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Abstract. In this paper, we introduce the weighted-average quantile regression

framework,
∫ 1

0
qY |X(u)ψ(u)du = X ′β, where Y is a dependent variable, X is a

vector of covariates, qY |X is the quantile function of the conditional distribution of

Y given X, ψ is a weighting function, and β is a vector of parameters. We argue

that this framework is of interest in many applied settings and develop an estima-

tor of the vector of parameters β. We show that our estimator is
√
T -consistent

and asymptotically normal with mean zero and easily estimable covariance matrix,

where T is the size of available sample. We demonstrate the usefulness of our es-

timator by applying it in two empirical settings. In the first setting, we focus on

financial data and study the factor structures of the expected shortfalls of the in-

dustry portfolios. In the second setting, we focus on wage data and study inequality

and social welfare dependence on commonly used individual characteristics.

1. Introduction

Mean and quantile regression models are among the key elements of the econo-

metrics toolbox. However, there is a large set of functionals beyond the mean and

quantiles of a distribution that are of interest in applied work. It is therefore impor-

tant to study other regression models as well. To do so, we consider in this paper a

broad class of regression models, which we refer to as the weighted-average quantile

regression: ∫ 1

0

qY |X(u)ψ(u)du = X ′β, (1)

where Y is a dependent variable in R, X is a vector of covariates in Rp, qY |X : [0, 1]→
R is the quantile function of the conditional distribution of Y given X, ψ : [0, 1]→ R
is a signed weighting function, and β is the parameter vector in Rp to be estimated.

Such regression models are of interest in a number of applications. First, if Y is the

loss of a financial portfolio and ψ(u) = I {u ≥ 1− α} /α for, say, α = 0.1, we obtain

an example of a risk regression, namely an expected shortfall regression, which is

of interest in finance (e.g., Adrian and Brunnermeier, 2016; Acharya et al., 2017).

This regression lets us study how the risk, measured by the expected shortfall, of
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a financial portfolio comoves with various financial/macro variables. Second, if Y

is the wage and ψ(u) = I {u ≤ α} /α for, say, α = 0.2, we obtain a lower wage

regression, and in the same way, we can also define middle and upper wage regressions.

These regressions are similar to the mean regression but apply the mean to separate

wage classes: lower, middle, and upper classes. They may be of interest in labor

economics as parsimonious alternatives to quantile regression models. Third, if Y

is the wage and ψ(u) = (I {u ≥ 1− α} − I {u ≤ α})/α for, say, α = 0.1, we obtain

an inequality regression. The difference between the high and low income groups

captures the inequality of the income distribution (e.g., Angrist et al., 2006; Blundell

et al., 2008; Attanasio and Pistaferri, 2016), and therefore the inequality regression

may help to identify important determinants of social inequality. Similarly, if ψ is

a general decreasing function, we obtain a social welfare regression. Finally, if the

researcher is concerned about the effect of data contamination, we can define ψ(u) =

I {α ≤ u ≤ 1− α} /(1 − 2α) for some small α to obtain a robust regression, which

may be of interest as an alternative to the Huber regression (Huber and Ronchetti,

2009).

We assume that we have a stationary time series dataset (X1, Y1), . . . , (XT , YT ) with

each (Xt, Yt) having the same distribution as that of the pair (X, Y ), and develop a√
T -consistent estimator of β. Our estimator, which we refer to as the weighted-

average quantile regression estimator, consists of three steps. First, we use machine

learning to estimate the distribution function of the conditional distribution of Y

given X. Second, we use this distribution function to construct a simple transforma-

tion of Yt for all t. Third, we estimate β by running OLS of this transformation on Xt.

We prove that our estimator is asymptotically normal with mean zero and that its as-

ymptotic covariance matrix can be consistently estimated by the Newey-West method

on the third step, which is carried out in all commonly used statistical software. Our

estimation and inference procedures are thus straightforward to implement.

Importantly, our approach is semi-parametric: we assume that the weighted-average

conditional quantile function x 7→
∫ 1

0
qY |X=x(u)ψ(u)du is linear, to obtain broadly ap-

plicable results, but we do not impose any other parametric restrictions. The latter is

useful as it minimizes the possibility of misspecification and inconsistent estimation.

A parametric alternative to our methods would be to (i) assume that each quantile

function x 7→ qY |X=x(u) is linear,

qY |X(u) = X ′β(u), for all u ∈ (0, 1), (2)
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(ii) calculate the quantile regression estimator β̃(u) of each β(u), and (iii) given

that (2) yields β =
∫ 1

0
β(u)ψ(u)du, estimate β by

∫ 1

0
β̃(u)ψ(u)du. This alternative

approach, however, can lead to potential misspecification and inconsistent estimation

due to extra assumptions (2) and, moreover, requires estimating extreme quantile

regressions, which correspond to values of u in (2) that are close to the boundary of the

[0, 1] interval, and which are typically difficult to estimate. In contrast, our estimator

does not require estimation of extreme quantile regressions. Furthermore, in contrast

to classical semiparametric estimation theory, by applying double/debiased machine

learning techniques (e.g., Chernozhukov et al., 2018), our estimator is able to handle

the case where X is moderate- or large-dimensional, which is particularly useful in a

number of applications. It is important to note, however, that our results do not follow

from the standard results on double/debiased machine learning techniques because

we allow general weighting functions ψ that in particular may feature discontinuities.

We apply our method to two empirical settings: a setting in finance and a setting

in labor economics. In the first application, we focus on financial data and study

the factor structures of the expected shortfalls of the industry portfolios. We show

that the expected shortfalls of the industry portfolios have significant time-varying

exposures to the factor models developed in the asset pricing literature. Importantly,

the factor structures of the expected shortfalls of the industry portfolios based on the

weighted-average quantile regressions can differ significantly from those estimated

based on the mean and quantile regressions or based on a parametric estimator. We

show that the discrepancies stem from the fact that the quantiles are not linear in

the factors in the financial data.

