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7 Outline of Online Appendix A

References to sections with section numbers 6 or less refer to sections of the main paper. Sim-

ilarly, all equations, theorems, and lemmas with section numbers 6 or less refer to results in the

main paper.

Section 8 provides simulation results for the size and power of the misspecification index (MI),

SPUR1, and SPUR2 tests in misspecified and correctly-specified versions of two models. (The MI

test is the two-sided test obtained by inverting the MI CI CIn,�(↵) defined in (5.3).) The first

model is a lower/upper bound model. The second model is a missing data model. Section 8 also

assesses the sensitivity to the tuning parameters of the rejection probabilities of the two-sided MI

and SPUR2 tests under the null and alternative hypotheses in the lower/upper bound model.

Section 9 provides derivations for two formulae for the missing data model that are employed

in Section 8.

Section 10 concerns the empirical illustration in the main paper. It assesses the sensitivity of

the MI and SPUR2 CI’s to changes in the tuning parameters, provides simulated power results

for a simplified version of the model, shows how the moment inequalities in (6.2) are obtained,

and describes the initial values used in the optimization problems that deliver GMS and SPUR

projection CI’s.

Section 11 establishes the uniform consistency, under correct model specification and misspeci-

fication, of an estimator of the MR-identified set. Rate of convergence results for this set estimator

are also given using arguments similar to those in Chernozhukov, Hong, and Tamer (2007).

Section 12 shows, using the simple lower/upper model, that subsampling a SPUR test statistic

does not necessarily deliver correct asymptotic size under model misspecification.

We note that Appendix D of Andrews and Kwon (2022) provides some additional results: (i)

an alternative interpretation of the identified set ⇥MR
I (F ), (ii) the equivalence of the SPUR test

statistic to a recentered test statistic, as has been considered in Chernozhukov, Hong, and Tamer

(2007), when the “max” S function is employed, and (iii) extensions of the results of the paper

to non-i.i.d. observations, to tests with weighted moment inequalities, and to tests without the

standard-deviation normalization.

Let [x]� := max{�x, 0} (� 0) for x 2 R.

8 Simulation Results

In this section, we provide Monte Carlo simulation results that illustrate the performance of

the misspecification index tests, SPUR1 tests, and SPUR2 tests. When the model under consider-
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ation is correctly specified, we compare SPUR1 and SPUR2 tests to the standard GMS test. We

consider two simple models under various levels of misspecification (i.e., di↵erent values of rinfFn
).

All simulation results are based on 1,000 simulation repetitions, 500 bootstrap replications, a sam-

ple size of n = 250, n = ⌧n = (lnn)1/2, and S(·) = S1(·). The GMS function '(·) employed is

'(⇠) = 11(⇠j > 1) for j  k. The significance level is fixed at ↵ = .05 with ↵1 = .005 and ↵2 = .045

for the SPUR2 test.

8.1 Lower/Upper Bound Model

8.1.1 The Model

We consider a simple model where the means of the observations impose lower and upper bounds

on a scalar parameter. The data {Wi}in are i.i.d. with Wi = (Wi1, . . . ,Wik)0 ⇠ N(µ, Ik), where

µ = (µ1, . . . , µk)0 2 Rk and Ik denotes the k⇥ k identity matrix. We consider k = 2, 4, and 8. The

parameter space ⇥ is taken to be [�20, 20]. We consider various configurations of µ. When rinfF > 0,

the MR-identified set is always a singleton in this model, but it may have di↵erent lengths when

rinfF = 0. Accordingly, when rinfF = 0 we consider configurations that correspond to di↵erent lengths

of the MR-identified set.

For k = 2, the population moment inequalities are

EFWi1  ✓ and ✓  EFWi2. (8.1)

The model is identifiably misspecified (i.e., ⇥I(F ) is empty) if and only if µ1 > µ2. In this model,

�inf

F = (µ1�µ2)/2 and rinfF = [µ1�µ2]+/2, where [x]+ := max{x, 0}. We take µ = (r,�r)0 for each

r 2 {.5, 1, 2, 5} as the misspecified cases. We have rinfF = r and ⇥MR
I (F ) = {0} in these cases. For

the correctly-specified cases, we take µ = (�`, 0)0 for each ` 2 {0, .5, 1, 2}. Here the MR-identified

set is ⇥MR
I (F ) = [�`, 0], which has length `, and �inf

F = �`/2.

For k = 4, the moment inequalities are

EFWi1  ✓, EFWi2  ✓, ✓  EFWi3, and ✓  EFWi4. (8.2)

Identifiable misspecification arises if and only if max{µ1, µ2} > min{µ3, µ4}. In this model, �inf

F =

(max{µ1, µ2}�min{µ3, µ4})/2 and rinfF = [max{µ1, µ2}�min{µ3, µ4}]+/2. For k = 4,many di↵erent

configurations of µ are possible for a given value of rinfF > 0 or a given length of the MR-identified

set when rinfF = 0. Accordingly, we consider several scenarios for k = 4. For the misspecified cases,

we consider five di↵erent scenarios: “binding,” “almost binding,” “somewhat slack,” “very slack,”
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and “slack/almost binding.”28 In each scenario, we consider rinfF = .5 and 1. Regardless of the

scenario and the value of rinfF , the MR-identified set is ⇥MR
I (F ) = {0}. For the correctly-specified

cases and k = 4, we consider the same five scenarios as for the misspecified cases. However, the

definitions are slightly di↵erent in the correctly-specified cases.29 The MR-identified set takes the

form ⇥MR
I (F ) = [�`, 0] for each ` 2 {0, .5, 1}.

For k = 8, the moment inequalities are

EFWij  ✓ for 1  j  4 and

✓  EFWij for 5  j  8. (8.3)

The definition of each scenario is analogous to the k = 4 cases, with each entry repeated twice.

That is, if µ4 = (µ1, µ2, µ3, µ4)0 2 R4 is the mean vector used under some scenario for k = 4, then

µ8 = (µ1, µ1, µ2, µ2, µ3, µ3, µ4, µ4)0 2 R8 is the mean vector used in the same scenario for k = 8.

8.1.2 Rejection Probabilities of the Misspecification Index Test and the

SPUR1 and SPUR2 Tests

Figure 8.1 gives the simulated rejection probabilities of nominal .05 two-sided tests concern-

ing the misspecification index �inf

F for k = 2. Each plot shows, for di↵erent values of �inf

F 2

{�5,�2,�1,�.5, , 0, .5, 1, 2, 5}, the rejection probabilities of the MI test of H0 : �inf

F = �0 versus

H1 : �inf

F 6= �0 for a range of �0 values and a fixed �inf

F value.30 The two-sided MI test rejects

H0 if �0 /2 CIn,�(.05), which is defined in (5.3). Figure 8.2 gives simulation results for the MI test

for k = 4 under the “binding” and “very slack” scenarios, which are the two extreme scenarios.

For brevity, the MI test results for the “almost binding,” “somewhat slack,” and “slack/almost

binding” scenarios are not reported because they lie between the two extreme scenarios and the

results for the latter two scenarios do not di↵er very much. Similarly, and for the same reasons,

for k = 8, Figure 8.3 gives simulation results for the MI test for the “binding” and “very slack”

scenarios only, which are the two extreme scenarios.

28For given r > 0, the mean vectors µ in the five misspecified scenarios are (i) “binding”: µ = (r, r,�r,�r)0, (ii)
“almost binding”: µ = (r, r � .1,�r + .1,�r)0, (iii) “somewhat slack”: µ = (r, r � .5,�r + .5,�r)0, (iv) “very slack”:
µ = (r, r� 1,�r+1,�r)0, and (v) “slack/almost binding”: µ = (r, r� .1,�r+1,�r)0. In each scenario, rinfF = r and
the MR-identified set is ⇥MR

I (F ) = {0}.
29For given ` > 0, the mean vectors µ in the five correctly-specified scenarios are (i) “binding”: µ = (�`,�`, 0, 0)0,

(ii) “almost binding”: µ = (�` � .1,�`, 0, .1)0, (iii) “somewhat slack”: µ = (�` � .5,�`, 0, .5)0, (iv) “very slack”:
µ = (�` � 1,�`, 0, 1)0, and (v) “slack/almost binding”: µ = (�` � 1,�`, 0, .1)0. In all scenarios, ⇥MR

I (F ) = [�`, 0]
and the MR-identified set has length `.

30That is, Figure 8.1 reports power for a fixed true �inf

F value and the null value being �0 for a range of �0 values.
This di↵ers from, but is no less informative than, a conventional power function that considers a fixed null value and
a range of true alternative values.
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Figure 8.1: Rejection probabilities of tests concerning the misspecification index �inf

F for k = 2.
Each plot shows, for di↵erent values of �inf

F , the rejection probabilities of the nominal .05 two-sided
misspecification index test of the null hypothesis H0 : �inf

F = �0 for a range of �0 values and a
fixed �inf

F value. The two-sided misspecification index test rejects H0 if �0 /2 CIn,�(.05), which is
defined in (4.3).

Figures 8.1–8.3 show that the rejection probabilities of the MI test are well behaved. They

monotonically increase in |�0 ��inf

F | to 1 for positive values of �0 ��inf

F and negative values of

�0 � �inf

F . In several scenarios, the plots are relatively flat to the immediate right of the point

�0 � �inf

F = 0. This implies that it is di�cult to reject the null hypothesis of a low level of

misspecification when the truth is a correctly-specified singleton identified set. For the cases with

k = 4 and 8, power is highest in the “binding” scenarios, but the di↵erences across the di↵erent

slackness scenarios are not very large. The MI test has noticeably higher power for �inf

F close to

zero, i.e., for �inf

F 2 {�1,�.5, 0, .5, 1}, than for large |�inf

F |, i.e., for �inf

F 2 {�5,�2, 2, 5}. This is

advantageous when one is interested in determining whether �inf

F is nonnegative versus positive.

Looking at the rejection probabilities for �0 ��inf

F = 0, we see that the MI test has correct size,

but under-rejects with the null rejection probabilities being close to 0 in the cases considered.

Figure 8.4 gives the simulated rejection probabilities, i.e., power, of the SPUR1 and SPUR2

tests for a range of null values ✓0 � 0 for the misspecified cases for k = 2.31 Figure 8.5 provides the

simulated rejection probabilities of the SPUR1, SPUR2, and standard GMS tests in the correctly-

specified models for k = 2 for fixed ⇥MR
I (F ) = [�`, 0] for a range of null hypothesis values ✓0 � 0

for ` 2 {0, .5, 1, 2}. Figure 8.6 gives the simulation results for the SPUR1 and SPUR2 tests for the

31That is, Figure 8.4 reports power for the true ✓ being 0, which is in ⇥I(F ) = {0}, and the null being ✓0 > 0 for
a range of ✓0 values. This di↵ers from, but is no less informative than, a conventional power function that considers
a fixed null value and a range of true alternative values.
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Figure 8.2: Rejection probabilities of tests concerning the misspecification index �inf

F for k = 4.
Each plot shows, for di↵erent values of �inf

F , the rejection probabilities of the nominal .05 two-sided
misspecification index test of the null hypothesis H0 : �inf

F = �0 for a range of �0 values and a
fixed �inf

F value. The two-sided misspecification index test rejects H0 if �0 /2 CIn,�(.05), which is
defined in (4.3). Results are given for the binding and very slack scenarios.
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Figure 8.3: Rejection probabilities of tests concerning the misspecification index �inf

F for k = 8.
Each plot shows, for di↵erent values of �inf

F , the rejection probabilities of the nominal .05 two-sided
misspecification index test of the null hypothesis H0 : �inf

F = �0 for a range of �0 values and a
fixed �inf

F value. The two-sided misspecification index test rejects H0 if �0 /2 CIn,�(.05), which is
defined in (4.3). Results are given for the binding and very slack scenarios.
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Figure 8.4: Rejection probabilities of tests concerning ✓ for misspecified cases for k = 2. Each
plot shows, for di↵erent values of rinfF , the rejection probabilities of the nominal .05 SPUR1 and
SPUR2 tests for the null hypothesis H0 : ✓ = ✓0 for a range of ✓0 values and fixed identified set
⇥I(F ) = {0}.

misspecified cases for k = 4 in the “binding,” “almost binding,” “somewhat slack,” “very slack,”

and “slack/almost binding” scenarios. Figure 8.7 gives the corresponding results for the correctly-

specified models for k = 4. Figures 8.8 and 8.9 give the simulation results for the SPUR1 and

SPUR2 tests for k = 8 for all five slackness scenarios in the misspecified and correctly specified

scenarios, respectively.

Figures 8.4, 8.6, and 8.8 show that the performance of the two tests, SPUR1 and SPUR2, is

quite similar under misspecification (i.e., rinfF > 0), which is what we expect given the discussion in

Section 4.2. Looking at the rejection probability at ✓0 = 0, we see that both tests have correct size,

but under-reject with the null rejection probabilities being close to 0. The rejection probabilities

increase to 1 fairly quickly as the distance between the null value and the MR-identified set increases.

The tests perform better in terms of power when rinfF is smaller, but they perform reasonably well

even when rinfF is as large as 5, which is five times the standard deviation of the moment functions.

Additionally, for the cases with k = 4 and 8, we see that the performance of the tests does not

di↵er much across the di↵erent scenarios.

For the correctly-specified cases, we focus on the comparison of the SPUR1 and SPUR2 tests

with the standard GMS test, which is known to perform well in such cases. From the discussion in

Section 4.2, we expect the SPUR2 and standard GMS tests to exhibit similar performance when

the length of the identified set is large enough. Indeed, in Figure 8.5, we see that when the length
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Figure 8.5: Rejection probabilities of tests concerning ✓ for correctly specified cases for k = 2. Each
plot shows, for di↵erent lengths ` of the identified set, the rejection probabilities of the nominal
.05 SPUR1, SPUR2, and standard GMS tests for the null hypothesis H0 : ✓ = ✓0 for a range of ✓0
values and identified set ⇥I(F ) = [�`, 0].

of the identified set is .5 the rejection probabilities of the two tests are very close to each other, and

when the length is greater than .5 all three tests are essentially indistinguishable. We can also see

that the SPUR2 test catches up to the standard GMS test under shorter identified sets than the

SPUR1 test does, which shows its adaptive nature. However, when the identified set is a singleton,

the SPUR1 and SPUR2 tests are more conservative than the standard GMS test under the null

and have lower power over a wide range of positive ✓0 values. Essentially the same occurs when

k = 4. That is, for each of the scenarios, the SPUR1 and SPUR2 tests are more conservative when

the identified set has length 0, the SPUR2 test performs similarly to the standard GMS test when

the length is .5, and all three tests are indistinguishable when the length is greater than .5. Again,

this exhibits the adaptive nature of the SPUR2 test. The pattern for k = 8 is similar, although

there is a larger gap between the power of the SPUR2 and GMS tests. When k = 4 and 8, the
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Figure 8.6: Rejection probabilities of tests concerning ✓ for misspecified cases for k = 4. Each plot
shows, under di↵erent scenarios, the rejection probabilities of the nominal .05 SPUR1 and SPUR2
tests for the null hypothesis H0 : ✓ = ✓0 for a range of ✓0 values, identified set ⇥I(F ) = {0}, and
two di↵erent values of rinfF .
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Figure 8.7: Rejection probabilities of tests concerning ✓ for correctly specified cases for k = 4. Each
plot shows, under di↵erent scenarios, the rejection probabilities of the nominal .05 SPUR1, SPUR2,
and standard GMS tests for the null hypothesis H0 : ✓ = ✓0 for a range of ✓0 values and di↵erent
lengths ` of the identified set ⇥I(F ) = [�`, 0].
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Figure 8.8: Rejection probabilities of tests concerning ✓ for misspecified cases for k = 8. Each plot
shows, under di↵erent scenarios, the rejection probabilities of the nominal .05 SPUR1 and SPUR2
tests for the null hypothesis H0 : ✓ = ✓0 for a range of ✓0 values, identified set ⇥I(F ) = {0}, and
two di↵erent values of rinfF .
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Figure 8.9: Rejection probabilities of tests concerning ✓ for correctly specified cases for k = 8. Each
plot shows, under di↵erent scenarios, the rejection probabilities of the nominal .05 SPUR1, SPUR2
and standard GMS tests for the null hypothesis H0 : ✓ = ✓0 for a range of ✓0 values and di↵erent
lengths ` of the identified set ⇥I(F ) = [�`, 0].
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discrepancy between the standard GMS test and the SPUR1 and SPUR2 tests is largest in the

“binding” scenario.

In sum, (i) when the model is misspecified, the SPUR1 and SPUR2 tests perform quite similarly,

with their rejection probabilities reaching 1 fairly quickly as the distance between the null value

and the MR-identified set increases, and (ii) when the model is correctly specified, the SPUR2 test

performs similarly to the GMS test provided the identified set is not too short, and likewise for the

SPUR1 test for somewhat longer identified sets. Thus, the SPUR2 test performs better than the

SPUR1 test when the identified set is small, but not too small.

8.1.3 Sensitivity to Tuning Parameters

Now, we assess the sensitivity to the tuning parameters of the rejection probabilities of the

two-sided MI and SPUR2 tests under the null and alternative hypotheses. The baseline values for

the tuning parameters are: ⌧n,base = n,base = (lnn)1/2, ↵1,base = .005 (when ↵ = .05), ◆base = 10�6,

and Bbase = 1000. We alter these tuning parameters one at a time. For ⌧n, we consider c⌧⌧n,base

for c⌧ = .5, 2; for n, we consider cn,base for c = .5, 2; for ↵1, we consider ↵1 = .0025, .01; for ◆,

which a↵ects both the standard deviation in (4.16) and the quantile, see the paragraph containing

(4.15), we alter the value of ◆ separately using ◆sd = 0.5, 10�8 and ◆q = 0.0, 0.01; and for B, we

consider B = 500, 2000. The changes in the tuning parameters that we consider are relatively large.

In most cases, they correspond to halving or doubling the value.

We consider 40 di↵erent data generating processes (DGP’s) for the MI test results: 8 DGP’s

have k = 2 moment inequalities, 16 have k = 4, and 16 have k = 8; 20 DGP’s are correctly specified

(for which �inf 2 {�5,�1,�.5, 0}) and 20 DGP’s are misspecified with �inf 2 {.5, 1, 2, 5}; and 25

DGP’s have a singleton MR-identified set and 15 DGP’s have an MR-identified set with positive

length). For k = 4, 8, we consider two di↵erent scenarios defined above: b=“binding” and vs=“very

slack.”

Tables 8.1 and 8.2 provide the results for the MI test. The nominal .05 two-sided MI test rejects

H0 : �inf

F = �0 if �0 /2 CIn,�(.05). Each entry in these tables shows the di↵erence in the average

rejection probabilities between a given change in a tuning parameter and the baseline value. The

average is taken over 1,000 (equally spaced) values of �0 such that �0 � �inf

F 2 [�1, 1]. For the

tuning parameters ⌧n, ◆sd, ◆q, and B, Tables 8.1 and 8.2 show that there is very little sensitivity of

the rejection probabilities. For these tuning parameters, the di↵erences are .00 in 261 cases and .01

in absolute value in the remaining 59 cases. For the tuning parameter n, there is some sensitivity,

but it is relatively small in most cases. The di↵erences are .03 or less in absolute value in 65 of 80

cases and .06 or less in absolute value in 73 of 80 cases. Di↵erences in rejection probabilities that
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Table 8.1: Tuning parameter sensitivity: Rejection probability di↵erences for the misspecification
index test based on the two-sided CI for the misspecification index.

c⌧=0.5 c⌧=2 c=0.5 c=2 ◆sd=0.5 ◆sd = 10�8

k=2, �inf

F =-5 0.01 �0.01 0.04 �0.03 0.00 0.00
k=2, �inf

F =-1 0.00 0.00 0.01 �0.01 0.00 0.00
k=2, �inf

F =-0.5 0.00 0.00 0.01 0.00 0.00 0.00
k=2, �inf

F =0 0.00 0.00 0.01 0.00 0.00 0.00
k=2, �inf

F =0.5 0.00 0.00 0.01 0.00 0.00 0.00
k=2, �inf

F =1 0.00 0.00 0.01 0.00 0.00 0.00
k=2, �inf

F =2 0.01 0.00 0.01 0.00 0.00 0.00
k=2, �inf

F =5 0.01 �0.01 0.02 �0.01 0.00 0.00
k=4, �inf

F =-5, b 0.01 �0.01 0.08 �0.06 0.00 0.00
k=4, �inf

F =-5, vs 0.01 �0.01 0.05 �0.10 0.00 0.00
k=4, �inf

F =-1, b 0.00 0.00 0.02 �0.02 0.00 0.00
k=4, �inf

F =-1, vs 0.00 0.00 0.01 0.00 0.00 0.00
k=4, �inf

F =-0.5, b 0.00 0.00 0.02 �0.01 0.00 0.00
k=4, �inf

F =-0.5, vs 0.00 0.00 0.01 0.00 0.00 0.00
k=4, �inf

F =0, b 0.00 0.00 0.02 �0.01 0.00 0.00
k=4, �inf

F =0, vs 0.00 0.00 0.01 0.00 0.00 0.00
k=4, �inf

F =0.5, b 0.00 0.00 0.02 �0.01 0.00 0.00
k=4, �inf

F =0.5, vs 0.00 0.00 0.01 0.00 0.00 0.00
k=4, �inf

F =1, b 0.00 0.00 0.02 �0.01 0.00 0.00
k=4, �inf

F =1, vs 0.00 0.00 0.01 0.00 0.00 0.00
k=4, �inf

F =2, b 0.00 0.00 0.03 �0.01 0.00 0.00
k=4, �inf

F =2, vs 0.01 0.00 0.01 0.00 0.00 0.00
k=4, �inf

F =5, b 0.01 �0.01 0.06 �0.03 0.00 0.00
k=4, �inf

F =5, vs 0.01 �0.01 0.03 �0.02 0.00 0.00
k=8, �inf

F =-5, b 0.01 0.00 0.11 �0.08 0.00 0.00
k=8, �inf

F =-5, vs 0.01 0.00 0.09 �0.13 0.00 0.00
k=8, �inf

F =-1, b 0.00 0.00 0.04 �0.03 0.00 0.00
k=8, �inf

F =-1, vs 0.00 0.00 0.02 �0.01 0.00 0.00
k=8, �inf

F =-0.5, b 0.00 0.00 0.03 �0.02 0.00 0.00
k=8, �inf

F =-0.5, vs 0.00 0.00 0.02 �0.01 0.00 0.00
k=8, �inf

F =0, b 0.00 0.00 0.03 �0.02 0.00 0.00
k=8, �inf

F =0, vs 0.00 0.00 0.02 �0.01 0.00 0.00
k=8, �inf

F =0.5, b 0.00 0.00 0.03 �0.01 0.00 0.00
k=8, �inf

F =0.5, vs 0.00 0.00 0.02 �0.01 0.00 0.00
k=8, �inf

F =1, b 0.00 0.00 0.03 �0.02 0.00 0.00
k=8, �inf

F =1, vs 0.00 0.00 0.02 �0.01 0.00 0.00
k=8, �inf

F =2, b 0.00 0.00 0.04 �0.02 0.00 0.00
k=8, �inf

F =2, vs 0.00 0.00 0.03 �0.01 0.00 0.00
k=8, �inf

F =5, b 0.01 0.00 0.09 �0.04 0.00 0.00
k=8, �inf

F =5, vs 0.01 �0.01 0.06 �0.03 0.00 0.00
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Table 8.2: Tuning parameter sensitivity: Rejection probability di↵erences for the misspecification
index test based on the two-sided CI for the misspecification index (continued).

◆q=0 ◆q=0.01 B=500 B=2,000

k=2, �inf

F =-5 0.00 �0.01 0.00 0.00
k=2, �inf

F =-1 0.00 �0.01 0.00 0.00
k=2, �inf

F =-0.5 0.00 �0.01 0.00 0.00
k=2, �inf

F =0 0.00 �0.01 0.00 0.00
k=2, �inf

F =0.5 0.00 �0.01 0.00 0.00
k=2, �inf

F =1 0.00 �0.01 0.00 0.00
k=2, �inf

F =2 0.00 �0.01 0.00 0.00
k=2, �inf

F =5 0.00 �0.01 0.00 0.00
k=4, �inf

F =-5, b 0.00 �0.01 0.00 0.00
k=4, �inf

F =-5, vs 0.00 �0.01 0.00 0.00
k=4, �inf

F =-1, b 0.00 �0.01 0.00 0.00
k=4, �inf

F =-1, vs 0.00 �0.01 0.00 0.00
k=4, �inf

F =-0.5, b 0.00 �0.01 0.00 0.00
k=4, �inf

F =-0.5, vs 0.00 �0.01 0.00 0.00
k=4, �inf

F =0, b 0.00 �0.01 0.00 0.00
k=4, �inf

F =0, vs 0.00 �0.01 0.00 0.00
k=4, �inf

F =0.5, b 0.00 �0.01 0.00 0.00
k=4, �inf

F =0.5, vs 0.00 �0.01 0.00 0.00
k=4, �inf

F =1, b 0.00 �0.01 0.00 0.00
k=4, �inf

F =1, vs 0.00 �0.01 0.00 0.00
k=4, �inf

F =2, b 0.00 �0.01 0.00 0.00
k=4, �inf

F =2, vs 0.00 �0.01 0.00 0.00
k=4, �inf

F =5, b 0.00 �0.01 0.00 0.00
k=4, �inf

F =5, vs 0.00 �0.01 0.00 0.00
k=8, �inf

F =-5, b 0.00 �0.01 0.00 0.00
k=8, �inf

F =-5, vs 0.00 �0.01 0.00 0.00
k=8, �inf

F =-1, b 0.00 �0.01 0.00 0.00
k=8, �inf

F =-1, vs 0.00 �0.01 0.00 0.00
k=8, �inf

F =-0.5, b 0.00 �0.01 0.00 0.00
k=8, �inf

F =-0.5, vs 0.00 �0.01 0.00 0.00
k=8, �inf

F =0, b 0.00 �0.01 0.00 0.00
k=8, �inf

F =0, vs 0.00 �0.01 0.00 0.00
k=8, �inf

F =0.5, b 0.00 �0.01 0.00 0.00
k=8, �inf

F =0.5, vs 0.00 �0.01 0.00 0.00
k=8, �inf

F =1, b 0.00 �0.01 0.00 0.00
k=8, �inf

F =1, vs 0.00 �0.01 0.00 0.00
k=8, �inf

F =2, b 0.00 �0.01 0.00 0.00
k=8, �inf

F =2, vs 0.00 �0.01 0.00 0.00
k=8, �inf

F =5, b 0.00 �0.01 0.00 0.00
k=8, �inf

F =5, vs 0.00 �0.01 0.00 0.00
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are .007 or greater in absolute value are highlighted in boldface. There are 7 out of 80 cases for

c = .5, 2 in boldface.

Next, we assess the sensitivity to the tuning parameters of the rejection probabilities of the

SPUR2 test under the null and alternative hypotheses. We consider 33 di↵erent DGP’s for the

SPUR2 test results: 8 DGP’s have k = 2 moment inequalities and 25 have k = 4; 19 DGP’s

are correctly specified (for which r := rinf = 0) and 14 DGP’s are misspecified with r = rinf 2

{.5, 1, 2}; and 20 DGP’s have a point-identified set (i.e., length=0) and 13 DGP’s have a non-

degenerate identified set (i.e., length 2 {.5, 1, 2}). For k = 4, we consider the five di↵erent scenarios

defined above: b=“binding,” ab=“almost binding,” ss=“somewhat slack,” vs=“very slack,” and

sab=“slack/almost binding.

In Tables 8.3-8.6, we report the di↵erences between the rejection probability of the SPUR2 test

based on the altered tuning parameter value and the rejection probability based on the baseline

tuning parameter value for each DGP. The null rejection probabilities considered are those for

the case where the null value ✓0 = 0 is on the boundary of the MR-identified set. For rejection

probabilities under the alternative hypothesis, we take the true value of ✓ to be 0 and report

averages of the rejection probabilities over null ✓0 values in the interval [0, .3], which corresponds

to the relevant range of the rejection probabilities.

Tables 8.3 and 8.4 report null rejection probability di↵erences. They show that there is very

little sensitivity of the null rejection probabilities to the changes in ⌧n, ↵1, ◆sd, ◆q, and B. All values

are .005 or less in absolute value, and all but 24 out of 330 are .002 or less in absolute value. There

is more sensitivity in Tables 8.3 and 8.4 to n than the other tuning parameters. There are 47 out

of 66 cases that are .005 or less in absolute value. Di↵erences in rejection probabilities that are .010

or greater in absolute value are highlighted in boldface. There are 10 out of 66 cases for c = .5, 2

in boldface. Eight of these correspond to c⌧ = .5. In consequence, we recommend not using a n

value as small as .5(lnn)1/2. For c = 2, only 5 out of 33 cases exceed .005 in absolute value, with

a maximum of .015. So, the null rejection probabilities are not very sensitive to a doubling of the

value of n.

The results for the average rejection probabilities under the alternative hypothesis are reported

in Tables 8.5 and 8.6. For the tuning parameters ⌧n, ↵1, ◆sd, ◆q, and B, the results are similar to

those in Tables 8.3 and 8.4. That is, the average rejection probability di↵erences are small. All

are .02 or less in absolute value, and all but 10 out of 330 are .00 or .01 in absolute value. For

n, the average di↵erences in some cases are substantially larger. Di↵erences that exceed .05 are

highlighted in boldface. There are 39 out of 66 values for c = .5, 2 in boldface. The higher level

of sensitivity to n occurs in the DGP’s that have point-identified sets. Decreasing n increases
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Table 8.3: Tuning parameter sensitivity: SPUR2 null rejection probability comparisons with base-
line.

DGP c⌧=0.5 c⌧=2 c=0.5 c=2 ↵2=0.0475 ↵2=0.04

k=2, r=0, length=0 0.000 0.000 0.001 -0.001 0.000 0.000
k=2, r=0, length=0.5 0.005 0.000 0.011 -0.002 -0.002 0.001
k=2, r=0, length=1 0.000 0.000 0.000 0.000 0.001 -0.004
k=2, r=0, length=2 0.000 0.000 0.000 0.000 0.001 -0.004
k=2, r=0.5, length=0 0.000 0.000 0.002 -0.001 0.000 0.000
k=2, r=1, length=0 0.000 0.000 0.007 0.000 0.000 0.000
k=2, r=2, length=0 0.000 0.000 0.005 0.000 0.000 0.000
k=2, r=5, length=0 0.000 0.000 0.006 -0.001 0.000 -0.001
k=4, r=0, length=0, b 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=0, length=0, ab 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=0, length=0, ss 0.000 0.000 0.001 -0.001 0.000 0.000
k=4, r=0, length=0, vs 0.000 0.000 0.001 -0.001 0.000 0.000
k=4, r=0, length=0, sab 0.000 0.000 0.000 -0.001 0.000 0.000
k=4, r=0, length=0.5, b 0.001 0.000 0.023 -0.015 -0.005 0.002
k=4, r=0, length=0.5, ab 0.000 0.000 0.022 -0.011 0.000 -0.002
k=4, r=0, length=0.5, ss 0.000 0.000 0.014 -0.005 -0.003 0.004
k=4, r=0, length=0.5, vs 0.000 0.000 0.014 -0.004 -0.003 0.004
k=4, r=0, length=0.5, sab 0.000 0.000 0.021 -0.009 0.002 -0.001
k=4, r=0, length=1, b 0.000 0.000 0.002 0.000 0.003 -0.002
k=4, r=0, length=1, ab 0.000 0.000 0.015 -0.007 0.003 -0.003
k=4, r=0, length=1, ss 0.000 0.000 0.000 0.000 0.001 -0.005
k=4, r=0, length=1, vs 0.000 0.000 0.000 0.000 0.001 -0.005
k=4, r=0, length=1, sab 0.000 0.000 0.015 -0.007 0.003 -0.003
k=4, r=0.5, length=0, b 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=0.5, length=0, ab 0.000 0.000 0.002 0.000 0.000 0.000
k=4, r=0.5, length=0, ss 0.000 0.000 0.008 0.000 0.000 0.000
k=4, r=0.5, length=0, vs 0.000 0.000 0.008 0.000 0.000 0.000
k=4, r=0.5, length=0, sab 0.000 0.000 0.005 0.000 0.000 0.000
k=4, r=1, length=0, b 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=1, length=0, ab 0.000 0.000 0.001 0.000 0.000 0.000
k=4, r=1, length=0, ss 0.000 0.000 0.004 -0.001 0.000 -0.001
k=4, r=1, length=0, vs 0.000 0.000 0.004 -0.001 0.000 -0.001
k=4, r=1, length=0, sab 0.000 0.000 0.002 -0.001 0.000 -0.001

power (and the null rejection probabilities), whereas increasing n decreases power (and the null

rejection probabilities). The recommended value of n aims to achieve high power subject to the

null rejection probability being less than or equal to ↵.
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Table 8.4: Tuning parameter sensitivity: SPUR2 null rejection probability comparisons with base-
line (continued).

DGP ◆sd=0.5 ◆sd=10�8 ◆q=0 ◆q=0.01 B=500 B=2,000

k=2, r=0, length=0 0.000 0.000 0.000 0.000 0.000 0.000
k=2, r=0, length=0.5 -0.001 0.000 0.000 -0.002 -0.001 -0.002
k=2, r=0, length=1 0.000 0.000 0.000 0.000 -0.002 -0.001
k=2, r=0, length=2 0.000 0.000 0.000 0.000 -0.002 -0.001
k=2, r=0.5, length=0 0.000 0.000 0.000 0.000 0.000 0.000
k=2, r=1, length=0 0.000 0.000 0.000 0.000 0.000 0.000
k=2, r=2, length=0 0.000 0.000 0.000 0.000 0.001 0.001
k=2, r=5, length=0 0.000 0.000 0.000 0.000 0.001 0.000
k=4, r=0, length=0, b 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=0, length=0, ab 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=0, length=0, ss 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=0, length=0, vs 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=0, length=0, sab 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=0, length=0.5, b -0.001 0.000 0.000 -0.005 0.000 -0.003
k=4, r=0, length=0.5, ab -0.001 0.000 0.000 -0.001 0.000 -0.001
k=4, r=0, length=0.5, ss -0.001 0.000 0.000 -0.004 0.002 -0.003
k=4, r=0, length=0.5, vs -0.001 0.000 0.000 -0.004 0.002 -0.003
k=4, r=0, length=0.5, sab -0.001 0.000 0.000 -0.001 0.000 -0.001
k=4, r=0, length=1, b 0.000 0.000 0.000 0.000 -0.003 0.001
k=4, r=0, length=1, ab 0.000 0.000 0.000 0.000 0.001 0.000
k=4, r=0, length=1, ss 0.000 0.000 0.000 0.000 0.002 -0.003
k=4, r=0, length=1, vs 0.000 0.000 0.000 0.000 0.002 -0.003
k=4, r=0, length=1, sab 0.000 0.000 0.000 0.000 0.001 0.000
k=4, r=0.5, length=0, b 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=0.5, length=0, ab 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=0.5, length=0, ss 0.000 0.000 0.000 0.000 0.001 0.001
k=4, r=0.5, length=0, vs 0.000 0.000 0.000 0.000 0.001 0.001
k=4, r=0.5, length=0, sab 0.000 0.000 0.000 0.000 0.001 0.001
k=4, r=1, length=0, b 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=1, length=0, ab 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=1, length=0, ss 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=1, length=0, vs 0.000 0.000 0.000 0.000 0.000 0.000
k=4, r=1, length=0, sab 0.000 0.000 0.000 0.000 0.000 0.000
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Table 8.5: Tuning parameter sensitivity: SPUR2 average power comparisons with baseline.

DGP c⌧=0.5 c⌧=2 c=0.5 c=2 ↵2=0.0475 ↵2=0.04

k=2, r=0, length=0 0.00 0.01 0.07 -0.09 0.01 -0.02
k=2, r=0, length=0.5 0.00 0.00 0.01 -0.01 0.00 -0.01
k=2, r=0, length=1 0.00 0.00 0.00 0.00 0.01 -0.01
k=2, r=0, length=2 0.00 0.00 0.00 0.00 0.01 -0.01
k=2, r=0.5, length=0 0.00 0.00 0.12 -0.09 0.01 -0.02
k=2, r=1, length=0 0.00 0.00 0.13 -0.09 0.01 -0.02
k=2, r=2, length=0 0.00 0.00 0.13 -0.07 0.01 -0.02
k=2, r=5, length=0 0.00 0.00 0.03 -0.01 0.00 0.00
k=4, r=0, length=0, b 0.00 0.01 0.15 -0.07 0.00 -0.01
k=4, r=0, length=0, ab 0.00 0.01 0.15 -0.09 0.01 -0.01
k=4, r=0, length=0, ss 0.00 0.01 0.07 -0.11 0.01 -0.01
k=4, r=0, length=0, vs 0.00 0.01 0.07 -0.09 0.01 -0.01
k=4, r=0, length=0, sab 0.00 0.01 0.14 -0.07 0.01 -0.01
k=4, r=0, length=0.5, b 0.00 0.00 0.03 -0.06 -0.01 0.00
k=4, r=0, length=0.5, ab 0.00 0.00 0.02 -0.04 0.00 0.00
k=4, r=0, length=0.5, ss 0.00 0.00 0.01 -0.02 0.00 -0.01
k=4, r=0, length=0.5, vs 0.00 0.00 0.01 -0.01 0.00 -0.01
k=4, r=0, length=0.5, sab 0.00 0.00 0.02 -0.02 0.00 -0.01
k=4, r=0, length=1, b 0.00 0.00 0.00 0.00 0.00 -0.01
k=4, r=0, length=1, ab 0.00 0.00 0.01 0.00 0.00 -0.01
k=4, r=0, length=1, ss 0.00 0.00 0.00 -0.01 0.01 -0.01
k=4, r=0, length=1, vs 0.00 0.00 0.00 0.00 0.01 -0.01
k=4, r=0, length=1, sab 0.00 0.00 0.01 0.00 0.00 -0.01
k=4, r=0.5, length=0, b 0.00 0.00 0.18 -0.07 0.01 -0.01
k=4, r=0.5, length=0, ab 0.00 0.01 0.20 -0.08 0.01 -0.01
k=4, r=0.5, length=0, ss 0.00 0.00 0.11 -0.14 0.01 -0.02
k=4, r=0.5, length=0, vs 0.00 0.00 0.11 -0.09 0.01 -0.02
k=4, r=0.5, length=0, sab 0.00 0.02 0.14 -0.14 0.01 -0.01
k=4, r=1, length=0, b 0.00 0.00 0.21 -0.07 0.01 -0.01
k=4, r=1, length=0, ab 0.00 0.01 0.22 -0.08 0.01 -0.01
k=4, r=1, length=0, ss 0.00 0.00 0.13 -0.18 0.01 -0.02
k=4, r=1, length=0, vs 0.00 0.00 0.13 -0.09 0.01 -0.02
k=4, r=1, length=0, sab 0.00 0.01 0.16 -0.14 0.01 -0.02
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Table 8.6: Tuning parameter sensitivity: SPUR2 average power comparisons with baseline (contin-
ued).

DGP ◆sd=0.5 ◆sd=10�8 ◆q=0 ◆q=0.01 B=500 B=2,000

k=2, r=0, length=0 -0.01 0.00 0.00 0.00 0.00 0.00
k=2, r=0, length=0.5 0.00 0.00 0.00 0.00 0.00 0.00
k=2, r=0, length=1 0.00 0.00 0.00 0.00 0.00 0.00
k=2, r=0, length=2 0.00 0.00 0.00 0.00 0.00 0.00
k=2, r=0.5, length=0 0.00 0.00 0.00 0.00 0.00 0.00
k=2, r=1, length=0 0.00 0.00 0.00 0.00 0.00 0.00
k=2, r=2, length=0 0.00 0.00 0.00 0.00 0.00 0.00
k=2, r=5, length=0 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0, b 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0, ab -0.01 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0, ss -0.01 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0, vs -0.01 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0, sab -0.01 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0.5, b 0.00 0.00 0.00 -0.01 0.00 0.00
k=4, r=0, length=0.5, ab 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0.5, ss 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0.5, vs 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=0.5, sab 0.00 0.00 0.00 -0.01 0.00 0.00
k=4, r=0, length=1, b 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=1, ab 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=1, ss 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=1, vs 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0, length=1, sab 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0.5, length=0, b 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0.5, length=0, ab 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0.5, length=0, ss 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0.5, length=0, vs 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=0.5, length=0, sab 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=1, length=0, b 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=1, length=0, ab 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=1, length=0, ss 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=1, length=0, vs 0.00 0.00 0.00 0.00 0.00 0.00
k=4, r=1, length=0, sab 0.00 0.00 0.00 0.00 0.00 0.00
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8.2 Missing Data Model

In this subsection, we revisit the missing data model that BCS use in their simulations. The

specification of the model closely follows BCS, but we consider a somewhat di↵erent data generating

process.32 Example 2.1 of BCS provides motivation for the model. Let {Wi = (YiZi, Zi, Xi)}in

be the i.i.d data. Here, Zi ⇠ Bernoulli(pz) is the indicator of whether the outcome variable Yi is

missing. It is independent of (Yi, Xi)0. The conditional distribution of Yi given Xi is

Yi|Xi = x1 ⇠ N(0, 1), Yi|Xi = x2 ⇠ N((1 + er)/pz, 1), and Yi|Xi = x3 ⇠ N(0, 1), (8.4)

with P (Xi = x1) = P (Xi = x2) = P (Xi = x3) = 1/3. The parameter space is ⇥ = [�20, 20] ⇥

[�20, 20]. The moment functions are

m1(Wi, ✓) = (✓1 � YiZi)1{Xi = x1},

m2(Wi, ✓) = (1� ✓1 � YiZi)1{Xi = x2}, and

m3(Wi, ✓) = (✓2 � YiZi)1{Xi = x3} for ✓ = (✓1, ✓2)
0. (8.5)

The value of er determines whether the model is misspecified. When er  0, the model is correctly

specified, which implies that rinfF = 0, and the MR-identified set is ⇥MR
I (F ) = [0,�er]⇥[0,1). When

er > 0, the model is misspecified and some calculations show that

rinfF =

0

B@
er2/3

⇣
p1/2z + ((1 + er)2(1/pz � 1) + pz)1/2

⌘2
+ 2er2/3

1

CA

1/2

. (8.6)

For er > 0, it can be shown that the MR-identified set is ⇥MR
I (F ) = {✓I

1
(er)}⇥ [✓I

1
(er),1), where

✓I1(er) := � p1/2z er
p1/2z + ((1 + er)2(1/pz � 1) + pz)1/2

. (8.7)

See Section 9 below for the derivations of (8.6) and (8.7).

We take pz = .8 throughout. We consider values of er that cover both misspecified and correctly-

specified cases. As above, we simulate rejection probabilities for a fixed data generating process

and a range of null hypothesis values ✓0 = (✓01, ✓02)0, where H0 : ✓ = ✓0. For the null values, we

consider ✓02 fixed at ✓I
1
(er) when er > 0 and at 0 when er  0, and we consider a range of ✓01 values.

Accordingly, the x–axes in Figures 8.10 and 8.11 correspond to the first element of the null vector.

32A di↵erent data generating process is employed to ensure that the random variable Y Z is nonnegative, which is
an implication of the structure of the missing data model.
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Figure 8.10: Rejection probabilities of tests concerning ✓ under misspecification for the missing
data model. The figure shows the rejection probabilities the nominal .05 SPUR1 and SPUR2 tests
for the null hypothesis H0 : ✓ = ✓0 for a range of ✓01 values and a fixed identified set, for four
di↵erent er values.

Figure 8.10 reports the simulated rejection probabilities for the misspecified cases with er = .1,

.2, .5, and 1.33 Here, the MR-identified set is {0} ⇥ [0,1). As in the lower/upper bound model,

the SPUR1 and SPUR2 tests perform quite similarly, as expected. Also, the rejection probabilities

increase to 1 fairly quickly as the distance between the null value and the MR-identified set increases,

and the performance is better for smaller values of er (or, equivalently, smaller values of rinfF ).

Figure 8.11 provides the results under correct specification. Here, we see that when er = 0,

which implies that the identified set contains no slack points, the standard GMS test performs

better than the SPUR1 and SPUR2 tests, which is expected. In this case, the SPUR1 and SPUR2

tests have almost identical rejection probabilities. Also, the di↵erence between the standard GMS

test and the SPUR2 test decreases quickly as the identified set gets larger (i.e., as er become more

negative) and, hence, contains more slack points. The SPUR2 test is essentially on par with the

standard GMS test when er is �1. The di↵erence in power between the standard GMS test and the

SPUR1 test also decreases to some extent as the identified set get larger. But, the SPUR1 test

has lower power (similar to the er = �1 case) even for er values in the range of [�2,�5] (based on

results not reported in Figure 8.11). Overall, the four plots show how the SPUR2 test adapts, and

eventually behaves very much like the standard GMS test as the identified set gets larger.

33By (8.6), these er values correspond (approximately) to rinfF = .03, .07, .14, and .24, respectively.
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Figure 8.11: Rejection probabilities of tests concerning ✓ under correct specification for the missing
data model. Each plot shows the rejection probabilities the nominal .05 SPUR1, SPUR2, and
standard GMS tests for the null hypothesis H0 : ✓ = ✓0 and a range of ✓01 values, for one of the
four er values considered. The shaded region in each plot delineates the identified set.

9 Details for the Missing Data Model

In this section, we provide additional details for the missing data model considered in Section

8.2. Specifically, we provide derivations for (8.6), (8.7), and the line following (8.7), which gives an

expression for the MR-identified set.

Let pj := P (Xi = xj) > 0 for j  3. In the simulations, we take pj = 1/3 for j  3. Some

calculations give

EFm1(W, ✓) = p1✓1,

EFm2(W, ✓) = �p2(✓1 + er), and

EFm3(W, ✓) = p3✓2. (9.1)
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In consequence, the model is misspecified if and only if er > 0, as stated in Section 8. If er  0,

rinfF = 0.

Now, suppose er > 0. Additional calculations give

V arF (m1(W, ✓)) = (p1 � p21)✓
2

1 + p1pz,

V arF (m2(W, ✓)) = (p2 � p22)(✓1 + er)2 + p2
�
(1 + er)2(1/pz � 1) + pz

�
, and

V arF (m3(W, ✓)) = (p3 � p23)✓
2

2 + p3pz. (9.2)

We relax the (standardized) inequalities by r. Then, by (9.1) and (9.2), the inequalities are

p1✓1
((p1 � p2

1
)✓2

1
+ p1pz)1/2

� �r,

� p2(✓1 + er)
((p2 � p2

2
)(✓1 + er)2 + p2((1 + er)2(1/pz � 1) + pz))1/2

� �r, and

p3✓2
((p3 � p2

3
)✓2

2
+ p3pz)1/2

� �r. (9.3)

By definition, rinfF is the smallest r > 0 such that there exists some ✓ 2 ⇥ that satisfies (9.3). The

third inequality does not play a role in determining rinfF . Hence, we focus on finding the smallest

r > 0 such that there exists some ✓1 that satisfies the first two inequalities.

For arbitrary numbers a, b, and c with a > 0 and b > 0, consider the function

h(✓1) =
✓1 + c

(a(✓1 + c)2 + b)1/2
. (9.4)

Calculation of the first derivative of h(·) shows that h(·) is strictly increasing. This implies that

the left-hand sides of the first and second inequalities in (9.3) are strictly increasing and strictly

decreasing functions of ✓1, respectively. Hence, if we let ✓1(r) and ✓1(r) denote the ✓1 values that

solve the first and second inequalities as equalities, respectively, then ✓1 satisfies the two inequalities

if and only if ✓1 lies in [✓1(r), ✓1(r)], where this interval is defined to be empty if ✓1(r) > ✓1(r).

Some algebra gives

✓1(r) = �
✓

pz
(p1/r2 + p1 � 1))

◆1/2

and

✓1(r) =

✓
(1 + er)2(1/pz � 1) + pz

p2/r2 + p2 � 1)

◆1/2

� er. (9.5)
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Hence, if r is such that

er 
✓
(1 + er)2(1/pz � 1) + pz

p2/r2 + p2 � 1

◆1/2

+

✓
pz

p1/r2 + p1 � 1)

◆1/2

, (9.6)

then the MR-identified set under the relaxation r is non-empty. Since the right-hand side is increas-

ing in r, rinfF must solve (9.6) as an equality. That is, rinfF is the value of r that makes ✓1(r) = ✓1(r).

Assuming p1 = p2, this gives

rinfF =

0

B@
p1er2⇣

p1/2z + ((1 + er)2(1/pz � 1) + pz)1/2
⌘2

+ (1� p1)er2

1

CA

1/2

. (9.7)

Taking p1 = p2 = 1/3 gives (8.6).

Plugging the expression for rinfF in place of r in (9.5) gives

✓1(r
inf

F ) = ✓1(r
inf

F ) = � p1/2z er
p1/2z + ((1 + er)2(1/pz � 1) + pz)1/2

=: ✓I1(er). (9.8)

Thus, the only ✓1 value that satisfies (9.3) with r = rinfF is ✓1 = ✓I
1
(er). This gives (8.7).

