
Appendix for “A Dynamic Theory of Resource Wars”–Not for

Publication

Proofs from Section 2

Proof of Lemma 1

For any λ ∈ (0, 1), it must be the case that

log u′ (x)− log u′ (λx) = log u′
(

explog x
)
− log u′

(
explog(λx)

)
(A-1)

=

∫ log x

log λx

(
d log u′ (expz)

dz

)
dz

By Assumption 1,
d log u′ (expz)

dz
=

expz u′′ (expz)

u′ (expz)
≥ − 1

σ
. (A-2)

Substitution of (A-2) into (A-1) implies that

log u′ (x)− log u′ (λx) ≥
∫ log x

log λx

(
− 1

σ

)
dz =

1

σ
log λ,

which means that

u′ (λx) < λ−1/σu′ (x) . (A-3)

To see why this ensures that V (w (mt) et) is bounded from below for any w (mt) et > 0, consider

the consumption path given by et+k+1 = λet+k for all k ≥ 1 for λ ∈ (0, 1) with λ chosen such that

βλ−1/σ < 1, where this is possible by Assumption 1.2. Under this consumption path country A

consumes (1− λ)λkw (mt) et units of resources at date k and the concavity of u (·) implies that

u
(

(1− λ)λkw (mt) et

)
> u (w (mt) et) (A-4)

−u′
(

(1− λ)λkw (mt) et

)(
1− (1− λ)λk

)
w (mt) et

> u (w (mt) et)− u′
(

(1− λ)λkw (mt) et

)
w (mt) et

where we have used the fact that 1− (1− λ)λk < 1. From (A-3), (A-4) becomes

u
(

(1− λ)λkw (mt) et

)
> u (w (mt) et)−

(
λ−1/σ

)k
(1− λ)−1/σ u′ (w (mt) et)w (mt) et. (A-5)
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Therefore,

V (w (mt) et) ≥
∞∑
k=0

βku
(

(1− λ)λkw (mt) et

)
≥

u (w (mt) et)

1− β − (1− λ)−1/σ u′ (w (mt) et)w (mt) et

1− βλ−1/σ
> −∞.

Therefore, V (w (mt) et) is bounded from below.�

Proof of Proposition 1

The first-order condition to (8) defines m∗ (e) as

l′ (m) = V ′ (w (m) e)w′ (m) e for all e. (A-6)

Given the solution to (4), the envelope condition implies that

V ′ (w (mt) et) = βku′ (xt+k) for all k ≥ 0. (A-7)

Substitution of (A-7) into (A-6) followed by implicit differentiation yields(
l′′ (mt)

βku′′ (xt+k)w′ (mt) et
− u′ (xt+k)w

′′ (mt)

u′′ (xt+k)w′ (mt)

)
dmt

det
(A-8)

=
dxt+k
det

+
u′ (xt+k)

u′′ (xt+k) et
.

Summing (5) and (6) gives
∑∞

k=0 xt+k = w (mt) et, and differentiating this yields

∞∑
k=0

dxt+k
det

= w (mt) + w′ (mt) et
dmt

det
. (A-9)

Taking the sum of (A-8) overall k ≥ 0 and substituting into (A-9), we obtain

dmt

det
=

w (mt)

(
1 +

∑∞
k=0

u′ (xt+k)

u′′ (xt+k)xt+k

xt+k
w (mt) et

)
∑∞

k=0

(
l′′ (mt)

βku′′ (xt+k)w′ (mt) et
− u′ (xt+k)w

′′ (mt)

u′′ (xt+k)w′ (mt)

)
− w′ (mt) et

. (A-10)

Since the denominator is negative, (A-10) is positive if and only if the numerator is negative. If

−u′ (xt+k) /
(
u′′ (xt+k)xt+k

)
> 1 for all xt+k,
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then the numerator is negative since from (??),
∑∞

k=0

xt+k
w (mt) et

= 1, and the opposite holds if

−u′ (xt+k) /
(
u′′ (xt+k)xt+k

)
< 1for all xt+k.

�

Proofs from Section 3

Definition of Strategies at et = 0 for u (0) = −∞

As noted in the text, when the endowment equals 0 and u (0) = −∞, then in the unperturbed
economy the payoff from war and from peace may both equal −∞. We determine whether or
not war occurs in this case by explicitly looking at the economy with cost of war υ > 0 for

country A as specified in Definition 1. Let

UC (e) =

∞∑
t=0

βt
(
u (x̃t (e))− u′ (x̃t (e)) x̃t (e)

)
(A-11)

for {x̃t (e) , ẽt (e)}∞t=0 which satisfies

u′ (x̃t+1 (e)) = (1/β)u′ (x̃t (e)) ,

ẽt+1 (e) = ẽt (e)− x̃t (e) , and ẽ0 (e) = e.

UC (e) corresponds to equilibrium welfare of country A in a permanently peaceful competitive

equilibrium starting from endowment e at date 0, where x̃t (e) and ẽt (e) correspond to the

resource consumption and resource endowment, respectively, at date t in such an equilibrium.

The constraint that x̃t (e) ≤ x is ignored since it does not bind as a consequence of Assumption
1.3.

For cost of war υ ≥ 0, we define

Fυ (e) ≡ UC (e)− (V (w (m∗ (e)) e)− l (m∗ (e))− υ) . (A-12)

Fυ (e) corresponds to the difference in country A’s welfare between a permanently peaceful

competitive equilibrium and war with optimal armament m∗ (e) starting from endowment e

when the cost of war is equal to υ. In what follows, we will not separately give the expressions

for the case where υ = 0, which can be readily obtained from the expressions here by setting

υ = 0. Following the fourth requirement of the definition of MPCE, we will determine the

behavior of country A at zero endowment (when u (0) = −∞) from this function Fυ (e). In

particular, given this function, our definition in the text implies:

Observation (Equilibrium Selection) Suppose that ft−1 = 0 and et = 0. Then ft = 0 only

if lime→0 Fυ (e) > 0.
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Note that this definition also subsumes the case for which u (0) > −∞, as in this case
lime→0 Fυ (e) = υ > 0 and thus ft = 0 at et = 0. The following lemma and its corollary are

useful to simplify the analysis of country A’s equilibrium decisions. Because all of our results

in this Appendix are true for any value of υ > 0, we do not qualify the next lemma and other

lemmas and propositions with “fix some υ > 0”.

Lemma 4 Starting from any e∗t , country A’s payoff UA (e∗t ) must satisfy

UA (e∗t ) = max
{
u
(
xA∗t

)
− p∗txA∗t + βUA

(
e∗t+1

)
, V (w (m∗ (et)) e

∗
t )− l (m∗ (e∗t ))− υ

}
(A-13)

Proof. By definition of MPCE, UA (e∗t ) equals (14) for some equilibrium sequence
{
e∗t+k, p

∗
t+k, x

S∗
t+k, x

A∗
t+k

}∞
k=0

which does not depend on mt chosen by country A. Therefore without loss of generality country

A can make a joint decision over choice of (ft,mt) to maximize its payoff (14), which would be

either setting ft = 1 and mt = m∗(et), or ft = 0 and mt = 0.

The immediate implication of this lemma is the following corollary.

Corollary 3 In any MPCE, without loss of generality country A’s strategies in state e can be
restricted to choosing no armament and no attack with probability µ(e) and armament m∗(e)

and attack with probability 1− µ(e).

Proof of Lemma 2

We prove the existence of MPCE using the properties of Fυ. We construct equilibria for three

separate cases: (i) lime→0 Fυ(e) ≤ 0; (ii) lime→0 Fυ(e) > 0; and there does not exist e ≤ e0 such

that Fυ(e) < 0; and (iii) lime→0 Fυ(e) > 0 and there exists e ≤ e0 such that Fυ(e) < 0. We

prove each case in a separate lemma. Throughout we use the result of Corollary 3 that allows

us to restrict strategies of country A to not arm and not attack with probability µ(et) and arm

m∗(et) and attack with probability 1− µ(et)

Lemma 5 If lime→0 Fυ(e) ≤ 0 then there exists an equilibrium in which war occurs in period 0

with probability 1.

Proof. First, note that if u(0) is finite then lime→0 Fυ(e) = υ. Therefore lime→0 Fυ(e) ≤ 0

implies that u(0) = −∞.
We construct an equilibrium (γ∗, µ∗) in which war occurs with probability 1 in period 0. Let{

e∗0, p
∗
0, x

S∗
0 , xA∗0

}
= {e0, u

′(e0), e0, e0} and
{
e∗t , p

∗
t , x

S∗
t , xA∗t

}
= {0, u′(0), 0, 0} for all t > 0. Let

γ∗ =
{
e∗t , p

∗
t , x

S∗
t , xA∗t

}∞
t=0

. Let strategies of country A be µ∗(e0) = 0 and µ∗(0) = 0.

To verify that this is an equilibrium we need to check that country A does not gain from

deviating from strategy µ∗. The payoff of country A from choosing no armament and no war in

period 0 is given by

u(e0)− u′(e0)e0 + UA(0) = −∞,
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where the equality follows from u(0) = −∞. The payoff of country A from playing µ∗(e0) is

V (w(m∗(e0))) − l(m∗(e0)) − υ > −∞, therefore it is the best response for country A to play

µ(e0) = 0. The observation in Section 7 implies that µ(et) = 0 is the best response in the states

in which et = 0.

To see that γ∗ is an equilibrium, note that µ(e1) = 0 implies that Pr {f1 = 0} = 0. Then

(3), (10), (12), and (13) imply that
{
p∗0, x

S∗
0 , xA∗0

}
= {u′(e0), e0, e0} and e∗1 = 0, completing the

proof.

Lemma 6 If lime→0 Fυ(e) > 0 and there does not exist e ≤ e0 such that Fυ(e) < 0, then there

exists an equilibrium with permanent peace.

Proof. In an equilibrium with permanent peace country A sets µ∗(e) = 1 for all e ≤ e0, and

equilibrium allocations γ∗ = {ẽt(e0), u′(x̃t(e0)), x̃t(e0), x̃t(e0)}∞t=0 where {ẽt(e0), x̃t(e0)}∞t=0 are

the competitive equilibrium allocations with permanent peace defined in (A-11). At every date

t the payoff for country A along the equilibrium path is given by UC(ẽt(e0)). Since ẽt(e0) ≤ e0

for all t,

0 ≤ Fυ(ẽt(e0))

= UC(ẽt(e0))− (V (w(m∗(ẽt (e0)))ẽt (e0))− l(m∗(ẽt (e0)))− υ) ,

which implies µ∗(ẽt) = 1 is the best response of country A. Given that country A never attacks,

γ∗ satisfies optimization conditions (3), (10), (12), and (13) .

Lemma 7 If lime→0 Fυ(e) > 0 and there exists e ≤ e0 such that Fυ(e) < 0 then an MPCE

exists.

Proof. Define ê > 0 s.t. Fυ(ê) = 0 and Fυ(e) > 0 for all e ∈ [0, ê). Such ê exists because Fυ

is continuous, Fυ(0) > 0 and Fυ(e) < 0 for some e. Let ̂̂e be defined implicitly by ẽ1(̂̂e) = ê. ̂̂e
represents a value of initial endowment of resources such that in competitive equilibrium with

permanent peace, remaining resource reserves in period 1 are equal to ê.We construct equilibria

for three different cases depending on the values of Fυ(e0) and e0 relative to ̂̂e.
Case 1. Suppose e0 ≤ ̂̂e and Fυ(e0) ≥ 0.We construct an equilibrium with permanent peace.

Define γ∗ = {ẽt(e0), u′(x̃t(e0)), x̃t(e0), x̃t(e0)}∞t=0 and µ
∗
t (ẽt(e0)) = 1 for all t. The proof of

this case is analogous to proof of Lemma 6.

Case 2. Suppose e0 ≤ ̂̂e and Fυ(e0) < 0. We construct an equilibrium in which war occurs

with probability 1 in period 0. In this case define γ∗ = {ẽt(e0), u′(x̃t(e0)), x̃t(e0), x̃t(e0)}∞t=0

and µ∗0(e0) = 0, µ∗t (ẽt(e0)) = 1 for all t > 0. Given these strategies of country A, (µ∗, γ∗) is

an equilibrium for the same reasons as described in the proof of Lemma 6. Since Fυ(e0) < 0,

country A obtains higher utility under war and and thus µ∗0(e0) = 0 is a best response in period
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0. To verify that µ∗t (ẽt(e0)) = 1 for all t > 0, note that e0 ≤ ̂̂e implies that ẽ1(e0) ≤ ẽ1(̂̂e) = ê.24

Therefore in any period t > 0

UA(ẽt(e0))− (V (w(m∗(ẽt (e0)))ẽt (e0))− l(m∗(ẽt (e0)))− υ)

= UC(ẽt(e0))− (V (w(m∗(ẽt (e0)))ẽt (e0))− l(m∗(ẽt (e0)))− υ)

= Fυ(ẽt(e0)) ≥ Fυ(ê) = 0.

