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OA.1 Formal Definition of Histories and Strategies

For any period t ≥ 0, the history of the seller at period t consists of all the prices charged by the seller until

period t− 1, all the disclosure policies adopted by the intermediary until period t− 1, and all tie-breaking

rules used by the tie-breaker until period t − 1. Specifically, a history for the seller at period t is denoted

by h̃t = {ps, Ds, qs}t−1
s=0, where ps ≥ 0 is the price charged by the seller in period s, Ds ∈ D is the disclosure

policy adopted by the intermediary in period s, and qs ∈ [Ds(p
+
s ), Ds(ps)] is the tie-breaking rule adopted

by the tie-breaker in period s. For any t ≥ 1, let H̃t be the collection of sequences {ps, Ds, qs}t−1
s=1 such

that ps ≥ 0, Ds ∈ D, and qs ∈ [Ds(p
+
s ), Ds(ps)] for all s ∈ {0, . . . , t − 1}. Also, let H̃0 := ∅. Finally, let

H̃ := ∪∞t=0H̃t.
In the meantime, in any period t ≥ 0, the history of the intermediary is the history of the seller and

the price charged by the seller in period t. That is, a history for the intermediary in period t ≥ 0 denoted

by ht = (h̃t, pt), for some h̃t ∈ H̃t and some pt ≥ 0. Let Ht be defined as H̃t × R+ for all t ≥ 0, and let

H := ∪∞t=0Ht.
Furthermore, in any period t ≥ 0, the history of the tie-breaker is the history of the seller joint with the

price charged by the seller and the disclosure policy adopted by the intermediary in period t. That is, a

history for the tie-breaker in period t ≥ 0 denoted by ĥt = (h̃t, pt, Dt), for some h̃t ∈ H̃t, some pt ≥ 0, and

some Dt ∈ D. Let Ĥt be defined as H̃t × R+ ×D for all t ≥ 0, and let Ĥ := ∪∞t=0Ĥt.
With this definition, the seller’s strategy can be formally defined as a measurable function from H̃ to

R+; the intermediary’s strategy can be defined as a measurable function from H to D; and the tie-breaker’s

strategy can be defined as a measurable function from Ĥ to [0, 1] such that the value of this function

must be in [Dt(p
+
t ), Dt(pt)] for any (h̃t, pt, Dt) ∈ Ĥt, for all t. Finally, for any histories ht, hs ∈ H for the

intermediary, we say that ht is a predecessor of hs if s > t and hs = (ht, {Dτ , qτ , pτ+1}s−1
τ=t), and we say that

σ|ht is a continuation strategy of the intermediary if there exists a strategy σ of the intermediary such that

σ(hs) = σ|ht(hs) if ht is a predecessor of hs.
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OA.2 Equilibria with Infinite Continuation Values

The main text restricts attention to equilibrium outcomes in which the intermediary’s continuation payoff at

every histroy is finite. These equilibria are arguably more natural since the intermediary would be indifferent

among many choices—especially off the equilibrium path—when there are history at which the continuation

diverges. This in turn allows the intermediary to punish the seller’s deviation severely and generates other

equilibrium outcomes. For completeness, however, we characterize these equilibria as well. For the ease of

exposition, we refer to equilibria in which the intermediary’s continuation value at every history as being

finite. Any equilibrium that is not finite is called infinite.

Recall that r∗ is the revenue guarantee for the seller. Let

β̃ :=
1− γδ

δ(E[v]− r∗)
.

Note that β < β̃ < β.

Proposition OA.1 (Inefficiency of High Feedback–Infinite Stationary). For any β < β̃, there exists a

unique stationary equilibrium outcome zs(β) and any stationary equilibrium that induces outcome zs(β)

must be finite. Furthermore, zs(β) dominates zs(β′) for all β, β′ such that β < β < β′ < β̃.

The welfare implication of Proposition OA.1 is essentially the same as that of Proposition 1. The only

differences are (i) the upper bound below which a unique stationary equilibrium outcomes exists becomes

lower when infinite stationary equilibria are allowed, and (ii) the range of market feedback where unintended

welfare loss is caused by higher market feedback becomes smaller.

Similar to Proposition 1, we prove Proposition OA.1 by characterizing every infinite stationary equilibria.

To state this characterization, for any q ∈ [0, 1], recall that

S(q) =

∫ q

0
D
−1

(z) dz.

Note that S(D(p)) = pD(p) +
∫∞
p D(v) dv is the sum of consumer surplus and sales revenue when the price

is p and when the demand is D. With this additional notation, we can now state the characterization.

Theorem OA.1 (Stationary Equilibrium Outcomes). For any β ≥ 0, an infinite stationary equilibrium

exists if and only if β ≥ β̃. Moreover, for any stationary equilibrium outcome zs = (rs, σs, ωs, ps, {ms
t}),

exactly one of the following is true.

1. zs is a finite stationary equilibrium outcome.

2. ωs =∞,

1− γδ
δβ

≤σs ≤ E[v]− r∗

E[v]− σs ≤ps ≤ rs

S−1(rs + σs)
,

max
{
S(D(ζ(E[v]− σs)))− σs, r∗

}
≤rs ≤ E[v]− σs

and ms
t = (γ + βσs)t for all t ≥ 1.
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Proof. We first show that any stationary equilibrium must be finite whenever β < β̃. Suppose that zs =

(rs, σs, ωs, ps, {ms
t}) is a stationary equilibrium outcome, and suppose that, by way of contradiction, ωs =∞.

Then it must be that

δ(γ + βσs) ≥ 1,

which in turn implies that

σs ≥
∫ ∞
pβ

D(v) dv.

Meanwhile, since the total surplus is at most E[v] and since the seller’s revenue rs must be at least r∗ in

any subgame perfect equilibrium, it must be that

σs ≤ E[v]− r∗.