Now, plugging in rinfF in place of r in the third inequality of (9.3) and taking p1 = p2 = p3 = 1/3,

one can see that any ✓2 such that ✓2 � ✓I
1
(er) satisfies (9.3) (with rinfF in place of r). This shows

that ⇥MR
I (F ) = {✓I

1
(er)}⇥ [✓I

1
(er),1).

10 Empirical Illustration

10.1 Sensitivity to Tuning Parameters

The baseline and altered values of the tuning parameters are the same as in Section 8.1.3.

Table 10.1 reports the di↵erences between the MI CI lower and upper bounds when computed

with altered values of the tuning parameters compared to the baseline tuning parameters, where

the tuning parameters are altered one at a time. The results in Table 10.1 are for ↵ = .025. The

corresponding results for ↵ = .05 are identical except that for�inf

n,L(.05) and B = 2000 the di↵erence

is .000, rather than �.001. Table 10.1 shows very little sensitivity to the tuning parameters ⌧n, isd,

◆q, and B. There is very little sensitivity of the MI CI lower bound to n. There is some sensitivity

of the MI CI upper bound to n. But the magnitudes are only �.014 and .013 for c = .5 and 2,

respectively, which is fairly small.

Table 10.2 reports the di↵erences between the SPUR2 CI lower bounds when computed with
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altered values of the tuning parameters compared to the baseline tuning parameters, where the

tuning parameters are altered one at a time. Table 10.3 provides analogous results for the SPUR2

CI upper bounds.

Tables 10.2 and 10.3 show relatively low sensitivity in general to the tuning parameters ⌧n, ↵1,

◆sd, ◆q, and B. There is more sensitivity to n. Halving or doubling n alters the SPUR2 CI lower

and upper bounds by an amount typically in the range of 0.000 to 0.350 in absolute value.

Table 10.1: Tuning parameter sensitivity: Misspecification index CI lower and upper bound com-
parisons with baseline.

c⌧=0.5 c⌧=2 c=0.5 c=2 ◆sd = 10�8 ◆sd=0.5

b�inf

n,L(.025) 0.000 0.000 0.000 �0.001 0.000 0.000
b�inf

n,U (.025) �0.001 0.001 �0.014 0.013 0.000 0.000

◆q=0 ◆q=0.01 B=500 B=2,000

b�inf

n,L(.025) 0.000 0.000 0.000 �0.001
b�inf

n,U (.025) 0.000 0.000 0.000 0.000

10.2 Power Results for a Simplified Entry Game Model

In this section, we report power results for MI and SPUR2 tests based on a simplified version

of the entry game model considered in Section 6. The goal is to provide some numerical evidence

that the SPUR2 test does not su↵er from severe power issues, in a setting designed to mimic the

empirical illustration. The model employed is the same as in Section 6, but it is simplified by

assuming there is only one observed (market-level, binary) covariate Xi,t = Xsize
i , which we refer to

as “size,” and by assuming that the unobserved shocks are uncorrelated across types so that ⇢ = 0.

As in Section 6, the moment inequalities are

E[1(Yi = (0, 0)0, Xi = x)� P00(x, ✓)px] � 0,

E[P00(x, ✓)px � 1(Yi = (0, 0)0, Xi = x)] � 0,

E[1(Yi = (0, 1)0, Xi = x)� P 01(x, ✓)px] � 0,

E[P 01(x, ✓)px � 1(Yi = (0, 1)0, Xi = x)] � 0,

E[1(Yi = (1, 1)0, Xi = x)� P11(x, ✓)px] � 0,

E[P11(x, ✓)px � 1(Yi = (1, 1)0, Xi = x)] � 0, (10.1)

but now with just x 2 {0, 1}, which results in 12 moment inequalities. Here, we define the quantities
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Table 10.2: Tuning parameter sensitivity: SPUR2 CI lower bound comparisons with baseline.

c⌧=0.5 c⌧=2 c=0.5 c=2 ↵2=0.0475 ↵2=0.04

�const
LCC

0.000 0.000 0.000 0.000 0.000 0.000
�size
LCC

�0.002 0.000 0.176 �0.216 0.027 �0.036
�pres
LCC

0.070 0.000 0.327 �0.285 0.087 �0.019
�LCC 0.004 �0.020 0.207 �0.293 0.031 0.000
�const
OA

0.018 0.000 0.088 �0.115 0.000 �0.024
�size
OA

0.011 �0.009 0.280 �0.210 0.086 �0.008
�pres
OA

0.034 0.000 0.150 �0.167 0.049 0.000
�OA 0.058 0.000 0.268 �0.262 0.116 �0.014
⇢ 0.000 0.000 0.000 0.000 0.000 0.000

◆sd=10�8 ◆sd=0.5 ◆q=0 ◆q=0.01 B=500 B=2,000

�const
LCC

0.000 0.000 0.000 0.000 0.000 0.000
�size
LCC

0.013 0.000 0.023 0.000 �0.055 0.010
�pres
LCC

0.000 0.000 0.000 �0.005 �0.084 0.063
�LCC 0.009 �0.016 0.000 0.000 0.017 �0.031
�const
OA

0.019 0.000 0.001 0.000 �0.029 0.024
�size
OA

0.016 �0.003 0.066 �0.009 �0.006 0.029
�pres
OA

0.000 �0.009 0.058 0.000 0.043 0.025
�OA 0.000 0.000 0.000 0.000 0.041 0.111
⇢ 0.000 0.000 0.000 0.000 0.000 0.000

P00(x, ✓), P 01(x, ✓), etc. as in Section 6, but with the simplified version of x.

We consider the case where there is no intercept term in Xi, which yields �LCC = �sizeLCC and

�OA = �sizeOA , and we suppose that �LCC = �OA = �. The parameter spaces for �LCC , �OA, and �

are [�5, 5], [�5, 5], and [0, 4], respectively, and thus ⇥ = [�5, 5]⇥ [�5, 5]⇥ [0, 4].

For this model, we consider two di↵erent data generating processes (DGP’s), i.e., two di↵erent

joint distributions of Yi and Xi. The observed covariates are drawn from a Bernoulli distribution

with probability .6 (i.e., p1 = .6) under both DGP’s. The sample size is set to n = 7,882, which is

the same as the sample size in the empirical illustration. Data is simulated from a given DGP with

500 simulation repetitions. The MI tests/CI’s and SPUR2 projection tests/CI’s are constructed

using the tuning parameters recommended in Sections 4.7.1 and 5.6.1.

Let py,x := P (Yi = y,X = x) denote the joint distribution of the outcome given the covariate.

The first DGP is defined by p(0,0)0,0 = .1, p(0,0)0,1 = .05, p(0,1)0,0 = .2, p(0,1)0,1 = .4, p(1,1)0,0 = .06,

and p(1,1)0,1 = .1. This DGP is chosen to match the empirical marginal distribution of Yi in the

empirical illustration. The marginal distribution of Yi in the first DGP is P (Yi = (0, 0)0) = .15,

P (Yi = (0, 0)0) = .6, and P (Yi = (1, 1)0) = .15. The corresponding probabilities from the empirical
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Table 10.3: Tuning parameter sensitivity: SPUR2 CI upper bound comparisons with baseline.

c⌧=0.5 c⌧=2 c=0.5 c=2 ↵2=0.0475 ↵2=0.04

�const
LCC

�0.015 0.001 �0.366 0.245 �0.019 0.000
�size
LCC

�0.012 0.000 �0.213 0.056 0.000 0.007
�pres
LCC

�0.001 0.000 �0.181 0.166 �0.072 0.068
�LCC 0.000 0.000 0.000 0.000 0.000 0.000
�const
OA

�0.068 0.000 �0.150 0.060 �0.078 0.000
�size
OA

0.000 0.019 �0.168 0.574 �0.003 0.088
�pres
OA

0.000 0.017 �0.326 0.250 �0.060 0.000
�OA 0.000 0.000 0.000 0.000 0.000 0.000
⇢ 0.000 0.000 0.000 0.000 0.000 0.000

◆sd=10�8 ◆sd=0.5 ◆q=0 ◆q=0.01 B=500 B=2,000

�const
LCC

�0.002 0.001 �0.024 0.001 0.027 �0.017
�size
LCC

�0.007 0.000 �0.014 0.000 �0.049 �0.042
�pres
LCC

�0.001 0.000 �0.042 0.000 �0.011 �0.041
�LCC 0.000 0.000 0.000 0.000 0.000 0.000
�const
OA

0.000 0.000 �0.099 0.009 �0.049 �0.061
�size
OA

�0.012 0.000 �0.012 0.000 0.173 0.117
�pres
OA

�0.186 0.000 �0.174 0.028 0.089 �0.091
�OA 0.000 0.000 0.000 0.000 0.000 0.000
⇢ 0.000 0.000 0.000 0.000 0.000 0.000

marginal distribution are .153, .614, and .160. Under the first DGP, the (population) MI is �inf

F =

0.133, approximately, and the model is misspecified. The smallest hyperrectangle that contains the

true MR-identified set ⇥MR
I (F ) is approximately [�.473, .230] ⇥ [.661, 1.648] ⇥ [.624, .624]. Note

that, for example, [�.473, .230] is simply the projection of ⇥MR
I (F ) onto the first element of ✓.

The MI in the first DGP is larger than the estimated MI value in the empirical illustration.

In consequence, we consider a second DGP with a smaller value of �inf

F . This second DGP is

defined by p(0,0)0,0 = .1075, p(0,0)0,1 = .0425, p(0,1)0,0 = .1425, p(0,1)0,1 = .4075, p(1,1)0,0 = .0425,

and p(1,1)0,1 = .1075. Here, too, the marginal distribution of Yi is similar to what is observed in

the empirical illustration. Under this DGP, the (population) MI is �inf

F = .024, approximately,

which is similar to the estimate of .023 for the case of ⇢ = 0 in the empirical illustration. For

the second DGP, the smallest hyperrectangle that contains the true MR-identified set ⇥MR
I (F ) is

approximately [�.376,�.157]⇥ [1.101, 1.300]⇥ [.440, .505].

We simulate the power of the MI and SPUR2 tests under the two DGP’s.

Figure 10.1 shows the simulated rejection probabilities of the nominal .05 two-sided MI test of

the null hypothesis H0 : �inf

F = �0 for varying values of �0. As shown in the figure, under both
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DGP’s, the test (based on the two-sided MI CI) has correct size and its rejection probabilities

approach 1 reasonably quickly as the di↵erence between the null value �0 and the true value �inf

F

becomes larger in absolute value.
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Figure 10.1: Rejection probabilities of tests concerning the misspecification index under the two
DGP’s. The two graphs show the rejection probabilities of the nominal .05 two-sided misspecifica-
tion index test of the null hypothesis H0 : �inf

F = �0 for 1,000 (equally spaced) values of �0 such
that �0 ��inf

F 2 [�.2, .2].

Next, we consider the SPUR2 tests. Under the first DGP with �inf

F = .133, the three graphs in

Figure 10.2 show the rejection probabilities for the null hypotheses

H0,�LCC : (�LCC,0,�OA, �)
0 2 ⇥MR

I (F ) for some (�OA, �)
0,

H0,�OA : (�LCC ,�OA,0, �)
0 2 ⇥MR

I (F ) for some (�LCC , �)
0 and

H0,� : (�LCC ,�OA, �0)
0 2 ⇥MR

I (F ) for some (�LCC ,�OA)
0, (10.2)

respectively, for varying null values �LCC,0, �OA,0, and �0 and fixed true values. Note that inverting

each of the tests gives the projection CI’s for �LCC , �OA, and �, respectively. The gray shaded

regions show the (projected) MR-identified sets.34 Figure 10.1 shows that the MI test has correct

size and has nontrivial power against alternatives fairly close to the (projected) MR-identified set

with the rejection probabilities approaching 1 reasonably quickly as the alternative becomes further

away from the MR-identified set.

34When the (projected) MR-identified set is a singleton, the shaded area appears as a short vertical line below the
power curve in the graph.
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Under the second DGP with �inf

F = .024, the three graphs in Figure 10.3 show the rejection

probabilities for the null hypotheses H0,�LCC , H0,�OA , and H0,� , respectively, for varying null val-

ues �LCC,0, �OA,0, and �0. Here too, the results demonstrate correct size and reasonable power

properties of the test based on the SPUR2 projection CI’s.
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Figure 10.2: Rejection probabilities of the test based on the SPUR2 projection CI’s for the null
hypotheses H0,�LCC , H0,�OA and H0,� under the first DGP (�inf

F = .133).
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Figure 10.3: Rejection probabilities of the test based on the SPUR2 projection CI’s for the null
hypotheses H0,�LCC , H0,�OA and H0,� under the second DGP (�inf

F = .024).

10.3 Moment Inequalities in the Empirical Illustration

Here we show how the moment inequalities in (6.2) for the empirical illustration are obtained.

As stated in the paper, we assume complete information so that the players observe "i in addition

to everything the econometrician observes, and that the market outcome is determined by a pure

strategy Nash equilibrium. Given these assumptions, the model implies the following (conditional)
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moment inequalities:

E[1(Yi = (0, 0)0)|Xi] = P ("i,LCC  �X 0
i,LCC�LCC, "i,OA  �X 0

i,OA�OA)

E[1(Yi = (0, 1)0)|Xi] � P ("i,LCC  �X 0
i,LCC�LCC, "i,OA � �X 0

i,OA�OA)

+P ("i,LCC 2 [�X 0
i,LCC�LCC,��LCC �X 0

i,LCC�LCC], "i,OA � ��OA �X 0
i,OA�OA)

E[1(Yi = (0, 1)0)|Xi]  P ("i,LCC  ��LCC �X 0
i,LCC�LCC, "i,OA � �X 0

i,OA�OA)

E[1(Yi = (1, 0)0)|Xi] � P ("i,LCC � �X 0
i,LCC�LCC, "i,OA  �X 0

i,OA�OA)

+P ("i,LCC � ��LCC �X 0
i,LCC�LCC, "i,OA 2 [�X 0

i,OA�OA,��OA �X 0
i,OA�OA])

E[1(Yi = (1, 0)0)|Xi]  P ("i,LCC � �X 0
i,LCC�LCC, "i,OA  ��OA �X 0

i,OA�OA)

E[1(Yi = (1, 1)0)|Xi] = P ("i,LCC � ��LCC �X 0
i,LCC�LCC, "i,OA � ��OA �X 0

i,OA�OA). (10.3)

Because

E[1(Yi = (1, 0)0)|Xi]

= 1� E[1(Yi = (0, 0)0)|Xi]� E[1(Yi = (0, 1)0)|Xi]� E[1(Yi = (1, 1)0)|Xi], (10.4)

we omit the moment inequalities corresponding to E[1(Yi = (1, 0)0)|Xi], which leaves us with two

moment equalities and two moment inequalities. Writing the two moment equalities as four moment

inequalities, the model can be written as six conditional moment inequalities.

Since Xi is discrete with its support X consisting of only 23 = 8 di↵erent values, the six

conditional moment inequalities can be transformed into k = 48 unconditional moment inequalities.

For x = (xLCC, xOA)0 2 X , define px := P (Xi = x) and

P00(x, ✓) :=P ("i,LCC  �x0LCC�LCC, "i,OA  �x0OA�OA)

P 01(x, ✓) :=P ("i,LCC  �x0LCC�LCC, "i,OA � �x0OA�OA)

+ P ("i,LCC 2 [�x0LCC�LCC,��LCC � x0LCC�LCC], "i,OA � ��OA � x0OA�OA)

P 01(x, ✓) :=P ("i,LCC  ��LCC � x0LCC�LCC, "i,OA � �x0OA�OA)

P11(x, ✓) :=P ("i,LCC � ��LCC � x0LCC�LCC, "i,OA � ��OA � x0OA�OA). (10.5)

Consider, for example, the conditional moment inequality

E[1(Yi = (0, 0)0)� P00(Xi, ✓)|Xi] � 0,

which corresponds to one of the moment inequalities resulting from rewriting the first line of (10.5)
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as two inequalities. This is equivalent to

E[1(Yi = (0, 0)0)� P00(Xi, ✓)|Xi = x] � 0 8x 2 X

, E[(1(Yi = (0, 0)0)� P00(x, ✓))1(Xi = x)] � 0 8x 2 X

, E[1(Yi = (0, 0)0, Xi = x)� P00(x, ✓)px] � 0 8x 2 X , (10.6)

where the first equivalence holds because P00(Xi, ✓)1(Xi = x) = P00(x, ✓)1(Xi = x) due to the

independence between Xi and "i. Following Kaido, Molinari, and Stoye (2019), we take px to be

known.35 As is evident from the expression in the last line, an implication of this assumption is that

the data and parameters become additively separable. Hence, (10.3) is equivalent to the following

moment inequality model:

E[1(Yi = (0, 0)0, Xi = x)� P00(x, ✓)px] � 0,

E[P00(x, ✓)px � 1(Yi = (0, 0)0, Xi = x)] � 0,

E[1(Yi = (0, 1)0, Xi = x)� P 01(x, ✓)px] � 0,

E[P 01(x, ✓)px � 1(Yi = (0, 1)0, Xi = x)] � 0,

E[1(Yi = (1, 1)0, Xi = x)� P11(x, ✓)px] � 0,

E[P11(x, ✓)px � 1(Yi = (1, 1)0, Xi = x)] � 0, (10.7)

for all x 2 X , which are the moment inequalities given in (6.2). In practice, we take the empirical

distribution of Xi to be the true distribution and plug it in place of px, as in Kaido, Molinari, and

Stoye (2019).

10.4 Initial Values for Computation of the Projection CI’s

This section describes the initial values that are used for computing projection CI’s of the GMS,

SPUR1, and SPUR2 types in the empirical illustration. These choices work well in the empirical

illustration, however, in other models it’s not clear how well they will work. Define the argmin

35If px is unknown, one can use the expression in the second line of (10.6) as the moment inequalities.
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parameter values for the GMS and SPUR1 projection CI’s:

✓GMS,a,l
1�↵ := argmin✓2⇥✓a s.t. Sn,Std(✓)  bcn,GMS(✓, 1� ↵),

✓GMS,a,u
1�↵ := argmin✓2⇥ � ✓a s.t. Sn,Std(✓)  bcn,GMS(✓, 1� ↵),

✓SPUR1,a,l
1�↵ := argmin✓2⇥✓a s.t. Sn(✓)  bcn(✓, 1� ↵), and

✓SPUR1,a,u
1�↵ := argmin✓2⇥ � ✓a s.t. Sn(✓)  bcn(✓, 1� ↵) (10.8)

for a = 1, ..., d✓. We refer to the first two problems as the GMS projection problems and the latter

two as the SPUR1 projection problems.

To calculate the projection CI’s reported in Table 2 for the empirical illustration (and to calcu-

late projection CI’s in general, as described in Section 5.2), one must calculate (✓GMS,a,l
1�↵ , ✓GMS,a,u

1�↵ )

for ↵ = .05 (for the GMS projection CI) and ↵ = .045 (to construct the SPUR2 projection CI), and

(✓SPUR1,a,l
1�↵ , ✓SPUR1,a,u

1�↵ ) for ↵ = .045. Calculating such quantities amounts to solving non-linear,

non-convex constrained optimization problems. Hence, the choice of the initial values is relevant.

An added di�culty is that finding points in the feasible set is not trivial in this context. Here, we

introduce a systematic way to find feasible values, and make a recommendation on how to choose

the initial values based on this method.

We make use of the following two quantities: ✓init
�

:= argmin✓2⇥maxjk
b�nj(✓) and ✓initS1

:=

argmin✓2⇥ Sn,Std(✓) using the S1(·) function.36 For now, we presume that these quantities are

well-defined in the sense that the argmin sets are singleton sets. Below, we discuss the choice of

initial values when ⇥init
S1

:= argmin✓2⇥ Sn,Std(✓) is found to contain multiple points, which typically

holds when the model is correctly specified with a non-singleton identified set.37 The quantities

✓init
�

and ✓initS1
are “likely” to lie in the feasible sets for the GMS and SPUR1 projection problems,

respectively.

To calculate ✓GMS,a,l
.95 , we recommend using initial values ✓init

�
, ✓initS1

, and ✓GMS,a,l
1�⌧ for ⌧ 2 T.95 =

{.1, .2, . . . , .5}.38 The last set of initial values always belong to the feasible set due to the smaller

nominal coverage than the desired coverage of .95. We consider analogous initial values for the

calculation of ✓GMS,a,u
.95 . To calculate ✓GMS,a,l

.955 , we recommend adding ✓GMS,a,l
.95 to the set of initial

values considered, and thus using ✓init
�

, ✓initS1
, and ✓GMS,a,l

1�⌧ for ⌧ 2 T.955 as the initial values. To

36Calculation of ✓init
S1

can be done using standard software with initial values drawn from a Sobol sequence in ⇥,
as we do to calculate ✓init

� . For example, in the empirical illustration, we use a Sobol sequence with 100 points for
both ✓init

� and ✓init
S1

.
37We maintain the presumption that argmin✓2⇥ maxjk

b�nj(✓) is a singleton set because this is typically the case.
However, if this is not the case, one can use a similar method to the one described for argmin✓2⇥ Sn,Std(✓).

38The points ✓GMS,a,l
1�⌧ for ⌧ 2 T.95 = {.1, .2, ..., .5} are computed by first calculating ✓GMS,a,l

1�⌧ for ⌧ = .5 using the

initial values ✓init
� and ✓init

S1
. Then, ✓GMS,a,l

1�⌧ for ⌧ = .4 is computed using the initial values ✓init
� , ✓init

S1
, and ✓GMS,a,l

.5 .

The remaining ✓GMS,a,l
1�⌧ values are computed inductively, using ✓init

� , ✓init
S1

, and {✓GMS,a,l
1�⌧ 0 : ⌧ 0 > ⌧, ⌧ 0 2 T.95}.
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calculate ✓SPUR1,a,l
.955 , we consider the initial values used to calculate ✓GMS,a,l

.955 and also ✓SPUR1,a,l
1�⌧ for

⌧ 2 T.955, where ✓SPUR1,a,l
1�⌧ is defined analogously to ✓GMS,a,l

1�⌧ using the SPUR test statistic in place

of the GMS test statistic throughout.39,40

Hence, to calculate ✓GMS,a,l
.95 , ✓GMS,a,l

.955 , and ✓SPUR1,a,l
.955 , one uses 7, 8, and 14 initial values, respec-

tively. These initial values are also obtained by solving optimization problems using multiple initial

values. Overall, one ends up running the optimizer 27 times to compute ✓GMS,a,l
.95 , an additional 8

times (35 total) for ✓GMS,a,l
.955 , and an additional 21 times (56 total) for ✓SPUR1,a,l

.955 .

When argmin✓2⇥ Sn,Std(✓) is not a singleton, the procedure provided above is modified by

choosing suitable points from argmin✓2⇥ Sn,Std(✓).41 Let b⇥init
S1

denote the set of parameter values

that obtain the same minimum value based on some set of initial values and write minit := |b⇥init
S1

|.

For example, in the adjusted empirical illustration, we use 100 initial values drawn according to

a Sobol sequence in ⇥ to calculate min✓2⇥ Sn,Std(✓). Using these 100 initial values, we found

minit = 17 di↵erent optimal points that obtain the same minimum value of zero. Here, b⇥init
S1

is

the set of these 17 points. Let ✓initS1,a,m
denote the point in b⇥init

S1
that has the mth smallest ath

component. For example, ✓initS1,a,1
is the point in b⇥init

S1
with the smallest ath component.

When argmin✓2⇥ Sn,Std(✓) is not a singleton, to calculate ✓GMS,a,l
.95 , we recommend using the

following initial values: first 10 points from a Sobol sequence in ⇥, ✓init
�

, ✓initS1,a,m
form = 1, . . . , 5, and

✓GMS,a,l
1�⌧ for ⌧ 2 T.95 = {.1, .2, . . . , .5}. The idea is to choose points from b⇥init

S1
that are likely to be

closest to the optimum. Since the objective here is to minimize the ath component, we choose points

that have small ath components. The quantity ✓GMS,a,l
1�⌧ is calculated in a slightly di↵erent way

than above, but we abuse notation and keep notation same as above.42 We recommend analogous

initial values for the calculation of ✓GMS,a,u
.95 : first 10 points from a Sobol sequence, ✓init

�
, ✓initS1,a,m

for

m = minit,minit�1, . . . ,minit�4, and ✓GMS,a,u
1�⌧ for ⌧ 2 T.95 = {.1, .2, . . . , .5}. To calculate ✓GMS,a,l

.955 ,

we recommend adding ✓GMS,a,l
.95 to the set of initial values considered. To calculate ✓SPUR1,a,l

.955 , we

recommend using the initial values used to calculate ✓GMS,a,l
.955 and also ✓SPUR1,a,l

1�⌧ for ⌧ 2 T.955,

where ✓SPUR1,a,l
1�⌧ is defined analogously to ✓GMS,a,l

1�⌧ using the SPUR test statistic in place of the

39Calculation of ✓SPUR1,a,l
1�⌧ for ⌧ 2 T.955 is done in an analogous “inductive” way to that of ✓GMS,a,l

1�⌧ for ⌧ 2 T.955,

but here ✓GMS,a,l
1�⌧ 0 with ⌧ 0 > ⌧ are used as initial values as well. That is, ✓SPUR1,a,l

1�⌧ is calculated using initial values

✓init
� , ✓init

S1
, {✓GMS,a,l

1�⌧ 0 : ⌧ 0 > ⌧, ⌧ 0 2 T.955}, and {✓SPUR1,a,l
1�⌧ 0 : ⌧ 0 > ⌧, ⌧ 0 2 T.955}

40The GMS CS is typically contained in the SPUR1 CS, and thus the {✓GMS,a,l
1�⌧ }⌧2T.955 initial values are typically

feasible for the SPUR1 CS. The reverse is not true, which is why we do not recommend using, for example, ✓SPUR1,a,l
.95

as an initial value when computing ✓GMS,a,l
.95 .

41Our recommendation is based on experimentation with an adjusted version of the empirical illustration. The
adjustment is to add .05 to the (standardized) moments to force the model to be correctly specified with a moderately
large identified set. Accordingly, argmin✓2⇥ Sn,Std(✓) is not a singleton under this adjustment.

42The points ✓GMS,a,l
1�⌧ for ⌧ 2 T.95 = {.1, .2, ..., .5} are computed by first calculating ✓GMS,a,l

1�⌧ for ⌧ = .5 using the

initial values ✓init
� and ✓init

S1,a,1. Then, ✓
GMS,a,l
1�⌧ for ⌧ = .4 is computed using the initial values ✓init

� , ✓init
S1,a,1, and ✓GMS,a,l

.5 .

The remaining ✓GMS,a,l
1�⌧ values are computed inductively, using ✓init

� , ✓init
S1,a,1, and {✓GMS,a,l

1�⌧ 0 : ⌧ 0 > ⌧, ⌧ 0 2 T.95}.
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GMS test statistic throughout.

11 Uniform Consistency and Rate of Convergence of b⇥n

This section shows that the set estimator b⇥n, defined in (4.20), is uniformly consistent for the

MR-identified set ⇥MR
I (F )). It also establishes the rate of convergence of b⇥n to ⇥MR

I (Fn) under

the Hausdor↵ distance dH .43 These results are similar to results in Theorem 3.1 of Chernozhukov,

Hong, and Tamer (2007).

All limits are as the sample size n ! 1. Let O⇥
p (1) denote random functions that are Op(1)

uniformly over ✓ 2 ⇥.

11.1 Uniform Consistency of b⇥n

The following result shows that the set estimator b⇥n is uniformly consistent for the MR-

identified set ⇥MR
I (F ) over F 2 P with respect to the Hausdor↵ metric dH . The result is similar

to results in Theorem 3.1 of CHT except that it applies under both correct model specification

and misspecification, and it establishes uniform over F 2 P consistency, rather than pointwise in

F consistency.

For ✓ 2 ⇥ and A ⇢ ⇥, define the distance between ✓ and A as d(✓, A) := inf✓02A ||✓ � ✓0||. For

any " > 0 and F 2 P, define

⇥MR
I," (F ) := {✓ 2 ⇥ : d(✓,⇥MR

I (F ))  "}. (11.1)

The set ⇥MR
I," (F ) is an "-expansion of the MR-identified set ⇥MR

I (F ).

For any F 2 P, inf✓2⇥\⇥MR
I," (F )

maxjk [EF emj(W, ✓)]��rinfF > 0 for all " > 0 under Assumption

A.0 by the definitions of rinfF and ⇥MR
I," (F ). The following Assumption A.9 requires that this positive

quantity is bounded away from zero over F 2 P.

Assumption A.9. For all " > 0, infF2P inf✓2⇥\⇥MR
I," (F )

maxjk [EF emj(W, ✓)]� � rinfF > 0.

We are not aware of any interesting models that fail Assumption A.9.

Uniform consistency of b⇥n for ⇥MR
I (F ) is established in the following theorem.

Theorem 11.1 Suppose Assumptions A.0–A.5 and A.9 hold and the positive constants {⌧n}n�1

43The Hausdor↵ distance between two non-empty sets ⇥1 and ⇥2 in ⇥ is dH(⇥1,⇥2) := max{sup✓12⇥1
inf✓22⇥2

||✓1 � ✓2||, sup✓22⇥2
inf✓12⇥1 ||✓1 � ✓2||}.
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that appear in (4.20) satisfy ⌧n ! 1 and ⌧n/n1/2 = o(1). Then, for all " > 0,

lim
n!1

sup
F2P

PF (dH(b⇥n,⇥
MR
I (F )) > ") = 0.

Comments. (i). If Assumption A.9 fails to hold, the result of Theorem 11.1 holds with PU in

place of P for any PU ⇢ P for which Assumption A.9 holds with PU in place of P. In particular, for

a fixed distribution F 2 P, the result of Theorem 11.1 holds with PU = {F} in place of P because

Assumption A.9 automatically holds in this case.

(ii). The proofs of Theorem 11.1 and Lemma 11.2 below are given in online Appendix B.

11.2 Consistency and Rate of Convergence of b⇥n under {Fn}n�1

Next, we establish consistency and rate of convergence results for b⇥n under a drifting sequence

of distributions {Fn}n�1. These results are similar to results in Theorem 3.1 of Chernozhukov,

Hong, and Tamer (2007), which apply to a fixed distribution F. The proofs also are similar.

The following assumption ensures that inf✓2⇥\⇥MR
I," (Fn)

maxjk [EFn emj(W, ✓)]��rinfFn
is bounded

away from zero under {Fn}n�1, where the set ⇥MR
I," (Fn) is defined in (11.1).

Assumption C.9. For all " > 0,

lim inf
n!1

 
inf

✓2⇥\⇥MR
I," (Fn)

max
jk

[EFn emj(W, ✓)]� � rinfFn

!
> 0.

The following minorant condition for the population moments is similar to (4.1) of

Chernozhukov, Hong, and Tamer (2007). It is used to determine the rate of convergence of dH(b⇥n,

⇥MR
I (Fn)) to zero.

Assumption C.10. There exist positive constants C, ", and � such that for all ✓ 2 ⇥ and n � 1,

max
jk

[EFn emj(W, ✓)]� � rinfFn
� C · (min{d(✓,⇥MR

I (Fn)), "})� .

Typically, Assumption C.10 holds with � = 1.

Part (a) of the following lemma is used in the proof of Theorem 11.1 given below. Part (b)

provides a rate of convergence result for b⇥n.

Lemma 11.2 Suppose Assumptions A.0, C.4, C.5, C.7, and C.9 hold under {Fn}n�1. Suppose the

positive constants {⌧n}n�1 that appear in (4.20) satisfy ⌧n ! 1 and ⌧n/n1/2 = o(1). Then,

(a) dH(b⇥n,⇥MR
I (Fn)) = op(1) and

(b) dH(b⇥n,⇥MR
I (Fn)) = Op((⌧n/n1/2)1/�) provided Assumption C.10 also holds.
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Comment. When Fn = F for all n � 1 for some F 2 P, Assumption C.9 holds by the definitions

of rinfF and ⇥MR
I," (F ) under Assumption A.0. In consequence, Lemma 11.2(a) establishes the result

of Theorem 11.1 with supF2P deleted and without imposing Assumption A.9.

12 Problems with Subsampling SPUR and Recentered Test

Statistics under Model Misspecification

Next, we show that subsampling a SPUR test statistic or a recentered test statistic does not

necessarily deliver correct asymptotic size under identifiable model misspecification. We consider

the simple lower/upper bound model on a scalar parameter ✓ discussed in Section 2. Thus, the

observations {Wi}in are i.i.d. with Wi = (Wi1,Wi2)0 ⇠ N(µ, I2), where µ = (µ1, µ2)0 2 R2. The

population moment inequalities are EFWi1  ✓ and ✓  EFWi2. In this model, �inf

F = (µ1 � µ2)/2

and rinfF = [µ1 � µ2]+/2, where [x]+ := max{x, 0}. The model is misspecified when µ1 > µ2.

The null hypothesis of interest is H0 : ✓ = 0. We consider null distributions F for which the

model is misspecified and µ = (c/n1/2,�c/n1/2)0 for some c > 0, which implies that ⇥MR
I (F ) = {0}

and rinfF = c/n1/2.

We consider a SPUR test statistic based on the “max” function S4. As shown in Section 35,

this is equivalent to a recentered “max” test statistic, i.e., Sn(✓) = S4n,Recen(✓), where the latter is

defined in (35.1). In the present case, we have

Sn(✓) = n1/2max{Wn1 � ✓, ✓ �Wn2, 0}� n1/2 inf
✓2⇥

max{Wn1 � ✓, ✓ �Wn2, 0}

= n1/2max{Wn1 � ✓, ✓ �Wn1, 0}� n1/2max

⇢
Wn1 �Wn2

2
, 0

�
, (12.1)

where Wnj := n�1
Pn

i=1
Wij for j = 1, 2. Let (Z1, Z2)0 ⇠ N(02, I2). Then, n1/2Wn1

d
= Z1 + c

and n1/2Wn2
d
= �Z2 � c, where “

d
=” denotes equality in distribution, and the two variables are

independent. The test statistic evaluated at the null value ✓ = 0 satisfies

Sn(0)
d
= max{Z1 + c, Z2 + c, 0}�max

⇢
Z1 + Z2

2
+ c, 0

�

= max{Z1, Z2,�c}�max

⇢
Z1 + Z2

2
,�c

�
. (12.2)

If c is very large, the two summands are essentially max{Z1, Z2} and �Z1+Z2

2
, which simplifies the
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distribution. Hence, we consider the case where c = cn ! 1 as n ! 1. In this case, under H0,

Sn(0) !d max{Z1, Z2}�
Z1 + Z2

2
=: S1 as n ! 1. (12.3)

We consider subsampling with a subsampling size bn that satisfies bn/n ! 0. The subsample

statistic Sbn(0) satisfies: under H0,

Sbn(0) = b1/2n max{W bn1,�W bn2, 0}� b1/2n max

⇢
W bn1 �W bn2

2
, 0

�

d
= max{Z1 + (bn/n)

1/2c, Z2 + (bn/n)
1/2c, 0}�max

⇢
Z1 + Z2

2
+ (bn/n)

1/2c, 0

�

= max{Z1, Z2,�(bn/n)
1/2c}�max

⇢
Z1 + Z2

2
,�(bn/n)

1/2c

�

!d max{Z1, Z2, 0}�max

⇢
Z1 + Z2

2
, 0

�
=: SSub,1, (12.4)

where the convergence in distribution holds for c = cn that satisfies cn ! 1 and cn = o((n/bn)1/2).

In consequence, the nominal level ↵ subsampling critical value converges in probability to the 1�↵

quantile of SSub,1, denoted by cvSub,1(1 � ↵), see Andrews and Guggenberger (2010, Thm. 1(ii)

and Lem. 5) for details.

Simulations of NRPSub,1(↵) := P (S1 > cvSub,1(1 � ↵)) yield NRPSub,1(.10) = .152,

NRPSub,1(.05) = .078, and NRPSub,1(.01) = .016 (using 100 million simulation repetitions).

These values give lower bounds on the asymptotic sizes of the subsampling test for ↵ = .10, .05,

and .01. In each case, the lower bound is slightly larger than 150% of the nominal level of the test.

Hence, the subsampling test does not have correct (uniform) asymptotic size in this model.

Because the subsampling test does not have correct asymptotic size under misspecification in

one of the simplest moment inequality models in the literature, we conclude that subsampling a

SPUR test statistic or recentered test statistic does not necessarily deliver correct asymptotic size

under misspecification in moment inequality models.
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13 Outline of Online Appendix B

Appendix B proves the results of the paper for SPUR1 and SPUR2 tests and confidence sets

(CS’s).

References to sections with section numbers 6 or less refer to sections of the main paper. Sim-

ilarly, all equations, theorems, and lemmas with section numbers 6 or less refer to results in the

main paper. BCS abbreviates Bugni, Canay, and Shi (2015).

Section 14 of Appendix B states some additional assumptions used in Sections 5.5 and 4.6. For

ease of reference, all of the assumptions used in the paper and Appendix B are listed in the last

section of Appendix B, Section 22.

Section 15 provides the asymptotic distribution of the SPUR test statistic under drifting se-

quences of distributions, using the approach in BCS.

Section 16 states Lemma 16.1, which gives su�cient conditions for Assumptions NLA and CA,

and proves Lemmas 15.1, 15.2, and 16.1.

Section 17 proves Theorem 15.3, which gives the asymptotic distribution of the SPUR test

statistic.

Sections 18–20 prove the main results of the paper for SPUR1 and SPUR2 tests and CS’s.

Section 18 states Theorem 18.1, which is the key ingredient to the proof of Theorem 4.1 and the

Comment to Theorem 4.1, which provide asymptotic level results for SPUR1 and SPUR2 tests and

CS’s. Theorem 18.1 provides asymptotic null rejection probability (NRP) results for the nominal

level ↵ SPUR1 test �n,SPUR1(✓n), defined in (4.7), under drifting subsequences of distributions and

parameter values. Section 19 proves Lemmas 18.2–18.4, which are used in the proof of Theorem

18.1.

Section 20 proves Theorem 4.1, which shows that the SPUR2 tests and CS’s have correct

asymptotic level, using Theorem 18.1. Section 20 also proves analogous results for SPUR1 tests

and CS’s.

Section 21 proves Theorem 11.1 and Lemma 11.2 stated in online Appendix A, which give

uniform consistency and rate of convergence results for the estimator b⇥n of the MR-identified set.

All limits are as the sample size n ! 1. Let R[±1] := R [ {±1} and R[+1] := R [ {+1}.

Let || · || denote the Euclidean norm for vectors and the Frobenious norm for matrices. Let [x]� :=

max{�x, 0} (� 0) and [x]+ := max{x, 0} (� 0) for x 2 R. Let o⇥p (1) and O⇥
p (1) denote quantities

that are op(1) and Op(1), respectively, uniformly over ✓ 2 ⇥.
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14 Additional Assumptions

Here, we state some additional assumptions used in Sections 5.5 and 4.6. Assumption S.1 is

stated in a footnote in Section 4.1. The population-standard-deviation-normalized sample moments

are

emnj(✓) := n�1

nX

i=1

emj(Wi, ✓), where emj(W, ✓) :=
mj(W, ✓)

�Fj(✓)
8j  k, (14.1)

and emn(✓) := (emn1(✓), ..., emnk(✓))0. The corresponding population-normalized sample moment em-

pirical process and sample second-central-moment empirical process are

⌫mn (✓) := n1/2(emn(✓)� EF emn(✓)), b�2Fnj(✓) := n�1

nX

i=1

(mj(Wi, ✓)� EFmj(W, ✓))2,

⌫�nj(✓) := n1/2

 
b�2Fnj(✓)

�2Fj(✓)
� 1

!
= n�1/2

nX

i=1

[(emj(Wi, ✓)� EF emj(W, ✓))2 � 1] 8j  k, and

⌫n(✓) :=

0

@ ⌫mn (✓)

⌫�n(✓)

1

A , (14.2)

where the superscripts m and � denote mean and variance, respectively. Let ⌫mnj(✓) and ⌫�nj(✓)

denote the jth elements of ⌫mn (✓) and ⌫�n(✓), respectively, for j = 1, ..., k. The variance matrix of

⌫n(✓) is ⌦F+(✓), which is defined in (5.10).

The covariance kernel ⌦F (✓, ✓0) of ⌫n(✓) is defined as follows: for ✓, ✓0 2 ⇥,

⌦F (✓, ✓
0) := EF

0

@ em(W, ✓)� EF em(W, ✓)

em�(W, ✓)

1

A

0

@ em(W, ✓0)� EF em(W, ✓0)

em�(W, ✓0)

1

A
0

2 R2k⇥2k, (14.3)

where em(W, ✓) and em�(W, ✓) are defined in (5.10) and EF em�
j (W, ✓) = 0 for j  k, 8✓ 2 ⇥.

Assumption A.3. The empirical process ⌫n(·) is asymptotically ⇢F -equicontinuous on⇥ uniformly

in F 2 P.44

Assumption A.4. The covariance kernel ⌦F (✓, ✓0) satisfies: for all F 2 P,

lim�!0 sup||(✓1,✓01)�(✓2,✓02)||<� ||⌦F (✓1, ✓01)� ⌦F (✓2, ✓02)|| = 0.

Assumption A.5. EF em(W, ✓) is equicontinuous on ⇥ over F 2 P. That is, lim�#0 supF2P

sup||✓�✓0||<� ||EF em(W, ✓)� EF em(W, ✓0)|| = 0.

In (4.19)–(4.24) and (5.7)–(5.12), the constants {n}n�1 and {⌧n}n�1 must satisfy:

44That is, lim�!0 lim supn!1 supF2P P ⇤
F (sup⇢F (✓,✓0)<� ||⌫n(✓)� ⌫n(✓

0)||) = 0, where P ⇤
F denotes outer probability

and ⇢F (✓, ✓
0) := ||V arF (⌫n(✓)� ⌫n(✓

0))||.

2



Assumption A.6. (i) n ! 1 and (ii) ⌧n ! 1.

For correct asymptotic level of CIn,�L(↵), the constant n in (5.15) must satisfy:

Assumption A.7. (i) n ! 1 and (ii) n/n1/2 ! 0.

Let �F (✓) := maxjk�Fj(✓). The set of minimizers of �F (✓) over ⇥ is ⇥min(F ) := {✓ 2

⇥ : �F (✓) = �inf

F }. For the lower-bound CI CIn,�L(↵) only, we impose the following minorant

condition on ⇥min(F ). It is analogous to the minorant conditions in CHT, BCS, and Bugni, Canay,

and Shi (2017) for the identified set.

Assumption A.8. (i) For all F 2 P and ✓ 2 ⇥, �F (✓) � �inf

F � cmin{�, inf✓2⇥min(F )
||✓ � ✓||}

for constants c, � > 0, (ii) ⇥ is convex, and (iii) EF em(W, ✓) is di↵erentiable in ✓ for all F 2 P

and {fMF (✓) := (@/@✓0)EF em(W, ✓) : F 2 P} is equicontinuous, i.e., lim�!0 supF2P sup
(✓,✓):||✓�✓||�

||fMF (✓)� fMF (✓)|| = 0.

15 Asymptotic Distribution of the SPUR Test Statistic

The EGMS critical value for the SPUR1 test defined above is constructed based on the asymp-

totic distribution of Sn(✓0) under drifting sequences of null distributions {Fn}n�1 for which ✓0 2

⇥MR
I (Fn) for n � 1. In this section, we establish this asymptotic distribution. For power properties,

we also establish the asymptotic distribution under local and global alternatives as well.

One obtains a CS for ✓ 2 ⇥MR
I (F ) by inverting tests based on Sn(✓0) for ✓0 2 ⇥. To obtain

uniform asymptotic coverage probability results, we need the asymptotic distribution of Sn(✓n)

under drifting sequences of null values {✓n}n�1 and distributions {Fn}n�1. For this reason, in the

results below, we consider the statistic

Sn := Sn(✓n) for testing H0 : ✓n 2 ⇥MR
I (Fn). (15.1)

The results cover models that may be correctly specified or misspecified. The form of the asymptotic

null distribution is important in order to understand the definition of the EGMS critical value given

in Section 4.4 above.

The proofs of the asymptotic level results for SPUR tests and CS’s show that it su�ces to

determine the asymptotic null rejection probabilities of tests under sequences or subsequences of

distributions Fn that satisfy certain conditions. These conditions are Assumptions C.1, C.3, C.4,

C.7, and C.8 introduced below, which depend only on deterministic quantities and can be made

to hold for certain subsequences using the fact that any sequence in a compact metric set has a

convergent subsequence. For this reason, we do not provide su�cient conditions for these conditions
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and these conditions do not appear in the statements of the asymptotic level results in Theorem

4.1.

15.1 High-Level Convergence Assumptions

The components Tn(✓) and An of Sn(✓) in (4.12) are centered and scaled such that they have

asymptotic distributions. We obtain the asymptotic distribution of An using a similar approach

to that in BCS. The results are also closely related to the asymptotic distribution results for the

supremum of a moment inequality objective function in CHT, Theorems 4.2 and 5.2. The results

given below di↵er from these results in that they allow for model misspecification.

Let R[±1] := R [ {+1,�1}. As in BCS, for any x1, x2 2 Ra⇤
[±1]

for some positive integer

a⇤, let d(x1, x2) := (
Pa⇤

j=1
(�(x1,j) � �(x2,j))2)1/2, where � : R[±1] ! [0, 1], �(y) is the standard

normal distribution function at y for y 2 R, �(�1) := 0, and �(1) := 1. The space (Ra⇤
[±1]

, d) is a

compact metric space. Convergence in (Ra⇤
[±1]

, d) to a point in Ra⇤ implies convergence under the

Euclidean norm. Let S(⇥⇥ R2k
[±1]

) denote the space of non-empty compact subsets of the metric

space (⇥ ⇥ R2k
[±1]

, d), where d is defined with a⇤ = d✓ + 2k. Let ) denote weak convergence of a

sequence of stochastic processes in the sense of van der Vaart and Wellner (1996). Let !H denote

convergence in Hausdor↵ distance (under d) for elements of S(⇥ ⇥ R2k
[±1]

). For any b, `,m 2 Rk,

including bn, b⇤,eb, `n which arise below, let bj , `j ,mj denote the jth elements of b, `,m, respectively.

To obtain the asymptotic distribution of An, we use the following sets:

⇤n,F :=
n
(✓, b, `) 2 ⇥⇥R2k : bj = n1/2([EF emj(W, ✓)]� � rinfF ), `j = n1/2EF emj(W, ✓) 8j  k.

o

(15.2)

for n � 1. For (✓, b, `) 2 ⇤n,F , bj is the di↵erence between the magnitude of violation of the jth

moment at ✓, [EF emj(W, ✓)]�, and the minimal relaxation, rinfF , scaled by n1/2, and `j is the jth

moment at ✓ scaled by n1/2. The quantities bj and `j can be positive, negative, or zero.

For ⌘ > 0, define

⇥⌘
I (F ) := {✓ 2 ⇥ : max

jk
[EF emj(W, ✓) + rinfF ]�  ⌘/n1/2}. (15.3)

The set ⇥⌘
I (F ) is an ⌘/n1/2-expansion of the MR-identified set ⇥MR

I (F ). It depends on n, but this

is suppressed. One can also write ⇥⌘
I (F ) as {✓ 2 ⇥ : maxjk[EF emj(W, ✓)]� � rinfF  ⌘/n1/2}.45

For ⌘ > 0, define ⇤⌘
n,Fn

as in (15.2) with ⇥⌘
I (Fn) in place of ⇥. By definition, ⇤⌘

n,Fn
⇢ ⇤n,Fn .

We employ the following “convergence” assumptions that apply to a drifting sequence of null

45This holds because for b, c � 0, [a+ b]�  c if and only if [a]� � b  c.

4



values {✓n}n�1, as in (15.1), and distributions {Fn}n�1.

Assumption C.1. ✓n ! ✓1 for some ✓1 2 ⇥.

Assumption C.2. n1/2EFn emj(W, ✓n) ! `j1 for some `j1 2 R[±1] 8j  k.

Assumption C.3. n1/2(EFn emj(W, ✓n) + rinfFn
) ! hj1 for some hj1 2 R[±1] 8j  k.

Assumption C.4. sup✓2⇥ ||EFn em(W, ✓) � em(✓)|| ! 0 for some nonrandom bounded continuous

Rk-valued function em(·) on ⇥.

Assumption C.5. ⌫n(·) := (⌫mn (·)0, ⌫�n(·)0)0 ) G(·) := (Gm(·)0, G�(·)0)0 as n ! 1, where {G(✓) :

✓ 2 ⇥} is a mean zero R2k-valued Gaussian process with some covariance kernel ⌦1(·, ·), bounded

continuous sample paths a.s., and Gm(✓), G�(✓) 2 Rk.

Assumption C.6. b⌦n(✓n) !p ⌦1 for some ⌦1 2  .