Therefore peace is a dominated strategy for country A in all t > 0.

Case 3. Suppose e0 > ̂̂e.We construct an equilibrium in which resource endowment in period
1 is equal to ê followed by permanent peace from t ≥ 2. Probabilities of war in periods 0 and 1

depend on the initial conditions.

Let (
e∗0, p

∗
0, x

S∗
0 , xA∗0

)
=
(
e0, u

′ (e0 − ê) , e0 − ê, e0 − ê
)

and (
e∗t , p

∗
t , x

S∗
t , xA∗t

)
=
(
ẽt−1 (ê) , u′ (x̃t−1 (ê)) , x̃t−1 (ê) , x̃t−1 (ê)

)
for all t ≥ 1.

Let µ∗(e∗1) = u′(e0 − ê)/βu′(x̃0(ê)). Note that µ∗(e∗1) is equal to 1 for e0 = ̂̂e and monotonically
converges to 0 as e0 → ∞. Therefore µ∗(e∗1) is a well-defined probability. Set µ∗(e∗t ) = 1 for

all t ≥ 2. Under this construction
{
e∗t , p

∗
t , x

S∗
t , xA∗t

}∞
t=0

satisfies conditions (3), (10), (12), and

(13) (since they do not depend on the probability of war in period 0, µ∗(e0)). To check that

constructed strategies are also best response for country A starting from period 1, note that by

construction e∗1 = ê and e∗t < ê for all t ≥ 2. Since Fυ(ê) = 0, country A is indifferent between

war and peace and is weakly better off randomizing between the two outcomes with probabilities

µ∗(e∗1) and 1− µ∗(e∗1). Since e∗t < ê for t ≥ 2, Fυ(e∗t ) > 0 for t ≥ 2, and therefore µ∗(e∗t ) = 1 is a

best response analogously to Case 1.

Finally we need to construct µ∗(e0). Note that under proposed equilibrium strategies country

A is indifferent between permanent peace and attack in period 1, and therefore its payoff period

1 is UC(ê). Therefore, if country A does not attack in period 0, its payoff is given by u (e0 − ê)−
u′ (e0 − ê) (e0 − ê) + βUC (ê) . Then we set µ∗(e0) = 1 if

u (e0 − ê)− u′ (e0 − ê) (e0 − ê) + βUC (ê) ≥ V (w (m∗ (e0)) e0)− l (m∗ (e0))− υ,

and set µ∗(e0) = 0 otherwise. This completes construction of the equilibrium.

24This follows, for example, because the competitive equilibrium is effi cient and thus equilibrium allocations
{ẽt}∞t=0 can be found recursively from

J(et) = max
et+1

u(et − et+1) + βJ(et+1).

Concavity of J implies that et+1 is increasing in et.
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Proof of Proposition 3

First we prove a preliminary result about properties of MPCE. By Corollary 3, without loss

of any generality, we can restrict attention to only two actions of country A in each period, to

not arm and not attack with probability µ∗(e∗t ) and to arm m∗(e∗t ) and attack with probability

1− µ∗(et).

Lemma 8 Let (γ, µ) be an MPCE. Suppose that µ∗t = µ∗(e∗t ) > 0 for all t. Then

1. Country A must weakly prefer permanent peace to war,

∞∑
k=0

βk
(
u
(
x∗t+k

)
− p∗t+kx∗t+k

)
≥ V (w (m∗ (e∗t )) e

∗
t )− l (m∗ (e∗t ))− υ (A-14)

for all t, with strict equality if country A attacks with a positive probability (i.e. µ(e∗t ) < 1).

2. The payoff in the event of no war satisfies

∞∑
k=0

βk
(
u
(
x∗t+k

)
− p∗t+kx∗t+k

)
= Kte

∗1−1/σ
t − 1

(1− β) (1− 1/σ)
(A-15)

where

Kt =
1

σ

1

1− 1/σ

1 +
∑∞

k=1 β
k

(
k∏
l=1

(
βµ∗t+l

)σ)1−1/σ


(
1 +

∑∞
k=1

k∏
l=1

(
βµ∗t+l

)σ)1−1/σ
. (A-16)

Moreover, Kt is bounded from below, and Kt is bounded from above by

KC =
1

σ

1

1− 1/σ
(1− βσ)−1/σ . (A-17)

3. (x∗t , e
∗
t ) for all e

∗
t > 0 must satisfy

x∗t
e∗t
≥ 1− βσ. (A-18)

4. Country A’s payoff in the event of war satisfies

V (w (m∗ (e∗t )) e
∗
t ) = w (m∗ (e∗t ))

1−1/σ (1− βσ)−1/σ 1

1− 1/σ
e
∗1−1/σ
t − 1

(1− β) (1− 1/σ)
.

(A-19)
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Proof. Since peace occurs with a positive probability at any t + k ≥ t, the equilibrium payoff

for country A should be equal to

UA(e∗t ) = u(x∗t )− p∗tx∗t + βUA(e∗t+1).

Iterating forward, this implies that

UA(e∗t ) =

∞∑
k=0

βk
(
u
(
x∗t+k

)
− p∗t+kx∗t+k

)
for all t+ k ≥ 0. Substitution into (A-13) implies that (A-14) must hold, with strict equality if

µ (e∗t ) < 1. This establishes part (i).

Consider any {µ∗t }
∞
t=0 with µ

∗
t > 0 for all t. Optimal extraction for firms requires that

µ∗t+1p
∗
t+1 =

1

β
p∗t . (A-20)

If instead µ∗t+1p
∗
t+1 >

1

β
p∗t , then from condition (12) xA∗t > 0 since p∗t <∞. From (10) xS∗t = 0,

but this implies that xS∗t 6= xA∗t which violates (13). If instead µ∗t+1p
∗
t+1 <

1

β
p∗t , then analogous

arguments imply that xA∗t+1 > 0 and xS∗t+1 = 0 which violates (13). (A-20) together with (12)

implies that

x∗t+1 =
(
βµ∗t+1

)σ
x∗t . (A-21)

Forward substitution on (3) implies that

∞∑
k=0

x∗t+k ≤ e∗t . (A-22)

(A-22) must bind, since if this were not the case, a firm would be able to increase some x∗t+k by

ε > 0 and increase its profits. Substitutions of (A-21) into (A-22), noting that the latter binds,

yields

x∗t

(
1 +

∞∑
k=1

k∏
l=1

(
βµ∗t+l

)σ)
= e∗t . (A-23)

Equation (A-23) together with the fact that µt ∈ (0, 1] for all t > 0 implies that

e∗t > 0 and
x∗t
e∗t

=
1

1 +
∑∞

k=1

k∏
l=1

(
βµ∗t+l

)σ ≥ 1− βσ > 0 for all t . (A-24)
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Substitution of p∗t+k = u′
(
x∗t+k

)
into (A-15) yields

∞∑
k=0

βk

(
1

σ

x
∗1−1/σ
t+k

1− 1/σ

)
− 1

(1− β) (1− 1/σ)
= Kte

∗1−1/σ
t − 1

(1− β) (1− 1/σ)
(A-25)

where we used (A-21) and (A-23) to get (A-16).

We are left to show that Kt is bounded from above and below. The maximization of the left

hand side of (A-25) subject to the resource constraint (3) implies that x∗t+1 = βσx∗t so that the

maximum of the left hand side of (A-25) is

1

σ

1

1− 1/σ
(1− βσ)−1/σ e

∗1−1/σ
t − 1

(1− β) (1− 1/σ)
. (A-26)

Since e∗1−1/σ
t > 0 by (A-24), this means that

Kt ≤ KC =
1

σ

1

1− 1/σ
(1− βσ)−1/σ , (A-27)

so that Kt is bounded from above. To see that Kt is bounded from below, note that if σ > 1,

(A-16) implies that

Kt ≥
1

σ

1

1− 1/σ
(1− βσ)1−1/σ

since 1 +
∑∞

k=1 β
k

(
k∏
l=1

(
βµ∗t+l

)σ)1−1/σ


(
1 +

∑∞
k=1

k∏
l=1

(
βµ∗t+l

)σ)1−1/σ
≥ 1(

1 +
∑∞

k=1

k∏
l=1

βσ

)1−1/σ

= (1− βσ)1−1/σ

If instead σ < 1, then (A-14) implies that under any armament level m > 0,

Kte
∗1−1/σ
t − 1

(1− β) (1− 1/σ)
≥ V (w (m) e∗t )− l (m)− υ. (A-28)

The first order conditions which define (4) imply that xt+1 = βσxt which given (5) and (6)

implies that

V (w (m) e∗t ) = w (m)1−1/σ (1− βσ)−1/σ 1

1− 1/σ
e
∗1−1/σ
t − 1

(1− β) (1− 1/σ)
. (A-29)
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Together with (A-28), this means that

Kt ≥ w (m)1−1/σ (1− βσ)−1/σ 1

1− 1/σ
− l (m) + υ

e
∗1−1/σ
t

≥ w (m)1−1/σ (1− βσ)−1/σ 1

1− 1/σ
− l (m) + υ

e
1−1/σ
0

where we have used the fact that e∗t ≤ e0. This means that Kt is bounded from below.

This establishes part (ii) of the lemma. Part (iii) follows from (A-24), and part (iv) follows

by substitution of m∗ (et) in for m in (A-29).

Now we are ready to prove Proposition 3. Here we prove a stronger version of Proposition

3 that shows that if at any node of the game (both on and off equilibrium path) war does not

occur with probability 1, then permanent peace must follow after that node.

Proposition 13 Let (γ∗, µ∗) be an MPCE. Suppose that µ∗(e∗T ) > 0 for some e∗T > 0. Then

µ∗(et) = 1 for all t > T. Moreover, UA(e∗T ) = UC(e∗T ) where UC(e∗T ) is a payoff in permanent

peace defined in equation (A-11) and {x∗t }
∞
t=T satisfies (16).

Proof. First, note that using the same arguments as those used in Proposition 2 we can establish

that if µ∗(e∗T ) > 0 for some e∗T > 0 then µ∗(et) > 0 for all t > T . Now substituting from Lemma

8 into equation (A-14), we obtain

Kte
∗1−1/σ
t ≥ w (m∗ (e∗t ))

1−1/σ (1− βσ)−1/σ 1

1− 1/σ
e
∗1−1/σ
t − l (m∗ (e∗t ))− υ. (A-30)

We now show that (A-30) cannot hold with equality which proves that there cannot be

equilibrium randomization by country A between war and peace. Suppose (A-30) holds with

equality at some date t > T.We consider two cases separately: case 1, when there is some finite

date T̂ after which country A never attacks, and case 2, when µ∗t < 1 infinitely often.

Case 1. Suppose there is some T̂ such that µ∗
T̂
< 1 and µ∗t = 1 for all t > T̂ . In this case,

since country A is indifferent between war and peace at T̂ and weakly prefers peace at T̂ − 1

and T̂ + 1 to war using the same armament as at T̂ , it follows that:

KT̂+1e
∗1−1/σ

T̂+1
≥ w

(
m∗
(
e∗
T̂

))1−1/σ
(1− βσ)−1/σ 1

1− 1/σ
e
∗1−1/σ

T̂+1
− l
(
m∗
(
e∗
T̂

))
− υ(A-31)

KT̂ e
∗1−1/σ

T̂
= w

(
m∗
(
e∗
T̂

))1−1/σ
(1− βσ)−1/σ 1

1− 1/σ
e
∗1−1/σ

T̂
− l
(
m∗
(
e∗
T̂

))
− υ(A-32)

KT̂−1e
∗1−1/σ

T̂−1
≥ w

(
m∗
(
e∗
T̂

))1−1/σ
(1− βσ)−1/σ 1

1− 1/σ
e
∗1−1/σ

T̂−1
− l
(
m∗
(
e∗
T̂

))
− υ(A-33)

Since µ∗t = 1 for all t ≥ T̂ + 1, from (A-16), it must be the case that KT̂+1 = KT̂ = KC for KC

defined in (A-17), and since µT̂ ∈ (0, 1), it must be that KC > KT̂−1 since war is chosen with

A-10



positive probability at T̂ . Moreover, it must be that

KC − w
(
m∗
(
e∗
T̂

))1−1/σ
(1− βσ)−1/σ 1

1− 1/σ
< 0

in order that (A-32) hold. Equations (A-31)− (A-33) therefore imply that

e
∗1−1/σ

T̂

e
∗1−1/σ

T̂+1

≥ 1 and
e
∗1−1/σ

T̂

e
∗1−1/σ

T̂−1

≥ 1.