In the second application, we apply the inequality and social welfare regressions to

wage data. Using the inequality regression, we study the relationship between wage

inequality and individual characteristics that are common in labor economics. We

compare the inequality regression results with those based on a parametric estimator

and show that the results can differ in important ways. For example, based on the

weighted-average quantile regression estimator, the wage inequality is estimated to be

negatively related to family size in the recent sample, but the relationship is muted

using the parametric estimator. Applying the social welfare regression, we study the

dependence of the weighted average wage on individual characteristics, where the

weights are exponential with higher weights on the lower income. We call this a

social welfare regression as it is consistent with a variety of social welfare functions

used in, say, public finance that place higher weights on poorer individuals. We find
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that the results based on the social welfare regression differ from those from the mean

regression. For example, for the early 2000s, the magnitude of the point estimates on

education based on the social welfare regression is only half as large as those using

the mean regression.

Related Literature. Overall, our results generalize the commonly used mean (OLS)

and quantile regression methods to allow for a much larger class of functionals –

the weighted-average quantiles, which are of interest in a number of applications as

outlined above and as discussed in detail in the next section.

More broadly, we contribute to the literature by providing a general principle for

obtaining a double/debiased machine learning estimator of linear regression models

of the form h(FY |X) = X ′β, where FY |X is the distribution function of the conditional

distribution of Y given X and h is a functional of interest, the weighted-average

quantile being one example. Specifically, we first calculate the influence function

y 7→ a(y, F ) for the functional F 7→ h(F ) and then estimate the vector of parameters

β by running OLS of an estimated version of h(FY |X) + a(Y, FY |X) on X. We note

that although the idea of using influence function adjustments itself is not new, as it

can be traced back at least to Bickel (1982) and Schick (1986) and was used recently

in Chernozhukov et al. (2016), our key finding is that the adjustment term a in the

regression context depends only on the functional h and not on the joint distribution

of the pair (X, Y ), making the approach broadly available in applied settings. In

addition, although our procedure looks similar to that in Firpo et al. (2009), who

propose to run OLS of h(FY ) + a(Y, FY ) on X, where FY is the distribution function

of the marginal distribution of the random variable Y , the similarities are superficial:

two procedures aim at estimating fundamentally different quantities and also have

completely different reasons for the influence function adjustments. The detailed

explanations of how our procedure relates to the literature can be found in Section

3, after we fully describe and explain the general principle.

Our paper is also related to the financial literature on estimation of conditional risk

measures. Tail risk measures, such as expected shortfall, are an important class of risk

measures in finance (e.g., Lettau and Ludvigson, 2013; Jurado et al., 2015; Adrian

and Brunnermeier, 2016; Acharya et al., 2017). A few parametric and nonparametric

methods for estimating expected shortfall regressions were proposed and analyzed in

Scaillet (2005), Cai and Wang (2008), Peracchi and Tanase (2008), Leorato et al.

(2012), Kato (2012), and Martins-Filho et al. (2018). However, all of these papers ei-

ther assume nonparametric expected shortfall, which makes interpretations in applied
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work difficult, or impose the linear quantile assumption (2), which leads to potential

misspecification. Moreover, these papers consider only one risk measure: expected

shortfall, whereas our methods cover a broad class of risk measures; see Section 2 for

details. Kato (2012) provides a nice comparison of the existing methods.

Our paper is also related to the semi-parametric methods developed in Chun et al.

(2012), who consider the problem of estimating β in the model (1) with the integral

over u ∈ (0, 1) replaced by the sum over a grid of values of u in (0, 1). Clearly, the

sum over a fine grid can be used to approximate the integral but the variance of their

estimator depends on the inverse of the density of the conditional distribution of Y

given X in the tails and generally blows up as we take finer grids, which makes our

methods quite different from those developed in Chun et al. (2012).

Moreover, our paper is seemingly related to the methods developed in Rockafellar et

al. (2014) and Royset and Rockafellar (2015), who develop super-quantile regression

methods. In principle, super-quantile is just another name for the expected shortfall.

However, the estimators proposed in these papers do not converge to β appearing in

(1) when we set ψ(u) = I{u ≥ 1 − α}/α to obtain the expected shortfall regression.

Therefore, from the perspective of our setting, the estimators proposed in these papers

are not consistent, even though they do converge to some meaningful quantities, see

Rockafellar et al. (2014) for details.

Outline of the Paper. The rest of the paper is organized as follows. In the next

section, we provide several examples covered by our weighted-average quantile reg-

ression framework (1). In Section 3, we derive a general principle for obtaining

double/debiased machine learning estimators of linear regression models of the form

h(FY |X) = X ′β and apply it to the weighted-average quantile regression. In Section

4, we describe our estimation and inference procedures in detail. In Section, 5, we

prove consistency and derive the asymptotic distribution for our estimators. In Sec-

tion 6, we provide results of a small-scale Monte Carlo simulation study confirming

good statistical properties of our estimators in finite samples. In Section 7, we ap-

ply our procedures in two empirical settings that are of interest in finance and labor

economics. In the Online Appendix, we collect all proofs, additional discussions, and

extra tables and figures for the empirical applications.

2. Examples

In this section, we describe various regression models covered by our general reg-

ression framework (1).
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2.1. Risk Regression. In finance, the concept of risk measures is used to quantify

the risk of financial positions, e.g. Föllmer and Schied (2002). Formally, any risk

measure is a functional ρ that is defined on a set of random variables and that has

certain desirable properties, so that for a random variable Y ∈ R representing a

loss of some financial position, the value of ρ(Y ) measures the risk associated with

Y . Most commonly used risk measures belong to the class of spectral risk measures.