Assumption C.7. ⇤n,Fn !H ⇤ for some non-empty set ⇤ 2 S(⇥⇥R2k
[±1]

).

Assumption C.8. ⇤⌘n
n,Fn

!H ⇤I for some non-empty set ⇤I 2 S(⇥⇥R2k
[±1]

), where {⌘n}n�1 is a

sequence of positive constants for which ⌘n ! 1.

All of the limit quantities above, i.e., ✓1, {`j1}jk, etc., depend on {✓n}n�1 and {Fn}n�1.

Assumptions A.1–A.4, C.1, and uniform convergence of the covariance kernel ⌦Fn(·, ·) to a con-

tinuous limit function ⌦1(·, ·) are su�cient conditions for Assumptions C.5 and C.6, with ⌦1 in

Assumption C.6 equal to the upper left k⇥ k submatrix of ⌦1(✓1, ✓1), see Lemma 20.1 in online

Appendix B. Assumption C.7 is a generalization of assumption (iii) in Theorem 3.1 of BCS to allow

for model misspecification. Assumption C.8 is used to simplify the asymptotic distribution of Sn.

Let

emj1 = emj(✓1) for j  k and em(✓) = (em1(✓), ..., emk(✓))
0. (15.4)

The values `j1, hj1, and emj1 in Assumptions C.2 and C.3 and (15.4) have the following

properties.

Lemma 15.1 (a) Under Assumption C.3, if ✓n 2 ⇥MR
I (Fn) for all n large, then hj1 � 0 8j  k,

(b) under Assumptions C.2 and C.3, `j1  hj1 8j  k, (c) under Assumptions C.1, C.2, and

C.4, |emj1|  |`j1| and if |`j1| < 1, then emj1 = 0 8j  k, and (d) under Assumptions C.1–

C.4, if ✓n 2 ⇥MR
I (Fn) for all n large and the model is correctly specified, then hj1 = `j1 and

hj1, `j1, emj1 � 0 8j  k.

Comment. By Lemma 15.1(a), under the null hypothesis H0 in (4.1), hj1 � 0 8j  k.

The elements (✓, b, `) of ⇤ in Assumption C.7 have the following properties.
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Lemma 15.2 Under {Fn}n�1, (a) maxjk bnj(✓) � 0 8✓ 2 ⇥, 8n � 1, where bnj(✓) :=

n1/2([EFn emj(W, ✓)]� � rinfFn
), (b) 8(✓, b, `) 2 ⇤, maxjk bj � 0 provided Assumption C.7 holds,

(c) 9e✓n 2 ⇥ with maxjk bnj(e✓n) = 0 8n � 1 provided Assumption A.0 holds, (d) 9(e✓,eb, è) 2 ⇤ with

maxjk
ebj = 0 provided Assumptions A.0 and C.7 hold, and (e) 8(✓, b, `) 2 ⇤, |`j | < 1 implies

emj(✓) = 0 8j  k provided Assumptions C.4 and C.7 hold.

Comment. Lemma 15.2(a)–(d) are used to show that the asymptotic distribution of An is in R

a.s. Lemma 15.2(a) and (b) are key properties that are utilized when constructing a stochastic

lower bound on the asymptotic distribution of An. Lemma 15.2(c) implies that the MR-identified

set is non-empty under Assumption A.0 for all n � 1. Lemma 15.2(e) is used to show that the

asymptotic distribution of An simplifies somewhat in some scenarios.

Next, we state assumptions that specify whether {✓n}n�1 is a sequence of parameter values (i)

in the MR-identified set or n�1/2-local to the MR-identified set, i.e., a null or n�1/2-local alter-

native (NLA) sequence, or (ii) non-n�1/2-local to the MR-identified set, which yields a consistent

alternative (CA) sequence.

Assumption NLA. minjk hj1 > �1.

Assumption CA. minjk hj1 = �1.

Two alternative su�cient conditions for Assumption NLA are: Assumption N: ✓n 2 ⇥MR
I (Fn)

8n � 1, and Assumption LA: The null values {✓n}n�1 and distributions {Fn}n�1 satisfy: (i)

||✓n � ✓In|| = O(n�1/2) for some sequence {✓In 2 ⇥MR
I (Fn)}n�1, (ii) n1/2(EFn emj(W, ✓In) + rinfFn

) !

hIj1 for some hIj1 2 R[±1] 8j  k, and (iii) EF em(W, ✓) is Lipschitz on ⇥ uniformly over P, i.e.,

there exists a constant K < 1 such that ||EF em(W, ✓1)�EF em(W, ✓2)||  K||✓1 � ✓2|| 8✓1, ✓2 2 ⇥,

8F 2 P. Under Assumption N, minjk hj1 � 0. A “fixed alternative” (FA) su�cient condition for

Assumption CA is: Assumption FA: (i) (✓n, Fn) = (✓⇤, F⇤) 2 ⇥⇥P does not depend on n � 1 and

(ii) EF⇤ emj(W, ✓⇤) + rinfF⇤
< 0 for some j  k.46

15.2 Asymptotic Distribution of Sn

For notational simplicity, we use the following conventions: for any scalars ⌫ 2 R and c = ±1,

where ⌫ may be deterministic or random and c is deterministic, we let

⌫ + c = c, [⌫ + c]� � [c]� = 0 when c = +1, and [⌫ + c]� � [c]� = �⌫ when c = �1.47 (15.5)

46The su�ciency of these conditions is established in Section 16 in online Appendix B.
47This notation is motivated by the fact that for finite deterministic scalar constants ⌫ and c, for ⌫ fixed,

limc!±1(⌫ + c) = limc!±1 c, limc!+1([⌫ + c]� � [c]�]) = 0, and limc!�1([⌫ + c]� � [c]�) = �⌫, and analo-
gous convergence in probability results hold when ⌫ is random.

6



Let Gm
j (✓), G�

j (✓), ⌫
m
nj(✓), and ⌫�nj(✓) denote the jth elements of Gm(✓), G�(✓), ⌫mn (✓), and

⌫�n(✓), respectively. Let

Gm
j1 := Gm

j (✓1), G�
j1 := G�

j (✓1), Gm�
j1 := Gm

j1 � 1

2
emj1G�

j1,

Gm�
j (✓) := Gm

j (✓)� 1

2
emj(✓)G

�
j (✓), and

⌫m�
nj (✓) := ⌫mnj(✓)�

1

2
emj(✓)⌫

�
nj(✓) (15.6)

for j  k and ✓1 as in Assumption C.1. Define

Tj1 := Gm�
j1 + hj1 for j  k and T1 := (T11, ..., Tk1)0, (15.7)

where we employ the notational convention in (15.5). Thus, we have: Tj1 = 1 if `j1 = 1

(because hj1 � `j1 = 1 by Lemma 15.1(c)), Tj1 = Gm
j1 + hj1 if |`j1| < 1 (because |`j1| < 1

implies that emj1 = 0 by Lemma 15.1(c)), and Tj1 is finite and as in (15.7) with emj1 6= 0 if

`j1 = �1 and |hj1| < 1. As noted above, under H0, hj1 � 0 for j  k.

If the model is correctly specified and ✓n 2 ⇥MR
I (Fn) for n large, then Tj1 simplifies to

Tj1 = Gm
j1 + `j1 (15.8)

because, in this case, hj1 = `j1 (by Lemma 15.1(d)), `j1 2 [�1, 0) cannot occur (because `j1 � 0

by Lemma 15.1(d)), |`j1| < 1 implies that emj1 = 0 (by Lemma 15.1(c)), and `j1 (= hj1) = 1

implies Gm
j1 � (emj1/2)G�

j1 + hj1 = 1 = Gm
j1 + `j1 (by the notational convention in (15.5)).

The following quantities arise with the asymptotic distribution of An:

An(⇤n,Fn) := inf
(✓,b,`)2⇤n,Fn

max
jk

�
[⌫m�

nj (✓) + `j ]� � [`j ]� + bj
�
,

A1 := A1(⇤), and AI1 := A1(⇤I), where

A1(⇤) := inf
(✓,b,`)2⇤

max
jk

�
[Gm�

j (✓) + `j ]� � [`j ]� + bj
�
. (15.9)

We show that An = An(⇤n,Fn) + op(1) !d A1 as n ! 1 in Lemma 17.1 in online Appendix

B and Theorem 15.3 below. The term in parentheses in the definition of A1(⇤) equals bj when

`j = +1 (because [⌫ + c]� � [c]� = 0 for ⌫ 2 R and c = +1 by definition in (15.5)); equals

[Gm
j (✓) + `j ]� � [`j ]� + bj when |`j | < 1 (because |`j | < 1 implies emj(✓) = 0 for (✓, b, `) 2 ⇤ by

Lemma 15.2(e)); and equals �Gm�
j (✓) + bj when `j = �1 (because [⌫ + c]� � [c]� = �⌫ for ⌫ 2 R

and c = �1 by definition in (15.5)).
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The asymptotic distribution of the SPUR statistic Sn under the null hypothesis and n�1/2-local

alternatives is the distribution of

S1 := S(T1 +A11k,⌦1), which is equal to SI1 := S(T1 +AI11k,⌦1) (15.10)

under Assumption C.8.

Theorem 15.3 (a) Under {Fn}n�1 and Assumptions C.1 and C.3–C.5, Tn(✓n) !d T1,

(b) under {Fn}n�1 and Assumptions A.0, C.4, C.5, and C.7, An !d A1,

(c) under Assumptions A.0 and C.7, A1 2 R a.s.,

(d) under Assumptions C.1 and C.3–C.5 and NLA, Tj1 > �1 a.s. 8j  k,

(e) under {Fn}n�1 and Assumptions A.0, C.1 and C.3–C.7, NLA, and S.1(iii), Sn !d S1,

(f) under Assumptions A.0, C.1, and C.3–C.8, A1 = AI1 a.s. and S1 = SI1 a.s.,

(g) under Assumptions C.1 and C.3–C.5, and CA, Tj1 = �1 a.s. for some j  k,

(h) under {Fn}n�1 and Assumptions A.0, C.1 and C.3–C.7, CA, S.1(iii), S.2, and S.3, Sn !p 1,

and

(i) the convergence results in parts (a)–(e) hold jointly.

Comments. (i). Under correct model specification, rinfF = 0, An = n1/2brinfn (see (4.12)), n1/2brinfn

is the same as the model specification test statistic in BCS when their function S(m,⌦) equals

maxjk[mj ]�, and the asymptotic distribution of An given in Theorem 15.3(b) can be shown to

reduce to the same distribution as the asymptotic null distribution of the specification test statistic

given in Theorem 3.1 of BCS. In addition, in the correctly specified case, An = n1/2brinfn equals

CHT’s statistic inf✓2⇥ anQn(✓) for moment inequality models when Qn(✓) is the “max” sample

objective function defined by maxjk[bmnj(✓)]� (and an = n1/2) and CHT provide the asymptotic

distribution of inf✓2⇥ anQn(✓) under correct specification and for a fixed true distribution (rather

than a drifting sequence of distributions as in Theorem 15.3(b)).48 Theorem 15.3(b) extends these

results to allow for model misspecification.

(ii). The asymptotic distributions in Theorem 15.3 depend on the localization parameters hj1

and `j1, which are not consistently estimable, and emj1, which is consistently estimable. Under

48The asymptotic distribution of Chernozhukov, Hong, and Tamer’s (2007) statistic inf✓2⇥ anQn(✓) is given in
their Theorems 4.2(2) and 5.2(2) by the di↵erence between C in their (4.8) and (4.7) or the di↵erence between C(✓)
in their (5.6) and (5.5). Their definition of the identified set on p. 1265 assumes correct model specification, as
do their equation (4.5) and Assumption M.2. The function ⇠(✓) in their Theorem 4.2 only takes values of �1 or
0 due to their asymptotics being for a fixed true distribution, as opposed to a drifting sequence of distributions.
Because Chernozhukov, Hong, and Tamer (2007) consider “” inequalities, whereas the present paper considers “�”
inequalities, the sample moments enter the statistics with di↵erent signs in the two papers.
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the null hypothesis H0 in (4.1), hj1 � 0 for all j  k. The asymptotic distribution also depends

on the (bj , `j) values, which appear in the limit sets ⇤ and ⇤I , and are not consistently estimable.

For the purposes of inference (i.e., obtaining a critical value), one needs a stochastic lower bound

on the distribution of the vector sum T1 +A11k for the case when hj1 � 0 for all j  k.

(iii). Theorem 15.3(c) is important because it implies that adding A1 to Tj1 cannot result in

adding +1 to �1 or �1 to +1.

(iv). Theorem 15.3(f) is important because it implies that parameters (✓, b, `) 2 ⇤\⇤I do not

contribute to the infimum in A1. This means that when constructing a critical value for a test

based on Sn one only needs to find a lower bound on AI1.

(v). The stochastic process G�
j (·) enters S1 (through Gm�

j (·)). Thus, the asymptotic distribu-

tion of Sn depends on the randomness due to the estimation of the standard deviation of the jth

sample moment by b�nj(✓) for j  k. Under correct model specification, this is not the case.

For any subsequence {qn}n�1 of {n}n�1, Theorem 15.3 and its proof hold with qn in place of n

throughout, including the assumptions. To prove Theorem 15.3(b), we use a similar proof to the

proof of Theorem 3.1 of BCS with S(m,⌦) = maxjk[mj ]� in their proof. The statistic An(⇤n,Fn)

depends on bnj(✓) := n1/2[EFn emj(W, ✓)]��n1/2rinfFn
, `nj(✓) := n1/2EFn emj(W, ✓), ⌫mnj(✓), and ⌫

�
nj(✓),

whereas the statistic in BCS only depends on `nj(✓) and ⌫mnj(✓).

The asymptotic distribution SI1 of the SPUR statistic under H0 explains the form of the

critical value for the SPUR1 test in Section 4.4. The Gaussian quantities Gm�
j1 and Gm�

j (·) in (15.7)

and (15.9) are approximated by the bootstrap quantities b⌫⇤njb(✓) and b⌫⇤njb(·) in (4.17). The constant

hj1 in (15.7) is nonnegative under H0 and is lower bounded by the GMS quantity '(⇠nj(✓)) in

(4.19). The random quantities [Gm�
j (✓) + `j ]� � [`j ]� for (✓, b, `) 2 ⇤I in (15.9) are lower bounded

by b�⇤
nj,b(✓) for ✓ 2 b⇥n defined in (4.21), which appears in A⇤

n,b in (4.25). The infimum is taken over

b⇥n in A⇤
n,b because ⇤I depends on the limit of ⇥⌘n

I (Fn) and it is shown that b⇥n � ⇥⌘n
I (Fn) wp!1.

The elements bj in the vectors b = (b1, ..., bk)0 for (✓, b, `) 2 ⇤ in (15.9) are lower bounded by bbnj(✓)

in general and by the better GMS-type lower bound '(⇠Anj(✓)) when j = j1 is such that bj1 � 0 of

which there is at least one by Lemma 15.2(b). We show that j1 2 bJnB(✓) wp!1, so A⇤
n,b is defined

to allow j1 to be any of the values in bJnB(✓) and a minimum over j1 2 bJnB(✓) is taken to get a

lower bound. Imposing the property in Lemma 15.2(b) is important because otherwise the EGMS

critical value would slowly diverge in probability to 1 as n ! 1.

16 Lemma 16.1 and Proofs of Lemmas 15.1, 15.2, and 16.1

The following is a su�cient condition for Assumption NLA, which first appears in Section 15.1.
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Assumption LA. The null values {✓n}n�1 and distributions {Fn}n�1 satisfy: (i) ||✓n � ✓In|| =

O(n�1/2) for some sequence {✓In 2 ⇥MR
I (Fn)}n�1, (ii) n1/2(EFn emj(W, ✓In)+rinfFn

) ! hIj1 for some

hIj1 2 R[±1] 8j  k, and (iii) EF em(W, ✓) is Lipschitz on ⇥ uniformly over P, i.e., there exists a

constant K < 1 such that ||EF em(W, ✓1)� EF em(W, ✓2)||  K||✓1 � ✓2|| 8✓1, ✓2 2 ⇥, 8F 2 P.

Under Assumption LA, {✓n}n�1 is a sequence of n�1/2-local alternatives to the null hypothesis

8n � 1. Assumption LA(ii) is the same as Assumption C.3 with {✓n}n�1 replaced by some sequence

{✓In}n�1 in the MR-identified set(s). Hence, by Lemma 15.1(a), hIj1 � 0 8j  k.

A su�cient condition for Assumption CA is the following fixed alternative assumption.

Assumption FA. The null values {✓n}n�1 and distributions {Fn}n�1 satisfy: (i) The distributions

Fn = F⇤ 2 P and the null values ✓n = ✓⇤ 2 ⇥ do not depend on n � 1 and (ii) EF⇤ emj(W, ✓⇤)+rinfF⇤
<

0 for some j  k.

Lemma 16.1 Under Assumption C.3, (a) Assumption N implies Assumption NLA, (b) Assump-

tion LA implies Assumption NLA, and (c) Assumption FA implies Assumption CA.

Proof of Lemma 15.1. Part (a) holds because rinfFn
� 0 by its definition in (3.5). The first result

in part (b) holds because n1/2 � 1. The second result in part (b) holds because |`j1| < 1 implies

n1/2EFn emj(W, ✓n) = O(1), which implies that emj1 := emj(✓1) = limn!1EFn emj(W, ✓n) = 0, using

Assumptions C.1, C.2, and C.4.

Now, we prove part (c). If ✓ 2 ⇥MR
I (F ), then rF (✓) = rinfF (by the definition of ⇥MR

I (F ) in

(3.6)), rFj(✓)  rinfF 8j  k (by the definition of rFj(✓) in (3.5)), and rFj(✓) = rinfF for some j  k.

In consequence,

0 = max
jk

(rFj(✓)� rinfF ) = max
jk

(max{�EF emj(W, ✓), 0}� rinfF )

� max
jk

(�EF emj(W, ✓)� rinfF ) = �min
jk

(EF emj(W, ✓) + rinfF ), (16.1)

where the second equality holds by the definition of rFj(✓) and the inequality is trivial.

Using (16.1), if ✓n 2 ⇥MR
I (Fn) for n large, then

0  lim inf
n!1

min
jk

n1/2(EFn emj(W, ✓n) + rinfFn
)

= min
jk

lim inf
n!1

n1/2(EFn emj(W, ✓n) + rinfFn
) = min

jk
hj1, (16.2)

where the first equality holds by a subsequence argument and the second equality uses Assumption

C.3. This establishes part (c).
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Lastly, we prove part (d). If ✓ 2 ⇥MR
I (F ) and the model is correctly specified, then

rinfF = max
jk

rFj(✓) = max
jk

max{�EF em(W, ✓), 0} = 0, (16.3)

where the first two equalities hold by the definitions of rinfF and rFj(✓) in (3.5) and the last equality

holds because EF em(W, ✓) � 0k 8✓ 2 ⇥MR
I (F ) by correct model specification, see (3.4).

Equation (16.3) implies that under correct model specification, if ✓n 2 ⇥MR
I (Fn) for all n large,

then

hj1 = limn1/2(EFn emj(W, ✓n) + rinfFn
) = limn1/2EFn emj(W, ✓n) = `j1 8j  k. (16.4)

We have hj1, `j1, emj1 � 0 under correct model specification when ✓n 2 ⇥MR
I (Fn) for all n

large, because the moment inequalities all hold at ✓n 2 ⇥MR
I (Fn), i.e., EFn emj(W, ✓n) � 0, under

correct model specification. This completes the proof of part (d). ⇤

Proof of Lemma 15.2. Because rinfF := inf✓2⇥maxjk rFj(✓) for all F and ✓ 2 ⇥, see (3.5), we

have

max
jk

(rFj(✓)� rinfF ) � 0, (16.5)

which establishes part (a).

Any (✓, b, `) 2 ⇤ is the limit of some sequence (✓n, bn, `n) 2 ⇤n,Fn because ⇤n,Fn !H ⇤ by

Assumption C.7. That is, bn ! b and maxjk bnj ! maxjk bj . This and (16.5) applied with

(✓, F ) = (✓n, Fn) give

0  max
jk

n1/2(rFnj(✓n)� rinfFn
) = max

jk
bnj ! max

jk
bj , (16.6)

which proves part (b) of the lemma.

Next, we prove part (c). The function rFn(✓) � rinfFn
is lower semi-continuous on ⇥ (since

EF emj(W, ✓) is upper semi-continuous on ⇥ by Assumption A.0(ii)) and [x]� := max{�x, 0}, ⇥ is

compact by Assumption A.0(i), and a lower semi-continuous function on a compact set achieves its

infimum. Hence, there exists e✓n 2 ⇥ such that rF (e✓n) = rinfF 8n � 1, which establishes part (c).

For part (d), let (e✓n,ebn, èn) 2 ⇤n,Fn be such that e✓n 2 ⇥MR
I (Fn) 8n � 1. Such (e✓n,ebn, èn) exist

because ⇥MR
I (Fn) is non-empty 8n � 1 by part (c). There exists a subsequence {qn}n�1 of {n}n�1

and a (e✓,eb, è) 2 ⇥ ⇥ R2k
[±1]

such that d((e✓qn ,ebqn , èqn), (e✓,eb, è)) ! 0 because (⇥ ⇥ R2k
[±1]

, d) is a
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compact metric space under Assumption A.0(i). We have (e✓,eb, è) 2 ⇤ by the following argument:

0  inf
(✓,b,`)2⇤

d((✓, b, `), (e✓,eb, è))  inf
(✓,b,`)2⇤

d((✓, b, `), (e✓qn ,ebqn , èqn)) + d((e✓qn ,ebqn , èqn), (e✓,eb, è))

! 0, (16.7)

where the second inequality holds by the triangle inequality and the convergence holds using

Assumption C.7 (i.e., ⇤n,Fn !H ⇤). Thus, inf(✓,b,`)2⇤ d((✓, b, `), (e✓,eb, è)) = 0. This implies that

(e✓,eb, è) 2 ⇤, because ⇤ is a compact subset of (⇥⇥R2k
[±1]

, d) by Assumption C.7, d((✓, b, `), (e✓,eb, è))

is a continuous function of (✓, b, `), and a continuous function on a compact set attains its infimum.

Since e✓n 2 ⇥MR
I (Fn), rFn(e✓n) = rinfFn

8n � 1. Hence, for all n � 1,

max
jk

ebnj = max
jk

n1/2([EFn emj(W, e✓n)]� � rinfFn
) = n1/2(rFn(e✓n)� rinfFn

) = 0, (16.8)

where the first equality holds by the definition of ⇤n,Fn in (15.2) and the second equality holds by

the expression for rF (✓) in (3.5). We obtain

max
jk

ebj = lim
n!1

max
jk

ebnj = 0, (16.9)

which proves part (d) of the lemma since (e✓,eb, è) 2 ⇤.

Given any (✓⇤, b⇤, `⇤) 2 ⇤, there exists a sequence {(✓⇤n, b⇤n, `⇤n) 2 ⇤n,Fn}n�1 such that (✓⇤n, b
⇤
n, `

⇤
n)

! (✓⇤, b⇤, `⇤) because ⇤n,Fn !H ⇤ by Assumption C.7. Hence, if |`⇤j | < 1, we have

|emj(✓
⇤)| = lim |EFn emj(W, ✓⇤n)| = lim(n�1/2(|`⇤j |+ o(1))) = 0, (16.10)

where the first equality uses Assumption C.4. This establishes part (e). ⇤

Proof of Lemma 16.1. Under Assumption N, Lemma 15.1(a) implies that hj1 � 0 8j  k,

which establishes Assumption NLA and part (a).

Now, we establish part (b). Under Assumption LA, for all j  k, we have

n1/2|EFn emj(W, ✓n)� EFn emj(W, ✓In)|  Kn1/2||✓n � ✓In|| = O(1), (16.11)

where the inequality holds by Assumption LA(iii) and the equality holds by Assumption LA(i). In
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consequence, for all j  k, we have

hj1 = lim
n!1

n1/2(EFn emj(W, ✓n) + rinfFn
)

= lim
n!1

n1/2(EFn emj(W, ✓In) + rinfFn
) +O(1) = hIj1 +O(1) � O(1), (16.12)

where the first equality holds by Assumption C.3, the second equality holds by (16.11), the third

equality holds by Assumption LA(ii), and the inequality holds by Lemma 15.1(a) with ✓In in place

of ✓n using Assumption LA(ii) in place of Assumption C.3. This completes the proof of part (b).

Under Assumption FA, we have

min
jk

hj1 = min
jk

limn1/2(EF⇤ emj(W, ✓⇤) + rinfF⇤ ) = �1, (16.13)

where the second equality holds because EF⇤ emj(W, ✓⇤) + rinfF⇤
< 0 for some j  k by Assumption

FA(ii). Thus, Assumption CA holds, which establishes part (c). ⇤

17 Proof of Theorem 15.3

The proof of Theorem 15.3(b) uses the following lemma.

Lemma 17.1 Suppose Assumptions C.4 and C.5 hold. Under {Fn}n�1, we have

(a) b⌫nj(✓) = ⌫m�
nj (✓) + o⇥p (1) 8j  k and (b) An = An(⇤n,Fn) + op(1).

Proof of Lemma 17.1. For a given distribution F, define

⌫�†n (✓) := n1/2

✓✓
b�2n1(✓)
�2F1

(✓)
� 1

◆
, ...,

✓
b�2nk(✓)
�2Fk(✓)

� 1

◆◆0
. (17.1)

Note that ⌫�†n (✓) di↵ers from ⌫�n(✓) (defined in (14.2)) because the former depends on b�2nj(✓),

which is centered at the sample quantity mnj(✓), see (4.2), whereas the latter depends on b�2Fnj(✓),

which is centered at the population quantity EFmj(W, ✓). The following calculations show that
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⌫�†nj (✓) = ⌫�nj(✓)� n�1/2(⌫mnj(✓))
2:

⌫�†nj (✓) := n1/2

 
b�2nj(✓)
�2Fnj

(✓)
� 1

!
= n�1/2

nX

i=1

⇥
(emj(Wi, ✓)� emnj(✓))

2 � 1
⇤

= n�1/2
nX

i=1

⇥
(emj(Wi, ✓)� EFn emj(W, ✓))2 � 1

⇤
� n1/2(emnj(✓)� EFn emj(W, ✓))2

= ⌫�nj(✓)� n�1/2(⌫mnj(✓))
2, and

⌫�†nj (✓) = ⌫�nj(✓) + o⇥p (1) (17.2)

8j  k, where the last equality holds by Assumption C.5.

By (17.2), Assumption C.5, and the continuous mapping theorem, for all j  k,

sup
✓2⇥

�����
b�2nj(✓)
�2Fnj

(✓)
� 1

�����= : sup
✓2⇥

n�1/2
���⌫�†nj (✓)

��� = sup
✓2⇥

n�1/2
��⌫�nj(✓)

��+ o⇥p (n
�1/2) !p 0, and so,

sup
✓2⇥

����
�Fnj(✓)

b�nj(✓)
� 1

���� !p 0. (17.3)

We have

n1/2

✓
b�nj(✓)
�Fnj(✓)

� 1

◆
= n1/2

0

@
 
1 +

 
b�2nj(✓)
�2Fnj

(✓)
� 1

!!1/2

� 1

1

A

=
1

2
(1 + o⇥p (1))

�1/2n1/2

 
b�2nj(✓)
�2Fnj

(✓)
� 1

!

=
1

2
⌫�nj(✓) + o⇥p (1), (17.4)

where the second equality holds by the following mean-value expansion, (1 + x)1/2 = 1+ (1/2)(1+

ex)�1/2x, where |ex|  |x|, with x := b�2nj(✓)/�2Fnj(✓) � 1 and sup✓2⇥ |x|  sup✓2⇥ |b�2nj(✓)/�2Fnj(✓) �

1| = op(1) by (17.3), and the last equality uses (17.2) and Assumption C.5.

For all j  k, we have

b⌫nj(✓) := n1/2 (bmnj(✓)� EFn emj(W, ✓)) =
�Fnj(✓)

b�nj(✓)

✓
⌫mnj(✓)� EFn emj(W, ✓)n1/2

✓
b�nj(✓)
�Fnj(✓)

� 1

◆◆

= (1 + o⇥p (1))

✓
⌫mnj(✓)�

1

2
EFn emj(W, ✓)⌫�nj(✓) + o⇥p (1)

◆

= ⌫m�
nj (✓) + o⇥p (1), (17.5)

where ⌫mnj(✓) := n1/2(emnj(✓)�EFn emj(W, ✓)), emnj(✓) = (b�nj(✓)/�Fnj(✓))bmnj(✓) is defined in (14.1)

in online Appendix A, the second equality holds by (17.4), and the third equality holds by the

14



definition of ⌫m�
nj (✓) in (15.6) and Assumptions C.4 and C.5. This proves part (a).

To prove part (b), we have

sup
`j2R

���
⇥
⌫m�
nj (✓) + o⇥p (1) + `j

⇤
� �

⇥
⌫m�
nj (✓) + `j

⇤
�

��� = o⇥p (1) (17.6)

because the function �(v, c) := [v + c]� � [c]� for v, c 2 R[±1] satisfies

|�(v, c)|  |v|. (17.7)

This holds because (i) if c  0 and ⌫ + c  0, then �(⌫, c) = |⌫|, (ii) if c  0 and ⌫ + c > 0, then

⌫ > �c and �(⌫, c) = |c|  |⌫|, and (iii) if c > 0, then �(⌫, c) = [⌫ + c]�  [⌫]�  |⌫|.

We have

n1/2
⇣
brnj(✓)� rinfFn

⌘

:= n1/2
⇣
[bmnj(✓)]� � rinfFn

⌘
(17.8)

=

✓h
⌫m�
nj (✓) + n1/2EFn emj(W, ✓)

i

�
�
h
n1/2EFn emj(W, ✓)

i

�
+ snj(✓, Fn)

◆
+ o⇥p (1),

where snj(✓, F ) := n1/2([EF emj(W, ✓)]� � rinfF ), using (17.5) and (17.6).

For given (✓, b, `) 2 ⇤n,Fn , where ⇤n,Fn is defined in (15.2), we have

n1/2EFn em(W, ✓) = `j and snj(✓, Fn) = bj . (17.9)

Using (17.8) and (17.9), we obtain

An := inf
✓2⇥

max
jk

n1/2
⇣
brnj(✓)� rinfFn

⌘

= inf
(✓,b,`)2⇤n,Fn

max
jk

�
[⌫m�

nj (✓) + `j ]� � [`j ]� + bj
�
+ op(1)

=: An(⇤n,Fn) + op(1), (17.10)

where the first equality holds by the definitions in (4.4) and (4.12) and the last equality holds by

the definition in (15.9). This proves part (b). ⇤

Proof of Theorem 15.3. First, we prove part (a). For j  k, we show that

n1/2(bmnj(✓n) + rinfFn
) !d Tj1 (17.11)

and the convergence holds jointly over j  k. Stacking these results for j = 1, ..., k gives Tn(✓n) !d

15



T1 using the definitions of Tn(✓n) and T1 in (4.12) and (15.7), respectively.

We have

n1/2
⇣
bmnj(✓) + rinfF

⌘
= n1/2

✓
mnj(✓)

b�nj(✓)
+ rinfF

◆

=
�Fj(✓)

b�nj(✓)
bK1nj(✓, F ) +

�Fj(✓)

b�nj(✓)
bK2nj(✓, F ) +K3nj(✓, F ), where

bK1nj(✓, F ) := n1/2

✓
mnj(✓)

�Fj(✓)
� EFmj(W, ✓)

�Fj(✓)

◆
,

bK2nj(✓, F ) := �n1/2

✓
b�nj(✓)
�Fj(✓)

� 1

◆
EFmj(W, ✓)

�Fj(✓)
, and

K3nj(✓, F ) := n1/2

✓
EFmj(W, ✓)

�Fj(✓)
+ rinfF

◆
. (17.12)

By Assumption C.3,

K3nj(✓n, Fn) ! hj1. (17.13)

By (17.4) and Assumption C.5,
�Fnj(✓n)

b�nj(✓n)
!p 1. (17.14)

Given (17.14), to prove part (a), it remains to determine the asymptotic distributions of bK1nj(✓n, Fn)

and bK2nj(✓n, Fn).

We have

n1/2

 
b�2nj(✓n)
�2Fnj

(✓n)
� 1

!
=: ⌫�†nj (✓n) = ⌫�nj(✓n) + o⇥p (1) !d G�

j1 , (17.15)

where the two equalities hold by (17.2) and the convergence holds by Assumption C.5 (which implies

stochastic equicontinuity of {⌫�n(·)}n�1) and Assumption C.1. Equation (17.15) and the �-method

applied with the function g(x) = x1/2, for which g0(x)|x=1 = 1/2, give

n1/2

✓
b�nj(✓n)
�Fnj(✓n)

� 1

◆
!d

1

2
G�

j1 . (17.16)

By Assumptions C.1 and C.4, EFn emj(W, ✓n) = emj(✓n) + o(1) ! emj(✓1) := emj1. This and

(17.16) give

bK2nj(✓n, Fn) !d � emj1
2

G�
j1 . (17.17)

We have

bK1nj(✓n, Fn) := n1/2 (emnj(✓n)� EFn emnj(✓n)) = ⌫mnj(✓n) !d Gm
j1 , (17.18)
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where ⌫mnj(✓n) denotes the jth element of ⌫mn (✓n) and the convergence holds by Assumption C.5.

Combining the results in (17.12)–(17.14), (17.17), (17.18) and, for the case where hj1 = ±1,

the fact that Gm
j1 � emj1G�

j1/2 = Op(1) (by Assumptions C.4 and C.5), establishes (17.11). The

results in (17.11) for j  k hold jointly because they are all based on the convergence result in

Assumption C.5. This completes the proof of part (a).

Next, we prove part (b). By Lemma 17.1(b), it su�ces to show

An(⇤n,Fn) !d A1. (17.19)

Let D be the space of functions from ⇥ to R2k. Let D0 be the subset of uniformly continuous

functions in D. For a nonstochastic function ⌫(·) 2 D, let ⌫(✓) = (⌫m(✓)0, ⌫�(✓)0)0, and let ⌫mj (✓)

and ⌫�j (✓) denote the jth elements of ⌫m(✓) and ⌫�(✓), respectively. Define

gn(⌫(·)) := inf
(✓,b,`)2⇤n,Fn

max
jk

[⌧j(⌫(·), ✓, `) + bj ] ,

g(⌫(·)) := inf
(✓,b,`)2⇤

max
jk

[⌧j(⌫(·), ✓, `) + bj ] , where

⌧j(⌫(·), ✓, `) := [⌫m�
j (✓) + `j ]� � [`j ]� and

⌫m�
j (✓) := ⌫mj (✓)� 1

2
emj(✓)⌫

�
j (✓). (17.20)

For the stochastic processes ⌫n(·) and G(·), we can write

An(⇤n,Fn) = gn(⌫n(·)) and A1 = A1(⇤) = g(G(·)). (17.21)

We want to show that gn(⌫n(·)) !d g(G(·)). By Assumption C.5, ⌫n(·) ) G(·) for ⌫n(·) 2 D

a.s. and G(·) 2 D0 a.s. We use the extended CMT, see van der Vaart and Wellner (1996, Theorem

1.11.1), to establish the desired result, as in the proof of Theorem 3.1 in BCS. The extended CMT

requires showing: for any deterministic sequence {⌫n(·) 2 D}n�1 and deterministic ⌫(·) 2 D0 such

that sup✓2⇥ ||⌫n(✓)� ⌫(✓)|| ! 0, we have gn(⌫n(·)) ! g(⌫(·)). (For notational simplicity, we abuse

notation here and consider a deterministic ⌫n(·) that di↵ers from the random ⌫n(·) in Assumption

C.5.) Once we have shown this, the proof of part (b) is complete.

Let {⌫n(·) 2 D}n�1 and ⌫(·) 2 D0 be deterministic and satisfy sup✓2⇥ ||⌫n(✓)� ⌫(✓)|| ! 0. We

show

(i) lim inf
n!1

gn(⌫n(·)) � g(⌫(·)) and (ii) lim sup
n!1

gn(⌫n(·))  g(⌫(·)). (17.22)

First, we establish (i) in (17.22). There exists a subsequence {an}n�1 of {n}n�1 and there exists
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a sequence {(✓an , ban , `an) 2 ⇤an,Fan
}n�1 such that

lim inf
n!1

gn(⌫n(·)) = lim
n!1

gan(⌫an(·)) and

lim
n!1

gan(⌫an(·)) = lim
n!1

max
jk

⇥
⌧j(⌫an(·), ✓an , `an) + banj

⇤
, (17.23)

where banj denotes the jth element of ban . Also, there exists a subsequence {en}n�1 of {an}n�1 and

(✓, b, `) 2 ⇥⇥R2k
[±1]

such that

d
�
(✓en , ben , `en), (✓, b, `)

�
! 0, (17.24)

where d is defined in Section 15.1, by compactness of the metric space (⇥ ⇥ R2k
[±1]

, d) under As-

sumption A.0(i). We have (✓, b, `) 2 ⇤ by the same argument as used to show (e✓,eb, è) 2 ⇤ in (16.7)

(but without the requirement that ✓an 2 ⇥MR
I (Fan) 8n � 1) using (17.24) and Assumption C.7.

For all j  k,

lim
n!1

⌧j(⌫en(·), ✓en , `en) = ⌧j1(⌫(·), ✓, `) 2 R, where

⌧j1(⌫(·), ✓, `) :=

8
>><

>>:

[⌫m�
j (✓) + `j ]� � [`j ]� if |`j | < 1

�⌫m�
j (✓) if `j = �1

0 if `j = +1

= [⌫m�
j (✓) + `j ]� � [`j ]�

:= ⌧j(⌫(·), ✓, `), (17.25)

the equality on the first line holds by ⌫en(✓) ! ⌫(✓) = (⌫m(✓)0, ⌫�(✓)0)0 uniformly over ✓ 2 ⇥ (by

assumption), (17.24), [⌫n + cn]� � [cn]� ! �⌫ as (⌫n, cn) ! (⌫,�1) for ⌫ 2 R, and [⌫n + cn]� �

[cn]� ! 0 as (⌫n, cn) ! (⌫,+1) for ⌫ 2 R, the equality on the third line holds using the notational

convention in (15.5), the equality on the last line holds by the definition of ⌧j(⌫(·), ✓, `) in (17.20),

and “2 R” in the first line holds using the right-hand side (rhs) expression on the second line

because ⌫m�
j (✓) is finite since ⌫(·) is assumed to be in D, �(⌫, c) := [⌫ + c]� � [c]� for ⌫, c 2 R

satisfies |�(⌫, c)|  |⌫| as shown in (17.7), and emj(✓) is finite by Assumption C.4.
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Now, we have

lim inf
n!1

gn(⌫n(·)) = lim
n!1

max
jk

⇥
⌧j(⌫en(·), ✓en , `en) + benj

⇤

= max
jk

⇥
⌧j(⌫(·), ✓, `) + bj

⇤

� inf
(✓,b,`)2⇤

max
jk

[⌧j(⌫(·), ✓, `) + bj ]

:= g(⌫(·)), (17.26)

where the first equality holds by (17.23) and the fact that {en}n�1 is a subsequence of {an}n�1,

the second equality holds by (17.25) (using the notational convention in (15.5) if bj = ±1 for any

j  k), the inequality holds because (✓, b, `) 2 ⇤ by the paragraph containing (17.24), and the last

equality holds by the definition of g(⌫(·)) in (17.20). This establishes result (i) in (17.22).

Next, we establish result (ii) in (17.22). There exists (✓†, b†, `†) 2 ⇤ such that

g(⌫(·)) = max
jk

h
⌧j(⌫(·), ✓†, `†) + b†j

i
(17.27)

because ⇤ is compact under the metric d, defined in Section 15.1 (since it is assumed to be an

element of S(⇥ ⇥ R2k
[±1]

)) and ⌧j(⌫(·), ✓, `) + bj is a continuous function of (✓, b, `) under d that

takes values in the extended real line. By Assumption C.7, ⇤n,Fn !H ⇤. Hence, there is a sequence

{(✓†n, b†n, `†n) 2 ⇤n,Fn}n�1 such that d((✓†n, b
†
n, `

†
n), (✓†, b†, `†)) ! 0. We obtain

lim sup
n!1

gn(⌫n(·)) := lim sup
n!1

inf
(✓,b,`)2⇤n,Fn

max
jk

[⌧j(⌫n(·), ✓, `) + bj ]

 lim sup
n!1

max
jk

h
⌧j(⌫n(·), ✓†n, `†n) + b†nj

i

= max
jk

h
⌧j(⌫(·), ✓†, `†) + b†j

i

= g(⌫(·)), (17.28)

where the inequality holds because (✓†n, b
†
n, `

†
n) 2 ⇤n,Fn 8n � 1, the second equality holds using

d((✓†n, b
†
n, `

†
n), (✓†, b†, `†)) ! 0 and (17.25) with (⌫n(·), ✓†n, `†n) and (⌫(·), ✓†, `†) in place of (⌫en(·), ✓en ,

`en) and (⌫(·), ✓, `), respectively, and the last equality holds by (17.27). This establishes result (ii)

in (17.22) and completes the proof of part (b).

Now we prove part (c). We have

A1 := inf
(✓,b,`)2⇤

max
jk

�
[Gm�

j (✓) + `j ]� � [`j ]� + bj
�
> �1 a.s. (17.29)

because (I) maxjk bj � 0 8(✓, b, `) 2 ⇤ by Lemma 15.2(b) and (II) sup(✓,b,`)2⇤ |[Gm�
j (✓) + `j ]� �
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[`j ]�|  sup✓2⇥ |Gm�
j (✓)| < 1 a.s. (because �(⌫, c) := [⌫ + c]� � [c]� satisfies |�(⌫, c)|  |⌫| as

shown in (17.7), |[⌫ + c]� � [c]�| := 0 if ⌫ 2 R and c = +1, |[⌫ + c]� � [c]�| := �⌫ if ⌫ 2 R

and c = �1 using (15.5), and sup✓2⇥ |Gm�
j (✓)| < 1 a.s. since G(·) is bounded on ⇥ a.s. by

Assumption C.5 and emj(·) is bounded on ⇥ by Assumption C.4).

To obtain the other half of part (c), i.e., A1 < 1 a.s., we use Lemma 15.2(d). We have

A1 := inf
(✓,b,`)2⇤

max
jk

�
[Gm�

j (✓) + `j ]� � [`j ]� + bj
�

 max
jk

⇣
[Gm�

j (e✓) + è
j ]� � [èj ]� +ebj

⌘
< 1 a.s., (17.30)

where (e✓,eb, è) 2 ⇤ is as in Lemma 15.2(d), the first equality holds by the definition of A1 in (15.9),

the first inequality holds because (e✓,eb, è) 2 ⇤, and last inequality holds because (I) maxjk
ebj = 0

by Lemma 15.2(d) and (II) sup(✓,b,`)2⇤ |[Gm�
j (✓) + `j ]� � [`j ]�| < 1 a.s. by (II) following (17.29).

This completes the proof of part (c).

Now we prove part (d). Under Assumption NLA, for all j  k, we have

Tj1 := Gm�
j1 + hj1 > �1 a.s., (17.31)

where the first equality holds by (15.7) and the inequality holds because |Gm�
j1 | < 1 a.s. by the

definitions in (15.4) and (15.6) and Assumptions C.4 and C.5, and hj1 > �1 by Assumption

NLA.

Part (e) follows from the convergence results for Tn(✓n) and An in parts (a) and (b), the

convergence result for b⌦n(✓n) in Assumption C.6, the definition of Sn := Sn(✓n) in (4.5) and (4.12),

the continuity of S(m,⌦) at all m 2 Rk
[+1]

and ⌦ 2  by Assumption S.1(iii), and the fact that

Tj1 > �1 8j  k and A1 2 R by parts (c) and (d).

Now, we establish part (f). If ⇤ = ⇤I , then part (f) holds immediately. So, we suppose that

⇤\⇤I is not empty. We show that for any (✓⇤, b⇤, `⇤) 2 ⇤\⇤I ,

max
jk

⇥
⌧j(G(·), ✓⇤, `⇤) + b⇤j

⇤
= 1 a.s., (17.32)

where ⌧j(⌫(·), ✓, `) is defined in (17.20). Since A1 2 R a.s. by part (c), and A1 := inf(✓,b,`)2⇤

maxjk [⌧j(G(·), ✓, `) + bj ] by (15.9), (17.32) implies that A1 = AI1 a.s., which establishes the first

result in part (f). The second result in part (f) follows from the first result provided the quantities

✓1, T1, and ⌦1 are well defined, which requires Assumptions C.1, C.3, and C.6.

For part (f), it remains to show (17.32). By Assumption C.8, ⇤I is compact. For any

(✓⇤, b⇤, `⇤) 2 ⇤\⇤I , there is a neighborhood of (✓⇤, b⇤, `⇤) that lies in ⇤\⇤I and there exists a
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sequence {(✓⇤n, b⇤n, `⇤n) 2 ⇤n,Fn}n�1 such that d((✓⇤n, b
⇤
n, `

⇤
n), (✓

⇤, b⇤, `⇤)) ! 0 by Assumption C.7. In

consequence, for n large, (✓⇤n, b
⇤
n, `

⇤
n) /2 ⇤⌘n

n,Fn
. In turn, this implies that ✓⇤n /2 ⇥⌘n

I (Fn) for n large

using the definition of ⇤⌘n
n,Fn

following (15.3).

Now, ✓⇤n /2 ⇥⌘n
I (Fn) for all n large implies

max
jk

n1/2[EFn emj(W, ✓⇤n) + rinfFn
]� > ⌘n for all n large,

max
jk

n1/2(�EFn emj(W, ✓⇤n)� rinfFn
) ! 1, and

max
jk

b⇤j = limmax
jk

b⇤n,j := limmax
jk

n1/2([EFn emj(W, ✓⇤n)]� � rinfFn
) = 1, (17.33)

where the first line holds by the definition of ⇥⌘
I (F ) in (15.3), the first line implies that minjk

EFn emj(W, ✓⇤n) + rinfFn
< 0 for all n large, which is used to obtain the second line, the second line

also uses ⌘n ! 1 by Assumption C.8, the first equality in the third line holds by the convergence

result for {(✓⇤n, b⇤n, `⇤n)}n�1 in the previous paragraph, the second equality in the third line holds

by (✓⇤n, b
⇤
n, `

⇤
n) 2 ⇤n,Fn and the definition of ⇤n,F in (15.2), and the third equality in the third

line follows from the second line because minjk EFn emj(W, ✓⇤n) + rinfFn
< 0 for n large implies

minjk EFn emj(W, ✓⇤n) < 0 for n large, since rinfFn
� 0 by (3.5).

The result maxjk b⇤j = 1 in (17.33) implies that (17.32) holds because |⌧j(G(·), ✓⇤, `⇤)| < 1

a.s. (using Assumptions C.4 and C.5, the definition of ⌧j(⌫(·), ✓, `) in (17.20), and explanation (II)

following (17.29)). This completes the proof of part (f).

Part (g) holds because Tj1 := Gm�
j1 + hj1 = �1 for some j  k by (15.7), Assumption CA,

and the notational convention in (15.5).

Next, we prove part (h). We have Tnj(✓n) !p hj1 = �1 for some j  k by parts (a) and (g)

and An !d A1 2 R by parts (b) and (c). Thus,

&n := min
jk

(Tnj(✓n) +An) !p �1. (17.34)

Using this, we obtain

Sn := Sn(✓n) = S
⇣
Tn(✓n) +An1k, b⌦n(✓n)

⌘
= |&n|�S

⇣
[Tn(✓n) +An1k]/|&n|, b⌦n(✓n)

⌘

� |&n|�min
jk

S
⇣
cj , b⌦n(✓n)

⌘
= |&n|�

✓
min
jk

S (cj ,⌦1) + op(1)

◆
!p 1, (17.35)

where cj is a k-vector of 1’s but with �1 as its jth element, the second equality holds by (4.12),

the third equality holds with � > 0 by Assumption S.3, the inequality holds with probability that

goes to one as n ! 1 (wp!1) because (Tnj(✓n) + An)/|&n| = �1 for some j  k wp!1 by the
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definition of &n and &n !p �1, S(m,⌦) is nonincreasing in m for all ⌦ 2  by Assumption S.1(i),

and [Tn(✓n) +An1k]/|&n| < 1 8j  k, the last equality holds by Assumptions C.6 and S.1(iii), and

the convergence holds because minjk S (cj ,⌦1) > 0 by Assumption S.2 and the fact that cj has

a negative element for all j  k, |&n| !p 1 and � > 0.

Lastly, the results in parts (a)–(e) hold jointly because they are all based on the convergence

result in Assumption C.5, which establishes part (i). ⇤

18 Asymptotic Null Rejection Probabilities of SPUR1 Tests

This section provides a theorem, Theorem 18.1, that is the key ingredient to the proof of The-

orem 4.1. It provides asymptotic NRP bounds for the nominal level ↵ SPUR1 test �n,SPUR1(✓n),

defined in (4.7), under drifting subsequences of distributions and parameter values. The first sub-

section gives various definitions and assumptions concerning the bootstrap. The second subsection

states Theorem 18.1. The third subsection states several lemmas that are used in the proof of

Theorem 18.1. The fourth subsection provides the proof of Theorem 18.1 using these lemmas.

