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Abstract

We fully solve an assignment problem with heterogeneous firms and multiple hetero-

geneous workers whose skills are imperfect substitutes, that is, when production is

submodular. We show that sorting is neither positive nor negative and is character-

ized sufficiently by two regions. In the first region, mediocre firms sort with mediocre

workers and coworkers such that output losses are equal across all these pairings (com-

plete mixing). In the second region, high skill workers sort with a low skill coworker

and a high productivity firm, while high productivity firms employ a low skill worker

and a high skill coworker (pairwise countermonotonicity). The equilibrium assignment

is also necessarily characterized by product countermonotonicity, meaning that sorting

is negative for each dimension of heterogeneity with the product of heterogeneity in

the other dimensions. The equilibrium assignment as well as wages and firm values are

completely characterized in closed form. We illustrate our theory with an application

to show that our model is consistent with the observed dispersion of earnings within

and across U.S. firms. Our counterfactual analysis gives evidence that the change in

the firm project distribution between 1981 and 2013 has a larger effect on the observed

change in earnings dispersion than the change in the worker skill distribution.
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1 Introduction

How do heterogeneous workers sort to work in teams at heterogeneous firms? What individuals

work together, and what firm do they work for? How do worker earnings depend on their employer,

their coworkers, as well as other firms and workers in the economy? How does the firm value vary

with the labor they hire? To answer these questions, we study the sorting of multiple heterogeneous

workers into teams at heterogeneous firms when workers’ skills are imperfect substitutes.

The traditional approach to one worker-one firm assignment problems is to provide conditions

under which sorting is positive or negative. Becker (1973) shows that optimal sorting is positive

under supermodular technologies and negative under submodular technologies. For many-to-

one assignment problems, such as sorting multiple workers into teams to work at firms, Kremer

(1993) shows that the analysis of Becker (1973) straightforwardly extends when the technology is

supermodular, in which case equilibrium sorting is positive.

An important open question is how to characterize sorting of heterogeneous firms with multiple

heterogeneous workers when technology is submodular. While positive sorting, or comonotonicity,

easily extends to matching with multiple workers, Ahlin (2017), Chade and Eeckhout (2018), and

Eeckhout (2018) argue that negative sorting, or countermonotonicity, does not have such a simple

multi-type counterpart. Galichon (2021) posits that considering multi-type sorting problems in

economic applications is a considerable outstanding challenge. Bonhomme (2021), describing the

literature on sorting and teams, concludes his review by stating that incorporating complemen-

tarities in matching problems with many types is an important venue for future research. We

show that this problem can be analyzed as a multimarginal optimal transport problem and fully

characterize the solution in closed form when production is submodular.

We are the first to fully solve a sorting problem with firm heterogeneity and multiple hetero-

geneous workers whose skills are imperfect substitutes, that is, when production is submodular.

In doing so, this paper makes two contributions. First, we show that an equilibrium assignment

is sufficiently characterized by two types of assignment regions. In the first region, mediocre firms

sort with mediocre workers and coworkers such that output losses are equal across all these pair-

ings (complete mixing). In the second region, high skill workers sort with a low skill coworker and

a high productivity firm, while high productivity firms employ a low skill worker with a high skill

coworker (pairwise countermonotonicity). The equilibrium assignment is also necessarily char-
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acterized by product countermonotonicity, meaning that sorting is negative in every dimension

of heterogeneity with the product of heterogeneity in the remaining dimensions. For example, a

worker’s skill is negatively sorted with the product of firm productivity and their coworkers’ skills.

In contrast to most of the assignment literature, sorting is neither positive nor negative. Second,

we characterize the equilibrium assignment as well as workers’ wages and firm values in closed

form. We illustrate the use of our theory with a quantitative application to earnings dispersion

within and across U.S. firms.

We develop our findings using a transferable utility assignment model with worker peer effects

and firm heterogeneity. To illustrate our theory, and introduce the notions of product- and pairwise

countermonotonicity, consider a simple production and team technology.1 The output of a firm is

the product of the value of their project, or productivity z, and the probability their worker team

is able to solve production problems q. When workers independently do not know how to solve a

problem with probability xi, team quality with workers x1 and x2 is q = 1−x1x2, and output is:

y(x1, x2, z) = zq = z(1− x1x2). (1)

Production is supermodular in team quality and productivity, and submodular in worker skills

and productivity. Workers are imperfect substitutes, with peer effects in output scaling with the

project value.

To characterize equilibrium in our assignment model with worker and firm heterogeneity under

technology (1), and to relate our findings to prior work, we proceed in three steps. We first discuss

one-to-one assignment models nested in our framework to contrast our setup and findings to prior

work. We then analyze a discretized version of our problem to formulate a conjecture for the set of

potential matches under an equilibrium assignment. Finally, we formally characterize the solution

to the continuous version of our problem.

Absent any interaction between different workers at the same firm, equilibrium is characterized

by positive sorting when the production function is supermodular, as in Becker (1973). If output is

supermodular, or workers and firms are complements, it is optimal to pair high-skill workers with

high-skill firms, and low-skill workers with low-skill firms. Instead, if a high-skill worker is paired

1In Section 2, we show the logic extends to any number of workers per firm, and general submodular production
functions. Consistent with this setup, Grossman and Maggi (2000) argue that a submodular production function
accurately characterizes processes that require problem solving. In their example, it only takes one good idea of
two software engineers to solve a programming problem. In Sah and Stiglitz (1986), team quality is the probability
of correctly approving projects when workers are organized in a polyarchy.
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with a low productivity firm, and a low-skill worker is paired with a high-productivity firm, output

can be increased by pairing the high skill worker and high productivity firm together and pairing

the low skill worker and low productivity firm together. By the definition of supermodularity, this

improves output. The same logic applies to negative sorting when production is submodular.

How do the sorting patterns look when multiple workers work and interact at the same firm?

When production is supermodular in worker qualities and firm productivity, as is the case for his

“O-Ring” technology, Kremer (1993) shows that the argument of Becker (1973) straightforwardly

extends. Equilibrium is characterized by positive sorting, or self-matching, meaning that workers

are paired with identical coworkers. If any two pairings of workers and firms are not positively

sorted in all dimensions, again, the definition of supermodularity tells that the positively sorted

assignment is output improving. Equilibrium thus features heterogeneity of workers and earn-

ings across firms since better firms pair with better workers. There is no worker and earnings

heterogeneity within firms, however, since the workers are identical within firms.

In this paper, we instead characterize sorting when multiple workers work and interact at firms

with a submodular production technology. How does negative sorting generalize to dimensions

exceeding two? In our model, importantly, the assignment is very different from the one-to-one

sorting pattern. To build intuition, we work with a discrete sample of workers and firms. We

study both the planning problem and the dual problem for the discrete samples to highlight the

main theoretical insights: the support for an equilibrium assignment and the characterization of

the dual formulation to understand equilibrium wages and firm values.

It is useful to first derive a simple necessary condition − product countermonotonicity − for

an optimal assignment. It is obtained from the minimal requirement of stability. By product

countermonotonicity we mean that when the firm’s project value z is greater, the product of their

workers’ skills, x1x2, is lower. For any two triplets of worker, coworker, and firm, it cannot be

beneficial to bilaterally exchange either one or both workers between the firms. Given the produc-

tion technology (1), this condition translates into product countermonotonicity. The requirement

that bilateral exchange of both workers between the two firms cannot be beneficial, for example,

implies that the product of workers’ skills, x1x2, is lower when firm productivity z is greater. Thus,

more productive firms work with better teams. Importantly, this does not imply both workers are

individually more skilled as is the case under positive sorting. Similarly, if a worker is more skilled,

they work with a coworker and firm that all else equal have greater expected losses. The worker’s
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marginal contribution is high either because the project is valuable or because the coworker is less

skilled.

Deriving a sufficient condition and thus fully characterizing an optimal assignment is signifi-

cantly more involved. We show that there are two regions to an optimal assignment. The first

region satisfies complete mixing. Complete mixing means the expected output loss, x1x2z, is

identical for all triplets. We start with the observation that complete mixing is optimal whenever

it is feasible. Equalizing expected output loss x1x2z across triplets is optimal as average expected

losses (a geometric mean) attain their lower bound if and only if output losses are equal across all

triplets following the inequality of arithmetic and geometric means. Complete mixing implies that

firms with identical projects may hire different worker pairings with the same implied team quality.

Low value projects that are completely mixed are, necessarily due to product countermonotonicity,

assigned low quality teams.

Complete mixing does not fully describe the equilibrium assignment because it is not feasible

everywhere. Equilibrium instead features the maximal completely mixed set combined with the

second region of the pairwise countermonotonic extrema. To develop intuition for the optimality

of pairwise countermonotonic sets, we note that at the extreme of the completely mixed set, the

lowest value project is matched with identical low-skill workers. Extending this logic to lower

valued projects, projects which cannot be completely mixed, we find that these are sorted with

identically low-skill workers. In the limit, two workers who never know how to solve a problem

work on a project which has no value.

To establish equilibrium properties for worker wages and firm values we characterize the dual

problem. We show that multipliers on the constraints for the planning problem are equilibrium

wages and firm values. Then we show that the derivative of the wage schedule is equal to the

marginal worker product, or −x2z. The increase in output obtained by replacing a worker with

a slightly more skilled worker, keeping their coworker and their firm unchanged, has to equal the

increase in wages necessary to hire the higher-skill worker. Since more skilled workers work with

a coworker and firm that has greater expected output losses by product countermonotonicity, the

marginal worker product is increasing, implying a convex wage schedule.

Armed with insights from the discretized version of our economy, we then prove that any

assignment with its support on the complete mixed and pairwise countermonotonic set is indeed

an equilibrium assignment with continuous marginal distributions. We first establish that there

4



exists a probability measure concentrated on this support. To prove existence, we connect our

assignment model to work on risk aggregation by Wang and Wang (2016) that describes when there

exists a dependence structure, a measure, such that the sum of idiosyncratic risks is constant. We

then prove optimality of our assignment by using the integral version of Karamata’s inequality with

respect to output losses implied by alternative assignments. Having characterized the equilibrium

assignment, we use a duality argument for multidimensional optimal transport problems, see

Kellerer (1984), to start deriving that the marginal wage is the marginal worker product. To

characterize the wages and firm values, we combine our description of optimal assignments with

the observation that the marginal worker product is given by the product of the coworker’s skills

and project value. This allows us to write equilibrium wages only as a function of a worker’s skill.

Having characterized the model equilibrium in closed form, we quantitatively illustrate the

theory using administrative U.S. earnings records. Since a distinctive feature of our work among

assignment models is that we obtain distinct distributions of earnings within heterogeneous firms,

we apply our model to evaluate the dispersion in earnings within and across firms, which were

empirically documented by Barth, Bryson, Davis, and Freeman (2016) and Song, Price, Guvenen,

Bloom, and Von Wachter (2019) for the United States, by Card, Heining, and Kline (2013) for

Germany, and by Alvarez, Benguria, Engbom, and Moser (2018) for Brazil. Song, Price, Guvenen,

Bloom, and Von Wachter (2019) attribute about 40 percent of the variation in log earnings, a total

of 0.8 log points, to between-firm dispersion and 60 percent to within-firm dispersion. From 1981 to

2013, they document an increase in the variance of log earnings of about 0.2 log points, two-thirds

of which is driven by an increase in earnings dispersion between firms.

Our model endogenously matches the decomposition of earnings dispersion into between and

within-firm components. We invert the closed-form wage equation to back out the workers’ skill

distribution using only the distribution of earnings, that is, without using data on their coworkers.

We then compare the model decomposition of earnings variation to their empirical counterpart.

By construction, our model replicates the total dispersion of earnings in the data. We then find

that the stylized model correctly attributes about two-thirds of earnings variation in 1981 and

2013 to within-firm variation. Our counterfactual analysis gives evidence that the change in the

firm project distribution between 1981 and 2013 has a larger effect on the observed change in

earnings dispersion than the change in the worker skill distribution.
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Related Literature. There is an extensive literature on one-to-one assignment models in the

tradition of Becker (1973), which is surveyed in Sattinger (1993), Chiappori and Salanié (2016),

Chade, Eeckhout, and Smith (2017), and Eeckhout (2018). This literature, in particular, analyzes

conditions under which sorting is positive or negative. Our contribution is to characterize equi-

librium sorting for a multimarginal assignment problem with heterogeneous firms and multiple

heterogeneous workers whose skills are imperfect substitutes. We provide a complete equilibrium

characterization for this problem, and show this equilibrium features neither positive nor negative

sorting.

While the one-to-one assignment models described so far sort two exogenous distributions,

such as workers and firms, related work considers only a single population of workers which also

has to be split into different roles at different teams. Kremer and Maskin (1996) study sorting of

heterogeneous workers into managerial and worker roles. In this case, production is supermodular

yet asymmetric, which proves to be a challenge in terms of characterizing equilibrium in case of a

single distribution. Porzio (2017) uses optimal transport, similar to us, to extend this framework

with a continuous technological investment choice for each worker and manager which scales the

strength of the complementary between them. Different from these papers, our team technology

is symmetric between workers, so there are no distinct roles within a team, and our economy

is endowed with an exogenous distribution of firm productivity that simultaneously has to be

matched to teams. Our problem thus becomes a many-to-one assignment model rather than one-

to-one assignment model, but we can nonetheless characterize the assignment as well as wages and

firm values in closed form.

The closest to our work is a small literature that studies negative sorting with more than two

agents. Ahlin (2017), Chade and Eeckhout (2018) and Eeckhout (2018) argue it is neither evident

how to define negative sorting in this case, nor how to characterize an optimal assignment when

production is submodular, and also derive insightful partial characterizations of the equilibrium.

Ahlin (2017) also develops a careful quantitative application to group formation in villages.2 In

our paper, we fully characterize optimal sorting for dimensions greater than two for a submodular

production technology.

Kremer (1993) departs from the one-to-one assignment framework by analyzing the assignment

2See also Ahlin (2015) for a study of a role of group sizes in group lending and Saint-Paul (2001) for an assignment
model with different types of intrafirm spillovers.
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of multiple heterogeneous workers to a single firm with a fixed size. Kremer (1993) shows that the

analysis Becker (1973) straightforwardly extends when the production technology is supermodular.

Recent work by Herkenhoff, Lise, Menzio, and Phillips (2018) and Jarosch, Oberfield, and Rossi-

Hansberg (2021) quantitatively examines production and learning of workers and coworkers in

teams in labor markets with and without frictions.

An alternative approach to multiworker firms in assignment models is due to Eeckhout and

Kircher (2018).3 They develop a model in which firms sort with a single type of worker, and choose

how many workers of this type to employ. Eeckhout and Kircher (2018) develop conditions under

which sorting is positive or negative. Importantly, they assume the firm technology is additively

separable between workers of different types, so the marginal worker product is independent from

other types of workers within the firm. This paper differs from Eeckhout and Kircher (2018) by

focusing on firms of fixed size similar to Kremer (1993), and by incorporating peer effects. Workers

are instead imperfect substitutes under a submodular production technology, and their marginal

product does depend on their coworkers.