Together, we have ∫ ∞
pβ

D(v) dv ≤ E[v]− r∗,

which is equivalent to β ≥ β̃, a contradiction.

Now suppose that β ≥ β̃. We first show that any infinite stationary equilibrium outcome zs =

(rs, σs, ωs, ps, {ms
t}) must satisfy condition 2 of the theorem. Indeed, by definition, ωs = ∞ and mt =

(γ + βσs)t for all t, which in turn implies that δ(γ + βσs) ≥ 1. Rearranging, we have

σs ≥ 1− γδ
δβ

.

Meanwhile, since the seller’s revenue in every period must be at least r∗ in any subgame perfect equilibrium,

rs ≥ r∗. Therefore, since the efficient surplus is E[v], we have

σs ≤ E[v]− rs ≤ E[v]− r∗.

Furthermore, notice that since σs =
∫∞
ps D(v) dv for some D ∈ D, it must be that

∫∞
ps D(v) dv ≥ σs. Given

any σ and any p such that
∫∞
p D(v) dv ≥ σ, notice that the function

q 7→ S(q)− pq

is quasi-concave and hence the equation

S(q)− pq = σ

has at most two solutions, denoted as q(p, σ) ≤ q(p, σ). It then follows that

q(p, σ) ≤ D(p) ≤ q(p, σ)

for all D ∈ D such that
∫∞
p D(v) dv = σ. Moreover, since q 7→ S(q) − pq is increasing, q(·, σ) is decreasing

in p. As a result, for any D ∈ D and for any p ≥ 0 such that
∫∞
p D(v) dv = σ,

pD(p) ≥ pq(p, σ) ≥ (E[v]− σ)q(E[v]− σ, σ) = S(q(E[v]− σ, σ))− σ.

Lastly, notice that by the definition of q(p, σ) and ζ(p), we have q(E[v]− σ, σ) = D(ζ(E[v]− σ)). Together,

it must be that

max
{
S(D(ζ(E[v]− σs)))− σs, r∗

}
≤ rs ≤ E[v]− σs.
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In the meantime, since
∫∞
ps D(v) d = σs and psD(ps) = rs for some D ∈ D, it must be that ps ≥ E[v] − σs

and that

S

(
rs

ps

)
− rs ≥ σs,

which is equivalent to

E[v]− σs ≤ ps ≤ rs

S−1(rs + σs)
,

as desired.

Conversely, suppose that zs = (rs, σs, ωs, ps, {ms
t}) satisfies condition 2 of the theorem. We now construct

a stationary equilibrium whose outcome is zs. To this end, let the seller’s strategy be ps for all periods and

for all histories. Consider a strategy for the intermediary as follows: For any history, if the seller charges

p 6= ps in the same period, choose a solution of

min
D∈D

pD(p+).

Otherwise, if the seller charges ps choose D ∈ D such that

D(ps) =
rs

ps

and that ∫ ∞
ps

D(v) dv = σs.

Using the same arguments as above, since

1− γδ
δβ

≤σs ≤ E[v]− r∗

E[v]− σs ≤ps ≤ rs

S−1(rs + σs)
,

max
{
S(D(ζ(E[v]− σs)))− σs, r∗

}
≤rs ≤ E[v]− σs,

such D ∈ D exists. Finally, consider the following strategy for the tie-breaker: For any history, if the seller

chooses p 6= ps and the intermediary chooses any D ∈ D in the same period, then chooses q = D(p+). If the

seller chooses ps and the intermediary chooses any D ∈ D in the same period, then choose q = D(p).

By construction, the above strategy profile is stationary-Markov. Moreover, since rs ≥ r∗ and since

the seller can get at most r∗ if he deviates given the intermediary’s and the tie-breaker’s strategies, the

seller would never deviate. As for the intermediary, when the price is ps and the market size is m, by

construction, the market size in the next period is (γ + βσs)m. Since σs ≥ (1− γδ)/δβ, the intermediary’s

payoff is ωs = ∞ given the seller always charges ps and given the tie-breaker’s strategy. Meanwhile, if the

seller charges p 6= ps, then given that the seller charges ps in all future periods, choosing the solution of

min
D∈D

pD(p+)

and then return to the aforementioned strategy in future periods still gives a present discounted profit of

∞. Together, the intermediary would not deviate given the seller’s and the tie-breaker’s strategies. Thus,

this strategy profile is indeed a stationary equilibrium with outcome zs.
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Finally, since
1− γδ
δβ

≤ E[v]− r∗

there exists zs that satisfies condition 2 of the theorem whenever β ≥ β̃. Together with the proofs above,

it then follows that there exists an infinite stationary equilibrium whenever β ≥ β̃. This completes the

proof. �

We now discuss infinite subgame perfect equilibria. From Theorem OA.1, it follows immediately that an

infinite subgame perfect equilibrium exists whenever β ≥ β̃. In fact, the converse is also true: An infinite

subgame perfect equilibrium exists only if β ≥ β̃. When an infinite subgame perfect equilibrium exists, the

intermediary can always be incentivized to use the most severe punishment in the event of a deviation, and

hence the seller can be incentivized to charge any price in [r∗, p∗]. As a result, any feasible payoff can be

supported by a subgame perfect equilibrium, as summarized below. To this end, for any β ≥ 0, let Ω(β)

denote the set of intermediary’s payoffs among all subgame perfect equilibria.

Theorem OA.2 (Subgame Perfect Equilibrium Payoffs). An infinite subgame perfect equilibrium exists if

and only if β ≥ β̃. Furthermore, for any β ≥ 0,

Ω(β) =

{
Ω∗(β), if β < β̃

[ω,∞], if β ≥ β̃
.

