 5 following l>

Now, 0} ¢ ©™ (F,) for all n large implies

min

(F,) for n large

Ap, (0;,) > A}f{f + /012 for all n large,
nl/Q(AFn(HfL) — A}?j) > np, — 00, and

* . * . * inf
I?gz( e; = lim I?é%]i( €y, i= lim Igngali( n1/2(AFnj(9n) — AR) = oo, (26.27)

where (i) the first line holds by the definition of ©. (F') following , (ii) the inequality on the
second line follows from the first line and 7, — oo by Assumption C.13, and (iii) the first equality in
the third line holds by the convergence result for {(6}, e’)},>1 in the previous paragraph, the second
equality in the third line holds by (6}, e’) € A, A r, and the definition of A, A F in (25.2), and the

n»-n

third equality in the third line follows from the second line because Ap, (6;) = max;<i Ap,;(6;).

The result max;<j ] = oo in implies that holds because |7;(G(-),0%)| < 0o a.s.
(using Assumptions C.4 and C.5, the definition of 7;(v(-),0) in , and explanations (II) and
(I1I) following ) This completes the proof of part (c). O

27 Proof of Theorem

27.1 Notation and Assumptions

As noted in Theorem as is standard in the literature, the asymptotics for the bootstrap
are given for the case where the number of bootstrap repetitions B = oo. (If one considered finite
B, then all of the asymptotic results would hold provided B — oo as n — o0.) With B = oo,
the bootstrap critical values ¢, ay(1 — «) and ¢, aL(1 — «), defined following and ,
respectively, are the 1 — « conditional quantiles of —A; Avp and A;, ALp given the sample {Witi<n
plus ¢, rather than the 1 —« sample quantiles of {—A;"L’ AU,b}bS B and {A:‘L A L,b}bﬁ B, respectively, plus
¢. For notational simplicity, we replace the bth bootstrap sample {W};};<, by a generic bootstrap
sample {W7*}i<y, (which is an i.i.d. bootstrap sample drawn with replacement from the original

sample {W;}i<,) and we drop the subscripts b from the definitions of Ay App in 1| Ay Appin
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(5.15), and other bootstrap quantities. Specifically, we define v,;(0), m,,;(0), 7*2(), and AL AU

nj nj

(0), m5(0), 53,(0), and A% \py,, are defined in (4.17) and (5.14), but with the generic

5k
as anb

bootstrap sample {W;}i<, in place of the bth bootstrap sample {W}};<, and with b deleted
throughout. Similarly, we define A} 1, as A} rj , is defined in 1! but with v:(0) in place of
70

The B = oo definitions of sAdnj(H) and S/Ein(G) are as follows. For Z ~ N(0g, o) and j < k,
define

~

stn; (0) := max {v1/2(9), L} and sdy (0) = ma sdn; (), where Vi;(0) = Vary*(Qn;(0)),

nj

Qnj(0) := G2 (0) — ?gégg(e), G (8) = (¢}, —(1/2)in; (8)¢) Q2 (0)Z, (27.1)
Varz(Qn;(0)) denotes the variance of @Q,;(0) with respect to the randomness in Z conditional on
Q4 (0) and mn;(0), and (as above) ¢; denote the jth elementary k-vector. In addition, e,;(6)
and :fne(G) are defined as €,;(#) and jne B(0) are defined in and 1) respectively, but with
,s/anj (#) in place of sAdnjB(G).

The bootstrap sample {W7*}i<,, depends on {W;}i<, and on some other independent random
variables {(; }i<p that are used to construct the bootstrap sample {W;*};<,. To establish the asymp-
totic properties of the bootstrap critical values for a given sequence of distributions {F},},>1, it is
convenient to have a single probability space (€2, F, P,) on which all of the random vectors {W; }i<n
for n > 1 and the bootstrap random variables (or vectors) {¢; }i<y for all n > 1 are defined. Since F,
changes with n, this requires that we consider triangular arrays of random vectors, not sequences.
Let {Whiti<nn>1 := {Why;i : © < n,n > 1} be a triangular array of random vectors on (92, F, P,)
such that, for each n > 1, {W,,;}i<, has the same distribution as {W;}i<,, ~ F),. Analogously, let
{Cniti<n,n>1 be a triangular array of bootstrap random variables (or vectors) on (£, F, Py) such
that for each n > 1, {(p;}i<n has the same distribution as {(;}i<n and {(n;}i<nn>1 is independent
of {Whiti<nn>1-

For notational simplicity, but with some abuse of notation, we let all of the statistics defined
above, including ﬁglf, Apa, AZ,AU? AZ,AL? chav(l —a), and ¢, Ar(1 — @), which are defined as
functions of {W;}i<, ~ F, and {(;}i<n, also denote the corresponding statistics defined when using
the triangular arrays {Why;}i<nn>1 and {(ni}i<nn>1. For events that only depend on n random
vectors for a single n, such as A;‘L’ Ay € By for some fixed set B, C R, we have PV(A:; NS
By) = Pr, (A}, oy € Bn). But, for events that depend on statistics for multiple values of n, such
as {Ay Ay tn>1, we use the probability space (2, F, P). In particular, when we condition on the

entire triangular array {Wp;}i<nn>1, we need (Q, F, Py ).
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Let {v:(60) € R : 6 € ©} be a bootstrap version of the stochastic process (v7(-),v31(8)")’
defined in (14.2) in online Appendix B and (26.7). It is defined as follows:

vi(0) = (V(0),v7* (), where

1/2}*(0) = nl/2 (mnj(e) _ mnj(g)) , k() = 7:;](9)

i (0) :=n"" > m;(W;,0),
=1

" Gnj(0)
1/2 8:12(0) ~ 2 -1 2 .
vgH(0) = ! (2R 1) 532(0) - Z (my (W7,0) — 0,,(0))> Vi < k,
Unj(a)
v (0) = (Vpr*(0), - vy (), and v (0) = (VZT(H% S vnk(0))'- (27.2)

Let {v}(-)[{Whi}ti<nn>1} = G(-) denote that the conditional distribution of v}(-) given
{Whiti<nn>1 converges weakly to G(-).

Let X >g7 Y denote that X is stochastically greater than or equal to Y. That is, P(Y > z) <
P(X > z) for all x € R.

For 6 € ©, define

Jj<k

Jne(f) == argmax e,;(6), where e,;(0) :=n*2(Ap, ;(0) — Ainj) (27.3)

By Lemma a),
€njne(6) («9) >0VeHeo. (27.4)

Define

AR Ry {(G,e, e*,j%) € Ol (Fn) x R x {1,....,k} 1 ¢j = n'*(Ap,;(0) — AFD),

min

6; = (L/in)ilej vy <k, .7* = jne(e)} > (275)

where {1, }n>1 is as in Assumption C.13 and {x,},>1 is as in , , and ( H Let S(O x
RQioo] x {1, ..., k}) denote the space of compact subsets of the metric space (@ X Rﬁoo] x{1,....,k},d),
where d is defined in the paragraph before with a, = dg + 2k + 1.

We employ the following bootstrap convergence assumptions, which apply to a drifting sequence
of distributions {F}, },>1. Subsequence versions of them are verified below in the proof of Theorem
in Section The expanded minimizer set O (F},) is defined following , the bootstrap
stochastic process Vn() (with subscript b deleted) is defined in , and the estimator (:)mimn of

O (Fy) is defined in (5.7).

Assumption BC.3. {1} (-){Whiti<nn>1} = G(-) a.s.[Pg], where G(-) is as in Assumption C.5.

5Mf the arg max is not unique, jn.(0) is defined to be the smallest arg max.
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Assumption BC.4. AZ?Z,Fn — i A}, for some non-empty set A} ., € S(Ox Rfi“oo] x{1,...,k})
for some sequence of constants {ny,},>1 that satisfies , — oo and n,/7, — 0 for the constants

{Tn}n>1 that appear in (5.7) and satisfy Assumption A.6(ii).

Assumption BC.5. (:)min,n D em

o (Fn) wp—1 for constants {n,},>1 as in Assumptions BC.4
and C.13.

Define
€67 (0) = (trn) "0/ (B (0) — B2T) j < b, (27.6)

where ky, is as in the definition of &7 ;(6) in (5.12) and ¢ is as in the definition of sAdnj (#) in (27.1)).
Note that £f,,;(0) differs from &7 ;(0) because it has ¢ in place of sAdnj (0), where ¢ < sAdnj(Q) by the
definition of sdy,;(6).

The GMS function ¢ : R — R[4 defined in is upper bounded by the function
ot R o] = R[4 defined by

pl(€) = o00l(€ 2 1) + (£/(1 - €)LO0 < £ < ). (27.7)

The function ¢l satisfies: (i) ¢f(€) > @(&) V€ € Riyoq)s (il) ¢! is nondecreasing and continuous
under the metric d, and (iii) ¢f(¢) = 0 V¢ < 0 and ¢f(c0) = oo, where the metric d is defined in
Section With as = 1.

Define an upper-bound (wp—1) random variable, A*Um Ay on the EGMS bootstrap statistic

A;AU to be

Unav = b max (—%(9) 10 # Jne(0))en; (0) + 107 = jne(0))<ﬂ(£fnj(0))) - (218)

Let ¢yp,av(l — o) denote the 1 — o conditional quantile of —A*[}n’AU given {Why;}i<nn>1 plus .
The statistic cyp,av (1 — «) is random and depends on the conditioning value of {W;}i<pn n>1.
By Lemma a) below, the asymptotic distribution of the upper-bound bootstrap random

variable Aj;, Ay conditional on {Wp;}i<pn>1 is the following distribution a.s.[Pg]:

oo = e (<G0) 410G # 5 +10 = 7)) . where
mao m 1 -~ g
G (0) = GF'(0) - §mj(0)Gj (9), (27.9)
for A\ ., s in Assumption BC.4. Let cyoo,ar(1—a) denote the 1—a conditional (or unconditional)

quantile of A*Uoo, Ay Without ¢ added on. It is nonrandom and does not depend on {Wp;}ti<nn>1

by .
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Next, we consider definitions and assumptions concerning the lower bound CI. The population
counterpart of sAdn(G) is sdp(0):

sdp(0) := max sdp;(6), where
j<k

sy (0) = wa {Vary*(Dr; (0)), e}
Diy(0) := G (0) = max G, (6),

() := (), —(1/2)mm; (0)c,)%(0,0)2, and Z ~ N (O, Iny). (27.10)
Define
AT = {(9, €*) € O (F,) x RE : €5 = (1) 'n'/2(Ap,;(6) — Ainj)} . (27.11)

Let S(© x Rf"ioo]) denote the space of compact subsets of the metric space (O x Rf“ioo}, d), where
d is defined in the paragraph before (25.1)) with a, = dg + k.
We employ the following bootstrap convergence assumptions for the lower-bound CI’s. Subse-

quence versions of them are verified below.

Assumption BC.6. AZ"I%: 1 —u A} for some non-empty set A} € S(O©x Rf‘:ioo]) for some sequence

1/2

of constants {np,}n>1 that satisfies 5z, — oo, nr,/n'/? — 0, and np, /Ky — 0 for some v € (0,1)

for the constants {k,}n>1 that are employed in the definition of A} ., and satisfy Assumption A.7.

Assumption BC.7. @min’L’n C O (F,) wp—1 for constants {np,}n,>1 as in Assumption BC.6.

min
. . 1/2
For example, in Assumption BC.6, one can take np, = Kk .
Let —, denote uniform convergence over ©2.

We assume the covariance kernel converges uniformly.

Assumption C.11. Q (-,-) =4 Qoo(-, ) for some continuous R?**? _valued function Qu(,-) on

e2.
Define lower-bound (wp—1) random variables, A}, A, on the bootstrap statistics A}, 5, to be

. —inf ot () — ot (—ee (0 27.12
Ln,AL 06@’:’0?;1(&)%?’?( an( ) ¥ ( gln]( )))7 ( 7 )

where {1, }i<n are as in Assumption BC.6 and ¢ is defined in (27.7). Note that the lower-bound
statistic has ¢ in place of sAdnj(G), see ll where ¢ < sAdnj(G), and O (F,) and ¢! in place of
(:)min,n and ¢, respectively, which appear in A;‘L’ Az Let ¢on ar(1 — ) denote the 1 — a conditional

quantile of A7, A, given {Whi}i<nn>1 plus ¢.