This paper relates to a growing literature which uses optimal transport theory to solve economic

problem, see Galichon (2018) for a comprehensive overview. Specifically, there is an important line

of work on multidimensional sorting and multi-market problems, working with optimal transport

theory, such as Choo and Siow (2006), Dupuy and Galichon (2014), McCann, Shi, Siow, and

Wolthoff (2015), Lindenlaub (2017), Chiappori, McCann, and Pass (2017), Chiappori, Salanié,

and Weiss (2017), Ocampo Dı́az (2018), Edmond and Mongey (2019), Lindenlaub and Postel-

Vinay (2020) and Galichon and Salanié (2021).4 Our assignment problem instead results in a

sorting problem where each dimension of heterogeneity sorts with an endogenous multidimensional

distribution.

Another literature, following Garicano and Rossi-Hansberg (2006), solves hierarchical assign-

ment models with heterogeneous workers.5 Similar to Garicano (2000), workers differ in their

knowledge, which governs the probability that they know how to solve a production problem.

Knowledge is assumed to be cumulative, so that more skilled workers know how to solve a prob-

3Kelso and Crawford (1982) provide the gross substitutes conditions for equilibrium existence in a related many
worker-to-one firm assignment model with finite workers and firms and a more general production technology.

4Related to this is research on the identification of multi-attribute hedonic models using optimal transport, see
Chernozhukov, Galichon, Henry, and Pass (2021).

5A simple exposition of the hierarchical assignment problem is presented in Garicano and Rossi-Hansberg (2004).
Antras, Garicano, and Rossi-Hansberg (2006) apply the knowledge-based hierarchy structure to study international
trade and the international structure to production. See Garicano and Rossi-Hansberg (2015) for a review.
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lem whenever less skilled workers do. A key implication is that production is supermodular in

worker skill, so that equilibrium sorting is positive. In line with these papers, our workers differ

in the probability that they know how to solve production problems. Knowledge, however, is not

cumulative, allowing for the possibility that less skilled workers know how to solve a problem when

more skilled workers do not. As a result, our production technology is instead not supermodular,

and hence optimal sorting is not positive.

To characterize our equilibrium, we build on the optimal transport literature in mathematics

that develops tools to solve multimarginal problems, see, for example, a review in Pass (2011). He

concludes that the extension of the classical Monge-Kantorovich problem to the case of more than

two marginal distributions is not well understood. While this is an active area of recent research

with a number of applications, understanding of the problem is far from complete and is fractured

(for examples of different settings and costs, see Gangbo and Świech (1998), Carlier and Ekeland

(2010), Cotar, Friesecke, and Klüppelberg (2013), Kim and Pass (2014), Colombo, De Pascale,

and Di Marino (2015), and Gladkov and Zimin (2020)). Our paper studies a submodular cost

function and introduces firm production, non-uniform distributions of workers and firms, and uses

this to understand equilibrium sorting, worker wages, and firm values. In the literature on risk

aggregation and insurance, Bernard, Jiang, and Wang (2014), Embrechts, Puccetti, Rüschendorf,

Wang, and Beleraj (2014), Puccetti and Wang (2015) and Wang and Wang (2016) study properties

of aggregate risk as the sum of individual risks. Similar in spirit, we study the minimization of

output losses (risks) incurred by teams of workers and firms in the economy. Different from them,

our interest lie in distribution of output losses and the sorting patterns of workers that generate

maximum aggregate output which we characterize using optimal transport theory. Moreover, we

use the dual transport problem to characterize the distribution of equilibrium wages and firm

values.

2 Model

We study an economy in which agents with heterogeneous skills choose their firm and coworker to

work with. This is a static assignment problem extended to incorporate the sorting of two workers

to each firm. Our setup results in a sorting problem between two workers with each firm for a

submodular production technology. In this section, we set this problem as a Monge-Kantorovich

multimarginal optimal transport problem.
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2.1 Environment

Agents. The economy is populated by risk-neutral workers and firms. There exist two groups of

workers with mass equal to 1 each and a continuum of firms with mass equal to 1. Workers differ

in skills such that high skill workers are more likely to know how to solve a problem.6 The skill of

every worker is indexed by a single number xi ∈ X := [0, 1], which captures the probability that

the worker does not know how to solve a problem. To illustrate, xi = 0.10 implies that the worker

knows how to solve a problem with 90 percent probability. High skill workers have a low xi. Each

group of workers are distributed according to the cumulative distribution function Fx(xi), with a

corresponding continuous density function fx(xi).

Firms are indexed by a productivity type z ∈ Z := [0, 1], capturing the value of their projects.

High value firms have a high z. Firms are distributed according to cumulative distribution function

Fz(z), with a continuous density function fz(z). We assume that cumulative distribution functions

are strictly increasing and continuous, so that the inverse distribution function, which we denote by

Iz, is defined so that Iz(pz) for percentile pz ∈ [0, 1] is the unique number z such that Fz(z) = pz.

Thus, pz is the percentile corresponding to project value z in the firm distribution. The inverse

distribution functions for workers Ix are defined analogously.

Technology. Firms produce a single homogeneous good. Production requires a project and a

team of workers. Teams solve problems that arise in order to produce. In particular, each team

encounters a single problem in production. Firm output is the project value z when the problem

is solved, and zero otherwise.

A firm of type z that employs a team of quality q, which represents the probability with which

the team solves production problems, produces expected output according to:

g(q, z) = qz. (2)

The production function g is supermodular in team quality q and firm type z. Team quality and

the project value are complements in production.

A team can solve a problem if and only if at least one of the workers knows how to solve it.

Since the probability that worker i does not know the solution is xi, independent of their coworker

6Worker heterogeneity in terms of probability to know how to solve a problem, or complete a task, is found in
Kremer (1993), Garicano (2000), and Garicano and Rossi-Hansberg (2006), amongst others.
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knowing the solution, the probability of successful production with workers x1 and x2 is:

q = h(x1, x2) = 1− x1x2. (3)

The team quality function h is a symmetric, submodular function in worker types, so workers are

substitutes. Team production of this nature appears, amongst others, in Sah and Stiglitz (1986)

and Grossman and Maggi (2000).

Combining the production technology (2) with the team quality function (3), the firm output

function y is:

y(x1, x2, z) = (1− x1x2)z. (1)

The firm output function is a submodular function in worker and firm type. The marginal product

of worker x1 is defined as:

m(x1) := y1(x1, x2, z) = −x2z ≤ 0. (4)

When a worker is less skilled, so less likely to know how to solve a problem, expected output

decreases. The marginal product of every worker exclusively depends on the skills of their coworker

and the firm they work with. That is, the model is set up so that the marginal product only depends

on peer effects.

Our specification of technology nests standard one-to-one assignment models with positive and

negative sorting. If the distribution for team quality q is exogenous, sorting between teams and

firms is positive. As in Becker (1973), high quality teams work on the most valuable projects. On

the other hand, absent firm heterogeneity, z = z̄, sorting is negative. Low and high skill workers

form teams, as discussed in Grossman and Maggi (2000) and Legros and Newman (2002).

Assignment. An assignment function prescribes for every worker both a coworker to work with

and a firm to work for. Formally, an assignment is a probability measure π over workers, coworkers

and firms. Given a distribution of workers Fx, a distribution of coworkers Fx, and a distribution

of firms Fz, the set of feasible assignment functions is Π := Π(Fx, Fx, Fz) which is the set of

probability measures π on the product space X ×X × Z such that the marginal distributions of

π onto X and Z are equal to Fx and Fz respectively. Feasibility of an assignment function is thus

equivalent to labor market clearing, or all workers and firms are sorted.
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2.2 Equilibrium

A firm with the project value z chooses worker x1 and coworker x2 to maximize profits taking the

wage schedule for workers w as given. The firm problem is:

v(z) = max
x1,x2

(
y(x1, x2, z)− w(x1)− w(x2)

)
. (5)

Workers choose to work for firm z with a coworker x2 to maximize their wage income. The worker

takes the wage schedule for the coworker and the firm value v as given:

w(x1) = max
x2,z

(
y(x1, x2, z)− w(x2)− v(z)

)
. (6)

Similarly, coworkers choose to work with a firm z and a worker x1 to maximize their wage income,

taking the wage schedule for the worker and the firm value v as given:

w(x2) = max
x1,z

(
y(x1, x2, z)− w(x1)− v(z)

)
. (7)

Equilibrium. An equilibrium is a wage schedule w, firm value function v, and feasible assignment

function π, such that firms solve their profit maximization problem (5), workers solve the worker

problem (6), coworkers solve the coworker problem (7), and a feasibility constraint:∫
y(x1, x2, z)dπ =

∫
w(x1)dFx +

∫
w(x2)dFx +

∫
v(z)dFz, (8)

which states that the total quantity of output produced,
∫
y(x1, x2, z)dπ, equals the total quantity

of output distributed to workers and firms.

2.3 Planning Problem

We solve a planning problem to characterize the equilibrium assignment. The planning problem

is to choose an assignment to maximize production:

max
π∈Π

∫
y(x1, x2, z)dπ(x1, x2, z) = max

π∈Π
µz −

∫
x1x2zdπ(x1, x2, z) (9)

where the equality follows by the production technology (1) and µz :=
∫
zdFz is the mean project

value. The planning problem to maximize expected output is equivalent, in terms of choosing

an optimal assignment, to a planning problem that minimizes expected output losses. Expected

output losses are the product of the project value z and the probability of failure by a team of

11



workers which is given by x1x2, that is, a loss `(x1, x2, z) := x1x2z. When we characterize the

optimal assignment, we can equivalently represent the planning problem as:

min
π∈Π

∫
`(x1, x2, z)dπ(x1, x2, z), (10)

which is an optimal transport problem in the tradition of Monge (1781) and Kantorovich (1942),

with multiple marginal distributions as in Pass (2011).

The key issue to note is that our production technology (1) is submodular in both worker and

firm types. This specification differentiates our economy from Kremer (1993), which features a

supermodular technology, the O-Ring technology, which corresponds to a firm technology under

which both workers need to know the solution to the problem in order to produce. Kremer

(1993) shows that positive sorting straightforwardly extends from a one-to-one sorting environment

to a multimarginal environment when production is supermodular. In contrast, we show that

negative sorting does not extend to a multimarginal environment when the production function is

submodular, and that the optimal sorting is significantly more involved.

Discussion. Before proceeding to the dual formulation, we pause to make two points. First, we

emphasize that the production technology (1) can be generalized substantially. The production

function can include any linearly additive function of coworker skills xi and firm value z, leaving

the equilibrium assignment unaffected. This addition does not affect expected output losses so

the equilibrium assignment can still be obtained from the planning problem (10).

The production technology can further be generalized to incorporate interaction terms between

workers and coworkers x1x2, workers and firms x1z, and coworkers and firms x2z, as long as the

technology is submodular. To see why, note that any production technology with some coefficients

ϕ satisfying (ϕ1, ϕ2, ϕ3) ≥ 0 which ensure submodularity:

y(x1, x2, z) = z(1− x1x2)− ϕ1x2z − ϕ2x1z − ϕ3x1x2 − ϕ4x1 − ϕ5x2 − ϕ6z − ϕ7, (11)

can, using a change of variables, be written as:

ỹ(x̃1, x̃2, z̃) = z̃(1− x̃1x̃2) + ϕx1x̃1 + ϕx2x̃2 + ϕz z̃ + ϕy, (12)

where x̃1 = x1 + ϕ1, x̃2 = x2 + ϕ2, z̃ = z + ϕ3 ≥ 0.7 Because the optimal assignment is unaffected

by linearly additive functions of coworker skills and firm values, the solution to this problem is

7The coefficients are determined as ϕx1
= ϕ2ϕ3 − ϕ4, ϕx2

= ϕ1ϕ3 − ϕ5, ϕz = ϕ1ϕ2 − ϕ6, and ϕy = ϕ1ϕ2ϕ3 −
ϕ1ϕx1 − ϕ2ϕx2 − ϕ3ϕz − ϕ3 − ϕ7.
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identical to the minimizing argument for modified losses x̃1x̃2z̃. This problem, in turn, has the

same qualitative features as our baseline problem. To a first order, the observations imply that

our results extend to any technology with all potential interaction effects (x1x2, x2z, x1z, x1x2z)

for which the first-order Taylor expansion around these interaction effects is submodular.

Finally, while we choose to work with teams of two workers for expositional purposes, none of

our arguments are limited to this case. Our results extend to any number of workers greater than

two as we show in Appendix B.8

Dual Problem. The solution to the planning problem is an assignment, which we argue below is

an equilibrium assignment. To obtain the corresponding equilibrium wage schedule and firm value

function, we solve a dual problem. The dual formulation for the assignment planning problem is

to choose functions w and v that solve:

min

∫
w(x1)dFx +

∫
w(x2)dFx +

∫
v(z)dFz, (13)

subject to the constraint that w(x1) +w(x2) + v(z) ≥ y(x1, x2, z) for any (x1, x2, z) ∈ X ×X ×Z.

To simplify notation, we define the surplus function S as output minus payments to workers and

firms:

S(x1, x2, z) := y(x1, x2, z)− w(x1)− w(x2)− v(z). (14)

The constraint to the dual formulation is that the surplus function S(x1, x2, z) is negative for any

triplet (x1, x2, z) ∈ X ×X × Z.

We use the following relation between the planning problem and the dual formulation.

Lemma 1. Let π ∈ Π(Fx, Fx, Fz) be a joint probability measure, and w and v be functions such

that S(x1, x2, z) ≤ 0 for all (x1, x2, z). If there is a set M ⊂ X ×X ×Z such that S(x1, x2, z) = 0

on M with the additional property that π(M) = 1, then assignment π is a planning solution and

functions w and v are a dual solution.

8We observe that an economy with two identical worker distributions Fx with mass equal to one for each role is
equivalent to an economy with a single distribution of workers Fx with mass equal to two. Owing to the symmetry
of worker skills in the team quality function (3), these are equivalent. Intuitively, any equilibrium worker assignment
for a planning problem with distinct worker distributions can be made symmetric. By assigning half of the mass of
equilibrium worker pairings to one distribution and half to another, we obtain two identical worker distributions.
The optimum value is unaffected as the same distribution of worker pairings can be made due to symmetry. When
the distribution of worker skills and firms projects are identical, this argument also implies that our framework is
a self-matching problem with fixed group size, which is the problem studied by Ahlin (2017).
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The proof to Lemma 1 only makes use of a notion of weak duality and is presented in Appendix A.1.

Any probability measure, together with wage and firm value functions satisfying the dual constraint

for any triplet (x1, x2, z), solve the planning and dual problem provided there is a set M on which

the assignment is concentrated and on which the surplus, or excess resources, are zero. Since the

assignment in Lemma 1 is concentrated on set M , we refer to M as the set of potential matches.

While Lemma 1 connects the planning problem and the dual formulation, it does not connect

either to our definition of an equilibrium. The link is Proposition 1.