18.1 Definitions and Assumptions Concerning the Bootstrap

As noted in Theorem 5.1, as is standard in the literature, the asymptotics for the bootstrap are

given for the case where the number of bootstrap repetitions B equals infinity. (If one considered

finite B, then all of the asymptotic results would hold provided B ! 1 as n ! 1.) With B = 1,

the bootstrap critical value bcn(✓, 1�↵), defined just above (4.16), is the 1�↵ conditional quantile of

S⇤
n,b(✓) given the sample {Wi}in plus ◆, rather than the 1�↵ sample quantile of {S⇤

n,b(✓)}bB plus

◆. For notational simplicity, we replace the bth bootstrap sample {W ⇤
ib}in by a generic bootstrap

sample {W ⇤
i }in (which is an i.i.d. bootstrap sample drawn with replacement from the original

sample {Wi}in) and we drop the subscripts b from the definition of S⇤
n,b(✓) in (4.15) and other

bootstrap quantities. Specifically, the B = 1 definitions of S⇤
n(✓) and b⌫⇤nj(✓) are as follows. Let

V ar⇤(·) denote the {W ⇤
i }in-bootstrap variance conditional on the original sample {Wi}in. Define

b⌫⇤nj(✓) := n1/2

 
m⇤

nj(✓)

b�⇤nj(✓)
� bmnj(✓)

!
,

S⇤
n(✓) := S

⇣
T ⇤
n(✓) +A⇤

n1k, b⌦n(✓)
⌘
,

sd⇤1nj(✓) := max{V ar⇤(n1/2(bmnj(✓) + brn(✓)))1/2, ◆},

sd⇤2nj(✓) := max{V ar⇤(n1/2 bmnj(✓))
1/2, ◆}, and

sd⇤3nj(✓) := max{V ar⇤(n1/2([bmnj(✓)]� � brn(✓)))1/2, ◆} (18.1)
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for j  k, where m⇤
nj(✓), b�⇤2nj(✓), T ⇤

n(✓), and A⇤
n are defined as in (4.17), (4.18), and (4.25) with

{W ⇤
i }in in place of {W ⇤

ib}in and b deleted throughout, and ◆ is the very small positive constant

employed in (4.16). In addition, bJn(✓) is defined as bJnB(✓) is defined in (4.24), but with sd⇤
3nj(✓)

in place of sd⇤
3njB(✓).

The bootstrap sample {W ⇤
i }in depends on {Wi}in and on some other independent random

variables {⇣i}in that are used to construct the bootstrap sample {W ⇤
i }in. To establish the asymp-

totic properties of the bootstrap critical values for a given sequence of distributions {Fn}n�1, it is

convenient to have a single probability space (⌦,F , P5) on which all of the random vectors {Wi}in

for n � 1 and the bootstrap random variables (or vectors) {⇣i}in for all n � 1 are defined. Since Fn

changes with n, this requires that we consider triangular arrays of random vectors, not sequences.

Let {Wni}in,n�1 := {Wni : i  n, n � 1} be a triangular array of random vectors on (⌦,F , P5)

such that, for each n � 1, {Wni}in has the same distribution as {Wi}in ⇠i.i.d. Fn. Analogously,

let {⇣ni}in,n�1 be a triangular array of bootstrap random variables (or vectors) on (⌦,F , P5) such

that for each n � 1, {⇣ni}in has the same distribution as {⇣i}in and {⇣ni}in,n�1 is independent

of {Wni}in,n�1.

For notational simplicity, but with some abuse of notation, we let all of the sample size n

statistics being considered for n � 1, including Sn, S⇤
n(✓n), and bcn(✓n, 1 � ↵), which are defined

as functions of {Wi}in and {⇣i}in, also denote the corresponding statistics defined when using

the triangular arrays {Wni}in,n�1 and {⇣ni}in,n�1. For events that only depend on n random

vectors for a single n, such as S⇤
n(✓n) 2 Bn for some fixed set Bn ⇢ R, we have P5(S⇤

n(✓n) 2

Bn) = PFn(S
⇤
n(✓n) 2 Bn). But, for events that depend on statistics for multiple values of n, such as

{S⇤
n(✓n)}n�1, we use the probability space (⌦,F , P5). In particular, when we condition on the entire

triangular array {Wni}in,n�1, we need to use (⌦,F , P5). The limit process G(·) in Assumptions

C.5 and BC.3 (stated below) and statistics that depend on it, such as S1 and S⇤
L1, are defined on

a di↵erent probability space.

For ✓ 2 ⇥, define

jn(✓) := argmax
jk

bnj(✓), where bnj(✓) := n1/2([EFn emj(W, ✓)]� � rinfFn
).49 (18.2)

By Lemma 15.2(a),

bnjn(✓)(✓) � 0 8✓ 2 ⇥. (18.3)

We employ the following high-level bootstrap convergence (BC) assumptions, which apply to a

drifting sequence of null values {✓n}n�1 and distributions {Fn}n�1. (These assumptions are verified

49If the argmax is not unique, jn(✓) is defined to be the smallest argmax .
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below under primitive conditions.) Define

⇤⇤⌘n
n,Fn

:=
n
(✓, b, b⇤, `, j⇤) 2 ⇥⌘n

I (Fn)⇥R3k ⇥ {1, ..., k} : bj = n1/2([EFn emj(W, ✓)]� � rinfFn
),

b⇤j = (◆n)
�1bj , `j = n1/2EFn emj(W, ✓) 8j  k, j⇤ := jn(✓)

o
, (18.4)

where {⌘n}n�1 is as in Assumption C.8, {n}n�1 is as in (4.23), and ◆ > 0 is the lower bound on

sd⇤
3njB(✓), defined following (4.22) using (4.16). Let S(⇥⇥R3k

[±1]
⇥ {1, ..., k}) denote the space of

compact subsets of the metric space (⇥ ⇥ R3k+1

[±1]
, d), where the metric d is defined in Section 15.1

with a⇤ = d✓ + 3k + 1. The first two assumptions are used for upper bounds on asymptotic null

rejection probabilities, which come from a lower bound on the bootstrap test statistic.

Assumption BC.1. (◆n)�1n1/2(EFn emj(W, ✓n) + rinfFn
) ! h⇤Lj1 for some h⇤Lj1 2 R[±1] 8j  k.

Assumption BC.2. ⇤⇤⌘n
n,Fn

!H ⇤⇤
I for some non-empty set ⇤⇤

I 2 S(⇥ ⇥ R3k
[±1]

⇥ {1, ..., k}) for

some constants {⌘n}n�1 that satisfy ⌘n ! 1 and ⌘n/⌧n ! 0 for {⌧n}n�1 as in Assumption A.6(ii).

Note that Assumptions BC.1 and BC.2 can always be made to hold for some subsequence

{an}n�1 of {n}n�1 because any sequence in a compact set has a convergent subsequence.

Let {⌫⇤n(✓) 2 R2k : ✓ 2 ⇥} be a bootstrap version of the stochastic process (⌫mn (·)0, ⌫�†n (✓)0)0

defined in (14.2) and (17.1). It is defined as follows:

⌫⇤n(✓) := (⌫m⇤
n (✓)0, ⌫�⇤n (✓)0)0, where

⌫m⇤
nj (✓) := n1/2

�
em⇤
nj(✓)� bmnj(✓)

�
, em⇤

nj(✓) :=
m⇤

nj(✓)

b�nj(✓)
, m⇤

nj(✓) := n�1

nX

i=1

mj(W
⇤
i , ✓),

⌫�⇤nj (✓) := n1/2

 
b�⇤2nj(✓)
b�2nj(✓)

� 1

!
, b�⇤2nj(✓) := n�1

nX

i=1

(mj(W
⇤
i , ✓)�m⇤

nj(✓))
2 8j  k,

⌫m⇤
n (✓) = (⌫m⇤

n1 (✓), ..., ⌫
m⇤
nk (✓))

0, and ⌫�⇤n (✓) = (⌫�⇤n1(✓), ..., ⌫
�⇤
nk(✓))

0, (18.5)

where {W ⇤
i }in is the bootstrap sample defined just above (18.1). We employ the following boot-

strap convergence (BC) assumption.

Assumption BC.3. {⌫⇤n(·)|{Wni}in,n�1} ) G(·) a.s.[P5], where G(·) is as in Assumption C.5.

Assumption BC.3 is verified below for i.i.d. observations using Lemma D.2(8) of BCS under

Assumptions A.1–A.4. To allow the general results to apply to non-i.i.d. observations, including

time series observations, we employ Assumption BC.3 here, rather than impose Assumptions A.1–

A.4.

The GMS function ' : R[+1] ! R[+1] defined in (4.19) is upper bounded by the function
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'† : R[+1] ! R[+1] defined by

'†(⇠) := 11(⇠ � 1) + (⇠/(1� ⇠))1(0  ⇠ < 1) (18.6)

for some arbitrary " > 0. The function '† satisfies: (i) '†(⇠) � '(⇠) � 0 8⇠ 2 R[+1], (ii) '
† is

nondecreasing and continuous under the metric d, and (iii) '†(⇠) = 0 8⇠  0 and '†(1) = 1,

where the metric d is defined in Section 15.1 with a⇤ = 1.

For ✓ 2 ⇥, define a lower bound (wp!1) random variable, S⇤
Ln(✓), on the EGMS bootstrap

statistic S⇤
n(✓) to be

S⇤
Ln(✓) := S

⇣
T ⇤
Ln(✓) +A⇤

Ln1k, b⌦n(✓)
⌘
, where

T ⇤
Lnj(✓) := b⌫⇤nj(✓) + '†(⇠1nj(✓)) 8j  k,

T ⇤
Ln(✓) := (T ⇤

L1n, ..., T
⇤
Lkn)

0, ⇠1nj(✓) := (◆n)
�1n1/2(bmnj(✓) + brn(✓)),

A⇤
Ln := inf

✓2⇥⌘n
I (Fn)

max
jk

⇣
�(b⌫⇤nj(✓), n1/2EFn emj(W, ✓)) + 1(j 6= jn(✓))bnj(✓)

+1(j = jn(✓))'
†(⇠A1nj(✓))

⌘
, and

⇠A1nj(✓) : = (◆n)
�1n1/2

⇣
[bmnj(✓)]� � brinfn

⌘
(18.7)

for 1k := (1, ..., 1)0 2 Rk and �(⌫, c) := [⌫ + c]� � [c]�. The function �(⌫, c) is defined for c = ±1

as in (15.5) and �(⌫, c) is continuous on R⇥R[±1] under d.

The asymptotic distribution of the lower bound random variable S⇤
Ln(✓n) is

S⇤
L1 := S (T ⇤

L1 +A⇤
L11k,⌦1) , where

T ⇤
Lj1 := Gm�

j1 + '†(h⇤Lj1) 8j  k, T ⇤
L1 = (T ⇤

L11, ..., T ⇤
Lk1)0, and

A⇤
L1 := inf

(✓,b,b⇤,`,j⇤)2⇤⇤
I

max
jk

⇣
�(Gm�

j (✓), `j) + 1(j 6= j⇤)bj + 1(j = j⇤)'†(b⇤j⇤)
⌘

(18.8)

for ⇤⇤
I as in Assumption BC.2.

Let cL1(1� ↵) denote the 1� ↵ quantile of S⇤
L1 (with no ◆ added on).

Let !u denote uniform convergence over ⇥2. We consider sequences {Fn}n�1 for which the

covariance kernel converges uniformly.

Assumption C.11. ⌦Fn(·, ·) !u ⌦1(·, ·) for some continuous R2k⇥2k-valued function ⌦1(·, ·) on

⇥2.

The covariance kernel of G(·) in Assumption C.5 is ⌦1(·, ·) and the matrix ⌦1 in Assumption

C.6 is the upper left k ⇥ k submatrix of ⌦1(✓1, ✓1).

25



18.2 Statement of Theorem 18.1

The following theorem shows that the nominal level ↵ SPUR1 test has asymptotic NRP’s

equal to ↵ or less for certain subsequences of distributions {Fn}n�1 and parameters {✓n}n�1 in the

identified sets {⇥MR
I (Fn)}n�1.

Theorem 18.1 For ↵ 2 (0, 1) and for sequences {Fn}n�1 and {✓n}n�1 that satisfy Assumptions

A.0, A.6, BC.1–BC.3, C.1, C.3–C.8, N, and S.1 for a subsequence {pn}n�1 in place of {n}n�1, there

exists a subsequence {an}n�1 of {pn}n�1 for which the nominal level ↵ SPUR1 test �n,SPUR1(✓n)

for testing H0 : ✓n 2 ⇥MR
I (Fn) satisfies

lim sup
n!1

PFan
(�an,SPUR1(✓an) = 1)  ↵.

18.3 Lemmas Used in the Proof of Theorem 18.1

The following three lemmas are used in the proof of Theorem 18.1. The EGMS critical values

are based on the bootstrap random variables S⇤
n(✓n). In the following lemmas, the “lower bound”

random variables S⇤
Ln(✓), T

⇤
Lnj(✓), and A⇤

Ln are defined in (18.7); the asymptotic distributions of

these random variables S⇤
L1, T ⇤

Lj1, and A⇤
L1 are defined in (18.8); and the quantile cL1(1 � ↵)

is defined following (18.8). As stated above, we assume that all of the sample size n statistics for

n � 1 are functions of the triangular arrays {Wni}in,n�1 and {⇣ni}in,n�1 that are defined on

a single probability space (⌦,F , P5). The limit process G(·) in Assumptions C.5 and BC.3 and

statistics that depend on it, such as S1 and S⇤
L1, are defined on a di↵erent probability space.

Let X �ST Y denote that X is stochastically greater than or equal to Y. That is, P (Y > x) 

P (X > x) for all x 2 R.

The following lemma provides the asymptotic distribution of S⇤
Ln(✓n).

Lemma 18.2 For sequences {Fn}n�1 and {✓n}n�1 that satisfy Assumptions A.0, A.6, BC.1–BC.3,

C.1, C.4–C.7, and S.1 for a subsequence {pn}n�1 in place of {n}n�1, there exists a subsequence

{an}n�1 of {pn}n�1 for which (a) {T ⇤
Lanj(✓an)|{Wni}in,n�1} !d T ⇤

Lj1 a.s.[P5] 8j  k, (b) {A⇤
Lan

|{Wni}in,n�1}!d A⇤
L1 a.s.[P5], and (c) {S⇤

Lan(✓an)|{Wni}in,n�1} !d S⇤
L1 a.s.[P5] and S⇤

L1 2

[0,1) a.s.

The following lemma establishes the lower bounding properties of S⇤
Ln(✓n) for S

⇤
n(✓n).

Lemma 18.3 For sequences {Fn}n�1 and {✓n}n�1 that satisfy Assumptions A.0, A.6, BC.2, C.4,

C.5, C.7, and S.1(i) for a subsequence {pn}n�1 in place of {n}n�1,(a) PO(T ⇤
Lpnj(✓) � T ⇤

pnj(✓) 8✓ 2 ⇥|
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{Wni}in,n�1) = 1 8j  k wp!1 under P5, (b) P5(A⇤
Lpn � A⇤

pn |{Wni}in,n�1) = 1 wp!1 under

P5, and (c) PO(S⇤
Lpn(✓)  S⇤

pn(✓) 8✓ 2 ⇥|{Wni}in,n�1) = 1 wp!1 under P5.

The following lemma applies to sequences {✓n}n�1 of null parameter values (i.e., those that

satisfy Assumption N). Note that SI1 is defined in (15.10).

Lemma 18.4 For sequences {Fn}n�1 and {✓n}n�1 that satisfy Assumptions A.6, BC.1–BC.3, C.1,

C.3–C.5, C.8, and N for a subsequence {pn}n�1 in place of {n}n�1, we have: for all sample real-

izations, (a) T ⇤
Lj1  Tj1 8j  k, (b) A⇤

L1  AI1, and (c) S⇤
L1 � SI1 provided Assumptions C.6

and S.1(i) also hold for the subsequence {pn}n�1.

18.4 Proof of Theorem 18.1

Proof of Theorem 18.1. Let c1 = c1(1 � ↵) denote the 1 � ↵ quantile of S1 (without ◆

added on). For notational simplicity, let S⇤
n := S⇤

n(✓n), S
⇤
Ln := S⇤

Ln(✓n), cL1 := cL1(1 � ↵), and

bcn := bcn(✓n, 1�↵). Let bcLn denote the 1�↵ conditional quantile of S⇤
Ln(✓n) given {Wni}in,n�1 plus

◆. Note that bcLn is random, depends on the conditioning value of {Wni}in,n�1, and has ◆ added

on, whereas cL1 is the 1� ↵ conditional (or unconditional) quantile of S⇤
L1, which is nonrandom

and does not depend on {Wni}in,n�1 by its definition following (18.8), and does not have ◆ added

on.

The assumptions of the theorem include all of the assumptions imposed in Lemmas 18.2(c),

18.3(c), and 18.4(c) and Theorem 15.3(f). Hence, the results of these lemmas and theorem hold. For

notational simplicity, we replace {an}n�1 by {n}n�1 and presume that the results of these lemmas

and theorem hold for {n}n�1. By Lemma 18.3(c), S⇤
Ln  S⇤

n with probability one (with respect to

the bootstrap randomness) conditional on {Wni}in,n�1. Hence, the 1 � ↵ conditional quantile of

S⇤
Ln given {Wni}in,n�1 plus ◆, which is bcLn, is less than or equal to the 1� ↵ conditional quantile

of S⇤
n given {Wni}in,n�1 plus ◆, which is bcn, as a consequence of the definition of a quantile. That

is, bcLn  bcn wp!1, which implies that bcLn  bcn+op(1), where the op(1) term refers to randomness

in the sample. This gives

lim sup
n!1

PFn(�n(✓n) = 1) = lim sup
n!1

PFn(Sn > bcn)  lim sup
n!1

PFn(Sn + op(1) > bcLn). (18.9)

Now, take an arbitrary " > 0. Then, there exists "⇤ 2 (0, ") such that cL1 � "⇤ is a continuity
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point of S⇤
L1. We have

lim sup
n!1

P5(S⇤
Ln  cL1 � "|{Wni}in,n�1)  lim sup

n!1
P5(S⇤

Ln  cL1 � "⇤|{Wni}in,n�1)

= P (S⇤
L1  cL1 � "⇤)

< 1� ↵ (18.10)

a.s.[P5], where the equality holds by Lemma 18.2(c) and the last inequality holds by the definition

of the 1 � ↵ quantile cL1 of S⇤
L1. Because bcLn is the 1 � ↵ conditional quantile of S⇤

Ln given

{Wni}in,n�1 plus ◆, if

P5(S⇤
Ln  cL1 � "|{Wni}in,n�1) < 1� ↵, then cL1 � " < bcLn � ◆. (18.11)

By (18.10), the first condition in (18.11) holds for n su�ciently large a.s.[P5]. Hence, the same

is true for the second condition in (18.11). That is, P5(cL1 + ◆ � " < bcLn for n large) = 1, or

equivalently,

P5

⇣
lim
n!1

1(cL1 + ◆� " < bcLn) = 1
⌘
= 1. (18.12)

By the dominated convergence theorem, this implies that

lim
n!1

P5 (cL1 + ◆� " < bcLn) = 1 (18.13)

for all " > 0, which also can be written as limn!1 PFn (cL1 + ◆� " < bcLn) = 1.

Next, we have: for all " > 0,

lim sup
n!1

PFn(Sn + op(1) > bcLn)

= lim sup
n!1

PFn(Sn + op(1) > bcLn & cL1 + ◆� "  bcLn)

 lim sup
n!1

PFn(Sn + op(1) > cL1 + ◆� " & cL1 + ◆� "  bcLn)

= lim sup
n!1

PFn(Sn + op(1) > cL1 + ◆� ") (18.14)

where the two equalities hold using (18.13) and the inequality is straightforward.

By Theorem 15.3(e), we have

Sn !d S1 (18.15)

using Assumptions A.0, C.1, C.3–C.7, S.1(iii), and NLA, where Assumption NLA holds because

Assumptions C.3 and N imply Assumption NLA by Lemma 16.1. Consider a sequence {"m}m�1
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such that cL1 + ◆� "m is a continuity point of S1 for all m � 1 and "m # 0. Then, we have

lim sup
n!1

PFn(Sn + op(1) > bcLn)  lim
m!1

lim sup
n!1

PFn(Sn + op(1) > cL1 + ◆� "m)

= lim
m!1

P (S1 > cL1 + ◆� "m)

 lim
m!1

P (S1 > c1 + ◆� "m)

 ↵, (18.16)

where the first inequality holds by (18.14), the equality holds by (18.15) and the definition of

{"m}m�1, the second inequality holds because cL1 � c1 follows from S⇤
L1 � SI1 for all sample

realizations by Lemma 18.4(c) and SI1 = S1 by Theorem 15.3(f), and the last inequality holds

by the definition of the 1� ↵ quantile c1 of S1 because ◆� "m > 0 for m large. Equations (18.9)

and (18.16) complete the proof. ⇤

19 Proofs of Lemmas 18.2–18.4

19.1 Proof of Lemma 18.2

Proof of Lemma 18.2. First, we prove part (a). For all j  k, we have

n1/2 (bmnj(✓)� EFn emj(W, ✓)) = O⇥

p (1), (19.1)

by (17.5) and Assumption C.5. Hence, we obtain

sup
✓2⇥

|bmnj(✓)� emj(✓)| = op(1) (19.2)

using Assumption C.4. Now, we use the result that for any sequence of random variables {Xn}n�1

on (⌦,F , P5) for which Xn !p 0, there exists a subsequence {cn}n�1 of {n}n�1 such that Xcn ! 0

a.s.[P5], e.g., see Theorem 9.2.1 of Dudley (1989). We apply this result with the original se-

quence {n}n�1 replaced by some subsequence {pn}n�1. Using this and (19.2), given any subsequence

{pn}n�1 of {n}n�1, there exists a subsequence {cn}n�1 of {pn}n�1 such that

sup
✓2⇥

|bmcnj(✓)� emj(✓)| = o(1) a.s.[P5]. (19.3)

By the continuity of emj(✓) (Assumption C.4) and ✓n ! ✓1 (Assumption C.1), (19.3) gives

bmcnj(✓cn) ! emj(✓1) a.s.[P5]. (19.4)
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Conditional on {Wni}in,n�1, for the subsequence {cn}n�1, we have

c1/2n

✓b�⇤cnj(✓cn)
b�cnj(✓cn)

� 1

◆
!d

1

2
G�

j1 a.s.[P5] 8j  k. (19.5)

This holds by the delta method, as in (17.16) with b�⇤2nj(✓n) and b�2nj(✓n) in place of b�2nj(✓n) and

�2Fnj(✓n), respectively, and using Assumption BC.3 in place of (17.15).

Next, suppressing the dependence of various quantities on ✓cn for notational simplicity, we have:

conditional on {Wni}in,n�1,

T ⇤⇤
cnj : = c1/2n

 
m⇤

cnj

b�⇤cnj
� mcnj

b�cnj

!

=

 
b�cnj
b�⇤cnj

!✓
c1/2n

✓
m⇤

cnj

b�cnj
� mcnj

b�cnj

◆
� mcnj

b�cnj
c1/2n

b�⇤cnj � b�cnj
b�cnj

◆

=

 
b�cnj
b�⇤cnj

!✓
⌫m⇤
cnj � bmcnjc

1/2
n

b�⇤cnj � b�cnj
b�cnj

◆

!d Gm
j1 � 1

2
emj1G�

j1 =: Gm�
j1 a.s.[P5] (19.6)

8j  k, where emj1 = emj(✓1) by (15.4), Gm
j1 := Gm

j (✓1) and G�
j1 := G�

j (✓1) by (15.6), the

second equality holds by algebra, the third equality uses the definition of ⌫m⇤
cnj(✓cn) in (18.5), the

convergence holds by (19.4), (19.5), and Assumptions BC.3 and C.1, and the last equality holds by

(15.6).

We have T ⇤
Lnj(✓n) = T ⇤⇤

nj + '†(⇠1nj(✓n)) by (18.1), (18.7), and (19.6), and T ⇤
Lj1 = Gm�

j1 +

'†(h⇤Lj1) by (18.8) for all j  k. By (19.6), there exists a subsequence {cn}n�1 of {pn}n�1 for which

{T ⇤⇤
cnj(✓cn)|{Wni}in,n�1} !d Gm�

j1 a.s.[P5]. Hence, part (a) holds if there exists a subsequence

{an}n�1 of {cn}n�1 for which

{'†(⇠1anj(✓an))|{Wni}in,n�1} ! '†(h⇤Lj1) a.s.[P5] 8j  k. (19.7)
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We have

�1

n n1/2brn(✓n) = max
jk

⇣
[�1

n n1/2(bmnj(✓n)� EFn emj(W, ✓n)) + �1

n n1/2EFn emj(W, ✓n)]�

�[�1

n n1/2EFn emj(W, ✓n)] +� [�1

n n1/2EFn emj(W, ✓n)]�
⌘

= max
jk

⇣
op(1) + [�1

n n1/2EFn emj(W, ✓n)]�
⌘

= op(1) + max
jk

[�1

n n1/2EFn emj(W, ✓n)]�

= op(1) + �1

n n1/2rFn(✓n), (19.8)

where the first equality holds by the definition of brn(✓n) in (4.4), the second equality holds be-

cause n1/2(bmnj(✓n) � EFn emj(W, ✓n)) = Op(1) by (19.1), n ! 1 by Assumption A.6(i), and

|�(⌫, c)| := |[⌫ + c]� � [c]�|  |⌫| for ⌫, c 2 R by (17.7), the third equality holds because the left-

hand side is less than or equal to maxjk op(1) + maxjk[�1
n n1/2EFn emj(W, ✓n)]� and is greater

than or equal to op(1) + [�1
n n1/2EFn emjn(W, ✓n)]�, where jn is such that [EFn emjn(W, ✓n)]� =

maxjk[EFn emj(W, ✓n)]�, and the last equality holds by the definition of rFn(✓n) in (3.5).

In turn, we obtain

⇠1nj(✓n) : = (◆n)
�1n1/2 (bmnj(✓n) + brn(✓n))

= (◆n)
�1n1/2 (bmnj(✓n)� EFn emj(W, ✓n))

+(◆n)
�1n1/2 (EFn emj(W, ✓n) + rFn(✓n)) + op(1)

!p h⇤Lj1 (19.9)

for j  k, where the first equality holds by definition (see (18.7) and the discussion in the para-

graph containing (18.1)), the second equality holds by (19.8), and the convergence holds using

n1/2(bmnj(✓n)� EFn emj(W, ✓n)) = Op(1), n ! 1, and Assumption BC.1.

Equation (19.9) and the continuity of '†(⇠) at all ⇠ 2 R[+1] (by property (ii) of '† stated

following (18.6)) give d('†(⇠1nj(✓n)),'†(h⇤Lj1)) !p 0 for j  k. Now, we use the result that

for any sequence of random variables {Xn}n�1 on (⌦,F , P5) for which Xn !p 0, there exists a

subsequence {an}n�1 of {cn}n�1 such that Xan ! 0 a.s.[P5]. Thus, there exists a subsequence

{an}n�1 of {pn}n�1 such that (19.7) holds, which completes the proof of part (a).

Now, we prove part (b). Define

⌫m�⇤
nj (✓) := ⌫m⇤

nj (✓)�
1

2
emj(✓)⌫

�⇤
nj (✓) 8j  k. (19.10)

We show that under {Fn}n�1, conditional on {Wni}in,n�1, for the subsequence {cn}n�1 of {pn}n�1
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defined above,

sup
✓2⇥

|b⌫⇤cnj(✓)� ⌫m�⇤
cnj (✓)| = op(1) a.s.[P5]. (19.11)

This, Assumption BC.3, (19.3), and the continuous mapping theorem give: under {Fn}n�1, condi-

tional on {Wni}in,n�1, for the subsequence {cn}n�1 of {pn}n�1,

b⌫⇤cnj(·) = ⌫m�⇤
cnj (·) + o⇥p (1) ) Gm�

j (·) a.s.[P5]. (19.12)

The proof of (19.11) is quite similar to (17.4) and (17.5), but with bootstrap quantities in place

of original sample quantities. By the same argument as in (17.4) with b�⇤nj(✓) and b�nj(✓) in place

of b�nj(✓) and �Fnj(✓), respectively, we obtain

n1/2

✓b�⇤nj(✓)
b�nj(✓)

� 1

◆
=

1

2
⌫�⇤nj (✓) + o⇥p (1) a.s.[P5], (19.13)

using Assumption BC.3 in place of Assumption C.5 and (17.2). Next, we have: conditional on

{Wni}in,n�1, for the subsequence {cn}n�1,

b⌫⇤cnj(✓) := c1/2n

 
m⇤

cnj(✓)

b�⇤cnj(✓)
� bmcnj(✓)

!
=

b�cnj(✓)
b�⇤cnj(✓)

✓
⌫m⇤
cnj(✓)� bmcnj(✓)c

1/2
n

✓b�⇤cnj(✓)
b�cnj(✓)

� 1

◆◆

= (1 + o⇥p (1))

✓
⌫m⇤
cnj(✓)�

1

2
emj(✓)⌫

�⇤
cnj(✓) + o⇥p (1)

◆
= ⌫m�⇤

cnj (✓) + o⇥p (1) a.s.[P5],

(19.14)

where the third equality holds by (19.3) and (19.13), and the fourth equality holds by the definition

of ⌫m�⇤
nj (✓) in (19.10) and Assumption BC.3. This proves (19.11).

Next, we have

n1/2 bmnj(✓) =
�Fnj(✓)

b�nj(✓)

⇣
⌫mnj(✓) + n1/2EFn emj(W, ✓)

⌘

= b!nj(✓) + n1/2EFn emj(W, ✓), where (19.15)

b!nj(✓) :=
�Fnj(✓)

b�nj(✓)
⌫mnj(✓)� n1/2

✓
b�nj(✓)
�Fnj(✓)

� 1

◆
�Fnj(✓)

b�nj(✓)
EFn emj(W, ✓) = O⇥

p (1),

where ⌫mnj(✓) denotes the jth element of ⌫mn (✓) defined in (14.2), and the second equality on the
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last line holds by Assumptions C.4 and C.5 and (17.4). Now, we have

n1/2
⇣
[bmnj(✓)]� � brinfn

⌘
= n1/2([bmnj(✓)]� � [EF emj(W, ✓)]�)� n1/2(brinfn � rinfFn

) + bnj(✓)

= bdnj(✓) + bnj(✓), where

bdnj(✓) := �(b!nj(✓), n
1/2EFn emj(W, ✓))� n1/2(brinfn � rinfFn

) = O⇥

p (1), (19.16)

the first equality uses the definition bnj(✓) := n1/2([EFn emj(W, ✓)]� � rinfFn
) in (18.2), the second

equality uses �(⌫, c) := [⌫ + c]� � [c]�, and the second equality on the last line holds because

|�(⌫, c)|  |v| 8⌫, c 2 R by (17.7), b!nj(✓) = O⇥
p (1) by (19.15), and n1/2(brinfn � rinfFn

) := An = Op(1)

by (4.12) and Theorem 15.3(b) (which uses Assumptions A.0, C.4, C.5, and C.7).

For b⇤j = (◆n)�1n1/2([EFn emj(W, ✓)]� � rinfFn
) as in ⇤⇤⌘n

n,Fn
(defined in (18.4)), we obtain

⇠A1nj(✓) := (◆n)
�1n1/2

⇣
[bmnj(✓)]� � brinfn

⌘
= (◆n)

�1 bdnj(✓) + b⇤j , (19.17)

where the first equality holds by definition, see (18.7), and the second equality holds by (19.16).

Using (19.15), (19.17), and the definition of ⇤⇤⌘n
n,Fn

, we can write A⇤
Ln in (18.7) as

A⇤
Ln = inf

(✓,b,b⇤,`,j⇤)2⇤⇤⌘n
n,Fn

max
jk

0

@�(b⌫⇤nj(✓), `j) + 1(j 6= j⇤)bj (19.18)

+1(j = j⇤)'†
⇣
(◆n)

�1 bdnj(✓) + b⇤j

⌘⌘
,

where (✓, bj , b⇤j , `j , j
⇤) 2 ⇤⇤⌘n

n,Fn
implies that bj := bnj(✓), b⇤j := (◆n)�1bj , `j := n1/2EFn emj(W, ✓),

and j⇤ := jn(✓), and �(⌫, c) := [⌫ + c]�� [c]�.

We have (◆n)�1 bdnj(✓) = o⇥p (1) by (19.15), (19.16), and Assumption A.6(i). Hence, by the

same argument as used to establish (19.3), there exists a subsequence {an}n�1 (di↵erent from that

in the proof of part (a)) of {cn}n�1 for which

sup
✓2⇥

|(◆an)�1 bdanj(✓)| ! 0 a.s.[P5]. (19.19)

In addition, by (19.12), under {Fn}n�1, conditional on {Wni}in,n�1, the subsequence {an}n�1

of {pn}n�1 is such that

b⌫⇤anj(·) = ⌫m�⇤
anj (·) + o⇥p (1) ) Gm�

j (·) a.s.[P5]. (19.20)
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Define

�!
A ⇤

Ln := inf
(✓,b,b⇤,`,j⇤)2⇤⇤⌘n

n,Fn

max
jk

⇣
�(⌫m�⇤

nj (✓), `j) + 1(j 6= j⇤)bj + 1(j = j⇤)'†(µnj(✓) + b⇤j ) , where

µnj(✓) := (◆n)
�1 bdnj(✓) and µn(✓) = (µn1(✓), ..., µnk(✓))

0. (19.21)

By (19.18), (19.20), and (19.21), we obtain:

A⇤
Lan =

�!
A ⇤

Lan + op(1) a.s.[P5], (19.22)

using the continuity of '† on R[+1] by property (ii) of '† stated following (18.6) and the continuity

of �(⌫, c) on R ⇥ R[±1] under d. Hence, to establish part (b), it su�ces to show: conditional on

{Wni}in,n�1, for the subsequence {an}n�1,

n�!
A ⇤

Lan |{Wni}in,n�1

o
!d A⇤

L1 a.s.[P5]. (19.23)

To prove (19.23), we use a similar (but more complicated) argument to that used to prove

Theorem 15.3(b) based on the extended continuous mapping theorem. As above, let D be the

space of functions from ⇥ to R2k. Let D0 be the subset of uniformly continuous functions in D. For

nonstochastic functions ⌫(·) 2 D and µ(·) : ⇥! Rk with µ(✓) = (µ1(✓), ..., µk(✓))0, define

egn(⌫(·), µ(·)) := inf
(✓,b,b⇤,`,j⇤)2⇤⇤⌘n

n,Fn

max
jk

⇣
⌧j(⌫(·), ✓, `) + 1(j 6= j⇤)bj

+1(j = j⇤)'†(µj⇤(✓) + b⇤j⇤)
⌘
,

eg(⌫(·), µ(·)) := inf
(✓,b,b⇤,`,j⇤)2⇤⇤

I

max
jk

⇣
⌧j(⌫(·), ✓, `) + 1(j 6= j⇤)bj

+1(j = j⇤)'†(µj⇤(✓) + b⇤j⇤)
⌘
, (19.24)

where ⌫(✓) = (⌫m(✓)0, ⌫�(✓)0)0, ⌫mj (✓) and ⌫�j (✓) denote the jth elements of ⌫m(✓) and ⌫�(✓),

respectively, and ⌧j(⌫(·), ✓, `) is defined in (17.20). Note that

�!
A ⇤

Ln = egn(⌫⇤n(·), µn(·)) and A⇤
L1 = eg(G(·), µ1(·)), (19.25)

where µ1(·) is the nonrandom function that equals 0k for all ✓ 2 ⇥.

We want to show {egan(⌫⇤an(·), µan(·))|{Wni}in,n�1} !d eg(G(·), µ1(·)) a.s.[P5], where

{⌫⇤an(·)|{Wni}in,n�1} ) G(·) a.s.[P5] by Assumption BC.3 and sup✓2⇥ ||µan(✓) � µ1(✓)|| = o(1)

a.s.[P5] by (19.19) and the definition of µn(✓) following (19.21). We use the extended CMT to

34



establish this result. For notational simplicity, we employ n, rather than an, in the proof of this

result. The extended CMT requires showing that for any deterministic sequences {⌫n(·) 2 D}n�1

and {µn(·) : ⇥ ! Rk}n�1 and deterministic ⌫(·) 2 D0 such that sup✓2⇥ ||⌫n(✓) � ⌫(✓)|| ! 0 and

sup✓2⇥ ||µn(✓)� µ1(✓)|| ! 0, we have egn(⌫n(·), µn(·)) ! eg(⌫(·), µ1(·)). (For notational simplicity,

we abuse notation here and consider a deterministic ⌫n(·) that di↵ers from the random ⌫n(·) in

Assumption C.5.) Once we have shown this, the proof of part (b) is complete.

The proof of egn(⌫n(·), µn(·)) ! eg(⌫(·), µ1(·)) is an extension of the proof of gn(⌫n(·)) ! g(⌫(·))

in (17.22)–(17.28) in the proof of Theorem 15.3(b). We show

(i) lim inf
n!1

egn(⌫n(·), µn(·)) � g(⌫(·), µ1(·)) and

(ii) lim sup
n!1

egn(⌫n(·), µn(·))  g(⌫(·), µ1(·)). (19.26)

First, we establish (i) in (19.26). There exists a subsequence {cn}n�1 of {n}n�1 and a sequence

{(✓cn , bcn , b
⇤
cn , `cn , j

⇤
cn) 2 ⇤

⇤⌘cn
cn,Fcn

}n�1 such that

lim inf
n!1

egn(⌫n(·), µn(·)) = lim
n!1

egcn(⌫cn(·), µcn(·)) and

lim
n!1

egcn(⌫cn(·), µcn(·)) = lim
n!1

max
jk

⇣
⌧j(⌫cn(·), ✓cn , `cn) + 1(j 6= j

⇤
cn)bcnj (19.27)

+ 1(j = j
⇤
cn)'

†(µj
⇤
cn
(✓cn) + b

⇤
cnj

⇤
cn
)
⌘
,

where bcnj , b
⇤
cnj , and `cnj denote the jth elements of bcn , b

⇤
cn , and `cn , respectively. Also, there

exists a subsequence {qn}n�1 of {cn}n�1 and (✓, b, b
⇤
, `, j

⇤
) 2 ⇥⇥R3k

[±1]
⇥ {1, ..., k} such that

d
⇣
(✓qn , bqn , b

⇤
qn , `qn , j

⇤
qn), (✓, b, b

⇤
, `, j

⇤
)
⌘
! 0, (19.28)

where d is defined in Section 15.1, by compactness of the metric space (⇥ ⇥ R3k
[±1]

⇥ {1, ..., k}, d)

under Assumption A.0(i). We have (✓, b, b
⇤
, `, j

⇤
) 2 ⇤⇤

I by the same argument as used to show

(e✓,eb, è) 2 ⇤ in (16.7) (but without the requirement that ✓qn 2 ⇥MR
I (Fqn) 8n � 1) using (19.28)

and Assumption BC.2.

For all j  k,

lim
n!1

⌧j(⌫qn(·), ✓qn , `qn) = ⌧j(⌫(·), ✓, `) 2 R (19.29)

by (17.25) using ⌫qn(✓) ! ⌫(✓) uniformly over ✓ 2 ⇥ (by assumption) and (19.28).
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In addition, we have, for all j  k,

1(j 6= j
⇤
qn)bqnj ! 1(j 6= j

⇤
)bj and

1(j = j
⇤
qn)'

†(µj
⇤
qn
(✓qn) + b

⇤
qnj

⇤
qn
) ! 1(j = j

⇤
)'†(b

⇤
j
⇤), (19.30)

where the first line holds by (19.28) and the second line holds by (19.28), sup✓2⇥ ||µqn(✓)�µ1(✓)|| !

0, and the continuity of '† on R[+1] under d by property (ii) of '† stated following (18.6), and the

fact that d('†(µj
⇤
qn
(✓qn) + b

⇤
qnj

⇤
qn
),'†(b

⇤
j
⇤)) ! 0 implies that '†(µj

⇤
qn
(✓qn) + b

⇤
qnj

⇤
qn
) ! '†(b

⇤
j
⇤) (as a

sequence of numbers in R[+1]) even if '†(b
⇤
j
⇤) = +1.

Now, we have

lim inf
n!1

egn(⌫n(·), µn(·))

= lim
n!1

max
jk

⇣
⌧j(⌫qn(·), ✓qn , `qn) + 1(j 6= j

⇤
qn)bqnj + 1(j = j

⇤
qn)'

†(µj
⇤
qn
(✓qn) + b

⇤
qnj

⇤
qn
)
⌘

= max
jk

⇣
⌧j(⌫(·), ✓, `) + 1(j 6= j

⇤
)bj + 1(j = j

⇤
)'†(b

⇤
j
⇤)
⌘

� inf
(✓,b,b⇤,`,j⇤)2⇤⇤

I

max
jk

⇣
⌧j(⌫(·), ✓, `) + 1(j 6= j⇤)bj + 1(j = j⇤)'†(b⇤j⇤)

⌘

:= eg(⌫(·), µ1(·)), (19.31)

where the first equality holds by (19.27) and the fact that {qn}n�1 is a subsequence of {cn}n�1, the

second equality holds by (19.29) (using the notational convention that ⌫ + c = c when ⌫ 2 R and

c = ±1 if bj = ±1 for any j  k) and (19.30), the inequality holds because (✓, b, b
⇤
, `, j

⇤
) 2 ⇤⇤

I

by the paragraph containing (19.28), and the last equality holds by the definition of eg(⌫(·), µ(·)) in

(19.24) with µ(·) = µ1(·). This establishes result (i) in (19.26).

Next, we establish result (ii) in (19.26). There exists (✓†, b†, b†⇤, `†, j†⇤) 2 ⇤⇤
I such that

eg(⌫(·), µ1(·)) = max
jk

⇣
⌧j(⌫(·), ✓†, `†) + 1(j 6= j†⇤)b†j + 1(j = j†⇤)'†(b†⇤

j†⇤
)
⌘

(19.32)

because ⇤⇤
I is compact under the metric d defined in Section 15.1 with a⇤ = d✓ + 3k + 1 (since it

is assumed to be an element of S(⇥ ⇥ R3k
[±1]

⇥ {1, ..., k})) and ⌧j(⌫(·), ✓, `) + 1(j 6= j⇤)bj + 1(j =

j⇤)'†(b⇤j⇤) is a continuous function of (✓, b, b⇤, `, j⇤) under d that takes values in the extended real line

using property (ii) of '† stated following (18.6). By Assumption BC.2, ⇤⇤⌘n
n,Fn

!H ⇤⇤
I . Hence, there is

a sequence {(✓†n, b†n, b†⇤n , `†n, j
†⇤
n ) 2 ⇤⇤⌘n

n,Fn
}n�1 such that d((✓†n, b

†
n, b

†⇤
n , `†n, j

†⇤
n ), (✓†, b†, b†⇤, `†, j†⇤)) ! 0.
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We obtain

lim sup
n!1

egn(⌫n(·), µn(·))

:= lim sup
n!1

inf
(✓,b,b⇤,`,j⇤)2⇤⇤⌘n

n,Fn

max
jk

(⌧j(⌫n(·), ✓, `) + 1(j 6= j⇤)bj

+1(j = j⇤)'†(µnj⇤(✓) + b⇤j⇤)
⌘

 lim sup
n!1

max
jk

⇣
⌧j(⌫n(·), ✓†n, `†n) + 1(j 6= j†⇤n )b†nj + 1(j = j†⇤n )'†(µ

nj†⇤n
(✓) + b†⇤

j†⇤n
)
⌘

= max
jk

⇣
⌧j(⌫(·), ✓†, `†) + 1(j 6= j†⇤)b†j + 1(j = j†⇤)'†(b†⇤

j†⇤
)
⌘

= eg(⌫(·), µ1(·)), (19.33)

where the inequality holds because (✓†n, b
†
n, b

†⇤
n , `†n, j

†⇤
n ) 2 ⇤⇤⌘n

n,Fn
8n � 1, the second equality holds

using d((✓†n, b
†
n, b

†⇤
n , `†n, j

†⇤
n ), (✓†, b†, b†⇤, `†, j†⇤)) ! 0, (19.29) with (⌫n(·), ✓†n, `†n) and (⌫(·), ✓†, `†) in

place of (⌫qn(·), ✓qn , `qn) and (⌫(·), ✓, `), respectively, and (19.30) with (✓†nj , b
†
nj , b

†⇤
nj , `

†
nj , j

†⇤
n ) and

(✓†j , b
†
j , b

†⇤
j , `†j , j

†⇤) in place of (✓qnj , bqnj , b
⇤
qnj , `qnj , j

⇤
qn) and (✓j , bj , b

⇤
j , `j , j

⇤
), respectively, and the

last equality holds by (19.32). This establishes result (ii) in (19.26) and completes the proof of part

(b).

For notational simplicity, we let the subsequence {an}n�1 of {pn}n�1 di↵er in the proofs of parts

(a) and (b). However, by taking successive subsequences across the proofs of parts (a) and (b), we

can obtain a single subsequence {an}n�1 of {pn}n�1 for which both parts (a) and (b) (and part

(d)) hold, as stated in the theorem.

The convergence result of part (c) follows from parts (a) and (b), b⌦n(✓n) !p ⌦1 (by Assumption

C.6), the continuity of S(m,⌦) by Assumption S.1(iii), and the continuous mapping theorem. We

have S⇤
L1 � 0 a.s. by Assumption S.1(ii). The function S(m,⌦) can be arbitrarily large only if mj

is arbitrarily small (i.e., mj is negative and arbitrarily large in absolute value) for some j  k, by

Assumption S.1(i). We have T ⇤
Lj1 and A⇤

L1 (defined in (18.8)) are in R a.s. by Assumptions C.4

and C.5 and the definition of '† in (18.6), and �(Gm�
j (✓), `j) � �|Gm�

j (✓)| (because �(⌫, c) � �|⌫|

by (17.7)). This yields S⇤
L1 < 1 a.s., which completes the proof of part (c). ⇤

19.2 Proof of Lemma 18.3

The proof of Lemma 18.3 uses the following lemma. The set ⇥⌘
I (F ) for a positive constant ⌘

is defined in (15.3) by ⇥⌘
I (F ) := {✓ 2 ⇥ : maxjk[EF emj(W, ✓) + rinfF ]�  ⌘/n1/2}. The set b⇥n is

defined in (4.20) by b⇥n := {✓ 2 ⇥ : maxjk[bmnj(✓) + brinfn ]�  ⌧n/n1/2}.

Lemma 19.1 Suppose that under {Fn}n�1 and {✓n}n�1, Assumptions A.0, C.4, C.5, and C.7 are
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satisfied. Let {⌘n}n�1 and {⌧n}n�1 be any sequences of positive constants that satisfy ⌧n ! 1 and

⌘n/⌧n ! 0. Then,

PFn(b⇥n ◆ ⇥⌘n
I (Fn)) ! 1.

Proof of Lemma 18.3. For notational simplicity, we replace {pn}n�1 by {n}n�1 throughout

the proof of this lemma. Part (c) follows from parts (a) and (b) using the definitions of S⇤
n(✓n)

and S⇤
Ln(✓n) in (18.1) and (18.7), and using Assumption S.1(i), which requires that S(m,⌦) is

nonincreasing in m 2 Rk 8(m,⌦) 2 Rk
[+1]

⇥ .

To prove part (a), note that T ⇤
Lnj(✓) and T ⇤

nj(✓) only di↵er because the former depends on

'†(⇠1nj(✓)), whereas the latter depends on '(⇠nj(✓)). We have

'†(⇠1nj(✓)) � '†(⇠nj(✓)) � '(⇠nj(✓)), (19.34)

where the first inequality holds because (a) if ⇠nj(✓) < 0, then '†(⇠nj(✓)) = 0 by properties (i)

and (ii) of '† stated following (18.6) and '†(⇠1nj(✓)) � 0 by properties (ii) and (iii) of '† stated

following (18.6), and (b) if ⇠nj(✓) � 0, then ⇠1nj(✓) � ⇠nj(✓) := (sd⇤
1nj(✓)n)

�1n1/2(bmnj(✓)+ brn(✓))

(since sd⇤
1nj(✓) � ◆ > 0 by its definition following (4.19)) and '† is nondecreasing by property

(ii) stated following (18.6), and the second inequality holds by property (i) stated following (18.6).

Hence, T ⇤
Lnj(✓n) � T ⇤

nj(✓n) for all sample and bootstrap realizations, 8j  k, 8n � 1, and part (a)

holds.