17



By Lemma b) and (c) below, the asymptotic distribution of the A} A, bootstrap random
variables, conditional on {Wy,;}i<nn>1, is the following distribution a.s.[Pg]:

Looar = Inf | max (=6 0) - ¢ (=€) (27.13)

for A} as in Assumption BC.6. Let ¢ro0,ar(l — @) denote the 1 — a quantile of AEOO,AL plus ¢,

which is nonrandom.

27.2 Lemmas [27.1427.3] Theorem [27.4, and Lemma

The proof of Theorem uses Theorem below. The following lemmas are used in the
proof of Theorem m

Lemma 27.1 For a sequence {Fy}n,>1 that satisfies Assumptions A.0, A.6, BC.3, BC.4, C.4, C.5,
and C.12 for a subsequence {pn}n>1 in place of {n},>1, there exists a subsequence {an}n>1 of
{pntn>1 for which (a) {Af, avHWhitisnn=1} —a Ajav @s[Py] and (b) {A7, AL
{Whiti<nn>1} —d Afoo ar 0-8:[Pgl, provided Assumptions A.7(i) and BC.6 hold in place of As-
sumptions A.6 and BC.4.

Comment. Lemma is somewhat analogous to Theorem C.1 of BCS15.

Lemma 27.2 For a sequence {Fy,}n>1 that satisfies Assumptions A.0, A.6, BC.4, and BC.5 for a

subsequence {py }n>1 in place of {n}n>1, (a) Py (A]

Upnat = Ay avl{Whniti<nn>1) = 1 wp—1 under

Py and (b) Py (A7, ar < Ay arl{Whniti<nn>1) = 1 wp—1 under Pg, provided Assumptions
A.7(i), BC.6, and BC.7 hold in place of Assumptions A.6, BC.4, and BC.5.

Lemma 27.3 For a sequence {F,,}n>1 that satisfies Assumptions A.6, BC.3, BC.4, C.4, C.5, C.12,
and C.13 for a subsequence {pn}n>1 in place of {n}n>1, we have (a) A?Joo,AU < Ao, Amin for all
sample realizations and (b) Al vo.nL = Aco,a for all sample realizations, provided Assumptions A.7,

A8, and BC.6 hold in place of Assumptions A.6, BC.4, and C.13.

Lemmas [27.1H27.3| are used to prove the following theorem, which employs some high-level

assumptions that are verified in the proof of Theorem [5.1] below.

Theorem 27.4 For o € (0,1) and for a sequence {F,}n>1 that satisfies Assumptions A.0, A.6,
BC.3-BC.5, C4, C.5, C.12, and C.13 for a subsequence {py}n>1 in place of {n},>1, there exists a
subsequence {an}n>1 of {pn}tn>1 for which (a) the nominal level 1 — o upper-bound CI Cl,, av(a)
for A}?jﬂ satisfies

liminf Pp, (Ajélaf €Cly, av(a)) >1—a and
n—oo n
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(b) the nominal level 1 — o lower-bound CI Cl,, ar(c) for A}?{fn satisfies

liminf Pp, (A}?fn € Cly, arL(a) >1—a,

n—oo

provided Assumptions A.7, A.8, BC.6, BC.7, and C.11 hold in place of Assumptions A.6, BC.4,
and BC.5.

The proof of Theorem also uses the following lemma, which concerns (:)mm,n and @min, Lons

which are defined in (5.7) and just below (5.15), respectively.

Lemma 27.5 For a sequence {F,}n>1 that satisfies Assumptions A.0, C.4, C.5, and C.12, we

have (a) for any sequences of positive constants {nn}tn>1 and {Th}n>1 that satisfy 7, — oo and

~

nn/Tn — 07 PFn (@min,n BYCKE

= “~min

that satisfy np, — oo, Pg, (@mm’L’n - @"leg(Fn)) — 1.

(Fn)) — 1 and (b) for any sequences of positive constants {nrny tn>1

27.3 Proof of Theorem

Proof of Theorem First, we prove part (a). For notational simplicity, let ¢, av := ¢p av(1—
a) (defined just after ), Cun,AU = Cun,aU(l — o) (defined following ), CUco, AU =
CUoo,AU (1 — @) (defined following ), and ¢, A = ¢, A(1 — a) (defined following ) We
have: Af% Ay is defined in with b deleted, A*Un’ Ay is defined in , A”{]OQ Ay is defined in

1) and Aso, A min is defined in 1| Note that Ao A = Aco, A min bY Theorem €), 80 C_ A

equals the 1 — o quantile of —As A and —Aog A min-

Given a subsequence {p,}n>1 as in the statement of the theorem, we consider a subsequence
{an}n>1 of {pn}n>1 asin Lemma For the subsequence {a,}n>1, the results of Lemmas m
27.2| andhold. For notational simplicity, in the remainder of the proof we replace {ay }n>1 by
{n}n>1 and presume that the results of Lemmas|27.1||27.2| and [27.3|hold for {n},>1.

By the definition of CI, oy () in and the definition of A, A in ,

Pp, (AR € CI, av(a)) = Pr,(—Ana < Con). (27.14)

If A7 Ay < Ay ap With probability one (with respect to the bootstrap randomness) conditional
on {Wh;ti<nn>1, then the 1 — o conditional quantile of *AZ,AU given {Wp;}i<nn>1 plus ¢, which
is ¢y AU, is greater than or equal to the 1 — a conditional quantile of *A*Un,AU given {Wh;ti<nn>1
plus ¢, which is ¢yp aAv, as a consequence of the definition of a quantile. By Lemma a), the
“if” condition in the previous sentence holds wp—1 (with respect to the randomness in the samples

{Whiti<nn>1). Hence, Lemma a) implies that ¢, nAy > ¢ynav wp—1, which implies that
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Cn, AU > Cun,AU + 0p(1), where the 0,(1) term refers to randomness in the samples, not bootstrap

randomness. This gives

liminf Pp, (—A,A <Chav) > liniinf Pr, (—Apa +0p(1) <Cpynav)- (27.15)

n—oo

Now, take an arbitrary € > 0. Then, there exists €* € (0,¢) such that cyoo Ay —€* is a continuity

point of —Ap; Ay We have

limsup Py (=Ap, av < cvoo,av — E{Whiticnn>1) (27.16)
n—oo

< limsup Py (—=Ap, av < cUoo,ar — € {Whiti<nn>1) = P(=Ajooav < CUsoar —€°) <1 -«
n—oo

a.s.[Py], where the equality holds by Lemma a) and the last inequality holds by the definition
of the 1 — a quantile cyoo,ar of —A;}OOAU. Because ¢y Ay is the 1 — o conditional quantile of

— At av given {Wyiti<nn>1 plus ¢, if
Py (=Alnav < cUso,ar — EfWhiti<nn>1) <1 —a, then cycoav — € < Cupav — ¢ (27.17)

By (27.16), the first condition in (27.17) holds for n sufficiently large a.s.[Py]. Hence, the same is
true for the second condition in (27.17)). That is, Py(cpyoc,av + ¢ — € < Cun,av for n large) =1, or
equivalently,

Py ( lim 1(cuoo, a0 + ¢ — & < Cn,av) = 1) 1. (27.18)

By the dominated convergence theorem, this implies that

lim P (CUoo,AU +ir—e<cypav) =1 (27.19)

n—oo

for all € > 0, which also can be written as lim,, o Pr, (CUco,aU +t — € < Cunav) = 1.

Next, we have: for all € > 0,

liminf Pp, (—An,a + 0p(1) < Cyn.av)
= liminf Ppg, (=Ay A +0p(1) < Cunav & cvco,av + 1t — € < Cun,av)

> hmlanFn —ApA +op(1 SCUooAU+L_5&CUooAU+L_5<CUnAU)

= liminf Pp,
n—oo

( (1) <
minf P, (- &
( (1)
(—Ap A +0p(1) < cyooav + 1t —¢) (27.20)

where the two equalities hold using (27.19) and the inequality is straightforward.
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By Theorem a) and (c), we have
An,A —d Aoo,A min (2721)

using Assumptions A.0, C.4, C.5, C.12, and C.13. Consider a sequence {e, }m>1 such that co +

L — €y is a continuity point of —A, A for all m > 1 and ¢, | 0 as m — oco. Then, we have

liminf Pr, (—Ap A + 0p(1) < Cupav)

n—oo

> lim liminf Pp, (—ApAmin + 0p(1) < cUco,AU +t — Em)

m—o0 N—o0

= lim P(_AOO,A min < CUco, AU +t— Em)
m—o0

> lim P(—Aso,Amin < Coon T 11— Em)

m—00 -

>1-—a, (27.22)

where the first inequality holds by , the equality holds by and the definition of
{&m}m>1, the second inequality holds by Lemma [27.3(a) because A*UOO’ AU ST Aco,Amin implies
that — A Amin <sT —A*UOO’ Ay and CooA < CU,AU, and the last inequality holds by the definition
of the 1 — a quantile Co_o,A of —Aso,A = —Acs, Amin because ¢ — g, > 0 for m large. Equations
, , and prove part (a).

Next, we prove part (b). The proof is quite similar to that of part (a) with the changes
described below. For notational simplicity, let ¢, ar, := ¢, ar(l — «) (defined just above ),
CrnAL = Crn,aL(l — ) (defined following ), CLoo, AL ‘= CLoo,AL(l — ) (defined following
), and coo A = Coo,a(1 — @) (defined following ) We have: A7 A; is defined in (5.15)
with b deleted, A}, A, is defined in , and A} _ A is defined in . In the proof of part
(b), we use A;,AL, Cn,AL> A*Ln,AL, Crn,AL, and creo Az in place of AZ,AU’ Cn, AU, A*Un,AU, CUn,AU,
and cyoo,AU, Tespectively. As in part (a), Aso,A = Aoc,Amin by Theorem €), SO Coo,A €quals
the 1 — a quantile of A A and Ao A min-

To prove part (b), we use Lemmas b), b), and b) in place of Lemmas a),
a), and a), respectively.