Proposition 1. Planning and Equilibrium Allocation. Let π be a solution to the planning problem

on set M of potential matches and let (w, v) solve the dual problem. Then, wage schedule w, firm

value function v, and assignment function π are an equilibrium.

The proof is in Appendix A.2. Proposition 1 implies that assignment function π, wage schedule w,

and firm value function v are an equilibrium. Having established this connection, we henceforth

refer to w as the equilibrium wage schedule and to v as the equilibrium firm value. The proposition

proposes a clear path for characterizing equilibrium. We separately solve the planning problem

and the dual problem, which are linked through the primitive project value distribution, worker

distribution, and production technology. Moreover, Proposition 1 shows that the decentralized

equilibrium coincides with the solution to the planning problem so the competitive equilibrium

is efficient. We now proceed to characterize the equilibrium assignment π, wage schedule w, and

firm value function v.

3 Discretized Analysis

We first study equilibrium using a discretized approach to formulate our conjecture for the set of

potential matches, the set on which an equilibrium assignment is concentrated, and to understand

equilibrium wages.

3.1 Planning Problem

Discrete Planning Problem. We formulate a discrete approximation to the planning problem

given worker samples {xis}ns=1 ∼ Fx for i ∈ {1, 2} and a firm type sample {zs}ns=1 ∼ Fz. Given

these samples, there are n!2 different combinations to pair workers {xis} to firms, or n! different

combinations for the worker and the coworker sample to sort with firms. The discrete planning
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problem is to choose an assignment, or equivalently choose permutations σi, to maximize aggregate

output:

max
σ1,σ2

∑
s

y
(
x1σ1(s), x2σ2(s), zs

)
. (15)

To explicitly relate our environment to one-to-one assignment problems, and introduce concepts,

we first examine the nested frameworks.

One-to-One Assignment Model. Our specification of the technology nests the standard one-to-

one assignment models with positive and negative sorting. Suppose that the distribution for team

quality is exogenously given. In this case, the discrete planning problem to maximize aggregate

output simplifies to:

max
σq

∑
s

g
(
qσq(s), zs

)
, (16)

where σq is a permutation for team quality.

An optimal assignment necessarily requires that the assignment is stable, by which we mean

that aggregate output is not increased by changing the assignment of teams between firms. For any

two optimal assignment pairs (q, z) and (q̂, ẑ), it should hold that g(q, z)+g(q̂, ẑ) ≥ g(q̂, z)+g(q, ẑ).

Given the output function (2), this implies:

(q − q̂)(z − ẑ) ≥ 0, (17)

that is if q ≥ q̂ then z ≥ ẑ. Since the production function g is supermodular, more productive

teams work on more valuable projects. As discussed in Becker (1973), high quality teams optimally

pair with high value projects. The optimal assignment is positive, or comonotonic.

Alternatively, suppose there is no firm heterogeneity, z = z̄. In this case, the discrete planning

problem to maximize aggregate output simplifies to choosing a permutation σ1 to solve:

max
σ1

∑
s

h
(
x1σ1(s), x2s

)
. (18)

The necessary stability condition for an optimal assignment implies that for any two optimal

pairings (x1, x2) and (x̂1, x̂2), it has to be true that h(x1, x2) + h(x̂1, x̂2) ≥ h(x̂1, x2) + h(x1, x̂2).

Given the team quality function (3), this implies:

(x1 − x̂1)(x2 − x̂2) ≤ 0. (19)
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The optimal sorting is negative, or countermonotonic, that is, if x1 ≥ x̂1, then x2 ≤ x̂2. Low

and high skill workers form teams, as discussed in Grossman and Maggi (2000) and Legros and

Newman (2002).

For one-to-one assignment models with supermodular or submodular technology, we observe

that stability is both necessary and sufficient to characterize optimal sorting. We next use a notion

of stability for multimarginal assignment problems, and show that while stability is still necessary

and sufficient to obtain optimal comonotonicity with supermodular production, stability is no

longer sufficient to characterize optimal sorting with submodular technology.

Multimarginal Assignment Model. The team-to-firm and worker-to-coworker problems are

two-dimensional assignment problems. With three dimensions or more, for an assignment to be

optimal also necessarily requires that the assignment is stable. In this case, by stability we mean

a minimal requirement that expected output is not increased by a bilateral exchange of either

one or both workers between two firms. For any two optimal assignment triplets (x1, x2, z) and

(x̂1, x̂2, ẑ), the following inequalities should thus be satisfied:

y(x1, x2, z) + y(x̂1, x̂2, ẑ) ≥ y(x̂1, x2, z) + y(x1, x̂2, ẑ),

y(x1, x2, z) + y(x̂1, x̂2, ẑ) ≥ y(x1, x̂2, z) + y(x̂1, x2, ẑ), (20)

y(x1, x2, z) + y(x̂1, x̂2, ẑ) ≥ y(x̂1, x̂2, z) + y(x1, x2, ẑ).

When the production technology y is supermodular, the optimal assignment features positive

sorting as in Kremer (1993). In this case, optimal comonotonicity straightforwardly extends to

multi-worker assignment problems.9 The most productive firms employ the highest skill workers.

Under this specification, the optimal assignment thus features self-sorting meaning that workers

are paired with identical coworkers. An equilibrium thus features heterogeneity of workers and

earnings across firms since the higher quality firms match with the higher quality workers. How-

ever, there is no heterogeneity of workers and earnings within firms since the workers within each

team are identical.

Our production technology is instead submodular. In this case, the necessary set of inequalities

9Formally, suppose (x1, x2, z) and (x̂1, x̂2, ẑ) are pairings of an optimal assignment. Optimal sorting is positive,
so if z > ẑ, then both x1 ≥ x̂1 and x2 ≥ x̂2. By contradiction, suppose x1 ≥ x̂1 and x2 < x̂2. By supermodularity of
the output function y(x1, x2, z) + y(x̂1, x̂2, ẑ) < y(x1, x̂2, z) + y(x̂1, x2, ẑ), contradicting that the initial assignment
is optimal by violating necessary conditions (20). Similar contradictions are obtained when x1 < x̂1 and x2 ≥ x̂2

as well as when x1 < x̂1 and x2 < x̂2.
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(20) is not sufficient to characterize the equilibrium assignment.10 We can, however, use the set

of inequalities (20) to make two observations. Given the functional form of the output function

(1), these equations read:

(x̂2ẑ − x2z)(x̂1 − x1) ≤ 0,

(x̂1ẑ − x1z)(x̂2 − x2) ≤ 0, (21)

(x̂1x̂2 − x1x2)(ẑ − z) ≤ 0.

The first observation is that better teams work on more valuable projects. When firm ẑ holds a

more valuable project than firm z, so ẑ > z, the final inequality in (21) implies that x̂1x̂2 < x1x2.

Optimal sorting is negative between the firm z and the product of the workers’ skills x1x2. Since

there is complementarity between project values and team quality in the production function (2),

sorting between firms and team quality is comonotonic. Similarly, if a worker is more skilled,

x̂1 < x1, the first inequality in (21) implies that they work with a coworker and firm that ceteris

paribus has a greater expected output loss, x̂2ẑ ≥ x2z. Equivalently, when a worker is more skilled,

their marginal product m defined in (4) is more negative.11 The marginal product increases with

x, the probability that the worker does not know how to solve a problem.12 We refer to condition

(21) that the optimal sorting is product countermonotonic following Puccetti and Wang (2015).

Definition 1. Set {(x1s, x2s, zs)}ns=1 is product countermonotonic if for any subset D ⊂ {x1, x2, z}

the product of its components are countermonotonic with respect to the product of the remaining

components.

While product countermonotonicity is a necessary condition for an optimal assignment, it is

10See, for example, footnote 13.
11A related observation is that the inequalities (21) present a rearrangement algorithm to numerically identify a

stable assignment. Suppose we are given some set of triplets {(x1s, x2s, zs)}ns=1, then the rearrangement algorithm
works as follows. We update the set of triplets to {(x1s, x2σ(s), zσ(s))}, where σ is the perturbation that negatively
assorts {x1s} with {x2szs} as suggested by inequalities (21). We next order the second element, {x2s}, and similarly
negatively sort these with the updated set of points {x1szs}. We keep cycling through elements until the assignment
converges.

12We observe that pairwise countermonotonicity (Dall’Aglio, 1972), an alternative potential generalization of
countermonotonicity to dimensions greater than two, is not feasible. An assignment is defined as pairwise counter-
monotonic if x1 < x̂1 implies both x2 ≥ x̂2 and z ≥ ẑ, and symmetrically that x2 < x̂2 implies x1 ≥ x̂1 as well as
z ≥ ẑ, and that z < ẑ implies x1 ≥ x̂1 as well as x2 ≥ x̂2. To see that this configuration is not feasible, suppose
that z < ẑ without loss of generality. By countermonotonicity, and because all elements sampled from continuous
distributions are distinct, x1 > x̂1, which implies that x2 < x̂2. We arrive at a contradiction, as this would imply
z > ẑ.
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generally not sufficient.13 To identify sufficient conditions, we introduce a notion of complete

mixing, as defined in Wang and Wang (2011).

Definition 2. Set {(x1s, x2s, zs)}ns=1 is completely mixed if x1sx2szs = C for all s for constant C.

An assignment is completely mixed when expected losses are constant across all triplets, x1sx2szs =

C for all s for some constant C. It follows immediately that an assignment that is completely mixed

is product countermonotonic because zs = C
x1sx2s

shows higher project values zs sort with more

productive teams, that is, lower x1sx2s. The same is true for the two other combinations of teams

and workers.

Importantly, a completely mixed assignment is optimal by the inequality of arithmetic and

geometric means. The inequality states that the arithmetic mean for the output losses, which is

proportional to the objective of the assignment problem in (10), is bounded below by the n-th root

of the product of all elements. Formally, with a set of elements {(x1s, x2s, zs)}ns=1, the inequality

reads:

1

n

∑
x1sx2σ2(s)zσz(s) ≥

n
√∏

x1sx2szs =: Cn, (22)

where the geometric mean, the constant on the right-hand side, depends on sampled distributions,

but is invariant to any permutation.14 Given a sample of size n, the arithmetic mean attains lower

bound Cn if and only if the expected output loss, x1x2z, is equal across all triplets and equal to

Cn. When an assignment is completely mixed, the assignment is optimal as it minimizes aggregate

output losses (10).

While complete mixing of triplets is optimal when it is feasible, it is not feasible everywhere. In

fact, there is no optimal completely mixed assignment. For example, consider a triplet (x1s, x2s, zs)

part of some optimal assignment with zs = 0. In this case, the constant Cn is zero. Under complete

mixing it would therefore have to be that x1sx2szs = 0 for all s. More generally, one can show that

there exists no optimal completely mixed assignment for atomless distributions with full support

on the unit interval.

13For example, suppose the sampled distributions for worker skills x1 and x2 and for firm type z are identical and
are equal to {0.1, 0.2, 0.4}. The assignment {(0.1, 0.4, 0.4), (0.2, 0.2, 0.2), (0.4, 0.1, 0.1)} is product countermonotonic,
but it is not optimal since the feasible assignment {(0.1, 0.4, 0.2), (0.2, 0.1, 0.4), (0.4, 0.2, 0.1)} delivers strictly greater
aggregate output (0.676 versus 0.672).

14Equivalently, the statement follows directly from Jensen’s inequality. Taking logarithms on both sides of (22)
we obtain log

(
1
n

∑
x1sx2σ2(s)zσz(s)

)
≥ 1

n

∑
log x1sx2szs.
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We now argue that the optimal assignment for our problem is instead the largest possible

set of completely mixed triplets combined with pairwise countermonotonic sets. To see this, we

first consider the largest possible percentile interval [p, p̄], all the percentiles such that I(p) ≤

I(p) ≤ I(p̄), for which the distribution F is completely mixable. The percentile interval implies

corresponding level intervals for mediocre workers, defined as workers in the skill interval [x1, x̄1],

for mediocre coworkers [x2, x̄2] as well as for mediocre firms [z, z̄]. For example, the lowest project

value is given by the inverse distribution function at the lower percentile cutoff, z = I(p). Let π̂

denote an optimal assignment concentrated on the completely mixed set where output losses are

constant with x1x2z = C, that is, an assignment that pairs mediocre workers and coworkers with

mediocre firms giving identical losses for all triplets. Since log x1 + log x2 + log z = log C almost

everywhere with respect to assignment π̂, integration yields the constant:15

log C =

∫ x̄1

x1

log x1dπ̂ +

∫ x̄2

x2

log x2dπ̂ +

∫ z̄

z
log zdπ̂. (23)

The expression for the constant output loss on the completely mixed set simplifies by observing

that the marginal distributions of feasible assignment π̂ on X and Z are given by distribution F

on the percentile interval [p, p̄], scaled by p̄− p to normalize to a unit mass. To illustrate, for the

firm distribution this implies
∫ z̄
z log zdπ̂ = 1

p̄−p
∫ z̄
z log zdF (z). Since the minimum and maximum

project values within the completely mixed set are z = I(p) and z̄ = I(p̄), 1
p̄−p

∫ z̄
z log zdF (z) =

1
p̄−p

∫ p̄
p log I(p)dp. To simplify exposition, we assume the distributions for worker and firm types

are identical, so the constant is given by:

log C =
3

p̄− p

∫ p̄

p
log I(p)dp. (24)

To describe triplets on the maximal completely mixed set, we consider a firm z ∈ [I(p), I(p̄)]

and describe the workers that can work with this firm. Since the triplet is completely mixed, their

losses are constant, x1x2z = C, and the paired coworker is x2 = C
x1z

. By Wang and Wang (2016),

which we discuss more below and use in conjunction with part (a) of Assumption 1, the maximal

15Another intuitive way to obtain (23) is by considering the limit of the geometric mean in equation (22) as the
sample size n tends to infinity. We observe that constant Cn = exp

(
1
n

∑
log x1s

)
exp

(
1
n

∑
log x2s

)
exp

(
1
n

∑
log zs

)
.

When the number of sample observations increases, n→∞, 1
n

∑
log zs →

∫ z̄
z

log(z)dFz, and similarly for the worker

distribution. As the sample size tends to infinity, the constant for completely mixed workers and firms thus tends to
C = exp(

∫ x̄
x

log(x)dFx+
∫ x̄
x

log(x)dFx+
∫ z̄
z

log(z)dFz). Since assignment π̂ is feasible, so that its projections onto X

and Z are respectively given by Fx and Fz on the interval [p, p̄], C = exp(
∫ x̄
x

log(x)dπ̂+
∫ x̄
x

log(x)dπ̂+
∫ z̄
z

log(z)dπ̂).