Proof. By Theorem OA.1, since any stationary equilibrium is a subgame perfect equilibrium, an infinite

subgame perfect equilibrium exists if β ≥ β̃. Conversely, suppose that β < β̃. By way of contradiction,

suppose that there exists a history at which the intermediary’s payoff in some period T ∈ N is ωT = ∞.

Then there must exist some t > T such that

δ(γ + βσt) ≥ 1,

where σt is the consumer surplus in period t of this history. Rearranging, we have

σt ≥
∫ ∞
pβ

D(v) dv.

Meanwhile, since the total surplus in period t of this history must be at most E[v] and since the sales revenue

rt must be no less than r∗ (otherwise the seller can has a profitable deviation in period t of this history).

Thus, it must be that

σt ≤ E[v]− r∗.

Together, we have ∫ ∞
pβ

D(v) dv ≤ E[v]− r∗,

which is equivalent to β ≥ β̃, a contradiction.

As a result, for any β < β̃, Ω(β) = Ω∗(β). Now suppose that β ≥ β̃. To show that Ω(β) = [ω,∞], by

Theorem OA.1 and Theorem 2, it suffices to show that for any β ∈ [β̃, β̂) and for any ω̂ ∈ [ω∗,ω∗(β)], there

exists a subgame perfect equilibrium in which the intermediary’s payoff is ω̂. To this end, fix any such ω̂.

Since ω̂ ≤ ω∗(β) ≤ E[v], there exists p̂ such that p̂D(v−1(p̂)). As shown in the proof of Theorem 2 (see
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Case 2), ω̂ ≤ ω∗(β) ≤ ωβ implies that ξ(p̂|ω̂) = v−1(p̂). Moreover, for any p′ ≥ 0, let Dp′ be any solution

of minD∈D p
′D(p

′+).

Now consider the following strategy profile:

• Start by playing regime p̂-myopic. If the seller deviates to p′ 6= p̂, then enter regime Dp′-punish

immediately. Otherwise, stay in the same regime.

• Under regime Dp′-punish. If the intermediary deviates, then move to regime p̂-myopic. Otherwise,

play an infinite stationary equilibrium in the next period.

It remains to show that this strategy profile is a subgame perfect equilibrium. To see this, notice that

except for the history at which an infinite stationary equilibrium is played, the intermediary’s continuation

value is finite. Therefore, by Lemma 1, it suffices to verify that the seller and the intermediary do not

have incentives to deviate under each regime. Indeed, under regime p̂-myopic, the sales revenue after any

deviation of the seller is at most r∗. Therefore, the seller does not have any incentive to deviate. Meanwhile,

given price p̂, since ξ(p̂|ω̂) = v−1(p̂), the intermediary’s best response is indeed myopic. Under regime

Dp′-punish. If the intermediary follows the strategy, then her payoff would be ∞. If she deviates, then

her payoff would be at most W(p′|ω∗) < ∞, and hence the intermediary would not deviate. As a result,

the strategy profile above constitutes a subgame perfect equilibrium, and the intermediary’s payoff in this

equilibrium is ω̂. This completes the proof. �

In the meantime, for any β ≥ 0, let Z(β) be defined as

Z(β) :=


Z∗(β), if β < β̃{

(r, σ, p) ∈ R3
+

∣∣∣∣∣ r∗ ≤ r ≤ p
(E[v]− p)+ ≤ σ ≤ S

(
r
p

)
− r

}
, if β ≥ β̃

.

Then the subgame perfect equilibrium outcomes can be characterized as well.

Corollary OA.1 (Subgame Perfect Equilibrium Outcomes). For any β ≥ 0 and for any subgame perfect

equilibrium outcome z = {rt, σt, ωt, pt,mt}, (rt, σt, pt) ∈ Z(β) for all t ≥ 0. Furthermore, for any β ≥ 0,

for any T ≥ 0, and for any (r, σ, p) ∈ Z(β), there exists a subgame perfect equilibrium outcome z =

{rt, σt, ωt, pt,mt} such that rT = r, σT = σ, and pT = p.

Proof. For any β < β̃, by Theorem OA.2, since every subgame perfect equilibrium is finite, Corollary 1

ensures any subgame perfect equilibrium outcome z = {rt, σt, ωt, pt,mt} must be such that (rt, σt, pt) ∈
Z∗(β) = Z(β). Moreover, for any (r, σ, p) ∈ Z(β) = Z∗(β) and for any T ≥ 0, Corollary 1 ensures that there

exists a subgame perfect equilibrium outcome z = {rt, σt, ωt, pt,mt} such that rT = r, σT = σ, and pT = p.

Now consider any β ≥ β̃. First consider any subgame perfect equilibrium outcome z = {rt, σt, ωt, pt,mt}.
For any t ≥ 0, clearly r∗ ≤ rt ≤ pt. Furthermore, let Dt be the disclosure policy chosen by the intermediary

on the equilibrium path in period t, it then follow that

σt =

∫ ∞
pt

Dt(v) dv.
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Since Dt ∈ D, σt ≥ (E[v]− pt)+. Moreover, since Dt ∈ D is nonincreasing, it must be that∫ ∞
pt

D(v) dv ≥
∫ ∞
pt

Dt(v) dv ≥ σt − (p− pt)Dt(pt),

for all p ≥ 0. As a result,

σt ≤ min
p≥0

[∫ ∞
p

D(v) + (p− pt)Dt(pt)

]
= S

(
rt
pr

)
− rt,

where the equality follows from the first order condition of the minimization problem, which implies that at

the solution p̂t, D(p̂t) = Dt(pt) = rt/pt. Together, we have

(E[v]− pt)+ ≤ σt ≤ S
(
rt
pr

)
− rt,

for all t ≥ 0.

Conversely, consider any (r, σ, p) ∈ Z(β) and any T ≥ 0. As in the proof of Corollary 1, it suffices to find

a subgame perfect equilibrium with outcome z = {rt, σt, ωt, pt,mt} such that r0 = r, σ0 = σ, and p0 = p.