To prove part (b), is replaced by

Pp, (AR € CI, ar(@)) = P, (Ana < CnaL). (27.23)

By the same argument as used to show (27.15), but applied to A;“%A and A*Ln,AL, rather than —A;‘;,A
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and —Aj;, Ay, We obtain ¢, Ar > Crn,arL + 0p(1) and

lim inf Pr, (An,A < En,AL) > lim inf Pr, (An,A + Op(l) < /C\Ln,AL)- (27.24)
n—oo n—oo
We obtain
liminf Pg, (crooar +t —€ <Crpar) =1foralle >0 (27.25)
n—oo

by the same argument as used to prove (27.19), but with Azn,ALv AEOO’AL, and creo AL+t —€" in

place of —A5n7AU, _A?]oo,AU’ and cyoo, AU +t — €7, respectively. By arguments analogous to those

in (27.20) and (27.22]), we obtain

liminf Pp, (Ap A +0p(1) < Crnar) > lirginf Pr, (AnA+0p(1) < cpooar +t—e¢) and

n—o0

liminf Pr, (Apa 4+ 0p(1) < Crnar) > lIm P(AxAmin < Coor +t—6m) >1—a, (27.26)

n—oo m— 00

respectively, where the the last inequality holds by the definition of the 1 — a quantile co A of

Aco,A = Aco,Amin because ¢ — ey, > 0 for m large. Equations (27.23), (27.24), and (27.26) combine

to establish part (b). O

27.4 Proof of Theorem [5.1]
Proof of Theorem We prove part (a) first. By definition, the asymptotic size of the CI

Cl,av(a) is

.. . inf s . inf Ainf
pu— < . .
hnrgloréf I}“rel% Pp (AF € CIn,AU(a)> hnrgloréf I}JEI% Pr (AF < An,U(“)) (27.27)

There always exists a sequence {F),},>1 and a subsequence {gy }n>1 of {n},>1 such that

liminf inf Pp (A}fif < ﬁﬁ%(a)) = liminf Pp, (—nl/Q(ﬁiﬁlf - A}?j) < Cpav(l— a))

n—oo FePpP n—o00
= lim Pp,, (—Ag,.a < ,a0(1 —a)), (27.28)

where the first and second equalities use and , respectively. Hence, to establish that
CI, av(a) has correct asymptotic size, we must show that the rhs of is 1 — « or greater.
It suffices to show that the rhs of (27.28) is 1 — a or greater with {g,},>1 replaced by some
subsequence {ap }n>1 of {gn}n>1 (because the limit under the subsequence {ay},>1 is the same as
the limit under the original subsequence {gy, }»>1). The rhs of defined with {a, }»>1 in place
of {gn}n>1is 1 —a or greater by Theorem a) provided the assumptions of Theorem a) hold

for some subsequence {py}n>1 of {gn}n>1 and {ay}n>1 is some subsequence of {p,}n>1 (because
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~Agpn < Capav(l —a) iff Ap, € CI,, av(a) by and the liminf, .. is actually the
lim,, oo in the result of Theorem a) for any subsequence {a,}n>1 of {gn}n>1 by the definition
of {gn}n>1) in (27.28). Hence, for part (a), it remains to verify that Assumptions BC.3, BC.4,
BC.5, C4, C.5, C.12, and C.13 hold for some subsequence {p,}n>1 (of {gn}n>1) in place of {n},>1
(because Assumptions A.0 and A.6, which are imposed in Theorem are also imposed in the
present theorem).

To prove part (b) regarding the lower-bound CI CI,, a1 (), analogous arguments to those in
(27.27) and (27.28) show that it suffices to show that lim P, (Ag, A < ¢, .ar(1—a)) > 1—a, where

{qn}n>11s a subsequence of {n},>; for which (27.28) holds with ﬁgtfll(a), nl/Q(K?f—Ai}lj), Cn,AL(1—

~

a), and Ay, A in place of ﬁiﬁfU(a), —nl/Q(ﬁiﬁf — AiFan), Cnav(l —a), and —Ag, A, respectively. By
the same argument as in the previous paragraph, but with Theorem b) in place of Theorem
a), to prove part (b) it suffices to verify the assumptions employed in Theoremb) that are
not imposed in Theoremb). The assumptions that need to be verified are the same as those for
part (a) except with Assumptions BC.6, BC.7, and C.11 in place of Assumptions BC.4 and BC.5
(because Assumptions A.7 and A.8, which are imposed in Theorem b), are also imposed in
Theorem b))

We now verify that Assumptions BC.3, BC.4-BC.7, C.4, C.5, C.11, C.12, and C.13 hold for
some subsequence {py, }n>1 (of {¢n }n>1) in place of {n},>1. Given {7, },>1 in the definition of (:)minm
in that satisfies Assumption A.6(ii), take {7, },>1 to be the same in Assumptions C.13 and
BC.4, which requires 1, — oo and 7, /7, — 0. For example, one can take 7, = 7'71/ 2 vn > 1. Given
{Kn}n>1 that satisfy Assumption A.7, which requires s, — oo and /<cn/n1/2 — 0, take {nrn}n>1
to be the same as in Assumptions BC.6 and BC.7, which requires nr,, — oo, nLn/n1/2 — 0, and
Nen/ ke — 0 for v € (0,1) as in Assumption BC.6. For example, one can take np, = /@7/2.

Under Assumptions A.4 and A.5, by Lemma D.7 of BCS15, given {¢,}n>1, there exists a
subsequence {p,}n>1 of {gn}n>1, a continuous R***%_valued function Q4 on ©2, and a contin-
uous RF-valued function m on © for which (i) QF,, —u oo, where —, denotes uniform conver-
gence (over ©2 in this case), and hence, Assumption C.11 holds for the subsequence {p; }n>1, (ii)

EF,

Pn

m(W,-) —, m(-), and hence, Assumption C.4 holds for the subsequence {p,}n>1, and (iii)
Assumptions C.12, C.13, BC.4, and BC.6 hold for the subsequence {py,},>1. The basic argument
used by BCS15 to prove their Lemma D.7 is that a sequence in a compact subset of a metric
space has a convergent subsequence. Strictly speaking, Lemma D.7 of BCS15 only establishes

Qr

v, —u $loo for the upper left k x k submatrices of these matrix functions and the subsequence

version of Assumption C.7 of AK. But, the same argument applies for the 2k x 2k—valued functions

Qp

+.and Qo and the same argument as for Assumption C.7 of AK applies to Assumptions C.12,
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C.13, BC4, and BC.6. In addition, the result Er, m(W,-) —, m(-) is established in the same way
as Qp, —u Qoo (but using Assumption A.5 in place of Assumption A.4).

Assumption C.5 holds for the subsequence {py, }»>1 by applying a subsequence version of Lemma
a) in online Appendix B, which imposes Assumptions A.0-A.4 and C.11. Assumptions A.0—
A .4 are imposed in the present theorem and the subsequence version of Assumption C.11 holds by
(i) above.

Assumption BC.3 holds for the subsequence {p,}n>1 by Lemma D.2(8) of BCS15 because
Assumptions A.1-A.4 of this paper imply Assumptions A.1-A.4 of BCS15 and QF, —y Q.

Assumption BC.5 holds in part (a) of the theorem by a subsequence version of Lemma a)
(with {py, }n>1 in place of {n},>1), which imposes Assumptions A.0, C.4, C.5, and C.12 and requires
Tn, — o0 and 7, /7, — 0 (because these assumptions are verified above, 7, — 0o by Assumption
A.6(ii), and given {7, }n>1, {Nn}n>1 are defined above to satisfy 0, /7, — 0).

Assumption BC.7 holds in part (b) of the theorem by a subsequence version of Lemma b)
(with {py, }n>1 in place of {n},>1), which imposes Assumptions A.0, C.4, C.5, and C.12 and requires
nrn — 00 (because these assumptions are verified above and {7r, }n>1 are defined above to satisfy
Nin — 00).

This concludes the proof that the assumptions employed in parts (a) and (b) of Theoremm
hold for the subsequence {py}n>1 of {gn}n>1, which completes the proof. [

27.5 Proof of Lemma

Proof of Lemma First, we prove part (a). We have

/2 _ 0F,;(0) m 1/2 ~
w2y (0) = T2 (v(8) + 0!/ B, iy (W, 0) )
= Gnj(0) +n'2Ep, m;(W,0), where (27.29)
~ 0Fi(0) m 1/2 < onj(0) > 0ri(0) . o
Wni(0) == = vpi(0) —n —1) = Ep,m;(W,0) =0, (1),
J( ) Unj(e) j( ) UFnj(‘9> Unj(e) F ]( ) p( )
where 17%(0) denotes the jth element of v}/'(0) defined in (14.2) in online Appendix B, and the

second equality on the last line holds by Assumptions C.4 and C.5 and (26.10). Next, we have

0t/ (B0 (0) = BiT) = 02 (=iin(0) + Einiy(W, 0)) — n'/2(A1 — AR + e(0)
= Jnj(Q) + en;(0), where

~

ng(0) 1= —nj(0) — n' (AN — AR = 0P(1), (27.30)

S8
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the first equality uses ﬁnj(t?) = —my;(0) by and e,;(0) := n'/?(—Eg,m;(W,0) — A}?:) by
and the second equality on the last line holds because @,;(0) = OI? (1) by and
nt/2(Alnf _ A%‘j) = Apa = Op(1) by (25.1) and Theorem |25.2(a) (which uses Assumptions A.0,
C.4, C.5, and C.12).

For e} = (thin) 2 (AR, (0) — A}?j) as in AZ’?&Fn (defined in (27.5)), we obtain

5,5(0) = (o) " 012 (B (0) — BBT) = (urin) L (0) + €, (27.31)

where the first equality holds by definition, see (27.6), and the second equality holds by (27.30).

Using (27.29)), (27.31), and the definition of AZ"Z F,» We can write A*Un,AU in 1D as

NN inf max(—ﬁﬁ@ +1(5 # 79)e; + 15 = 59" ((thin “1d,,(6 —f—e’f),
Un,AU (et AT Ik g( ) (7 #7%)ej (G =3")e"((thn) i(0) ])
(27.32)

where (0, ¢;, ¢}, j*) € AR p implies that e; := e,;(6), e} := (thin)ten;(0), and j* := jine(6).
We have

(thin) i (0) = oS (1) (27.33)
by (27.30) and Assumption A.6(i).
Next, for all j < k, we have
W2 (75(8) — B, 25 (W,0)) = O2(1), (27.34)

by (27.29). This and Assumption C.4 give
i (0) — () = 0 (1). (27.35)

Now, we use the result that for any sequence of random variables {X,},>1 on (Q, F, P) for
which X, —,, 0, there exists a subsequence {a, }n>1 of {n},>1 such that X,, — 0 a.s.[Pg], e.g., see
Theorem 9.2.1 of Dudley (1989). We apply this result with the original sequence {n},>; replaced
by some subsequence {py, }»>1. Using this, , and , given any subsequence {py, }n>1 of

{n}n>1, there exists a subsequence {ay }n>1 of {py}n>1 for which

sup ](man)_lcfanj(eﬂ =o(1) a.s.[Py] and sup [mg,;(0) —m;(0)| = o(1) a.s.[Py]. (27.36)
0cO 0co
Define
* m* 1 o* .
vy (0) == v (0) — 5 (O)v(0) Vi < k. (27.37)



We show that under {F},},>1, for the subsequence {ay,}n>1 of {py}n>1 defined above,

sup |7, ;(0) — vgn5"(0)| = 0p(1) Vj < k conditional on {Wp;}i<nn>1 a.s.[Pg]. (27.38)
0cO

The proof of (27.38) is as follows. By the same argument as in (26.10) with &, ;(6) and 7,;(0)

in place of 0,,j(#) and oF,;(0), respectively, we obtain

o (0 1
nt/? (3 jEG; — 1) = iygj(e) + o?(l) conditional on {Wpy;}i<nn>1 a.8.[Pg), (27.39)
nj

using Assumption BC.3 in place of Assumption C.5. Next, we have: for the subsequence {ay}n>1,

72,,(0) = al? ( ““((; : manxe)) = 2 () = 0001 (2220 1))

anj a\anj (0)

1+ ( () — Ly (0)055(0) + (1 )) — U (0) + o2(1)

(27.40)

conditional on {Wy;}i<nn>1 a.s.[Py], where the third equality holds by (27.36) and (27.39), and
the fourth equality holds by the definition of ,,;7*(6) in (27.37) and Assumption BC.3. This proves

@739).

Define
A av = inf (—vmme(0) + 10 # 7)es + 10 = 57)¢! (1rn) g (0) + €5) ).
AU = ey, SR\ (0) +1(j # 5% )ej + 10 = %)  ((thin) ™ dn; (0) + €])
(27.41)
By (27.32), the first result of (27.36), (27.38), and (27.41), we obtain:
*Uan,AU = Z*f]amAU + 0,(1) conditional on {Wy;}ti<nn>1 a.s.[Pg). (27.42)
Hence, it suffices to show: for the subsequence {ay, }n>1,
{0 20l {Waidignnz1} —a Ao av 25 [P). (27.43)

To prove (27.43), we use a similar (but somewhat more complicated) argument to that used to
prove Theorem a) based on the extended continuous mapping theorem. As above, let D be

the space of functions from © to R?*. Let Dy be the subset of uniformly continuous functions in
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D. For nonstochastic functions v(-) € D and u(:) : © — R* with u(0) = (1u1(0), ..., ux(0))’, define

A= ek e (041G # 5e 16 = 5706 e (0) + €5)) and
GO0 =, i max (0,010 £ + 16 =7 05 0) + )
(27.44)

where v(0) = (V™(0),v7(0)'), v]*(f) and v{(f) denote the jth elements of v™(0) and v7(0),

respectively, and 7;(v(-),6) is defined in (26.15). Note that

Z*Un,AU = gn(Vp (), un(0)) and Afroo Ay = 9(G(+), O0(+)), where
,unj(e) = (Uin)ilgl\nj(ex Nn(e) = (an (0)7 "'7/1%16(9))/7 (27‘45)

and Og(-) is the zero function on ©.