These risk measures have many desirable properties (positive homogeneity, translation

invariance, monotonicity, sub-additivity, etc.) and take the following form (Acerbi,

2002):

ρ(Y ) =

∫ 1

0

qY (u)ψ(u)du, (3)

where qY : [0, 1]→ R is the quantile function of the random variable Y and ψ : [0, 1]→
R is a an increasing weighting function such that (i) ψ(u) ≥ 0 for all u ∈ (0, 1) and

(ii)
∫ 1

0
ψ(u)du = 1. Here, the function ψ is called the spectrum function associated

with the risk measure ρ and different spectrum functions ψ lead to different risk

measures. For example, one of the most important spectral risk measures is the

expected shortfall, also known as the average value at risk, which corresponds to the

spectrum function ψ(u) = I{u ≥ 1−α}/α, where I{·} denotes the indicator function,

and α ∈ (0, 1) is a user-specified parameter, typically taking some small value such

as 5% or 10%. Other examples are exponential and polynomial risk measures, which

correspond to the spectrum functions ψ(u) = a exp(−a(1 − u))/(1 − exp(−a)) with

a > 0 and ψ(u) = aua−1 with a > 1, correspondingly, where a is a user-specified

parameter, e.g. Leippold (2015). A textbook-level discussion of spectral risk measures

can be found in McNeil et al. (2015).

To study how the risk of one random variable, say Y , comoves with a vector of

other variables, say X, we can consider a risk regression ρ(Y |X) = X ′β, where

ρ(Y |X) =
∫ 1

0
qY |X(u)ψ(u)du is the risk measure of the conditional distribution of Y

given X. Substituting here various functions ψ, we obtain various risk regressions,

e.g. the expected shortfall and exponential regressions. These regressions are covered

by our general framework (1).

In addition, we note also that risk measures, under different names, appear also

in behavioral economics, where they are used to rank lotteries, e.g. Kahneman and

Tversky (1979) and Yaari (1987), and in actuarial science, where they are used to

determine premium principles, e.g. Kaas et al. (2008). Moreover, our methods can be

used to estimate an expected shortfall (or any other spectral risk measure) version of
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CoVar, a concept introduced in Adrian and Brunnermeier (2016) to study systemic

risk.

2.2. Wage Regression. Quantile regression methods have been used to study con-

ditional wage distributions since Buchinsky (1994) and Chamberlain (1994). If Y is

individual’s wage and X is a vector of covariates including, for example, education,

running a quantile regression of Y on X lets us estimate the effect of education on the

conditional distribution of wages for any quantile index u of this distribution. This is

useful because the effect of education may vary substantially depending on the quan-

tile index. In practice, however, we may often be interested in the average effect of

education for a group of quantile indices. For example, we may define the middle-wage

class as the set of individuals with quantile indices within the [20%, 80%] interval on

the conditional wage distribution and we may be interested in the effect of education

for this particular set of individuals. In turn, quantile regression methods may not be

appropriate for such parameters. Indeed, providing the quantile regression estimate

for the average quantile index (50%, in our example) may not give a representative

number for the the whole group and providing the quantile regression estimates for

each quantile index within the [20%, 80%] interval may not be convenient as function-

valued estimates are difficult to interpret.1 Instead, such parameters can be easily

estimated by our weighted-average quantile regression methods. Specifically, by set-

ting ψ(u) = I{α ≤ u ≤ 1 − α}/(1 − 2α) with α = 0.2 in (1), we obtain a middle

wage regression, and the methods developed in our paper can be used to estimate

parameters of this regression, yielding in particular the average effect of education

on wages for the middle-wage class. Similarly, by setting ψ(u) = I{u ≤ α}/α with

α = 0.2 in (1), we obtain a lower wage regression, corresponding to the lower-wage

class, and by setting ψ(u) = I{u ≥ 1−α}/α, again with α = 0.2, we obtain an upper

wage regression, corresponding to the upper-wage class. More generally, since the

same techniques can be used with any dependent variable Y , we can refer to these

types of regression models simply as the lower, middle, and upper regressions. In this

case, the expected shortfall regression discussed above becomes an instance of the

upper regression.

2.3. Inequality and Social Welfare Regressions. Related to our discussion in

the previous example, another reason to study conditional wage distributions is that

they help us understand the dynamics of the wage inequality over time, e.g. Angrist

1Moreover, averaging quantile regression estimates over quantile indices in the [20%, 80%] interval
may not be a good idea either, for the reasons explained in the Introduction.
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and Pischke (2008). Again assuming that Y is individual’s wage and X is a vector of

relevant covariates, we can study wage inequality by our weighted-average quantile

regression methods. Indeed, by setting ψ(u) = (I{u ≥ 1 − α} − I{u ≤ α})/α in (1)

for some small α, say 0.1, we obtain an inequality regression, which allows us to study

how the difference between the average wage of 10% individuals with highest wages

and the average wage of 10% individuals with lowest wages depend on covariates.

Similarly, by considering any decreasing function ψ, e.g. polynomial or exponential

from Section 2.1 with u replaced by 1 − u, we obtain a social welfare regression. Of

course, the inequality regression remains meaningful with other dependent variables

as well. More broadly, it is straightforward to generalize the weighted-average quantile

regression framework to include other inequality measures such as Gini’s coefficient,

e.g. Cowell (2011).

2.4. Robust Regression. Suppose that we are interested in estimating a linear

mean regression model

E[Y |X] = X ′β

from a stationary time series (X1, Y1), . . . , (XT , YT ), where each (Xt, Yt) has the same

distribution as that of the pair (X, Y ). Typically, we would estimate β in this model

by OLS

β̂ = arg min
b∈Rp

T∑
t=1

(Yt −X ′tb)2.