Next, we prove part (b). By definition, see (4.25), the text following (18.1), and (18.7), we have

A⇤
Ln := inf

✓2⇥⌘n
I (Fn)

max
jk

⇣
�(b⌫⇤nj(✓), n1/2EFn emj(W, ✓)) + 1(j 6= jn(✓))bnj(✓)

+1(j = jn(✓))'
†(⇠A1nj(✓))

⌘
and

A⇤
n := inf

✓2b⇥n

min
j12 bJn(✓)

max
jk

⇣
b�⇤
nj(✓) + 1(j 6= j1)bbnj(✓)

+1(j = j1)'(⇠
A
nj(✓))

�
. (19.35)

The bootstrap random variables A⇤
Ln and A⇤

n di↵er in five ways. Specifically, A⇤
Ln versus (vs.) A⇤

n

are defined with (i) inf✓2⇥⌘n
I (Fn)

vs. inf✓2b⇥n
, (ii) '†(⇠A

1nj(✓)) vs. '(⇠Anj(✓)), (iii) bnj(✓) vs. bbnj(✓),

(iv) �(b⌫⇤nj(✓), n1/2EFn emj(W, ✓)) vs. b�⇤
nj(✓), and (v) j = jn(✓) or j 6= jn(✓) vs. minj12 bJn(✓) with

j = j1 or j 6= j1.

Lemma 19.1 applies because Lemma 18.3 imposes Assumptions A.0, C.4, C.5, and C.7, ⌧n ! 1

by Assumptions A.6(ii), and ⌘n/⌧n ! 0 by Assumption BC.2. By Lemma 19.1, for any bootstrap
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random function K⇤
n(✓),

P5

 
inf

✓2⇥⌘n
I (Fn)

K⇤
n(✓) � inf

✓2b⇥n

K⇤
n(✓)

����� {Wni}in,n�1

!
= 1 wp ! 1 under P5. (19.36)

By the definitions of ⇠A
1nj(✓) in (18.7) and ⇠Anj(✓) in (4.23) and sd⇤

1nj(✓) � ◆ (by construction; see

(18.1)), we have |⇠A
1nj(✓)| � |⇠Anj(✓)| and ⇠A1nj(✓) and ⇠Anj(✓) have the same sign for all sample and

bootstrap realizations. For any ✓ 2 ⇥, for all sample and bootstrap realizations with ⇠Anj(✓) � 0,

we have

'(⇠Anj(✓))  '†(⇠Anj(✓))  '†(⇠A1nj(✓)), (19.37)

where the first inequality holds by property (i) of '† stated following (27.7) and the second inequality

holds by property (ii) of '† stated following (27.7) and ⇠Anj(✓)  ⇠A
1nj(✓). Next, for all sample and

bootstrap realizations with ⇠Anj(✓) < 0, we have ⇠A
1nj(✓) < 0 and this implies that

'(⇠Anj(✓))  '†(⇠Anj(✓)) = 0 = '†(⇠A1nj(✓)), (19.38)

where the first inequality holds by property (i) of '†, the first equality holds by property (iii) of

'† and ⇠Anj(✓) < 0, and the second equality holds by property (iii) of '† and ⇠A
1nj(✓) < 0. Hence,

'(⇠Anj(✓))  '†(⇠A
1nj(✓)) for all sample and bootstrap realizations, for all ✓ 2 ⇥.

We have

bbnj(✓) := n1/2
⇣
[bmnj(✓)]� � brinfn

⌘
� sd⇤3nj(✓)n = bdnj(✓) + bnj(✓)� sd⇤3nj(✓)n, and so,

sup
✓2⇥

⇣
bbnj(✓)� bnj(✓)

⌘
 sup

✓2⇥

⇣
bdnj(✓)� ◆n

⌘
!p �1, (19.39)

where the first equality in the first line holds by definition, see (4.22), the second equality holds

by (19.16), and the second line follows from the first line, the last line of (19.16), sd⇤
3nj(✓) � ◆ by

definition, and n ! 1 (by Assumption A.6(i)) and the inequality on the second line holds for

all bootstrap realizations because bdnj(✓) does not depend on any bootstrap quantities. Equation

(19.39) implies that

sup
✓2⇥

(bbnj(✓)� bnj(✓))  0 8j  k, for all bootstrap realizations, wp ! 1 under P5. (19.40)

Now, we show

P5

⇣
�(b⌫⇤nj(✓), n1/2EFn emj(W, ✓)) � b�⇤

nj(✓) 8✓ 2 ⇥|{Wni}in,n�1

⌘
= 1 wp ! 1. (19.41)
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The function �(⌫, c) := [⌫ + c]� � [c]� is nondecreasing in c for ⌫ � 0, is zero for all c for ⌫ = 0,

and is nonincreasing in c for ⌫ < 0. The function �(⌫, c) satisfies these monotonicity properties

because, (i) for ⌫ > 0, �(⌫, c) := �⌫ (< 0) for c < �⌫, �(⌫, c) := c (< 0) for c 2 [�⌫, 0), and

�(⌫, c) := 0 for c � 0, and (ii) for ⌫ < 0, �(⌫, c) := �⌫ (> 0) for c < 0, �(⌫, c) := �⌫ � c (> 0) for

c 2 [0, ⌫), and �(⌫, c) := 0 for c � �⌫.

Using these properties of �(⌫, c) and the definition of �(⌫, c1, c2) in (4.21), we obtain: for ⌫ � 0,

�(⌫, c1, c2) = �(⌫, c1)  �(⌫, c) 8c � c1. And, for ⌫ < 0, �(⌫, c1, c2) = �(⌫, c2)  �(⌫, c) 8c  c2.

These results yield: for all b⌫⇤nj(✓) � 0,

b�⇤
nj(✓) := �

⇣
b⌫⇤nj(✓), n1/2 bmnj(✓)� sd⇤2nj(✓)n, n1/2 bmnj(✓) + sd⇤2nj(✓)n

⌘

= �
⇣
b⌫⇤nj(✓), n1/2 bmnj(✓)� sd⇤2nj(✓)n

⌘

 �
⇣
b⌫⇤nj(✓), n1/2 bmnj(✓)� ◆n

⌘

 �
⇣
b⌫⇤nj(✓), n1/2EFn emj(W, ✓)

⌘
(19.42)

provided n1/2EFn emj(W, ✓) � n1/2 bmnj(✓)�◆n, where the first inequality holds because sd⇤
2nj(✓) � ◆

and �(v, c) is nondecreasing in c for v � 0, as stated above. Similarly, for b⌫⇤nj(✓) < 0,

b�⇤
nj(✓) = �

⇣
b⌫⇤nj(✓), n1/2 bmnj(✓) + sd⇤2nj(✓)n

⌘

 �
⇣
b⌫⇤nj(✓), n1/2 bmnj(✓) + ◆n

⌘

 �
⇣
b⌫⇤nj(✓), n1/2EFn emj(W, ✓)

⌘
(19.43)

provided n1/2EFn emj(W, ✓)  n1/2 bmnj(✓) + ◆n.

By (19.15), which uses Assumptions C.4 and C.5, n1/2 bmnj(✓) = n1/2EFn emj(W, ✓) + O⇥
p (1).

Hence,

lim inf
n!1

PFn

⇣
n1/2EFn emj(W, ✓) 2

h
n1/2 bmnj(✓)� ◆n, n

1/2 bmnj(✓) + ◆n
i
8✓ 2 ⇥

⌘
= 1 (19.44)

using n ! 1 by Assumption A.6(i). The combination of (19.42)–(19.44) establishes (19.41).

Define

A
⇤
Ln := inf

✓2⇥⌘n
I (Fn)

min
j12 bJn(✓)

max
jk

⇣
�(b⌫⇤nj(✓), n1/2EFn emj(W, ✓)) + 1(j 6= j1)bnj(✓)

+1(j = j1)'
†(⇠A1nj(✓))

⌘
. (19.45)
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Combining (19.36)–(19.41) and (19.45) gives

P5(A
⇤
Ln � A⇤

n|{Wni}in,n�1) = 1 wp ! 1 under P5. (19.46)

Next, we show that

P5(jn(✓) 2 bJn(✓) 8✓ 2 ⇥|{Wni}in,n�1) = 1 wp ! 1 under P5, (19.47)

where jn(✓) := argmaxjk bnj(✓) is defined in (18.2) and bJn(✓) := {j 2 {1, ..., k} : brnj(✓) � brn(✓)�

sd⇤
3nj(✓)n

�1/2n} is defined following (18.1) using (4.24). We have jn(✓) 2 bJn(✓) i↵ brnjn(✓)(✓) �

brn(✓)�sd⇤
3njn(✓)

(✓)n�1/2n if n1/2(brnjn(✓)(✓)�brinfn )�n1/2(brn(✓)�brinfn ) � �◆n because sd⇤
3njn(✓)

(✓) �

◆ by definition. By (19.16), n1/2(brnj(✓)�brinfn ) = bnj(✓)+O⇥
p (1) 8j  k (since brnj(✓) = [bmnj(✓)]� by

(4.4)). Hence, n1/2(maxjk brnj(✓)� brinfn ) = maxjk bnj(✓) +O⇥
p (1). Taking j = jn(✓), these results

combine to give n1/2(brnjn(✓)(✓)� brinfn )� n1/2(brn(✓)� brinfn ) = bnjn(✓)(✓)�maxjk bnj(✓) +O⇥
p (1) =

O⇥
p (1) using the definition of jn(✓), where the O⇥

p (1) term does not depend on any bootstrap

quantities. Since O⇥
p (1) � �◆n holds wp!1 using Assumption A.6(i) (i.e., n ! 1), (19.47) is

proved.

For a suitably defined random function w(j1, ✓) on {1, ..., k}⇥⇥, A⇤
Ln and A

⇤
Ln can be written

as inf✓2⇥⌘n
I (Fn)

w(jn(✓), ✓) and inf✓2⇥⌘n
I (Fn)

minj12 bJn(✓)w(j1, ✓), respectively. Since w(jn(✓), ✓) �

minj12 bJn(✓)w(j1, ✓) when jn(✓) 2 bJn(✓) and the latter event satisfies (19.47), we obtain

P5(A⇤
Ln � A

⇤
Ln|{Wni}in,n�1) = 1 wp ! 1 under P5. (19.48)

This and (19.46) establish the result of part (b) of the lemma. ⇤

Proof of Lemma 19.1. We have

PFn(b⇥n ◆ ⇥⌘n
I (Fn)) � PFn

 
sup

✓2⇥⌘n
I (Fn)

max
jk

n1/2[bmnj(✓) + brinfn ]�  ⌧n

!

= PFn

 
sup

✓2⇥⌘n
I (Fn)

max
jk

n1/2([bmnj(✓)]� � brinfn )  ⌧n

!
, (19.49)

where the inequality holds by the definition of b⇥n and the equality holds because for b, c � 0,

[a+ b]�  c if and only if [a]� � b  c. To see this, first note that [a+ b]�  c and [a]� � b  c are

equivalent to max{�a� b� c,�c}  0 and max{�a� b� c,�b� c}  0, respectively. The “only

if” part follows by observing that max{�a� b� c,�c} � max{�a� b� c,�b� c}. Now, suppose

[a]� � b  c so that either (i) a � 0 or (ii) a < 0 and �a� b  c. If (i) is the case, [a+ b]� = 0  c,
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and if (ii) is the case, [a+ b]� = max{�a� b, 0}  max{c, 0}  c.

We have

sup
✓2⇥⌘n

I (Fn)

max
jk

n1/2([bmnj(✓)]� � brinfn )

= sup
✓2⇥⌘n

I (Fn)

max
jk

n1/2([bmnj(✓)]� � rinfFn
) + n1/2(rinfFn

� brinfn )

= sup
✓2⇥⌘n

I (Fn)

max
jk

n1/2([bmnj(✓)]� � rinfFn
) +Op(1)

= sup
✓2⇥⌘n

I (Fn)

max
jk

⇣
[⌫m�

nj (✓) + n1/2EFn emj(W, ✓)]� � [n1/2EFn emj(W, ✓)]�

+n1/2([EFn emj(W, ✓)]� � rinfFn
)
⌘
+Op(1)

 sup
✓2⇥⌘n

I (Fn)

max
jk

|⌫m�
nj (✓)|+ ⌘n +Op(1)

= Op(1) + ⌘n, (19.50)

where the second equality holds by Theorem 15.3(b) (which requires Assumptions A.0, C.4, C.5,

and C.7), the third equality holds by (17.5) and (17.6), the inequality holds by the definition of

⇥⌘n
I (Fn), the same reasoning as given following (19.49), and (17.7), and the last equality holds by

Assumption C.5.

It follows that

PFn

 
sup

✓2⇥⌘n
I (Fn)

max
jk

n1/2([bmnj(✓)]� � brinfn )  ⌧n

!

� PFn(Op(1) + ⌘n  ⌧n)

= PFn(Op(1/⌧n) + ⌘n/⌧n  1)

! 1, (19.51)

where the convergence holds because ⌧n ! 1 and ⌘n/⌧n ! 0. Combining this with (19.49) gives

the result of the lemma. ⇤

19.3 Proof of Lemma 18.4

Proof of Lemma 18.4. The lemma depends on Tj1, T ⇤
Lj1, AI1, A⇤

L1, SI1, and S⇤
L1, which

are defined in (15.7), (15.9), (15.10), and (18.8). The first four quantities are well-defined under

Assumptions A.6, BC.1–BC.3, C.1, C.3–C.5, and C.8. The last two quantities, which appear in

part (c), are well-defined under these assumptions plus Assumptions C.6 and S.1(i). Hence, these

assumptions are imposed in Lemma 18.4.
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We prove part (a) first. We have

T ⇤
Lj1 := Gm�

j1 + '†(h⇤Lj1)  Gm�
j1 + hj1 := Tj1 (19.52)

for all sample realizations, where the inequality holds because (i) hj1 � 0 by Lemma 15.1(a)

(which imposes Assumptions C.3 and N), (ii) '†(h⇤Lj1)  hj1 holds immediately if hj1 =

1, and (iii) if 0  hj1 < 1, then h⇤Lj1 = 0 (since n1/2(EFn emj(W, ✓n) + rinfFn
) ! hj1 and

(◆n)�1n1/2(EFn emj(W, ✓n)+rinfFn
) ! h⇤Lj1 by Assumptions C.3 and BC.1, and n ! 1), h⇤Lj1 = 0

implies '†(h⇤Lj1) = 0 by property (iii) of '† stated following (18.6), and hence, '†(h⇤Lj1)  hj1.

Now, establish part (b), i.e., A⇤
L1  AI1. We can write A⇤

L1 = inf(✓,b,b⇤,`,j⇤)2⇤⇤
I
KL(✓, b, b⇤, `,

j⇤) and AI1 = inf(✓,b,`)2⇤I
K(✓, b, `) for random functions KL(·) and K(·) defined in (19.54) below.

To show A⇤
L1  AI1, it su�ces to show that for any (✓, b, `) 2 ⇤I there exists (✓, b, b⇤, `, j⇤) 2 ⇤⇤

I

for which KL(✓, b, b⇤, `, j⇤)  K(✓, b, `) for all sample realizations.

To this end, we claim: Given any (✓, b, `) 2 ⇤I , there exists an element (✓, b, b⇤, `, j⇤) 2 ⇤⇤
I .

This claim is proved as follows. By Assumption C.8, given any (✓, b, `) 2 ⇤I , there exists a

sequence {(✓n, bn, `n) 2 ⇤⌘n
n,Fn

}n�1 such that d((✓n, bn, `n), (✓, b, `)) ! 0, where ✓n 2 ⇥⌘n
I (Fn) for

all n � 1 by the definition of ⇤⌘n
n,Fn

following (15.3). Given {✓n}n�1, consider the corresponding

sequence {(✓n, bn, b⇤n, `n, j⇤n) 2 ⇤
⇤⌘n
n,Fn

}n�1 for ⇤⇤⌘n
n,Fn

defined in (18.4), where b⇤nj := (◆n)�1bnj , j⇤n :=

argmaxjk bnj , and j⇤n is the smallest argmax value if the argmax is not unique. By Assumption

BC.2, ⇤⇤⌘n
n,Fn

!H ⇤⇤
I for ⇤⇤

I compact (under d). In consequence, there exist a subsequence {un}n�1

of {n}n�1 and an element (✓, b, b⇤, `, j⇤) of ⇤⇤
I for which

d((✓un , bun , b
⇤
un
, `un , j

⇤
un
), (✓, b, b⇤, `, j⇤)) ! 0 and (✓, b, `) = (✓, b, `), (19.53)

where the equality holds because d((✓n, bn, `n), (✓, b, `)) ! 0, which completes the proof of the

claim.

Given any (✓, b, `) 2 ⇤I , take (✓, b, b⇤, `, j⇤) 2 ⇤⇤
I as in the previous paragraph. Then, we have

KL(✓, b, b
⇤, `, j⇤) := max

jk

⇣
�(Gm�

j (✓), `j) + 1(j 6= j⇤)bj + 1(j = j⇤)'†(b⇤j⇤)
⌘

 max
jk

⇥
�(Gm↵

j (✓), `j) + bj
⇤
:= K(✓, b, `) (19.54)

for all sample realizations, where the first and last equalities hold by the definitions of A⇤
L1 and

AI1 and the inequality holds because, as we show below, '†(b⇤j⇤)  bj⇤ . As argued above, (19.54)

implies that A⇤
L1  AI1, which we set out to prove.

Next, we show '†(b⇤j⇤)  bj⇤ . For notational simplicity, suppose (19.53) holds with n in place
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of un. We have j⇤n ! j⇤ by (19.53), and hence, j⇤n = j⇤ for n large (because j⇤n 2 {1, ..., k}), where

j⇤n := jn(✓n) by the definition of ⇤⇤⌘n
n,Fn

in (18.4) for jn(✓n) defined in (18.2). We have bnj ! bj

and b⇤nj ! b⇤j by (19.53), where bnj = bnj(✓n) and b⇤nj = (◆n)�1bnj by the definition of ⇤⇤⌘n
n,Fn

for

bnj(✓) defined in (18.2). Hence, we have bnj⇤n ! bj⇤ and b⇤nj⇤n ! b⇤j⇤ , where b⇤nj⇤n = (◆n)�1bnj⇤n =

(◆n)�1bnjn(✓n)(✓n) � 0 for all n � 1 by (18.3). This and n ! 1 (by Assumption A.6(i)) imply

that bj⇤ � b⇤j⇤ � 0. In addition, it implies that if 0  bj⇤ < 1, then b⇤j⇤ = 0 (since n ! 1). Hence,

we obtain: if 0  bj⇤ < 1, then '†(b⇤j⇤) = 0  bj⇤ because '†(0) = 0 by property (iii) of '† stated

following (18.6). On the other hand, if bj⇤ = 1, then '†(b⇤j⇤)  1 = b⇤j⇤ by the definition of '†(·),

which completes the proof of part (b).

Part (c) is implied by parts (a) and (b) using the definitions of S⇤
L1 and SI1 in (18.8) and

(15.10), respectively, and Assumption S.1(i). ⇤

20 Proof of Theorem 4.1

Theorem 4.1 shows that the SPUR2 test and CS have correct asymptotic level. The SPUR1 test

and CS have correct level under the same conditions. This Section proves the results of Theorem

4.1 for both SPUR1 and SPUR2 tests and CS’s.

The proof of Theorem 4.1 uses the following lemma, which provides su�cient conditions for

Assumptions C.5 and C.6 to hold for the case of i.i.d. observations. This lemma is based on

Lemma D.2 of BCS.

Lemma 20.1 (a) Assumptions A.0–A.4 and C.11 imply Assumption C.5 with the covariance ker-

nel of G(·) in Assumption C.5 equal to ⌦1(·, ·). (b) Assumptions A.0–A.4, C.1, and C.11 imply

Assumption C.6 with ⌦1 in Assumption C.6 equal to the upper left k⇥k submatrix of ⌦1(✓1, ✓1).

Comment. For any subsequence {qn}n�1 of {n}n�1, Lemma 20.1 holds with qn in place of n

throughout, including the assumptions. (The proof just needs to be changed by replacing n by qn

throughout.)

Proof of Theorem 4.1. First, we prove the result of part (b) for the CSn,SPUR1 CS (which is

not stated as a result in Theorem 4.1(b), but is needed below in the proof of Theorem 4.1(b) for

the CSn,SPUR2 CS). Let �n(✓) abbreviate �n,SPUR1(✓). There always exist sequences {Fn}n�1 and

{✓n 2 ⇥MR
I (Fn)}n�1 and a subsequence {qn}n�1 of {n}n�1 such that

lim inf
n!1

inf
F2P

inf
✓2⇥MR

I (F )

PF (�n(✓) = 0) = lim inf
n!1

PFn(�n(✓n) = 0) = limPFqn
(�qn(✓qn) = 0). (20.1)
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The left-hand side expression equals the uniform coverage probability in Theorem 4.1(b) using the

definition of the SPUR1 CS in (4.8). By (20.1), it su�ces to show that the rhs of (20.1) is 1�↵ or

greater with {qn}n�1 replaced by some subsequence {an}n�1 of {qn}n�1 (because the limit under

the subsequence {an}n�1 is the same as the limit under the original subsequence {qn}n�1). The

rhs of (20.1) defined with {an}n�1 is 1 � ↵ or greater by Theorem 18.1 provided the assumptions

of Theorem 18.1 hold for some subsequence {pn}n�1 of {qn}n�1. Hence, it remains to verify that

Assumptions BC.1–BC.3, C.1, and C.3–C.8 hold for some subsequence {pn}n�1 (of {qn}n�1) in

place of {n}n�1 (because Assumptions A.0, A.6, and S.1, which are imposed in Theorem 18.1, are

also imposed in the present theorem, and Assumption N, which is imposed in Theorem 18.1, holds

because ✓an 2 ⇥MR
I (Fan) 8n � 1 in (20.1) by construction).

Under Assumptions A.4 and A.5, by Lemma D.7 of BCS, given {qn}n�1, there exists a sub-

sequence {un}n�1 of {qn}n�1, a continuous Rk⇥k-valued function ⌦1 on ⇥2, and a continuous

Rk-valued function em on ⇥ for which (i) ⌦Fun
!u ⌦1, where !u denotes uniform convergence

(over ⇥2 in this case), (ii) EFun
em(W, ·) !u em(·), and hence, Assumption C.4 holds for the sub-

sequence {un}n�1, and (iii) Assumptions C.7, C.8, and BC.2 hold for the subsequence {un}n�1.

Strictly speaking, Lemma D.7 of BCS only establishes ⌦Fun
!u ⌦1 and the subsequence versions

of Assumptions C.7 and C.8, but EFun
em(W, ·) !u em(·) and the subsequence version of Assump-

tion BC.2 are established in the same ways as ⌦Fun
!u ⌦1 (but using Assumption A.5 in place of

Assumption A.4) and the subsequence versions of Assumptions C.7 and C.8, respectively.

Assumption C.1 holds for a subsequence {un}n�1 of {un}n�1 because {✓un}n�1 is a sequence in

the compact set ⇥ (by Assumption A.0(i)).

Assumptions C.5 and C.6 hold for the subsequence {un}n�1 by applying a subsequence version

of Lemma 20.1, which imposes Assumptions A.0–A.4, C.1, and C.11. Assumptions A.0–A.4 are

imposed in the present theorem and the subsequence version of Assumption C.11 holds by (i) above.

Assumptions C.3 and BC.1 hold for a subsequence {pn}n�1 of {un}n�1 because

{u1/2n (EFun
em(W, ✓un) + rinfFun

)}n�1 and {�1

un
u1/2n (EFun

em(W, ✓un) + rinfFun
)}n�1 are sequences taking

values in Rk
[±1]

, which is compact under d (defined in Section 15.1 with a⇤ = k).

Assumption BC.3 holds for the subsequence {pn}n�1 by Lemma D.2(8) of BCS because As-

sumptions A.1–A.4 of this paper imply Assumptions A.1–A.4 of BCS and ⌦Fun
!u ⌦1 implies

⌦Fpn
!u ⌦1 (because {pn}n�1 is a subsequence of {un}n�1).

This concludes the proof that the assumptions employed in Theorem 18.1 hold for the subse-

quence {pn}n�1 of {qn}n�1, which completes the proof of part (b) for CSn,SPUR1.

The proof of part (a) for the SPUR1 test is essentially the same as that of part (b) for the

SPUR1 CS, but with ✓0 in place of ✓n 8n � 1.
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Next, we prove part (b) for the SPUR2 CS. Let {Fn}n�1 and {✓n}n�1 denote sequences of

distributions in P for which

lim sup
n!1

sup
F2P

sup
✓2⇥MR

I (F )

PF (�n,SPUR2(✓) = 1) = lim sup
n!1

PFn(�n,SPUR2(✓n) = 1). (20.2)

Such sequences always exists. The left-hand side expression in (20.2) equals one minus the uniform

coverage probability in Theorem 4.1(b) using the definition of the SPUR2 CS in (4.8).

We use the following Bonferroni argument. We have

lim sup
n!1

PFn(�n,SPUR2(✓n) = 1)

 lim sup
n!1

PFn(�n,SPUR2(✓n) = 1 & rinfFn
 brn,UP (↵1))

+lim sup
n!1

PFn(�n,SPUR2(✓n) = 1 & rinfFn
> brn,UP (↵1))

 lim sup
n!1

PFn(�n,SPUR2(✓n) = 1 & rinfFn
 brn,UP (↵1)) + ↵1, (20.3)

where the second inequality holds because Theorem 5.1(a), which states that lim infn!1 infF2P

PF (�inf

F 2 CIn,�U (↵1)) � 1 � ↵1, implies lim supn!1 PFn(r
inf

Fn
> brn,UP (↵1))  ↵1 since rinfFn

:=

max{�inf

Fn
, 0} and brn,UP (↵1) := max{b�inf

n,U (↵), 0} yield rinfFn
> brn,UP (↵1) i↵ �inf

Fn
> max{b�inf

n,U (↵), 0}

and the latter implies �inf

Fn
> b�inf

n,U (↵).

First, consider the case where rinfFn
> 0 for all n large. Then, rinfFn

 brn,UP (↵1) implies that

0 < brn,UP (↵1) and �n,SPUR2(✓n,↵2)  �n,SPUR1(✓n,↵2) using (4.10). In this case, under {Fn}n�1

and {✓n}n�1, the rhs of (20.3) is less than or equal to

lim sup
n!1

PFn(�n,SPUR1(✓n,↵2) = 1) + ↵1  ↵2 + ↵1 = ↵, (20.4)

where the inequality holds because the nominal level ↵2 test �n,SPUR1(✓n,↵2) has asymptotic size

↵2 or less by Theorem 4.1(b) for the SPUR1 CS (which allows for drifting sequences of null values

✓n).

Next, consider the case where rinfFn
= 0 for all n large. Under {Fn}n�1 and {✓n}n�1, the rhs of

(20.3) is less than or equal to

lim sup
n!1

PFn(�n,GMS(✓n,↵2) = 1) + ↵1  ↵2 + ↵1 = ↵, (20.5)

where the inequality holds because the model is correctly specified (i.e., rinfFn
= 0) for n large and

the �n,GMS(✓n,↵2) test has asymptotic size ↵2 or less in this case. The latter holds by the same

argument as used to prove Theorem 4.1(b) for the SPUR1 CS (which allows for drifting sequences
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of null values ✓n), but with the test statistic Sn(✓) defined in (4.5) with brinfn replaced by the true

value rinfFn
= 0 and with the EGMS bootstrap statistic replaced by the GMS bootstrap statistic

S⇤
n,GMS(✓) defined just above (4.10), which is suitable because rinfFn

= 0.

The result of part (b) for the SPUR2 CS holds because the rhs of (20.3) for the sequence

{Fn}n�1 is ↵ or less by considering subsequences of {n} where either (20.4) or (20.5) applies.

The proof of part (a) for the SPUR2 test is analogous to that of part (b) for the SPUR2 CS

with ✓0 in place of ✓n 8n � 1. ⇤

Proof of Lemma 20.1. First, we verify Assumption C.5 using Lemma D.2(1) of BCS, which

imposes their Assumptions A.1–A.4 and M.2 and ⌦Fn !u ⌦1 for some ⌦1. Assumptions A.1–A.4

in this paper imply A.1–A.4 in BCS, Assumption A.0(i) is the same as BCS’s M.2, and Assumption

C.11 implies ⌦Fn !u ⌦1. Lemma D.2(1) of BCS gives ⌫mn (·) ) Gm(·), whereas Assumption C.5

concerns ⌫n(·) := (⌫mn (·)0, ⌫�n(·)0)0. However, by the same argument as in the proof of Lemma D.2(1)

applied to ⌫n(·), rather than ⌫mn (·), we obtain

⌫n(·) ) G(·), (20.6)

where G(·) is as in Assumption C.5, using equicontinuity of ⌫n(·) in our Assumption A.3, rather

than of ⌫mn (·) in BCS’s Assumption A.2, and using 4 + a finite moments in our Assumption A.2,

rather than 2+a finite moments in BCS’s Assumption A.3. Hence, Assumption C.5 holds and part

(a) is established.

Next, we verify Assumption C.6. Lemma D.2(5) of BCS gives sup✓2⇥ ||b⌦n(✓)�⌦111(✓, ✓)|| !p 0,

where ⌦111(✓, ✓) denotes the upper left k ⇥ k submatrix of ⌦1(✓, ✓), because Assumptions A.1–

A.4 in this paper imply Assumptions A.1–A.4 of BCS and ⌦Fn !u ⌦1 by Assumption C.11. By

Assumption C.1, ✓n ! ✓1, and by Assumption C.11, ⌦1(✓, ✓0) is continuous on ⇥2. These results

combine to yield b⌦n(✓n) !p ⌦111(✓1, ✓1) := ⌦1, which verifies Assumption C.6 and establishes

part (b). ⇤

21 Proofs of Lemma 11.2 and Theorem 11.1

The proof of Lemma 11.2(b) uses the following lemma, which shows that Assumption C.10

implies a similar minorant condition on the sample analogue of the left-hand side of Assumption

C.10.

Lemma 21.1 Suppose Assumptions A.0, C.4, C.5, C.7, and C.10 hold under {Fn}n�1. Then, there

exist positive constants , ", and � such that for any � 2 (0, 1) there exists positive constants �
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and N� such that

max
jk

([bmnj(✓)]� � brinfn ) �  · (min{d(✓,⇥MR
I (Fn)), "})�

for all ✓ 2 {✓ 2 ⇥ : d(✓,⇥MR
I (Fn)) � (�/n1/2)1/�} with probability at least 1� � for all n � N�.

Proof of Lemma 11.2. The proof is similar to that of Theorem 3.1 of Chernozhukov, Hong, and

Tamer (2007). For part (a), we have

sup
✓2⇥MR

I (Fn)

d(✓, b⇥n) = 0 wp ! 1 (21.1)

because ⇥MR
I (Fn) ⇢ b⇥n wp ! 1 by Lemma 19.1(a) (which requires Assumptions A.0, C.4, C.5,

and C.7). For part (a), it remains to show sup✓2b⇥n
d(✓,⇥MR

I (Fn)) = op(1).

By Assumption C.9, for arbitrary " > 0, we have

⇣" := lim inf
n!1

inf
✓2⇥\⇥MR

I," (Fn)

max
jk

[EFn emj(W, ✓)]� � rinfFn
> 0. (21.2)

Next, we have

sup
✓2b⇥n

max
jk

n1/2([EFn emj(W, ✓)]� � rinfFn
)

= sup
✓2b⇥n

max
jk

n1/2([EFn emj(W, ✓)]� � [bmnj(✓)]� + [bmnj(✓)]� � brinfn + brinfn � rinfFn
)

= sup
✓2b⇥n

max
jk

n1/2([EFn emj(W, ✓)]� � [bmnj(✓)]� + [bmnj(✓)]� � brinfn ) +Op(1)

 sup
✓2b⇥n

max
jk

n1/2([EFn emj(W, ✓)]� � [bmnj(✓)]�) + ⌧n +Op(1)

= sup
✓2b⇥n

max
jk

⇣
[n1/2EFn emj(W, ✓)]� � [⌫m�

nj (✓) + n1/2EFn emj(W, ✓)]�
⌘
+ ⌧n +Op(1)

 sup
✓2b⇥n

max
jk

��⌫m�
nj (✓)

��+ ⌧n +Op(1)

= Op(1) + ⌧n, (21.3)

where the second equality holds by Theorem 15.3(b) (which requires Assumptions A.0, C.4, C.5,

and C.7), the first inequality holds by the definition of b⇥n and the same reasoning as given following

(19.49), the third equality holds by (17.5) and (17.6), the second inequality holds by (17.7), and

the last equality holds by Assumption C.5.

By (21.3), we have

sup
✓2b⇥n

max
jk

[EFn emj(W, ✓)]� � rinfFn
 Op(1/n

1/2) + ⌧n/n
1/2 = op(1), (21.4)
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where the equality holds because ⌧n/n1/2 = o(1). Combining (21.2) and (21.4), it follows that

limPFn

 
inf

✓2⇥\⇥MR
I," (Fn)

max
jk

[EFn emj(W, ✓)]� > sup
✓2b⇥n

max
jk

[EFn emj(W, ✓)]�

!

� limPFn(⇣"/2 > op(1))

= 1. (21.5)

Thus, limPFn(b⇥n ⇢ ⇥MR
I," (Fn)) = 1 and sup✓2b⇥n

d(✓,⇥MR
I (Fn))  " wp! 1. Since " > 0 is

arbitrary, we have sup✓2b⇥n
d(✓,⇥MR

I (Fn)) = op(1), which completes the proof of part (a).

For part (b), take the positive constants (, ", �, �, N�,�) as in Lemma 21.1. We can take

N 0
� � N� such that 2⌧n >  · � and "n := (2⌧n/(n1/2))1/� < " for n � N 0

�, because ⌧n ! 1 and

⌧n/n1/2 = o(1). As defined, "n > (�/n1/2)1/� for n � N 0
�. Hence,

⇥\⇥MR
I,"n ⇢ {✓ 2 ⇥ : d(✓,⇥MR

I (Fn)) � (�/n
1/2)1/�} (21.6)

for n � N 0
�. In consequence, with probability at least 1� � for n � N 0

�, we have

inf
✓2⇥\⇥MR

I,"n
(Fn)

max
jk

([bmnj(✓)]� � brinfn ) �  · inf
✓2⇥\⇥MR

I,"n
(Fn)

(min{d(✓,⇥MR
I (Fn)), "})�

�  · (min{"n, "})�

=  · "�n

:= 2⌧n/n
1/2

> ⌧n/n
1/2

� sup
✓2b⇥n

max
jk

([bmnj(✓)]� � brinfn ), (21.7)

where the first inequality holds by Lemma 21.1 and (21.6), the second inequality holds by the

definition of ⇥MR
I,"n(Fn), the first equality holds by the definition of N 0

�, the second equality holds

by the definition of "n, and the last holds inequality by the definition of b⇥n.

Equation (21.7) implies b⇥n ⇢ ⇥MR
I,"n(Fn), and hence, sup✓2b⇥n

d(✓,⇥MR
I (Fn))  "n with proba-

bility at least 1� � for n � N 0
�. Combining this with (21.1) gives

dH(b⇥n,⇥
MR
I (Fn)) = Op("n) = Op((⌧n/n

1/2)1/�), (21.8)

which completes the proof of part (b). ⇤

Proof of Lemma 21.1. By (19.50) with⇥ in place of⇥⌘n
I (Fn) throughout and with [EFn emj(W, ✓)]�
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� rinfFn
in place of ⌘n in the last two lines (which makes the inequality into an equality), we have

max
jk

([bmnj(✓)]� � brinfn ) = max
jk

[EFn emj(✓)]� � rinfFn
+O⇥

p (1/n
1/2) (21.9)

using Assumptions A.0, C.4, C.5, and C.7. Hence, for any � 2 (0, 1), there exist positive constants

� and N� such that with probability at least 1� �, we have

max
jk

([bmnj(✓)]� � brinfn ) � C · (min{d(✓,⇥MR
I (Fn)), "})� +O⇥

p (1/n
1/2)

� C · (min{d(✓,⇥MR
I (Fn)), "})� � (C/2)�/n

1/2 (21.10)

for all ✓ 2 ⇥ and n � N�, where C, ", and � are as in Assumption C.10 and the first inequality

uses (21.9) and Assumption C.10. Without loss in generality, we can take N� � (�/"�)2. Hence,

�/N
1/2
�  "� .

For all n � N�, we have

�/n
1/2  (min{d(✓,⇥MR

I (Fn)), "})� (21.11)

for all ✓ 2 {✓ 2 ⇥ : d(✓,⇥MR
I (Fn)) � (�/n1/2)1/�}. Combining (21.10) and (21.11) establishes the

lemma with  = C/2. ⇤

Proof of Theorem 11.1. Let an arbitrary " > 0 be given. There always exists a sequence

{Fn 2 P}n�1 (that may depend on ") such that

lim sup
n!1

sup
F2P

PF (dH(b⇥n,⇥
MR
I (F )) > ") = lim sup

n!1
PFn(dH(b⇥n,⇥

MR
I (Fn)) > "). (21.12)

There always exists a subsequence {wn}n�1 of {n}n�1 such that

lim sup
n!1

PFn(dH(b⇥n,⇥
MR
I (Fn)) > ") = limPFwn

(dH(b⇥wn ,⇥
MR
I (Fwn)) > "). (21.13)

Given any subsequence {an}n�1 of {wn}n�1, there exists a subsequence {un}n�1 of {an}n�1

such that Assumptions C.4, C.7, and C.11 (defined in online Appendix B) hold for the subsequence

{un}n�1 by the proof of Theorem 4.1 in Section 20 in online Appendix B, which uses Lemma D.7

of BCS and relies on Assumptions A.4 and A.5. Given Assumption A.9, Assumption C.9 also holds

for the subsequence {un}n�1. By Lemma 20.1 in Section 20 in online Appendix B, Assumptions

A.0–A.4 and C.11 imply Assumption C.5. Hence, Assumptions C.4, C.5, C.7, and C.9 hold for

the subsequence {un}n�1. In consequence, by Lemma 11.2(a) applied with n replaced by un, which
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utilizes Assumptions A.0, C.4, C.5, C.7, and C.9, we have

limPFun
dH(b⇥un ,⇥

MR
I (Fun)) > ") = 0. (21.14)

This implies that the same result holds for the subsequence {wn}n�1, which completes the proof

using (21.12) and (21.13) because " > 0 is arbitrary. ⇤

22 Online Appendix B Assumptions

For ease of reference, we state all of the assumptions used in the paper and online Appendix B

here.

Assumption A.0. (i) ⇥ is compact and non-empty and (ii) EF emj(W, ✓) is upper semi-continuous

on ⇥ 8j  k, 8F 2 P.

Assumption A.1. The observations W1, ...,Wn are i.i.d. under F and {emj(·, ✓) : W ! R} and

{em2

j (·, ✓) : W ! R} are measurable classes of functions indexed by ✓ 2 ⇥ 8j  k, 8F 2 P.

Assumption A.2. For some a > 0, supF2P EF sup✓2⇥ ||em(W, ✓)||4+a < 1.

Assumption A.3. The empirical process ⌫n(·) is asymptotically ⇢F -equicontinuous on⇥ uniformly

in F 2 P.

Assumption A.4. The covariance kernel ⌦F (✓, ✓0) satisfies: for all F 2 P,

lim�!0 sup||(✓1,✓01)�(✓2,✓02)||<� ||⌦F (✓1, ✓01)� ⌦F (✓2, ✓02)|| = 0.

Assumption A.5. EF em(W, ✓) is equicontinuous on ⇥ over F 2 P. That is, lim�#0 supF2P

sup||✓�✓0||<� ||EF em(W, ✓)� EF em(W, ✓0)|| = 0.

Assumption A.6. (i) n ! 1. (ii) ⌧n ! 1.

Let  := cl({⌦F (✓) : ✓ 2 ⇥, F 2 P}), where cl(·) denotes the closure of a set and ⌦F (✓) :=

CorrF (m(W, ✓)) 2 Rk⇥k.

Assumption S.1. (i) S(m,⌦) is nonincreasing in m 2 Rk
[+1]

8⌦ 2  ,

(ii) S(m,⌦) � 0 8m 2 Rk, 8⌦ 2  , and

(iii) S(m,⌦) is continuous at all m 2 Rk
[+1]

and ⌦ 2  .

Assumption S.2. S(m,⌦) > 0 i↵ mj < 0 for some j  k, 8⌦ 2  .

Assumption S.3. For some � > 0, S(am,⌦) = a�S(m,⌦) 8a > 0, 8m 2 Rk, 8⌦ 2  .

Assumption S.4. For all h 2 (�1,1]k, all ⌦ 2  , and Z ⇠ N(0k,⌦), the distribution function

of S(Z + h,⌦) at x 2 R is (i) continuous for x > 0, (ii) strictly increasing for x > 0 unless

h = (1, . . . ,1)0 2 Rk
[±1]

, and (iii) less than 1/2 for x = 0 if hj = 0 for some j  k.
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The following assumptions apply to a drifting sequence of null values {✓n}n�1 and distributions

{Fn}n�1.

Assumption C.1. ✓n ! ✓1 for some ✓1 2 ⇥.

Assumption C.2. n1/2EFn emj(W, ✓n) ! `j1 for some `j1 2 R[±1] 8j  k.

Assumption C.3. n1/2(EFn emj(W, ✓n) + rinfFn
) ! hj1 for some hj1 2 R[±1] 8j  k.

Assumption C.4. sup✓2⇥ ||EFn em(W, ✓) � em(✓)|| ! 0 for some nonrandom bounded continuous

Rk-valued function em(·) on ⇥.

Assumption C.5. ⌫n(·) := (⌫mn (·)0, ⌫�n(·)0)0 ) G(·) := (Gm(·)0, G�(·)0)0 as n ! 1, where {G(✓) :

✓ 2 ⇥} is a mean zero R2k-valued Gaussian process with bounded continuous sample paths a.s.

and Gm(✓), G�(✓) 2 Rk.

Assumption C.6. b⌦n(✓n) !p ⌦1 for some ⌦1 2  .

Assumption C.7. ⇤n,Fn !H ⇤ for some non-empty set ⇤ 2 S(⇥⇥R2k
[±1]

).

Assumption C.8. ⇤⌘n
n,Fn

!H ⇤I for some non-empty set ⇤I 2 S(⇥⇥R2k
[±1]

), where {⌘n}n�1 is a

sequence of positive constants for which ⌘n ! 1.

Assumption C.9. For all " > 0,

lim inf
n!1

 
inf

✓2⇥\⇥MR
I," (Fn)

max
jk

[EFn emj(W, ✓)]� � rinfFn

!
> 0.

Assumption C.10. There exist positive constants C, ", and � such that for all ✓ 2 ⇥ and n � 1,

max
jk

[EFn emj(W, ✓)]� � rinfFn
� C · (min{d(✓,⇥MR

I (Fn)), "})� .

Assumption C.11. ⌦Fn(·, ·) !u ⌦1(·, ·) for some continuous R2k⇥2k-valued function ⌦1(·, ·) on

⇥2.

The following assumptions apply to a drifting sequence of null values {✓n}n�1 and distributions

{Fn}n�1.

Assumption BC.1. (◆n)�1n1/2(EFn emj(W, ✓n) + rinfFn
) ! h⇤Lj1 for some h⇤Lj1 2 R[±1] 8j  k.

Assumption BC.2. ⇤⇤⌘n
n,Fn

!H ⇤⇤
I for some non-empty set ⇤⇤

I 2 S(⇥ ⇥ R3k
[±1]

⇥ {1, ..., k}) for

some constants {⌘n}n�1 that satisfy ⌘n ! 1 and ⌘n/⌧n ! 0 for {⌧n}n�1 as in Assumption A.6(ii).

Assumption BC.3. {⌫⇤n(·)|{Wni}in,n�1} ) G(·) a.s.[P5], where G(·) is as in Assumption C.5.

Assumption NLA. minjk hj1 > �1.

Assumption CA. minjk hj1 = �1.

Assumption N. ✓n 2 ⇥MR
I (Fn) 8n � 1.

Assumption LA. The null values {✓n}n�1 and distributions {Fn}n�1 satisfy: (i) ||✓n � ✓In|| =
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O(n�1/2) for some sequence {✓In 2 ⇥MR
I (Fn)}n�1, (ii) n1/2(EFn emj(W, ✓In)+rinfFn

) ! hIj1 for some

hIj1 2 R[±1] 8j  k, and (iii) EF em(W, ✓) is Lipschitz on ⇥ uniformly over P, i.e., there exists a

constant K < 1 such that ||EF em(W, ✓1)� EF em(W, ✓2)||  K||✓1 � ✓2|| 8✓1, ✓2 2 ⇥, 8F 2 P.

Assumption FA. The null values {✓n}n�1 and distributions {Fn}n�1 satisfy: (i) Fn = F⇤ 2 P

and ✓n = ✓⇤ 2 ⇥ do not depend on n � 1 and (ii) EF⇤ emj(W, ✓⇤) + rinfF⇤
< 0 for some j  k.

Assumption SLK. The sequence {Fn}n�1 is such that n1/2�inf

Fn
! �1.

Assumption MM. The sequence {Fn}n�1 is such that n1/2�inf

Fn
! 1.
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23 Outline of Online Appendix C

Online Appendix C proves the results of the paper for the misspecification index confidence

intervals (CI’s).

References to sections with section numbers 6 or less refer to sections of the main paper. Simi-

larly, all equations, theorems, and lemmas with section numbers 6 or less refer to results in the main

paper. Let BCS15 abbreviate Bugni, Canay, and Shi (2015) and BCS17 abbreviate Bugni, Canay,

and Shi (2017). For ease of reference, the assumptions used in the paper and online Appendix C

are listed in the last section of online Appendix C, Section 31.

Section 24 provides an equivalent condition to Assumption SLK, which is employed in Theorem

5.2. It also provides a set of su�cient conditions for Assumption SLK.

Section 25 provides the asymptotic distribution of b�inf
n under certain drifting sequences of

distributions {Fn}n�1 under some high-level conditions, which are verified below. The asymptotic

distribution results are used below to prove Theorem 5.1, which establishes the correct asymptotic

size of the MI CI’s CIn,�U (↵), CIn,�L(↵), and CIn,�(↵).

Section 26 proves Lemma 25.1 and Theorem 25.2, which gives the asymptotic distribution of

b�inf
n .

Section 27 proves Theorem 5.1, which establishes the correct asymptotic size of the upper- and

lower-bound CI’s for �inf

F .

Section 28 proves Theorem 5.2, which gives conditions for the upper-bound CI to contain only

negative values wp!1 and conditions for the lower-bound CI to contain only positive values wp!1.

Section 29 proves Corollary 5.3, which establishes the correct asymptotic size of the tests con-

cerning �inf

F and conditions for the consistency of the tests.

Section 30 shows that the upper-bound CI CIn,�U (↵) includes positive values of �inf

F wp!1

when the model is misspecified and n1/2�inf

Fn
! 1.

All limits are as the sample size n ! 1. Let o⇥p (1) and O⇥
p (1) denote random functions that

are op(1) and Op(1) uniformly over ✓ 2 ⇥, respectively. Let R[±1] := R [ {±1} and R[+1] :=

R [ {+1}. Let || · || denote the Euclidean norm for vectors and the Frobenious norm for matrices.

24 Equivalent and Su�cient Conditions for Assumption SLK

First, we give an equivalent condition to Assumption SLK (under Assumption A.0).

Lemma 24.1 Suppose Assumption A.0 holds. Then, the sequence {Fn}n�1 satisfies Assumption

SLK if and only if there exists a sequence {✓In 2 ⇥I(Fn)}n�1 for which n1/2EFn emj(W, ✓In) ! 1
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8j  k.

Next, we give some su�cient conditions for Assumption SLK. For any ⇥1,⇥2 ✓ ⇥, the Hausdor↵

distance between ⇥1 and ⇥2 is

dH(⇥1,⇥2) = max

⇢
sup

✓12⇥1

inf
✓22⇥2

k✓1 � ✓2k, sup
✓22⇥2

inf
✓12⇥1

k✓1 � ✓2k
�
. (24.1)

If ⇥1 ✓ ⇥2, dH(⇥1,⇥2) = sup✓22⇥2
inf✓12⇥1

k✓1 � ✓2k, because sup✓12⇥1
inf✓22⇥2

k✓1 � ✓2k = 0 in

this case. The following assumption states that the identified set ⇥I(Fn) does not shrink to the

⇥min(Fn) set too quickly.

Assumption SLK.1. The sequence {Fn}n�1 is such that {⇥I(Fn)}n�1 are nonempty and limn!1

n1/2dH(⇥min(Fn),⇥I(Fn)) = 1.

For example, when ⇥min(Fn) is a singleton and ⇥I(Fn) is such that its diagonal does not shrink at

rate n�1/2 or faster, Assumption SLK.1 holds.50

Lemma 24.2 Suppose the sequence {Fn}n�1 satisfies Assumptions A.0, A.8(i), and SLK.1, and

the model is correctly specified for each Fn in the sequence. Then, {Fn}n�1 satisfies Assumption

SLK.

Comment. Lemma 24.2 still holds if dH(⇥min(Fn),⇥I(Fn)) is replaced by (dH(⇥min(Fn),

⇥I(Fn)))q in Assumption SLK.1 and inf✓2⇥min(F )
k✓ � ✓k is replaced by inf✓2⇥min(F )

k✓ � ✓kq in

Assumption A.8(i), for any q > 0.