We want to show that {ga, (¥ (), tn(:){Whniti<nm>1} —a 9(G(),0,(-)) a.s.[Py], where
{vi (){Whiti<nn>1} = G(-) a.s.[Pg] by Assumption BC.3 and supycg ||tta, (8)|| = o(1) a.s.[Pg] by
(27.36). We use the extended CMT to establish this result. For notational simplicity, we employ n,
rather than a,, in the proof of this result. The extended CMT requires showing: for any determin-
istic sequences {v(-) € D}p>1 and {pn(-) : © — RF},>1 and deterministic function v(-) € Dy such

that supgeg ||[vn(0) = v(0)]| = 0 and suppee || (8)[] = 0, we have gn(vn(-), pn(-)) = g(v (), O ())-

(For notational simplicity, we abuse notation here and consider deterministic v,(-) and u,(-) that
differ from the random v,,() in Assumption C.5 and p,,(0) defined in (27.45).) Once we have shown
this, the proof is complete.

The proof of g, (vn(+), n(-)) = g(v(-),0x(+)) is an extension of the proof of g, (vn(-)) = g(v(+))

in (26.17)—(26.23) in the proof of Theorem a). We show

(i) hnII_l>l£f gn(yn()vﬂn()) > g(”(')70k(')) and
(ii) lim sup gn(”n(')vun(')) < g(”(')70k(‘))‘ (27'46)

n—0o0

First, we establish (i) in (27.46). There exists a subsequence {cp }n>1 of {n},>1 and a sequence

{(Ocn:Pens @i den) € ALK 5, Y1 such that

hnrglo%f gn(”n()vun()) = nlgglogcn(ycn(')nucn(')) and

lim_ Ge, (Ve, (+), e, (1) = i max (7(ve, (-), 0c,) + 107 # Je, e,

n—r00 n—oo j<k

10 = Je )¢ (e (Oe,) +2 5 )) , (27.47)

Cn]cn
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respectively. Also, there exists a

cn?

where €.,; and €; ; denote the jth elements of €., and €;

subsequence {g, }n>1 of {¢n}n>1 and (6,€,8%,7") € © x R[Qi'oo] x {1, ...,k} such that

d ((aqn7€Qn7EZn7j;n)7 (5)675*75*)) _> 0) (2748)

where d is defined in the paragraph before (25.1), by compactness of the metric space (© x R?foo] X

{1,...,k},d) under Assumption A.0(i). We have (0,€,8*,j") € A%, by the same argument as
used to show (6, €) € Aa in lj (but without the requirement that Ap(6,) = At ¥n > 1) using
(27.48) and Assumption BC.4.

For all j <k,

. - P DU _

T 750, (), Bg,) = 7' @) + 5y @ B) 1= 75/(),0) € R, (27.49)

where the first equality holds by v, (0) — v(0) = (v™(0)',v7(0)")" uniformly over § € © (by
assumption) and (27.48), the last equality holds by the definition of 7;(v(-),6) in (26.15), and

“€ R” holds because v () and v (f) are finite since v(-) is assumed to be in D and m; (6) is finite
by Assumption C.4.

In addition, we have, for all j < k,

1(j # Jy,)8qn; — 1(j # j")&; and

1G = T3¢ g 52, @)+ 52 ) =10 =)l (@), (27.50)

where the first line holds by (27.48) and the second line holds by (27.48), supycg ||1tq, (0)|| — O,

and the continuity of o' on R4 o) under d, which is property (ii) of ol stated following 1D and
the fact that d(ng(MT (0,,) + é; 7 )s cpT(éj*f*)) — 0 implies that goT(,uE* (0,,) + EZ 5 ) = of (E%)
an nJ qn an n)qn

(as a sequence of numbers in R[ ) even if @T(EE’%) = +o0.

Now, we have

liminf g, (v (+), pn(+))

n—oo
. . . X - . %k — ) . —% T N _ x B
= nh_>ngo 1}“2;? (T] (Vg (), 04,) +1(J # ]qn)eQn] +1(j = ]qn)SO (qun (04,) + e%jzn))
= . AN . RN - Ryt 7f*
= I}lgg( (T](V()70)+1(] £j)eg+1J=7 )¢ (ej ))
> : . . . ™ ) R T **
> gee BE,. max (F(),0) +1G # 7)es + 10 = )¢l (€}))
= g(v(), 0 (")), (27.51)
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where the first equality holds by and the fact that {g,},>1 is a subsequence of {¢, },>1, the
second equality holds by (using the notational convention that v 4+ ¢ = ¢ when v € R and
c = *oo if €; = +o0 for any j < k) and , the inequality holds because (6,€,e%,7") € AN in
by the paragraph containing , and the last equality holds by the definition of g(v(-), u()) in

(27.44) with p(-) = 0x(-). This establishes result (i) in (27.46).

Next, we establish result (i) in (27.46). There exists (67, T, e, j7) € A% such that

A min

G(),0x()) = max (/). 0 +1G # 5)e] + 16 = )¢l (e]1) (27.52)

*
because A\ i,

is compact under the metric d defined in the paragraph before (25.1) with a, =
dg + 2k + 1 (since it is assumed to be an element of S(O x R[Qj’;oo] x {1,...,k})) and 7;(v(-),0) +
1(j # jYej +1(j = j*)goT(e}) is a continuous function of (0, e,e*, j*) under d that takes val-
ues in the extended real line, using property (i) of ¢! stated following 1} By Assumption

BC.4, AZ"ZF — i AX ., Hence, there is a sequence (8], eh, el i) € AZT,]Z,Fn}nzl such that
d((@L,en,eL*,]n ), (0T, ef, et* 7)) — 0. We obtain

limsup Gn(Vn(-), pn(+))

n—oo
.= limsup inf | max (r(0n(),0) + 10 # 5)es + 16 = )¢ (e (0) + €))
n—00 (0,6,6*,)*)6/\”73’1% i<k

< limsup max (7300 (). 00) + 10 7 3)ely + 101 = 31061 1,1 (0) + 1)

= rJna,}( T, 00) + 10 # el + 10 = /)61 (ef7.))

where the inequality holds because (0;&, €n, e;r{k, Jn) € AZ”Z r, Vn > 1, the second equality holds

using d((@;ﬂ,en,e;&*,jn) (07, ef, et 1)) — 0, 1' with (v (+), 0,2) and (v(-),0") in place of
(Vg (), 04,) and (v(-),0), respectively, and (27.50) with («9;& el ") and (67, eJr e 7™ in

’ n]) n])]n

place of (8, ;, e, J € j,izn) and (gj,éj,ézf,j*), respectively, and the last equality holds by (27.52).
This establishes result (ii) in (27.46) and completes the proof of part (a).

The proof of part (b) is similar to that of part (a). But it is simpler because A}, A; is simpler

than Af;, r;- We have

* - _oF e ) — *
Ln,AL - eeerlzgf(F )I§1<a“]§(< Vnj (9) 12 ( éln] (0))) ZLn,AL + Op(l)

min

conditional on {Wpy;}i<nn>1 a.s.[Pg], where

Ay o= inf max (v (0) = &1 (—uns (0) = ) 27.54
Ln,AL (0er)enEn | <K J (0) — ' (—p J( ) ]) ( )
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e=(e1,...,ex), i (0) is defined in (27.37)), the first equality holds by the definition in (27.12), and

the second equality holds by (27.38)), the definition of AZ"I%: ; in (27.11), (27.30), and the definition
of p,(0) in (27.45). Given (27.54), to prove part (b), it suffices to show: for the subsequence
{an}n>1 defined just above (27.36), {Zzan,ALHWni}iSn,nzl} —d AlooAL a.s.[Pg]. The proof of

this is analogous to the proof of (27.43), but with A}"c" ;| and A} in place of A% 1 and A}

A min’
respectively, and with —¢T (—p,;(0) — e;) in place of 1(j # j")e; + 1(j = 7)1 (1n;(0) + e7). The
proof goes through using Assumption BC.6 in place of Assumption BC.4, which completes the
proof of part (b). O

27.6 Proof of Lemma

Proof of Lemma First, we prove part (a). By definition, see (27.8) and (5.14) with b

deleted, we have

*Un,AU = eeei?ilf(Fn) rjngagc <_’//\;;](0) + 1(] 7é ]ne(e))enj(e) + 1(] - ]ne(e))(PT(glin](e))> and
mAv = inf min  max (=25 (0) + 1(j # j1)n;(0) + 1(j = j1)e(&5;(6))) -

9€®1nin,n jl EJnE(Q) ]Sk
(27.55)

The bootstrap random variables Ay, r;; and A7 oy differ in four ways. Specifically, Af,, A¢; versus
(vs.) A}, Ay are defined with (i) infycgm () vs. inf@é@min,n’ (ii) @T(ffnj(ﬁ)) vs. ¢(&,;(0)), (iil)
enj(0) vs. €,5(0), and (iv) j = jne(0) or j # jne(0) vs. min, 5 g With j = ji or j # ji.

By Assumption BC.5, for any bootstrap random function K} (6),

P. inf K'0)> inf KX
v (069217:“(}7‘”) n( ) N eeémin,n n( )

{Wni}i§n7n21> =1 wp — 1 under Pg,. (27.56)

By the definitions of £f,,;(0) in (27.6) and & () in (5.12) and sAdnj(H) > ¢ (by construction; see
(27.1)), we have |£7,;(0)] > [&;;(0)| and &F,,;(0) and & (6) have the same sign for all sample and

bootstrap realizations. For any 6 € O, for all sample and bootstrap realizations with & (0) >0,

we have

0(&;(0)) < @1 (&5,(0)) < @7 (£5,;(0)), (27.57)

where the first inequality holds by property (i) of ¢! stated following li and the second inequality
holds by property (ii) of ¢! stated following (27.7) and £ni(0) < &7,;(0). Next, for all sample and
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bootstrap realizations with &5 ;(0) < 0, we have &7, :(¢) < 0 and this implies that

P(€5;(0)) < T (£5;(0)) = 0 =T (£5,;(0)), (27.58)

where the first inequality holds by property (i) of ¢, the first equality holds by property (iii) of
¢ and &n;(0) < 0, and the second equality holds by property (iii) of ¢ and &1n;(0) < 0. Hence,
©(&r;(0)) < @T(ﬁfnj (0)) for all sample and bootstrap realizations, for all € ©.

Next, we have

~

e (0) 1= 172 (B (8) = AUT) = 5 (0)1n = dug(6) + €0 (6) — 5 (8)ip, and so,
sup (€0 (6) — en;(0)) < sup (Enj(a) - mn) —, —00 Vi <k, (27.59)
0O 0cO

where the inequality on the second line holds for all bootstrap realizations because Jnj(ﬁ) (defined
in ) does not depend on any bootstrap quantities, the first equality on the first line holds
by definition, see , the second equality holds by , and the second line follows from the
first line, the last line of , sAdnj(Q) > ¢ by definition, and k,, — oo (by Assumption A.6(i)).