Suppose, however, that for some observations t, the values of the dependent variable

Yt are corrupted. These corrupted values may significantly bias the estimator β̂ ren-

dering it unreliable. This problem attracted substantial attention in the literature and

led to the field called Robust Statistics, which generated many alternatives to OLS,

e.g. Least Median of Squares (Rousseeuw, 1984), Least Trimmed Squares (Rousseeuw

and Leroy, 1987), and Random Sample Consensus (Fisher and Bolles, 1981); see also

recent advances in computer science, e.g. Liu et al. (2018). However, one of the

most important methods developed in this field is the Huber estimator (Huber and

Ronchetti, 2009), which can be viewed as a modification of the OLS estimator:

β̃ = arg min
b∈Rp

T∑
t=1

ρc(Yt −X ′tb),

where

ρc(x) =

x2, if |x| ≤ c,

2|x|c, if |x| > c,
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and c > 0 is a tuning parameter. Since the derivative of the criterion function ρc in the

Huber estimator is bounded, this estimator is much more robust with respect to data

corruption in the dependent variable in comparison with the OLS estimator. However,

implementing this estimator requires choosing the tuning parameter c, which is often

unclear in practice: smaller values of c yield more robust but also more biased estima-

tor. We therefore propose to use our weighted-average quantile regression estimator

as an alternative. Indeed, suppose that for each observation t, the probability of cor-

ruption in Yt does not exceed α for some small user-specified value α ∈ (0, 1). In this

case, we can consider a robust regression by setting w(u) = I{α ≤ u ≤ 1−α}/(1−2α)

in (1). Running our estimator based on this regression also requires the choice of the

tuning parameter, α, but in contrast to the Huber estimator, this choice is rather in-

tuitive: the user simply needs to provide an upper bound on the fraction of corrupted

observations.

3. Motivation For Estimation Procedure

In this section, we develop a general principle for estimating regression models

h(FY |X) = X ′β, (4)

where y 7→ FY |X(y) = P(Y ≤ y|X) is the distribution function of the conditional

distribution of Y given X and h : F → R is a functional defined on a convex set F
of distribution functions on R that includes FY |X almost surely. We then apply the

general principle to the weighted-average quantile regression model by substituting

h(FY |X) =
∫ 1

0
qY |X(u)ψ(u)du. For clarity of the section, we leave technical regularity

conditions underlying our derivations for now.

3.1. General Principle. To develop the principle, we need the concept of influence

functions. Following Hampel et al. (1986), we say that h is Gateaux differentiable at

the distribution function F ∈ F if there exists a function a : R→ R such that for all

G ∈ F , we have

∂

∂t
h((1− t)F + tG)

∣∣∣
t=0+

= lim
t↓0

h((1− t)F + tG)− h(F )

t
=

∫
a(y)dG(y). (5)

We refer to a as the influence function of h at F . To note its dependence on F , we

will write a(y, F ) instead of a(y).
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The influence function has two important properties. First, by substituting G = F

in (5), we have
∫
a(y, F )dF (y) = 0 and since F ∈ F is arbitrary, we obtain∫

a(y, F )dF (y) = 0, for all F ∈ F . (6)

Second, by substituting (1− t)F + tG instead of F in (6) and taking derivative with

respect to t on both sides, we have

∂

∂t

∫
a(y, (1− t)F + tG)dF (y)

∣∣∣
t=0+

+

∫
a(y, F )dG(y)−

∫
a(y, F )dF (y) = 0

and since
∫
a(y, F )dF (y) = 0 and G is arbitrary, we obtain

∂

∂t

∫
a(y, (1− t)F + tG)dF (y)

∣∣∣
t=0+

= −
∫
a(y, F )dG(y), for all G ∈ F (7)

We will use these two properties below.

Having the concept of influence functions in mind, we propose the following prin-

ciple: estimate β in (4) by running the OLS estimator of h(F̂Y |X) + a(Y, F̂Y |X) on

X, where F̂Y |X is a preliminary estimator of FY |X . We claim that this estimator

is consistent and robust (in a sense to be made precise below) with respect to the

estimation error in F̂Y |X . To see why this is so, observe that, under certain regularity

conditions, the probability limit of such an OLS estimator will be

β̄ = (E[XX ′])−1E
[
X
(
h(FY |X) + a(Y, FY |X)

)]
,

which can be equivalently written as a set of moment conditions

E
[
X
(
h(FY |X) + a(Y, FY |X)−X ′β̄

)]
= 0p, (8)

where 0p = (0, . . . , 0)′ ∈ Rp. Here, we note that by applying (6) with F = FY |X , we

have ∫
a(y, FY |X)dFY |X(y) = 0.

In turn, the left-hand side of this identity is equal to E[a(Y, FY |X)|X], and so, by the

law of iterated expectations,

E[Xa(Y, FY |X)] = E[XE[a(Y, FY |X)|X]] = 0p.

Substituting this equality into (8) and recalling (4), it follows that the set of moment

conditions (8) can be equivalently written as

E[X(X ′β −X ′β̄)] = 0p.
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As long as E[XX ′] is non-singular, it thus follows that β̄ = β is the unique solution to

the set of moment conditions (8). This means that our OLS estimator is consistent.

Further, fix any F̂Y |X such that F̂Y |X ∈ F almost surely and write F̃ = F̂Y |X−FY |X .

By applying (5) and (7) with F = FY |X and G = F̂Y |X and noting that (1−t)F+tG =

FY |X + tF̃Y |X in this case, we have

∂

∂t
h(FY |X + tF̃ )

∣∣∣
t=0+

=

∫
a(y, FY |X)dF̂Y |X(y)

and
∂

∂t

∫
a(y, FY |X + tF̃ )dFY |X(y)

∣∣∣
t=0+

= −
∫
a(y, FY |X)dF̂Y |X(y),

respectively. Summing these two identities and observing that∫
a(y, FY |X + tF̃ )dFY |X(y) = E[a(Y, FY |X + tF̃ )|X],

we obtain

∂

∂t
h(FY |X + tF̃ )

∣∣∣
t=0+

+
∂

∂t
E[a(Y, FY |X + tF̃ )|X]

∣∣∣
t=0+

= 0.

The latter in turn implies, via the law of iterated expectations, that

∂

∂t
E
[
X
(
h(FY |X + tF̃ ) + a(Y, FY |X + tF̃ )−X ′β̄

)]∣∣∣
t=0+

= 0,

as long as integration and differentiation can be interchanged. This means that

our OLS estimator solves a system of equations having the Neyman orthogonality

property with respect to FY |X (Chernozhukov et al., 2018) and is, in this sense,

robust with respect to the estimation error in F̂Y |X .