If σ < 1, then by (3) this implies that e∗
T̂+1

= e∗
T̂
so that x∗

T̂
= 0 which violates (A-18). If

instead σ > 1, then this implies that e∗
T̂
≥ e∗

T̂−1
which implies x∗

T̂−1
= 0, which violates (A-18).

This establishes that it country A cannot be indifferent between attack and not attack in period

T, which implies that it must choose ft = 0 with probability 1.

Case 2. Suppose µ∗t < 1 infinitely often.

Consider sequence s1 = {µ∗t ,Kt}∞t=0 where Kt is defined by (A-16). By Lemma 8, there

exists some compact set S such that (µ∗t ,Kt) ∈ S for all t. Therefore we can select a convergent
subsequence s2 within s1 (where Kt converges to some K∗). Consider three consecutive elements

of s2, denoted by n − 1, n, and n + 1. Weak preference for peace at n − 1 and n + 1 together

with indifference to peace at n using armament m∗ (e∗n) implies:

Kn+1e
∗1−1/σ
n+1 ≥ w (m∗ (e∗n))1−1/σ (1− βσ)−1/σ 1

1− 1/σ
e
∗1−1/σ
n+1 − l (m∗ (e∗n))− υ (A-34)

Kne
∗1−1/σ
n = w (m∗ (e∗n))1−1/σ (1− βσ)−1/σ 1

1− 1/σ
e∗1−1/σ
n − l (m∗ (e∗n))− υ (A-35)

Kn−1e
∗1−1/σ
n−1 ≥ w (m∗ (e∗n))1−1/σ (1− βσ)−1/σ 1

1− 1/σ
e
∗1−1/σ
n−1 − l (m∗ (e∗n))− υ (A-36)

Equations (A-34) and (A-35) imply that(
Kn+1 − w (m∗ (e∗n))1−1/σ (1− βσ)−1/σ 1

1− 1/σ

)
e
∗1−1/σ
n+1 ≥ (A-37)(

Kn − w (m∗ (e∗n))1−1/σ (1− βσ)−1/σ 1

1− 1/σ

)
e∗1−1/σ
n

and equations (A-35) and (A-36) imply that(
Kn−1 − w (m∗ (e∗n))1−1/σ (1− βσ)−1/σ 1

1− 1/σ

)
e
∗1−1/σ
n−1 ≥ (A-38)(

Kn − w (m∗ (e∗n))1−1/σ (1− βσ)−1/σ 1

1− 1/σ

)
e∗1−1/σ
n
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Note that it cannot be that

lim
n→∞

{
Kn − w (m∗ (e∗n))1−1/σ (1− βσ)−1/σ 1

1− 1/σ

}
= 0, (A-39)

since if this were the case, then given the indifference condition, it would violate (A-35) since

υ > 0. Therefore, (A-39) cannot hold and the left hand side of (A-39) must be negative for

(A-35) to be satisfied. Then (A-37), (A-38) and the fact that Kn converges to some K∗ imply

that

lim
n→∞

(
e
∗1−1/σ
n

e
∗1−1/σ
n+1

)
≥ 1 and lim

n→∞

(
e
∗1−1/σ
n

e
∗1−1/σ
n−1

)
≥ 1,

which given (3) implies that if either σ < 1 or σ > 1, then limn→∞ e∗n+1/e
∗
n = 1, but this violates

(A-18) which requires that e∗t+1/e
∗
t ≤ βσ < 1 for all t which implies from (3) that e∗n+1/e

∗
n ≤ βσ

for all n. This establishes that it is not possible for µ∗(e∗t ) < 1 for t ≥ T in an equilibrium in

which war continues occurring forever with positive probability, and this completes the proof of

the first part of the proposition.

Finally, since country A weakly prefers peace in state e∗T , UA(e∗T ) = UC(e∗T ) and {x∗t }
∞
t=T

must satisfy (16).

Proof of Proposition 4

To prove this proposition we construct the function Fυ as defined in (A-12) and use Lemmas

5, 6, and 7 to establish the existence of equilibrium in which either war occurs with probability

1 in period 0 or there is a permanent peace depending on the assumptions in Proposition 4.

Next we use Proposition 13 to rule out other equilibria. Similarly to the proofs of all preceding

lemmas, we use Corollary 3 to restrict our attention to only two strategies for country A, not

arm and not attack with probability µ(e) and arm m∗(e) and attack with probability 1− µ(e).

First we derive payoffs from the permanent peace UC(e) and war V (w (m∗ (e)) e) . Set µt = 1

for all t and use Lemma 8 to show that

UC(e) =
1

σ

1

1− 1/σ
(1− βσ)−1/σ e1−1/σ − 1

(1− 1/σ) (1− β)
. (A-40)

Then Fυ(e) is equal to

Fυ(e) =
1

1− 1/σ
(1− βσ)−1/σ e1−1/σ

(
1/σ − [w (m∗ (e))]1−1/σ

)
+ l(m∗(e)) + υ. (A-41)

Part 1: Consider the case when σ > 1. First we show that there exists a unique ê such that

Fυ(e) > 0 for all e < ê and Fυ(e) < 0 for all e > ê. Then it follows immediately from Lemma

6 that there exists an equilibrium that has no war along the equilibrium path if e0 < ê and

we show using Lemma 7 there exists an equilibrium in which war occurs with probability 1 in

period 0 if e0 > ê.
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Claim 1. If σ > 1 then there exists a unique ê such that Fυ(e) > 0 for all e < ê and Fυ(e) < 0

for all e > ê.

Note that Fυ(0) = υ > 0. Differentiating Fυ in (A-41) and using the optimality condition

(A-6) for m∗′(e), we obtain

F ′υ (e) = (1− βσ)−1/σ e−1/σ
(

1/σ − [w (m∗ (e))]1−1/σ
)
. (A-42)

If σ > 1 then from Proposition 1 m∗(e) is increasing in e. Therefore Fυ(e) has at most one

peak and it can cross zero at most once. If it crosses zero, let ê be a solution to Fυ(ê) = 0. If

Fυ(e) does not cross zero we set ê =∞.
Claim 2. If Fυ(e) > 0 for all e ≤ e0, then there exists no equilibrium in which war occurs

with positive probability.

Claim 2 together with Claim 1 immediately imply that if σ > 1 and e0 < ê then there exists

no equilibrium in which war occurs with positive probability.

Suppose there exists an equilibrium in which war occurs with a positive probability at date

0. More formally, suppose there exists an equilibrium (γ∗, µ∗) such that µ∗(e0) < 1.

First suppose that µ∗(e∗1) = 0. In this case (10) and (3) imply that xA∗0 = e0 and e∗1 = 0.

When σ > 1, then Fυ(0) > 0, and by Observation 7 µ∗(0) = 1. Therefore µ∗(e∗1) = 1 leading to

a contradiction.

Now suppose that µ∗(e∗1) > 0. In this case from Proposition 13, UA(e∗1) = UC(e∗1). Then

UA(e∗1)− (V (w (m∗ (e∗1)) e∗1)− l(m∗(e∗1))− υ) = UC(e∗1)− (V (w (m∗ (e∗1)) e∗1)− l(m∗(e∗1))− υ)

= Fυ(e∗1) > Fυ(ê) = 0,

where the strict inequality follows from the definition ê. This implies that peace is strictly

preferred to attack and therefore µ∗(e∗1) = 1.

If µ∗(e∗1) = 1 so that peace occurs with probability 1 in period 1, then
(
xA∗0 , p∗0

)
= (x̃0(e0), u′(x̃0(e0)))

where x̃0(e0) is a permanent peace allocation defined in (A-11), and e∗1 = ẽ1(e0). Since country

A attacks in period 0 with positive probability, it must be true that

V (w (m∗ (e0)) e0)− l(m∗(e0))− υ ≥ u(xA∗0 )− p∗0xA∗0 + βUA(e∗1). (A-43)

Substitute
(
xA∗0 , p∗0

)
= (x̃0(e0), u′(x̃0(e0))) and UA(e∗1) = UC(e∗1) into equation (A-43) and

regroup terms to get

0 ≥ u(x̃0(e0))− u′ (x̃0 (e0)) x̃0 (e0) + βUC(ẽ1(e0))− (V (w (m∗ (e0)) e0)− l(m∗(e0))− υ)

= UC(e0)− (V (w (m∗ (e0)) e0)− l(m∗(e0))− υ)

= Fυ(e0) > 0
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which is a contradiction. Therefore there cannot exist an equilibrium with µ∗(e0) > 0 and

Lemma 6 establishes existence of equilibrium with µ∗(e0) = 1.

Claim 3. If σ > 1 and e0 > ê, then there exists no equilibrium in which peace occurs with

positive probability in period 0.

Suppose e0 > ê and there exists an equilibrium in which country A chooses peace with

positive probability in period 0, i.e., µ∗(e0) > 0. By Proposition 13,

0 ≤ UA(e0)− (V (w (m∗ (e0)) e0)− l(m∗(e0))− υ)

= UC(e0)− (V (w (m∗ (e0)) e0)− l(m∗(e0))− υ) = Fυ(e0) < 0

which is a contradiction. Therefore in any MPCE µ∗(e0) = 0.

Part 2: Suppose σ < 1 and let ŵ = (1/σ)1/(1−1/σ) . By construction, ŵ ∈ (0, 1) .

Claim 4. If σ < 1 and limm→m̄w(m) < ŵ, then there exists no equilibrium in which war

occurs with positive probability.

We prove that in this case Fυ(e) > 0 for all e, so that we can apply Claim 2 of the proof of

this proposition directly to establishes this result.

In order to prove that Fυ (e) > 0 for all e, we show that F ′υ (e) < 0 for all e and that

lime→∞ F (e) > 0. We can establish that F ′υ (e) < 0 for all e from (A-42); this is true given

that w (m∗ (e)) < ŵ for all e. To establish that lime→∞ Fυ (e) > 0, consider first the value of

lime→∞m∗ (e). Suppose that lime→∞m∗ (e) = m > 0. Since m∗(e) is the optimal armament,

it must satisfy (A-6). The first order condition which characterizes (8) taking into account (4)

and (17) implies

(1− βσ)−1/σ e1−1/σ =
l′ (m∗ (e))

[w (m∗ (e))]−1/σ w′ (m∗ (e))
. (A-44)

If lime→∞m∗ (e) = m > 0, then this would violate (A-44) since the left-hand side of (A-44)

would converge to 0 whereas the right-hand side of (A-44) would converge to a positive number.

Therefore, lime→∞m∗ (e) = 0 which implies that

lim
e→∞

(V (w (m∗ (e)) e)− l (m∗ (e))− υ) = − 1

(1− β) (1− 1/σ)
− υ, (A-45)

so that lime→∞ Fυ (e) = υ > 0.25 This establishes that Fυ (e) > 0 for all e. Claim 4 then follows

from Claim 2.
25 (A-45) follows because by definition

V (w (m∗ (e)) e)− l (m∗ (e))− υ ≤ − 1

(1− β) (1− 1/σ)
− υ

and because optimality of m∗ (e) requires

lim
e→∞

(V (w (m∗ (e)) e)− l (m∗ (e))− υ) ≥ lim
e→∞

(V (εe)− l (ε)− υ) = − 1

(1− β) (1− 1/σ)
− l (ε)− υ

for any ε > 0 chosen to be arbitrarily small.
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Claim 5. If σ < 1 and limm→m̄w(m) > ŵ, then there exists no equilibrium in which peace

occurs with positive probability in period 0.

First we show that in this case lime→0 Fυ(e) = −∞. The existence of the pure-strategy
equilibrium with immediate war then follows from Lemma 5 and we will use Proposition 13 to

rule out existence of equilibria with a positive probability of peace in period 0.

Let us show that lime→0 Fυ(e) = −∞. Note that when σ < 1, Proposition 1 that m∗(e) is de-

creasing in e. Suppose that lime→0m
∗(e) = m′ < m. This would violate (A-44) since the left-hand

side of (A-44) approaches∞ as e approaches 0, whereas the right-hand side of (A-44) approaches

l′ (m′) /
[
[w (m′)]−1/σ w′ (m′)

]
<∞, yielding a contradiction. Therefore lime→0m

∗ (e) = m and

lime→0w (m∗ (e)) > ŵ. Now consider lime→0 Fυ (e) which satisfies:

lim
e→0

Fυ (e) = lim
e→0

(V (w (m∗ (e)) e)− l (m∗ (e))− υ)

(
UC (e)

V (w (m∗ (e)) e)− l (m∗ (e))− υ − 1

)
.