As shown in the proof of Corollary 1, since (E[v] − p)+ ≤ σ ≤ S(r/p) − r, there exists D0 ∈ D such that

pD0(p) = r0 and
∫∞
p D0(v) dv = σ.

Now consider the following strategy profile: In period 0, the seller charges price p; the intermediary

chooses D0 ∈ D if the seller charges p, and chooses any solution of minD∈D p
′D(

′+) if the seller charges

p′ 6= p; and the tie-breaker breaks tie in favor of the seller when the seller charges p, and against the seller

when he charges p′ 6= p. From period 1 onward, if the seller charges p in period 0 and if the intermediary

chooses D0, or if the seller charges any p′ 6= p and the intermediary chooses a solution of minD∈D p
′D(

′+),

then all players play an infinite stationary equilibrium. Otherwise, the play the subgame perfect equilibrium

that gives the intermediary equilibrium payoff ω∗.

We claim that this strategy profile constitutes a subgame perfect equilibtium. To see this, first notice

that it suffices to verify that both the seller and the intermediary do not have any incentive to deviate in

period 0. For the seller, given the intermediary’s strategy, charging price p gives payoff (1− α)r, while the

largest possible revenue from deviation is (1−α)r∗ ≤ (1−α)r. Thus, the seller does not have any incentive to

deviate. For the intermediary, if she follows the strategy, then the continuation play is an infinite stationary

equilibrium and hence her payoff would be ∞, whereas if she deviates after seeing any price p′ ≥ 0, her

normalized continuation payoff would be ω∗ <∞. Therefore, the intermediary does not have any incentive

to deviate either. This completes the proof. �

Together with Corollary OA.1, the implication of Proposition 2 can be extended even when allowing for

infinite subgame perfect equilibria, as summarized below.

Proposition OA.2 (Inefficiency of High Feedback—Subgame Perfect). For any β ∈ [0, β], there exists

a subgame perfect equilibrium outcome z∗(β) that is dominated by any other subgame perfect equilibrium

outcomes. Furthermore, for any γ, δ such that γδ ≤ 1/2, there exists β̃(γ, δ) ∈ (0, β̃] such that for any

0 < β < β′ < β̃(γ, δ), z∗(β) dominates z∗(β′).

Lastly, we show that the parametric restrictions for Theorem 2 ( β < β∗) imposed in the main text,

when focusing on finite subgame perfect equilibrium, is tight.
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Proposition OA.3. A finite subgame perfect equilibrium exists if and only if β < β∗

Proof. The proof of Theorem 2 implies that a finite subgame perfect equilibrium exists whenever β < β∗.

It remains to show that finite subgame perfect equilibria do not exist whenever β ≥ β∗. To see this, notice

that β ≥ β∗ implies h(ω) > ω for all ω ≥ 0. Now let ω0 := ω∗ and define {ωn} recursively as

ωn := h(ωn−1) = δ

γ + β

∫ ∞(
1− α

δβωn−1

)
p∗
D(v) dv

ωn−1,

for all n ∈ N. By the same arguments as in the proof of Lemma 5, the intermediary’s continuation payoff

at any history in any subgame perfect equilibrium must be at least ωn for all n. However, since h(ω) > ω

for all ω ≥ 0, lim infn→∞{ωn} =∞ and hence there is no subgame perfect equilibria . �

OA.3 Omitted Proofs for Section 6

OA.3.1 Proof of Proposition 3

Consider the strategy profile where the seller charges p, the intermediary chooses D after observing any

prices, and the tie breaker breaks ties in favor of the seller regardless in every period. Clearly this strategy

profile is stationary-Markov. Moreover, given the seller’s strategy at any history, choosing D is always a

best response for the intermediary since D maximizes the subscription fee and the market growth rate at

the same time. Lastly, given that the intermediary always chooses D, p is the unique best response for the

seller at any history. Therefore, this strategy profile is indeed a stationary equilibrium.

Furthermore, when β < β, we have

δ

(
γ + β

∫ ∞
p

D(v) dv

)
< 1

and hence the intermediary’s payoff in the stationary equilibrium described above is

ρs =
α̃
∫∞
p D(v) dv

1− δ
(
γ + β

∫∞
p D(v) dv

) <∞.
Therefore, the intermediary’s continuation value is finite at every history.

To see that this stationary equilibrium induces a unique outcome whenever β < β, consider any other

stationary equilibrium in which the intermediary’s continuation paypoff is finite at every history. Let

y = (r, σ, ω, p, {mt}) denote its outcome. Since ω <∞, by the same arguments as the proof of Lemma 1, it

follows that the intermediary must choose D ∈ D that attains

ω = sup
D∈D

[
α̃

∫ ∞
p

D(v) dv + δ

(
γ + β

∫ ∞
p

D(v) dv

)
ω

]
.

As a result, it follows that ω = ρs, σ =
∫∞
p D(v) dv, p = p, and r = pD(p).

Lastly, for any β, β′ such that 0 < β < β′ < β, the intermediary’s equilibrium payoffs is higher under

β′, and the market growth rate is also higher under β′. Thus, it must be that ys(β′) dominates ys(β). This

completes the proof. �
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OA.3.2 Proof of Proposition 4

Notice that by Proposition 1 and Proposition 2, ωs is nonincreasing on [0, β) and ρs is nondecreasing on

[0, β). Moreover, if
α̃

α
<

E[v]∫∞
p D(v) dv

,

then

ρs(0) =
α̃
∫∞
p D(v) dv

1− γδ
<

αE[v]

1− γδ
= ωs(0).

Thus, there exists β0 > 0 such that ρs(β) < ωs(β) for all β < β0.