Intuitively, a simple approach to estimate β in the model (4) would be to run

the OLS estimator of h(F̂Y |X) on X. Such an estimator can be shown to be
√
T -

consistent and asymptotically normal with mean zero as long as X is low-dimensional,

a sufficiently simple estimator F̂Y |X is used, and its tuning parameters are chosen in

a delicate way. When X is moderate- or even large-dimensional, however, we have

to rely on machine learning methods to obtain an estimator F̂Y |X . These methods

in turn yield heavily biased estimators with relatively slow convergence rates. The

estimation error in F̂Y |X may then propagate into the error of the OLS estimator,

leading to estimates of β with poor properties. We deal with this problem by adding

the influence function a(Y, F̂Y |X) to the functional h(F̂Y |X). This allows us to obtain

the OLS estimator of β that is robust with respect to the estimation error in F̂Y |X ,

as explained above.
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There are several strands of literature that use influence function adjustments for

estimation. First, the so-called one-step estimators, which adjust the plug-in esti-

mators by adding the average value of the estimated influence function, have been

used in statistics for a long time as a tool of achieving semiparametric efficiency; see

Bickel (1982) and Schick (1986) for early references and Fisher and Kennedy (2021)

for a recent review. Second, Chernozhukov et al. (2016) introduced the idea of adding

the influence functions to obtain robust estimators in the setting where the param-

eter of interest is the expectation of a functional of unknown nonparametric/high-

dimensional object that has to be estimated on the first step. We show that in

our context the adjustment function a depends only on the functional h and not on

the joint distribution of underlying random variables, and thus has a simple form,

broadly available in applied settings. We exemplify this last point in the next sub-

section, where we apply our procedure to the weighted-average quantile regression.

Third, Firpo et al. (2009) proposed a procedure that, in its simplest form, consists of

running the OLS estimator of h(F̂Y ) + a(Y, F̂Y ) on X, where F̂Y is a preliminary es-

timator of the distribution function FY of Y , in order to estimate the impact of X on

the functionals of the counterfactual distribution of Y that appears as the distribution

of X changes keeping the conditional distribution of Y given X fixed. They use the

marginal distribution of Y , whereas we use the conditional distribution of Y given X.

This seemingly minor change has substantial consequences: two procedures aim at

estimating fundamentally different quantities and have different scopes of applicabil-

ity. Using an example from the Introduction of Firpo et al. (2009), one can say that

their procedure estimates how increasing the fraction of unionized workers affects the

distribution of wages whereas our procedure estimates how the distribution of wages

of unionized workers differs from the distribution of wages of non-unionized workers.

In addition, the reasons for adding the influence function in two procedures are com-

pletely different. As explained above, we use the influence function adjustment to

obtain an OLS estimator that is robust with respect to the estimation error in F̂Y |X ,

whereas they use the influence function because it directly measures the impact of

changing the distribution on the value of the functional, see (5).2

More generally, our approach to estimation in this section is an instance of the

double/debiased machine learning method (Chernozhukov et al., 2018), which gives

2Also, as long as the intercept is included, the term h(F̂Y ) plays no role in their procedure: the slope

coefficients of the OLS estimator of h(F̂Y ) + a(Y, F̂Y ) on X coincide with the slope coefficients of

the OLS estimator of a(Y, F̂Y ) on X. In contrast, dropping h(F̂Y |X) in our procedure would lead to
a meaningless estimator that would converge in probability to the vector of zeros.
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estimation procedures based on moment conditions with the Neyman orthogonal-

ity property. Our key innovation here is that we demonstrate that although we are

interested in an object h(FY |X) that depends on conditional distributions, with depen-

dence going through in a potentially complicated way, e.g. via conditional quantile

functions, obtaining moment conditions with the Neyman orthogonality property is

actually simple: we simply have to add the influence function for the functional h,

which can be obtained by looking at the values h(F ) of the functional h at uncon-

ditional distributions F . In addition, an important issue that arises in almost all of

our applications is that the functionals we consider are not twice continuously differ-

entiable (in a Gateaux sense), thus the results of Chernozhukov et al. (2018) can not

be applied.

3.2. Application to Weighted-Average Quantile Regression. Here, we apply

the general principle described in the previous subsection to the weighted-average

quantile regression model (1). To do so, we set h(F ) =
∫ 1

0
qF (u)ψ(u)du, where qF (u)

denotes the uth quantile of the distribution function F ∈ F . The influence function

for this functional is well-known:

a(y, F ) =

∫ 1

0

u− I{y ≤ qF (u)}
f(qF (u))

ψ(u)du, (9)

where f = F ′ is the pdf corresponding to F . To see why, suppose first that we are

interested in the individual quantile qF (u) for some u ∈ (0, 1). Let F and G be two

distribution functions with strictly positive derivatives f and g, respectively. Then

for any t ∈ [0, 1], we have∫ q(1−t)F+tG(u)

−∞
((1− t)f(y) + tg(y))dy = u.

Taking derivative of both sides with respect to t at t = 0+, we then obtain

f(qF (u))
∂

∂t
q(1−t)F+tG(u)

∣∣∣
t=0+

+

∫ qF (u)

−∞
(g(y)− f(y))dy = 0.

Hence,

∂

∂t
q(1−t)F+tG(u)

∣∣∣
t=0+

=

∫ qF (u)

−∞

f(y)− g(y)

f(qF (u))
dy

=
u

f(qF (u))
−
∫ +∞

−∞

I{y ≤ qF (u)}g(y)

f(qF (u))
dy

=

∫ +∞

−∞

u− I{y ≤ qF (u)}
f(qF (u))

g(y)dy.
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Comparing this expression with (5), we thus obtain the influence function for the

individual quantile qF (u):

y 7→ u− I{y ≤ qF (u)}
f(qF (u))

.

This expression in turn immediately gives (9) in light of linear additivity of derivatives.