Proof of Lemma 24.1. Suppose there exists a sequence {✓In 2 ⇥I(Fn)}n�1 for which

n1/2EFn emj(W, ✓In) ! 1 8j  k. Then,

n1/2�inf

Fn
 n1/2�Fn(✓

I
n) =: max

jk
�n1/2EFn emj(W, ✓In) = �min

jk
n1/2EFn emj(W, ✓In) ! �1, (24.2)

where the inequality holds by the definition of �inf

Fn
and the divergence holds by the assumption.

To show the converse, suppose Assumption SLK holds. By Assumption A.0, ⇥min(Fn) is non-

empty for all n � 1. For any sequence {✓In 2 ⇥min(Fn)}n�1,

min
jk

n1/2EFn emj(W, ✓In) =: �n1/2�Fn(✓
I
n) = �n1/2�inf

Fn
! 1, (24.3)

where the first equality holds by the definition of �Fn(·), the second inequality holds because

✓In 2 ⇥min(Fn), and the divergence holds by Assumption SLK. This completes the proof. ⇤

50The diagonal of a set A ⇢ Rk is defined as supx,y2Akx� yk.
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Proof of Lemma 24.2. Define d(✓,⇥min(Fn)) := inf✓2⇥min(Fn)
k✓�✓k. Since⇥min(Fn) ✓ ⇥MR

I (Fn) =

⇥I(Fn) (where the second equality holds by assumption), we have

dH(⇥min(Fn),⇥I(Fn)) = sup
✓2⇥I(Fn)

inf
✓2⇥min(Fn)

k✓ � ✓k =: sup
✓2⇥I(Fn)

d(✓,⇥min(Fn)), (24.4)

where the first equality follows from the sentence following (24.1) and the second equality holds

by definition. Note that d(✓,⇥min(Fn)) is continuous in ✓ and ⇥I(Fn) is compact by Assumption

A.0. Hence, there exists a sequence {e✓In 2 ⇥I(Fn)}n�1 such that e✓In achieves the supremum on the

right-hand side (rhs) of (24.4). It follows that

d(e✓In,⇥min(Fn)) = sup
✓2⇥I(Fn)

d(✓,⇥min(Fn)) = dH(⇥min(Fn),⇥I(Fn)). (24.5)

We have

�inf

Fn
 �Fn(e✓In)� cmin

(
�, inf

✓2⇥min(Fn)

ke✓In � ✓k
)

 �cmin

(
�, inf

✓2⇥min(Fn)

ke✓In � ✓k
)

= �cmin{�, dH(⇥min(Fn),⇥I(Fn))}, (24.6)

where the first inequality holds by Assumption A.8(i), the second inequality holds because the

model is assumed to be correctly specified and e✓In 2 ⇥I(Fn), and the equality holds by (24.1).

Multiplying both sides of (24.6) by n1/2 and taking the lim supn!1 gives

lim sup
n!1

n1/2�inf

Fn
 �cmin{lim inf

n!1
n1/2�, lim inf

n!1
n1/2dH(⇥min(Fn),⇥I(Fn))} ! �1, (24.7)

where the divergence holds by Assumption SLK.1. Thus, n1/2�inf

Fn
! �1 and Assumption SLK

holds. ⇤

25 Asymptotic Distribution of the Estimator b�inf

n

In this section, we obtain the asymptotic distribution of b�inf
n under certain drifting sequences

of distributions {Fn}n�1. The asymptotic distribution is obtained under some high-level conditions

which are verified below. The results are used below to prove Theorem 5.1, which establishes the

correct asymptotic size of the MI CI’s CIn,�U (↵), CIn,�L(↵), and CIn,�(↵).
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25.1 High-Level Convergence Assumptions

As in BCS15, for any x1, x2 2 Ra⇤
[±1]

for some positive integer a⇤, let d(x1, x2) = (
Pa⇤

j=1
(�(x1,j)�

�(x2,j))2)1/2, where � : R[±1] ! [0, 1], �(y) is the standard normal distribution function at y for

y 2 R, �(�1) := 0, and �(1) := 1. The space (Ra⇤
[±1]

, d) is a compact metric space. Convergence

in (Ra⇤
[±1]

, d) to a point in Ra⇤ implies convergence under the Euclidean norm. Let S(⇥ ⇥ Rk
[±1]

)

denote the space of non-empty compact subsets of the metric space (⇥ ⇥ Rk
[±1]

, d), where d is

defined with a⇤ = d✓ + k. Let ) denote weak convergence of a sequence of stochastic processes in

the sense of van der Vaart and Wellner (1996). Let !H denote convergence in Hausdor↵ distance

(under d) for elements of S(⇥ ⇥ Rk
[±1]

). We use the convention that ⌫ + c = c when ⌫ 2 R and

c = ±1. For any e,m 2 Rk that arise below, let ej ,mj denote the jth elements of e,m, respectively.

The recentered and rescaled estimator b�inf
n is

An,� := n1/2
⇣
b�inf

n ��inf

Fn

⌘
. (25.1)

To obtain the asymptotic distribution of An,�, we use the following sets:

⇤n,�,F :=
n
(✓, e) 2 ⇥⇥Rk : ej = n1/2

⇣
�Fj(✓)��inf

F

⌘o
. (25.2)

Define

�F (✓) := max
jk

�Fj(✓). (25.3)

Note that �inf

F = inf✓2⇥�F (✓), see (5.1).

The set of minimizers of �F (✓) over ⇥ is

⇥min(F ) := {✓ 2 ⇥ : �F (✓) = �
inf

F }. (25.4)

Under Assumption A.0, ⇥min(F ) is non-empty. Note that ⇥min(F ) is a subset of ⇥MR
I (F ) and

equals ⇥MR
I (F ) when �inf

F > 0. For ⌘ > 0, define ⇥⌘
min

(F ) := {✓ 2 ⇥ : �F (✓)  �inf

F + ⌘/n1/2}.

The set ⇥⌘
min

(F ) is an ⌘/n1/2-expansion of the minimizer set ⇥min(F ). It depends on n, but this is

suppressed for notational simplicity. For ⌘ > 0, define ⇤⌘
n,�,Fn

as ⇤n,�,Fn is defined in (25.2), but

with ⇥⌘
min

(Fn) in place of ⇥.

The asymptotic distribution of An,� utilizes the following Assumptions C.4, C.5, C.12, and

C.13. These are high-level “convergence” assumptions that apply to a drifting sequence of distribu-

tions {Fn}n�1. They are verified below using subsequence arguments when establishing the correct

asymptotic size of the CI’s for �inf

F . Hence, they do not appear in the asymptotic size results stated

4



below.

Assumption C.4. sup✓2⇥ ||EFn em(W, ✓) � em(✓)|| ! 0 for some nonrandom bounded continuous

Rk-valued function em(·) on ⇥.

Assumption C.5. ⌫n(·) := (⌫mn (·)0, ⌫�n(·)0)0 ) G(·) := (Gm(·)0, G�(·)0)0 as n ! 1, where {G(✓) :

✓ 2 ⇥} is a mean zero R2k-valued Gaussian process with bounded continuous sample paths a.s.

and Gm(✓), G�(✓) 2 Rk.

Assumption C.12. ⇤n,�,Fn !H ⇤� for some non-empty set ⇤� 2 S(⇥⇥Rk
[±1]

).

Assumption C.13. ⇤⌘n
n,�,Fn

!H ⇤�min for some non-empty set ⇤�min 2 S(⇥ ⇥ Rk
[±1]

), where

{⌘n}n�1 is a sequence of positive constants for which ⌘n ! 1.

The elements (✓, e) of ⇤� and ⇤�min in Assumptions C.12 and C.13 have the following prop-

erties.

Lemma 25.1 Under {Fn}n�1, (a) maxjk enj(✓) � 0 8✓ 2 ⇥, 8n � 1, where enj(✓) := n1/2(�Fnj(✓)

� �inf

Fn
), (b) 8(✓, e) 2 ⇤�, maxjk ej � 0 provided Assumption C.12 holds, (c) 9e✓n 2 ⇥ with

maxjk enj(e✓n) = 0 8n � 1 provided Assumption A.0 holds, (d) 9(e✓, ee) 2 ⇤� with maxjk eej = 0

provided Assumptions A.0 and C.12 hold, and (e) 9(e✓, ee) 2 ⇤�min with maxjk eej = 0 provided

Assumptions A.0 and C.13 hold.

Comments. (i). Lemma 25.1 is used to show that the asymptotic distribution of An,� is in R

a.s.

(ii). Lemma 25.1(a) and (b) are important because they allow one to obtain a (finite) lower

bound on the asymptotic distribution of An,�.

(iii). Lemma 25.1(c)–(e) are important because they allow one to obtain a (finite) upper bound

on the asymptotic distribution of An,�.

The following quantities arise with the asymptotic distribution of An,�. Define

An,�(⇤n,�,Fn) := inf
(✓,e)2⇤n,�,Fn

max
jk

✓
�⌫mnj(✓) +

1

2
emj(✓)⌫

�
nj(✓) + ej

◆
and

A1,� := A1,�(⇤�) := inf
(✓,e)2⇤�

max
jk

✓
�Gm

j (✓) +
1

2
emj(✓)G

�
j (✓) + ej

◆
(25.5)

for ⇤� in Assumption C.12. Let c1,�(1� ↵) denote the 1� ↵ quantile of A1,� and c�1,�(1� ↵)

denote the 1� ↵ quantile of �A1,�. We show below that An,� = An,�(⇤n,�,Fn) + op(1) !d A1,�

under suitable sequences {Fn}n�1. Define

A1,�min := A1,�(⇤�min) (25.6)
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as in (25.5) with ⇤�min in place of ⇤�, for ⇤�min as in Assumption C.13.

25.2 Asymptotic Distribution of An,�

The asymptotic distribution of An,� is given in the following theorem.

Theorem 25.2 (a) Under {Fn}n�1 and Assumptions A.0, C.4, C.5, and C.12, An,� !d A1,�,

(b) under Assumptions A.0 and C.12, A1,� 2 R a.s., and

(c) under Assumptions A.0 and C.4, C.5, C.12, and C.13, A1,� = A1,�min a.s.

Comments. (i). Theorem 25.2(b) is important because it implies that a critical value for an

upper-bound or lower-bound CI based on the asymptotic distribution of An,� is finite.

(ii). Theorem 25.2(c) implies that the parameters (✓, e) 2 ⇤�\⇤�min do not contribute to the

infimum in A1,�. This is useful when constructing critical values.

(iii). The quantity G�
j (·) appears in A1,� because, under model misspecification, the asymp-

totic distribution of An,� depends on the randomness due to the estimation of the standard devi-

ation of the jth sample moment by b�nj(✓). Under correct model specification, it does not.

(iv). For any subsequence {qn}n�1 of {n}n�1, Theorem 25.2 and its proof hold with qn in place

of n throughout, including the assumptions.

(v). The proof of Theorem 25.2(a) is similar proof to the proof of Theorem 3.1 of BCS15

with S(m,⌦) = minjk mj in their proof. The statistic An,�(⇤n,�,Fn) depends on enj(✓) :=

n1/2(�Fnj(✓) � �inf

Fn
), ⌫mnj(✓), and ⌫�nj(✓), whereas the statistic in BCS15 depends on `nj(✓) :=

�n1/2�Fnj(✓) and ⌫
m
nj(✓).

26 Proofs of Lemma 25.1 and Theorem 25.2

Proof of Lemma 25.1. Because �inf

F := inf✓2⇥maxjk�Fj(✓), for all F and ✓ 2 ⇥,

max
jk

(�Fj(✓)��inf

F ) � 0, (26.1)

which establishes part (a).

Any (✓, e) 2 ⇤� is the limit of some sequence (✓n, en) 2 ⇤n,�,Fn because ⇤n,�,Fn !H ⇤� by

Assumption C.12. That is, en ! e and maxjk enj ! maxjk ej . This and (26.1) applied with

(✓, F ) = (✓n, Fn) give

0  max
jk

n1/2(�Fnj(✓n)��inf

Fn
) = max

jk
enj ! max

jk
ej , (26.2)
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which proves part (b) of the lemma.

Next, we prove part (c). The function �Fn(✓) � �inf

Fn
is lower semi-continuous on ⇥ (since

EF emj(W, ✓) is upper semi-continuous on ⇥ by Assumption A.0(ii)), ⇥ is compact by Assumption

A.0(i), and a lower semi-continuous function on a compact set achieves its infimum. Hence, there

exists e✓n 2 ⇥ such that �F (e✓n) = �inf

F 8n � 1, which establishes part (c).

For part (d), let (e✓n, een) 2 ⇤n,�,Fn be such that �F (e✓n) = �inf

F 8n � 1. Such (e✓n, een) exist

by part (c). There exists a subsequence {qn}n�1 of {n}n�1 and a (e✓, ee) 2 ⇥ ⇥ Rk
[±1]

such that

d((e✓qn , eeqn), (e✓, ee)) ! 0 because (⇥⇥Rk
[±1]

, d) is a compact metric space under Assumption A.0(i).

We have (e✓, ee) 2 ⇤� by the following argument:

0  inf
(✓,e)2⇤�

d((✓, e), (e✓, ee))  inf
(✓,e)2⇤�

d((✓, e), (e✓qn , eeqn)) + d((e✓qn , eeqn), (e✓, ee)) ! 0, (26.3)

where the second inequality holds by the triangle inequality and the convergence of the first sum-

mand holds using Assumption C.12 (i.e., ⇤n,�,Fn !H ⇤�). Thus, inf(✓,e)2⇤�
d((✓, e), (e✓, ee)) = 0.

This implies that (e✓, ee) 2 ⇤�, because ⇤� is a compact subset of (⇥ ⇥ Rk
[±1]

, d) by Assumption

C.12, d((✓, e), (e✓, ee)) is a continuous function of (✓, e), and a continuous function on a compact set

attains its infimum.

By the definition of e✓n, �Fn(e✓n) = �inf

Fn
8n � 1. Hence, for all n � 1,

max
jk

eenj = max
jk

n1/2(�Fnj(e✓n)��inf

Fn
) = n1/2(�Fn(e✓n)��inf

Fn
) = 0, (26.4)

where the first equality holds by the definition of ⇤n,�,Fn in (25.2) and the second equality holds

by the definition of �F (✓) in (25.3). We obtain

max
jk

eej = lim
n!1

max
jk

eenj = 0, (26.5)

which proves part (d) of the lemma since (e✓, ee) 2 ⇤�.

The proof of part (e) extends that of part (d). For (e✓n, een) defined as above, we have e✓n 2

⇥⌘n
min

(Fn) because �F (e✓n) = �inf

F , and so, (e✓n, een) 2 ⇤⌘n
n,�,Fn

8n � 1 using the definition of ⇤⌘
n,�,F

following (25.4). Next, we have (e✓, ee) 2 ⇤�min by the same argument as used to show (e✓, ee) 2 ⇤� in

(26.3), but with ⇤�min in place of ⇤�, with the convergence holding using Assumption C.13 (i.e.,

⇤⌘n
n,�,Fn

!H ⇤�min), rather than Assumption C.12, and using the fact that ⇤�min is a compact

subset of (⇥⇥ Rk
[±1]

, d) by Assumption C.13. Finally, maxjk eej = 0 by (26.5), which establishes

part (e) because (e✓, ee) 2 ⇤�min in the present case. ⇤

The proof of Theorem 25.2(a) uses the following Lemma.
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Lemma 26.1 Suppose Assumptions C.4 and C.5 hold. Under {Fn}n�1,

An,� = An,�(⇤n,�,Fn) + op(1).

Proof of Lemma 26.1. We have

n1/2
⇣
b�nj(✓)��inf

F

⌘
= n1/2

✓
�mnj(✓)

b�nj(✓)
��inf

F

◆

=
�Fj(✓)

b�nj(✓)
bK1nj(✓, F ) +

�Fj(✓)

b�nj(✓)
bK2nj(✓, F ) +Kenj(✓, F ), where

bK1nj(✓, F ) := �n1/2

✓
mnj(✓)

�Fj(✓)
� EFmj(W, ✓)

�Fj(✓)

◆
= �⌫mnj(✓),

bK2nj(✓, F ) := n1/2

✓
b�nj(✓)
�Fj(✓)

� 1

◆
EFmj(W, ✓)

�Fj(✓)
, and

Kenj(✓, F ) := n1/2

✓
�EFmj(W, ✓)

�Fj(✓)
��inf

F

◆
. (26.6)

For given (✓, e) 2 ⇤n,�,F , Kenj(✓, F ) = ej for j  k.

For a given distribution F, define

⌫�†n (✓) := n1/2

✓✓
b�2n1(✓)
�2F1

(✓)
� 1

◆
, ...,

✓
b�2nk(✓)
�2Fk(✓)

� 1

◆◆0
. (26.7)

Note that ⌫�†n (✓) di↵ers from ⌫�n(✓) (defined in (14.2) in online Appendix B) because the former

depends on b�2nj(✓), which is centered at the sample quantity mnj(✓), see (4.2), whereas the lat-

ter depends on b�2Fnj(✓), which is centered at the population quantity EFmj(W, ✓). The following

calculations show that ⌫�†nj (✓) = ⌫�nj(✓)� n�1/2(⌫mnj(✓))
2:

⌫�†nj (✓) := n1/2

 
b�2nj(✓)
�2Fnj

(✓)
� 1

!
= n�1/2

nX

i=1

⇥
(emj(Wi, ✓)� emnj(✓))

2 � 1
⇤

= n�1/2
nX

i=1

⇥
(emj(Wi, ✓)� EFn emj(W, ✓))2 � 1

⇤
� n1/2(emnj(✓)� EFn emj(W, ✓))2

= ⌫�nj(✓)� n�1/2(⌫mnj(✓))
2, and

⌫�†nj (✓) = ⌫�nj(✓) + o⇥p (1) (26.8)

for j  k, where the last equality holds by Assumption C.5.
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By (26.8), Assumption C.5, and the continuous mapping theorem, for all j  k,

sup
✓2⇥

�����
b�2nj(✓)
�2Fnj

(✓)
� 1

����� =: sup
✓2⇥

n�1/2
���⌫�†nj (✓)

��� = sup
✓2⇥

n�1/2
��⌫�nj(✓)

��+ o⇥p (n
�1/2) !p 0, and so,

sup
✓2⇥

����
�Fnj(✓)

b�nj(✓)
� 1

���� !p 0. (26.9)

We have

n1/2

✓
b�nj(✓)
�Fnj(✓)

� 1

◆
= n1/2

0

@
 
1 +

 
b�2nj(✓)
�2Fnj

(✓)
� 1

!!1/2

� 1

1

A

=
1

2
(1 + o⇥p (1))

�1/2n1/2

 
b�2nj(✓)
�2Fnj

(✓)
� 1

!

=
1

2
⌫�nj(✓) + o⇥p (1), (26.10)

where the second equality holds by the following mean-value expansion, (1 + x)1/2 = 1+ (1/2)(1+

ex)�1/2x, where |ex|  |x|, with x := b�2nj(✓)/�2Fnj(✓) � 1 and sup✓2⇥ |x|  sup✓2⇥ |b�2nj(✓)/�2Fnj(✓) �

1| = op(1) by (26.9), and the last equality uses (26.8) and Assumption C.5.

By Assumption C.4, EFn emj(W, ✓) = emj(✓) + o⇥(1), where o⇥(1) denotes a term that is o(1)

uniformly over ✓ 2 ⇥. Combining this, (26.9), and (26.10) with the definition of bK2nj(✓, Fn) in

(26.6) gives
�Fnj(✓)

b�nj(✓)
bK2nj(✓, Fn) =

1

2
emj(✓) · ⌫�nj(✓) + o⇥p (1) for j  k. (26.11)

In addition, (26.9), Assumption C.5, and the definition of bK1nj(✓, Fn) in (26.6) give

�Fnj(✓)

b�nj(✓)
bK1nj(✓, Fn) = �⌫mnj(✓) + o⇥p (1) for j  k. (26.12)

Thus, we have

An,� = inf
✓2⇥

max
jk

✓
�Fnj(✓)

b�nj(✓)
bK1nj(✓, Fn) +

�Fnj(✓)

b�nj(✓)
bK2nj(✓, Fn) +Kenj(✓, Fn)

◆

= inf
(✓,e)2⇤n,�,Fn

max
jk

✓
�⌫mnj(✓) +

1

2
emj(✓) · ⌫�nj(✓) + ej

◆
+ op(1)

= An,�(⇤n,�,Fn) + op(1), (26.13)

where the first equality holds by (26.6), the second equality holds by (26.11), (26.12), and the

definition of ⇤n,�,Fn in (25.2), and the last equality holds by the definition of An,�(⇤n,�,Fn) in

(25.5). ⇤
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Proof of Theorem 25.2. First, we prove part (a). By Lemma 26.1, it su�ces to show

An,�(⇤n,�,Fn) !d A1,�. (26.14)

Let D be the space of functions from ⇥ to R2k. Let D0 be the subset of uniformly continuous

functions in D. For ⌫(·) 2 D, define

gn(⌫(·)) := inf
(✓,e)2⇤n,�,Fn

max
jk

[⌧j(⌫(·), ✓) + ej ] ,

g(⌫(·)) := inf
(✓,e)2⇤�

max
jk

[⌧j(⌫(·), ✓) + ej ] , where

⌧j(⌫(·), ✓) := �⌫mj (✓) +
1

2
emj(✓)⌫

�
j (✓), (26.15)

⌫(✓) = (⌫m(✓), ⌫�(✓))0, and ⌫mj (✓) and ⌫�j (✓) denote the jth elements of ⌫m(✓) and ⌫�(✓), respec-

tively. Note that

An,�(⇤n,�,Fn) = gn(⌫n(·)) and A1,� := A1,�(⇤�) = g(G(·)). (26.16)

We want to show gn(⌫n(·)) !d g(G(·)). By Assumption C.5, ⌫n(·) ) G(·) for ⌫n(·) 2 D a.s. and

G(·) 2 D0 a.s. We use the extended CMT, see van der Vaart and Wellner (1996, Theorem 1.11.1),

to establish the desired result, as in the proof of Theorem 3.1 in BCS15. The extended CMT

requires showing: for any deterministic sequence {⌫n(·) 2 D}n�1 and deterministic ⌫(·) 2 D0 such

that sup✓2⇥ ||⌫n(✓)� ⌫(✓)|| ! 0, we have gn(⌫n(·)) ! g(⌫(·)). (For notational simplicity, we abuse

notation here and consider a deterministic ⌫n(·) that di↵ers from the random ⌫n(·) in Assumption

C.5.) Once we have shown this, the proof of part (a) is complete.

Let {⌫n(·) 2 D}n�1 and ⌫(·) 2 D0 be deterministic and satisfy sup✓2⇥ ||⌫n(✓)� ⌫(✓)|| ! 0. We

show

(i) lim inf
n!1

gn(⌫n(·)) � g(⌫(·)) and (ii) lim sup
n!1

gn(⌫n(·))  g(⌫(·)). (26.17)

First, we establish (i) in (26.17). There exists a subsequence {an}n�1 of {n}n�1 and there exists

a sequence {(✓an , ean) 2 ⇤an,�,Fan
}n�1 such that

lim sup
n!1

gn(⌫n(·)) = lim
n!1

gan(⌫an(·)) and

lim
n!1

gan(⌫an(·)) = lim
n!1

max
jk

⇥
⌧j(⌫an(·), ✓an) + eanj

⇤
, (26.18)

where eanj denotes the jth element of ean . Also, there exists a subsequence {qn}n�1 of {an}n�1 and
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(✓, e) 2 ⇥⇥Rk
[±1]

such that

d
�
(✓qn , eqn), (✓, e)

�
! 0, (26.19)

where d is defined in the paragraph before (25.1), by compactness of the metric space (⇥⇥Rk
[±1]

, d)

under Assumption A.0(i). We have (✓, e) 2 ⇤� by the same argument as used to show (e✓, ee) 2 ⇤�

in (26.3) (but without the requirement that �F (e✓n) = �inf

F 8n � 1) using (26.19) and Assumption

C.12.

For all j  k,

lim
n!1

⌧j(⌫qn(·), ✓qn) = �⌫mj (✓) +
1

2
emj(✓)⌫

�
j (✓) := ⌧j(⌫(·), ✓) 2 R, (26.20)

the first equality holds by ⌫qn(✓) ! ⌫(✓) = (⌫m(✓)0, ⌫�(✓)0)0 uniformly over ✓ 2 ⇥ (by assumption)

and (26.19), the last equality holds by the definition of ⌧j(⌫(·), ✓) in (26.15), and “2R” holds because

⌫mj (✓) and ⌫�j (✓) are finite since ⌫(·) is assumed to be in D and emj(✓) is finite by Assumption C.4.

Now, we have

lim sup
n!1

gn(⌫n(·)) = lim
n!1

max
jk

⇥
⌧j(⌫qn(·), ✓qn) + eqnj

⇤

= max
jk

⇥
⌧j(⌫(·), ✓) + ej

⇤

� inf
(✓,e)2⇤�

max
jk

[⌧j(⌫(·), ✓) + ej ]

:= g(⌫(·)), (26.21)

where the first equality holds by (26.18) and the fact that {qn}n�1 is a subsequence of {an}n�1,

the second equality holds by (26.20) (using the notational convention that ⌫ + c = c when ⌫ 2 R

and c = ±1 if ej = ±1 for any j  k), the inequality holds because (✓, e) 2 ⇤� by the paragraph

containing (26.19), and the last equality holds by the definition of g(⌫(·)) in (26.15). This establishes

result (i) in (26.17).

Next, we establish result (ii) in (26.17). There exists (✓†, e†) 2 ⇤� such that

g(⌫(·)) = max
jk

h
⌧j(⌫(·), ✓†) + e†j

i
(26.22)

because ⇤� is compact under the metric d, defined in the paragraph before (25.1) with a⇤ = d✓ + k

(since it is assumed to be an element of S(⇥⇥Rk
[±1]

)) and ⌧j(⌫(·), ✓) + ej is a continuous function

of (✓, e) under d that takes values in the extended real line. By Assumption C.12, ⇤n,�,Fn !H ⇤�.
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Hence, there is a sequence {(✓†n, e†n) 2 ⇤n,�,Fn}n�1 such that d((✓†n, e
†
n), (✓†, e†)) ! 0. We obtain

lim inf
n!1

gn(⌫n(·)) := lim inf
n!1

inf
(✓,e)2⇤n,�,Fn

max
jk

[⌧j(⌫n(·), ✓) + ej ]

 lim inf
n!1

max
jk

h
⌧j(⌫n(·), ✓†n) + e†nj

i

= max
jk

h
⌧j(⌫(·), ✓†) + e†j

i

= g(⌫(·)), (26.23)

where the inequality holds because (✓†n, e
†
n) 2 ⇤n,�,Fn 8n � 1, the second equality holds using

d((✓†n, e
†
n), (✓†, e†)) ! 0 and (26.20) with (⌫n(·), ✓†n) and (⌫(·), ✓†) in place of (⌫qn(·), ✓qn , ) and

(⌫(·), ✓), respectively, and the last equality holds by (26.22). This establishes result (ii) in (26.17)

and completes the proof of part (a).

Now we prove part (b). We have

A1,� := inf
(✓,e)2⇤�

max
jk

✓
�Gm

j (✓) +
1

2
emj(✓)G

�
j (✓) + ej

◆
> �1 a.s. (26.24)

because (I) maxjk ej � 0 8(✓, e) 2 ⇤� by Lemma 25.1(b), (II) sup✓2⇥ |Gm
j (✓)| < 1 a.s. by

Assumption C.5, and (III) sup✓2⇥ |emj(✓)G�
j (✓)| < 1 a.s. because emj(·) is bounded on ⇥ by

Assumption C.4 and |G�
j (·)| is bounded on ⇥ a.s. by Assumption C.5.

To obtain the other half of part (b), i.e., A1,� < 1 a.s., we use Lemma 25.1(d). We have

A1,� := inf
(✓,e)2⇤�

max
jk

✓
�Gm

j (✓) +
1

2
emj(✓)G

�
j (✓) + ej

◆

 max
jk

✓
�Gm

j (e✓) + 1

2
emj(e✓)G�

j (e✓) + eej
◆

< 1 a.s., (26.25)

where (e✓, ee) 2 ⇤� is as in Lemma 25.1(d), the first equality holds by the definition of A1,� in

(25.5), the first inequality holds because (e✓, ee) 2 ⇤� by Lemma 25.1(d), and last inequality holds

because (I) maxjk eej = 0 by Lemma 25.1(d), (II) sup✓2⇥ |Gm
j (✓)| < 1 a.s. by (II) following

(26.24), and (III) sup✓2⇥ |emj(✓)G�
j (✓)| < 1 a.s. by (III) following (26.24). This completes the

proof of part (b).

Now, we establish part (c). If ⇤� = ⇤�min, then part (c) holds immediately. So, we suppose

that ⇤�\⇤�min is not empty. We show that for any (✓⇤, e⇤) 2 ⇤�\⇤�min,

max
jk

⇥
⌧j(G(·), ✓⇤) + e⇤j

⇤
= 1 a.s., (26.26)

where ⌧j(⌫(·), ✓) is defined in (26.15). Since A1,� 2 R a.s. by part (b), and A1,� := inf(✓,e)2⇤�
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maxjk [⌧j(G(·), ✓) + ej ] by (25.5), (26.26) implies that A1,� = A1,�min a.s., which establishes

part (c).

For part (c), it remains to show (26.26). By Assumption C.13, ⇤�min is compact. For any

(✓⇤, e⇤) 2 ⇤�\⇤�min, there is a neighborhood of (✓⇤, e⇤) that lies in ⇤�\⇤�min and there exists

a sequence {(✓⇤n, e⇤n) 2 ⇤n,�,Fn}n�1 such that d((✓⇤n, e
⇤
n), (✓

⇤, e⇤)) ! 0 by Assumption C.12. In

consequence, for n large, (✓⇤n, e
⇤
n) /2 ⇤⌘n

n,�,Fn
. In turn, this implies that ✓⇤n /2 ⇥⌘n

min
(Fn) for n large

using the definition of ⇤⌘n
n,�,Fn

following (25.4).

Now, ✓⇤n /2 ⇥⌘n
min

(Fn) for all n large implies

�Fn(✓
⇤
n) > �

inf

Fn
+ ⌘n/n

1/2 for all n large,

n1/2(�Fn(✓
⇤
n)��inf

Fn
) > ⌘n ! 1, and

max
jk

e⇤j = limmax
jk

e⇤n,j := limmax
jk

n1/2(�Fnj(✓
⇤
n)��inf

Fn
) = 1, (26.27)

where (i) the first line holds by the definition of ⇥⌘
min

(F ) following (25.4), (ii) the inequality on the

second line follows from the first line and ⌘n ! 1 by Assumption C.13, and (iii) the first equality in

the third line holds by the convergence result for {(✓⇤n, e⇤n)}n�1 in the previous paragraph, the second

equality in the third line holds by (✓⇤n, e
⇤
n) 2 ⇤n,�,Fn and the definition of ⇤n,�,F in (25.2), and the

third equality in the third line follows from the second line because �Fn(✓
⇤
n) = maxjk�Fnj(✓

⇤
n).

The result maxjk e⇤j = 1 in (26.27) implies that (26.26) holds because |⌧j(G(·), ✓⇤)| < 1 a.s.

(using Assumptions C.4 and C.5, the definition of ⌧j(⌫(·), ✓) in (26.15), and explanations (II) and

(III) following (26.24)). This completes the proof of part (c). ⇤

27 Proof of Theorem 5.1

27.1 Notation and Assumptions

As noted in Theorem 5.1, as is standard in the literature, the asymptotics for the bootstrap

are given for the case where the number of bootstrap repetitions B = 1. (If one considered finite

B, then all of the asymptotic results would hold provided B ! 1 as n ! 1.) With B = 1,

the bootstrap critical values bcn,�U (1 � ↵) and bcn,�L(1 � ↵), defined following (5.14) and (5.15),

respectively, are the 1�↵ conditional quantiles of �A⇤
n,�U,b and A⇤

n,�L,b given the sample {Wi}in

plus ◆, rather than the 1�↵ sample quantiles of {�A⇤
n,�U,b}bB and {A⇤

n,�L,b}bB, respectively, plus

◆. For notational simplicity, we replace the bth bootstrap sample {W ⇤
ib}in by a generic bootstrap

sample {W ⇤
i }in (which is an i.i.d. bootstrap sample drawn with replacement from the original

sample {Wi}in) and we drop the subscripts b from the definitions of A⇤
n,�U,b in (5.14), A⇤

n,�L,b in
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(5.15), and other bootstrap quantities. Specifically, we define b⌫⇤nj(✓), m⇤
nj(✓), b�⇤2nj(✓), and A⇤

n,�U

as b⌫⇤njb(✓), m⇤
njb(✓), b�⇤2njb(✓), and A⇤

n,�U,b are defined in (4.17) and (5.14), but with the generic

bootstrap sample {W ⇤
i }in in place of the bth bootstrap sample {W ⇤

ib}in and with b deleted

throughout. Similarly, we define A⇤
n,�L as A⇤

n,�L,b is defined in (5.15), but with b⌫⇤nj(✓) in place of

b⌫⇤njb(✓).

The B = 1 definitions of bsdnj(✓) and bsdn(✓) are as follows. For Z ⇠ N(02k, I2k) and j  k,

define

bsdnj(✓) := max
n
V 1/2
nj (✓), ◆

o
and bsdn(✓) := max

jk
bsdnj(✓), where Vnj(✓) := V ar1/2Z (Qnj(✓)),

Qnj(✓) := bGm�
nj (✓)�max

j1k
bGm�
nj1(✓),

bGm�
nj (✓) := (c0j ,�(1/2)bmnj(✓)c

0
j)b⌦

1/2
n+ (✓)Z, (27.1)

V arZ(Qnj(✓)) denotes the variance of Qnj(✓) with respect to the randomness in Z conditional on

b⌦n+(✓) and bmnj(✓), and (as above) cj denote the jth elementary k-vector. In addition, benj(✓)

and bJne(✓) are defined as benj(✓) and bJneB(✓) are defined in (5.8) and (5.13), respectively, but with

bsdnj(✓) in place of bsdnjB(✓).

The bootstrap sample {W ⇤
i }in depends on {Wi}in and on some other independent random

variables {⇣i}in that are used to construct the bootstrap sample {W ⇤
i }in. To establish the asymp-

totic properties of the bootstrap critical values for a given sequence of distributions {Fn}n�1, it is

convenient to have a single probability space (⌦,F , P5) on which all of the random vectors {Wi}in

for n � 1 and the bootstrap random variables (or vectors) {⇣i}in for all n � 1 are defined. Since Fn

changes with n, this requires that we consider triangular arrays of random vectors, not sequences.

Let {Wni}in,n�1 := {Wni : i  n, n � 1} be a triangular array of random vectors on (⌦,F , P5)

such that, for each n � 1, {Wni}in has the same distribution as {Wi}in ⇠ Fn. Analogously, let

{⇣ni}in,n�1 be a triangular array of bootstrap random variables (or vectors) on (⌦,F , P5) such

that for each n � 1, {⇣ni}in has the same distribution as {⇣i}in and {⇣ni}in,n�1 is independent

of {Wni}in,n�1.

For notational simplicity, but with some abuse of notation, we let all of the statistics defined

above, including b�inf
n , An,�, A⇤

n,�U , A
⇤
n,�L, bcn,�U (1 � ↵), and bcn,�L(1 � ↵), which are defined as

functions of {Wi}in ⇠ Fn and {⇣i}in, also denote the corresponding statistics defined when using

the triangular arrays {Wni}in,n�1 and {⇣ni}in,n�1. For events that only depend on n random

vectors for a single n, such as A⇤
n,�U 2 Bn for some fixed set Bn ⇢ R, we have P5(A⇤

n,�U 2

Bn) = PFn(A
⇤
n,�U 2 Bn). But, for events that depend on statistics for multiple values of n, such

as {A⇤
n,�U}n�1, we use the probability space (⌦,F , P5). In particular, when we condition on the

entire triangular array {Wni}in,n�1, we need (⌦,F , P5).
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Let {⌫⇤n(✓) 2 R2k : ✓ 2 ⇥} be a bootstrap version of the stochastic process (⌫mn (·)0, ⌫�†n (✓)0)0

defined in (14.2) in online Appendix B and (26.7). It is defined as follows:

⌫⇤n(✓) := (⌫m⇤
n (✓)0, ⌫�⇤n (✓)0)0, where

⌫m⇤
nj (✓) := n1/2

�
em⇤
nj(✓)� bmnj(✓)

�
, em⇤

nj(✓) :=
m⇤

nj(✓)

b�nj(✓)
, m⇤

nj(✓) := n�1

nX

i=1

mj(W
⇤
i , ✓),

⌫�⇤nj (✓) := n1/2

 
b�⇤2nj(✓)
b�2nj(✓)

� 1

!
, b�⇤2nj(✓) := n�1

nX

i=1

(mj(W
⇤
i , ✓)�m⇤

nj(✓))
2 8j  k,

⌫m⇤
n (✓) = (⌫m⇤

n1 (✓), ..., ⌫
m⇤
nk (✓))

0, and ⌫�⇤n (✓) = (⌫�⇤n1(✓), ..., ⌫
�⇤
nk(✓))

0. (27.2)

Let {⌫⇤n(·)|{Wni}in,n�1} ) G(·) denote that the conditional distribution of ⌫⇤n(·) given

{Wni}in,n�1 converges weakly to G(·).

Let X �ST Y denote that X is stochastically greater than or equal to Y. That is, P (Y > x) 

P (X > x) for all x 2 R.

For ✓ 2 ⇥, define

jne(✓) := argmax
jk

enj(✓), where enj(✓) := n1/2(�Fn,j(✓)��inf

Fn
).51 (27.3)

By Lemma 25.1(a),

enjne(✓)(✓) � 0 8✓ 2 ⇥. (27.4)

Define

⇤⇤⌘n
n,�,Fn

:=
n
(✓, e, e⇤, j⇤) 2 ⇥⌘n

min
(Fn)⇥R2k ⇥ {1, ..., k} : ej = n1/2(�Fnj(✓)��inf

Fn
),

e⇤j = (◆n)
�1ej 8j  k, j⇤ := jne(✓)

 
, (27.5)

where {⌘n}n�1 is as in Assumption C.13 and {n}n�1 is as in (5.8), (5.12), and (5.13). Let S(⇥⇥

R2k
[±1]

⇥{1, ..., k}) denote the space of compact subsets of the metric space (⇥⇥R2k
[±1]

⇥{1, ..., k}, d),

where d is defined in the paragraph before (25.1) with a⇤ = d✓ + 2k + 1.

We employ the following bootstrap convergence assumptions, which apply to a drifting sequence

of distributions {Fn}n�1. Subsequence versions of them are verified below in the proof of Theorem

5.1 in Section 27.4. The expanded minimizer set ⇥⌘n
min

(Fn) is defined following (25.4), the bootstrap

stochastic process ⌫⇤n(·) (with subscript b deleted) is defined in (4.17), and the estimator b⇥min,n of

⇥⌘n
min

(Fn) is defined in (5.7).

Assumption BC.3. {⌫⇤n(·)|{Wni}in,n�1} ) G(·) a.s.[P5], where G(·) is as in Assumption C.5.

51If the argmax is not unique, jne(✓) is defined to be the smallest argmax .
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Assumption BC.4. ⇤⇤⌘n
n,�,Fn

!H ⇤⇤
�min

for some non-empty set ⇤⇤
�min

2 S(⇥⇥R2k
[±1]

⇥{1, ..., k})

for some sequence of constants {⌘n}n�1 that satisfies ⌘n ! 1 and ⌘n/⌧n ! 0 for the constants

{⌧n}n�1 that appear in (5.7) and satisfy Assumption A.6(ii).

Assumption BC.5. b⇥min,n ◆ ⇥⌘n
min

(Fn) wp!1 for constants {⌘n}n�1 as in Assumptions BC.4

and C.13.

Define

⇠e1nj(✓) := (◆n)
�1n1/2

⇣
b�nj(✓)� b�inf

n

⌘
8j  k, (27.6)

where n is as in the definition of ⇠enj(✓) in (5.12) and ◆ is as in the definition of bsdnj(✓) in (27.1).

Note that ⇠e
1nj(✓) di↵ers from ⇠enj(✓) because it has ◆ in place of bsdnj(✓), where ◆  bsdnj(✓) by the

definition of bsdnj(✓).

The GMS function ' : R[+1] ! R[+1] defined in (4.19) is upper bounded by the function

'† : R[+1] ! R[+1] defined by

'†(⇠) := 11(⇠ � 1) + (⇠/(1� ⇠))1(0  ⇠ < 1). (27.7)

The function '† satisfies: (i) '†(⇠) � '(⇠) 8⇠ 2 R[+1], (ii) '
† is nondecreasing and continuous

under the metric d, and (iii) '†(⇠) = 0 8⇠  0 and '†(1) = 1, where the metric d is defined in

Section 15.1 with a⇤ = 1.

Define an upper-bound (wp!1) random variable, A⇤
Un,�U , on the EGMS bootstrap statistic

A⇤
n,�U to be

A⇤
Un,�U := inf

✓2⇥⌘n
min

(Fn)

max
jk

⇣
�b⌫⇤nj(✓) + 1(j 6= jne(✓))enj(✓) + 1(j = jne(✓))'

†(⇠e1nj(✓))
⌘
. (27.8)

Let bcUn,�U (1 � ↵) denote the 1 � ↵ conditional quantile of �A⇤
Un,�U given {Wni}in,n�1 plus ◆.

The statistic bcUn,�U (1� ↵) is random and depends on the conditioning value of {Wni}in,n�1.

By Lemma 27.1(a) below, the asymptotic distribution of the upper-bound bootstrap random

variable A⇤
Un,�U conditional on {Wni}in,n�1 is the following distribution a.s.[P5]:

A⇤
U1,�U := inf

(✓,e,e⇤,j⇤)2⇤⇤
�min

max
jk

⇣
�Gm�

j (✓) + 1(j 6= j⇤)ej + 1(j = j⇤)'†(e⇤j⇤)
⌘
, where

Gm�
j (✓) := Gm

j (✓)� 1

2
emj(✓)G

�
j (✓), (27.9)

for ⇤⇤
�min

as in Assumption BC.4. Let cU1,�U (1�↵) denote the 1�↵ conditional (or unconditional)

quantile of A⇤
U1,�U without ◆ added on. It is nonrandom and does not depend on {Wni}in,n�1

by (27.9).
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Next, we consider definitions and assumptions concerning the lower bound CI. The population

counterpart of bsdn(✓) is sdF (✓):

sdF (✓) := max
jk

sdFj(✓), where

sdFj(✓) := max
n
V ar1/2Z (DFj(✓)), ◆

o
,

DFj(✓) := Gm�
Fj (✓)�max

j1k
Gm�

Fj1(✓),

Gm�
Fj (✓) := (c0j ,�(1/2)emFj(✓)c

0
j)⌦

1/2
F (✓, ✓)Z, and Z ⇠ N(02k, I2k). (27.10)

Define

⇤⇤⌘Ln
n,Fn,L

:=
n
(✓, e⇤) 2 ⇥⌘Ln

min
(Fn)⇥Rk : e⇤j = (◆n)

�1n1/2(�Fnj(✓)��inf

Fn
)
o
. (27.11)

Let S(⇥ ⇥ Rk
[±1]

) denote the space of compact subsets of the metric space (⇥ ⇥ Rk
[±1]

, d), where

d is defined in the paragraph before (25.1) with a⇤ = d✓ + k.

We employ the following bootstrap convergence assumptions for the lower-bound CI’s. Subse-

quence versions of them are verified below.

Assumption BC.6. ⇤⇤⌘Ln
n,Fn,L

!H ⇤⇤
L for some non-empty set ⇤⇤

L 2 S(⇥⇥Rk
[±1]

) for some sequence

of constants {⌘Ln}n�1 that satisfies ⌘Ln ! 1, ⌘Ln/n1/2 ! 0, and ⌘Ln/
�
n ! 0 for some � 2 (0, 1)

for the constants {n}n�1 that are employed in the definition of A⇤
n,�L and satisfy Assumption A.7.

Assumption BC.7. b⇥min,L,n ✓ ⇥⌘Ln
min

(Fn) wp!1 for constants {⌘Ln}n�1 as in Assumption BC.6.

For example, in Assumption BC.6, one can take ⌘Ln = 1/2n .

Let !u denote uniform convergence over ⇥2.

We assume the covariance kernel converges uniformly.

Assumption C.11. ⌦Fn(·, ·) !u ⌦1(·, ·) for some continuous R2k⇥2k-valued function ⌦1(·, ·) on

⇥2.

Define lower-bound (wp!1) random variables, A⇤
Ln,�L, on the bootstrap statistics A⇤

n,�L to be

A⇤
Ln,�L := inf

✓2⇥⌘Ln
min

(Fn)

max
jk

⇣
�b⌫⇤nj(✓)� '†(�⇠e1nj(✓))

⌘
, (27.12)

where {⌘Ln}in are as in Assumption BC.6 and '† is defined in (27.7). Note that the lower-bound

statistic has ◆ in place of bsdnj(✓), see (27.6), where ◆  bsdnj(✓), and ⇥⌘Ln
min

(Fn) and '† in place of

b⇥min,n and ', respectively, which appear in A⇤
n,�L. Let bcLn,�L(1� ↵) denote the 1� ↵ conditional

quantile of A⇤
Ln,�L given {Wni}in,n�1 plus ◆.
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By Lemma 27.1(b) and (c) below, the asymptotic distribution of the A⇤
Ln,�L bootstrap random

variables, conditional on {Wni}in,n�1, is the following distribution a.s.[P5]:

A⇤
L1,�L := inf

(✓,e⇤)2⇤⇤
L

max
jk

⇣
�Gm�

j (✓)� '†(�e⇤j )
⌘

(27.13)

for ⇤⇤
L as in Assumption BC.6. Let cL1,�L(1 � ↵) denote the 1 � ↵ quantile of A⇤

L1,�L plus ◆,

which is nonrandom.

27.2 Lemmas 27.1–27.3, Theorem 27.4, and Lemma 27.5

The proof of Theorem 5.1 uses Theorem 27.4 below. The following lemmas are used in the

proof of Theorem 27.4.

Lemma 27.1 For a sequence {Fn}n�1 that satisfies Assumptions A.0, A.6, BC.3, BC.4, C.4, C.5,

and C.12 for a subsequence {pn}n�1 in place of {n}n�1, there exists a subsequence {an}n�1 of

{pn}n�1 for which (a) {A⇤
Uan,�U |{Wni}in,n�1} !d A⇤

U1,�U a.s.[P5] and (b) {A⇤
Lan,�L

|{Wni}in,n�1} !d A⇤
L1,�L a.s.[P5], provided Assumptions A.7(i) and BC.6 hold in place of As-

sumptions A.6 and BC.4.

Comment. Lemma 27.1 is somewhat analogous to Theorem C.1 of BCS15.

Lemma 27.2 For a sequence {Fn}n�1 that satisfies Assumptions A.0, A.6, BC.4, and BC.5 for a

subsequence {pn}n�1 in place of {n}n�1, (a) P5(A⇤
Upn,�U � A⇤

pn,�U |{Wni}in,n�1) = 1 wp!1 under

P5 and (b) P5(A⇤
Lpn,�L  A⇤

pn,�L|{Wni}in,n�1) = 1 wp!1 under P5, provided Assumptions

A.7(i), BC.6, and BC.7 hold in place of Assumptions A.6, BC.4, and BC.5.

Lemma 27.3 For a sequence {Fn}n�1 that satisfies Assumptions A.6, BC.3, BC.4, C.4, C.5, C.12,

and C.13 for a subsequence {pn}n�1 in place of {n}n�1, we have (a) A⇤
U1,�U  A1,�min for all

sample realizations and (b) A⇤
L1,�L � A1,� for all sample realizations, provided Assumptions A.7,

A.8, and BC.6 hold in place of Assumptions A.6, BC.4, and C.13.

Lemmas 27.1–27.3 are used to prove the following theorem, which employs some high-level

assumptions that are verified in the proof of Theorem 5.1 below.

Theorem 27.4 For ↵ 2 (0, 1) and for a sequence {Fn}n�1 that satisfies Assumptions A.0, A.6,

BC.3–BC.5, C.4, C.5, C.12, and C.13 for a subsequence {pn}n�1 in place of {n}n�1, there exists a

subsequence {an}n�1 of {pn}n�1 for which (a) the nominal level 1�↵ upper-bound CI CIan,�U (↵)

for �inf

Fan
satisfies

lim inf
n!1

PFan
(�inf

Fan
2 CIan,�U (↵)) � 1� ↵ and
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(b) the nominal level 1� ↵ lower-bound CI CIan,�L(↵) for �inf

Fan
satisfies

lim inf
n!1

PFan
(�inf

Fan
2 CIan,�L(↵)) � 1� ↵,

provided Assumptions A.7, A.8, BC.6, BC.7, and C.11 hold in place of Assumptions A.6, BC.4,

and BC.5.