(A-46)

The first term on the right-hand side of (A-46) converges to −∞. The limit of the second
term is positive since after substituting UC (e) from (A-40) and V (w (m∗ (e)) e) from (A-19)

and applying the L’Hopital’s rule (together with the optimality condition (A-6)), we obtain

lim
e→0

UC (e)

V (w (m∗ (e)) e)− l (m∗ (e))− υ = lim
e→0

dUC (e) /de

d (V (w (m∗ (e)) e)− l (m∗ (e))− υ) /de

=
1/σ

limm→m [w (m)]1−1/σ
> 1.

Therefore lime→0 Fυ (e) = −∞. Since lime→0 Fυ (e) = −∞ and Fυ is continuous, there exists

ê > 0 such that Fυ(e) < 0 for all e < ê.

Now we are ready to prove that there exist no equilibrium in which peace occurs with a

positive probability in period 0. Suppose such an equilibrium (γ∗, µ∗) exists with µ∗(e0) > 0. In

this case by Proposition 13, µ∗(e∗t ) = 1 for all t > 0 and xA∗t = x̃t(e0) for all t. From the proof

of Lemma 8 it follows that e∗t = ẽt(e0) = βσte0. Therefore there exists some T such that e∗T < ê.

Since peace is the best response for country A in state e∗T , its payoff UA(e∗T ) should be greater

then the payoff from war, so that

0 ≤ UA(e∗T )− (V (w (m∗ (e∗T )) e∗T )− l (m∗ (e∗T ))− υ)

= UC(e∗T )− (V (w (m∗ (e∗T )) e∗T )− l (m∗ (e∗T ))− υ)

= Fυ(e∗T ) < 0,

where the last inequality follows from the fact that e∗T < ê. This is a contradiction.�
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Proof of Proposition 5

We establish this result is several steps. The following preliminary lemma is useful since it

implies that the payments made by countryA which equal u′ (x)x in equilibrium rise to infinity as

resource consumption x declines to zero. It also implies that the utility of 0 resource consumption

is −∞.

Lemma 9 Suppose that there exists some σ < 1 such that −u′ (x) / (xu′′ (x)) ≤ σ for all x ≥ 0.

Then (i) limx→0 u
′ (x)x =∞ and (ii) u (0) = −∞.

Proof. Part 1. For any x ∈ (0, 1), it must be the case that

log u′ (1)− log u′ (x) = log u′
(

explog 1
)
− log u′

(
explog x

)
(A-47)

=

∫ log 1

log x

(
d log u′ (expz)

dz

)
dz.

Analogous arguments to those in the proof of Lemma 1 imply that since xu′′ (x) /u′ (x) ≤ −1/σ,

it must be the case that (A-47) implies that

log u′ (1)− log u′ (x) ≤ − (log (1)− log (x)) /σ,

which means that

u′ (x) ≥ u′ (1)x−1/σ. (A-48)

Therefore,

u′ (x)x ≥ u′ (1)x1−1/σ. (A-49)

The right hand side of (A-49) approaches ∞ as x approaches 0 since 1 − 1/σ < 0. Therefore,

given (A-49), it must be that limx→0 u
′ (x)x =∞.

Part 2. The concavity of u (·) implies that for any α ∈ (0, 1) and x > 0,

u (x)− u (αx) ≥ u′ (x)x (1− α) . (A-50)

Suppose that u (0) is finite. Then the left hand side of (A-50) approaches 0 as x approaches 0.

However, by part 1, the right hand side of (A-50) approaches ∞ as x approaches 0. This means

that u (0) cannot be finite so that u (0) = −∞.
We can show that if limm→m̄w (m) is suffi ciently close to 1, there does not exist an equilib-

rium in which there is a positive probability of peace for all t. To make this argument, note that

Lemma 4 and Corollary 3 both hold in the case with an extraction limit so that country A at et
chooses µ∗ (et), where µ∗ (et) corresponds to the probability of peace with zero armament and

1 − µ∗ (et) corresponds to the probability of war with armament m∗ (et). Given e∗t > 0, define
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{˜̃xt+k (e∗t )
}∞
k=0

as follows:

{˜̃xt+k (e∗t )
}∞
k=0

= arg max
{xt+k}∞k=0

∞∑
k=0

βk
(
u (xt+k)− u′ (xt+k)xt+k

)
s.t.

∞∑
k=0

xt+k = e∗t . (A-51)

Lemma 10 Suppose there exists some σ < 1 such that −u′ (x) / (xu′′ (x)) ≤ σ for all x ≥ 0,

and suppose that limm→m̄w (m) is suffi ciently close to 1. Then the following must be true:

1. There does not exist an MPCE with µ∗t > 0 for all t.

2. lime→0 Fυ (e) ≤ 0 so that µ∗ (0) = 0.

3. Suppose there exists an MPCE in which war occurs with probability 1 before some finite

date T . Then it is necessary that xt = x if war has not yet occurred (i.e., if ft = 0).

Proof. Part 1. We prove this in three steps.
Step 1. Suppose that µ∗t = µ∗(e∗t ) > 0 for all t. Then country Amust weakly prefer permanent

peace to war at all dates so that

∞∑
k=0

βk
(
u
(
x∗t+k

)
− p∗t+kx∗t+k

)
≥ V (w (m∗ (e∗t )) e

∗
t )− l (m∗ (e∗t ))− υ (A-52)

for all e∗t along the equilibrium path. This is because since peace occurs with a positive proba-

bility at any t+ k ≥ t, the equilibrium payoff for country A should be equal to

UA(e∗t ) = u(x∗t )− p∗tx∗t + βUA(e∗t+1).

Iterating forward, this implies that

UA(e∗t ) =

∞∑
k=0

βk
(
u
(
x∗t+k

)
− p∗t+kx∗t+k

)
for all t+ k ≥ 0. Substitution into (A-13) implies that (A-52) must hold.

Step 2. If (A-52) holds at e∗t , then the below inequality also holds at e
∗
t for any m ∈ (0,m]

∞∑
k=0

βk
(
w (m)−1/σ (1− w (m))− 1

)
u′
(˜̃xt+k (e∗t )

) ˜̃xt+k (e∗t ) ≥ −l (m)− υ (A-53)

for σ defined in Assumption 1. To see why, note that given (A-51) and the the fact that

p∗t+k = u′
(
x∗t+k

)
from (12), the left hand side of (A-52) is bounded from above as follows:

∞∑
k=0

βk
(
u
(
x∗t+k

)
− p∗t+kx∗t+k

)
≤
∞∑
k=0

βk
(
u
(˜̃xt+k (e∗t )

)
− u′

(˜̃xt+k (e∗t )
) ˜̃xt+k (e∗t )

)
. (A-54)
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The right hand side of (A-52) is bounded from below as follows for all m ∈ (0,m] > 0:

V (w (m∗ (e∗t )) e
∗
t )− l (m∗ (e∗t ))− υ ≥ V (w (m) et)− l (m)− υ (A-55)

≥
∞∑
k=0

βku
(
w (m) ˜̃xt+k (e∗t )

)
− l (m)− υ.

The first inequality in (A-55) follows from the fact that country A can choose to go to war

with any feasible m. The second inequality in (A-55) follows from the fact that, conditional on

m, {xt+k}∞k=0 =
{
w (m) ˜̃xt+k (e∗t )

}∞
k=0

for all k ≥ 0 is a feasible solution to (4). Moreover, the

concavity of u (·) implies that

u
(
w (m) ˜̃xt+k (e∗t )

)
> u

(˜̃xt+k (e∗t )
)
− u′

(
w (m) ˜̃xt+k (e∗t )

) ˜̃xt+k (e∗t ) (1− w (m)) . (A-56)

Combination of (A-52) with (A-54), (A-55), and (A-56) implies that

∞∑
k=0

βk
((
u′
(
w (m) ˜̃xt+k (e∗t )

)
(1− w (m))− u′

(˜̃xt+k (e∗t )
)) ˜̃xt+k (e∗t )

)
≥ −l (m)− υ. (A-57)

To see why (A-57) implies (A-53), note that analogous arguments to those of Lemma 9 imply

that since −u′ (x) /xu′′ (x) ≥ σ for all x, it must be that given w (m) ∈ (0, 1):

log u′
(˜̃xt+k (e∗t )

)
− log u′

(
w (m) ˜̃xt+k (e∗t )

)
≥ −

(
log
(˜̃xt+k (e∗t )

)
− log

(
w (m) ˜̃xt+k (e∗t )

))
/σ,

so that

u′
(
w (m) ˜̃xt+k (e∗t )

)
≤ w (m)−1/σ u′

(˜̃xt+k (e∗t )
)
. (A-58)

Substitution of (A-58) into (A-57) implies (A-53).

Step 3. We now prove that there does not exist an MPCE with µ∗t = µ∗ (e∗t ) > 0 for all t

since (A-53) cannot hold for all e∗t . We establish that e
∗
t must converge to zero and we prove

that (A-53) cannot hold as e∗t approaches 0. Suppose that e∗t did not converge to zero. From

(3) this would imply that x∗t converges to zero so that x
∗
t < x for some t. However, if this is

the case, then a firm would be able to increase some x∗t by ε > 0 arbitrarily small along the

equilibrium path and increase its profits. Therefore, e∗t must converge to zero. Now consider

(A-53) for some m ∈ (0,m) as e∗t converges to zero. Since limm→m̄w (m) is suffi ciently close to

1, m can be chosen such that

w (m)−1/σ (1− w (m))− 1 < 0 (A-59)

since w (m)−1/σ (1− w (m))−1 = −1 < 0 if w (m) = 1. The right hand side of (A-53) is bounded

from below by some finite number as e∗t converges to zero. Now consider the left hand side of

(A-53). Since feasibility requires ˜̃xt+k (e∗t ) ≤ e∗t , and since e
∗
t converges to 0, it follows that
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˜̃xt+k (e∗t ) converges to 0. >From Lemma 9, this implies that u′
(˜̃xt+k (e∗t )

) ˜̃xt+k (e∗t ) approaches

∞ as e∗t approaches 0. Given (A-59), this implies that the left hand side of (A-53) approaches

−∞ as e∗t approaches 0. Therefore, (A-53) cannot hold as e∗t approaches 0.

Part 2. Consider Fυ (e) defined in (A-12). Since UC (e∗t ) is bounded from above by the

right hand side of (A-54) it follows that analogous arguments to those of part (i) imply that

lime→0 Fυ (e) = −∞ ≤ 0. Therefore, by the observation in Section 7, µ∗ (0) = 0.

Part 3. This is proved by backward induction. Let T correspond to the earliest date at

which war occurs with probability 1. We prove that x∗T−1 = x, and we follow the argument by

proving that if x∗t+1 = x, then it is necessary for x∗t = x for all t+ 1 ≤ T − 1.

Since T is the earliest date with war with probability 1, this means that µ∗ (e∗T ) = 0 and

µ∗ (e∗t ) > 0 for t ≤ T − 1. Since µ∗ (0) = 1 by part (ii), it must be that e∗T−1 > 0. Since country

A weakly prefers peace to war at T − 1, this implies that

u
(
x∗T−1

)
−p∗T+1x

∗
T+1+β (V (w (m∗ (e∗T )))− l (m∗ (eT ))− υ) ≥ V

(
w
(
m∗
(
e∗T−1

)))
−l (m∗ (eT−1))−υ,

(A-60)

where the right hand side of (A-60) exceeds −∞ since e∗T−1 > 0. Consider firm behavior at

T − 1. Given (10), it follows that firms choose x∗T−1 = min
{
e∗T−1, x

}
. Suppose it were the case

that e∗T−1 ≤ x. Then this would imply from (3) that e∗T = 0. However, given Lemma 9 and given

(4), this implies that V (w (m∗ (e∗T )))− l (m∗ (eT )) = −∞, which means that the left hand side
of (A-60) equals −∞ which is below the right hand side of (A-60), leading to a contradiction.

Therefore, x∗T−1 = x.

Now suppose that x∗t+1 = x for t + 1 ≤ T − 1. Since x∗t ≤ x, this implies that u′ (x∗t ) >

βu′
(
x∗t+1

)
µ∗
(
e∗t+1

)
. Since (12) implies that u′ (xt) = pt, this means that pt > βpt+1µ

∗ (e∗t+1

)
so that (10) implies that x∗t = x. Forward iteration on this argument implies that xt = x if war

has not yet occurred.

Lemma 10 implies that if an MPCE exists, then war occurs with probability 1 before some

finite date T with xt = x if war has not yet occurred (i.e., if ft = 0). This establishes part (ii)

of Proposition 5. It also establishes part (iii) since it is not possible for xt = x > e0 for any t by

(3) . We are left to prove part (i) by showing that an MPCE exists.