Applying our general principle from the previous subsection, we conclude that in

order to estimate β in the model (1), we can run OLS of an estimated version of∫ 1

0

(
qY |X(u) +

u− I{Y ≤ qY |X(u)}
fY |X(qY |X(u))

)
ψ(u)du (10)

on X, where fY |X is the pdf of the conditional distribution of Y given X. This,

however, is not convenient for two reasons. First, this approach requires estimating

extreme quantiles, qY |X(u) for u close to the boundaries of the interval [0, 1], which

are typically difficult to estimate. Second, this approach requires estimating the pdf

fY |X(qY |X(u)), which appears in the denominator and which may take small values

near the boundaries of the interval [0, 1], thus leading to large estimation errors. Note

also that simply truncating the interval [0, 1] may not lead to good results as in some

cases, such as the expected shortfall or inequality regressions, extreme quantiles are

of particular importance. To deal with these problems, we rewrite the integral in (10)

differently.

First, observe that for all u ∈ [0, 1], we have∫ qY |X(u)

−∞
fY |X(y)dy = u,

and so fY |X(qY |X(u))q′Y |X(u) = 1 almost surely. Therefore, by applying the change

of variables u 7→ s(u) = qY |X(u) and recalling that u = FY |X(s(u)) in this case, it

follows that the integral in (10) is equal to∫ +∞

−∞

(
s+

FY |X(s)− I{Y ≤ s}
fY |X(s)

)
fY |X(s)ψ(FY |X(s))ds

=

∫ +∞

−∞
sfY |X(s)ψ(FY |X(s))ds+

∫ +∞

−∞
(FY |X(s)− I{Y ≤ s})ψ(FY |X(s))ds. (11)

Second, using integration by parts, we can further rewrite the first integral in (11) as∫ +∞

−∞
sfY |X(s)ψ(FY |X(s))ds

=

∫ 0

−∞
sfY |X(s)ψ(FY |X(s))ds+

∫ +∞

0

sfY |X(s)ψ(FY |X(s))ds
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= −
∫ 0

−∞
Ψ(FY |X(s))ds+

∫ +∞

0

(Ψ̄−Ψ(FY |X(s)))ds,

where Ψ: [0, 1]→ R is the function defined by Ψ(s) =
∫ s

0
ψ(u)du for all s ∈ [0, 1] and

Ψ̄ =
∫ 1

0
ψ(u)du. Combining these results, it follows that the integral in (10) is equal

to

R =−
∫ 0

−∞
Ψ(FY |X(s))ds+

∫ +∞

0

(Ψ̄−Ψ(FY |X(s)))ds

+

∫ +∞

−∞
(FY |X(s)− I{Y ≤ s})ψ(FY |X(s))ds. (12)

We thus propose estimating the vector of parameters β in the weighted-average quan-

tile regression model (1) by running OLS of an estimated version of R on X. In

comparison with the integral in (10), the advantage of using R is that it depends only

on the distribution function FY |X , which is easy to estimate even in the tails.

4. Estimation and Inference

In this section, we provide a detailed discussion of our estimation and inference

procedures for the vector of parameters β in the weighted-average quantile regression

model (1). We assume, throughout the rest of the paper, that we have a strictly

stationary time series dataset (X1, Y1), . . . , (XT , YT ), where each (Xt, Yt) has the same

distribution as that of the pair (X, Y ).

For all s ∈ R and x in the support of X, denote F (s|x) = P(Y ≤ s|X = x), so

that F (·|X) = FY |X(·) is the distribution function of the conditional distribution of

Y given X. Also, as in the previous section, denote Ψ(s) =
∫ s

0
ψ(u)du for all s ∈ [0, 1]

and Ψ̄ =
∫ 1

0
ψ(u)du. In addition, define R as in (12) and

e =

∫ +∞

−∞
(F (s|X)− I{Y ≤ s})ψ(F (s|X))ds. (13)

By the law of iterated expectations, we then have E[e|X] = 0. In addition, by

discussion at the end of the previous section, we also have∫ 1

0

qY |X(u)ψ(u)du = −
∫ 0

−∞
Ψ(F (s|X))ds+

∫ +∞

0

(Ψ̄−Ψ(F (s|X)))ds.

Thus, it follows from (1) that

R = X ′β + e, where E[e|X] = 0. (14)
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This equation reinforces our proposal in the previous section to estimate β by the

OLS method, regressing R on X, where the distribution function F appearing in R

is replaced by a suitable nonparametric/machine learning estimator, to be discussed

later. For technical reasons, we also rely on sample splitting, so that the function F

and the vector β are estimated on different subsamples of the whole sample. Formally,

we define our estimator of β as follows:

(1) split the full sample (X1, Y1), . . . , (XT , YT ) into two consequtive subsamples,

say, (X1, Y1), . . . , (XT1 , YT1) and (XT1+1, YT1+1), . . . , (XT1+T2 , YT1+T2), where T1+

T2 = T ;

(2) use the first subsample, (X1, Y1), . . . , (XT1 , YT1), to obtain a nonparametric/

machine learning estimator F̂ (s|x) of F (s|x) for all x ∈ {XT1+1, . . . , XT1+T2}
and s ∈ R;

(3) calculate

R̂t =

∫ +∞

0

(Ψ̄−Ψ(F̂ (s|Xt)))ds−
∫ 0

−∞
Ψ(F̂ (s|Xt))ds

+

∫ +∞

−∞

(
F̂ (s|Xt)− I{Yt ≤ s}

)
ψ(F̂ (s|Xt))ds, (15)

for all t = T1 + 1, . . . , T1 + T2;

(4) calculate the OLS estimator

β̂ =

(
T1+T2∑
t=T1+1

XtX
′
t

)−1( T1+T2∑
t=T1+1

XtR̂t

)
. (16)

In this procedure, T1 and T2 should be chosen to be of the same order, which we

assume for the rest of the paper. In our simulations, we choose T1 ≈ 2T2.

By analogy with mean and quantile regression estimators, we refer to β̂ as the

weighted-average quantile regression estimator. By substituting various weighting

functions ψ (and the corresponding Ψ), we obtain various regression estimators. For

instance, if Y is the loss of a financial portfolio, by setting ψ(u) = I{u ≥ 1 − α}/α,

we obtain an expected shortfall regression estimator, as discussed in Section 2.