The proof of Theorem 5.1 also uses the following lemma, which concerns b⇥min,n and b⇥min,L,n,

which are defined in (5.7) and just below (5.15), respectively.

Lemma 27.5 For a sequence {Fn}n�1 that satisfies Assumptions A.0, C.4, C.5, and C.12, we

have (a) for any sequences of positive constants {⌘n}n�1 and {⌧n}n�1 that satisfy ⌧n ! 1 and

⌘n/⌧n ! 0, PFn(b⇥min,n ◆ ⇥⌘n
min

(Fn)) ! 1 and (b) for any sequences of positive constants {⌘Ln}n�1

that satisfy ⌘Ln ! 1, PFn(b⇥min,L,n ✓ ⇥⌘Ln
min

(Fn)) ! 1.

27.3 Proof of Theorem 27.4

Proof of Theorem 27.4. First, we prove part (a). For notational simplicity, let bcn,�U := bcn,�U (1�

↵) (defined just after (5.14)), bcUn,�U := bcUn,�U (1 � ↵) (defined following (27.8)), cU1,�U :=

cU1,�U (1� ↵) (defined following (27.9)), and c�1,� := c�1,�(1� ↵) (defined following (25.5)). We

have: A⇤
n,�U is defined in (5.14) with b deleted, A⇤

Un,�U is defined in (27.8), A⇤
U1,�U is defined in

(27.9), and A1,�min is defined in (25.6). Note that A1,� = A1,�min by Theorem 25.2(c), so c�1,�

equals the 1� ↵ quantile of �A1,� and �A1,�min.

Given a subsequence {pn}n�1 as in the statement of the theorem, we consider a subsequence

{an}n�1 of {pn}n�1 as in Lemma 27.1. For the subsequence {an}n�1, the results of Lemmas 27.1,

27.2, and 27.3 hold. For notational simplicity, in the remainder of the proof we replace {an}n�1 by

{n}n�1 and presume that the results of Lemmas 27.1, 27.2, and 27.3 hold for {n}n�1.

By the definition of CIn,�U (↵) in (5.3) and the definition of An,� in (25.1),

PFn(�
inf

Fn
2 CIn,�U (↵)) = PFn(�An,�  bcn,�). (27.14)

If A⇤
n,�U  A⇤

Un,�U with probability one (with respect to the bootstrap randomness) conditional

on {Wni}in,n�1, then the 1� ↵ conditional quantile of �A⇤
n,�U given {Wni}in,n�1 plus ◆, which

is bcn,�U , is greater than or equal to the 1�↵ conditional quantile of �A⇤
Un,�U given {Wni}in,n�1

plus ◆, which is bcUn,�U , as a consequence of the definition of a quantile. By Lemma 27.2(a), the

“if” condition in the previous sentence holds wp!1 (with respect to the randomness in the samples

{Wni}in,n�1). Hence, Lemma 27.2(a) implies that bcn,�U � bcUn,�U wp!1, which implies that
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bcn,�U � bcUn,�U + op(1), where the op(1) term refers to randomness in the samples, not bootstrap

randomness. This gives

lim inf
n!1

PFn(�An,�  bcn,�U ) � lim inf
n!1

PFn(�An,� + op(1)  bcUn,�U ). (27.15)

Now, take an arbitrary " > 0. Then, there exists "⇤ 2 (0, ") such that cU1,�U�"⇤ is a continuity

point of �A⇤
U1,�U . We have

lim sup
n!1

P5(�A⇤
Un,�U  cU1,�U � "|{Wni}in,n�1) (27.16)

 lim sup
n!1

P5(�A⇤
Un,�U  cU1,�U � "⇤|{Wni}in,n�1) = P (�A⇤

U1,�U  cU1,�U � "⇤) < 1� ↵

a.s.[P5], where the equality holds by Lemma 27.1(a) and the last inequality holds by the definition

of the 1 � ↵ quantile cU1,�U of �A⇤
U1,�U . Because bcUn,�U is the 1 � ↵ conditional quantile of

�A⇤
Un,�U given {Wni}in,n�1 plus ◆, if

P5(�A⇤
Un,�U  cU1,�U � "|{Wni}in,n�1) < 1� ↵, then cU1,�U � " < bcUn,�U � ◆. (27.17)

By (27.16), the first condition in (27.17) holds for n su�ciently large a.s.[P5]. Hence, the same is

true for the second condition in (27.17). That is, P5(cU1,�U + ◆� " < bcUn,�U for n large) = 1, or

equivalently,

P5

⇣
lim
n!1

1(cU1,�U + ◆� " < bcUn,�U ) = 1
⌘
= 1. (27.18)

By the dominated convergence theorem, this implies that

lim
n!1

P5 (cU1,�U + ◆� " < bcUn,�U ) = 1 (27.19)

for all " > 0, which also can be written as limn!1 PFn (cU1,�U + ◆� " < bcUn,�U ) = 1.

Next, we have: for all " > 0,

lim inf
n!1

PFn(�An,� + op(1)  bcUn,�U )

= lim inf
n!1

PFn(�An,� + op(1)  bcUn,�U & cU1,�U + ◆� " < bcUn,�U )

� lim inf
n!1

PFn(�An,� + op(1)  cU1,�U + ◆� " & cU1,�U + ◆� " < bcUn,�U )

= lim inf
n!1

PFn(�An,� + op(1)  cU1,�U + ◆� ") (27.20)

where the two equalities hold using (27.19) and the inequality is straightforward.
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By Theorem 25.2(a) and (c), we have

An,� !d A1,�min (27.21)

using Assumptions A.0, C.4, C.5, C.12, and C.13. Consider a sequence {"m}m�1 such that c1 +

◆� "m is a continuity point of �A1,� for all m � 1 and "m # 0 as m ! 1. Then, we have

lim inf
n!1

PFn(�An,� + op(1)  bcUn,�U )

� lim
m!1

lim inf
n!1

PFn(�An,�min + op(1)  cU1,�U + ◆� "m)

= lim
m!1

P (�A1,�min  cU1,�U + ◆� "m)

� lim
m!1

P (�A1,�min  c�1,� + ◆� "m)

� 1� ↵, (27.22)

where the first inequality holds by (27.20), the equality holds by (27.21) and the definition of

{"m}m�1, the second inequality holds by Lemma 27.3(a) because A⇤
U1,�U ST A1,�min implies

that �A1,�min ST �A⇤
U1,�U and c�1,�  cU1,�U , and the last inequality holds by the definition

of the 1 � ↵ quantile c�1,� of �A1,� = �A1,�min because ◆ � "m > 0 for m large. Equations

(27.14), (27.15), and (27.22) prove part (a).

Next, we prove part (b). The proof is quite similar to that of part (a) with the changes

described below. For notational simplicity, let bcn,�L := bcn,�L(1 � ↵) (defined just above (5.15)),

bcLn,�L := bcLn,�L(1 � ↵) (defined following (27.12)), cL1,�L := cL1,�L(1 � ↵) (defined following

(27.13)), and c1,� := c1,�(1� ↵) (defined following (25.5)). We have: A⇤
n,�L is defined in (5.15)

with b deleted, A⇤
Ln,�L is defined in (27.12), and A⇤

L1,�L is defined in (27.13). In the proof of part

(b), we use A⇤
n,�L, bcn,�L, A⇤

Ln,�L, bcLn,�L, and cL1,�L in place of A⇤
n,�U , bcn,�U , A⇤

Un,�U , bcUn,�U ,

and cU1,�U , respectively. As in part (a), A1,� := A1,�min by Theorem 25.2(c), so c1,� equals

the 1� ↵ quantile of A1,� and A1,�min.

To prove part (b), we use Lemmas 27.1(b), 27.2(b), and 27.3(b) in place of Lemmas 27.1(a),

27.2(a), and 27.3(a), respectively.

To prove part (b), (27.14) is replaced by

PFn(�
inf

Fn
2 CIn,�L(↵)) = PFn(An,�  bcn,�L). (27.23)

By the same argument as used to show (27.15), but applied to A⇤
n,� and A⇤

Ln,�L, rather than �A⇤
n,�
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and �A⇤
Un,�U , we obtain bcn,�L � bcLn,�L + op(1) and

lim inf
n!1

PFn(An,�  bcn,�L) � lim inf
n!1

PFn(An,� + op(1)  bcLn,�L). (27.24)

We obtain

lim inf
n!1

PFn (cL1,�L + ◆� "  bcLn,�L) = 1 for all " > 0 (27.25)

by the same argument as used to prove (27.19), but with A⇤
Ln,�L, A

⇤
L1,�L, and cL1,�L + ◆� "⇤ in

place of �A⇤
Un,�U , �A⇤

U1,�U , and cU1,�U + ◆� "⇤, respectively. By arguments analogous to those

in (27.20) and (27.22), we obtain

lim inf
n!1

PFn(An,� + op(1)  bcLn,�L) � lim inf
n!1

PFn(An,� + op(1)  cL1,�L + ◆� ") and

lim inf
n!1

PFn(An,� + op(1)  bcLn,�L) � lim
m!1

P (A1,�min  c1,� + ◆� "m) � 1� ↵, (27.26)

respectively, where the the last inequality holds by the definition of the 1 � ↵ quantile c1,� of

A1,� = A1,�min because ◆� "m > 0 for m large. Equations (27.23), (27.24), and (27.26) combine

to establish part (b). ⇤

27.4 Proof of Theorem 5.1

Proof of Theorem 5.1. We prove part (a) first. By definition, the asymptotic size of the CI

CIn,�U (↵) is

lim inf
n!1

inf
F2P

PF

⇣
�inf

F 2 CIn,�U (↵)
⌘
= lim inf

n!1
inf
F2P

PF

⇣
�inf

F  b�inf

n,U (↵)
⌘
. (27.27)

There always exists a sequence {Fn}n�1 and a subsequence {qn}n�1 of {n}n�1 such that

lim inf
n!1

inf
F2P

PF

⇣
�inf

F  b�inf

n,U (↵)
⌘
= lim inf

n!1
PFn

⇣
�n1/2(b�inf

n ��inf

Fn
)  bcn,�U (1� ↵)

⌘

= lim
n!1

PFqn
(�Aqn,�  bcqn,�U (1� ↵)) , (27.28)

where the first and second equalities use (5.3) and (25.1), respectively. Hence, to establish that

CIn,�U (↵) has correct asymptotic size, we must show that the rhs of (27.28) is 1 � ↵ or greater.

It su�ces to show that the rhs of (27.28) is 1 � ↵ or greater with {qn}n�1 replaced by some

subsequence {an}n�1 of {qn}n�1 (because the limit under the subsequence {an}n�1 is the same as

the limit under the original subsequence {qn}n�1). The rhs of (27.28) defined with {an}n�1 in place

of {qn}n�1 is 1�↵ or greater by Theorem 27.4(a) provided the assumptions of Theorem 27.4(a) hold

for some subsequence {pn}n�1 of {qn}n�1 and {an}n�1 is some subsequence of {pn}n�1 (because
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�Aan,�  bcan,�U (1 � ↵) i↵ �Fan
2 CIan,�U (↵) by (27.14) and the lim infn!1 is actually the

limn!1 in the result of Theorem 27.4(a) for any subsequence {an}n�1 of {qn}n�1 by the definition

of {qn}n�1) in (27.28). Hence, for part (a), it remains to verify that Assumptions BC.3, BC.4,

BC.5, C.4, C.5, C.12, and C.13 hold for some subsequence {pn}n�1 (of {qn}n�1) in place of {n}n�1

(because Assumptions A.0 and A.6, which are imposed in Theorem 27.4, are also imposed in the

present theorem).

To prove part (b) regarding the lower-bound CI CIn,�L(↵), analogous arguments to those in

(27.27) and (27.28) show that it su�ces to show that limPFqn
(Aqn,�  bcqn,�L(1�↵)) � 1�↵, where

{qn}n�1 is a subsequence of {n}n�1 for which (27.28) holds with b�inf

n,L(↵), n
1/2(b�inf

n ��inf

Fn
), bcn,�L(1�

↵), and Aqn,� in place of b�inf

n,U (↵), �n1/2(b�inf
n ��inf

Fn
), bcn,�U (1�↵), and �Aqn,�, respectively. By

the same argument as in the previous paragraph, but with Theorem 27.4(b) in place of Theorem

27.4(a), to prove part (b) it su�ces to verify the assumptions employed in Theorem 27.4(b) that are

not imposed in Theorem 5.1(b). The assumptions that need to be verified are the same as those for

part (a) except with Assumptions BC.6, BC.7, and C.11 in place of Assumptions BC.4 and BC.5

(because Assumptions A.7 and A.8, which are imposed in Theorem 27.4(b), are also imposed in

Theorem 5.1(b)).

We now verify that Assumptions BC.3, BC.4–BC.7, C.4, C.5, C.11, C.12, and C.13 hold for

some subsequence {pn}n�1 (of {qn}n�1) in place of {n}n�1. Given {⌧n}n�1 in the definition of b⇥min,n

in (5.7) that satisfies Assumption A.6(ii), take {⌘n}n�1 to be the same in Assumptions C.13 and

BC.4, which requires ⌘n ! 1 and ⌘n/⌧n ! 0. For example, one can take ⌘n = ⌧1/2n 8n � 1. Given

{n}n�1 that satisfy Assumption A.7, which requires n ! 1 and n/n1/2 ! 0, take {⌘Ln}n�1

to be the same as in Assumptions BC.6 and BC.7, which requires ⌘Ln ! 1, ⌘Ln/n1/2 ! 0, and

⌘Ln/
�
n ! 0 for � 2 (0, 1) as in Assumption BC.6. For example, one can take ⌘Ln = �/2n .

Under Assumptions A.4 and A.5, by Lemma D.7 of BCS15, given {qn}n�1, there exists a

subsequence {pn}n�1 of {qn}n�1, a continuous R2k⇥2k-valued function ⌦1 on ⇥2, and a contin-

uous Rk-valued function em on ⇥ for which (i) ⌦Fpn
!u ⌦1, where !u denotes uniform conver-

gence (over ⇥2 in this case), and hence, Assumption C.11 holds for the subsequence {pn}n�1, (ii)

EFpn
em(W, ·) !u em(·), and hence, Assumption C.4 holds for the subsequence {pn}n�1, and (iii)

Assumptions C.12, C.13, BC.4, and BC.6 hold for the subsequence {pn}n�1. The basic argument

used by BCS15 to prove their Lemma D.7 is that a sequence in a compact subset of a metric

space has a convergent subsequence. Strictly speaking, Lemma D.7 of BCS15 only establishes

⌦Fpn
!u ⌦1 for the upper left k ⇥ k submatrices of these matrix functions and the subsequence

version of Assumption C.7 of AK. But, the same argument applies for the 2k⇥2k–valued functions

⌦Fpn
and ⌦1, and the same argument as for Assumption C.7 of AK applies to Assumptions C.12,
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C.13, BC.4, and BC.6. In addition, the result EFpn
em(W, ·) !u em(·) is established in the same way

as ⌦Fpn
!u ⌦1 (but using Assumption A.5 in place of Assumption A.4).

Assumption C.5 holds for the subsequence {pn}n�1 by applying a subsequence version of Lemma

20.1(a) in online Appendix B, which imposes Assumptions A.0–A.4 and C.11. Assumptions A.0–

A.4 are imposed in the present theorem and the subsequence version of Assumption C.11 holds by

(i) above.

Assumption BC.3 holds for the subsequence {pn}n�1 by Lemma D.2(8) of BCS15 because

Assumptions A.1–A.4 of this paper imply Assumptions A.1–A.4 of BCS15 and ⌦Fpn
!u ⌦1.

Assumption BC.5 holds in part (a) of the theorem by a subsequence version of Lemma 27.5(a)

(with {pn}n�1 in place of {n}n�1), which imposes Assumptions A.0, C.4, C.5, and C.12 and requires

⌧n ! 1 and ⌘n/⌧n ! 0 (because these assumptions are verified above, ⌧n ! 1 by Assumption

A.6(ii), and given {⌧n}n�1, {⌘n}n�1 are defined above to satisfy ⌘n/⌧n ! 0).

Assumption BC.7 holds in part (b) of the theorem by a subsequence version of Lemma 27.5(b)

(with {pn}n�1 in place of {n}n�1), which imposes Assumptions A.0, C.4, C.5, and C.12 and requires

⌘Ln ! 1 (because these assumptions are verified above and {⌘Ln}n�1 are defined above to satisfy

⌘Ln ! 1).

This concludes the proof that the assumptions employed in parts (a) and (b) of Theorem 27.4

hold for the subsequence {pn}n�1 of {qn}n�1, which completes the proof. ⇤

27.5 Proof of Lemma 27.1

Proof of Lemma 27.1. First, we prove part (a). We have

n1/2 bmnj(✓) =
�Fnj(✓)

b�nj(✓)

⇣
⌫mnj(✓) + n1/2EFn emj(W, ✓)

⌘

= b!nj(✓) + n1/2EFn emj(W, ✓), where (27.29)

b!nj(✓) :=
�Fnj(✓)

b�nj(✓)
⌫mnj(✓)� n1/2

✓
b�nj(✓)
�Fnj(✓)

� 1

◆
�Fnj(✓)

b�nj(✓)
EFn emj(W, ✓) = O⇥

p (1),

where ⌫mnj(✓) denotes the jth element of ⌫mn (✓) defined in (14.2) in online Appendix B, and the

second equality on the last line holds by Assumptions C.4 and C.5 and (26.10). Next, we have

n1/2
⇣
b�nj(✓)� b�inf

n

⌘
= n1/2(�bmnj(✓) + EF emj(W, ✓))� n1/2(b�inf

n ��inf

Fn
) + enj(✓)

= bdnj(✓) + enj(✓), where

bdnj(✓) := �b!nj(✓)� n1/2(b�inf

n ��inf

Fn
) = O⇥

p (1), (27.30)
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the first equality uses b�nj(✓) := �bmnj(✓) by (5.2) and enj(✓) := n1/2(�EFn emj(W, ✓) � �inf

Fn
) by

(27.3) and the second equality on the last line holds because b!nj(✓) = O⇥
p (1) by (27.29) and

n1/2(b�inf
n ��inf

Fn
) := An,� = Op(1) by (25.1) and Theorem 25.2(a) (which uses Assumptions A.0,

C.4, C.5, and C.12).

For e⇤j = (◆n)�1n1/2(�Fnj(✓)��inf

Fn
) as in ⇤⇤⌘n

n,�,Fn
(defined in (27.5)), we obtain

⇠e1nj(✓) := (◆n)
�1n1/2

⇣
b�nj(✓)� b�inf

n

⌘
= (◆n)

�1 bdnj(✓) + e⇤j , (27.31)

where the first equality holds by definition, see (27.6), and the second equality holds by (27.30).

Using (27.29), (27.31), and the definition of ⇤⇤⌘n
n,�,Fn

, we can write A⇤
Un,�U in (27.8) as

A⇤
Un,�U = inf

(✓,e,e⇤,j⇤)2⇤⇤⌘n
n,�,Fn

max
jk

⇣
�b⌫⇤nj(✓) + 1(j 6= j⇤)ej + 1(j = j⇤)'†((◆n)

�1 bdnj(✓) + e⇤j )
⌘
,

(27.32)

where (✓, ej , e⇤j , j
⇤) 2 ⇤⇤⌘n

n,�,Fn
implies that ej := enj(✓), e⇤j := (◆n)�1enj(✓), and j⇤ := jne(✓).

We have

(◆n)
�1 bdnj(✓) = o⇥p (1) (27.33)

by (27.30) and Assumption A.6(i).

Next, for all j  k, we have

n1/2 (bmnj(✓)� EFn emj(W, ✓)) = O⇥

p (1), (27.34)

by (27.29). This and Assumption C.4 give

bmnj(✓)� emj(✓) = o⇥p (1). (27.35)

Now, we use the result that for any sequence of random variables {Xn}n�1 on (⌦,F , P5) for

which Xn !p 0, there exists a subsequence {an}n�1 of {n}n�1 such that Xan ! 0 a.s.[P5], e.g., see

Theorem 9.2.1 of Dudley (1989). We apply this result with the original sequence {n}n�1 replaced

by some subsequence {pn}n�1. Using this, (27.33), and (27.35), given any subsequence {pn}n�1 of

{n}n�1, there exists a subsequence {an}n�1 of {pn}n�1 for which

sup
✓2⇥

|(◆an)�1 bdanj(✓)| = o(1) a.s.[P5] and sup
✓2⇥

|bmanj(✓)� emj(✓)| = o(1) a.s.[P5]. (27.36)

Define

⌫m�⇤
nj (✓) := ⌫m⇤

nj (✓)�
1

2
emj(✓)⌫

�⇤
nj (✓) 8j  k. (27.37)
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We show that under {Fn}n�1, for the subsequence {an}n�1 of {pn}n�1 defined above,

sup
✓2⇥

|b⌫⇤anj(✓)� ⌫m�⇤
anj (✓)| = op(1) 8j  k conditional on {Wni}in,n�1 a.s.[P5]. (27.38)

The proof of (27.38) is as follows. By the same argument as in (26.10) with b�⇤nj(✓) and b�nj(✓)

in place of b�nj(✓) and �Fnj(✓), respectively, we obtain

n1/2

✓b�⇤nj(✓)
b�nj(✓)

� 1

◆
=

1

2
⌫�⇤nj (✓) + o⇥p (1) conditional on {Wni}in,n�1 a.s.[P5], (27.39)

using Assumption BC.3 in place of Assumption C.5. Next, we have: for the subsequence {an}n�1,

b⌫⇤anj(✓) := a1/2n

 
m⇤

anj(✓)

b�⇤anj(✓)
� bmanj(✓)

!
=

b�anj(✓)
b�⇤anj(✓)

✓
⌫m⇤
anj(✓)� bmanj(✓)a

1/2
n

✓b�⇤anj(✓)
b�anj(✓)

� 1

◆◆

= (1 + o⇥p (1))

✓
⌫m⇤
anj(✓)�

1

2
emj(✓)⌫

�⇤
anj(✓) + o⇥p (1)

◆
= ⌫m�⇤

anj (✓) + o⇥p (1)

(27.40)

conditional on {Wni}in,n�1 a.s.[P5], where the third equality holds by (27.36) and (27.39), and

the fourth equality holds by the definition of ⌫m�⇤
nj (✓) in (27.37) and Assumption BC.3. This proves

(27.38).

Define

�!
A ⇤

Un,�U := inf
(✓,e,e⇤,j⇤)2⇤⇤⌘n

n,�,Fn

max
jk

⇣
�⌫m�⇤

nj (✓) + 1(j 6= j⇤)ej + 1(j = j⇤)'†((◆n)
�1 bdnj(✓) + e⇤j )

⌘
.

(27.41)

By (27.32), the first result of (27.36), (27.38), and (27.41), we obtain:

A⇤
Uan,�U =

�!
A ⇤

Uan,�U + op(1) conditional on {Wni}in,n�1 a.s.[P5]. (27.42)

Hence, it su�ces to show: for the subsequence {an}n�1,

{�!A ⇤
Uan,�U |{Wni}in,n�1} !d A⇤

U1,�U a.s.[P5]. (27.43)

To prove (27.43), we use a similar (but somewhat more complicated) argument to that used to

prove Theorem 25.2(a) based on the extended continuous mapping theorem. As above, let D be

the space of functions from ⇥ to R2k. Let D0 be the subset of uniformly continuous functions in
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D. For nonstochastic functions ⌫(·) 2 D and µ(·) : ⇥! Rk with µ(✓) = (µ1(✓), ..., µk(✓))0, define

egn(⌫(·), µ(·)) := inf
(✓,e,e⇤,j⇤)2⇤⇤⌘n

n,�,Fn

max
jk

⇣
⌧j(⌫(·), ✓)+1(j 6= j⇤)ej+1(j = j⇤)'†(µj⇤(✓) + e⇤j⇤)

⌘
and

eg(⌫(·), µ(·)) := inf
(✓,e,e⇤,j⇤)2⇤⇤

�min

max
jk

⇣
⌧j(⌫(·), ✓) + 1(j 6= j⇤)ej + 1(j = j⇤)'†(µj⇤(✓) + e⇤j⇤)

⌘
,

(27.44)

where ⌫(✓) = (⌫m(✓)0, ⌫�(✓)0)0, ⌫mj (✓) and ⌫�j (✓) denote the jth elements of ⌫m(✓) and ⌫�(✓),

respectively, and ⌧j(⌫(·), ✓) is defined in (26.15). Note that

�!
A ⇤

Un,�U = egn(⌫⇤n(·), µn(✓)) and A⇤
U1,�U = eg(G(·), 0k(·)), where

µnj(✓) := (◆n)
�1 bdnj(✓), µn(✓) = (µn1(✓), ..., µnk(✓))

0, (27.45)

and 0k(·) is the zero function on ⇥.

We want to show that {egan(⌫⇤an(·), µn(·))|{Wni}in,n�1} !d eg(G(·), 0k(·)) a.s.[P5], where

{⌫⇤an(·)|{Wni}in,n�1} ) G(·) a.s.[P5] by Assumption BC.3 and sup✓2⇥ ||µan(✓)|| = o(1) a.s.[P5] by

(27.36). We use the extended CMT to establish this result. For notational simplicity, we employ n,

rather than an, in the proof of this result. The extended CMT requires showing: for any determin-

istic sequences {⌫n(·) 2 D}n�1 and {µn(·) : ⇥! Rk}n�1 and deterministic function ⌫(·) 2 D0 such

that sup✓2⇥ ||⌫n(✓)� ⌫(✓)|| ! 0 and sup✓2⇥ ||µn(✓)|| ! 0, we have egn(⌫n(·), µn(·)) ! eg(⌫(·), 0k(·)).

(For notational simplicity, we abuse notation here and consider deterministic ⌫n(·) and µn(·) that

di↵er from the random ⌫n(·) in Assumption C.5 and µn(✓) defined in (27.45).) Once we have shown

this, the proof is complete.

The proof of egn(⌫n(·), µn(·)) ! eg(⌫(·), 0k(·)) is an extension of the proof of gn(⌫n(·)) ! g(⌫(·))

in (26.17)–(26.23) in the proof of Theorem 25.2(a). We show

(i) lim inf
n!1

egn(⌫n(·), µn(·)) � g(⌫(·), 0k(·)) and

(ii) lim sup
n!1

egn(⌫n(·), µn(·))  g(⌫(·), 0k(·)). (27.46)

First, we establish (i) in (27.46). There exists a subsequence {cn}n�1 of {n}n�1 and a sequence

{(✓cn , ecn , e⇤cn , j
⇤
cn) 2 ⇤

⇤⌘cn
cn,�,Fcn

}n�1 such that

lim inf
n!1

egn(⌫n(·), µn(·)) = lim
n!1

egcn(⌫cn(·), µcn(·)) and

lim
n!1

egcn(⌫cn(·), µcn(·)) = lim
n!1

max
jk

�
⌧j(⌫cn(·), ✓cn) + 1(j 6= j

⇤
cn)ecnj

+1(j = j
⇤
cn)'

†(µj
⇤
cn
(✓cn) + e⇤

cnj
⇤
cn
)
⌘
, (27.47)
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where ecnj and e⇤cnj denote the jth elements of ecn and e⇤cn , respectively. Also, there exists a

subsequence {qn}n�1 of {cn}n�1 and (✓, e, e⇤, j
⇤
) 2 ⇥⇥R2k

[±1]
⇥ {1, ..., k} such that

d
�
(✓qn , eqn , e

⇤
qn , j

⇤
qn), (✓, e, e

⇤, j
⇤
)
�
! 0, (27.48)

where d is defined in the paragraph before (25.1), by compactness of the metric space (⇥⇥R2k
[±1]

⇥

{1, ..., k}, d) under Assumption A.0(i). We have (✓, e, e⇤, j
⇤
) 2 ⇤⇤

�min
by the same argument as

used to show (e✓, ee) 2 ⇤� in (26.3) (but without the requirement that �F (e✓n) = �inf

F 8n � 1) using

(27.48) and Assumption BC.4.

For all j  k,

lim
n!1

⌧j(⌫qn(·), ✓qn) = �⌫mj (✓) +
1

2
emj(✓)⌫

�
j (✓) := ⌧j(⌫(·), ✓) 2 R, (27.49)

where the first equality holds by ⌫qn(✓) ! ⌫(✓) = (⌫m(✓)0, ⌫�(✓)0)0 uniformly over ✓ 2 ⇥ (by

assumption) and (27.48), the last equality holds by the definition of ⌧j(⌫(·), ✓) in (26.15), and

“2R” holds because ⌫mj (✓) and ⌫�j (✓) are finite since ⌫(·) is assumed to be in D and emj(✓) is finite

by Assumption C.4.

In addition, we have, for all j  k,

1(j 6= j
⇤
qn)eqnj ! 1(j 6= j

⇤
)ej and

1(j = j
⇤
qn)'

†(µqnj
⇤
qn
(✓qn) + e⇤

qnj
⇤
qn
) ! 1(j = j

⇤
)'†(e⇤

j
⇤), (27.50)

where the first line holds by (27.48) and the second line holds by (27.48), sup✓2⇥ ||µqn(✓)|| ! 0,

and the continuity of '† on R[+1] under d, which is property (ii) of '† stated following (27.7), and

the fact that d('†(µj
⇤
qn
(✓qn) + e⇤

qnj
⇤
qn

),'†(e⇤
j
⇤)) ! 0 implies that '†(µj

⇤
qn
(✓qn) + e⇤

qnj
⇤
qn

) ! '†(e⇤
j
⇤)

(as a sequence of numbers in R[+1]) even if '†(e⇤
j
⇤) = +1.

Now, we have

lim inf
n!1

egn(⌫n(·), µn(·))

= lim
n!1

max
jk

⇣
⌧j(⌫qn(·), ✓qn) + 1(j 6= j

⇤
qn)eqnj + 1(j = j

⇤
qn)'

†(µj
⇤
qn
(✓qn) + e⇤

qnj
⇤
qn
)
⌘

= max
jk

⇣
⌧j(⌫(·), ✓) + 1(j 6= j

⇤
)ej + 1(j = j

⇤
)'†(e⇤

j
⇤)
⌘

� inf
(✓,e,e⇤,j⇤)2⇤⇤

�min

max
jk

⇣
⌧j(⌫(·), ✓) + 1(j 6= j⇤)ej + 1(j = j⇤)'†(e⇤j⇤)

⌘

:= eg(⌫(·), 0k(·)), (27.51)
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where the first equality holds by (27.47) and the fact that {qn}n�1 is a subsequence of {cn}n�1, the

second equality holds by (27.49) (using the notational convention that ⌫ + c = c when ⌫ 2 R and

c = ±1 if ej = ±1 for any j  k) and (27.50), the inequality holds because (✓, e, e⇤, j
⇤
) 2 ⇤⇤

�min

by the paragraph containing (27.48), and the last equality holds by the definition of eg(⌫(·), µ(·)) in

(27.44) with µ(·) = 0k(·). This establishes result (i) in (27.46).

Next, we establish result (ii) in (27.46). There exists (✓†, e†, e†⇤, j†⇤) 2 ⇤⇤
�min

such that

eg(⌫(·), 0k(·)) = max
jk

⇣
⌧j(⌫(·), ✓†) + 1(j 6= j†⇤)e†j + 1(j = j†⇤)'†(e†⇤

j†⇤
)
⌘

(27.52)

because ⇤⇤
�min

is compact under the metric d defined in the paragraph before (25.1) with a⇤ =

d✓ + 2k + 1 (since it is assumed to be an element of S(⇥ ⇥ R2k
[±1]

⇥ {1, ..., k})) and ⌧j(⌫(·), ✓) +

1(j 6= j⇤)ej + 1(j = j⇤)'†(e⇤j⇤) is a continuous function of (✓, e, e⇤, j⇤) under d that takes val-

ues in the extended real line, using property (ii) of '† stated following (27.7). By Assumption

BC.4, ⇤⇤⌘n
n,�,Fn

!H ⇤⇤
�min

. Hence, there is a sequence {(✓†n, e†n, e†⇤n , j†⇤n ) 2 ⇤⇤⌘n
n,�,Fn

}n�1 such that

d((✓†n, e
†
n, e

†⇤
n , j†⇤n ), (✓†, e†, e†⇤, j†⇤)) ! 0. We obtain

lim sup
n!1

egn(⌫n(·), µn(·))

:= lim sup
n!1

inf
(✓,e,e⇤,j⇤)2⇤⇤⌘n

n,�,Fn

max
jk

⇣
⌧j(⌫n(·), ✓) + 1(j 6= j⇤)ej + 1(j = j⇤)'†(µnj⇤(✓) + e⇤j⇤)

⌘

 lim sup
n!1

max
jk

⇣
⌧j(⌫n(·), ✓†n) + 1(j 6= j†⇤n )e†nj + 1(j = j†⇤n )'†(µ

nj†⇤n
(✓) + e†⇤

j†⇤n
)
⌘

= max
jk

⇣
⌧j(⌫(·), ✓†) + 1(j 6= j†⇤)e†j + 1(j = j†⇤)'†(e†⇤

j†⇤
)
⌘

= eg(⌫(·), 0k(·)), (27.53)

where the inequality holds because (✓†n, e
†
n, e

†⇤
n , j†⇤n ) 2 ⇤⇤⌘n

n,�,Fn
8n � 1, the second equality holds

using d((✓†n, e
†
n, e

†⇤
n , j†⇤n ), (✓†, e†, e†⇤, j†⇤)) ! 0, (27.49) with (⌫n(·), ✓†n) and (⌫(·), ✓†) in place of

(⌫qn(·), ✓qn) and (⌫(·), ✓), respectively, and (27.50) with (✓†n, e
†
nj , e

†⇤
nj , j

†⇤
n ) and (✓†, e†j , e

†⇤
j , j†⇤) in

place of (✓qnj , eqnj , e
⇤
qnj , j

⇤
qn) and (✓j , ej , e⇤j , j

⇤
), respectively, and the last equality holds by (27.52).

This establishes result (ii) in (27.46) and completes the proof of part (a).

The proof of part (b) is similar to that of part (a). But it is simpler because A⇤
Ln,�L is simpler

than A⇤
Un,�U . We have

A⇤
Ln,�L := inf

✓2⇥⌘Ln
min

(Fn)

max
jk

⇣
�b⌫⇤nj(✓)� '†(�⇠e1nj(✓))

⌘
=

�!
A ⇤

Ln,�L + op(1)

conditional on {Wni}in,n�1 a.s.[P5], where

�!
A ⇤

Ln,�L := inf
(✓,e⇤)2⇤⇤⌘Ln

n,Fn,L

max
jk

⇣
�⌫m�⇤

nj (✓)� '†(�µnj(✓)� e⇤j )
⌘
, (27.54)
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e = (e1, ..., ek)0, ⌫m�⇤
nj (✓) is defined in (27.37), the first equality holds by the definition in (27.12), and

the second equality holds by (27.38), the definition of ⇤⇤⌘Ln
n,Fn,L

in (27.11), (27.30), and the definition

of µn(✓) in (27.45). Given (27.54), to prove part (b), it su�ces to show: for the subsequence

{an}n�1 defined just above (27.36), {�!A ⇤
Lan,�L|{Wni}in,n�1} !d A⇤

L1,�L a.s.[P5]. The proof of

this is analogous to the proof of (27.43), but with ⇤⇤⌘Ln
n,Fn,L

and ⇤⇤
L in place of ⇤⇤⌘n

n,�,Fn
and ⇤⇤

�min
,

respectively, and with �'†(�µnj(✓) � e⇤j ) in place of 1(j 6= j⇤)ej + 1(j = j⇤)'†(µnj(✓) + e⇤j ). The

proof goes through using Assumption BC.6 in place of Assumption BC.4, which completes the

proof of part (b). ⇤

27.6 Proof of Lemma 27.2

Proof of Lemma 27.2. First, we prove part (a). By definition, see (27.8) and (5.14) with b

deleted, we have

A⇤
Un,�U := inf

✓2⇥⌘n
min

(Fn)

max
jk

⇣
�b⌫⇤nj(✓) + 1(j 6= jne(✓))enj(✓) + 1(j = jne(✓))'

†(⇠e1nj(✓))
⌘

and

A⇤
n,�U := inf

✓2b⇥min,n

min
j12 bJne(✓)

max
jk

�
�b⌫⇤nj(✓) + 1(j 6= j1)benj(✓) + 1(j = j1)'(⇠

e
nj(✓))

�
.

(27.55)

The bootstrap random variables A⇤
Un,�U and A⇤

n,�U di↵er in four ways. Specifically, A⇤
Un,�U versus

(vs.) A⇤
n,�U are defined with (i) inf✓2⇥⌘n

min
(Fn)

vs. inf✓2b⇥min,n
, (ii) '†(⇠e

1nj(✓)) vs. '(⇠enj(✓)), (iii)

enj(✓) vs. benj(✓), and (iv) j = jne(✓) or j 6= jne(✓) vs. minj12 bJne(✓)
with j = j1 or j 6= j1.

By Assumption BC.5, for any bootstrap random function K⇤
n(✓),

P5

 
inf

✓2⇥⌘n
min

(Fn)

K⇤
n(✓) � inf

✓2b⇥min,n

K⇤
n(✓)

����� {Wni}in,n�1

!
= 1 wp ! 1 under P5. (27.56)

By the definitions of ⇠e
1nj(✓) in (27.6) and ⇠enj(✓) in (5.12) and bsdnj(✓) � ◆ (by construction; see

(27.1)), we have |⇠e
1nj(✓)| � |⇠enj(✓)| and ⇠e1nj(✓) and ⇠enj(✓) have the same sign for all sample and

bootstrap realizations. For any ✓ 2 ⇥, for all sample and bootstrap realizations with ⇠enj(✓) � 0,

we have

'(⇠enj(✓))  '†(⇠enj(✓))  '†(⇠e1nj(✓)), (27.57)

where the first inequality holds by property (i) of '† stated following (27.7) and the second inequality

holds by property (ii) of '† stated following (27.7) and ⇠enj(✓)  ⇠e
1nj(✓). Next, for all sample and
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bootstrap realizations with ⇠enj(✓) < 0, we have ⇠e
1nj(✓) < 0 and this implies that

'(⇠enj(✓))  '†(⇠enj(✓)) = 0 = '†(⇠e1nj(✓)), (27.58)

where the first inequality holds by property (i) of '†, the first equality holds by property (iii) of

'† and ⇠enj(✓) < 0, and the second equality holds by property (iii) of '† and ⇠e
1nj(✓) < 0. Hence,

'(⇠enj(✓))  '†(⇠e
1nj(✓)) for all sample and bootstrap realizations, for all ✓ 2 ⇥.

Next, we have

benj(✓) := n1/2
⇣
b�nj(✓)� b�inf

n

⌘
� bsdnj(✓)n = bdnj(✓) + enj(✓)� bsdnj(✓)n, and so,

sup
✓2⇥

(benj(✓)� enj(✓))  sup
✓2⇥

⇣
bdnj(✓)� ◆n

⌘
!p �1 8j  k, (27.59)

where the inequality on the second line holds for all bootstrap realizations because bdnj(✓) (defined

in (27.30)) does not depend on any bootstrap quantities, the first equality on the first line holds

by definition, see (5.8), the second equality holds by (27.30), and the second line follows from the

first line, the last line of (27.30), bsdnj(✓) � ◆ by definition, and n ! 1 (by Assumption A.6(i)).

Equation (27.59) implies that

sup
✓2⇥

(benj(✓)� enj(✓))  0 8j  k, for all bootstrap realizations, wp ! 1 under P5. (27.60)

Define

A
⇤
Un,�U := inf

✓2⇥⌘n
min

(Fn)

min
j12 bJne(✓)

max
jk

⇣
�b⌫⇤nj(✓) + 1(j 6= j1)enj(✓) + 1(j = j1)'

†(⇠e1nj(✓))
⌘
. (27.61)

Combining (27.56)–(27.60) and (27.61) gives

P5(A
⇤
Un,�U � A⇤

n,�U |{Wni}in,n�1) = 1 wp ! 1 under P5. (27.62)

Next, we show that

P5(jne(✓) 2 bJne(✓) 8✓ 2 ⇥|{Wni}in,n�1) = 1 wp ! 1 under P5, (27.63)

where jne(✓) := argmaxjk enj(✓) is defined in (27.3) and bJne(✓) := {j 2 {1, ..., k} : b�nj(✓) �
b�n(✓) � bsdnj(✓)n�1/2n} is defined in (5.13). We have jne(✓) 2 bJne(✓) i↵ b�njne(✓)(✓) � b�n(✓) �
bsdnj(✓)n�1/2n if n1/2(b�njne(✓)(✓) � b�inf

n ) � n1/2(b�n(✓) � b�inf
n ) � �◆n because bsdnj(✓) � ◆ by

definition. By (27.30), n1/2(b�nj(✓) � b�inf
n ) = enj(✓) + O⇥

p (1) 8j  k (since b�nj(✓) = �bmnj(✓) by
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(5.2)). Hence, n1/2(maxjk
b�nj(✓)� b�inf

n ) = maxjk enj(✓)+O⇥
p (1). Taking j = jne(✓), these results

combine to give n1/2(b�njne(✓)(✓)� b�inf
n )�n1/2(b�n(✓)� b�inf

n ) = enjne(✓)(✓)�maxjk enj(✓)+O⇥
p (1) =

O⇥
p (1) using the definition of jne(✓), where the O⇥

p (1) term does not depend on any bootstrap

quantities. Since O⇥
p (1) � �◆n holds wp!1 using Assumption A.6(i) (i.e., n ! 1), (27.63) is

proved.

For a suitably defined random function w(j1, ✓) on {1, ..., k} ⇥ ⇥, A⇤
Un,�U and A

⇤
Un,�U can

be written as inf✓2⇥⌘n
min

(Fn)
w(jne(✓), ✓) and inf✓2⇥⌘n

min
(Fn)

minj12 bJne(✓)
w(j1, ✓), respectively. Since

w(jne(✓), ✓) � minj12 bJne(✓)
w(j1, ✓) when jne(✓) 2 bJne(✓) and the latter event satisfies (27.63), we

obtain

P5(A⇤
Un,�U � A

⇤
Un,�U |{Wni}in,n�1) = 1 wp ! 1 under P5. (27.64)

This and (27.62) establish the result of part (a) of the lemma. Note that Assumptions A.6(ii) and

BC.4 are imposed in the lemma because Assumption BC.5 is imposed and it relies on Assumptions

A.6(ii) and BC.4.

Next, we prove part (b) of the lemma. By definition, see (27.12) and (5.15),

A⇤
Ln,�L := inf

✓2⇥⌘Ln
min

(Fn)

max
jk

⇣
�b⌫⇤nj(✓)� '†(�⇠e1nj(✓))

⌘
and

A⇤
n,�L := inf

✓2b⇥min,L,n

max
jk

�
�b⌫⇤nj(✓)� '(�⇠enj(✓))

�
. (27.65)

By an analogous argument to that used to obtain (27.57) and (27.58), we get

'(�⇠enj(✓))  '†(�⇠e1nj(✓)) (27.66)

for all j  k, for all sample and bootstrap realizations, and for all ✓ 2 ⇥. By Assumption BC.7, for

any bootstrap random function K⇤
n(✓),

P5

 
inf

✓2⇥⌘Ln
min

(Fn)

K⇤
n(✓)  inf

✓2b⇥min,L,n

K⇤
n(✓)

����� {Wni}in,n�1

!
= 1 wp ! 1 under P5. (27.67)

Combining (27.65), (27.66), and (27.67) with K⇤
n(✓) = maxjk(�b⌫⇤nj(✓) � '†(�⇠e

1nj(✓))) gives

the result of part (b) of the lemma. ⇤

27.7 Proof of Lemma 27.3

The proof of Lemma 27.3 uses the following lemma, which is based on Lemma S.3.7 in the

Supplemental Material to BCS17. Let R[�1] := R [ {�1}.
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Lemma 27.6 Suppose Assumptions A.0, A.7, A.8, BC.6, and C.12 hold. Then, for any (✓⇤, e⇤) 2

⇤⇤
L, there exists (✓⇤, e) 2 ⇤� such that ej  �'†(�e⇤j ) for all j  k.

Proof of Lemma 27.3. Part (a) of the lemma requires that A1,�min, A1,�, and A⇤
U1,�U are

well-defined. Part (b) requires that A1,� and A⇤
L1,�L are well-defined. Each part of Lemma 27.3

imposes the assumptions such that these quantities are well defined.

First, we prove part (a). We can writeA⇤
U1,�U = inf(✓,e,e⇤,j⇤)2⇤⇤

�min
KU (✓, e, e⇤, j⇤) andA1,�min)

= inf(✓,e)2⇤�min
K(✓, e) for random functions KU (·) and K(·) defined in (27.69) below. To show

A⇤
U1,�U  A1,�min, it su�ces to show that for any (✓, e) 2 ⇤�min there exists (✓, e, e⇤, j⇤) 2 ⇤⇤

�min

for which KU (✓, e, e⇤, j⇤)  K(✓, e) for all sample realizations.

To this end, we claim: Given any (✓, e) 2 ⇤�min, there exists an element (✓, e, e⇤, j⇤) 2 ⇤⇤
�min

.

This claim is proved as follows. By Assumption C.13, given any (✓, e) 2 ⇤�min, there exists

a sequence {(✓n, en) 2 ⇤⌘n
n,�,Fn

}n�1 such that d((✓n, en), (✓, e)) ! 0, where ✓n 2 ⇥⌘n
min

(Fn) for all

n � 1 by the definition of ⇤⌘n
n,�,Fn

following (25.4) and ⇥⌘
min

(F ) is non-empty by Assumption A.0.

Given {(✓n, en)}n�1, consider the corresponding sequence {(✓n, en, e⇤n, j⇤n) 2 ⇤
⇤⌘n
n,�,Fn

}n�1 for ⇤
⇤⌘n
n,�,Fn

defined in (27.5), where e⇤nj := (◆n)�1enj , j⇤n := argmaxjk enj , and j⇤n is the smallest argmax

value if the argmax is not unique. By Assumption BC.4, ⇤⇤⌘n
n,�,Fn

!H ⇤⇤
�min

for ⇤⇤
�min

compact

(under d). In consequence, there exist a subsequence {un}n�1 of {n}n�1 and an element (✓, e, e⇤, j⇤)

of ⇤⇤
�min

for which

d((✓un , eun , e
⇤
un
, j⇤un

), (✓, e, e⇤, j⇤)) ! 0 and (✓, e) = (✓, e), (27.68)

where the equality holds because d((✓n, en), (✓, e)) ! 0, which completes the proof of the claim.

Given any (✓, e) 2 ⇤�min, take (✓, e, e⇤, j⇤) 2 ⇤⇤
�min

as in the previous paragraph. Then, we

have

KU (✓, e, e
⇤, j⇤) := max

jk

⇣
�Gm�

j (✓) + 1(j 6= j⇤)ej + 1(j = j⇤)'†(e⇤j⇤)
⌘

 max
jk

�
�Gm↵

j (✓) + ej
�
:= K(✓, e) (27.69)

for all sample realizations, where Gm�
j (✓) is defined in (27.9) based on quantities defined in As-

sumptions C.4 and C.5, the first and last equalities hold by the definitions of A⇤
U1,�U and A1,�min

and the inequality holds because, as we show below, '†(e⇤j⇤)  ej⇤ . As argued above, (27.69) implies

that A⇤
U1,�U  A1,�min for all sample realizations, which we set out to prove.

Now, we show '†(e⇤j⇤)  ej⇤ . For notational simplicity, suppose (27.68) holds with n in place

of un. We have j⇤n ! j⇤ by (27.68), and hence, j⇤n = j⇤ for n large (because j⇤n 2 {1, ..., k}),
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where j⇤n := jn(✓n) by the definition of ⇤⇤⌘n
n,�,Fn

in (27.5) for jn(✓n) defined in (27.3). We have

enj ! ej and e⇤nj ! e⇤j by (27.68), where enj = enj(✓n) and e⇤nj = (◆n)�1enj by the definition

of ⇤⇤⌘n
n,�,Fn

for enj(✓) � 0 defined in (27.3). Hence, we have enj⇤n ! ej⇤ and e⇤nj⇤n ! e⇤j⇤ , where

e⇤nj⇤n = (◆n)�1enj⇤n = (◆n)�1enjn(✓n)(✓n) � 0 for all n � 1 by (27.3). This and n ! 1 (by

Assumption A.6(i)) imply that ej⇤ � e⇤j⇤ � 0. In addition, it implies that if 0  ej⇤ < 1, then

e⇤j⇤ = 0 (since n ! 1). Hence, we obtain: if 0  ej⇤ < 1, then '†(e⇤j⇤) = 0  ej⇤ because

'†(0) = 0 by property (iii) of '† stated following (27.7). On the other hand, if ej⇤ = 1, then

'†(e⇤j⇤)  1 = e⇤j⇤ by the definition of '† in (27.7), which completes the proof of part (a) of the

lemma.