Equation (27.59) implies that

sup (€n;(0) — en;(0)) < 0Vj <k, for all bootstrap realizations, wp — 1 under Pg. (27.60)

6cO
Define
Aav =it min max (<90,00) + 10 £ j1)en (0) + 16 = j1)e'(€5,,(0))) - (27.61)

0€OM (Fn) j1€dne(0) I<K
Combining (27.56)(27.60) and (27.61) gives
PV(Z?M,AU > A;,AUHWm}ign,nZl) =1 wp — 1 under Pg. (27.62)
Next, we show that

P (jne(8) € Jne(8) V0 € O{Wyiticnn>1) = 1 wp — 1 under P, (27.63)

where jpe(0) := argmax;<y ey;(6) is defined in and Jpe(0) == {j € {1,....k} : ﬁnj(ﬁ) >
An(0) — sdy;j(0)n/2r,} is defined in (5.13). We have jue(0) € Jne(0) iff A, 0)(0) > Ay (6) -
s?inj(@)n_lﬂﬁn if nl/z(ﬁnjne(g)(ﬁ) - ﬁglf) — nl2(A,(6) — ﬁ;{lf) > —uky because sAdnj(H) > 1 by

definition. By (27.30), n'/2(A,;(0) — AlM) = e,,;(0) + 09 (1) Vj < k (since A,,;(0) = —ifin;(6) by
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(5.2)). Hence, n'/?(max;<y ﬁnj(e)—&;}f) = max;j<y €;(0)+0F (1). Taking j = jne(6), these results
combine to give n'/2(A,;._)(0)— AR —n'/2(A,(0)—A) = e, (5)(0) —max;j<y en; (0)+09(1) =
Og)(l) using the definition of j,.(6), where the OS (1) term does not depend on any bootstrap
quantities. Since O;?(l) > —uky, holds wp—1 using Assumption A.6(i) (i.e., kK — 00), is
proved.

For a suitably defined random function w(j1,0) on {1,....k} x ©, A, A;; and Z*Un,AU can

be written as infycgm (f,) w(jne(),0) and inf@e@"m’in(Fn)minjlefne(e) w(j1,0), respectively. Since

W (Jne(0),0) > minjlejne(e)w(jlﬁ) when jne(6) € Jne(f) and the latter event satisfies (27.63), we

obtain

Py ( *Un,AU > Z*Un,AUHWni}iSn,nZl) =1 wp — 1 under Pg,. (27.64)

This and (27.62) establish the result of part (a) of the lemma. Note that Assumptions A.6(ii) and
BC.4 are imposed in the lemma because Assumption BC.5 is imposed and it relies on Assumptions
A.6(ii) and BC.4.

Next, we prove part (b) of the lemma. By definition, see (27.12)) and (5.15),

* L : o AT ee
ALn,AL T BGGi?E(Fn)IJngg{( an (9) 4 ( §1nj (9))) and
wap = inf  max (=7;;(0) — o(=&;(0))) - (27.65)

eegmin,L,n ]Sk

By an analogous argument to that used to obtain (27.57) and (27.58)), we get

p(—655(0)) < @' (=£5,;(0)) (27.66)

for all j < k, for all sample and bootstrap realizations, and for all § € ©. By Assumption BC.7, for

any bootstrap random function K (0),

Py if  KXO)< inf KX(0)
96@7]Ln (Fn) eeemin,L,n

min

{Wni}ign,n21> =1 wWp — 1 under PV' (27.67)

Combining (27.65), (27.66), and (27.67) with K (0) = max;<x(—7;,;(0) — @T(—ﬁ‘fnj(ﬁ))) gives

the result of part (b) of the lemma. [

27.7 Proof of Lemma [27.3]

The proof of Lemma [27.3| uses the following lemma, which is based on Lemma S.3.7 in the

Supplemental Material to BCS17. Let R_) := RU{—o0}.
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Lemma 27.6 Suppose Assumptions A.0, A.7, A.8, BC.6, and C.12 hold. Then, for any (0*,¢e*) €
A7, there exists (0*,e) € Aa such that ej < —goT(—e;f) for all j < k.

Proof of Lemma Part (a) of the lemma requires that Acc Amin, Aco,n, and Afy A are
well-defined. Part (b) requires that Ao A and A} 5 are well-defined. Each part of Lemma|27.3
imposes the assumptions such that these quantities are well defined.

First, we prove part (a). We can write Aj; Ay = inf(g e e JeAs Ky (0,e,e*,5%) and Aso A min)

= inf(g eyeap min K (0, €) for random functions Ky (-) and K(-) defined in (27.69) below. To show

Voo AU < Aoo,Amin, it suffices to show that for any (0,€e) € Aamin there exists (0, e, e*,5%) € A\ in
for which Ky (0,e,e*,j*) < K(0,e) for all sample realizations.

*

To this end, we claim: Given any (6, €) € AA min, there exists an element (0, e, e*, %) € A} .,

This claim is proved as follows. By Assumption C.13, given any (0,€) € AA min, there exists
a sequence {(0,,¢€,) € AZ?A,Fn}nzl such that d((0,,€,),(0,¢e)) — 0, where 8,, € " (F,) for all

min
n > 1 by the definition of A", r, following 1i and ©. (F) is non-empty by Assumption A.0.
Given {(0,,,€,)}n>1, consider the corresponding sequence {(0,,, €y, €%, j*) € AZ?Z,Fn }n>1 for AZ?&Fn
defined in 1i where e:j = (mn)_lénj, Jn 1= argmax <y enj, and j; is the smallest arg max
value if the arg max is not unique. By Assumption BC.4, AZ?& r, = H AX i, for A}, compact
(under d). In consequence, there exist a subsequence {uy }n>1 of {n},>1 and an element (6, ¢, e*, j*)

of A\ i, for which

d(OuprBur el ), (0,8, €%, 57)) = 0 and (0,2) = (6, ¢), (27.68)

Up?

where the equality holds because d((0y,,€,), (f,¢e)) — 0, which completes the proof of the claim.
Given any (0,¢e) € AAmin, take (0,e,e*, %) € A% as in the previous paragraph. Then, we

A min

have

Ky (B,e,¢",5%) = manx (~GJ'7(6) + 10 # 5°)e; + 16 = 1) (e]1)

< max (—G7'*(0) + ¢;) := K(0,¢) (27.69)

Jj<k

for all sample realizations, where G}”U(G) is defined in lb based on quantities defined in As-
sumptions C.4 and C.5, the first and last equalities hold by the definitions of Af; Ay and Asg, A min
and the inequality holds because, as we show below, @T(e;*) < ej+. As argued above, (27.69) implies
that A*Uoo’ AU < Aco, Amin for all sample realizations, which we set out to prove.

Now, we show goT(e;'f*) < ej+. For notational simplicity, suppose (27.68)) holds with n in place
of u,. We have j* — j* by (27.68), and hence, j: = j* for n large (because j: € {1,...,k}),
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where j = jn(6,) by the definition of AJR 1 in li for j,(0,) defined in 1) We have
enj — e; and ey — €7 by (27.68), where €,; = enj(gn) and e,; = (mn)_lénj by the definition

of A;?Z’ r, for enj(0) > 0 defined in lb Hence, we have €,;: — e;+ and e;‘% — e;f*, where

e = (thin) Vens = (mn)_lenjn@n)@”) > 0 for all n > 1 by (27.3). This and x, — oo (by

Assumption A.6(i)) imply that e;« > €. > 0. In addition, it implies that if 0 < ej» < oo, then

ej. = 0 (since k, — 00). Hence, we obtain: if 0 < e;+ < oo, then cpT(e;f*) = 0 < e;+ because
©T(0) = 0 by property (iii) of ¢ stated following (27.7). On the other hand, if ej» = 00, then
@T(e;*) < 00 = €. by the definition of ol in , which completes the proof of part (a) of the
lemma.

Next, we prove part (b) of the lemma. By Lemma a), for any (6*,e*) € A}, there exists

(0*,e) € Aa such that e; < —@T(—e;f) for all j < k. In consequence, we have

inf —GM (@) + ;) < —GPT(0%) + ;) < max (-G (07) — pl(=¢})) . (27.70
(agleAAr;lgg( 77 (0) +8) < max (=G77(67) + ¢;) < max (~GJ7(0") — ¢ (=€) ), (27.70)
where the first inequality holds because (*,e) € Ax and the second inequality holds by Lemma
a). Deleting the middle expression in (27.70) and taking the infimum over (6*,e*) € A} on
the rhs of (27.70) gives

Asop := _inf ~GM(0) +¢) < inf —GM(0%) — @l (—e?)) =: A}
00, (E,QQAAI?Q?( T7(0) + 7€) —(e*,??)eA;I???( 7707) — o' e])) Loo,AL:
(27.71)

where the two equalities hold by the definitions in (25.5) and (27.13). This completes the proof of
part (b). O

Proof of Lemma For any (6*,e*) € A}, there exist a subsequence {ay }n>1 of {pn}n>1 and

a sequence {(0; ;) € AJE" [ 1y>1 for which 0 € O (F, ) (where ©%"(F, ) is non-empty

min
by Assumption A.0), e; ; = ﬁ;ja}l/z(AFanj(GZn) - Aiafn), lim@; = 6%, and lime, ; = €} for all
j < k using Assumption BC.6 and the definition of AZH}Z ; in l)
For notational simplicity, in the remainder of the proof of part (a) we employ n in place of
ap, for n > 1 and assume the assumptions hold for {n},>1, rather than {py}n>1. Thus, the se-

quence { (0}, ) },>1 satisfies 6 € O (F,), enj = (vhin) "I 2 (AR, (0) — Aiﬁi), lim 6 = 6*, and

min
s .
lime;,; = ¢} for j < k.
Define

A%?C(Q) = (AFl(G) - Ai}I?‘lfa ey AFk(‘g) - Ai]f“lf)/- (2772)

Note that A%<(9) is the vector of differences Ap;(f) — Al for j < k, not the vector of Ap;(6) for
j < k. For 0 € Opin(F), maxj<y Ap;(0) = Ap(#) = Al by the definition of O (F), see (25.4),
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and so, Aj°(f) < 0y, element by element.

Note that for (6%, e*) specified above, e* = (1k,) I /2A%C(0%) — e*.
n Fp \"n

By the definition of ©]. (F) following l| 0y € O (F,) implies that Ap(f;) — ARl <
nLn/n1/2 and so
min{d, _inf {165 = 01} < Ar, (65) = AR </t =0, (27.73)

where the first inequality holds by Assumption A.8(i) and the convergence holds by Assumption
BC.6. Hence, [|67 — 0,|| = O(11n/n'/?) for some sequence {6,, € Omin (Fr) prn>1-
Let v € (0,1) be as in Assumption BC.6. By convexity of © and Assumption A.8(iii), element-

by-element mean value expansions give

RT—L’Ynl/QA%Lc(Q;kL) — K;an/QA}iff(gn) + ;H,A%i%eg) . K;7n1/2(0;kl _ §n>7 (27'74)
where the jth row of %Aqﬁc(ﬁg) (:= —Mp, (6°) by Assumption A.8(iii)) is evaluated at some
ng € O that is on the line segment between 6 and 6, and AFO) (= —Ep,m(W,0) — Aj{{f) is
partially differentiable by Assumption A.8(iii).

Define

01 := (1 — k)0, + k767, or equivalently, 81 — 6, := 7 (67 — 6,,), (27.75)

n

where 6, € © for n large by convexity of © (Assumption A.8(ii)) and k,” — 0 (Assumption A.7(i)).
By |67 — 6| = O(n1n/n'/?) above, we have 67 — 6, — 0y, n'/2(6), — 6,) = kn'nY/2(0% — 6,,) =
O(nrn/kn) — Ok, where the convergence holds by Assumption BC.6, and 92]- —0,, — 0, for j<k.