We construct an equilibrium (γ∗, µ∗). Let

{
e∗t , p

∗
t , x

S∗
t , xA∗t

}
=

{
max {e0 − tx, 0} , u′(min {max {e0 − tx, 0} , x}),

min {max {e0 − tx, 0} , x} ,min {max {e0 − tx, 0} , x}

}
(A-61)

for all t ≥ 0. (A-61) implies that at date t, firms extract x if x is below et, and they otherwise

extract et. Given this sequence, we can define the strategy of country A as follows. If et = 0, let

µ∗(et) = 0. If instead et > 0, let µ∗(et) correspond to the highest value of µ (et) ∈ {0, 1} which
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solves the following program given et:

max
{µ(et+k)}∞k=0

∞∑
k=0

βk


µ (et+k) (u (xt+k)− u′ (xt+k)xt+k)

+ (1− µ (et+k))

k−1∏
l=0

µ (et+l) (V (w (m∗ (et+k)) et+k)− l (m∗ (et+k))− υ)


(A-62)

s.t.

xt+k = min {max {et − kx, 0} , x} for all k, (A-63)

et+k = max {et − kx, 0} for all k, (A-64)

µ (et+k) = 0 if µ (et+k−1) = 0 k, (A-65)

µ (et+k) = 0 if et+k = 0 for all k, and (A-66)

µ (et+k) ∈ {0, 1} for all k. (A-67)

This value of µ∗(et) exists since the objective maximized in (A-62) is well defined. To see why,

note that this objective is bounded from below since µ (et) = 0 is a potential solution which

yields V (w (m∗ (et)) et)− l (m∗ (et)) which is well defined. To see that this objective is bounded

from above, note that from (A-63) and (A-64), u (xt+k) − u′ (xt+k)xt+k ≤ u (et). Moreover,

since l (m∗ (et+k)) ≥ 0 and et+k ≤ et,

V (w (m∗ (et+k)) et+k)− l (m∗ (et+k)) ≤ V (et+k) ≤ V (et) ≤ u (et) / (1− β) ,

where the last inequality uses the fact that u (xt+k) ≤ u (et) in (4) which defines V (et).

To verify that this is an equilibrium we need to check that country A does not gain from

deviating from strategy µ∗. By part (ii) of Lemma 10, µ(et) = 0 is the best response if et = 0.

Given this strategy and given (A-61), the program in (A-62)−(A-67) corresponds to the objective

with a maximum equal to UA (et). Therefore, the value of µ (et) which solves (A-62)− (A-67) is

optimal.

To see that γ∗ is an equilibrium, we need only check (10) since (3), (12), and (13) are satisfied

if x∗t = min {e∗t , x} for all t under (A-61). To show that firm behavior given prices and future

war probabilities is optimal with x∗t = min {e∗t , x}, we consider three cases.
Case 1. Suppose that e∗t = 0. Then x∗t = min {e∗t , x} is the only feasible firm strategy as a

consequence of (3).

Case 2. Suppose that e∗t > 0 and µ∗(e∗t+1) = 0 so that war occurs with probability 1 at t+ 1.

Given (10), it follows that firms choose x∗t = min {e∗t , x}.
Case 3. Suppose that e∗t > 0 and µ∗(e∗t+1) > 0 so that peace occurs with some probability

at t+ 1. We can prove that in this case, x∗t = x. To this end, the following claim is useful.

Claim 1. Suppose that e∗t > 0 and µ∗(e∗t+1) > 0. Then the following must be true of µ∗.

There exists some k′ > 1 where e∗t+k′ > 0, µ∗
(
e∗t+k′

)
= 0, and µ∗

(
e∗t+k

)
> 0 for 1 ≤ k < k′. To see
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why, suppose it were not the case that µ∗
(
e∗t+k′

)
= 0 for some k′ ≥ 1. Then from (A-61), there

exists some k′ such that e∗t+k′ = 0 for which µ∗
(
e∗t+k′

)
= 0 by definition, yielding a contradiction.

To see why e∗t+k′ > 0, suppose it were instead the case that e∗t+k′ = 0. From Lemma 9 and (4),

this implies that V
(
w
(
m∗
(
e∗t+k′

)))
− l (m∗ (et+k′)) = −∞. Since µ∗

(
e∗t+k′−1

)
> 0, it follows

that country A’s continuation value conditional on choosing peace at t+ k′ − 1 satisfies

−∞ = u
(
x∗t+k′−1

)
− p∗t+k′−1x

∗
t+k′−1 + β

(
V
(
w
(
m∗
(
e∗t+k′

)))
− l (m∗ (et+k′))− υ

)
< V

(
w
(
m∗
(
e∗t+k′−1

)))
− l (m∗ (et+k′−1))− υ

so that country A could make itself strictly better off by choosing µ(e∗t+k′−1) = 0 and achieving

V
(
w
(
m∗
(
e∗t+k′−1

)))
− l (m∗ (et+k′−1)).

Using the above claim, let us prove that that x∗t = x in case 3, consider k′ ≥ 1 as defined

in the above claim. Since e∗t+k′ = e∗t − k′x > 0 this means that p∗t+k = u′ (x) for all 0 ≤ k < k′,

where we have used (A-61) to solve for e∗t+k′ and p
∗
t+k. We can use this observation to show

that x∗t+k = x for all 0 ≤ k < k′ in the firm’s problem. We prove this by solving the firm’s

problem by backward induction in two steps. First, we show that if k = k′ − 1, then x∗t+k = x.

Second, we show that if x∗t+k = x then x∗t+k−1 = x for 0 ≤ k < k′. To prove the first part,

suppose that k = k′ − 1. At t + k′ − 1, case 2 applies so that x∗t+k′−1 = min
{
e∗t+k′−1, x

}
.

Because e∗t+k′ = e∗t − k′x > 0, it follows that e∗t+k′−1 = e∗t − (k′ − 1)x > x, which means

that x∗t+k′−1 = x. To prove the second part, suppose that x∗t+k = x and µ(e∗t+k) > 0 for

0 < k < k′. It follows that (10) applies at t + k − 1 with e∗t+k−1 = e∗t − (k − 1)x > 0. Since

βp∗t+kµ
(
e∗t+k

)
= βu′ (x)µ

(
e∗t+k

)
< u′

(
x∗t+k−1

)
for all x∗t+k−1 ≤ x and since (12) implies that

p∗t+k−1 = u′
(
x∗t+k−1

)
, it follows that βp∗t+kµ

(
e∗t+k

)
< p∗t+k−1 so that x

∗
t+k−1 = x by (10). By

backward induction, this implies that x∗t = x. �

Proofs from Section 4

Proof of Lemma 3

Following the discussion in the text, the existence of an MPME is guaranteed by the existence of

a function US (et) which satisfies (24). Substitute (3) and (23) into (21), which holds as equality,

to obtain

−ct = G (et+1, et) ≡ u (et − et+1)+β (V (w (m∗ (et+1)) et+1)− l (m∗ (et+1)))−V (w (m∗ (et)) et) .

(A-68)

Substituting (20) and (A-68) into (24) , we can write US (et) as:

US (et) = max
ft={0,1},et+1∈[0,et]

{(1− ft) [G (et+1, et) + βUS (et+1)] + ftψ} (A-69)
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To show that US (et) exists and is well-defined, note that (23) and (21) imply that

UA (et) =
∞∑
k=0

βk


(1− ft+k) (u (et+k − et+k+1) + ct+k − l (m∗ (et+k)))

+

(
ft+k

k−1∏
l=0

(1− ft+l)
)
V (w (m∗ (et+k)) et+k)


= V (w (m∗ (et)) et)− l (m∗ (et)) ,

so that

US (et) =
∞∑
k=0

βk

(
− (1− ft+k) ct+k +

(
ft+k

k−1∏
l=0

(1− ft+l)
)
ψ

)
(A-70)

=

∞∑
k=0

βk


(1− ft+k) (u (et+k − et+k+1)− βl (m∗ (et+k+1)))

+

(
ft+k

k−1∏
l=0

(1− ft+l)
)

(ψ + V (w (m∗ (et+k)) et+k))

− V (w (m∗ (et)) et)

for a given equilibrium sequence {ft+k, et+k+1}∞k=0. Consider the following problem:

(A-71)

ŨS (et) = max
{ft+k,et+k+1}∞k=0

ft+k={0,1},
et+k+1∈[0,et+k]


∞∑
k=0

βk


(1− ft+k) (u (et+k − et+k+1)− βl (m∗ (et+k+1)))

+

(
ft+k

k−1∏
l=0

(1− ft+l)
)

(ψ + V (w (m∗ (et+k)) et+k))




−V (w (m∗ (et)) et) .

Since ft = 1 is feasible, (A-71) is bounded from below by ψ. Moreover, since l (m∗ (et)) ≥ 0,

et+k − et+k+1 ≤ et+k ≤ et, and V (w (m∗ (et+k)) et+k) ≤ V (et+k) ≤ V (et), given et > 0, ŨS (et)

defined in (A-71) is less than

max
{ft+k,}∞k=0
ft+k={0,1}


∞∑
k=0

βk


(1− ft+k)u (et)

+

(
ft+k

k−1∏
l=0

(1− ft+l)
)

(ψ + V (et))


− V (w (m∗ (et)) et) <∞,

where the last inequality uses the facts that (i) V (et) and u (et) are bounded from above; (ii) in

view of Assumption 1 in the text, V (w (m∗ (et)) et) is bounded from below for et > 0 (and thus

w (m∗ (et)) et > 0), ensuring that ŨS (et) is also bounded from above for et > 0. Therefore, the

solution to (A-71) exists and ŨS (et) is well-defined for et > 0. This then implies that we can

rewrite (A-71) recursively as

ŨS (et) = max
ft={0,1},et+1∈[0,et]

{
(1− ft)

[
G (et+1, et) + βŨS (et+1)

]
+ ftψ

}
, (A-72)
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as desired. It is also straightforward to see that ŨS (et) in (A-71), and thus in (A-72), is uniquely

defined. This follows simply from the observation that any MPME is given by (A-71) (and vice

versa), and we have already established that for any et > 0, ŨS (et) is bounded. �

Proof of Proposition 6

This is proved by a variational argument which considers a specific perturbation on the solution

in which starting from et, the choice of et+1 is increased by ε ≷ 0 arbitrarily small, where this

increase is accommodated by a decrease in xt by ε and an increase in xt+1 by ε.

Let e∗t+1 denote the optimal choice of et+1 starting from et. Since ft+1 = 0, then ft = 0.

Using this observation, equation (A-69) becomes:

US (et) = u
(
et − e∗t+1

)
+β
[
V
(
w
(
m∗
(
e∗t+1

))
e∗t+1

)
− l
(
m∗
(
e∗t+1

))]
−V (w (m∗ (et)) et)+βUS

(
e∗t+1

)
.

(A-73)

Since ft+1 = 0, (A-73) also holds replacing et with e∗t+1 and e
∗
t+1 with e

∗
t+2, where e

∗
t+2 denotes

the optimal choice of et+2 starting from e∗t+1.

Optimality requires that the solution at et weakly dominates the choice of e∗t+1 + ε for ε ≷ 0.

Let x∗t = et − e∗t+1 and let x
∗
t+1 = e∗t+1 − e∗t+2. Optimality of the choice of e

∗
t+1 implies

u (x∗t ) + β
[
V
(
w
(
m∗
(
e∗t+1

))
e∗t+1

)
− l
(
m∗
(
e∗t+1

))]
+ βUS

(
e∗t+1

)
≥ (A-74)

u (x∗t − ε) + β
[
V
(
w
(
m∗
(
e∗t+1 + ε

)) (
e∗t+1 + ε

))
− l
(
m∗
(
e∗t+1 + ε

))]
+ βUS

(
e∗t+1 + ε

)
.

Since starting from e∗t+1+ε country S can always choose policy e∗t+2 associated with e
∗
t+1 together

with ft = 0, this implies that

US
(
e∗t+1 + ε

)
≥ US

(
e∗t+1

)
+ u

(
x∗t+1 + ε

)
− u

(
x∗t+1

)
(A-75)

+V
(
w
(
m∗
(
e∗t+1

))
e∗t+1

)
− V

(
w
(
m∗
(
e∗t+1 + ε

)) (
e∗t+1 + ε

))
.

Combining (A-74) with (A-75) we achieve:

[u (x∗t )− u (x∗t − ε)]− β
[
u
(
x∗t+1 + ε

)
− u

(
x∗t+1

)]
(A-76)

+β
[
l
(
m∗
(
e∗t+1 + ε

))
− l
(
m∗
(
e∗t+1

))]
≥ 0.