In the meantime, if
α̃

α
+ 1 <

E[v]∫∞
p D(v) dv

,

then

ρs(β) =
α̃
∫∞
p D(v) dv

1− δ
(
γ + 1−γδ

δE[v]

∫∞
p D(v) dv

) < αE[v]

1− γδ
= ωs(β).

Hence, there exists β0 > β such that ρs(β) < ωs(β) for all β < β0. This completes the proof. �

OA.4 Omitted Proofs for Section 7

OA.4.1 Proof of Proposition 5

First, notice that by similar arguments, an analogous version of Lemma 1 can be established. As a result,

z̃s = (rs, σs, ωs, πs, ps, {ms
t}) is a (finite) stationary equilibrium outcome if and only if there exists Ds : R+ →

D such that1

ωs = sup
D∈D

[
αpsD(ps) + δ

(
γ + β

∫ ∞
ps

D(v) dv

)
ωs

]
; (OA.1)

that

D(·|p) ∈ ∆(p|ωs), ∀p ≥ 0; (OA.2)

and that

πs = sup
p≥0

[
(1− α)pDs(p|p) + ρ

(
γ + β

∫ ∞
p

Ds(v|p) dv

)
πs

]
=(1− α)psD(ps|ps) + ρ

(
γ + β

∫ ∞
ps

Ds(v|ps) dv

)
πs (OA.3)

By Lemma 3, it then follows that

ωs = αpsD(ξ(ps|ωs)) + δ

(
γ + β

(∫ ∞
ξ(ps|ωs)

D(v) dv − (ps − ξ(ps|ωs))D(ξ(ps|ωs))

))
ωs

1πs denotes the seller’s equilibrium payoff
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and that

πs = max
p≥0

Π(p|ωs, πs)

:= max
p≥0

[
(1− α)pD(ξ(p|ωs)) + ρ

(
γ + β

(∫ ∞
ξ(p|ωs)

D(v) dv − (p− ξ(p|ωs))D(ξ(p|ωs))

))
πs

]

=(1− α)psD(ξ(ps|ωs)) + ρ

(
γ + β

(∫ ∞
ξ(ps|ωs)

D(v) dv − (ps − ξ(ps|ωs))D(ξ(ps|ωs))

))
πs

We now claim that in any (finite) stationary equilibrium, it must be that

ξ(ps|ωs) =

(
1− α

δβωs

)+

ps.

To see this, suppose the contrary, that v−1(ps) > (1 − α/δβωs)+ps. If ωs ≤ α/δβ, then v−1(ps) > 0 and

Π(p|ωs, πs) = (1−α)pD(v−1(p)) for all p ≥ E[v]. This then implies that (1−α)E[v] = (1−α)E[v]D(v−1(E)) >

(1−α)psD(v−1(ps)), a contradiction. Meanwhile, if ωs > α/δβ, then ps > 0 and hence there exists ε > 0 such

that v−1(p) > (1−α/δβωs)p for all p ∈ (ps−ε, ps). This then implies that Π(p|ωs, πs) = (1−α)pD(v−1(p)) =

(1− α)psD(v−1(ps)) = Π(ps|ωs, πs), a contradiction.

As a result, it must be that

ωs = δ

(
γ + β

∫ ∞(
1− α

δβωs

)+
D(v) dv

)
ωs ⇐⇒

(
1− α

δβωs

)+

ps = pβ. (OA.4)

Thus, if β ≤ β, then (1 − α/δβωs)+ps = 0. Since ps > 0 by optimality and by πs < ∞, it must be that

ωs ≤ α/δβ. This then implies that Π(p|ωs, πs) = (1− α)pD(v−1(p)) for all p ≥ 0, and hence ps = E[v]. As

a result, ωs = αE[v]/(1− γδ) and πs = (1− α)E[v]/(1− γδ).
Conversely, if ωs > α/δβ, then it must be that β > β and that (1 − α/δβωs)ps = pβ. In this case, we

may write πs as

πs =
1− α
α

ωs 1− δ(γ + βσs)

1− ρ(γ + βσs)
,

where

σs =

∫ ∞
pβ

D(v) dv − α

δβωs − α
pβD(pβ).

Using this, we may write Π(p|ωs, πs) as

Π(p|ωs, πs) = Π̃

((
1− α

δβωs

)
p

∣∣∣∣ωs

)
,

for all p ≥ 0, where

Π̃(p̃|ωs) :=(1− α)
δβωs

δβωs − α
p̃D(p̃) + ρ

(
γ + β

(∫ ∞
p̃

D(v) dv − α

δβωs − α
p̃D(p̃)

))
1− α
α

ωs 1− δ(γ + βσs)

1− ρ(γ + βσs)

=ωs 1− α
α

[
αβ

δβωs − α

(
δ − ρ1− δ(γ + βσs)

1− ρ(γ + βσs)

)
p̃D(p̃) + ρ

(
γ + β

∫ ∞
p̃

D(v) dv

)
ωs 1− δ(γ + βσs)

1− ρ(γ + βσs)

]
,

for all p̃ ≥ 0. As a result, for any ωs ∈ [0,∞), maximizing Π by choosing p ≥ 0 is equivalent to maximizing

Π̃ by choosing p̃ ≥ 0, and hence, by (OA.4), Π̃(pβ|ωs) ≥ Π̃(p̃|ωs) for all p̃ ≥ 0. Moreover, since ξ(ps|ωs) =
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(1− α/δβωs)ps, it must be that (1− α/δβωs)ps ≥ v−1(ps). This then implies that either Π̃′(pβ|ωs) = 0 and

gβ(pβ) ≤ ωs or Π̃′(pβ|ωs) ≥ 0 and gβ(pβ) = ωs.