This is equivalent to (23).
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Figure 1: Set of Potential Matches

Figure 1 shows the range of worker types employable by firm z ∈ [0, I(p̄)]. The x-axis shows the percentile of the firm in the project value

distribution while the y-axis shows the percentile range for the workers in the worker skill distribution it can employ. The description

of employable workers is given by (25). For our illustration, the lower bound is I(p) = 0.10 and the upper bound is I(p̄) = 0.80.

completely mixed set satisfies C = I2(p̄)I(p). Since both the worker and coworker lie between the

lower and the upper skill boundary, I(p) ≤ x1, x2 ≤ I(p̄), it follows that a firm with project z can

employ worker x1 with skills that are bounded by:16

I(p)I(p̄)

z
≤ x1 ≤ I(p̄). (25)

Any firm z ∈ [I(p), I(p̄)] can employ a low skill worker I(p̄) and attain loss C. When the project

is valuable, z = I(p̄), this requires pairing with a most skilled completely mixed coworker I(p). If

the project is not valuable, z = I(p), this requires pairing with a least skilled completely mixed

coworker I(p̄). On the other hand, firm z cannot employ a high skill worker x1 < I(p)I(p̄)/z as it

takes a coworker outside the completely mixed set, x2 > I(p̄), to attain loss I2(p̄)I(p) = x1x2z, if

it is feasible at all.

Figure 1 provides an example to illustrate the range of worker types employable by firm z. A

high type firm z = I(p̄) can employ workers in the skill interval x1 ∈ [I(p), I(p̄)]. If the project

16Since I(p) ≤ x2 ≤ I(p̄) and x2 = I2(p̄)I(p)/(x1z), necessarily I(p)I(p̄)/z ≤ x1 ≤ I2(p̄)/z. The upper bound,
however, exceeds I(p̄) because I(p) ≤ z ≤ I(p̄), and hence the upper bound is I(p̄).
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is valuable, the firm that hires low skill worker I(p̄) also hires coworker I(p) to incur loss C. In

Figure 1, where I(p) = 0.1 and I(p̄) = 0.8 imply a constant loss C = 0.064, when the project value

is z = 0.8, the firm that hires low skill worker x1 = 0.8 also hires coworker x2 = 0.1. Similarly, the

firm can hire an alternative worker and coworker pair such as (0.2,0.4), illustrated by the range

between a and b. Firms with identical project values can thus employ different teams of workers.

As the project value decreases, the range of potential workers shrinks from below as in (25). For

example, when the project value is z = 0.4, the firm that hires low skill worker x1 = 0.8 also hires

coworker x2 = 0.2, illustrated by the range from c to d. Firms with lower project values tend to

employ workers with lower skills. In the limit where z = I(p) = 0.1, the lowest value projects in

the completely mixed set employ only a single type of worker, which have the lowest skills in the

middle quality interval x1 = x2 = 0.8, which is illustrated by point e in Figure 1.

How does the optimal assignment extend beyond the maximum interval which permits complete

mixing? In the limit of completely mixed sets, firms with the lowest project values employ only

the lowest skill worker, as in point e of Figure 1. Extrapolating this logic, we pair firms with

project values below I(p) pairwise countermonotonically to pairs of identical low skill workers

(workers with identical probabilities of not knowing how to solve a problem exceeding I(p̄)). This

generates a pairwise countermonotic set for low value firms z ∈ [0, I(p)) with self-sorted low

skill workers x1 = x2 ∈ (I(p̄), 1], which we display by the dashed line from point e to point f

in Figure 1. For example, a firm with project value z = 0.05 works with self-sorted low skill

workers x1 = x2 = 0.90. By symmetry, high skill workers are paired with low skill coworkers and

a high value project, that is, x1 ∈ [0, I(p)) pairs with x2 = z ∈ (I(p̄), 1] and similarly coworker

x2 ∈ [0, I(p)) pairs with x1 = z ∈ (I(p̄), 1]. We pair very high skill workers with low skill coworkers

on valuable firm projects. Since both low value firms and high skill workers work with low skill

coworkers, percentiles [0, p) of firms z and high-skill workers x1 absorb measure 2p of low-skill

coworkers. Percentile p ∈ [0, p) of the firm distribution is thus sorted with percentile 1 − 2p of

the coworker distribution. A firm at percentile rank p is thus sorted with identical worker and

coworker ranked 1 − 2p = p̄, where the equality follows since all workers and coworkers outside

the completely mixed set are to be assigned. This triplet incurs loss I2(p̄)I(p) = C, identical to

the loss for all triplets on the completely mixed set.

We finally verify that our construction is indeed product countermonotonic. To see this,

recall that product countermonotonicity is equivalent to increasing marginal products following
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Figure 2: Support of the Assignment Function

Figure 2 plots the support for an optimal assignment, or set of potential matches M , in terms of percentile coordinates. The x-axis and

y-axis show the percentile of the worker px1 and the percentile of their coworker px2 in the worker skill distribution, while the z-axis

plots the percentile of the firm in the firm distribution pz . The formal description of the set of potential matches is given by (26).

(4) and (21). Since top percentile p ∈ [0, p) from the worker distribution is countermonotonically

paired with identically ranked low-skill coworkers and high-value projects, the marginal worker

product indeed increases for high-skill workers. For medium-skill workers, p ∈ [p, p̄], this follows

as x1x2z = C implies that x2z decreases with x1. To prove that the marginal worker product also

increases for low-skill workers under our construction, we use part (b) of Assumption 1 to prove

Proposition 5 in Section 4.

In sum, the analysis of the discretized planning problem provides a candidate solution which

follows a simple description. Pair very high skill workers with low skill workers on valuable firm

projects, until, at some point, mediocre workers can be paired together with firms such that

expected output losses are identical for all these triplets. This intuition informs the conjecture for

the solution to planning problem (9) that we show is optimal.

Conjecture. The analysis of the discretized planning problem informs a conjecture for the support

of an optimal assignment. Figure 2 summarizes the candidate optimal assignment. The candidate
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support consists of three symmetric pairwise countermonotonic sets (A1B1, A2B2, A3B3), and a

completely mixed set (B1B2B3). Workers who always know how to solve a problem, x1 = 0,

have coworkers that never know how to solve a problem, x2 = 1, and tackle the most valuable

projects. The team always knows how to solve a problem, so that production succeeds. Similarly,

the second most skilled workers have coworkers that rarely know how to address a problem. The

team still almost always knows how to solve a problem and are hence allocated to only slightly

less valuable projects. This logic leads to pairwise countermonotonic sets, such as the dashed line

in Figure 1. Low values for x1, or skilled workers, are paired with high values for x2 and z, low

skill coworkers and valuable projects. By symmetry, we have three pairwise countermonotonic

sets, or segments in Figure 2. Since both low value firms and high skill workers work with low skill

coworkers, percentiles [0, p) for firms and high-skill workers jointly absorb measure 2p of low-skill

coworkers, implying p̄ = 1 − 2p. For a worker ranked p, the coworker and the project value are

ranked p̄, and the output loss is equal to I2(p̄)I(p).

Firms and workers outside the pairwise countermonotonic sets are mediocre workers, coworkers

and firms ranked between percentiles p and p̄ in their respective distributions. Mediocre workers

and firms are sorted into completely mixed triplets on the set B1B2B3. Triplets on this set have

identical output losses equal to C = I2(p̄)I(p), which thus connect with the output loss on the

pairwise countermonotonic sets at (p, p̄, p̄).

We can now specify the support of an optimal assignment, the set of possible matches M . As

discussed, the set of possible matches combines three symmetric pairwise countermonotonic sets

and a mixed middle:

M := Mx1 ∪Mx2 ∪Mz ∪MC , (26)

where:

Mx1 :=
{(
px1 , 1− 2px1 , 1− 2px1) | px1 ∈ [0, p)

}
Mx2 :=

{(
1− 2px2 , px2 , 1− 2px2) | px2 ∈ [0, p)

}
Mz :=

{(
1− 2pz , 1− 2pz , pz ) | pz ∈ [0, p)

}
MC :=

{(
px1 , px2 , pz) | p ≤ px1 , px2 , pz ≤ p̄ and I(px1)I(px2)I(pz) = C

}
The pairwise countermonotonic set which corresponds to pairings for high skill workers x1 is Mx1

(A1B1), the pairwise countermonotonic set which corresponds to pairings for high skill coworkers
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x2 is Mx2 (A2B2), while the pairwise countermonotonic set which corresponds to pairings for low

value firms z is Mz (A3B3). Finally, MC is the completely mixed set (B1B2B3), the set of matches

with constant expected output losses.

One of the main results of this paper, Theorem 3 in Section 4, shows that any feasible assign-

ment with its support being a subset of the set of potential matches M is optimal.

3.2 Dual

To develop intuition for the equilibrium wages and firm values, we study the discrete approximation

to the dual problem. Given worker samples {xis}ns=1 for i ∈ {1, 2}, and a firm type sample {zs}ns=1,

the discrete dual problem is to choose w1, w2 and v to solve:

min
∑

w1(x1) +
∑

w2(x2) +
∑

v(z), (27)

subject to the constraint that the surplus S(x1, x2, z) is negative for any triplet (x1, x2, z).

We establish two equilibrium properties. First, we show that the multipliers on the constraints

for the planning problem are equilibrium wages and firm values. Second, we show that the deriva-

tive of the wage schedule is the marginal worker product (4). The output increase obtained by

replacing a worker with a slightly more skilled worker, keeping the coworker and project value

unchanged, has to equal the increase in wages necessary to hire the high-skill worker.

To establish that the multipliers on the constraints for the planning problem are equilibrium

wages and values, we first note that the dual value is bounded below. By the constraint to the dual

problem, the surplus is negative for any triplet (x1, x2, z), S(x1, x2, z) ≤ 0. The negative surplus

is equivalent to w(x1) + w(x2) + v(z) ≥ y(x1, x2, z) and therefore the total surplus is bounded

below
∑
w1(x1) +

∑
w2(x2) +

∑
v(z) ≥

∑
πijky(x1, x2, z), for some π that satisfies constraints

(29). In particular, this inequality holds for any assignment π∗ that solves the planning problem.

To establish that the multipliers are a solution to the dual problem, we show that the multipliers

attain this lower bound.

The discrete analog to the planning problem is to choose an assignment π that solves:

max
π≥0

∑
πijkyijk, (28)

subject to constraints:∑
jk

πijk = 1,
∑
ik

πijk = 1,
∑
ij

πijk = 1, (29)
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where i indexes sampled workers, j indexes sampled coworkers, and k indexes sampled projects.

The constraints require that every worker and coworker are employed and that every firm employs

two workers. The constraint does allow workers to work at multiple firms with different coworkers,

that is, πijk > 0 and πiĵk̂ > 0 for (j, k) 6= (ĵ, k̂). The multipliers on the non-negativity constraints

are uijk, while w1i, w2j and vk are multipliers for the constraints (29). By the Karush-Kuhn-Tucker

conditions, yijk − w1i − w2j − vk + uijk = 0 and either π∗ijk = 0 or uijk = 0. When πijk > 0 the

surplus is equal to zero, Sijk = 0. When π∗ijk = 0 the surplus is negative Sijk ≤ 0, showing that

the planning multipliers are a feasible dual solution. Summing over triplets
∑
π∗ijky(x1, x2, z) =∑

w1(x1) +
∑
w2(x2) +

∑
v(z). This implies that the multipliers on constraints to the planning

problem (29) indeed solve the dual problem.

Finally, the derivative of the wage schedule is the marginal worker product. Since the surplus

is negative S(x1, x2, z) ≤ 0 and equal to zero when π∗ijk > 0, any equilibrium triplet attains the

maximum with respect to the surplus function. When the surplus function is differentiable this

gives marginal earnings as w′1(x1) = y1(x1, x2, z) = −x2z = m(x1) ≤ 0, where the final equality

follows from the definition of the marginal worker product (4). For the continuous distribution,

we prove this property in Proposition 6.

4 Main Results

We characterize equilibrium with continuous marginal distributions in closed form building on the

discretized analysis of the previous section. To simplify exposition, we assume the distributions

for worker and firm types are identical, and make the following assumption for this distribution.

Assumption 1. The distribution of worker and firm types F satisfies:

(a) xf(x) is nondecreasing on the middle interval [p, p̄].

(b) Logarithmic loss L(p) := 2 log I(1− 2p) + log I(p) is concave on the interval p ∈ [0, 1
3 ].

We use part (a) when we show that there exists an assignment π concentrated on a subset of the

set of potential matches M , and part (b) when we show optimality of any assignment function π

that is concentrated on a subset of M .

A more restrictive but simpler condition is Assumption 2.

Assumption 2. For all x, xf(x) is nondecreasing.
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When the probability density function is differentiable, Assumption 2 is equivalent to bounding

the elasticity of the density function from below by −1. Distributions with nondecreasing density

functions trivially satisfy this restriction. Assumption 2 is satisfied by Beta distributions as well as

truncated exponential, log-normal, and Pareto distributions for a subset of parameters, amongst

others. Naturally, Assumption 2 also holds for linear combinations of density functions that satisfy

it. The assumption implies that the logarithm of the inverse distribution function is concave.17

Assumption 2 is indeed more restrictive as it implies that logarithmic loss L(p) is concave on the

interval p ∈ [0, 1
3 ].18

4.1 Planning Problem

In the discretized analysis, we asserted existence of an assignment concentrated on a subset of the

set of potential matches M . We start our analysis of the continuous planning problem showing

there indeed exists such an assignment.

Proposition 2. Existence. There exists an assignment π concentrated on a subset of the potential

matches M .

The proof is in Appendix A.3. The existence of a feasible assignment concentrated on the pairwise

countermonotonic sets Mx1 , Mx2 , Mz follows immediately. To prove the existence of an assignment

concentrated on the completely mixed set MC we connect our assignment framework to Wang and

Wang (2016). Wang and Wang (2016) study aggregate risk, the sum of idiosyncratic risks with

known marginal distributions, but with an unknown dependence structure between idiosyncratic

risks. For idiosyncratic risks with continuous and decreasing density function ĝ, Wang and Wang

(2016) describe when there exists a dependence structure, a measure, such that the aggregate risk

is constant, x1 + x2 + z = Ce.19

To prove existence of an assignment, we let x̂1 = exp(−x1), x̂2 = exp(−x2) and ẑ = exp(−z),

and use that our distribution for workers and firms is identical. Under these conditions, constant

17This observation follows by the inverse function theorem because d
dp log I(p) = d

dpI(p)
/
I(p) = 1

/(
I(p)f(I(p))

)
.

Therefore, xf(x) is increasing if and only if log I(p) is concave.
18The logarithmic loss L(p) is concave as it sums two concave functions. By Assumption 2, see also footnote 17,

the second term, the logarithm of the inverse distribution function I(p) is concave. The first term is also concave,
as its derivative, d

dp log I2(1− 2p) = − 4
I(1−2p)f(I(1−2p)) < 0, increases with I(1− 2p) and hence decreases with p.

19An early treatment on this problem, whether risks can attain a constant sum, is found in Gaffke and Rüschendorf
(1981).
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losses, x̂1x̂2ẑ = C, is equivalent to x1 +x2 +z = − log C. Since the distribution functions for x and

x̂ are linked by Ĝ(x) = 1 − F̂ (exp(−x)), where F̂ is the type distribution restricted to mediocre

workers and firms [I(p), I(p̄)], the density functions are linked through ĝ(x) = exp(−x)f̂(exp(−x)).