Divide both sides of (A-76) by ε ≷ 0 and take the limit as ε approaches 0. This yields:

u′ (xt)− βu′ (xt+1) + βl′ (m∗ (et+1))m∗′ (et+1) = 0. (A-77)

Since l′ (·) > 0, (A-77) implies that u′ (xt+1) > (<) (1/β)u′ (xt) if m∗′ (et+1) > (<) 0. �

Proof of Proposition 7
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Part 1. Suppose that (28) holds. We can prove by contradiction that the equilibrium cannot

involve war for any et. Suppose there exists an MPME in which war occurs for some et. Consider

an offer by country S in state et that satisfies xot = (1− βσ)w (m∗ (et)) et and

−cot = u (xot )+β (V (w (m∗ (et − xot )) (et − xot ))− l (m∗ ((et − xot ))))−V (w (m∗ (et)) et) . (A-78)

This offer makes country A indifferent between accepting it, and rejecting it and declaring war.

We show next that the payoff for country S from making this offer strictly exceeds the payoff

from war ψ, which implies that there exists a strategy for country S that gives it a higher payoff

than the payoff from war.

Payoff for country S from offer (xot , c
o
t ) is

u (xot ) + β (V (w (m∗ (et − xot )) (et − xot ))− l (m∗ (et − xot )))− V (w (m∗ (et)) et)(A-79)

+βUS(et − xot )

≥ u (xot ) + β (V (w (m∗ (et − xot )) (et − xot ))− l (m̄))− V (w (m∗ (et)) et)) + βψ

≥ u (xot ) + β (V (w (m∗ (et − xot )) et − xot )− l (m̄))− V (w (m∗ (et)) et)) + βψ

≥ u (xot ) + β (V (w (m∗ (et)) et − xot )− l (m̄))− V (w (m∗ (et)) et)) + βψ

The first inequality follows from (24) and −l (m∗ ((et − xot ))) ≥ −l (m) . The second inequality

holds because w (m∗ (et − xot )) ≤ 1. The third inequality holds because Proposition 1 and σ < 1

imply that w (m∗ (et − xot )) ≥ w (m∗ (et)).

Note that xot was chosen so that it is the optimal amount of resource extraction for country

A when it owns w (m∗ (et)) et of resources (i.e. it is the optimal xt in the maximization problem

(4)). Therefore

u (xot ) + βV (w (m∗ (et)) et − xot ) = V (w (m∗ (et)) et) . (A-80)

Substitute (A-80) into the right-hand side of (A-79) to show that payoff from offer (xot , c
o
t )

for country S is bounded from below by −βl (m) +βψ, which exceeds ψ if (28) holds. Therefore

war cannot occur for any et.

Part 2. Suppose preferences satisfy (17) for σ < 1 and w (m) > (1/σ)1/(1−1/σ), then war

occurs with probability 1 in the MPCE by Proposition 4. Suppose that (28) also holds. Then

war is avoided in the MPME by part 1. To show that this is possible, suppose that l (m) = m

and w (m) = 2m −m2 for m = 1. Then the condition that w (m) > (1/σ)1/(1−1/σ) is satisfied

and any value of ψ < −β/ (1− β) satisfies (28).

Part 3. Suppose σ < 1 and (29) holds. Suppose that war never occurs along the equilibrium

path. Using the fact that constraint (21) must hold with equality to substitute for ct, and using
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(3), (23, and (24) , the optimality of a permanently peace equilibrium implies that for all et ≤ e0:

US(et) = max
et+1

{
u (et − et+1) + βV (w (m∗ (et+1)) et+1)− βl (m∗ (et+1))

−V (w (m∗ (et)) et) + βUS(et+1)

}
≥ ψ (A-81)

Forward iteration on (A-81) implies that the equilibrium sequence {x∗t , e∗t }
∞
t=0 must satisfy

US (e0) =

∞∑
t=0

βt (u (x∗t )− l (m∗ (e∗t )))− (V (w (m∗ (e0)) e0)− l (m∗ (e0))) (A-82)

≤
∞∑
t=0

βtu (x∗t )−
βl (m∗ (e∗0))

1− β − V (w (m∗ (e0)) e0)

≤ V (e0)− βl (m∗ (e∗0))

1− β − V (w (m∗ (e0)) e0) .

The first inequality in (A-82) follows from the fact that et+1 ≤ et from (3) and from Proposition

1 which establishes that m∗′ (e) < 0 so that l (m∗ (et+1)) ≥ l (m∗ (et)) for all et. The second

inequality in (A-82) follows from the fact that the maximization of
∑∞

t=0 β
tu (xt) s.t. (3) yields

V (e0). Given (29), the last inequality implies that US (e0) < ψ which means that the best

response for country S at t = 0 is to make any offer that violates (21) and leads to war.

Therefore, war must occur along the equilibrium path.

Part 4. Suppose σ < 1, w (m) < (1/σ)1/(1−1/σ), and (29) is satisfied. By part 3, war occurs

in the MPME. In the MPCE, by Proposition 4 war does not occur. To show that it is possible

for w (m) < (1/σ)1/(1−1/σ) and (29) to be satisfied, suppose that

l (m) = m and w (m) = ηm/ (m+ δ)

for δ > 0. Let m =∞ so that w (m) = η. Suppose that η satisfies

η < (1/σ)1/(1−1/σ) ,

which is always feasible for η suffi ciently low. Suppose that

1− β
1/σ − 1

< β (A-83)

which is always feasible for σ suffi ciently low. Finally, suppose that ψ and e0 satisfy

ψ (1− β) > e
1−1/σ
0 (1− βσ)−1/σ × (A-84)(

− 1− β
1/σ − 1

+ w (m∗ (e0))1−1/σ

(
1− β

1/σ − 1
− β δ

m∗ (e0) + δ

))
.

This is possible because ψ can be chosen to be arbitrarily close to zero from below and because

the right hand side of (A-84) becomes negative for suffi ciently high e0. This is because m∗ (e0)
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declines towards 0 as e0 rises by the arguments in claim 4 in the proof of part 2 of Proposition

4 which, means given (A-83), that the second term on the right hand side of (A-84) becomes

negative for high e0. In this situation, the first-order condition which characterizes m∗ (e) given

(8) implies

1 = w (m∗ (e))−1/σ w′ (m∗ (e)) (1− βσ)−1/σ e1−1/σ,

which by some algebraic manipulation yields

l (m∗ (e)) = m∗ (e) = w (m∗ (e))1−1/σ δ

m∗ (e) + δ
(1− βσ)−1/σ e1−1/σ.

which means that

(V (e0)− V (w (m∗ (e0)) e0)) (1− β)− βl (m∗ (e0))

equals the right hand side of (A-84) so that (29) is satisfied.�

Proof of Proposition 8

This follows from the same variational argument as used in the proof of Proposition 6.�

Proof of Proposition 9

The same variational argument as used in the proof of Proposition 6 implies that if xt < x, then

u′ (xt)− βu′ (xt+1) + βl′ (m∗ (et+1))m∗′ (et+1) ≤ 0 (A-85)

and if xt+1 < x, then

u′ (xt)− βu′ (xt+1) + βl′ (m∗ (et+1))m∗′ (et+1) ≥ 0. (A-86)

We use this observation to prove each part of the proposition.

Part 1. In this situation, Proposition 1 implies that m∗′ (et+1) > 0. Suppose by contradic-

tion that xt+1 = x but that xt < x. In this situation, (A-85), would be violated. This means

that if xt+1 = x, then xt = x, which implies that there exists a T ≥ 0 for which xt = x if t ≤ T
and for which xt < x if t > T , where the last observation follows from (3) which implies that

xt < x for some t. Since xt < x if t > T , this means that (A-85) and (A-86) imply (A-77) which

means given that m∗′ (et+1) > 0 that u′ (xt) < βu′ (xt+1) if t > T .

Part 2. In this situation, Proposition 1 implies that m∗′ (et+1) < 0. We can show that the

constraint that xt < x never binds, which given (A-85) and (A-86) implies (A-77). Together

with the fact that m∗′ (et+1) < 0 this means that u′ (xt) < βu′ (xt+1) for all t which completes

the proof of the proposition. To show that xt < x never binds, consider the relaxed problem

of country S which ignores capacity constraints starting from any et. We can show that the

solution admits xt < x̃0 (et) < x for x̃0 (et) defined in (A-11). To see why, note that first order
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conditions imply (A-77) and u′ (xt+k) > βu′ (xt+k+1) for all k. Suppose it were the case that

xt ≥ x̃0 (et). This would mean given the definition of x̃k (et) in (A-11) that xt+k > x̃k (et) for all

k ≥ 1, violating (3). Therefore, the solution to country S’s relaxed problem implies that xt < x

so that the capacity constraint never binds, implying that u′ (xt) < βu′ (xt+1) for all t.�

Proofs from Section 6

Proof of Proposition 10

Part 1. Define
Ṽi (et) = V

(
w
(
m∗i (et) ,

{
m∗j (et)

}N
j=1,j 6=i

)
et

)
Given the discussion in the text, country S’s program can be written as:

US (et) = max
{xit≥0,cit}Ni=1

{
−

N∑
i=1

cit + βUS (et+1)

}
s.t. (31) and (A-87)

u (xit) + cit + β
(
Ṽi (et+1) − l (m∗i (et+1))

)
= Ṽi (et) for all i (A-88)

Now consider the solution given that ft = ft+1 = 0. Let x∗it and e
∗
t+1 denotes the implied optimal

choice of et+1 starting from et so that

US (et) =

N∑
i=1

(
u (x∗it) + β

[
Ṽi
(
e∗t+1

)
− l
(
m∗
(
e∗t+1

))]
− Ṽi (et)

)
+ βUS

(
e∗t+1

)
. (A-89)

Since ft+1 = 0, (A-89) also holds replacing et with e∗t+1 and e∗t+1 with e∗t+2, where e
∗
t+2

denotes the optimal choice of et+2 starting from e∗t+1. Optimality requires that the solution at

et weakly dominates the choice of e∗t+1 + ε for ε ≷ 0 where this is achieved by reducing x∗it by ε.

Optimality of the choice of e∗t+1 implies

u (x∗it) + β
N∑
j=1

[
Ṽj
(
e∗t+1

)
− l
(
m∗j
(
e∗t+1

))]
+ βUS

(
e∗t+1

)
≥ (A-90)

u (x∗it − ε) + β

N∑
j=1

[
Ṽj
(
e∗t+1 + ε

)
− l
(
m∗j
(
e∗t+1 + ε

))]
+ βUS

(
e∗t+1 + ε

)
.

Since starting from e∗t+1 + ε country S can always choose policy e∗t+2 associated with e
∗
t+1 so

that x∗it+1 is increased by ε this implies that

US
(
e∗t+1 + ε

)
≥ US

(
e∗t+1

)
+ u

(
x∗it+1 + ε

)
− u

(
x∗it+1

)
(A-91)

+

N∑
j=1

[
Ṽj
(
e∗t+1

)
− Ṽj

(
e∗t+1 + ε

)]
.

A-27



Combining (A-90) with (A-91) we achieve:

[u (x∗it)− u (x∗it − ε)]− β
[
u
(
x∗it+1 + ε

)
− u

(
x∗it+1

)]
(A-92)

+
N∑
j=1

β
[
l
(
m∗j
(
e∗t+1 + ε

))
− l
(
m∗j
(
e∗t+1

))]
≥ 0.

Divide both sides of (A-92) by ε ≷ 0 and take the limit as ε approaches 0. This yields:

u′ (xit)− βu′ (xit+1) +

N∑
j=1

βl′
(
m∗j (et+1)

)
m∗′j (et+1) = 0. (A-93)

Since l′ (·) > 0, (A-93) implies that u′ (xit+1) > (<) (1/β)u′ (xit) if m∗′j (et+1) > (<) 0 for all j.

Since m∗′i (et) = m∗′j (et+1) for all j, this implies that this depends only on the sign of m∗′i (et).�
Part 2. At each t, given et, equilibrium profile of armaments m∗t is such that mit is the

same for all countries, which implies that wi (mi,m−it) = η/N and that

wimit (mit,m−it) = ηh′ (mi)

∑
j 6=i h (mj)[∑
j h (mj)

]2

=
h′ (mit)

h (mit)
wi (mit,m−it)

(
1− 1

η
wi (mit,m−it)

)
= η

h′ (mit)

h (mit)

N − 1

N2
.

This implies that the first-order condition which characterizes equilibrium armament m∗i (et)

is uniquely defined by

V ′ (ηet/N) ηet
N − 1

N2

h′ (m∗i (et))

h (m∗i (et))
= l′ (m∗i (et)) . (A-94)

Given the solution to (4), the envelope condition implies that

V ′ (ηet/N) = βku′ (xit+k) for all k ≥ 0. (A-95)

Substitution of (A-95) into (A-94) followed by implicit differentiation yields

u′ (xit+k)

u′′ (xit+k)

(
l′′ (m∗i (et))

l′ (m∗i (et))
+

[
h′ (m∗i (et))

h (m∗i (et))
− h′′ (m∗i (et))

h′ (m∗i (et))

])
dmit

det
=
dxit+k
det

+
u′ (xit+k)

u′′ (xit+k) et
(A-96)

Summing up (5) and (6) one obtains

∞∑
k=0

xit+k = ηet/N (A-97)
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differentiation of which implies
∞∑
k=0

dxit+k
det

= η/N .