Meanwhile, note that

Π̃(pβ|ωs) = ωs 1− α
α

[
αβ

δβωs − α

(
δ − ρ1− δ(γ + βσs)

1− ρ(γ + βσs)

)
(D(pβ) + pβD

′
(pβ))− ρβD(pβ)

1− δ(γ + βσs)

1− ρ(γ + βσs)

]
.

As a result, since pβ → 0 as β → β and since the equilibrium price ps must be bounded away from 0 whenever

β < β, (OA.4) implies that δβωs−α→ 0 as β → β. Thus, since pβ ≤ p whenever β < β and since p 7→ pD(p)

is quasi-concave, there exists β(ρ) such that Π̃(pβ|ωs) ≥ 0 for all β ∈ (β,β(ρ)). Together with pβ = p and

D(p)− pD′(p) = 0, it follows that β(ρ)→ β as ρ ↑ δ. Consequently, there exists a continuously decreasing

function β, with β(0) = β and limρ↑δ β(ρ) = β such that for any ρ ∈ [0, δ) and for any β ∈ (β,β(ρ)), if

z̃s = (rs, σs, ωs, πs, ps, {ms
t}) is a (finite) stationary equilibrium outcome, then gβ(pβ) = ωs, which in turn

implies that σs = 0, ps = v(pβ), rs = (1− γδ)/αgβ(pβ), and πs = (1− α)rs/(1− γρ).

Conversely, for any ρ and for any β ∈ (β,β(ρ)), let rs, ωs, ps, σs, and {ms
t} be defined as in Theorem 1,

and let πs := (1 − α)rs/(1 − γρ). Then there exists Ds : R+ → D such that satisfies (OA.1), (OA.2), and

(OA.3), which in turn implies that (rs, σs, ωs, πs, {ms
t}) is a finite stationary equilibrium outcome, where

ms
t = γt for all t. This completes the proof. �

OA.4.2 Proof of Proposition 6

Similar to the baseline model, the one-shot deviation principle holds in this setting, and an analog of Lemma

2 can be established as in Lemma OA.1.

Lemma OA.1. A finite stationary equilibrium is characterized by a tuple (ωs, ps,Ds) with ωs, ps ∈ [0,∞)

and Ds : R+ → D that satisfy the following conditions:

ωs = sup
D∈D

[
αpsD(ps) + δωs · f

(∫ ∞
ps

D(v) dv

)]
, (OA.5)

psDs(ps|ps) ≥ pDs(p|p), (OA.6)

for all p ≥ 0,

αpDs(p|p) + δωs · f
(∫ ∞

p
Ds(v|p) dv

)
≥ αpD(p) + δωs · f

(∫ ∞
p

D(v) dv

)
, (OA.7)

for all p ≥ 0 and for all D ∈ D. Furthermore, for any stationary equilibrium (ωs, ps,Ds), its outcome is

constant over time and is given by (rs, ps, σs, ωs), where rs := psDs(ps|ps), σs :=
∫∞
ps Ds(v|ps) dv.

Let ξ̃(p|ω) be the solution of

αp = δω(p− ξ)f ′
(∫ ∞

ξ
D(v) dv − (p− ξ)D(ξ)

)
,

if the solution exists, and let ξ̃(p|ω) = 0 otherwise.
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Lemma OA.2. For any α, δ ∈ (0, 1), ω ≥ 0, any twice differentiable, increasing and concave function

f : R+ → R+, and for any p ≥ 0,

∆∗(p|ω) := argmax
D∈D

[
αpD(p) + δω · f

(∫ ∞
p

D(v) dv

)]
is nonempty. Moreover, for any D ∈ ∆∗(p|ω),

D(v) = D(ξ(p|ω)), (OA.8)

for all v ∈ [ξ(p|ω), p] and ∫ ∞
ξ(p|ω)

D(v) dv =

∫ ∞
ξ(p|ω)

D(v) dv, (OA.9)

where ξ(p|ω) := max
{
ξ̃(p|ω), v−1(p)

}
.

Proof. Arguments similar to the proof of Lemma 2 imply that the intermediary’s problem can be simplified

to

max
ξ∈[v−1(p),p]

αpD(ξ) + δωf

(∫ ∞
ξ

D(v) dv − (p− ξ)D(ξ)

)
, (OA.10)

which, by continuity of D, has a solution. This implies that ∆∗(p|ω) is nonempty. Moreover, the derivative

of the objective function in (OA.10) is[
αp− δω(p− ξ)f ′

(∫ ∞
ξ

D(v) dv − (p− ξ)D(ξ)

)]
D
′
(ξ).

Notice that αp−δω(p−ξ)f ′
(∫∞

ξ D(v) dv − (p− ξ)D(ξ)
)

is increasing in ξ and is positive when ξ = p. Also,

D
′
(ξ) < 0 for all ξ. Thus, the intermediary’s problem is concave in ξ and the solution ξ(p|ω) of (OA.10)

is given by ξ(p|ω) := max
{
ξ̃(p|ω), v−1(p)

}
. This in turn implies that any D̂ ∈ D satisfying the condition

given by the lemma must be in ∆∗(p|ω). �

It is convenient to define

β̃(p|ω) := f ′

(∫ ∞
ξ(p|ω)

D(v) dv − (p− ξ(p|ω))D(ξ(p|ω))

)
.

Lemma OA.3. Given any α, δ ∈ (0, 1), ω ≥ 0 and β ≥ 0, for any η > 0, let

P(η) :=

{
p = argmax

p≥0
pD∗(p|p) : D∗ is a selection of ∆∗(·|ω) for some f ∈ F1

⋃
F2(β, η)

}
.