Equation (27.74) can be written as

SN 0, B) = P ARE0)) — D) (27.76)

using the second equality in (27.75)).
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Applying element-by-element mean value expansions again yields

n1/2A1}JiC(0;[L) — nl/ZAUic(gn) + 889/ veC(QOO) 1/2(9 _9 )
_ 1/2AU€C(0 ) 89/ ’UeC(QO) 1/2(0 9 )+51nu

_ 1/2Avec(9 )_|_H—'yn1/2Afuec(9*) 'ynl/QAvec(e )+51n7
= K*an/QAvec(H*) + &1p + €95, where
9 vec (00 0 vec (0 1/2 n
i = (g SHSO) — S RO ) 0 2(0] ) — 0,
ean = (1 — w5, )nY2A%(8,,) < Oy, (27.77)

the jth row of 8‘2, A”ec(ﬂoo) is evaluated at some 900 € O that is on the line segment between 6},

and 6, and satisfies ||9nj — 6, < Han — 6,|] = 0 for j < k, the third equality uses (27.76), the

convergence of €1, holds by the result above that n'/2 (0;& —0,) — 05 and Assumption A.8(iii), and
the inequality for e3,, holds element by element for n large because 1 — k,,’ — 1 and Avec(ﬂ ) < O
using the result following because §n € Omin(F).

Because (Rf“i P d) is compact, there exists a subsequence {up}n>1 of {n}p>1, for which

u%/2AUFffn (05,) and ry u /QA”“ © (07,,) converge as n — oo. This, (27.77), and the properties of

€1n, and €9, give

lim up/2AY (6]) < lim ry Yul/2A%C (05 ) < 0 (27.78)

U

element by element, where the second inequality holds because Ap (0F) — A}?j < npn/nt? by

27.73), which implies that k' I/QAUEC (07,) < (K, Mou, )1k — Of element by element using

Nen/kn — 0 by Assumption BC.6.
We have 6], — 0*, because 0 — 0 by the second paragraph of the proof, |0} — §n|| =
Oy /n1/2) = o(1) by results following (2 , and 6, — 6, — 0j, by results following (2
Define e}, := nl/QA”ec(HT) We have (6], e},) € AoAE,, 6}, — 6%, and el,, — e := lim ul/QA“ec (GT )
(< 0k) by (2 , and so, (6*,e) € Aa using Ay A 5, = Aa by Assumption C.12.
We have (6*,e*) € A} by assumption, see the first paragraph of the proof, and e} =
(mn)*lnl/ 2AY£C(05) — e* by the result in the paragraph following . The second inequality in
can be written as lim Hl v Z < 0p, where /fif’ — 00. This implies that e* = lim ej;n < 0.

It remains to show that e; < —(pT(—e;-) for j < k. Suppose e < 0. Then,

e; —hmul/z(AFu ](9 ) — Amf ) <limr, Vul/z(AFu i(05,) — Amf )zlimn}i”eznj = —00,
(27.79)
where the inequality holds by the first inequality in (27.78) and the last equality holds because
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€y,.; — € <0and mlizv — 00. Hence, —oo = ¢; < —¢T(—e§). Alternatively, suppose e = 0. Then,
ej <0 = —goT(—e;f), where the inequality holds by (27.78) since its left-hand side vector equals e

and the equality holds by ¢T(0) = 0 by property (iii) of ¢! stated following (27.7). This completes
the proof. (I

27.8 Proof of Lemma

Proof of Lemma First, we prove part (a). We have

PFn(@mlnn 2 @?rﬁn( n)) > Pp, sSup 1/2(£n(9) - Ai#f)f < Ty (27.80)
0ce™ (F,)

min

by the definition of Oy, in (5.7).

Next, we have

sup  n/2(A,(0) — AR
0cO™ (F,)

min

= sup max (n1/2(3n1(9) — Apj(0) + 02 (Ap, () — AR + nl/2(AR — &ﬁlf))
pceMm ( ) 1<k

min

< sup  maxn'2|A,5(0) = Ap(0)] + 1 + Op(1), (27.581)
e (Fy) Ik

min

where the inequality holds by the definition of O™
requires Assumptions A.0, C.4, C.5, and C.12).

By , ,and ,for all # € © and j <k,

(Fy) and Theorem a) and (b) (which

X 0) or;(0) ~
12 (R (0) — Aw :"FJ(K F E3) i (0, F,
w2 (Bag(0) = A1 (0)) = 22 Ring (0,F) + 22 5 Boni(0.F)
m 1 —~ ag
= () + 51 (0) - v, (0) + 03 (1). (27.82)
This and Assumptions C.4 and C.5 imply that
sup  maxn'/?|A,;(0) — Ar,;(0)] = O,(1). (27.83)
geeln (Fn) I<F
Equations (27.81) and (27.83) combine to give

sup  n'/2(A,(0) — A" < 0,(1) + . (27.84)

0O (Fn)

min
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It follows that

Pp, [ sup  n!2(A0) - A <7,
00’ (Fp)

min

> Pr, (0p(1) + 10 < 70)
= Pr, (0p(1/70) + nn/n < 1)
L (27.85)

where the convergence holds because 7, — oo and 7,,/7, — 0. Combining this with (27.80) estab-
lishes part (a).
Next, we prove part (b). We have

Pp, (O0%(Fy) 2 Omin1.n) > Pr, < sup  n'/*(Ap, (0) — AR < 77Ln> (27.86)
9€®min,n

by the definition of /%" (F,) following (25.4)). Next, we have

sup nl/z(AFn(H) — Alfmlj)

eeémin,L,n

= sup max (n/2(An;(0) = By (0) +0'/2(Bs (0) - B + 0! 2R - AR))
eeémin,L,n jgk

< sup  maxn'?|A,;(0) — Ap,;(0)] + O,(1), (27.87)
eeémin,L,n ]Sk

where the inequality holds by the definition of @min, Ln (given just below 1D and Theorem
a) and (b) (which uses Assumptions A.0, C.4, C.5, and C.12). Equation (27.82) and Assump-
tions C.4 and C.5 give

sup  maxn'?|A,(6) — Ap,;(6)] = Op(L). (27.88)

9€®min,L,n J=

In consequence,

Pp, ( sup  n'?(Ap,(0) — AR < 77Ln>
fe

®min,L,n
> Pr,(Op(1) <1n)
1, (27.89)

where the convergence holds because 1y, — 00. Combining this with (27.86) establishes part (b).
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28 Proof of Theorem

28.1 Lemmas|[28.1128.4]

We introduce the following lower bound on A}, 5y

InAU = eigg gnglil (—ﬁ;;j(e)) : (28.1)

Let ¢rn,Aav(1 — @) be the a conditional quantile of A7, Av given {Wi}ti<n for a € (0,1).

We introduce the following upper bound on AZ, AL

nAL ‘= supmin (—7,:(0)) . 28.2
Un,AL eega<k( g( )) ( )

Let cyn,ar(1 — a) be the a conditional quantile of A7, A, given {W;}i<y for a € (0,1).
By Lemma 1} Assumption SLK holds iff there exists a sequence {0 € ©;(F,)},>1 for which
n'2Eg m;(W,0l) — oo Vj < k. Let

Uy 1= Ijn<1£1n 2Ry mn; (W, 06),

- 1/2Ainf — 1/2 f —Ewm.; 0 d
o= AR = (B (1 0)), an

Puj(0) := n'/? (iy(0) — Ep, i (W,0)). (28.3)

Under Assumption SLK, {1y, },>1 exists and satisfies 1,, — co. Under Assumption MM, x,, — oo.
The following lemmas are used in the proof of Theorem

Lemma 28.1 For sequences {Fy}n>1 that satisfy Assumptions C.4, C.5, and SLK for a subse-

quence {pn}n>1 in place of {n}n>1, liminf, o P, (Amf 1/2/])1/2)

Lemma 28.2 For sequences {F),}n>1 that satisfy Assumption BC.3 for a subsequence {pyn}n>1 in
place of {n}n>1, (a) ¢, Av(1—a) < Crp, av(l—a) for all sample realizations and (b) ¢rp, av(l—
a) = 0p(1).

Lemma 28.3 For sequences {Fy}n>1 that satisfy Assumptions C.4, C.5, and MM for a subse-
quence {pptn>1 in place of {n}p>1, liminf, .o Pp, (A;an > Xl/Q/p1/2) 1.
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Lemma 28.4 For sequences {F,,}n>1 that satisfy Assumption BC.3 for a subsequence {pp}n>1 in
place of {n}n>1, (a) ¢,arL(l — «) < Cyp,ar(l — a) for all sample realizations and
(b) Cup,,ar(l — @) = Op(1).

28.2 Proof of Theorem

Proof of Theorem First we prove part (a). There always exists a subsequence {g,}n>1 of
{n}n>1 such that

liminf Pp, (3n7AU(a) < 0) = lim Pp, (ﬁqn,AU(a) < 0) . (28.4)

n—0o0

It suffices to show that the rhs of (28.4) equals one with {g,},>1 replaced by some subsequence
{Pn}tn>1 of {gn}n>1 (because the limit under the subsequence {py,},>1 is the same as the limit
under {gn}n>1).

For notational simplicity, we show that the rhs of (28.4) equals one with p,, = n. We have

liminf Pp, (ﬁn’AU(a) < 0)

n—oo

= lgggéf Pr, <£mf < —Cpav(l— )/n1/2)

> hnimf P, <£1 nf < b2t & — 2t < &, av(1 — a)/nl/Q)

> liminf Pr, (Bglf < =2 V2 & — 2 < g ap(l— a))

_ Ain /2 1/2

= timint P, (851 < —uy//n'"%)

— 1, (28.5)

where the first equality holds by the definition of ﬁn, Av(@) in , the first inequality is straight-

forward, the second inequality holds by Lemma [28.2(a), the second equality holds because —w}/ 2
—oo using Assumption SLK and €1, Ay (1 — @) = Op(1) by Lemma W(b), and the last equality
holds by Lemma

It remains to verify that the assumptions used in Lemmas and namely, Assumptions
BC.3, C.4, and C.5 hold for a subsequence {pp}n>1 (of {gn}n>1) in place of {n},>1 (because
Assumption SLK, which is imposed in Lemmas and is also imposed in the present

theorem). Such a subsequence {py, },,>1 exists by the proof of Theorem a) (because Assumptions
A.0-A.6 of Theorem a) are also imposed by the present theorem. This completes the proof of
part (a).

The proof of part (b) is analogous to that of part (a) with the inequalities inside the probabilities
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1/2 1/2 .

in place of —;~ in (28.5), and using Lemmas|28.3|and |28.4|in place

in (28.5) reversed, with x
of Lemmas[28.1]and[28.2] O

28.3 Proofs of Lemmas [28.1H28.4

Proof of Lemma For notational simplicity, we prove the result for p, = n. By Lemma
under Assumption SLK, there exists a sequence {0 € ©[(F,)},>1 for which n'/2Eg, m;(W,60.) —
oo Vj < k. For 7,;(0) defined in , Unj(0) = OI(?(I) by , using Assumptions C.4 and
C.5. Hence, 7, (01) = O,(1).

For {0]},>1 as above, we have

(B <7 = Lt a0 < i)

g (61) > 3/ n' /2 WG <k}
02 B, mg (W, 08) + g (05) > v/ Vj < k}

— {w}/Q +0,(1) > 0} , (28.6)

where the first equality holds by the definition of ﬁinf, the third equality holds by the definition of

n

Unj(0) in (28.3), and the last equality uses D,(61) = O,(1) and the definition of 1, in (28.3).
We have Pp, (wi/ S Op(1) > 0) — 1 because 1), — oo by definition and Assumption SLK. This
and (28.6)) establish the result of the lemma. [

Proof of Lemma For notational simplicity, we prove the result for p,, = n. The bootstrap
statistic A¥ A is defined in 1} (with b deleted) to be

nav = inf  min max (=D};(0) + 1(j # j1)en;(0) + 105 = j1)¢(&;(0))) - (28.7)
Hegmin,n jleJ’ﬂe(e) J<k

Using this and A}, oy = infgee minj, < <—ﬁ;jl(9)) (as defined in (28.1) with j; in place of j), we

obtain

Alnav < Aj ap for all bootstrap and sample realizations (28.8)

(&

by replacing max;<y, in the definition of A} ; by j = ji, minjlefne(e) by ming, <, 1(j = j1)¢(&5,;(0))
by 0 (using ¢(§) > 0 V§ € R) and inf, 5 by infyeo .
By definition, ¢, Ay (1 — «) and ¢, Av (1 — @) are the 1 — o quantiles of _A;,AU and _Azn,Aw

respectively. This and (28.8) give ¢, av(1 — a) < ¢rpav(l — ) for all sample realizations (of
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{Whiti<nn>1), which establishes part (a) of the lemma.