Taking the sum of (A-96) for all k ≥ 0 and substitution into the above equation yields

dmit

det
=

η

N

(
1 +

∑∞
k=0

u′ (xit+k)

u′′ (xit+k)xit+k

xit+k
ηet/N

)
(
l′′ (m∗i (et))

l′ (m∗i (et))
+

[
h′ (m∗i (et))

h (m∗i (et))
− h′′ (m∗i (et))

h′ (m∗i (et))

])∑∞
k=0

u′ (xit+k)

u′′ (xit+k)

(A-98)

Since the denominator is negative, (A-98) is positive if and only if the numerator is negative. If

−u′ (xit+k) /u′′ (xit+k)xit+k > 1 for all xit+k then the numerator is negative since from (A-97),∑∞
k=0

xt+k
(ηet/N)

= 1, and the opposite holds if −u′ (xit+k) /u′′ (xit+k)xit+k < 1 for all xit+k. �

Proof of Proposition 11

We proceed first by proving that US (et) is uniquely defined in the symmetric MPME, and then

we guess and verify a function for US (et) in order to prove the properties of the equilibrium allo-

cations described in the proposition. Given the symmetry of the equilibrium Ṽi (et) and m∗i (et)

are the same across countries, so that they can be denoted by Ṽ (et) and m∗ (et), respectively,

and all countries receive the same resource consumption equal to (et − et+1) /N . Define

G (et+1, et) = N

(
u

(
1

N
(et − et+1)

)
+ β

(
Ṽ (et+1) − l (m∗ (et+1))

)
− Ṽ (et)

)
.

Given (17) and (33), (A-94) implies (34). Therefore, G (et+1, et) can be rewritten as:

G (et+1, et) = N



(
1

N
(et − et+1)

)1−1/σ

1− 1/σ

+β

(
(1− βσ)−1/σ

1− 1/σ

(et+1

N

)1−1/σ
−
(
N − 1

N

)
(1− βσ)−1/σ

(et+1

N

)1−1/σ
)

−(1− βσ)−1/σ

1− 1/σ

( et
N

)1−1/σ


(A-99)

Substitution of (A-88) into (A-87) implies that country S’s optimal offer satisfies

US (et) = max
et+1∈[0,et]

G (et+1, et) + βUS (et+1) (A-100)

By analogous arguments to those of Lemma 3, there is a unique US (et). Let us guess and

verify that US (et) satisfies

US (et) = Q
e

1−1/σ
t

1− 1/σ
(A-101)
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for some constant Q > 0. It is straightforward to see that under this assumption, and given that

the second line of (A-99) is increasing and concave in et+1, the program defined by (A-100) is

strictly concave and yields a unique solution characterized by first order conditions. The first

order conditions and the envelope condition for the program defined in (A-100) yield:

(
1

N

)−1/σ
 − (et − et+1)−1/σ

+β

(
(1− βσ)−1/σ

(
1 − (1− 1/σ)

(
N − 1

N

)))
e
−1/σ
t+1

 = −βQe−1/σ
t+1(A-102)

(
1

N

)−1/σ (
(et − et+1)−1/σ − (1− βσ)−1/σ e

−1/σ
t

)
= Qe

−1/σ
t .(A-103)

Define ρ ∈ (0, 1) such that the et+1 which satisfies (A-102) and (A-103) also satisfies et+1 = ρσet.

Substitution of et+1 = ρσet into (A-102) and (A-103) allows us to combine both equations to

cancel out for Q, so that ρ satisfies

(1− 1/σ)

(
N − 1

N

)
(1− βσ)−1/σ =

(
1− ρ

β

)
(1− ρσ)−1/σ , (A-104)

which implies that ρ is independent of et and Q. Given (A-103), this means that Q must satisfy

Q =

(
1

N

)−1/σ (
(1− ρσ)−1/σ − (1− βσ)−1/σ

)
(A-105)

for ρ defined in (A-104). To complete the proof, we can substitute in for et+1 and Q on the

right hand side of (A-100) using the fact that et+1 = ρσet and that Q is defined by (A-105) for

ρ defined in (A-104), and this confirms that the original guess in (A-101) is correct.

To prove the first part of the proposition, note that since et+1 = ρσet, then this implies that

xit = (et − et+1) /N = (1− ρσ) et/N . Therefore,

u′ (xit+1) = [(1− ρσ) et+1/N ]−1/σ = (1/ρ) [(1− ρσ) et/N ]−1/σ = (1/ρ)u′ (xit) .

The second part of the proposition follows from the fact that the left hand side of (A-104) is

positive (negative) if σ > (<) 1. Therefore, if σ > (<) 1, then for the right hand side of (A-104)

to be positive (negative) it must be the case that ρ < (>)β. To prove the third part of the

proposition note that the derivative of the right-hand side of (A-104) with respect to ρ has the

same sign as:

− 1

β
+

(
1

ρ
− 1

β

)
ρσ

1− ρσ (A-106)

which must be negative. This is because if σ < 1, then ρ > β so that (A-106) is negative and if

σ > 1, then ρ < β and (A-106) cannot be greater than

− 1

β
+

(
1

ρ
− 1

β

)
ρ

1− ρ =
1

1− ρ

(
− 1

β
+ 1

)
< 0.
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Therefore, ρ is uniquely defined. It follows that if σ < 1, the left-hand side of (A-104) declines

as N rises, so that ρ rises as N rises. Alternatively, if σ > 1, the the left-hand side of (A-104)

rises as N rises, so that ρ declines as N rises, which completes the argument.�

Proof of Proposition 12

Part 1. Given the discussion in the text, country S’s program can be written as:

US (et) = max
xt≥0,ct

{−ct − l (m∗S (et)) + βUS (et+1)} s.t. (3) and

u (xt) + ct + β [V (w (m∗A (et+1) ,m∗S (et+1)) et+1)− l (m∗A (et+1))] = V (w (m∗A (et) ,m
∗
S (et)) et) .

Now consider the solution given that ft = ft+1 = 0. Let e∗t+1 denotes the implied optimal choice

of et+1 starting from et so that

US (et) = u
(
et − e∗t+1

)
− l (m∗S (et)) + β [V (w (m∗A (et+1) ,m∗S (et+1)) et+1)− l (m∗A (et+1))](A-107)

−V (w (m∗A (et) ,m
∗
S (et)) et) + βUS

(
e∗t+1

)
.

Follow the same perturbation arguments as in the proof of Proposition 6. This yields:

[u (x∗t )− u (x∗t − ε)]− β
[
u
(
x∗t+1 + ε

)
− u

(
x∗t+1

)]
(A-108)

+β
[
l
(
m∗A

(
e∗t+1 + ε

))
− l
(
m∗A

(
e∗t+1

))
+ l
(
m∗S

(
e∗t+1 + ε

))
− l
(
m∗S

(
e∗t+1

))]
≥ 0.

Divide both sides of (A-108) by ε ≷ 0 and take the limit as ε approaches 0. This yields:

u′ (xt)− βu′ (xt+1) + βl′ (m∗A (et+1))m∗′A (et+1) + βl′ (m∗S (et+1))m∗′S (et+1) = 0. (A-109)

Since l′ (·) > 0, (A-109) implies that u′ (xt+1) > (<) (1/β)u′ (xt) if m∗′A (et+1) > (<) 0 and

m∗′S (et+1) > (<) 0.

Part 2. Analogous arguments to those of part 2 of Proposition 10 imply that m∗A (et) and

m∗S (et) increase (decrease) in et if −u′ (x) / (xu′′ (x)) > (<) 1 for all x. �

Monopolistic Environment without Armament

Here we briefly consider the implications of allowing country A to engage in war without the

possibility for armament. In particular, suppose that

w(m) = w̄ ∈ (0, 1] for all m, (A-110)

which implies that country A never invests in armament in equilibrium.

It is then straightforward to see that wars do not occur in any period. This is because

country S can always structure offers to country A so as to replicate the outcome of war while
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making itself better off by avoiding war which costs it ψ.

Formally, if country A attacks country S over any stock of the resource et, country A’s

payoff is V (w̄et) and its path of extraction of the resource following the war {x̃t+k(w̄et)}∞k=0 is

a solution to (4) when w(m) = w̄. Note that it satisfies

V (w̄et) = u (x̃t(w̄et)) + βV (w̄et − x̃t(w̄et)). (A-111)

It is feasible for country S to make offers in equilibrium that replicate the payoff of country

A in the event of war. In fact, we can show a stronger statement that country S in any period

can make an offer that makes both countries strictly better off than having a war. Consider an

offer z̃t = {x̃t (w̄et) , ε} where ε ∈ (0,− (1− β)ψ) . Since the payoff of country A in period t+ 1

is bounded by the payoff from attacking country S, V (w̄ (et − x̃t(w̄et))), its payoff in period t
from accepting offer z̃t satisfies

u(x̃t(w̄et)) + ε+ βUA(et − x̃t(w̄et)) > u(x̃t(w̄et)) + βV (w̄et − x̃t(w̄et))

= V (w̄et)

where the last line uses (A-111). This means country A is made strictly better off accepting this

alternative offer.

Similarly, the payoff of country S in period t+1 is bounded by the payoff from being attacked

ψ, since country S can always make an offer which is rejected.26 Therefore, country S’s payoff

following the acceptance of the offer is

−ε+ βUS(et − x̃t(w̄et)) ≥ −ε+ βψ.

Since −ε+ βψ > ψ, country S is made strictly better off so that war cannot be an equilibrium

with any endowment et.

Since wars are never an equilibrium, country S makes an offer zt to extract the maximum

surplus from country A subject to avoiding war. We can then show that such an offer always

satisfies the Hotelling rule. Formally, country S’s maximization problem is

US (et) = max
xt≥0,ct

{−ct + βUS (et+1)} (A-113)

subject to (3),

u (xt) + ct + βUA (et+1) ≥ V (w̄et) . (A-114)

26Formally, starting from any et, country S can offer {0, 0}, which yields a payoff βUS (et) if it does not lead
to war and ψ if it leads to war. This implies that

US (et) ≥ min {βUS (et) , ψ} = ψ, (A-112)

where we have used the fact that if it were the case that βUS (et) < ψ < 0, (A-112) would imply US (et) ≥ 0,
yielding a contradiction.
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With the same argument as in the text, the participation constraint is given by (A-114) and

this constraint must bind; if it did not, country S could strictly improve its payoff by offering a

lower value of ct to country A. Therefore, in this case, UA(et) = V (w̄et) for all et so that country

A is indifferent between attacking and not attacking country S in every period. Therefore, the

maximization problem of country S can be written as a maximization of (A-113) subject to (3),

and

u (xt) + ct + βV (w̄et+1) ≥ V (w̄et) .

The first-order conditions to this problem establishes that xt must satisfy Hotelling rule (16).27

It is optimal for country S to equalize country S’s marginal rate of substitution over x to

the marginal rate of transformation since this is the most effi cient means of extracting payments

from country A. As an illustration of this intuition, suppose that βu′ (xt+1) > u′ (xt). If country

S extracts ε units of resources less in period t and ε > 0 more in period t+ 1, holding everything

fixed, it changes payoff of country A by (βu′(xt+1)− u′ (xt)) ε > 0, which relaxes constraint

(A-114). This allows country S to reduce ct and hence increase the payments it receives from

country A. If instead βu′ (xt+1) < u′ (xt), then analogous arguments imply that country S could

improve its payoff by extracting ε > 0 units of resources more in period t and ε less in period

t+ 1.

We summarize the results of this section in the following proposition:

Proposition 14 Suppose w (·) satisfies (A-110). Then in any MPME:

1. War never occurs.

2. The equilibrium sequence of resource extraction, xt, satisfies (16) for all t.

Competition Among Suppliers

In this part of the Appendix we consider an environment which includes M resource-rich coun-

tries, denoted by s = 1, ...,M , as well as N resource-poor countries, i = 1, ..., N . The law of

motion of the endowment of each resource-rich country is given by

est+1 = est −
N∑
i=1

xsit (A-115)

for each s, where xsit ≥ 0 denotes the extraction of country s which is sold to country i. Clearly,∑M
s=1 x

s
it = xit corresponds to the consumption of the resource by the households in country i

and
∑M

s=1 e
s
t = et to the global resource endowment. We assume that each country s holds some

initial endowment e0/M . Country s transfers csit units of the consumption good to each country

27To take the first-order condition one needs to assume that US(e) is differentiable. One can prove the same
result without assuming differentiability by following the same steps as in the proof of Proposition 6.
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i, which implies that the instantaneous utility to country s is −
∑N

i=1 c
s
it. The instantaneous

utility to country i from its consumption of the resource and the consumption good is equal to

u (xit) + cit,

where cit =
∑M

s=1 c
s
it. All countries discount the future at the rate β.