We will prove in the next section that, under suitable regularity conditions, the

estimator β̂ is
√
T -consistent and asymptotically normal with mean zero:

√
T2(β̂ − β) =

(
1

T2

T1+T2∑
t=T1+1

XtX
′
t

)−1(
1√
T2

T1+T2∑
t=T1+1

Xtet

)
+ oP (1)→d N(0,Σ), (17)
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where

et =

∫ +∞

−∞
(F (s|Xt)− I{Yt ≤ s})ψ(F (s|Xt))ds, for all t = T1 + 1, . . . , T1 + T2,

and Σ is the asymptotic covariance matrix. Moreover, Σ can be consistently esti-

mated, for example, by the Newey-West method, where each et is replaced by the

corresponding residual êt = R̂t − X ′tβ̂; see the next section for details. This implies

that once an estimator of the function F is obtained using data from the first sub-

sample, any standard statistical software can be used to obtain the estimator β̂ and

corresponding standard errors by simply running the OLS regression of R̂t on Xt using

data from the second subsample and reporting the Newey-West standard errors.

Next, we discuss estimation of the function F . To do so, fix any s ∈ R and observe

that F (s|x) = P(Y ≤ s|X = x) = E[I{Y ≤ s}|X = x] for all x ∈ Rp. Therefore,

to obtain an estimator of the function x 7→ F (s|x), we can apply any standard

nonparametric/machine learning estimator regressing I{Yt ≤ s} on Xt using data

from the first subsample. Applying the estimator separately for each value of s, we

obtain an estimator (s, x) 7→ F̂ (s|x) of the function (s, x) 7→ F (s|x). For example, for

our empirical results, we use a version of the random forest method described below.3

Further, nonparametric/machine learning estimators will produce numerically iden-

tical results for any pair of values of s, say s1 and s2, such that there is no Yt between

s1 and s2 since the datasets {(Xt, I{Yt ≤ s1})}T1t=1 and {(Xt, I{Yt ≤ s2})}T1t=1 are

identical in this case. This in turn implies that there is no need to apply the non-

parametric/machine learning estimator for all values of s ∈ R, and it suffices to only

consider s ∈ {Y1, . . . , YT1} since the estimator s 7→ F̂ (s|x) will be piecewise constant

and the integrals in (15) will be given by the corresponding sums. More precisely,

letting s1 ≤ · · · ≤ sT1 be the sequence of values of Y1, . . . , YT1 arranged in the increas-

ing order and imposing a mild condition that F̂ (s|X) = 0 for all s < min1≤t≤T1 Yt

and F̂ (s|X) = 1 for all s ≥ max1≤t≤T1 Yt a.s., which is satisfied for any reasonable

nonparametric/machine learning estimator, it follows that

R̂t = sT1Ψ̄ +

T1−1∑
j=1

(sj+1 − sj)Mt(sj, sj+1), for all t = T1 + 1, . . . , T1 + T2 (18)

3We also tried boosting and `1-penalized methods but they did not perform as well as random
forests: both methods turned out slower and the latter method suffered from potentially substantial
non-linearities in the functions x 7→ F (s|x).
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where we denoted

Mt(sj, sj+1) = −Ψ(F̂ (sj|Xt)) + (F̂ (sj|Xt)− Ĩ{Yt ≤ sj, sj+1})ψ(F̂ (sj|Xt)) (19)

and

Ĩ{Yt ≤ sj, sj+1} = max

(
min

(
sj+1 − Yt
sj+1 − sj

, 1

)
, 0

)
for all j = 1, . . . , T1 − 1 and t = T1 + 1, . . . , T1 + T2.

Moreover, in large samples, where calculating R̂t in (18) is computationally costly,

the grid s1 ≤ · · · ≤ sT1 used in (18) can be replaced by a much coarser grid

min1≤t≤T1 Yt = s∗1 ≤ · · · ≤ s∗k = max1≤t≤T1 Yt, so that

R̂t = s∗k +
k−1∑
j=1

(s∗j+1 − s∗j)Mt(s
∗
j , s
∗
j+1), for all t = T1 + 1, . . . , T1 + T2,

where k is much smaller than T1.

5. Asymptotic Theory

In this section, we derive an asymptotic theory for the weighted-average quantile

regression estimator β̂. To do so, we denote Dt = (X ′t, Yt)
′ for all t = 1, . . . , T and

DT1
1 = (D1, . . . , DT1). We will assume that the dataset D1, . . . , DT is a subset of a

strictly stationary time series {Dt}t∈Z. Further, for all j ∈ N, let I0
−∞ and I+∞

j be

σ-algebras generated by {Ds}s≤0 and {Ds}s≥j, respectively, and let

βj = E
[
sup

{
|P(B | I0

−∞)− P(B)| : B ∈ I+∞
j

}]
be the β-mixing coefficients. In addition, let X be the support of X and for all x ∈ X ,

denote

∆(x) = sup
s∈R

∣∣∣F̂ (s|x)− F (s|x)
∣∣∣+

∫ +∞

−∞

∣∣∣F̂ (s|x)− F (s|x)
∣∣∣ ds. (20)

Moreover, let 0 < u0 < 1/2, 0 < c < ∞, and −∞ < s1 < s2 < +∞ be some

constants. We will use the following assumptions.

Assumption 5.1. The strictly stationary time series {Dt}t∈Z has summable β-mixing

coefficients:
∑∞

j=1 βj <∞.

Assumption 5.1 implies that the time series {Dt}t∈Z is absolutely regular. As ex-

plained in Chen (2011), many econometric time series models satisfy this assumption.

In fact, it is common practice to impose stronger mixing conditions. For example,

Chen and Liao (2013) require that βj ≤ β0j
−ω for all j ≥ 1 and some β0 > 0 and

ω > 2, which clearly implies that
∑∞

j=1 βj < ∞. Fan et al. (2016) require that
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φj ≤ φ0j
−ω for all j ≥ 1 and some φ0 > 0 and ω > 1, where φj’s are φ-mixing

coefficients. Since φj ≥ βj for all j ≥ 1, such a condition also implies our Assumption

5.1. Note also that Assumption 5.1 holds trivially if the random vectors Dt are inde-

pendent across t, which means that our results apply for i.i.d. data settings as well.