By (27.37), (27.38), the definition of G''7(0) in 1’ Assumption BC.3, and the continuous

mapping theorem,

ALnaU —d ALoo,AU = égé r]néil (—Gj (0)) conditional on {Wp;}i<nn>1 a.8.[Py], (28.9)

where Aro,Av € Ra.s. In consequence, ¢, av(1—a) = O(1) conditional on {Wy; }i<nn>1 a.s.[ Pyl
In turn, this implies that ¢z, av(1 — @) = Op(1) by an analogous argument to that used to show

that a.s. convergence implies convergence in probability, which establishes part (b) of the lemma.

O

Proof of Lemma For notational simplicity, we prove the results with p, = n. We have

A inf 12,120 _ ) - 1/2/,.1/2
{An > X /m } {glggr;lgg( Mn;(0)) > xn "/ }

_J. oy 1/2 , 1/2
{ 08 ma( 0y (0) = 2B (7.0)) > /2

_ ) Oy _ . 1/2 , 1/2
{é}g(gglgg(()p(l) n EanJ(W9))>xn}

_J. 12 , 1/2
{ ing ma(n2Em (07.0)) + 0,(1) > ¥}

= {xn+0,(1) > X%}, (28.10)

where the first equality holds by the definition of ﬁi,?f, the second equality holds by the definition
of Up;(8) in , the third equality holds because 7,,;(0) = O;?(l) by using Assumptions
C.4 and C.5, the fourth equality holds by standard calculations, and the last equality holds by the
definitions of y,, in |D and A}?j in |i

We have Pp, (xn + Op(1) > Xrl/2
establish the result of the lemma. [

) — 1 because x, — oo by Assumption MM. This and (28.10

Proof of Lemma We have Ajz, NS A’{]n’ Ay for all sample and bootstrap realizations
because A% 5, i= infy g maxjer(—;(0) — p(—€5(8)) < supgee maxs<p(—75,(60)) = Af A,
where the inequality holds 7because ©(§) > 0 for all £ € R by the definition of ¢. In consequence,
Cn,AL(l—a) < Cyn,ar(l—a) for all sample realizations by the definition of a quantile, which proves
part (a).

The proof of part (b) is the same as that of Lemma b) but with supgcg in place of infgcg,
given the difference in the definitions of A7, A in and A*Un,AL in (28.2). O
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29 Proof of Corollary

Proof of Corollary Part (a) holds by Theorem a) by the following calculations:

limsup sup Pg (nl/QAi;;f < —Cpav(l— a))
n—00  FPeP:ARfs0

=1— liminf inf Pp (nl/Qﬁiﬁ‘f > —Cpav(l — a))
=0 FeP:ARI>0

1— liminf inf Pp (n1/2 (Ainf - Aiﬁf) > —epav(l — a))
n—00 Fep:Alni>0 " ’

< 1— liminf inf Py <Ai}‘f c CImAU(a))

n—oo FeP

IN

< a, (29.1)

where the first inequality holds because the infimum is over Ai}lf > 0, the second inequality holds
because {F € P : ARl > 0} C P and uses the definition of CI, ay(a) in , and the last
inequality holds by Theorem a).

Part (b) holds by Theorem a) because

liminf Pp, (Wﬁiﬁf < —Conu(l - a)) — liminf Pp, (&L,AU(Q) < 0) (29.2)

n—oo n—oo

by the definition of A, ap(a) in (5.3). O

30 Behavior of An,AU(a) under Assumption MM

The CI CI,, av(a) equals (—oo, gn,AU(a)]. Its upper-bound gn,AU(a) is used in the construc-
tion of the SPUR2 test and CS. The following result concerns the behavior of ﬁn,AU(a) under
Assumption MM.

Theorem 30.1 Suppose Assumptions A.0-A.6 hold. For sequences {Fy,}n>1 that satisfy Assump-

~

tion MM, liminf,_, Pg, (Ap av(a) > 0) = 1.

Comment. Theorem is used in Section [4.6]to show that the level o adaptive SPUR2 test
typically has the same power properties as the level as SPURI test when the model is misspecified

and Assumption MM holds, where o = a1 + a3 and ag, as > 0, such as a = .05 and ag = .045.

Proof of Theorem There always exists a subsequence {gn }n>1 of {n},>1 such that

liminf P, (&MU(@) > o) — lim P, (quAU(a) > 0) . (30.1)

n—o0 n—oo
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It suffices to show that the rhs of (30.1) equals one with {g,},>1 replaced by some subsequence

{an}n>1 of {gn}n>1 (because the limit under the subsequence {an}n>1 is the same as the limit

under {gn }n>1)-

First, we consider the same conditions as in Theorema), namely, that {F}, },>1 is a sequence
that satisfies Assumptions A.0, A.6, BC.3-BC.5, C.4, C.5, C.12, and C.13 for a subsequence {py, }n>1
in place of {n}y>1. In this case, by the proof of Theorem a), see the paragraph that contains

(27.15), we have

Cpn,aU (1 = @) = Cup, av (1 — @) + 0p(1), (30.2)

where ¢yp av(1 — ) is defined following (27.8). In addition, there exists a subsequence {ap }n>1 of
{Pn}n>1 for which

CUan,AU(L — @) > cjoc — 1 wp = 1 and ¢y — 1 > —00 (30.3)

by (27.19) with € = 1.

For notational simplicity, we show that the rhs of (30.1) equals one with a, = n. We have

lim Pp, (ﬁn’AU(a) > 0) = lim Pp, (ﬁinf > —Chav(l — oz)/nl/2)

n—oo n—oo
> lim Pp, (Amf > Y2 /nl/2 g A Y2 pli2 > —enav(l - a)/nl/2>
n—oo
> h_>m Pr, ( AP S 12 /12 g\ 12 > —cun,av(l —a) —I—op(l))
= lim Pp, ( %L/Q/nl/2>
n—oo
=1, (30.4)

where Y, is defined in 1| the first equality holds by the definition of AmAU(oa) in , the

first inequality is straightforward, the second inequality holds by , the second equality holds
by X}L/ 2 500 by Assumption MM and (30.3)), and the last equality holds by Lemma|28.3| which
uses Assumptions C.4, C.5, and MM.

It remains to verify that the assumptions used in Theorem a) and Lemma namely,
Assumptions BC.3-BC.5, C.4, C.5, C.12, and C.13, hold for a subsequence {py, }n>1 (of {gn}n>1) in

place of {n},>1 (because Assumptions A.0, A.6, and MM, which are imposed in Theorem a),

are also imposed in the present theorem). Such a subsequence {p,}n>1 exists by the proof of
Theorem a) (because Assumptions A.0-A.5 of Theorem a) are also imposed by the present
theorem. This completes the proof. [J
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31 Assumptions

For ease of reference, we state all of the assumptions used in the paper and online Appendix C
here.
Assumption A.0. (i) © is compact and non-empty and (ii) Epm;(W,0) is upper semi-continuous
on OVj <k VFeP.
Assumption A.1. The observations Wi, ...,W,, are i.i.d. under F' and {m;(-,0) : W — R} and
{ﬁzJQ(, 0) : W — R} are measurable classes of functions indexed by § € © Vj < k, VF € P.
Assumption A.2. For some a > 0, suppep Er supgee |[m(W, 0)|[41* < oo.
Assumption A.3. The empirical process v, () is asymptotically pp-equicontinuous on © uniformly
in F'eP.
Assumption A.4. The covariance kernel Qg (6,0') satisfies: for all F' € P,

lims—,0 SUP||(9,,0,) (62,04 <5 |2 (01, 01) — Qp(62,05)]] = 0.
Assumption A.5. Epm(W,0) is equicontinuous on © over F' € P. That is, limsosuppep
sup|jg_g||<s |[Erm(W,0) — Epm(W,6")|| = 0.
Assumption A.6. (i) k, — oo. (ii) 7, — 0.
Assumption A.7. (i) &, — oo and (ii) &, /n'/? — 0.
Assumption A.8. (i) For all F' € P and 6 € ©, Ap(0) — Al > cmin{5, infgeg ) 110 —0||} for
constants ¢, d > 0.

(ii) © is convex.

(iii) Epm(W, 0) is differentiable in 6 for all F € P and {Mp(0) := (0/00")Epim(W,0) : F € P}

is equicontinuous, i.e., ims_,o SUppep SUP p 5y.10-7)1<s HMF(Q) — MF@)H =0.

The following assumptions apply to a drifting sequence of distributions {F}, }n>1.
Assumption C.4. supgee ||Er, m(W,6) — m(0)|| — 0 for some nonrandom bounded continuous
RF-valued function m(-) on ©.

Assumption C.5. v,(-) :== (v'(),v3()") = G(-) := (G™(-),G(-)") as n — oo, where {G(0) :
6 € ©} is a mean zero R?*-valued Gaussian process with bounded continuous sample paths a.s.
and G™ (), G’ () € R*.

Assumption C.11. Q (-,-) —u Qoo(-, ) for some continuous R?**? -valued function Qu(,-) on
2.

Assumption C.12. A, A 5, =g Aa for some non-empty set Ap € S(O© X Rf“ioo]).

Assumption C.13. AZ"A £, O H AA min for some non-empty set AAmin € S(O X RF

[Eoo] ), where

{"n}n>1 is a sequence of positive constants for which 7, — oco.
The following assumptions apply to a drifting sequence of distributions {F}, }n>1.
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Assumption BC.3. {1} (-)[{Whyi}i<nn>1} = G(-) a.s.[Pg], where G(-) is as in Assumption C.5.
Assumption BC.4. A:;?Z,Fn —u A}, for some non-empty set A}, € S(Ox R%foo] x{1,...,k})
for some sequence of constants {n,},>1 that satisfies n, — oo and n,/7, — 0 for the constants
{Tn}n>1 that appear in (§w) and satisfy Assumption A.6(ii).

Assumption BC.5. @min,n > O (F,) wp—1 for constants {n,},>1 as in Assumptions BC.4
and C.13.

Assumption BC.6. AZ"}: ; —u A} for some non-empty set A7 € S(O©x RF

[£00]
1/2 50, and 0z, /ks — 0 for some v € (0,1)

) for some sequence
of constants {nr,}n>1 that satisfies nr, — oo, nr./n
for the constants {y, }»>1 that are employed in the definition of A? ,; and satisfy Assumption A.7.

Assumption BC.7. @mm’L’n C Ot (F,) wp—1 for constants {1, }n>1 as in Assumptions BC.6.

Assumption SLK. The sequence {F,},>1 is such that nl/QAi;j — —00.
Assumption SLK.1. The sequence {F},},>1 is such that 1imn%oon1/2dH(@min(Fn), @?/[R(Fn)) =
00.

Assumption MM. The sequence {F),},>1 is such that n1/2Ailgj 5 o0,
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32 Outline of Online Appendix D

Appendix D provides the following results.

Section provides an alternative interpretation of the identified set @M 1(F).

Section [34] proves Lemma that appears in Section

Section shows that when the “max” S function is employed, the SPUR test statistic is
equivalent to a recentered test statistic, as has been considered in Chernozhukov, Hong, and Tamer
(2007) for use with a correctly-specified model.

Section discusses extensions of the results of the paper to non-i.i.d. observations, to tests

with weighted moment inequalities, and to tests without the standard-deviation normalization.

33 An Alternative Interpretation of @MR(F)

Here we provide an alternative interpretation of the MR-identified set ©M%(F). We show that if
one allows for a large class of transformations of the inequality model that yield non-empty identified
sets, then the union of the identified sets for the transformations that minimize the distance between
the original model and the transformed model is ©ME(F). Furthermore, if ©M%(F) is a singleton,
as is often the case under identifiable misspecification, then @}WR(F ) equals the identified set
corresponding to each of these “minimal” transformations. These results also hold if the class of
transformations is restricted to nonnegative shift functions, which necessarily relax the original
model.