Suppose to simplify the discussion here that if any country i goes to war, this causes a “world

war”by all resource-poor countries against all resource-rich countries, where each resource-poor

country is able to capture a fraction wi (mit,m−it) of the reserves of each research-rich country.

As in subsection 6.1, country i’s payoff from war is V (wi (mit,m−it) et)− l (mit).

It is straightforward to observe that the structure of MPCE in this extended environment

with multiple resource-poor countries is similar to Proposition 2. In particular, in the pure-

strategy equilibrium, war can only take place at date t = 0 and the Hotelling rule applies

throughout. In what follows, we focus on MPME.

In MPME, at each date t, each country s simultaneously makes a take-it-or-leave-it offer to

every country i,
{
xsoit , c

s0
it

}
, consisting of a quantity of resource to be traded in exchange of the

consumption good. For simplicity, we assume that rejection of any offer from any country s by

any country i automatically leads to world war. The analysis of the monopolistic environment

is complicated because of the size of the state space, which now consists of the remaining

endowment of each resource-rich country. In addition to this state vector, the offers of resource-

rich countries depend on the vector of armaments of all resource-poor countries and the war

decision of each resource-poor country also depends on the entire vector of offers of resource-rich

countries. Here, to simplify the analysis we simply give a flavor of the results in the context of

a two-period model, with periods t = 0, 1. This enables us to solve for the equilibrium using

backward induction. Moreover, to further simplify the discussion, we assume that preferences

and technologies satisfy (17) and (33), and we focus on “symmetric equilibria,” where along

the equilibrium path (when all resource-rich countries have the same remaining endowment), all

countries use symmetric strategies.28 An immediate implication of this is that, because resource-

poor countries i all choose the same armament along the equilibrium path, wi (mi1,m−i1) = 1/N .

As in subsection 6.1 all resource-poor countries make their armament decisions to maximize

their continuation payoff from war, which implies that the armament levels of country i at dates

1 and 0 satisfy

m∗1 (e1) =

(
N − 1

N

)(e1

N

)1−1/σ
and (A-116)

m∗0 (e0) =

(
N − 1

N

)(e0

N

)1−1/σ
(1 + βσ)1/σ ,

28More formally, we focus on pure-strategy equilibria that have the following Markovian property: an offer from
s to i depend only on the payoff relevant variables, and thus not on the identities of countries s and i. This of
course does not imply that choices off-the-equilibrium path, where endowments are unequal, will be symmetric.
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where we have used the fact that countries arm symmetrically along the equilibrium path.29 The

first equation uses the fact that country i at date 1 competes over resource endowment e1 and

thus would acquire total resource equal to wi (mi1,m−i1) e1 in the case of war. It shows that,

as in our baseline model, a lower remaining endowment of the resource increases (decreases)

the armaments of resource-poor countries if the demand elasticity for the resource is less than

(greater than) one. The second equation takes into account that at date 0, country i competes

over resource endowment e0 and following war, it would smooth its consumption of the resource

so that x1 = βσx0, which gives x0 = wi (mi0,m−i0) e0/ (1 + βσ).

Given this armament strategy, we now consider the offer made by (some) country s at date 1.

At date 1, each country i invests m∗1 (e1) and would consume e1/N in the case of war. Moreover,

since date 1 is the last period, without war, we also have that each country s transfers es1/N

to each country i. Since each country i receives
∑M

s=1 e
s
1/N = e1/N with peace as well as with

war, no transfer of the consumption good will take place along the equilibrium path at date 1,

and thus csit = 0 for all i and s. Consequently, for any {es1}
M
s=1, the equilibrium at date 1 entails

each country s and each country i receiving 0 units of the consumption good and each country

i investing m∗1 (e1) and consuming e1/N of the resource endowment. Therefore, every country

i’s continuation value at date 1 given the aggregate endowment e1 is

(e1/N)

1− 1/σ

1−1/σ

−
(
N − 1

N

)(e1

N

)1−1/σ
.

Consider the offer by a given country s at date 0 given this continuation equilibrium. At date

0, each country i investsm∗0 (e0) in armament. Moreover, since we consider symmetric equilibria,

every rival producer to country s makes some offer x′ and c′ to every country i. Therefore, for

country i to accept the offer from country s, we need that

((M − 1)x′ + xsi0)1−1/σ

1− 1/σ
+ (M − 1) c′ + csi0 + β

(
(e1/N)

1− 1/σ

1−1/σ

−
(
N − 1

N

)(e1

N

)1−1/σ
)

(A-117)

≥
(e0

N

)1−1/σ
(1 + βσ)1/σ .

where the resource constraint implies that

e1 = e0 −
(
N (M − 1)x′ +

N∑
i=1

xsi0

)
. (A-118)

(A-117) ensures that the the welfare of country i from accepting the offers made by all countries

s weakly exceeds the payoff from war at date 0. Clearly, in a symmetric equilibrium, xsi0 = x′ and

29 If a country were to choose a different level of armament, all resource-rich countries would make the same offer
to this resource-poor country making it indifferent between war and no war (in the same way that all resource-poor
countries are indifferent between war and no war along the equilibrium path).
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csi0 = c′. Given that country s receives 0 units of the consumption good at date 1 independently

of its offer at date 0, it solves the following problem of maximizing its period 0 consumption:

max
{xsi0,csi0}Ni=1

−
N∑
i=1

csi0 s.t. (A-117) and (A-118) ,

where constraint (A-117) will necessarily bind, since country s could otherwise strictly increase

its payoff by making a less generous offer. The first-order condition of this problem implies the

following relationship between resource consumption at dates 0 and 1:

x
−1/σ
i0 = βx

−1/σ
i1 + β (1− 1/σ)

(
N − 1

N

)(e1

N

)−1/σ
. (A-119)

Equation (A-119) shows that our main conclusions regarding the MPME are preserved in

this environment. In particular, if preferences are inelastic, i.e., σ < 1, then x−1/σ
i0 > βx

−1/σ
i1

and thus resource are extracted at a slower pace relative to the Hotelling rule. The opposite

conclusion holds if preferences are elastic, i.e., σ > 1. The intuition for this result is the same

as in our benchmark environment. A resource-rich country internalizes the effect of its resource

extraction decision on the armament of all resource-poor countries in the next period as captured

by equation (A-116). This result is summarized in the following proposition.

Proposition 15 Consider the symmetric MPME of the two-period economy with M resource-

rich and N resource-poor countries and suppose that preferences and technologies satisfy (17)

and (33). Then:

βu′ (xi1) > u′ (x0t) if m∗′1 (e1) > 0 and

βu′ (xi1) < u′ (x0t) if m∗′1 (e1) < 0.

Alternative Preferences

A natural question is the extent to which our conclusions depend on our assumption of quasi-

linear preferences for country A. In this subsection, we focus on MPME and show that the

general insights in Proposition 6 continue to hold. More specifically, consider an environment in

which the instantaneous utility to country A is equal to

u (xt, ct,−mt) ,

where u (·) is increasing and globally concave in xt, ct, and −mt. Let limx→0 ux (·) = ∞ and

limx→∞ ux (·) = 0 . For simplicity, we assume that u (·) is defined for all values of ct R 0.30

30The analysis of MPCE in this case is similar to the baseline environment since u (0, 0, 0) is either finite or
equal to −∞. Therefore, a direct application Proposition 2 shows that in any pure-strategy equilibrium, war can
only occur in the initial period.
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Note that in this environment, the Hotelling rule can be written as:

ux (xt+1, ct+1,−mt+1) /uc (xt+1, ct+1,−mt+1) = (1/β)ux (xt, ct,−mt) /uc (xt, ct,−mt) ,

so that the marginal rate of substitution between the resource and the consumption good is

increasing in the discount rate.

Consider the order of events and define the MPME as in Section 4. In this environment, we

can define:

Ṽ (et) = max
{xt+k,et+k+1}∞k=0,mt

u (xt, 0,−mt) +
∞∑
k=1

βku (xt+k, 0, 0)

subject to (5)-(7). Here Ṽ (et) corresponds to the highest continuation value that country A

can achieve in the event of war and is the analogue of V (w (m∗ (et)) et) − l (m∗ (et)) in the

quasi-linear case. Let m∗ (et) correspond to the value of mt associated with Ṽ (et).

Proposition 16 In an MPME,

ux (xt+1, ct+1,−mt+1) /uc (xt+1, ct+1,−mt+1) > (<) (1/β)ux (xt, ct,−mt) /uc (xt, ct,−mt)

if

m∗′ (et+1) +
Ṽ ′ (et+1)

um (xt+1, ct+1,−mt+1)

(
1− uc (xt+1, ct+1,−mt+1)

uc (xt, ct,−mt)

)
> (<) 0.

Proof. Analogous arguments as in the proof of Proposition 6 imply that mt = m∗ (et), that

UA (et) = Ṽ (et) ,

and that country S’s optimal offer must satisfy:

US (et) = max
xt≥0,ct

{−ct + βUS (et+1)} s.t. (3) and

u (xt, ct,−m∗ (et)) + βṼ (et+1) = Ṽ (et) .

Let e∗t+1 denote the implied optimal value of et+1 starting from et, and let e∗t+2 denote the

implied optimal value of et+2 starting from e∗t+1. Let c̃t (ε) and c̃t+1 (ε), respectively, solve:

u
(
et − e∗t+1 − ε, c̃t (ε) ,−m∗ (et)

)
+ βṼ

(
e∗t+1 + ε

)
= Ṽ (et) and (A-120)

u
(
e∗t+1 − e∗t+2 + ε, c̃t+1 (ε) ,−m∗

(
e∗t+1 + ε

))
+ βṼ

(
e∗t+2

)
= Ṽ

(
e∗t+1 + ε

)
(A-121)
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for ε ≷ 0. Note that by implicit differentiation:

c̃′t (0) =
ux (xt, ct,−mt)− βṼ ′ (et+1)

uc (xt, ct,−mt)

c̃′t+1 (0) =
−ux (xt+1, ct+1,−mt+1) + um (xt+1, ct+1,−mt+1)m∗′ (et+1) + Ṽ ′ (et+1)

uc (xt+1, ct+1,−mt+1)

Optimality requires that

−c̃t (0) + βUS
(
e∗t+1

)
≥ −c̃t (ε) + βUS

(
e∗t+1 + ε

)
≥ −c̃t (ε) + β

(
−c̃t+1 (ε) + c̃t+1 (0) + US

(
e∗t+1

))
which implies that

c̃t (0)− c̃t (ε) ≤ β (c̃t+1 (ε)− c̃t+1 (0)) . (A-122)

Divide both sides of (A-122) by ε ≷ 0 and take the limit as ε approaches 0 so as to achieve:

−c̃′t (0) = βc̃′t+1 (ε) ,

which by substitution yields:

ux (xt+1, ct+1,−mt+1)

uc (xt+1, ct+1,−mt+1)
=

1

β

ux (xt, ct,−mt)

uc (xt, ct,−mt)
+
um (xt+1, ct+1,−mt+1)

uc (xt+1, ct+1,−mt+1)
m∗′ (et+1)

+Ṽ ′ (et+1)

(
1

uc (xt+1, ct+1,−mt+1)
− 1

uc (xt, ct,−mt)

)
,

which completes the proof since uc (·) , um (·) > 0.

Proposition 16 states that the shadow price of the resource increases faster (slower) if ar-

mament increases (decreases) in the size of the total resource endowment, which is similar

to Proposition 6. Nevertheless, in relating this rate of growth to the rate of time preference,

Proposition 16 differs from Proposition 6 because the rate of growth of the shadow price not only

depends on m∗′ (et+1) but also on an additional term (which was equal to zero when preferences

were quasi-linear). This term emerges because even in the absence of endogenous armament,

there will be distortions in the growth rate of the shadow price provided that the marginal utility

of the consumption good is time varying. Intuitively, when country A’s marginal utility from

the consumption good is lower, it is cheaper for country S to extract payments from country A

while still ensuring that country A does not declare war. Therefore, if the marginal utility of

the consumption good is higher (lower) today relative to tomorrow, country S will deplete more

(less) of the endowment today. Proposition 16 therefore shows that in addition to this force, the

sign of m∗′ (et+1) continues to play the same role as in the quasi-linear case.31

31 It may be conjectured that in a richer environment with additional smoothing instruments such as bonds,
this marginal utility of consumption will not vary significantly along the equilibrium path so that the dominating
effect would come from m∗′ (et+1).
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