Then, limη→0 supp∈P(η) |p− p̃| = 0, where p̃ is the unique value such that

v−1(p̃) ≤
(

1− α

δβω

)+

p̃ ≤ p, (OA.11)

with at least one inequality binding. Furthermore, if δβω ≤ α, we have P(η) = {p̃} for any η; if δβω > α and

v−1(p̃) = (1 − α
δβω )p̃ < p, there exists η > 0 such that P(η) = {p̃}, β̃(p̃|ω) = f ′(0) and

∫∞
p̃ D∗(v|p̃) dv = 0

for any f ∈ F1
⋃
F2(β, η) and any selection D∗ of ∆∗(·|ω).
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Proof. Given any f , by Lemma OA.2, for any selection D∗ of ∆∗(·|ω),

pD∗(p|p) = pD(ξ(p|ω)) = pD

(
max

{(
1− α

δβ̃(p|ω)ω

)+

p, v−1(p)

})

= min

{
pD

((
1− α

δβ̃(p|ω)ω

)+

p

)
, pD(v−1(p))

}
,

where the last equality follows from the fact that D is strictly decreasing.

Notice that by definition, we have β̃(p|ω) ∈ [f ′(0), f ′(E(v)]. Therefore, if ‖f ′′‖ < η and as η goes to 0,

we must have β̃(p|ω) converge to f ′(0) = β for all p. This implies that as η goes to 0, the seller’s optimal

price must converge to the price p̃ that solves

min

{
pD

((
1− α

δβω

)+

p

)
, pD(v−1(p))

}
, (OA.12)

which has exactly the same form as the seller’s problem in the baseline model with a market feedback level

at β. Thus, the properties of p̃ stated in the lemma follows directly from Lemma 4.

Furthermore, when δβω ≤ α, since f ′′ < 0, we must have δβ̃(p|ω)ω ≤ α for any p. Hence, the seller’s

problem is to maximize

pD(v−1(p)),

which is the same as the problem in the baseline model. So the optimal price must be p̃ for any f with

f ′(0) = β. Thus, P(η) = {p̃} for any η > 0. Lemma OA.2 implies that
∫∞
p̃ D∗(v|p̃) dv = 0 for any D∗ that

is a selection of ∆∗(·|ω) and β̃(p̃|ω) = f ′(0).

On the other hand, if δβω > α and v−1(p̃) = (1− α
δβω )+p̃ < p, for η small enough, we have δβ̃(p|ω)ω > α

for all p, so

pD

((
1− α

δβ̃(p|ω)ω

)+

p

)
= pD

((
1− α

δβ̃(p|ω)ω

)
p

)
. (OA.13)

Its derivative with respect to p is

D

((
1− α

δβ̃(p|ω)ω

)
p

)
+

(
1− α

δβ̃(p|ω)ω

)
pD
′
((

1− α

δβ̃(p|ω)ω

)
p

)
+ p2D

′
((

1− α

δβ̃(p|ω)ω

)
p

)(
1− α

δβ̃(p|ω)ω

)′
,

(OA.14)

which, as η goes to 0, converges to

D

((
1− α

δβω

)
p

)
+

(
1− α

δβω

)
pD
′
((

1− α

δβω

)
p

)
. (OA.15)

Since pD(p) is strictly concave, (OA.15) must be strictly decreasing in p, positive for p < δβω
δβω−αp, and

negative for p > δβω
δβω−αp. Hence, given any ε > 0, for η small enough, (OA.14) is positive for p < δβω

δβω−αp− ε
and negative for p > δβω

δβω−αp + ε. Since v−1(p̃) = (1 − α
δβω )+p̃ < p, for η small enough, the seller’s revenue
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function equals (OA.13) and must be strictly increasing for p < p̃, and it equals pD(v−1(p)) and is strictly

decreasing for p > p̃. Therefore, the optimal price is p̃, i.e., P(η) = {p̃} for η small enough. According to

Lemma OA.2, we have
∫∞
p̃ D∗(v|p̃) dv = 0 for any D∗ that is a selection of ∆∗(·|ω), which also implies that

β̃(p̃|ω) = f ′(0). �

To describe the equilibrium outcomes in this setting, we define

g∗(p) :=
α

δf ′(0)

(
1 +

pD(p)∫∞
p D(v) dv

)
,

for all p ∈ [0, p], and let

p∗ := inf

{
p ≥ 0

∣∣∣∣δ(f(0) + f ′(0)

∫ ∞
p

D(v) dv

)
≥ 1

}
.

Theorem OA.3. There exists a continuously decreasing function h : (β, β) → R+ such that every f ∈
F1∪[

⋃
β∈(β,β)F2(β, h(β))] induces a unique finite stationary equilibrium outcome. Furthermore, the following

are equivalent:

1. zs = (rs, σs, ωs, ps, {ms
t}) is a finite stationary equilibrium outcome.

2.

ps =

{
E[v], if f ∈ F1

v(p∗), if f ∈ [
⋃
β∈(β,β)F2(β, h(β))]

;

ωs =

{
αE[v]
1−γδ , if f ∈ F1

g∗(p∗), if f ∈ [
⋃
β∈(β,β)F2(β, h(β))]

; rs =

{
E[v], if f ∈ F1

(1−γδ)
α g∗(p∗), if f ∈ [

⋃
β∈(β,β)F2(β, h(β))]

;

σs = 0, and ms
t = f(0)t, for all t ≥ 1.

Proof. We first show that given any f ′(0) < β, the equilibrium outcome (rs, ps, σs, ωs, {ms
t}) described in the

statement of the theorem is indeed a finite stationary equilibrium if either f ′(0) ∈ [0, β] or f ∈ F2(f ′(0), η)

for η > 0 small enough. To this end, we will show that for any such tuple, there exists Ds : R+ → D such

that (ωs, ps,Ds) satisfies the conditions of Lemma OA.1.

Case 1: f ∈ F1.

In this case, we have f ′(0) ≤ β. Consider any selection Ds of ∆∗(·|ωs). Since ps = E[v] and thus v−1(ps) = 0,

Lemma OA.3 implies that ps ∈ argmaxp pD
s(p|p), which establishes (OA.6). Meanwhile, Lemma OA.3 also

implies that that ∫ ∞
ps

Ds(v|ps) dv = 0.