Assumption 1 implies xf̂(x) is increasing, showing the density function ĝ is indeed decreasing. In

the remainder of the proof we show the existence condition in Wang and Wang (2016) holds when

I2(p̄)I(p) ≥ exp
(

3
p̄−p

∫ p̄
p log I(p)dp

)
, implying that there indeed exists an assignment concentrated

on our set of potential matches M .

Optimality. To prove the optimality of a candidate assignment, let γ be the distribution of losses

implied by a feasible assignment. To illustrate, the assignment {(0.4, 0.1, 0.1), (0.1, 0.4, 0.4)} has

an implied loss distribution {0.004, 0.016} each with mass equal to 1
2 . The implied loss distribution

has an associated inverse cumulative distribution function Iγ , with losses by a triplet at percentile

p in the loss ranking given by Iγ(p) when the triplets are sorted in ascending loss order. In the

illustration, the implied loss at percentile p = 1
4 in the loss ranking is 0.004. Since it is equivalent

to integrate output losses with respect to the assignment function and with respect to ranks of the

loss distribution,
∫
`(x1, x2, z)dπ =

∫ 1
0 Iγ(p)dp =

∫ 1
0 exp(log Iγ(p))dp. To show that an assignment

π∗ is optimal, we show aggregate losses are greater under any other feasible assignment π:∫
`(x1, x2, z)dπ

∗ ≤
∫
`(x1, x2, z)dπ ⇐⇒

∫ 1

0
exp(log Iγ∗(p))dp ≤

∫ 1

0
exp(log Iγ(p))dp. (30)

The proof of optimality is constructed around the integral version of Karamata’s inequality

(see Karamata (1932) and Pečarić (1984)). To establish optimality, we note that the exponential

function is convex and that logarithmic losses, log Iγ , are increasing as the logarithm of a positive

increasing function is itself increasing. As a result, we can use the integral version of Karamata’s

inequality with h = exp, s1(p) = log Iγ∗(p) and s2(p) = log Iγ(p).

Karamata’s Inequality. Let h be a continuous convex function, and s1 and s2 be non-decreasing

functions on the unit interval. Assume that

1.

∫ 1

0
s1(p)dp =

∫ 1

0
s2(p)dp (31)

2.

∫ t

0
s1(p)dp ≥

∫ t

0
s2(p)dp, (32)

for all t ∈ [0, 1]. Then
∫ 1

0 h(s1(p))dp ≤
∫ 1

0 h(s2(p))dp.
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Invoking Karamata’s inequality, it suffices to verify that the two assumptions are satisfied. The

first condition requires that aggregate logarithmic losses under the contrasted assignments align.

As aggregate logarithmic losses are invariant across feasible assignments this condition is verified.

That is, for any feasible assignment π:∫ 1

0
log Iγ(p)dp =

∫
log `(x1, x2, z)dπ =

∫
log x1dF +

∫
log x2dF +

∫
log zdF. (33)

The second condition is that cumulative logarithmic losses at any percentile in the triplet rank t

are larger under optimal assignment π∗. We observe that cumulative logarithmic losses are convex

in triplet rank t as they integrate the (negative) increasing function log Iγ . For the completely

mixed set, or triplets ranked t ∈ [3p, 1], cumulative logarithmic losses decrease linearly as losses are

constant. By the fact that cumulative logarithmic output losses for the t ∈ [0, 3p) lowest ranked

triplets are maximized by three pairwise countermonotonic sets (by Lemma 2 and Lemma 3 in

Appendix A.4), and since aggregate logarithmic losses are equal, logarithmic cumulative output

losses are larger at any triplet rank t ∈ [0, 1]. We formalize the verification of the second condition,

the final step of the proof to Theorem 3.

Theorem 3. Support of the Assignment . Any assignment function π ∈ Π which is concentrated

on a subset of the potential matches M solves the planning problem (9).

Theorem 3 does not imply uniqueness of an optimal assignment, only that any assignment function

on a subset of the set of potential matches solves the planning problem. We next analyze the dual

problem to characterize equilibrium wages and firm values, that are both uniquely determined.

4.2 Dual Problem

To characterize the solution to the dual problem, we first evaluate the worker’s marginal product,

or peer effects, under an optimal assignment.

Marginal Worker Product. The marginal worker product (4) equals the marginal loss induced

by a worker, which is the negative of the value of the firm project and the coworker skills. Given

that an optimal assignment is concentrated on a subset of potential matches M , which describes

for every worker pairings with firm types and coworker’s skills, the equilibrium marginal worker

product can now be fully described.
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High-skill workers are pairwise countermonotonically sorted. High-skill workers (low x1) work

with low-skill coworkers on valuable projects (high x2, z). For a high-skill worker at a top percentile

p ∈ [0, p], the pairwise countermonotonic triplet is (p, n(p), n(p)), where n(p) denotes the negatively

sorted percentile corresponding to worker p’s coworker and firm in their respective distributions.

By symmetry, high-skill coworkers negatively sort with low-skill workers on high value projects

(n(p), p, n(p)), while low-value projects sort with low-skill workers and coworkers (n(p), n(p), p).

Since both high-skill coworkers and low-value firms employ low-skill workers, at top percentile p

measure 2p of low-skill workers are employed. Since the mass of workers with skills below n(p) is

1− n(p), we obtain n(p) = 1− 2p. The pairwise countermonotonic triplet for a high-skill worker

at top percentile p is thus (p, 1− 2p, 1− 2p). The product of the project value and the coworker

skills is thus I2(1− 2p).

Workers and project values in the middle of their distribution, at percentiles p ∈ (p, p̄), work

in completely mixed triplets with identical expected output losses across all such mediocre triplets

`(x1, x2, z) = x1x2z = C. The marginal worker product is thus equal to− Cx1 . Low-skill workers are,

as discussed, paired with an equally low-skilled coworker to work a low value project. Given some

low-skill worker percentile p ∈ [p̄, 1], their triplet is
(
p, p, 1−p

2

)
, which is another representation

of the low value project pz = 1−p
2 ∈ [0, p) employing two low skill workers p = 1 − 2pz, or

(1− 2pz, 1− 2pz, pz) as for Mz in the matching set (26). The marginal product at low-skill worker

percentile p is thus equal to −I(p)I
(1−p

2

)
. This description of the marginal product is summarized

by Proposition 4.

Proposition 4. Marginal Product . The marginal product of worker x is:

m(x) =



− I2 (1− 2p) if p ∈ [0, p]

− C
/
I(p) if p ∈ (p, p̄)

− I(p)I
(

1−p
2

)
if p ∈ [p̄, 1]

(34)

where constant C = exp
(

1
1
3
−p
∫ p̄
p log I(p)dp

)
, with lower percentile bound p ∈

(
0, 1

3

]
satisfying:

C = I2 (p̄) I
(
p
)
, (35)

and where the upper percentile bound is given by p̄ = 1− 2p.
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The proof is in Appendix A.5. To understand (35), we use our observation from Section 3, which

we deduced from stability condition (21), that the marginal worker product increases with worker

skill x. By evaluating the marginal product (34) at the lower percentile cutoff p, and multiplying

with worker skill I(p), we obtain that the output losses at the lower percentile cutoff exceed

the output losses on the completely mixed set, that is, I2(p̄)I(p) ≥ C. Similarly, we assess the

marginal worker product (34) at the upper percentile cutoff p̄, and multiply by worker skill I(p̄)

to derive that the output losses on the completely mixed set exceed the output losses at the upper

percentile cutoff I2(p̄)I(p) ≤ C, which implies I2(p̄)I(p) = C. As we construct the marginal worker

product using the support of an equilibrium assignment (26), the constant is equal to (24) which

we conjectured for the discretized analysis. We formalize the observation that the marginal worker

product m is increasing, and establish continuity, in Proposition 5.

Proposition 5. Properties Marginal Product . The marginal product m is continuous and strictly

increasing.

The proof is in Appendix A.6. High-skill workers are paired with a better combination of coworker

and firm. There is countermonotonic sorting between worker errors and expected losses incurred

by the firm and coworker absent the worker’s input. The logic follows from the stability condition.

Using the first condition in (21), together with the definition of the marginal worker product, we

have (m(x1)−m(x̂1))(x1− x̂1) ≥ 0. When a worker is more skilled, say x̂1 < x1, they work with a

coworker and firm that has a greater expected output loss all else equal, and equivalently a more

negative marginal product, m(x̂1) ≤ m(x1).

Wages. Given the marginal product we formulate equilibrium wages. We first use a generalization

of Kantorovich duality for multiple marginal distributions, due to Kellerer (1984). The duality

result states that the dual solution exists in the class of integrable functions. We establish that a

solution exists in the class of continuous functions in Appendix A.7. This implies that the surplus

function (14) is continuous also.

The duality result further states that the optimal value to the planning problem is equal to

the optimal value for the dual problem,
∫
y(x1, x2, z)dπ =

∫
w(x1)dFx +

∫
w(x2)dFx +

∫
v(z)dFz,

where π solves the planning problem and w and v solve the dual. This implies the surplus is zero

for every triplet (x1, x2, z) in the support of an optimal assignment. The surplus is non-positive
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for every triplet by the dual constraint, hence given continuity
∫
S(x1, x2, z)dπ = 0 if and only

if the surplus is zero for all triplets in the support of the assignment, or S(x1, x2, z) = 0 for all

triplets (x1, x2, z) ∈ supp(π).

We use that there are no excess resources in equilibrium to characterize the derivative for the

wage schedule and the firm value function.

Proposition 6. Marginal Wages and Firm Values . Wages and firm values are both continuously

differentiable, with derivatives w′(x) = m(x) and v′(z) = m(z) + 1.

The proof is in Appendix A.8. As discussed for the discretized dual problem, workers’ marginal

earnings are equal to their marginal product. The increase in expected output which is obtained

by replacing a worker with a marginally higher skill worker leaving the coworker and firm value

unchanged must equal the increase in the cost necessary to recruit the higher skill worker. While

the technological marginal product, −x2z, depends only on peer effects, the equilibrium level of

these peer effects can be directly related to the worker’s own skills through Proposition 4.

While a worker’s marginal earnings reflect their marginal product, earnings levels reflect the

marginal product of all other workers in the economy that are more skilled. Equivalently, worker

earnings depend on marginal losses incurred by the product of coworker skills and project values

for workers that are more skilled. Specifically, workers incur an earnings penalty relative to the

most skilled worker. Equilibrium wages are characterized in Proposition 7.20

Proposition 7. Wages . The wage schedule is, up to additive worker constant Cw, given by:

w(x) = Cw +

∫ x

0
m(s)ds. (36)

To obtain intuition, observe the surplus is zero almost everywhere with respect to π, S(x1, x2, z) =

z(1−x1x2)−w(x1)−w(x2)−v(z) = 0. Further, since w is a differentiable function, fix a coworker

x2 and firm z. Since the surplus function is negative S(x1, x2, z) ≤ 0, equilibrium triplet (x1, x2, z)

is a local maximum with respect to the surplus function, and hence:

S1(x1, x2, z) = 0 = −x2z − w′(x1) =⇒ w′(x1) = −x2z = m(x1), (37)

20Alternatively, we could project our primal solution onto the space of worker pairings X × X to write a two
worker-to-one firm assignment problem. In case the implied distribution of worker pairings has a density function,
Chiappori, McCann, and Pass (2017) provides an alternative approach to establish properties of the dual solution.
However, under our optimal assignment the distribution of worker pairings does not have a density function because
of the pairwise countermonotonic sets.
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where the final equality follows from the specification of the marginal worker product (4). Since

there are no excess resources and the surplus is differentiable, every worker’s marginal earnings is

their marginal product. By integrating, equilibrium wages follow (36).

Equilibrium wages are decreasing and convex in the skill ranking. The marginal cost of workers

is equal to their marginal product w′(x) = m(x) for all x ∈ (0, 1). By Proposition 5, this marginal

worker product is negative, continuous, and strictly increasing, thereby establishing our claim.

Corollary. Wages are decreasing and convex in skills x.

Firm. Similar to wages on the worker side of the labor market, we characterize firm values closed-

form. We obtain formal intuition for the equilibrium firm value similar to our intuition for wages.

If there are no excess resources almost everywhere for assignment π, then, by fixing some pair of

workers x1 and x2 as well as by differentiability of the dual function v:

S3(x1, x2, z) = 0 = (1− x1x2)− v′(z) =⇒ v′(z) = 1− x1x2 = m(z) + 1, (38)

where the final equality again follows from the definition of the marginal product (4). A firm its

marginal reward is its marginal product. When a firm tackles a marginally more valuable project,

its output is its expected probability of success, or team quality, 1 − x1x2. In equilibrium, the

firm’s marginal product is similar to the worker product, up to the unit constant, due to the

symmetry of expected loss function ` and the identical worker and project value distributions. By

integrating, firm values follow Proposition 8.

Proposition 8. Firm Value. The firm value v is, up to additive firm constant Cv, given by:

v(z) = Cv +

∫ z

0
k(s)ds, (39)

where k(s) := m(s) + 1 is the marginal firm product.

By Proposition 8, the firm value shares properties with the wage function. By Proposition 5, the

marginal firm product k is continuous and strictly increasing. The marginal worker product m is

continuous and strictly increasing, and m(z) ≥ −1 implying v′(z) ≥ 0. The firm value function is

thus increasing and convex.

Corollary. Firm values are increasing and convex in project value z.
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Given the description of wages in Proposition 7 and the firm value function in Proposition 8,

we observe that for any constants Cw and Cv that satisfy:

0 = Cw + Cv
/

2 +

∫ 1

0
m(s)ds (40)

the functions (w, v) are a dual solution. Equation (40) ensures the surplus is zero for the triplet

(px1 , px2 , pz) = (1, 1, 0). Since the surplus is equal to zero everywhere in the support of an optimal

assignment, this condition ensures that the value for the planning problem and the dual problem

coincide. By Proposition 1, any assignment π with the support contained in the set of potential

matches M , together with dual functions (w, v) satisfying (40) is thus an equilibrium.21

5 Quantitative Analysis

We now turn to the quantitative analysis of the model calibrated to administrative records for the

US. We evaluate the ability of the model to generate the observed wage dispersion in the United

States, as well as its decomposition into within and between-firm components. We compare the

predictions of our model against data moments by Song, Price, Guvenen, Bloom, and Von Wachter

(2019).

5.1 Data

Our main data source are administrative earnings records for every individual from the US Social

Security Administration (SSA). We use data moments for 1981 and 2013 provided by Song, Price,

Guvenen, Bloom, and Von Wachter (2019). Individual earnings are derived from W-2 forms, which

capture wages and salaries, bonuses, tips and other forms of income defined as compensation for

labor services by the Internal Revenue Service. The data sample considers all employed individuals

between 20 and 60 years of age.22 All amounts are in 2013 dollars.