Consider two moment inequality models Epm(W,0) > 0 and Epmt(W,0) > 0. Define the

distance between the two models as

d(m, m") := sup | Epm(W, 0) — Epm' (W, 0)||
0cO

o (33.1)
where [-||, denotes the £o norm on RF.

A transformed version of the original model can always be written as m!(W,0) = m(W,0) +
t(W,0) for a transformation function t. Suppose supgeg ||Ert(W,0)||coc < o0. Let T(F) be the
set of transformation functions ¢ that make the identified set non-empty; let 7*(F') be the set of

transformation functions that minimize the distance between m and m! over t € T(F); and let



O (F) be the identified set corresponding to a transformation function ¢. That is,

T(F) := {t: Epm'(W,0) > 0 for some 6 € O},

T*(F) := argmin d(m,m"), and
tET(F)

On(F) := {0 € © : Epi(W,0) + Ept(W,0) > 0,). (33.2)
The next lemma shows that the union of the identified sets corresponding to t € T*(F) is O©ME(F).

Lemma 33.1 Suppose Assumption A.0 holds. Then, Uier+(p)On(F) = OYE(F).

Comment. If ©MF(F) is a singleton, then O (F) = OME(F) for all ¢t € T*(F). If the union is
restricted to nonnegative transformations t € 7*(F'), Lemma still holds.

34 Proof of Lemma [33.1

Proof of Lemma Assumption A.0 guarantees that the infimum in the definition of r%lf is
attained. Let t;(0) = Ept;(W, ), where t;(W,0) is the j element of ¢(W,0). We first show that

T(F) = {t € T(F) : supmax |t;(0)] = ri}lf} . (34.1)
9co J<k

For any t € T(F), suppose supgce max;j<g|t;(0)] < ri#f. Then, for §; € Op(F), we have { :=
max;j<|t;(0r)| < r2f and the constant function ¢(W,0) = t1;, satisfies © 171, 7 @, which contradicts
the definition of 7', Hence, supyco max;<y|t;(0)| > ri#f. Taking t(W,0) = ri#1,, this lower bound
is attained and we have min,c7(py supgeo max;<x|t;(0)| = rint,

The constant function t.(W, ) = ritf1; has t. € T*(F) and Oy, (F) = ©ME(F). Hence, it
suffices to show that ©,(F) C ©ME(F) for any t € T*(F). For any t € T*(F), we have ¢;(0) < riaf
for 7 < k for all 8 € © by . It follows that

@[t(F) 2:{9 €0: EFT%(W, 9) + EFt(VV, (9) > Ok}
C{0 € ©: Erm(W,0) + Ept(W,0) + (r®'1;, — Ept(W,0)) > 0,} = OME(F),  (34.2)

which concludes the proof. [



35 Recentered Test Statistics

An alternative to the SPUR test statistic defined in Section is a recentered test statistic,

such as considered in Chernozhukov, Hong, and Tamer (2007), which is defined to be

Sn,Recen(e) = Sn,Std(e) - }nf Sn,Std(g)u (351)
0cO
where S, s:q(0) := S(n/%m,(6), 0,(0)) is a “standard” test statistic, such as one considered in

Andrews and Soares (2010), as in with 7" = 0. The MR-identified set corresponding to the
recentered statistic is the set of # values that minimize the population version of the recentered
Statistic It depends on the choice of test statistic.

Chernozhukov, Hong, and Tamer (2007) consider recentered test statistics, but they do not
analyze their asymptotic properties under misspecification or under correct specification with drift-
ing sequences of distributions {F,},>1. Lemma below, combined with Section in online
Appendix A, shows that subsampling a recentered test statistic does not necessarily deliver correct
asymptotic size under model misspecification. In addition, it is not clear whether the application of
subsampling to recentered test statistics provides critical values that are uniformly asymptotically
valid in general under correct speciﬁcation@

When S, s:4(0) is a test statistic from Andrews and Soares (2010) with the function S equal
to Sy, see , we denote the recentered test statistic by Sun Rrecen(6). It is easy to show that the
MR-identified set corresponding to Sun, Recen(f) is the same as the MR-identified set in Section
On the other hand, if one employs a different S function in Sgrecen,n(0), the MR-identified set is
different.

When the function S employed by the SPUR test statistic S, (#) defined in is S4, we denote
the SPUR statistic by Sy (#). The following lemma shows that the recentered statistic Sun, recen ()
is identical to the S4,(0) SPUR statistic. That is, for the Sy function, the recentered statistic is

not an alternative to the SPUR statistic—it is the same.
Lemma 35.1 For any 0 € ©, Sip Recen(0) = San(0).

Comment. Section in online Appendix A shows that, for the function Sy, subsampling the

?The population version of the recentered statistic is S(Epm(W,0),2r(0)) — infg o S(Erpm(W,0), Q2 (0)), where
Qr(0) := Varrp(m(W;,0)).

53The reason is that, even under correct specification, the recentering term infge g Sn,sta(0) has a complicated
asymptotic distribution under drifting sequences of distributions (given by A (A) in Theorem b) when the re-
centered test is based on S in ) In consequence, the argument for the correct asymptotic size of the subsampling
test based on a test statistic without recentering that is given in Andrews and Guggenberger (2009) does not extend
to the case of the subsampling recentered test.



SPUR test statistic does not necessarily yield correct asymptotic size under model misspecification.

Given Lemma [35.1] this also is true for subsampling the recentered test statistic.

Proof of Lemma@ By 1i Fil = infgeo max;<j[My;(0)]—. Hence, for S = Sy, infy_g

Sn.sta(0) = nt/ 27inf In consequence,

Sin,Recen () = max [n” Qﬁnj(f))] — /2700 and
S _
Sin(0) = max |21 (0) + 2750 (35.2)

We claim: Sup, Recen(0) > 0 iff Sy, (6) > 0. This clearly holds if 7inf — 0, s0 suppose 7 > 0. In this
case, Sin Recen(0) > 0 iff —n1/2fanj(0) — n!/27t > 0 for some j < k iff Sy,(6) > 0, which proves

the claim. In addition, Sy, (6) > 0 because [z]_ > 0 for all z, and S, Recen () > 0 because 72 is

the infgecg of max;<y[my;(6)]—, which completes the proof. [

For recentered tests based on S not equal to Sy, one can determine the asymptotic distribution
of Sp Recen(n) under suitable drifting sequences {6,},>1 and {Fy,},>1 by altering the proof of
Theorem b). However, the resulting asymptotic distribution seems problematic because it is
not apparent how one can construct a critical value in an EGMS fashion that exploits the analogue

of the condition max;< b; > 0, which appears when S = Sy.

36 Extensions

36.1 Non-I1.I.D. Observations

The basic results in this paper are given under high-level conditions that allow for non-identically
distributed and/or clustered observations, as well as time series observations. For example, this is
true of Theorem and of Theoremin online Appendix A, which is the key ingredient to the
proof of Theorem In particular, provided the distributions F' of the observations are restricted
such that Assumptions C.5 and C.6 in Section as well as Assumption BC.3, which is stated
in Section in online Appendix B, can be verified for suitable subsequences {py }n>1 of {n},>1,
the rest of the proofs of the asymptotic level results go through.

For non-i.i.d. observations, the following changes are needed: the nonparametric i.i.d. bootstrap
defined just above needs to be changed (a) for clustered observations to a cluster-level
nonparametric i.i.d. bootstrap and (b) for time series observations to a block bootstrap or Markov
bootstrap, but (c¢) for independent non-identically distributed observations does not need to be

changed. With these changes, the misspecification index CI's and the SPUR1 and SPUR2 tests



and CS’s have correct asymptotic level (under conditions such that Assumptions C.5, C.6, and

BC.3 can be verified).

36.2 Weighted Moments

The weights used in the definition of the MR-identified set OME(F) in are uniform
weights. This follows from the 15 vector that appears in and . Non-uniform weights w :=
(Wi, ...,wy)’, where wj € [0, 00) for j < k, can be introduced by replacing 1 by w = (1 /w1, ..., 1/wg)’
in these equations, where 1/0 := co. Equivalently, one can define r;(0) := [w; Epm;(W,6)]— and
rr(0) = maxj<;rp;(0). The larger is w;, the more weight is placed on inequality j and the less
inequality j is relaxed in the MR-identified set under misspecification. For example, if one believes
that some key moment inequalities are correctly specified and one does not want these inequalities
to be relaxed under misspecification, then one can set the weights w; corresponding to these in-
equalities to be very large relative to the other weights, such as 1000 versus 1. If w; = 0, the jth
moment inequality is ignored.

The SPUR1 and SPUR2 tests and CS’s can be constructed with weights w. One replaces m,,;(6)
by w;my;(6) in the definition of 7,;(#) in , in , , and 7, and in the defini-
tion of ﬁnj(ﬁ) in . One replaces v}, ;,(0) by w;7;, ,,(0) in (4.18), (4.21), and (5.14)). One replaces
sAdnjB(H) by szAdnjB(G) in . One replaces nlﬂm;jb(o)/&;;jb(e) by wjnl/zm:;jb(Q)/E;‘;jb(H) in
the definitions of sd

anj (0) for a = 1,2,3 following , following l| and following 1)

respectively.

Provided wj € [0, 00) for all j < k and w; > 0 for some j < k, the asymptotic results concerning
the SPUR1 and SPUR2 tests and CS’s, i.e., Theorem as well as Theorem in online
Appendix A, go through for the weighted versions of these tests. The tests are invariant to the

scale of w.

36.3 Tests without the Standard-Deviation Normalization

In some scenarios, it may be desirable to define the MR-identified set ©MZ(F) in with-
out the standard deviation normalization of the moment functions—i.e., to define ©ME(F) with
m(W,0) in place of m(W, ). For example, in their study of demand based on quasilinear util-
ity, Allen and Rehbeck (2019) do not renormalize their moment inequality functions because the
moment functions are denominated in dollars, which makes the interpretation simple.

In this paper, a notationally-convenient equivalent way to describe non-normalized moments
is to redefine a%j(e) =1in Vi < k, V0 € ©. Then, m(W,0) = m(W, ). Correspondingly,
the non-normalized CI's CI, av(a), CI, ar(a), and CI, a(a) in Section |5 and SPUR tests and



CS’s in Sectlonlare defined as follows. One defines o j(Q) =1in , which yields m,;(§) =
Mpi(0) in ., ., -7-, ., and (5.11)). One defines 8*%(0) =1in 1) which
ylelds umb(e) 1= n'/2(m,;,(0) — M () in (4.17), (4.18), (4.21), (5.14), and (5.15), and yields
n! njb( )/ mb( ) = 1/anjb(G) in the definitions of sdy, ;;(0) for a = 2,3 following (4.21) and
following (4 , respectively. Lastly, one defines my, (W, 0) = 0x in (5.11), where 05, = (0, ...,0)" €

R, and Gg;f;(e) = (¢}, 0,)Q/2(8)Z, in the definition of sd,,jp(6) in £
With these changes, the asymptotic level results of Theorems [4.1] and [5.1] hold provided the

=2

assumptions imposed in the theorems are modified by taking o Fj(Q) 0,,;(0) =1 and the number

of moments finite in Assumption A.2 is reduced to 2 4+ a from 4 + a. In addition, the results of
Theorem and Lemma in online Appendix A for the set estimator ©,, also hold in the
non-normalized case with the same modifications.

Note that weighted moments also can be employed with non-normalized moments. In this case,

the changes outlined above for both of these scenarios need to be employed.

36.4 Alternative ¢(¢) Functions

The results of Theorems and and Corollary hold not just for tests and CS’s
based on the GMS function ¢(&) defined in , but for tests and CS’s based on any ¢(&) function
that satisfies Assumption A.5 in Andrews and Kwon (2019). See Andrews and Kwon (2019) for
the requisite adjustments to the proof of Theorem The adjustments for the other results are

analogous.
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