Next, we prove part (b) of the lemma. By Lemma 27.6(a), for any (✓⇤, e⇤) 2 ⇤⇤
L, there exists

(✓⇤, e) 2 ⇤� such that ej  �'†(�e⇤j ) for all j  k. In consequence, we have

inf
(✓,e)2⇤�

max
jk

�
�Gm�

j (✓) + ej
�
 max

jk

�
�Gm�

j (✓⇤) + ej
�
 max

jk

⇣
�Gm�

j (✓⇤)� '†(�e⇤j )
⌘
, (27.70)

where the first inequality holds because (✓⇤, e) 2 ⇤� and the second inequality holds by Lemma

27.6(a). Deleting the middle expression in (27.70) and taking the infimum over (✓⇤, e⇤) 2 ⇤⇤
L on

the rhs of (27.70) gives

A1,� := inf
(✓,e)2⇤�

max
jk

�
�Gm�

j (✓) + ej
�
 inf

(✓⇤,e⇤)2⇤⇤
L

max
jk

⇣
�Gm�

j (✓⇤)� '†(�e⇤j )
⌘
=: A⇤

L1,�L,

(27.71)

where the two equalities hold by the definitions in (25.5) and (27.13). This completes the proof of

part (b). ⇤

Proof of Lemma 27.6. For any (✓⇤, e⇤) 2 ⇤⇤
L, there exist a subsequence {an}n�1 of {pn}n�1 and

a sequence {(✓⇤an , e
⇤
an) 2 ⇤

⇤⌘Ln
n,Fn,L

}n�1 for which ✓⇤an 2 ⇥⌘Lan
min

(Fan) (where ⇥
⌘Lan
min

(Fan) is non-empty

by Assumption A.0), e⇤anj = �1
an a

1/2
n (�Fanj(✓

⇤
an) � �

inf

Fan
), lim ✓⇤an = ✓⇤, and lim e⇤anj = e⇤j for all

j  k using Assumption BC.6 and the definition of ⇤⇤⌘Ln
n,Fn,L

in (27.11).

For notational simplicity, in the remainder of the proof of part (a) we employ n in place of

an for n � 1 and assume the assumptions hold for {n}n�1, rather than {pn}n�1. Thus, the se-

quence {(✓⇤n, e⇤n)}n�1 satisfies ✓⇤n 2 ⇥⌘Ln
min

(Fn), e⇤nj = (◆n)�1n1/2(�Fnj(✓
⇤
n)��inf

Fn
), lim ✓⇤n = ✓⇤, and

lim e⇤nj = e⇤j for j  k.

Define

�vec
F (✓) = (�F1(✓)��inf

F , ...,�Fk(✓)��inf

F )0. (27.72)

Note that �vec
F (✓) is the vector of di↵erences �Fj(✓)��inf

F for j  k, not the vector of �Fj(✓) for

j  k. For ✓ 2 ⇥min(F ), maxjk�Fj(✓) =: �F (✓) = �inf

F by the definition of ⇥min(F ), see (25.4),
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and so, �vec
F (✓)  0k element by element.

Note that for (✓⇤n, e
⇤
n) specified above, e⇤n = (◆n)�1n1/2�vec

Fn
(✓⇤n) ! e⇤.

By the definition of ⇥⌘
min

(F ) following (25.4), ✓⇤n 2 ⇥⌘Ln
min

(Fn) implies that �F (✓⇤n) � �inf

Fn


⌘Ln/n1/2 and so

min{�, inf
✓2⇥min(Fn)

||✓⇤n � ✓||}  �Fn(✓
⇤
n)��inf

Fn
 ⌘Ln/n

1/2 ! 0, (27.73)

where the first inequality holds by Assumption A.8(i) and the convergence holds by Assumption

BC.6. Hence, ||✓⇤n � e✓n|| = O(⌘Ln/n1/2) for some sequence {e✓n 2 ⇥min(Fn)}n�1.

Let � 2 (0, 1) be as in Assumption BC.6. By convexity of ⇥ and Assumption A.8(iii), element-

by-element mean value expansions give

��
n n1/2�vec

Fn
(✓⇤n) = ��

n n1/2�vec
Fn

(e✓n) +
@

@✓0
�vec

Fn
(✓0n) · ��

n n1/2(✓⇤n � e✓n), (27.74)

where the jth row of @
@✓�

vec
Fn

(✓0n) (:= �fMFn(✓
0
n) by Assumption A.8(iii)) is evaluated at some

✓0nj 2 ⇥ that is on the line segment between ✓⇤n and e✓n and �vec
Fn

(✓) (:= �EFn em(W, ✓) � �inf

Fn
) is

partially di↵erentiable by Assumption A.8(iii).

Define

✓†n := (1� ��
n )e✓n + ��

n ✓⇤n, or equivalently, ✓†n � e✓n := ��
n (✓⇤n � e✓n), (27.75)

where ✓†n 2 ⇥ for n large by convexity of ⇥ (Assumption A.8(ii)) and ��
n ! 0 (Assumption A.7(i)).

By ||✓⇤n � e✓n|| = O(⌘Ln/n1/2) above, we have ✓⇤n � e✓n ! 0k, n1/2(✓†n � e✓n) = ��
n n1/2(✓⇤n � e✓n) =

O(⌘Ln/
�
n) ! 0k, where the convergence holds by Assumption BC.6, and ✓0nj � e✓n ! 0k for j  k.

Equation (27.74) can be written as

@

@✓
�vec

F (✓0n) · n1/2(✓†n � e✓n) = ��
n n1/2�vec

F (✓⇤n)� ��
n n1/2�vec

F (e✓n) (27.76)

using the second equality in (27.75).
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Applying element-by-element mean value expansions again yields

n1/2�vec
Fn

(✓†n) = n1/2�vec
Fn

(e✓n) +
@

@✓0
�vec

Fn
(✓00n ) · n1/2(✓†n � e✓n)

= n1/2�vec
Fn

(e✓n) +
@

@✓0
�vec

Fn
(✓0n) · n1/2(✓†n � e✓n) + "1n,

= n1/2�vec
Fn

(e✓n) + ��
n n1/2�vec

F (✓⇤n)� ��
n n1/2�vec

F (e✓n) + "1n,

= ��
n n1/2�vec

F (✓⇤n) + "1n + "2n, where

"1n :=

✓
@

@✓0
�vec

Fn
(✓00n )� @

@✓0
�vec

Fn
(✓0n)

◆
· n1/2(✓†n � e✓n) ! 0k,

"2n := (1� ��
n )n1/2�vec

Fn
(e✓n)  0k, (27.77)

the jth row of @
@✓0�

vec
Fn

(✓00n ) is evaluated at some ✓00nj 2 ⇥ that is on the line segment between ✓†n

and e✓n and satisfies ||✓00nj � e✓n||  ||✓†nj � e✓n|| ! 0 for j  k, the third equality uses (27.76), the

convergence of "1n holds by the result above that n1/2(✓†n� e✓n) ! 0k and Assumption A.8(iii), and

the inequality for "2n holds element by element for n large because 1���
n ! 1 and �vec

Fn
(e✓n)  0k

using the result following (27.72) because e✓n 2 ⇥min(Fn).

Because (Rk
[±1]

, d) is compact, there exists a subsequence {un}n�1 of {n}n�1, for which

u1/2n �vec
Fun

(✓†un) and ��
un u

1/2
n �vec

Fun
(✓⇤un

) converge as n ! 1. This, (27.77), and the properties of

"1n and "2n give

limu1/2n �vec
Fun

(✓†un
)  lim��

un
u1/2n �vec

Fun
(✓⇤un

)  0k (27.78)

element by element, where the second inequality holds because �Fn(✓
⇤
n) � �inf

Fn
 ⌘Ln/n1/2 by

(27.73), which implies that ��
un u

1/2
n �vec

Fun
(✓⇤un

)  (��
un ⌘Lun)1k ! 0k element by element using

⌘Ln/
�
n ! 0 by Assumption BC.6.

We have ✓†n ! ✓⇤, because ✓⇤n ! ✓⇤ by the second paragraph of the proof, ||✓⇤n � e✓n|| =

O(⌘Ln/n1/2) = o(1) by results following (27.73), and ✓†n � e✓n ! 0k by results following (27.75).

Define e†n := n1/2�vec
Fn

(✓†n). We have (✓†n, e
†
n) 2 ⇤n,�,Fn , ✓

†
n ! ✓⇤, and e†un ! e := limu1/2n �vec

Fun
(✓†un)

( 0k) by (27.78), and so, (✓⇤, e) 2 ⇤� using ⇤n,�,Fn !H ⇤� by Assumption C.12.

We have (✓⇤, e⇤) 2 ⇤⇤
L by assumption, see the first paragraph of the proof, and e⇤n =

(◆n)�1n1/2�vec
Fn

(✓⇤n) ! e⇤ by the result in the paragraph following (27.72). The second inequality in

(27.78) can be written as lim1��
un e⇤un

 0k, where 
1��
un ! 1. This implies that e⇤ = lim e⇤un

 0k.

It remains to show that ej  �'†(�e⇤j ) for j  k. Suppose e⇤j < 0. Then,

ej := limu1/2n (�Funj(✓
†
un
)��inf

Fun
)  lim��

un
u1/2n (�Funj(✓

⇤
un
)��inf

Fun
) = lim1��

un
e⇤unj = �1,

(27.79)

where the inequality holds by the first inequality in (27.78) and the last equality holds because
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e⇤unj ! e⇤j < 0 and 1��
un ! 1. Hence, �1 = ej  �'†(�e⇤j ). Alternatively, suppose e⇤j = 0. Then,

ej  0 = �'†(�e⇤j ), where the inequality holds by (27.78) since its left-hand side vector equals e

and the equality holds by '†(0) = 0 by property (iii) of '† stated following (27.7). This completes

the proof. ⇤

27.8 Proof of Lemma 27.5

Proof of Lemma 27.5. First, we prove part (a). We have

PFn(b⇥min,n ◆ ⇥⌘n
min

(Fn)) � PFn

 
sup

✓2⇥⌘n
min

(Fn)

n1/2(b�n(✓)� b�inf

n )�  ⌧n

!
(27.80)

by the definition of b⇥min,n in (5.7).

Next, we have

sup
✓2⇥⌘n

min
(Fn)

n1/2(b�n(✓)� b�inf

n )

= sup
✓2⇥⌘n

min
(Fn)

max
jk

⇣
n1/2(b�nj(✓)��Fnj(✓)) + n1/2(�Fnj(✓)��inf

Fn
) + n1/2(�inf

Fn
� b�inf

n )
⌘

 sup
✓2⇥⌘n

min
(Fn)

max
jk

n1/2|b�nj(✓)��Fnj(✓)|+ ⌘n +Op(1), (27.81)

where the inequality holds by the definition of ⇥⌘n
min

(Fn) and Theorem 25.2(a) and (b) (which

requires Assumptions A.0, C.4, C.5, and C.12).

By (26.6), (26.11), and (26.12), for all ✓ 2 ⇥ and j  k,

n1/2
⇣
b�nj(✓)��Fnj(✓)

⌘
=
�Fj(✓)

b�nj(✓)
bK1nj(✓, Fn) +

�Fj(✓)

b�nj(✓)
bK2nj(✓, Fn)

= �⌫mnj(✓) +
1

2
emj(✓) · ⌫�nj(✓) + o⇥p (1). (27.82)

This and Assumptions C.4 and C.5 imply that

sup
✓2⇥⌘n

min
(Fn)

max
jk

n1/2|b�nj(✓)��Fnj(✓)| = Op(1). (27.83)

Equations (27.81) and (27.83) combine to give

sup
✓2⇥⌘n

min
(Fn)

n1/2(b�n(✓)� b�inf

n )  Op(1) + ⌘n. (27.84)
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It follows that

PFn

 
sup

✓2⇥⌘n
min

(Fn)

n1/2(b�n(✓)� b�inf

n )  ⌧n

!

� PFn(Op(1) + ⌘n  ⌧n)

= PFn(Op(1/⌧n) + ⌘n/⌧n  1)

! 1, (27.85)

where the convergence holds because ⌧n ! 1 and ⌘n/⌧n ! 0. Combining this with (27.80) estab-

lishes part (a).

Next, we prove part (b). We have

PFn(⇥
⌘Ln
min

(Fn) ◆ b⇥min,L,n) � PFn

 
sup

✓2b⇥min,n

n1/2(�Fn(✓)��inf

Fn
)�  ⌘Ln

!
(27.86)

by the definition of ⇥⌘Ln
min

(Fn) following (25.4). Next, we have

sup
✓2b⇥min,L,n

n1/2(�Fn(✓)��inf

Fn
)

= sup
✓2b⇥min,L,n

max
jk

⇣
n1/2(�Fnj(✓)� b�nj(✓)) + n1/2(b�nj(✓)� b�inf

n ) + n1/2(b�inf

n ��inf

Fn
)
⌘

 sup
✓2b⇥min,L,n

max
jk

n1/2|b�nj(✓)��Fnj(✓)|+Op(1), (27.87)

where the inequality holds by the definition of b⇥min,L,n (given just below (5.15)) and Theorem

25.2(a) and (b) (which uses Assumptions A.0, C.4, C.5, and C.12). Equation (27.82) and Assump-

tions C.4 and C.5 give

sup
✓2b⇥min,L,n

max
jk

n1/2|b�nj(✓)��Fnj(✓)| = Op(1). (27.88)

In consequence,

PFn

 
sup

✓2b⇥min,L,n

n1/2(�Fn(✓)��inf

Fn
)�  ⌘Ln

!

� PFn(Op(1)  ⌘Ln)

! 1, (27.89)

where the convergence holds because ⌘Ln ! 1. Combining this with (27.86) establishes part (b).
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⇤

28 Proof of Theorem 5.2

28.1 Lemmas 28.1–28.4

We introduce the following lower bound on A⇤
n,�U :

A⇤
Ln,�U := inf

✓2⇥
min
jk

�
�b⌫⇤nj(✓)

�
. (28.1)

Let bcLn,�U (1� ↵) be the ↵ conditional quantile of A⇤
Ln,�U given {Wi}in for ↵ 2 (0, 1).

We introduce the following upper bound on A⇤
n,�L:

A⇤
Un,�L := sup

✓2⇥
min
jk

�
�b⌫⇤nj(✓)

�
. (28.2)

Let bcUn,�L(1� ↵) be the ↵ conditional quantile of A⇤
Un,�L given {Wi}in for ↵ 2 (0, 1).

By Lemma 24.1, Assumption SLK holds i↵ there exists a sequence {✓In 2 ⇥I(Fn)}n�1 for which

n1/2EFn emj(W, ✓In) ! 1 8j  k. Let

 n := min
jk

n1/2EFn emj(W, ✓In),

�n := n1/2�inf

Fn
:= n1/2 inf

✓2⇥
max
jk

(�EF emj(W, ✓)), and

b⌫nj(✓) := n1/2 (bmnj(✓)� EFn emj(W, ✓)) . (28.3)

Under Assumption SLK, { n}n�1 exists and satisfies  n ! 1. Under Assumption MM, �n ! 1.

The following lemmas are used in the proof of Theorem 5.2.

Lemma 28.1 For sequences {Fn}n�1 that satisfy Assumptions C.4, C.5, and SLK for a subse-

quence {pn}n�1 in place of {n}n�1, lim infn!1 PFpn
(b�inf

pn < � 1/2
pn /p1/2n ) = 1.

Lemma 28.2 For sequences {Fn}n�1 that satisfy Assumption BC.3 for a subsequence {pn}n�1 in

place of {n}n�1, (a) bcpn,�U (1�↵)  bcLpn,�U (1�↵) for all sample realizations and (b) bcLpn,�U (1�

↵) = Op(1).

Lemma 28.3 For sequences {Fn}n�1 that satisfy Assumptions C.4, C.5, and MM for a subse-

quence {pn}n�1 in place of {n}n�1, lim infn!1 PFpn
(b�inf

pn > �1/2
pn /p1/2n ) = 1.
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Lemma 28.4 For sequences {Fn}n�1 that satisfy Assumption BC.3 for a subsequence {pn}n�1 in

place of {n}n�1, (a) bcpn,�L(1 � ↵)  bcUpn,�L(1 � ↵) for all sample realizations and

(b) bcUpn,�L(1� ↵) = Op(1).

28.2 Proof of Theorem 5.2

Proof of Theorem 5.2. First we prove part (a). There always exists a subsequence {qn}n�1 of

{n}n�1 such that

lim inf
n!1

PFn

⇣
b�n,�U (↵) < 0

⌘
= lim

n!1
PFqn

⇣
b�qn,�U (↵) < 0

⌘
. (28.4)

It su�ces to show that the rhs of (28.4) equals one with {qn}n�1 replaced by some subsequence

{pn}n�1 of {qn}n�1 (because the limit under the subsequence {pn}n�1 is the same as the limit

under {qn}n�1).

For notational simplicity, we show that the rhs of (28.4) equals one with pn = n. We have

lim inf
n!1

PFn

⇣
b�n,�U (↵) < 0

⌘

:= lim inf
n!1

PFn

⇣
b�inf

n < �bcn,�U (1� ↵)/n1/2
⌘

� lim inf
n!1

PFn

⇣
b�inf

n < � 1/2
n /n1/2 & �  1/2

n /n1/2  �bcn,�U (1� ↵)/n1/2
⌘

� lim inf
n!1

PFn

⇣
b�inf

n < � 1/2
n /n1/2 & �  1/2

n  �bcLn,�U (1� ↵)
⌘

= lim inf
n!1

PFn

⇣
b�inf

n < � 1/2
n /n1/2

⌘

= 1, (28.5)

where the first equality holds by the definition of b�n,�U (↵) in (5.3), the first inequality is straight-

forward, the second inequality holds by Lemma 28.2(a), the second equality holds because � 1/2
n !

�1 using Assumption SLK and bcLn,�U (1 � ↵) = Op(1) by Lemma 28.2(b), and the last equality

holds by Lemma 28.1.

It remains to verify that the assumptions used in Lemmas 28.1 and 28.2, namely, Assumptions

BC.3, C.4, and C.5 hold for a subsequence {pn}n�1 (of {qn}n�1) in place of {n}n�1 (because

Assumption SLK, which is imposed in Lemmas 28.1 and 28.2, is also imposed in the present

theorem). Such a subsequence {pn}n�1 exists by the proof of Theorem 5.1(a) (because Assumptions

A.0–A.6 of Theorem 5.1(a) are also imposed by the present theorem. This completes the proof of

part (a).

The proof of part (b) is analogous to that of part (a) with the inequalities inside the probabilities
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in (28.5) reversed, with �1/2
n in place of � 1/2

n in (28.5), and using Lemmas 28.3 and 28.4 in place

of Lemmas 28.1 and 28.2. ⇤

28.3 Proofs of Lemmas 28.1–28.4

Proof of Lemma 28.1. For notational simplicity, we prove the result for pn = n. By Lemma 24.1,

under Assumption SLK, there exists a sequence {✓In 2 ⇥I(Fn)}n�1 for which n1/2EFn emj(W, ✓In) !

1 8j  k. For b⌫nj(✓) defined in (28.3), b⌫nj(✓) = O⇥
p (1) by (27.29), using Assumptions C.4 and

C.5. Hence, b⌫n(✓In) = Op(1).

For {✓In}n�1 as above, we have

n
b�inf

n < � 1/2
n /n1/2

o
=

⇢
inf
✓2⇥

max
jk

(�bmnj(✓)) < � 1/2
n /n1/2

�

�
⇢
max
jk

(�bmnj(✓
I
n)) < � 1/2

n /n1/2

�

=
n
bmnj(✓

I
n) >  1/2

n /n1/2 8j  k
o

=
n
n1/2EFnmj(W, ✓In) + b⌫nj(✓In) >  1/2

n 8j  k
o

=
n
 1/2
n +Op(1) > 0

o
, (28.6)

where the first equality holds by the definition of b�inf
n , the third equality holds by the definition of

b⌫nj(✓) in (28.3), and the last equality uses b⌫n(✓In) = Op(1) and the definition of  n in (28.3).

We have PFn( 
1/2
n +Op(1) > 0) ! 1 because  n ! 1 by definition and Assumption SLK. This

and (28.6) establish the result of the lemma. ⇤

Proof of Lemma 28.2. For notational simplicity, we prove the result for pn = n. The bootstrap

statistic A⇤
n,�U is defined in (5.14) (with b deleted) to be

A⇤
n,�U := inf

✓2b⇥min,n

min
j12 bJne(✓)

max
jk

�
�b⌫⇤nj(✓) + 1(j 6= j1)benj(✓) + 1(j = j1)'(⇠

e
nj(✓))

�
. (28.7)

Using this and A⇤
Ln,�U = inf✓2⇥minj1k

⇣
�b⌫⇤nj1(✓)

⌘
(as defined in (28.1) with j1 in place of j), we

obtain

A⇤
Ln,�U  A⇤

n,�U for all bootstrap and sample realizations (28.8)

by replacing maxjk in the definition of A⇤
n,�U by j = j1,minj12 bJne(✓)

by minj1k, 1(j = j1)'(⇠enj(✓))

by 0 (using '(⇠) � 0 8⇠ 2 R) and inf✓2b⇥min,n
by inf✓2⇥ .

By definition, bcn,�U (1�↵) and bcLn,�U (1�↵) are the 1�↵ quantiles of �A⇤
n,�U and �A⇤

Ln,�U ,

respectively. This and (28.8) give bcn,�U (1 � ↵)  bcLn,�U (1 � ↵) for all sample realizations (of
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{Wni}in,n�1), which establishes part (a) of the lemma.

By (27.37), (27.38), the definition of Gm�
j (✓) in (27.9), Assumption BC.3, and the continuous

mapping theorem,

A⇤
Ln,�U !d AL1,�U := inf

✓2⇥
min
jk

�
�Gm�

j (✓)
�
conditional on {Wni}in,n�1 a.s.[P5], (28.9)

where AL1,�U 2 R a.s. In consequence, bcLn,�U (1�↵) = O(1) conditional on {Wni}in,n�1 a.s.[P5].

In turn, this implies that bcLn,�U (1 � ↵) = Op(1) by an analogous argument to that used to show

that a.s. convergence implies convergence in probability, which establishes part (b) of the lemma.

⇤

Proof of Lemma 28.3. For notational simplicity, we prove the results with pn = n. We have

n
b�inf

n > �1/2
n /n1/2

o
=

⇢
inf
✓2⇥

max
jk

(�bmnj(✓)) > �1/2
n /n1/2

�

=

⇢
inf
✓2⇥

max
jk

(�b⌫nj(✓)� n1/2EFnmj(W, ✓)) > �1/2
n

�

=

⇢
inf
✓2⇥

max
jk

(O⇥

p (1)� n1/2EFnmj(W, ✓)) > �1/2
n

�

=

⇢
inf
✓2⇥

max
jk

(�n1/2EFnmj(W, ✓)) +Op(1) > �1/2
n

�

=
n
�n +Op(1) > �1/2

n

o
, (28.10)

where the first equality holds by the definition of b�inf
n , the second equality holds by the definition

of b⌫nj(✓) in (28.3), the third equality holds because b⌫nj(✓) = O⇥
p (1) by (27.29) using Assumptions

C.4 and C.5, the fourth equality holds by standard calculations, and the last equality holds by the

definitions of �n in (28.3) and �inf

Fn
in (5.1).

We have PFn(�n +Op(1) > �1/2
n ) ! 1 because �n ! 1 by Assumption MM. This and (28.10)

establish the result of the lemma. ⇤

Proof of Lemma 28.4. We have A⇤
n,�L  A⇤

Un,�L for all sample and bootstrap realizations

because A⇤
n,�L := inf✓2b⇥min,n

maxjk(�b⌫⇤nj(✓)�'(�⇠enj(✓))  sup✓2⇥maxjk(�b⌫⇤nj(✓)) =: A⇤
Un,�L,

where the inequality holds because '(⇠) � 0 for all ⇠ 2 R by the definition of '. In consequence,

bcn,�L(1�↵)  bcUn,�L(1�↵) for all sample realizations by the definition of a quantile, which proves

part (a).

The proof of part (b) is the same as that of Lemma 28.2(b) but with sup✓2⇥ in place of inf✓2⇥,

given the di↵erence in the definitions of A⇤
Ln,�U in (28.1) and A⇤

Un,�L in (28.2). ⇤
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29 Proof of Corollary 5.3

Proof of Corollary 5.3. Part (a) holds by Theorem 5.1(a) by the following calculations:

lim sup
n!1

sup
F2P:�inf

F >0

PF

⇣
n1/2 b�inf

n < �bcn,�U (1� ↵)
⌘

= 1� lim inf
n!1

inf
F2P:�inf

F >0

PF

⇣
n1/2 b�inf

n � �bcn,�U (1� ↵)
⌘

 1� lim inf
n!1

inf
F2P:�inf

F >0

PF

⇣
n1/2

⇣
b�inf

n ��inf

F

⌘
� �bcn,�U (1� ↵)

⌘

 1� lim inf
n!1

inf
F2P

PF

⇣
�inf

F 2 CIn,�U (↵)
⌘

 ↵, (29.1)

where the first inequality holds because the infimum is over �inf

F � 0, the second inequality holds

because {F 2 P : �inf

F > 0} ⇢ P and uses the definition of CIn,�U (↵) in (5.3), and the last

inequality holds by Theorem 5.1(a).

Part (b) holds by Theorem 5.2(a) because

lim inf
n!1

PFn

⇣
n1/2 b�inf

n < �bcn,�U (1� ↵)
⌘
= lim inf

n!1
PFn

⇣
b�n,�U (↵) < 0

⌘
(29.2)

by the definition of b�n,�U (↵) in (5.3). ⇤

30 Behavior of b�n,�U(↵) under Assumption MM

The CI CIn,�U (↵) equals (�1, b�n,�U (↵)]. Its upper-bound b�n,�U (↵) is used in the construc-

tion of the SPUR2 test and CS. The following result concerns the behavior of b�n,�U (↵) under

Assumption MM.

Theorem 30.1 Suppose Assumptions A.0–A.6 hold. For sequences {Fn}n�1 that satisfy Assump-

tion MM, lim infn!1 PFn(b�n,�U (↵) > 0) = 1.

Comment. Theorem 30.1 is used in Section 4.6 to show that the level ↵ adaptive SPUR2 test

typically has the same power properties as the level ↵2 SPUR1 test when the model is misspecified

and Assumption MM holds, where ↵ = ↵1 + ↵2 and ↵1,↵2 > 0, such as ↵ = .05 and ↵2 = .045.

Proof of Theorem 30.1. There always exists a subsequence {qn}n�1 of {n}n�1 such that

lim inf
n!1

PFn

⇣
b�n,�U (↵) > 0

⌘
= lim

n!1
PFqn

⇣
b�qn,�U (↵) > 0

⌘
. (30.1)
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It su�ces to show that the rhs of (30.1) equals one with {qn}n�1 replaced by some subsequence

{an}n�1 of {qn}n�1 (because the limit under the subsequence {an}n�1 is the same as the limit

under {qn}n�1).

First, we consider the same conditions as in Theorem 27.4(a), namely, that {Fn}n�1 is a sequence

that satisfies Assumptions A.0, A.6, BC.3–BC.5, C.4, C.5, C.12, and C.13 for a subsequence {pn}n�1

in place of {n}n�1. In this case, by the proof of Theorem 27.4(a), see the paragraph that contains

(27.15), we have

bcpn,�U (1� ↵) � bcUpn,�U (1� ↵) + op(1), (30.2)

where bcUn,�U (1�↵) is defined following (27.8). In addition, there exists a subsequence {an}n�1 of

{pn}n�1 for which

bcUan,�U (1� ↵) � cU1 � 1 wp ! 1 and cU1 � 1 > �1 (30.3)

by (27.19) with " = 1.

For notational simplicity, we show that the rhs of (30.1) equals one with an = n. We have

lim
n!1

PFn

⇣
b�n,�U (↵) > 0

⌘
:= lim

n!1
PFn

⇣
b�inf

n > �bcn,�U (1� ↵)/n1/2
⌘

� lim
n!1

PFn

⇣
b�inf

n > �1/2
n /n1/2 & �1/2

n /n1/2 � �bcn,�U (1� ↵)/n1/2
⌘

� lim
n!1

PFn

⇣
b�inf

n > �1/2
n /n1/2 & �1/2

n � �bcUn,�U (1� ↵) + op(1)
⌘

= lim
n!1

PFn

⇣
b�inf

n > �1/2
n /n1/2

⌘

= 1, (30.4)

where �n is defined in (28.3), the first equality holds by the definition of b�n,�U (↵) in (5.3), the

first inequality is straightforward, the second inequality holds by (30.2), the second equality holds

by �1/2
n ! 1 by Assumption MM and (30.3), and the last equality holds by Lemma 28.3, which

uses Assumptions C.4, C.5, and MM.

It remains to verify that the assumptions used in Theorem 27.4(a) and Lemma 28.3, namely,

Assumptions BC.3–BC.5, C.4, C.5, C.12, and C.13, hold for a subsequence {pn}n�1 (of {qn}n�1) in

place of {n}n�1 (because Assumptions A.0, A.6, and MM, which are imposed in Theorem 27.4(a),

are also imposed in the present theorem). Such a subsequence {pn}n�1 exists by the proof of

Theorem 5.1(a) (because Assumptions A.0–A.5 of Theorem 5.1(a) are also imposed by the present

theorem. This completes the proof. ⇤
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31 Assumptions

For ease of reference, we state all of the assumptions used in the paper and online Appendix C

here.

Assumption A.0. (i) ⇥ is compact and non-empty and (ii) EF emj(W, ✓) is upper semi-continuous

on ⇥ 8j  k, 8F 2 P.

Assumption A.1. The observations W1, ...,Wn are i.i.d. under F and {emj(·, ✓) : W ! R} and

{em2

j (·, ✓) : W ! R} are measurable classes of functions indexed by ✓ 2 ⇥ 8j  k, 8F 2 P.

Assumption A.2. For some a > 0, supF2P EF sup✓2⇥ ||em(W, ✓)||4+a < 1.

Assumption A.3. The empirical process ⌫n(·) is asymptotically ⇢F -equicontinuous on⇥ uniformly

in F 2 P.

Assumption A.4. The covariance kernel ⌦F (✓, ✓0) satisfies: for all F 2 P,

lim�!0 sup||(✓1,✓01)�(✓2,✓02)||<� ||⌦F (✓1, ✓01)� ⌦F (✓2, ✓02)|| = 0.

Assumption A.5. EF em(W, ✓) is equicontinuous on ⇥ over F 2 P. That is, lim�#0 supF2P

sup||✓�✓0||<� ||EF em(W, ✓)� EF em(W, ✓0)|| = 0.

Assumption A.6. (i) n ! 1. (ii) ⌧n ! 1.

Assumption A.7. (i) n ! 1 and (ii) n/n1/2 ! 0.

Assumption A.8. (i) For all F 2 P and ✓ 2 ⇥, �F (✓)��inf

F � cmin{�, inf✓2⇥min(F )
||✓� ✓||} for

constants c, � > 0.

(ii) ⇥ is convex.

(iii) EF em(W, ✓) is di↵erentiable in ✓ for all F 2 P and {fMF (✓) := (@/@✓0)EF em(W, ✓) : F 2 P}

is equicontinuous, i.e., lim�!0 supF2P sup
(✓,✓):||✓�✓||� ||fMF (✓)� fMF (✓)|| = 0.

The following assumptions apply to a drifting sequence of distributions {Fn}n�1.

Assumption C.4. sup✓2⇥ ||EFn em(W, ✓) � em(✓)|| ! 0 for some nonrandom bounded continuous

Rk-valued function em(·) on ⇥.

Assumption C.5. ⌫n(·) := (⌫mn (·)0, ⌫�n(·)0)0 ) G(·) := (Gm(·)0, G�(·)0)0 as n ! 1, where {G(✓) :

✓ 2 ⇥} is a mean zero R2k-valued Gaussian process with bounded continuous sample paths a.s.

and Gm(✓), G�(✓) 2 Rk.

Assumption C.11. ⌦Fn(·, ·) !u ⌦1(·, ·) for some continuous R2k⇥2k-valued function ⌦1(·, ·) on

⇥2.

Assumption C.12. ⇤n,�,Fn !H ⇤� for some non-empty set ⇤� 2 S(⇥⇥Rk
[±1]

).

Assumption C.13. ⇤⌘n
n,�,Fn

!H ⇤�min for some non-empty set ⇤�min 2 S(⇥ ⇥ Rk
[±1]

), where

{⌘n}n�1 is a sequence of positive constants for which ⌘n ! 1.

The following assumptions apply to a drifting sequence of distributions {Fn}n�1.
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Assumption BC.3. {⌫⇤n(·)|{Wni}in,n�1} ) G(·) a.s.[P5], where G(·) is as in Assumption C.5.

Assumption BC.4. ⇤⇤⌘n
n,�,Fn

!H ⇤⇤
�min

for some non-empty set ⇤⇤
�min

2 S(⇥⇥R2k
[±1]

⇥{1, ..., k})

for some sequence of constants {⌘n}n�1 that satisfies ⌘n ! 1 and ⌘n/⌧n ! 0 for the constants

{⌧n}n�1 that appear in (b✓w) and satisfy Assumption A.6(ii).

Assumption BC.5. b⇥min,n ◆ ⇥⌘n
min

(Fn) wp!1 for constants {⌘n}n�1 as in Assumptions BC.4

and C.13.

Assumption BC.6. ⇤⇤⌘Ln
n,Fn,L

!H ⇤⇤
L for some non-empty set ⇤⇤

L 2 S(⇥⇥Rk
[±1]

) for some sequence

of constants {⌘Ln}n�1 that satisfies ⌘Ln ! 1, ⌘Ln/n1/2 ! 0, and ⌘Ln/
�
n ! 0 for some � 2 (0, 1)

for the constants {n}n�1 that are employed in the definition of A⇤
n,�L and satisfy Assumption A.7.

Assumption BC.7. b⇥min,L,n ✓ ⇥⌘Ln
min

(Fn) wp!1 for constants {⌘Ln}n�1 as in Assumptions BC.6.

Assumption SLK. The sequence {Fn}n�1 is such that n1/2�inf

Fn
! �1.

Assumption SLK.1. The sequence {Fn}n�1 is such that limn!1n1/2dH(⇥min(Fn),⇥MR
I (Fn)) =

1.

Assumption MM. The sequence {Fn}n�1 is such that n1/2�inf

Fn
! 1.
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32 Outline of Online Appendix D

Appendix D provides the following results.

Section 33 provides an alternative interpretation of the identified set ⇥MR
I (F ).

Section 34 proves Lemma 33.1 that appears in Section 33.

Section 35 shows that when the “max” S function is employed, the SPUR test statistic is

equivalent to a recentered test statistic, as has been considered in Chernozhukov, Hong, and Tamer

(2007) for use with a correctly-specified model.

Section 36 discusses extensions of the results of the paper to non-i.i.d. observations, to tests

with weighted moment inequalities, and to tests without the standard-deviation normalization.

33 An Alternative Interpretation of ⇥MR

I
(F)

Here we provide an alternative interpretation of the MR-identified set ⇥MR
I (F ). We show that if

one allows for a large class of transformations of the inequality model that yield non-empty identified

sets, then the union of the identified sets for the transformations that minimize the distance between

the original model and the transformed model is ⇥MR
I (F ). Furthermore, if ⇥MR

I (F ) is a singleton,

as is often the case under identifiable misspecification, then ⇥MR
I (F ) equals the identified set

corresponding to each of these “minimal” transformations. These results also hold if the class of

transformations is restricted to nonnegative shift functions, which necessarily relax the original

model.

Consider two moment inequality models EF em(W, ✓) � 0k and EF emt(W, ✓) � 0k. Define the

distance between the two models as

d(em, emt) := sup
✓2⇥

��EF em(W, ✓)� EF emt(W, ✓)
��
1 , (33.1)

where k·k1 denotes the `1 norm on Rk.

A transformed version of the original model can always be written as emt(W, ✓) = em(W, ✓) +

t(W, ✓) for a transformation function t. Suppose sup✓2⇥ ||EF t(W, ✓)||1 < 1. Let T (F ) be the

set of transformation functions t that make the identified set non-empty; let T ⇤(F ) be the set of

transformation functions that minimize the distance between em and emt over t 2 T (F ); and let

1



⇥It(F ) be the identified set corresponding to a transformation function t. That is,

T (F ) := {t : EF emt(W, ✓) � 0k for some ✓ 2 ⇥},

T ⇤(F ) := argmin
t2T (F )

d(em, emt), and

⇥It(F ) := {✓ 2 ⇥ : EF em(W, ✓) + EF t(W, ✓) � 0k}. (33.2)

The next lemma shows that the union of the identified sets corresponding to t 2 T ⇤(F ) is ⇥MR
I (F ).

Lemma 33.1 Suppose Assumption A.0 holds. Then, [t2T ⇤(F )⇥It(F ) = ⇥MR
I (F ).

Comment. If ⇥MR
I (F ) is a singleton, then ⇥It(F ) = ⇥MR

I (F ) for all t 2 T ⇤(F ). If the union is

restricted to nonnegative transformations t 2 T ⇤(F ), Lemma 33.1 still holds.

34 Proof of Lemma 33.1

Proof of Lemma 33.1. Assumption A.0 guarantees that the infimum in the definition of rinfF is

attained. Let tj(✓) = EF tj(W, ✓), where tj(W, ✓) is the j element of t(W, ✓). We first show that

T ⇤(F ) =

⇢
t 2 T (F ) : sup

✓2⇥
max
jk

|tj(✓)| = rinfF

�
. (34.1)

For any t 2 T (F ), suppose sup✓2⇥ maxjk|tj(✓)| < rinfF . Then, for ✓I 2 ⇥It(F ), we have et :=

maxjk|tj(✓I)| < rinfF and the constant function t(W, ✓) = et1k satisfies ⇥I,et1k 6= ?, which contradicts

the definition of rinfF . Hence, sup✓2⇥ maxjk|tj(✓)| � rinfF . Taking t(W, ✓) = rinfF 1k, this lower bound

is attained and we have mint2T (F ) sup✓2⇥ maxjk|tj(✓)| = rinfF .

The constant function tc(W, ✓) = rinfF 1k has tc 2 T ⇤(F ) and ⇥Itc(F ) = ⇥MR
I (F ). Hence, it

su�ces to show that ⇥It(F ) ✓ ⇥MR
I (F ) for any t 2 T ⇤(F ). For any t 2 T ⇤(F ), we have tj(✓)  rinfF

for j  k for all ✓ 2 ⇥ by (34.1). It follows that

⇥It(F ) :={✓ 2 ⇥ : EF em(W, ✓) + EF t(W, ✓) � 0k}

✓{✓ 2 ⇥ : EF em(W, ✓) + EF t(W, ✓) + (rinfF 1k � EF t(W, ✓)) � 0k} = ⇥MR
I (F ), (34.2)

which concludes the proof. ⇤
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35 Recentered Test Statistics

An alternative to the SPUR test statistic defined in Section 4.1 is a recentered test statistic,

such as considered in Chernozhukov, Hong, and Tamer (2007), which is defined to be

Sn,Recen(✓) := Sn,Std(✓)� inf
✓2⇥

Sn,Std(✓), (35.1)

where Sn,Std(✓) := S(n1/2 bmn(✓), b⌦n(✓)) is a “standard” test statistic, such as one considered in

Andrews and Soares (2010), as in (4.5) with brinfn = 0. The MR-identified set corresponding to the

recentered statistic is the set of ✓ values that minimize the population version of the recentered

statistic.52 It depends on the choice of test statistic.

Chernozhukov, Hong, and Tamer (2007) consider recentered test statistics, but they do not

analyze their asymptotic properties under misspecification or under correct specification with drift-

ing sequences of distributions {Fn}n�1. Lemma 35.1 below, combined with Section 12 in online

Appendix A, shows that subsampling a recentered test statistic does not necessarily deliver correct

asymptotic size under model misspecification. In addition, it is not clear whether the application of

subsampling to recentered test statistics provides critical values that are uniformly asymptotically

valid in general under correct specification.53

When Sn,Std(✓) is a test statistic from Andrews and Soares (2010) with the function S equal

to S4, see (4.6), we denote the recentered test statistic by S4n,Recen(✓). It is easy to show that the

MR-identified set corresponding to S4n,Recen(✓) is the same as the MR-identified set in Section 3.

On the other hand, if one employs a di↵erent S function in SRecen,n(✓), the MR-identified set is

di↵erent.

When the function S employed by the SPUR test statistic Sn(✓) defined in (4.5) is S4, we denote

the SPUR statistic by S4n(✓). The following lemma shows that the recentered statistic S4n,Recen(✓)

is identical to the S4n(✓) SPUR statistic. That is, for the S4 function, the recentered statistic is

not an alternative to the SPUR statistic—it is the same.

Lemma 35.1 For any ✓ 2 ⇥, S4n,Recen(✓) = S4n(✓).

Comment. Section 12 in online Appendix A shows that, for the function S4, subsampling the

52The population version of the recentered statistic is S(EF em(W, ✓),⌦F (✓))� inf✓2⇥
S(EF em(W, ✓),⌦F (✓)), where

⌦F (✓) := V arF (em(Wi, ✓)).
53The reason is that, even under correct specification, the recentering term inf✓2⇥

Sn,Std(✓) has a complicated
asymptotic distribution under drifting sequences of distributions (given by A1(⇤) in Theorem 15.3(b) when the re-
centered test is based on S4 in (4.6)). In consequence, the argument for the correct asymptotic size of the subsampling
test based on a test statistic without recentering that is given in Andrews and Guggenberger (2009) does not extend
to the case of the subsampling recentered test.
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SPUR test statistic does not necessarily yield correct asymptotic size under model misspecification.

Given Lemma 35.1, this also is true for subsampling the recentered test statistic.

Proof of Lemma 35.1. By (4.4), brinfn := inf✓2⇥maxjk[bmnj(✓)]�. Hence, for S = S4, inf✓2⇥

Sn,Std(✓) = n1/2brinfn . In consequence,

S4n,Recen(✓) = max
jk

h
n1/2 bmnj(✓)

i

�
� n1/2brinfn and

S4n(✓) = max
jk

h
n1/2 bmnj(✓) + n1/2brinfn

i

�
. (35.2)

We claim: S4n,Recen(✓) > 0 i↵ S4n(✓) > 0. This clearly holds if brinfn = 0, so suppose brinfn > 0. In this

case, S4n,Recen(✓) > 0 i↵ �n1/2 bmnj(✓) � n1/2brinfn > 0 for some j  k i↵ S4n(✓) > 0, which proves

the claim. In addition, S4n(✓) � 0 because [x]� � 0 for all x, and S4n,Recen(✓) � 0 because brinfn is

the inf✓2⇥ of maxjk[bmnj(✓)]�, which completes the proof. ⇤

For recentered tests based on S not equal to S4, one can determine the asymptotic distribution

of Sn,Recen(✓n) under suitable drifting sequences {✓n}n�1 and {Fn}n�1 by altering the proof of

Theorem 15.3(b). However, the resulting asymptotic distribution seems problematic because it is

not apparent how one can construct a critical value in an EGMS fashion that exploits the analogue

of the condition maxjk bj � 0, which appears when S = S4.

36 Extensions

36.1 Non-I.I.D. Observations

The basic results in this paper are given under high-level conditions that allow for non-identically

distributed and/or clustered observations, as well as time series observations. For example, this is

true of Theorem 15.3 and of Theorem 18.1 in online Appendix A, which is the key ingredient to the

proof of Theorem 4.1. In particular, provided the distributions F of the observations are restricted

such that Assumptions C.5 and C.6 in Section 15.1, as well as Assumption BC.3, which is stated

in Section 18 in online Appendix B, can be verified for suitable subsequences {pn}n�1 of {n}n�1,

the rest of the proofs of the asymptotic level results go through.

For non-i.i.d. observations, the following changes are needed: the nonparametric i.i.d. bootstrap

defined just above (4.17) needs to be changed (a) for clustered observations to a cluster-level

nonparametric i.i.d. bootstrap and (b) for time series observations to a block bootstrap or Markov

bootstrap, but (c) for independent non-identically distributed observations does not need to be

changed. With these changes, the misspecification index CI’s and the SPUR1 and SPUR2 tests
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and CS’s have correct asymptotic level (under conditions such that Assumptions C.5, C.6, and

BC.3 can be verified).

36.2 Weighted Moments

The weights used in the definition of the MR-identified set ⇥MR
I (F ) in (3.6) are uniform

weights. This follows from the 1k vector that appears in (3.5) and (3.6). Non-uniform weights ! :=

(!1, ...,!k)0, where !j 2 [0,1) for j  k, can be introduced by replacing 1k by ! = (1/!1, ..., 1/!k)0

in these equations, where 1/0 := 1. Equivalently, one can define rFj(✓) := [!jEF emj(W, ✓)]� and

rF (✓) = maxjk rFj(✓). The larger is !j , the more weight is placed on inequality j and the less

inequality j is relaxed in the MR-identified set under misspecification. For example, if one believes

that some key moment inequalities are correctly specified and one does not want these inequalities

to be relaxed under misspecification, then one can set the weights !j corresponding to these in-

equalities to be very large relative to the other weights, such as 1000 versus 1. If !j = 0, the jth

moment inequality is ignored.

The SPUR1 and SPUR2 tests and CS’s can be constructed with weights !. One replaces bmnj(✓)

by !j bmnj(✓) in the definition of brnj(✓) in (4.4), in (4.5), (4.19), and (4.20)–(4.23), and in the defini-

tion of b�nj(✓) in (5.2). One replaces b⌫⇤njb(✓) by !jb⌫⇤njb(✓) in (4.18), (4.21), and (5.14). One replaces

bsdnjB(✓) by !j
bsdnjB(✓) in (5.8). One replaces n1/2m⇤

njb(✓)/b�⇤njb(✓) by !jn1/2m⇤
njb(✓)/b�⇤njb(✓) in

the definitions of sd⇤anjB(✓) for a = 1, 2, 3 following (4.19), following (4.21), and following (4.22),

respectively.

Provided !j 2 [0,1) for all j  k and !j > 0 for some j  k, the asymptotic results concerning

the SPUR1 and SPUR2 tests and CS’s, i.e., Theorem 4.1, as well as Theorem 11.1 in online

Appendix A, go through for the weighted versions of these tests. The tests are invariant to the

scale of !.

36.3 Tests without the Standard-Deviation Normalization

In some scenarios, it may be desirable to define the MR-identified set ⇥MR
I (F ) in (3.6) with-

out the standard deviation normalization of the moment functions—i.e., to define ⇥MR
I (F ) with

m(W, ✓) in place of em(W, ✓). For example, in their study of demand based on quasilinear util-

ity, Allen and Rehbeck (2019) do not renormalize their moment inequality functions because the

moment functions are denominated in dollars, which makes the interpretation simple.

In this paper, a notationally-convenient equivalent way to describe non-normalized moments

is to redefine �2Fj(✓) = 1 in (3.2) 8j  k, 8✓ 2 ⇥. Then, m(W, ✓) = em(W, ✓). Correspondingly,

the non-normalized CI’s CIn,�U (↵), CIn,�L(↵), and CIn,�(↵) in Section 5 and SPUR tests and
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CS’s in Section 4 are defined as follows. One defines b�2nj(✓) = 1 in (4.2), which yields bmnj(✓) =

mnj(✓) in (4.4), (4.5), (4.19)–(4.23), (5.2), and (5.11). One defines b�⇤2njb(✓) = 1 in (4.17), which

yields b⌫⇤njb(✓) := n1/2(m⇤
njb(✓) � mnj(✓)) in (4.17), (4.18), (4.21), (5.14), and (5.15), and yields

n1/2m⇤
njb(✓)/b�⇤njb(✓) = n1/2m⇤

njb(✓) in the definitions of sd⇤anjB(✓) for a = 2, 3 following (4.21) and

following (4.22), respectively. Lastly, one defines bm�
nj(W, ✓) = 0k in (5.11), where 0k = (0, ..., 0)0 2

Rk, and bGm�
njs(✓) = (c0j , 0

0
k)
b⌦1/2
n+ (✓)Zs in the definition of bsdnjB(✓) in (5.9).

With these changes, the asymptotic level results of Theorems 4.1 and 5.1 hold provided the

assumptions imposed in the theorems are modified by taking �2Fj(✓) = b�2nj(✓) = 1 and the number

of moments finite in Assumption A.2 is reduced to 2 + a from 4 + a. In addition, the results of

Theorem 11.1 and Lemma 11.2 in online Appendix A for the set estimator b⇥n also hold in the

non-normalized case with the same modifications.

Note that weighted moments also can be employed with non-normalized moments. In this case,

the changes outlined above for both of these scenarios need to be employed.

36.4 Alternative '(⇠) Functions

The results of Theorems 4.1, 5.1, and 5.2 and Corollary 5.3 hold not just for tests and CS’s

based on the GMS function '(⇠) defined in (4.19), but for tests and CS’s based on any '(⇠) function

that satisfies Assumption A.5 in Andrews and Kwon (2019). See Andrews and Kwon (2019) for

the requisite adjustments to the proof of Theorem 4.1. The adjustments for the other results are

analogous.
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