Our main reason for using the SSA records is that the data matches the universe of individuals

21Equation (40) determines the equilibrium in terms of wages and firm values up to a constant. When functions
w and v solve the dual problem, so do functions ŵ and v̂ which differ from w and v only in terms of the constants
as long as they satisfy (40). In our quantitative analysis, we set the worker constant to the maximum earnings
observed in the U.S. earnings distribution in order for the model to match the top of the earnings distribution (36).

22An individual is considered employed when their earnings exceed the minimum wage earned full-time for one
quarter of the year, that is, for 520 hours (40 hours per week times 13 weeks). The data exclude firms and workers in
the government and education sector. While the baseline sample of Song, Price, Guvenen, Bloom, and Von Wachter
(2019) considers firms with over 20 employees, we confirm our results extend to firms of all sizes.

33



 
8

20
60

16
0

 

0 25 50 75 100

1981 2013

Figure 3: Distribution of Individual Earnings

Figure 3 displays the distribution of annual earnings in the SSA, replicating Figure I in Song, Price, Guvenen, Bloom, and Von Wachter

(2019). The figure shows individual earnings levels, on the y-axis in thousands of dollars, for each percentile of the income distribution,

on the x-axis. Between 1981 and 2013, earnings in the bottom third have seen little change, while earnings at the top of the distribution

increased.

to their employer and thus speaks directly to the sorting of workers with coworkers and firms.23

Workers with multiple jobs in a year are linked to the firm that provides their largest share of

labor earnings. Most important for our purposes, the matched employer-employee dataset contains

information on the earnings distribution within every firm.

Figure 3 shows individual earnings by percentile of the earnings distribution for 1981 and 2013.

In 1981, earnings vary between 18 thousand dollars at the 25th percentile, to 31 thousand at the

median, to 89 thousand at the 95th percentile. By 2013, earnings are 19 thousand dollars at the

25th percentile, 35 thousand at the median, and 132 thousand at the 95th percentile. Figure 3

shows that the earnings distribution features considerable dispersion in levels, which has increased

over time. Between 1981 and 2013, earnings in the bottom third of the earnings distribution have

seen little change, while earnings at the top strongly increased.

We assess the ability of our model to generate the observed dispersion in labor income, the

decomposition of the variance between and within firms, as well as changes in the distribution of

earnings over time. We then use the calibrated model to structurally decompose increased income

23A firm in the data corresponds to a corporate unit for tax purposes. A corporate tax unit is a more aggregated
notion compared to an establishment. Using US Census data, Barth, Bryson, Davis, and Freeman (2016) split
the variance of income between and across establishments. They similarly document an increase in the variance of
income between 1992 and 2007, of which two-thirds is accounted for by the variation between establishments.
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dispersion between changes on the worker side and the firm side of the labor market.

5.2 Inference

The model economy is parsimonious. Only the worker skill distribution Fx, the project value dis-

tribution Fz, and the constant Cw in the worker earnings equation (36) are exogenous.24 Consistent

with our presentation of the theory, we assume that the worker and firm type distributions are

identical. With this assumption, we only require the cross-sectional distribution of worker earn-

ings to inform the skill distribution F . Since backing out the type distribution does not require

any information about coworkers, we can then use the information about coworkers to evaluate

non-targeted moments.

We back out the underlying type distribution using the level of earnings in the cross-section by

percentile. We denote the empirical earnings distribution by percentile p as e(p), where empirical

earnings are arranged in descending order. We directly inform the empirical earnings distribution

using the data underlying Figure 3. For example, e(0.05) in 1981 is 89 thousand dollars and e(0.5)

in 2013 is 35 thousand dollars.

The closed-form equilibrium characterization is leveraged to back out the type distribution

as well as the constant in the earnings equation using the empirical earnings distribution by

percentile. Specifically, we back out the type distribution point-by-point and obtain the constant

in the earnings equation by exactly matching the empirical earnings distribution. Intuitively, the

constant Cw in the earnings equation (36) is pinned down by earnings at the top of the distribution.

The difficulty in backing out the skill distribution lies in exactly matching observed earnings at all

lower percentiles because earnings by workers at lower percentiles depend on the marginal worker

product of all individuals more skilled than themselves. In turn, the marginal worker product of

every individual depends on their coworkers and their firm. Our solution to this inference problem

is given by Proposition 9.

Proposition 9. Inferring the Skill Distribution. If there exists an inverse distribution function I

that satisfies:

24Given a constant Cw in the earnings schedule (36), the characterization of the marginal product in Proposition 4,
and the worker and firm value distributions, the equilibrium cross-equation restriction (40) determines the constant
on the firm side Cv in the firm value equation (39).
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log I(p) =


−
∫ p

0
e′(t)
ω(t) dt if p ∈ [0, p]

−
∫ p

0
e′(t)
ω(t) dt− e(p)−e(p)

I(p)I(p̄)2 if p ∈ (p, p̄)

−2
∫ p

0
e′(1−2t)
ω(t) dt if p ∈ [p̄, 1]

(41)

where ω(p) = e(t)
∣∣∣p
0
− 2e(1− 2t)

∣∣∣p
0

and p = 1−p̄
2 solves:

log I(p)I(p̄)2 =
1

1
3 − p

∫ p̄

p
log I(p)dp

Then the observed earnings distribution is the equilibrium outcome for an economy with constant

Cw = e(0) and type distribution F = I−1.

The proof to Proposition 9 consists of two parts, and is presented in Appendix A.9. We first show

that if the empirical earnings function is a decreasing and convex function in percentile rank p,

then Assumption 1 is satisfied. This implies that a decreasing and convex earnings schedule can

be rationalized by our model, and provides an empirical criterion to determine if Assumption 1 is

restrictive.

Second, Proposition 9 pins down the inverse cumulative distribution function. The distribution

function is directly identified from the cross-sectional earnings distribution, as shown by equation

(41). We take the empirical distribution function e, and feed this in for both the bottom and the

top percentiles of the distribution, [0, p] and [p̄, 1], to obtain I(p) and I(p̄). We use these values to

back out the skill distribution for the medium percentiles. We back out the distribution function

for 1981 to exactly match the earnings distribution in 1981 and back out another distribution

function to exactly match the observed earnings distribution for 2013. The resulting model fit

for cross-sectional earnings is summarized by Figure 4 for the distribution excluding the top 1

percent and in Figure 5 for the top 1 percent. Taken together, Figure 4 and Figure 5 show that

our framework generates the observed dispersion in earnings, as well as changes in the distribution

of earnings over time.

5.3 Earnings Dispersion Within and Between Firms

We next decompose the overall cross-sectional variance of log earnings into within- and between-

firm components. Let wij be log earnings of worker i employed by firm j. Earnings in any year
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Figure 4: Data and Model Distribution of Individual Earnings

Figure 4 compares the empirical earnings distribution to the model earnings distribution. The empirical distributions, which we display

by solid black lines, follow Figure 3, while the model distributions are presented by dashed lines. The left panel shows the empirical

and model distribution for 1981, the right panel for 2013.

can be decomposed as:

wij := wj +
(
wij − wj

)
, (42)

where w̄j is average log earnings within firm j. The total cross-sectional variance is decomposed

into within- and between firm components:

Var(wij) = Var(wj) +
∑
j

θjVar(wij |i ∈ j) , (43)

where θj is the cross-sectional employment share of firm j.25 The first term is the variance of

mean earnings across firms, or the between-firm variance. The second term is the employment

weighted average of within-firm dispersion of employee earnings.

Table 1 displays the decomposition of the variance of log earnings for 1981 and 2013. The left

panel shows that the total empirical variance of log earnings in 1981, 0.65 log points, is for one-

third attributed to differences in mean earnings between firms and for two-thirds to within-firm

25For a derivation of the variance decomposition formula (43) see, for example, Davis and Haltiwanger (1991)
and Alvarez, Benguria, Engbom, and Moser (2018). The decomposition is employment-weighted and thus invariant
to splitting a single firm into two replicas with half the firm’s original size.
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Figure 5: Data and Model Distribution of Individual Earnings

Figure 5 compares the top of the empirical earnings distribution to the top of the model earnings distribution. The empirical distributions

are presented by solid black lines, while the model distributions are presented by dashed lines. The left panel shows the empirical and

model distribution for 1981, the right panel for 2013.

Table 1: Model and Data Earnings Decomposition

Data Model

Moment 1981 2013 change 1981 2013 change

Total 0.65 0.85 0.20 0.66 0.84 0.18

Between 0.22 0.36 0.14 0.21 0.26 0.05

Within 0.43 0.49 0.07 0.45 0.58 0.13

Table 1 compares the empirical and model decomposition of earnings dispersion. The left panel shows the empirical decomposition of

earnings variation in dispersion between firms and dispersion within firms following (43), while the right panel shows the model analog.

All numbers are log points.

earnings dispersion. From 1981 to 2013 the variance of log earnings increased by 0.20 log points to

0.85. Two-thirds of this increase is accounted for by increased differences in mean earnings across

firms, while only a third is attributed to an increase in within-firm earnings dispersion.

The right panel of Table 1 displays the nontargeted model decomposition for the variance of

38



Table 2: Model and Data Coworker Earnings

Data Model

Percentile 1981 2013 change 1981 2013 change

25 10.01 10.07 0.06 10.18 10.31 0.14

50 10.30 10.45 0.15 10.44 10.62 0.18

75 10.56 10.75 0.19 10.57 10.77 0.20

90 10.67 10.98 0.31 10.47 10.62 0.15

Table 2 compares the model and data in terms of mean coworker earnings. The left panel shows mean coworker earnings at selected

percentiles of the individual earnings distribution. The right panel shows their model analog. All numbers are log points.

log earnings between 1981 and 2013. Our stylized model endogenously accounts for most of the

earnings decomposition in 1981. The fifth column shows that the model correctly attributes a third

of the earnings variation to dispersion between firms, and two-thirds to dispersion within firms.

By construction, the model generates an increase in the variance of log earnings of 0.18 log points

between 1981 and 2013, and endogenously attributes about two-thirds of earnings dispersion in

1981 and 2013 to within-firm variation.26

In addition to studying the variance decomposition, we examine average earnings of coworkers

at different percentiles of the earnings distribution. We evaluate mean log earnings of coworkers,

and changes herein, at different percentiles of the earnings distribution. The results are in Table 2.

Model and data align qualitatively up to the 75th percentile with quantitative deviations of roughly

0.15 log points. At the top of the skill distribution, the data display a stronger correlation between

worker earnings compared to our more negatively sorted model economy.

The rise in earnings dispersion between 1981 and 2013 could be driven by changes in the worker

or the firm side of the labor market, or a combination thereof. We use our framework to evaluate

the drivers of the increase in earnings dispersion. To do this, we analyze counterfactual changes

in earnings dispersion by only changing the worker distribution and by only changing the project

value distribution.

Table 3 shows a structural decomposition of changes in earnings dispersion from 1981 to 2013.

26The difference between model and data in terms of total variation is due to rounding.
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Table 3: Model and Data Earnings Decomposition

Model Firm Effect Worker Effect

Moment 1981 2013 change 2013 change 2013 change

Total 0.66 0.84 0.18 0.80 0.14 0.73 0.07

Between 0.21 0.26 0.05 0.24 0.03 0.20 -0.01

Within 0.45 0.58 0.13 0.55 0.12 0.52 0.07

Table 3 compares the baseline and counterfactual model decomposition of earnings dispersion. The left panel shows the baseline model

decomposition of earnings as in Table 1, while the middle and right panel show counterfactual decompositions. For the firm effect

counterfactual, we evaluate the model with the worker distribution for 1981 and the firm distribution for 2013, while the worker effect

counterfactual evaluates the model using the firm distribution for 1981 and the worker distribution for 2013. All numbers are log points.

The left panel repeats the baseline decomposition, while the middle panel and right panel present

counterfactual results. The firm effect counterfactual evaluates the model for the distribution of

workers in 1981 and the firm distribution in 2013. The middle panel demonstrates that by only

changing the distribution of firm projects, we obtain most of the increase in earnings dispersion.

The worker effect counterfactual similarly evaluates the model using the distribution of firms in

1981 and the worker distribution in 2013. The right panel shows that the change in the worker

skill distribution has a smaller effect on the observed change in earnings than the change in the

firm productivity distribution. That is, our counterfactual analysis gives evidence that the change

in the firm project distribution between 1981 and 2013 has a larger effect on the observed change

in earnings dispersion than the change in the worker skill distribution.

6 Conclusion

We provide a complete solution to an assignment problem with heterogeneous firms and multiple

heterogeneous workers whose skills are imperfect substitutes, that is, for a submodular technology.

While most assignment problems feature sorting which is either positive or negative, we show that

equilibrium sorting in our multi-type model is neither and characterize it fully in closed form.
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Monge, G. (1781): “Mémoire sur la Théorie des Déblais et des Remblais,” Histoire de l’Académie

Royale des Sciences de Paris, pp. 666–704.

Ocampo D́ıaz, S. (2018): “A Task-Based Theory of Occupations with Multidimensional Het-

erogeneity,” Western University Working Paper.

Pass, B. (2011): “Uniqueness and Monge Solutions in the Multimarginal Optimal Transportation

Problem,” SIAM Journal on Mathematical Analysis, 43(6), 2758–2775.
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A Proofs

In this appendix, we formally prove the results in the main text.

A.1 Lemma 1

To prove Lemma 1, we require weak duality.

Weak Duality. Let π ∈ Π(Fx1 , Fx2 , Fz) be a joint probability measure, and (f, g, h) be functions

such that y(x1, x2, z) ≤ f(x1) + g(x2) + h(z) for all (x1, x2, z). Then

min
f,g,h

∫
f(x)dFx1 +

∫
g(x)dFx2 +

∫
h(z)dFz ≥ max

π∈Π

∫
y(x1, x2, z)dπ. (A.1)

Proof. For any functions (f, g, h) so that y(x1, x2, z) ≤ f(x1) + g(x2) + h(z) we have:

max
π∈Π

∫
y(x1, x2, z)dπ ≤

∫ (
f(x1) + g(x2) + h(z)

)
dπ =

∫
f(x)dFx1 +

∫
g(x)dFx2 +

∫
h(z)dFz,

where the equality follows as π ∈ Π(Fx1 , Fx2 , Fz). Since the above inequality holds for any (f, g, h)

it holds for (f, g, h) that minimize the right-hand side.

We use weak duality to establish Lemma 1 by contradiction.

Proof of Lemma 1. Suppose by contradiction that π̂ does not solve the planning problem. Then

there exists another probability measure π such that

max
π∈Π

∫
y(x1, x2, z)dπ >

∫
y(x1, x2, z)dπ̂ =

∫
f̂(x)dFx +

∫
ĝ(x)dFx +

∫
ĥ(z)dFz

≥ min
f,g,h

∫
f(x)dFx +

∫
g(x)dFx +

∫
h(z)dFz, (A.2)
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where the equality follows by assumption. This contradicts weak duality (A.1).