Moreover, given ps = E[v], Lemma OA.2 implies that Ds(ps|ps) = D(0) = 1. Together,

sup
D∈D

[
αpsD(ps) + δf

(∫ ∞
ps

D(v) dv

)
ωs

]
=αpsDs(ps|ps) + δf

(∫ ∞
ps

Ds(v|ps) dv

)
ωs

=αE[v] + δf(0)ωs

=ωs

=
αpsDs(ps|ps)

1− δf
(∫∞

ps Ds(v|p) dv
)
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which establishes (OA.5) and (OA.7).

Case 2: f ∈ F2(β, η) for some η > 0.

In this case, we have f ′(0) ∈ (β, β). Take any selection Ds of ∆∗(·|ωs). Hence,(
1− α

δf ′(0)ωs

)+

ps =

(
1− α

δf ′(0)ωs

)
ps = v−1(ps) = p∗ < p,

which in turn implies that, by Lemma OA.3, for η small enough,∫ ∞
ps

Ds(v|ps) dv = 0

and therefore,

ωs = αpsD(ξ(ps|ωs)) + f(0)δωs = αpsDs(ps|ps) + δf

(∫ ∞
ps

Ds(v|ps) dv

)
ωs,

which establishes (OA.5). Furthermore, since p∗ < p, ps < δf ′(0)ωsp/(δf ′(0)ωs − α) and hence, for η small

enough, ps is the unique maximizer of pD(ξ(p|ωs)) according to Lemma OA.3. Thus, by Lemma OA.2,

(ωs, ps,Ds) satisfies (OA.6) and (OA.7). We define h(β) to be the supermum of the values of η such that

the above arguments are valid as being required in Lemma OA.3.

We now show that for any finite stationary equilibrium, its outcome (rs, ps, σs, ωs, {ms
t}) must satisfy

the conditions given by Theorem OA.3. By Lemma OA.1, if (ωs, ps,Ds) satisfy (OA.5), (OA.6), and (OA.7)

such that rs = psDs(ps|ps), σs =
∫∞
ps Ds(v|ps) dv and ms

t = f(σs)t. It follows immediately that rs, σs, {ms
t}

satisfy the condition given by Theorem OA.3 if ωs and ps satisfy these conditions. Thus, it suffices to show

that ωs, ps satisfy these conditions. Now consider three cases separately.

Case 1: ωs ≤ α/δf ′(0).

In this case, by Lemma OA.3, it immediately follows that(
1− α

δf ′(0)ωs

)+

ps = 0 = v−1(ps)

and hence ps = E[v], which in turn, by (OA.5), implies that ωs = αE[v]/(1−f ′(0)δ). For this to be consistent

with ωs ≤ α/δf ′(0), it must be that f ′(0) ≤ β, i.e., f ∈ F1.

Case 2: ωs > α/δf ′(0) and (
1− α

δf ′(0)ωs

)
ps = v−1(ps) < p. (OA.16)

In this case, Lemma OA.3 implies that, there exists η such that, if ‖f ′′‖ < η, ps is the unique optimal price

for the seller, i.e., it satisfies (OA.6). Then, Lemma OA.2 implies that

ωs = δ

(
f(0) + f ′(0)

∫ ∞(
1− α

δf ′(0)ωs

)
ps
D(v) dv

)
ωs,
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and hence, together with (OA.11), it must be that f ′(0) ∈ [β, β] and(
1− α

δf ′(0)ωs

)
ps = p∗.

Meanwhile, since (OA.16) is equivalent to

ωs = g∗
((

1− α

δf ′(0)ωs

)
ps

)
,

it must be that ωs = g∗(p∗) and hence ps = v(p∗).

Case 3: ωs > α/δf ′(0) and (OA.16) is violated. In this case, Lemma OA.3 implies that, as ‖f ′′‖ goes to

zero

ps → δf ′(0)ωs

δf ′(0)ωs − α
p and ξ(p|ωs)→ p. (OA.17)

In this case, Lemma OA.1 and Lemma OA.2 implies that

δ

[
f ′
(∫ ∞

p̄
D(v) dv − (ps − p)D(p)

)
(ps − p)D(p) + f

(∫ ∞
p̄

D(v) dv − (ps − p)D(p)

)]
→ 1,

or equivalently,

δ
[
f ′ (σ(ps)) (ps − p)D(p) + f (σ(ps))

]
→ 1, (OA.18)

where σ(ps) =
∫∞
p̄ D(v) dv − (ps − p)D(p).

Notice that as ‖f ′′‖ goes to zero, f ′ (σs)→ f ′(0) and f (σs)→ f(0) + f ′(0) · σs. Hence, if f ′(0) < β,

δ
[
f ′ (σs) (ps − p)D(p) + f (σs)

]
→δ

[
f ′(0)(ps − p)D(p) + f(0) + f ′(0) · σs

]
<δ

(
f(0) + β

∫ ∞
p̄

D(v)

)
=1 (OA.19)

which contradicts with equation (OA.18). Therefore, for ‖f ′′‖ small enough, this case can only occur when

f ′(0) ≥ β.

Therefore, there exists a function h : (β, β)→ R+ such that every f ∈ F1∪ [
⋃
β∈(β,β)F2(β, h(β))] induces

a unique finite stationary equilibrium outcome as described in this lemma. Finally, notice that the upper

bound of ‖f ′′‖ for the preceding arguments to be valid is bounded away from zero except for β arbitrarily

close to β. Hence, the function h : (β, β)→ R+ can be chosen to be continuously decreasing.

�

Proof of Proposition 6. This proposition immediately follows from Theorem OA.3. �
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