Suppose by contradiction that the functions f̂ , ĝ, and ĥ do not solve the dual problem. Then

there exists functions f, g, and h such that

min
f,g,h

∫
f(x)dFx +

∫
g(x)dFx +

∫
h(z)dFz <

∫
f̂(x)dFx +

∫
ĝ(x)dFx +

∫
ĥ(z)dFz

=

∫
y(x1, x2, z)dπ̂ ≤ max

π∈Π

∫
y(x1, x2, z)dπ, (A.3)

where the equality follows by the assumption. This inequality contradicts weak duality (A.1).

A.2 Proposition 1

This appendix proves Proposition 1. The proof follows from the constraints on the dual planning

problem, which imply:

w(x1) ≥ y(x1, x2, z)− w(x2)− v(z) =⇒ w(x1) ≥ max
x2,z

(
y(x1, x2, z)− w(x2)− v(z)

)
. (A.4)

The equality follows since y(x1, x2, z) = w(x1) + w(x2) + v(z) on the set of potential matches

M on which the assignment function is concentrated. The argument for the firm value function

v is identical. The equality also implies that the goods market clears. A similar argument for

one-to-one sorting is in Proposition 2.3 of Galichon (2018) and discussed in Chade, Eeckhout, and

Smith (2017).

A.3 Proposition 2

We show there exists a transport plan π concentrated on the set of potential matches M . We

prove this using Theorem 3.2 of Wang and Wang (2016), which we map to our environment.

Suppose we are given some cumulative distribution functions Gi for i = 1, 2, 3, with corresponding

continuous density functions gi that are all decreasing on their support [ai, bi]. Wang and Wang

(2016) show there exists a measure π ∈ Π(G1, G2, G3) so that x1 +x2 +x3 = Ce almost everywhere

with respect to the measure π if and only if:∑
ai + max

i
li ≤

∑
µi ≤

∑
bi −max

i
li, (A.5)

with length of support li := bi − ai, and mean of the distribution µi :=
∫
xidGi.

To map our economy to this result, we let x1 = exp(−x̂1), x2 = exp(−x̂2) and z = exp(−x̂3),

and use that our distributions for worker and firm types are identical. With this notation, x1x2z =

2



C is equivalent to x̂1+x̂2+x̂3 = − log C. The distribution function for x̂ is related to the distribution

for x through G(t) = 1 − F̂ (exp(−t)), where F̂ is the distribution function F restricted to the

interval [x(p), x(p̄)]. The distribution function G then has a corresponding density function:

g(t) =
d

dt
G(t) = − d

dt
F̂ (exp(−t)) = f̂(exp(−t)) exp(−t). (A.6)

Since xf(x) is increasing on the interval [p, p̄] by assumption, and therefore xf̂(x) is increasing,

the density function g is decreasing.

To apply the existence result of Wang and Wang (2016), we verify condition (A.5) is satisfied.

To show this condition holds we observe x̂ = − log x = − log I(p). The lower bound of the support

is thus a = − log I(p̄) while the upper bound is b = − log I(p). The left-hand side of (A.5) is thus

−2 log I(p̄)− log I(p).

To evaluate the middle of (A.5), we examine the mean of the transformed distribution:

µ =

∫
x̂dG =

∫ (
− log x

)
dF̂ =

∫ 1

0

(
− log Î(p̂)

)
dp̂ =

1

p̄− p

∫ p̄

p

(
− log I(p)

)
dp, (A.7)

where p = p + (p̄ − p)p̂ and Î is the inverse cumulative distribution function for F̂ . Since the

distributions are identical, the middle of condition (A.5) is µ = − 3
p̄−p

∫ p̄
p log I(p)dp, and we can

write the first inequality in (A.5) as:

2 log I(p̄) + log I(p) ≥ 3

p̄− p

∫ p̄

p
log I(p)dp =

1
1
3 − p

∫ p̄

p
log I(p)dp, (A.8)

where the equality follows since p̄ = 1− 2p. This inequality is satisfied by the specification of the

constant in (35) of Proposition 4.

We confirm that the second inequality of condition (A.5) is satisfied using the first inequality.

Since the density function g decreases on support [a, b], the mean is below the median of the

interval, that is, µ ≤ a+b
2 , implying b − µ ≥ µ − a. Intuitively, the average equals the midpoint

of the support for a uniform distribution, and decreasing density functions put more weight on

low values. It thus follows that l ≤
∑

(µ− a) ≤
∑

(b− µ) implying the second inequality is also

satisfied as
∑
b− l ≥

∑
µ. Hence, there exists a measure π ∈ Π(F̂x, F̂x, F̂z) such that x1x2z = C

almost everywhere with respect to the measure π.

A.4 Proposition 3

In this appendix, we verify Assumption 2 to Karamata’s inequality.

3



For any assignment π, let Sγ(t) denote the cumulative logarithmic losses for the t teams with the

smallest losses:

Sγ(t) =

∫ t

0
log Iγ(p)dp. (A.9)

To verify the assumption we thus compare Sγ∗ to Sγ .

We first construct the cumulative logarithmic losses attained by the pairwise countermonotonic

sets under the candidate optimal assignment Sγ∗ .

Lemma 2. For any t ∈ [0, 3p],

Sγ∗(t) = 3

∫ t
3

0
L(p)dp. (A.10)

where L(p) is the logarithm of output losses on the negatively assorted sets:

L(p) = 2 log I(1− 2p) + log I(p) (A.11)

Proof. The statement is equivalent to the statement that the t teams with the smallest losses

under assignment π∗ are in the three pairwise countermonotonic sets:(
I(p), I(1− 2p), I(1− 2p)

)
,
(
I(1− 2p), I(p), I(1− 2p)

)
,
(
I(1− 2p), I(1− 2p), I(p)

)
, (A.12)

for percentiles p ∈
[
0, t3
)
. We need to show that losses I(p)I2(1−2p) increase on the interval [0, p)

which is equivalent to verifying that the logarithmic losses L(p) increase on this interval.

We establish that logarithmic losses L(p) are strictly increasing in the interval [0, p). Observe

that by taking logs of equation (35), which pins down the lower percentile bound p:

L
(
p
)

=
1

1
3 − p

∫ p̄

p
log I(p)dp =

1
1
3 − p

[∫ 1
3

p
log I(p)dp−

∫ 1
3

p̄
log I(p)dp

]
. (A.13)

We simplify the expression by changing the bounds of integration on the final integral so that:27

L
(
p
)

=
1

1
3 − p

∫ 1
3

p

(
2 log I(1− 2p) + log I(p)

)
dt =

1
1
3 − p

∫ 1
3

p
L(p)dp, (A.14)

where the second equality follows by (A.11). The output loss at the lower percentile cutoff p

is equal to the average output loss for all remaining negative sorting possibilities. Since the log

output loss L is concave by footnote 18, L is strictly increasing for percentiles p ∈ [0, p].

27Let p̃ := 1−p
2 implying dp = −2dp̃, so that we can write

∫ 1
3

p̄
log I(p)dp =

∫ 1
3

1−2p
log I(p)dp = −2

∫ 1
3

p
log I(1−2p̃)dp̃

by change of variables.
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We next bound the cumulative logarithmic losses for the t teams with the smallest losses, Sγ(t),

from above for any feasible assignment π.

Lemma 3. For any feasible assignment π and for all t ∈ [0, 1],

Sγ(t) ≤ 3

∫ t
3

0
L(p)dp (A.15)

Proof. The function Sγ is the sum of logarithmic losses for the t teams with smallest output losses.

For any other set U with mass π(U) = t, by definition:

Sγ(t) ≤
∫

log `(x1, x2, z)dπU . (A.16)

where πU represent the restriction of assignment π to the set V .

Define the set with the t
3 highest skill workers as V1 =

[
0, I
(
t
3

) ]
×
[
0, 1
]
×
[
0, 1
]
. The measure of

this set with respect to assignment π is t
3 . Analogously, define the set with highest skill coworkers

as V2 =
[
0, 1
]
×
[
0, I
(
t
3

) ]
×
[
0, 1
]

and the set of low value firms as V3 =
[
0, 1
]
×
[
0, 1
]
×
[
0, I
(
t
3

) ]
,

which similarly have measure t
3 with respect to assignment π. The union of sets V = V1 ∪ V2 ∪ V3

thus has measure of at most t with respect to assignment π. We construct a set U ⊃ V such that

π(U) = t by adding some set of triplets to the set U .

Given that πU represents the restriction of the assignment function π to the set U , we write:

Sγ(t) ≤
∫

log `(x1, x2, z)dπU =

∫
log x1dPrx1(πU ) +

∫
log x2dPrx2(πU ) +

∫
log zdPrz(πU ),

where Prz is the projection of measure πU onto the firm productivity dimension. To characterize

the upper bound more precisely, we bound
∫

log x1dPrx1(πU ). Since V1 ⊂ U , the density function

corresponding to measure Prx1(πU ) is equal to the skill density f for all 0 ≤ x ≤ I
(
t
3

)
and is less

than skill density f otherwise. As a result,∫
log x1dPrx1(πU ) ≤

∫ t
3

0
log I(p)dp+

∫ 1

1− 2
3
t
log I(p)dp =

∫ t
3

0
log I(p)dp+ 2

∫ t
3

0
log I(1− 2p)dp.

where the inequality follows as the second term on the right-hand side captures the contribution

to logarithmic losses by the t
3 lowest skill workers. The equality follows by change of variables.

As a result, we write the upper bound
∫

log x1dPrx1(πU ) ≤
∫ t

3

0 L(p)dp, and therefore,

Sγ(t) ≤ 3

∫ t
3

0
L(p)dp, (A.15)

which was want we wanted.
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We use Lemma 2 and Lemma 3 to verify Assumption 2 of Karamata’s inequality.

Proposition 10. For any assignment π, Sγ(t) ≤ Sγ∗(t) for all t ∈ [0, 1].

Proof. For teams t ∈ [0, 3p], this inequality directly follows by combining Lemma 2 and Lemma 3.

For teams with the highest losses t ∈ [3p, 1], we first observe that cumulative logarithmic losses

Sγ is a convex function as it is the integral over an increasing function. Since Sγ is convex, for all

t ∈ [3p, 1]:

Sγ(t) ≤ 1− t
1− 3p

Sγ(3p) +
t− 3p

1− 3p
Sγ(1) ≤ 1− t

1− 3p
Sγ∗(3p) +

t− 3p

1− 3p
Sγ∗(1). (A.17)

where the final inequality follows because Sγ(3p) ≤ Sγ∗(3p) by combining Lemma 2 with Lemma 3,

and Sγ(1) = Sγ∗(1) by the verification of Assumption 1 in (33).

The integral over logarithmic losses Sγ∗(t) is linear for teams with the highest losses t ∈ [3p, 1]

as losses are constant outside the pairwise countermonotonic sets with C = I(p)I2(1−2p) implying

log Iγ∗(t) = log C. Hence, for teams t ∈ [3p, 1]:

Sγ∗(t) =
1− t

1− 3p
Sγ∗(3p) +

t− 3p

1− 3p
Sγ∗(1) (A.18)

Combining (A.17) and (A.18) the result follows.

A.5 Proposition 4

If a triplet (x1, x2, z) is contained in the set of potential matches M , then function m reflects the

marginal worker product (4), or m(x1) = −x2z,m(x2) = −x1z, and m(z) = −x1x2. Since the

matching set (26) consists of four subsets, we prove the result by establishing the claim for each

subset.

If triplet (x1, x2, z) is in the negative sorted set corresponding to high skill worker x1, (x1, x2, z) ∈

Mx1 then (x1, x2, z) = (I(px), I(1−2px), I(1−2px)) for percentile px ∈ [0, p). Hence, the marginal

worker products are m(x1) = −I2(1− 2px) and m(z) = −I(px)I(1− 2px) = −I
(1−pz

2

)
I(pz), with

the argument for lower percentiles of coworkers m(x2) following the logic for m(z). By symmetry

of the negatively sorted branches, the same logic applies for triplets (x1, x2, z) contained in either

subset Mx2 or Mz.
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If triplet (x1, x2, z) is in the mixed middle of potential matches MC then the expected output

loss equals constant C, or `(x1, x2, z) = x1x2z = C. The marginal products in the mixed middle

are then given by m(x1) = −C/x1 = −x2z, m(x2) = −C/x2 = −x1z, and m(z) = −C/z = −x1x2.

A.6 Proposition 5

To establish continuity, it suffices to verify that the marginal worker product m is continuous at

the cutoffs p and p̄. At both the lower and the upper percentile cutoff, continuity follows directly

by substituting the condition that pins down the cutoff (35).

To verify that the marginal worker product m is increasing, we show its derivative is positive

everywhere except at both cutoffs. At both the cutoffs, the marginal worker product features a kink

and the derivative does not exist. We show the derivative is positive by equivalently establishing

that the derivative of log(−m(x)) is negative. To see this, start by using the marginal product in

(34) to write:

log
(
−m(x)

)
=



2 log I (1− 2p) if p ∈ [0, p]

log C − log I(p) if p ∈ (p, p̄)

log I(p) + log I
(

1−p
2

)
if p ∈ [p̄, 1]

(A.19)

For high skill workers in interval [0, p], the derivative is negative since the inverse function for any

cumulative distribution function is nondecreasing, that is, higher values are associated with higher

percentiles. For workers in the mixed middle in the interval (p, p̄), the derivative is for the same

reason also negative, −I
′(p)
I(p) < 0.

To show that the marginal worker product is increasing for low skill workers write log(−m(x)),

by change of variables with t = 1−p
2 , as:

log I(1− 2t) + log I (t) = L(t)− log I(1− 2t), (A.20)

where the loss L is defined by (A.11). By Lemma 2, L increases for all t ∈ [0, p] and so decreases

for p ∈ [p̄, 1]. The second term also increases in t ∈ [0, p) and therefore decreases in p ∈ [p̄, 1]. As

a result, the derivative is negative for all p ∈ [0, 1].
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A.7 Dual Problem

To characterize the solution to the dual problem, we use a generalization of Kantorovich duality for

multiple marginal distributions (Kellerer (1984)).28 Kantorovich duality states that the optimal

value for the planning problem coincides with the optimal value for the dual problem.

Duality. Let X and Z be compact subsets of the set of real numbers, and Fx and Fz be probability

measures on X and Z respectively. Let loss function `(x1, x2, z) be continuous on X ×X ×Z and

Π(Fx, Fx, Fz) denote the set of measures π on X ×X ×Z with fixed projections prx(π) = Fx and

prz(π) = Fz. Then,

min
π∈Π

∫
`(x1, x2, z)dπ = sup

∫
ŵ1(x1)dFx +

∫
ŵ2(x2)dFx +

∫
v̂(z)dFz, (A.21)

where the supremum is taken with respect to the collection of integrable functions ŵi ∈ L1(X,Fx)

and v ∈ L1(z, Fz) subject to the constraint ŵ1(x1) + ŵ2(x2) + v̂(z) ≤ `(x1, x2, z) for any triplet

(x1, x2, z) ∈ X ×X × Z.

Applying the duality theorem to our problem, we establish that the dual solution attains the same

value as the planning problem and that the dual solution exists in the class of integrable functions.

We next establish that the solution exists in the class of continuous functions.

Lemma 4. For any dual solution (w1, w2, v), there exists a continuous functions (ŵ1, ŵ2, v̂) such

that ŵ = w and v̂ = v almost everywhere that solves the dual problem.

Proof. For any dual solution (w1, w2, v) there exists:

ŵ1(x1) := sup
x2,z

y(x1, x2, z)− w2(x2)− v(z), (A.22)

where ŵ1(x1) ≤ w1(x1) since w1(x1) ≥ y(x1, x2, z)−w2(x2)− v(z). Similarly, we define ŵ2 and v̂

as ŵ2(x2) := sup
x1,z

y(x1, x2, z)− ŵ1(x1)− v(z) and v̂(z) := sup
x1,x2

y(x1, x2, z)− ŵ1(x1)− ŵ2(x2). As

a consequence, there exists:

w̃1(x1) := sup
x2,z

y(x1, x2, z)− ŵ2(x2)− v̂(z). (A.23)

28An instructive exposition of Kellerer (1984) is presented in Rachev and Rüschendorf (1998).
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Since ŵ2(x2) ≤ w2(x2) and v̂(z) ≤ v(z), it follows that w̃1(x1) := sup
x2,z

y(x1, x2, z)−ŵ2(x2)−v̂(z) ≥

ŵ1(x1). Simultaneously, by the definition of v̂, it follows that ŵ1(x1) ≥ y(x1, x2, z)−ŵ2(x2)− v̂(z),

which implies ŵ1(x1) ≥ w̃1(x1). As a result ŵ1(x1) = w̃1(x1), which implies:

ŵ1(x1) := sup
x2,z

y(x1, x2, z)− ŵ2(x2)− v̂(z), (A.24)

and similarly for ŵ2(x2).

Next we establish (ŵ1, ŵ2, v̂) is a dual solution. By (A.24), (ŵ1, ŵ2, v̂) is a permissible solution,

while through ŵ1(x1) ≤ w1(x1), ŵ2(x2) ≤ w2(x2) and v̂(z) ≤ v(z), it follows that
∫
ŵ1(x1)dFx +∫

ŵ2(x2)dFx +
∫
v̂(z)dFz ≤

∫
w1(x1)dFx +

∫
w2(x2)dFx +

∫
v(z)dFz. Thus, (ŵ1, ŵ2, v̂) is a dual

solution. Further, ŵ1 = w1, ŵ2 = w2 and v̂ = v almost everywhere. Suppose instead ŵ1 < w1, for

example, then
∫
ŵ1(x1)dFx+

∫
ŵ2(x2)dFx+

∫
v̂(z)dFz <

∫
w1(x1)dFx+

∫
w2(x2)dFx+

∫
v(z)dFz,

which contradicts (w1, w2, v) is a dual solution.

We next establish that ŵ1 is a continuous function. To see this, let ŵ1(x1;x2, z) := y(x1, x2, z)−

ŵ2(x2)−v̂(z), that is, equation (A.24) holding constant both coworker x2 and the firm z. Given the

specification of the production technology (1), and since both x2 ∈ [0, 1] and z ∈ [0, 1], ŵ1(x1;x2, z)

is a linear function with a slope less than one in absolute value. This implies that ŵ1(x1;x2, z)

is Lipschitz continuous. Since ŵ1(x1) can be represented as ŵ1(x1) = sup
x2,z

ŵ1(x1;x2, z), ŵ1(x1) is

Lipschitz continuous, and hence ŵ1(x1) is continuous. The same argument shows both ŵ2 and v̂

are continuous.

A.8 Proposition 6

For any worker x1,0 there exists a coworker x2,0 and firm z0 so that triplet (x1,0, x2,0, z0) is contained

in the support of an optimal assignment, which implies that:

w(x1,0) + w(x2,0) + v(z0) = y(x1,0, x2,0, z0) = z0 + x1,0m(x1,0), (A.25)

with the second equality following from the marginal worker product (4). For any other worker x1,

it must similarly be that w(x1) +w(x2,0) + v(z0) ≥ z0 + x1m(x1,0). Combining these expressions,

it holds that for any x0 and x1 ∈ [0, 1]:

w(x1)− w(x1,0) ≥ m(x1,0)
(
x1 − x1,0

)
. (A.26)

Similarly, by interchanging x1,0 and x1 in the previous paragraph, we obtain:

w(x1,0)− w(x1) ≥ m(x1)
(
x1,0 − x1

)
. (A.27)
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Combining (A.26) and (A.27), and dividing by x1 − x1,0 yields

m(x1) ≥
w(x1)− w(x1,0)

x1 − x1,0
≥ m(x1,0). (A.28)

Taking limits as x1 → x1,0, this equation shows that the function w(x) has a derivative at x1 = x1,0

and that this derivative is equal to m(x1,0). Since the marginal worker product m is a continuous

function by Proposition 5, the derivative of w is continuous. The result is similarly established for

v′(z).

A.9 Proposition 9

We establish the model can rationalize the empirical wage distribution using Lemma 5.

Lemma 5. If (a) the empirical earnings function is convex in percentile rank, and (b) if the model

rationalizes the empirical earnings distribution, then Assumption 1 is satisfied.

Proof of Lemma 5. To show that both parts of Assumption 1 are satisfied, we develop the

model earnings equation:

w(I(p)) = Cw +

∫ I(p)

0
m(s)ds, (36)

which is equation (36) with x = I(p). The derivative of the model earnings equation with respect

to percentile rank p, which is the model analog of the slope of the empirical earnings function, is:

w′(I(p))I ′(p) = m(I(p))I ′(p).

For the model to generate the observed earnings distribution as an equilibrium outcome, it has to

hold that m(I(p))I ′(p) = e′(p). Using the expression for the equilibrium marginal worker product

(34) from Proposition 4, we thus require:

e′(p) =



− I2 (1− 2p) I ′(p) if p ∈ [0, p]

− C
/
I(p)I ′(p) if p ∈ (p, p̄)

− I(p)I
(

1−p
2

)
I ′(p) if p ∈ [p̄, 1]

(A.29)

We prove that if the empirical earnings function is decreasing and convex, and if the model

rationalizes this empirical earnings function, then Assumption 1 is satisfied. We start with the
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condition that log I(p) is concave for medium skill workers (p, p̄). In this case, we can write (A.29)

as:

−e
′(p)

C
=

d

dp
log I(p). (A.30)

When the earnings function is convex the left-hand side decreases with p, implying d
dp log I(p) is

decreasing or log I(p) is concave. By footnote 17, this is equivalent to part (a) of Assumption 1.

We establish part (b) of Assumption 1 is satisfied starting with the low skill workers p ∈ [p̄, 1].

We use equation (A.29) for p ∈ [p̄, 1], and apply a change of variables q = 1−p
2 , to write:

e′(1− 2q) = −I (q) I(1− 2q)I ′(1− 2q), (A.31)

for q ∈ [0, p]. To show the concavity of the logarithmic output loss L(p) for the high skill workers

p ∈ [0, p] one can equivalently show concavity of I(p)I2(1−2p) since a logarithmic transformation

of a positive and concave function is concave. Using the first part of equation (A.29) and (A.31),

the derivative of I(p)I2(1− 2p) can be written as:

d

dp

(
I(p)I2(1− 2p)

)
= − d

dp

(
e(p) + 2e(1− 2p)

)
, (A.32)

and hence the second derivative is −e′′(p)−8e′′(1−2p) ≤ 0. Since the empirical earnings function

is convex, the function L(p) is concave for high skill workers on interval p ∈ [0, p]. Concavity of the

logarithmic output loss L(p) on the medium skill interval (p, p̄) is established using that log I(p)

is concave for medium workers (p, p̄), implying that log I(1− 2p) is concave on the same interval

(p, p̄). Since the sum of concave functions is concave, L(p) is concave for medium skill workers.

We established that L(p) is concave for high skill workers p ∈ [0, p] as well as for medium skill

workers p ∈ (p, p̄). To establish that the function is concave on the full interval [0, 1
3 ], we further

verify continuity of the derivative at cutoff percentile p. From (A.32) we have I(p)I2(1 − 2p) =

Cd−e(p)−2e(1−2p), implying that the derivative at percentile p is given by L′(p) =
−e′(p)+4e′(1−2p)

I(p)I2(1−2p) .

For medium skill workers (p, p̄), the derivative of L(p) at the cutoff p can, using (A.30), be shown

to be identical. Therefore, L(p) is concave on the interval [0, 1
3 ].

Proof of Proposition 9. To prove the result, we define g′(p) := −e′(p) and u(p) := I2(1− 2p),
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implying u′(p) = −4I(1− 2p)I ′(1− 2p). Using these definitions, we can write (A.29) as:

g′(p) =



u(p)I ′(p) if p ∈ [0, p]

C
/
I(p)I ′(p) if p ∈ (p, p̄)

I(p)I
(

1−p
2

)
I ′(p) if p ∈ [p̄, 1]

(A.29)

We simplify the third part of equation (A.29) by change of variables p = 1−2q, so that g′(1−2q) =

I(1− 2q)I (q) I ′(1− 2q) = −1
4u
′(q)I(q) for q ∈ [0, p]. As a result, we have the following system of

differential equations on the interval [0, p]:

I ′(p)u(p) = g′(p) (A.33)

I(p)u′(p) = −4g′(1− 2p) (A.34)

We solve the system of differential equations by collapsing it to a single differential equation.

We add equations (A.33) and (A.33) to write:

d

dp

(
I(p)u(p)

)
=

d

dp

(
g(p) + 2g(1− 2p)

)
. (A.35)

By integrating between 0 and p ∈ [0, p], setting I(0) equal to small ε > 0 and noting that u(0) = 1,

we have:

I(p)u(p) = ε+ g(p) + 2g(1− 2p)− g(0)− 2g(1) (A.36)

We divide (A.34) by (A.36) to obtain a single differential equation for u:

u′(p)

u(p)
=

d

dp
log u(p) = − 4g′(1− 2p)

ε+ g(p) + 2g(1− 2p)− g(0)− 2g(1)
, (A.37)

which is solved using initial condition u(0) = 1, or log u(0) = 0. Given a solution for u, and given

the initial condition for I(0), we use (A.33) to obtain I(p). As a result, we obtain I(p) on the set

[0, p] ∪ [p̄, 1]. Finally, to obtain the type distribution on the interval [p, p̄], we directly use (A.29)

for medium skill workers, where the boundary conditions are pinned down by I(p) and I(p̄).

B Generalization

In this appendix we lay out how our main findings extend to n workers per team by constructing

the set of potential matches M and the marginal worker product. Since the logic is analogous to

the discretized analysis in Section 3, we only provide minimal discussion here.
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In the generalization with n workers per team, the firm output function y is:

y(x1, x2, . . . , xn, z) =
(

1−
n∏
i=1

xi

)
z. (A.38)

To explore sufficient conditions, we first generalize the notion of complete mixing.

Definition 3. Set {(x1s, x2s, . . . , xns, zs)}ms=1 is completely mixed if x1sx2s . . . xnszs = C for all s

for constant C.

The assignment is completely mixed when losses are constant across all pairings, x1sx2s . . . xnszs =

C for all s. A completely mixed assignment is product countermonotonic because zs = C
x1sx2s...xns

shows higher project values zs sort with more productive teams, that is, lower x1sx2s . . . xns. The

same holds true for the n other combinations of teams and workers.

By the inequality of arithmetic and geometric means, a completely mixed assignment is optimal.

With a set of elements {(x1s, x2s, . . . , xns, zs)}ms=1, the inequality reads:

1

m

∑
x1sx2σ2(s) . . . xnσn(s)zσz(s) ≥

m
√∏

x1sx2s . . . xnszs =: Cm, (A.39)

When an assignment is completely mixed, it is optimal since it minimizes aggregate output losses.

As in our baseline, however, there exists no optimal completely mixed assignment with atomless

distributions that have full support on the unit interval.

The optimal assignment is the largest possible set of completely mixed triplets combined with

pairwise countermonotonic sets. Let π̂ be an optimal assignment concentrated on the completely

mixed set, so x1x2 . . . xnz = C. Since
∑n

i=1 log xi + log z = log C almost everywhere with respect

to assignment π̂, integration yields:

log C =

n∑
i=1

∫ x̄i

xi

log xidπ̂ +

∫ z̄

z
log zdπ̂ =

n+ 1

p̄− p

∫ p̄

p
log I(p)dp, (A.40)

where the final expression follows since the marginal distributions of feasible assignment π̂ on X

and Z are distribution F on the percentile interval [p, p̄], scaled by p̄−p to normalize to unit mass.

By Wang and Wang (2016), the maximal completely mixed set in this case satisfies C = In(p̄)I(p).

Conjecture. We specify the support of an optimal assignment, the set of possible matches M .

As discussed, the set of possible matches combines n + 1 symmetric pairwise countermonotonic

sets and a mixed middle:

M := Mx1 ∪Mx2 ∪ · · · ∪Mxn ∪Mz ∪MC , (A.41)
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where:

Mxi :=
{(

1− npxi , . . . , 1− npxi︸ ︸
i−1 workers

, pxi , 1− npxi , . . . , 1− npxi︸ ︸
n−i workers

) | pxi ∈ [0, p)
}

Mz :=
{(

1− npz , . . . , 1− npz︸ ︸
n workers

, pz ) | pz ∈ [0, p)
}

MC :=
{(
px1 , px2 , . . . , pxn , pz) | p ≤ px1 , px2 , . . . , pxn , pz ≤ p̄ and I(px1) . . . I(pxn)I(pz) = C

}
The pairwise countermonotonic set which corresponds to pairings for high skill workers xi is Mxi .

Finally, MC is the completely mixed set, the set of matches with constant expected output losses.

Using this expression for the support of an optimal assignment π, we can formulate the marginal

worker product.

Proposition 11. Marginal Product . The marginal product of worker x is:

m(x) =



− In (1− np) if p ∈ [0, p]

− C
/
I(p) if p ∈ (p, p̄)

− I(p)I
(

1−p
n

)
if p ∈ [p̄, 1]

(A.42)

where C = exp
(

1
1

n+1
−p
∫ p̄
p log I(p)dp

)
, with lower percentile bound p ∈

(
0, 1

n+1

]
satisfying:

C = In (p̄) I
(
p
)
, (A.43)

and the upper percentile bound is given by p̄ = 1− np.

Using an analogous proof, any assignment concentrated on a subset of the set of potential matches

M solves the planning problem. To characterize the dual solution with n workers per team, we

use the marginal product under an optimal assignment (A.42). Invoking the generalized duality

argument of Kellerer (1984), we can use the marginal product to formulate equilibrium wages and

firm values as in Section 4. As in our baseline analysis, wages are decreasing and convex in skills,

while firm values are increasing and convex in firm productivity.
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