We refer an interested reader to Fan and Yao (2005) and Bradley (2005) for detailed

explanations on various mixing conditions and their plausibility.

Assumption 5.2. (i) Components of the random vector X as well as the random

variable e have finite fourth moments: E[‖X‖4] <∞ and E[e4] <∞. (ii) In addition,

the matrix E[XX ′] is positive-definite. (iii) Moreover,

1√
T2

T1+T2∑
t=T1+1

etXt →d N(0,Ω)

for a positive-definite matrix Ω.

Assumption 5.2 is standard in time series econometrics. Assumption 5.2(i) is a mild

moment condition. Assumption 5.2(ii) is an identification condition. Assumption

5.2(iii) follows from a combination of mixing and moment conditions. For example,

since β-mixing coefficients dominate α-mixing coefficients, under Assumption 5.1,

Assumption 5.2(iii) holds as long as the random variables ‖etXt‖ are bounded; see

Theorem 2.21(ii) in Fan and Yao (2005). More generally, when the random variables

‖etXt‖ satisfy E[‖etXt‖η] < ∞ for some η > 2, Assumption 5.2(iii) holds as long as∑∞
j=1 β

1−2/η
j <∞; see Theorem 2.21(i) in Fan and Yao (2005).

Assumption 5.3. (i) The weighting function ψ has bounded variation. (ii) In addi-

tion, ψ is continuously differentiable on (0, u0) and (1−u0, 1) with bounded derivative.

Assumption 5.3(i) means that the function ψ can be decomposed as ψ = ψ1 − ψ2,

where both ψ1 and ψ2 are bounded and increasing functions. Assumption 5.3 is thus

satisfied in all our examples from Section 2.

Assumption 5.4. (i) The function F is such that F (s1|x) < u0/2 and F (s2|x) >

1 − u0/2 for all x ∈ X . (ii) In addition, the function u 7→ F (u|x) is continuously

differentiable on u ∈ (s1, s2) with derivative u 7→ f(u|x) satisfying f(u|x) ≥ c for all

u ∈ (s1, s2) and x ∈ X .

This assumption imposes mild regularity conditions on the conditional distribution

of Y given X. This assumption can be avoided if the function ψ is smooth.
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Assumption 5.5. (i) The estimator F̂ is such that

P

(
sup
x∈X

∆(x) > u0/2

)
→ 0.

(ii) In addition,

T1+T2∑
t=T1+1

E
[
(1 + ‖Xt‖)4∆(Xt)

4 | DT1
1

]
= oP (1). (21)

Assumption 5.5 means that the estimator F̂ converges to the function F sufficiently

fast. To obtain some intuition about this assumption, note that under Assumptions

5.1 and 5.2(i), it holds as long as supx∈X ∆(x) = oP (T−1/4), which is plausible for

nonparametric/machine learning estimators F̂ . Note, however, that (21) does not

actually require a bound on the supremum of the function ∆ and instead uses a

suitable weighted average value of this function, which is typically easier to bound.

We are now ready to state the main result of this section:

Theorem 5.1. Under Assumptions 5.1–5.5,

√
T2(β̂ − β) =

(
1

T2

T1+T2∑
t=T1+1

XtX
′
t

)−1(
1√
T2

T1+T2∑
t=T1+1

Xtet

)
+ oP (1)→d N(0,Σ), (22)

where Σ = (E[XX ′])−1Ω(E[XX ′])−1.

Remark 5.1 (Relation to Double/Debiased Machine Learning). As discussed in Sec-

tion 3, our approach to estimation of weighted-average quantile regressions is an

instance of the double/debiased machine learning method; e.g. Chernozhukov et

al. (2018). In particular, we constructed the random variable R in (12) so that (i)

E[XR] = E[XX ′]β, meaning that the least squares projection of R on X correctly

identifies β, and (ii) E[XR] is first-order insensitive with respect to perturbations of

the function F , appearing in the definition of R. The latter condition, commonly

referred to as the Neyman orthogonality, means that if we define

R(η1, η2) =

∫ +∞

0

(1−Ψ(η1(s|X)))ds−
∫ 0

−∞
Ψ(η1(s|X))ds

+

∫ +∞

−∞
(η1(s|X)− I{Y ≤ s})η2(s|X)ds,

for all functions (s, x) 7→ η1(s|x) and (s, x) 7→ η2(s|x), then R(F, ψ(F )) = R and

first-order Gateaux derivatives of the functions η1 7→ E[XR(η1, ψ(F ))] and η2 7→
E[XR(F, η2)] at η1 = F and η2 = ψ(F ), respectively, both vanish. It is this last
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condition that allows us to derive asymptotic normality of our estimator β̂ under

weak conditions on the estimator F̂ of the function F , as specified in Assumption

5.5 (in particular, we do not need to impose the common small bias condition). Our

results do not follow from those in Chernozhukov et al. (2018) because the function Ψ

is not necessarily continuously differentiable under our assumptions (and in fact has

kinks in most examples from Section 2), and so the function η1 7→ E[XR(η1, ψ(F ))]

does not necessarily have the second-order Gateaux derivative, which is assumed to

exist and is required to be suitably bounded in Chernozhukov et al. (2018).4 Instead,

our results employ the smoothing properties of the integrals in the definition of R in

(14). �

Remark 5.2 (Cross-Fitting and I.I.D. Setting). Throughout this paper, we are as-

suming that the observations D1, . . . , DT are coming from a time series under mixing

conditions. Of course, this setting covers the case of i.i.d. observations as well. How-

ever, we can construct a more efficient estimator in the latter case via cross-fitting,

e.g. Chernozhukov et al. (2018). Indeed, let β̂1 be the estimator β̂ defined in (16). In

addition, let

β̂2 =

(
T1∑
t=1

XtX
′
t

)−1( T1∑
t=1

XtR̂t

)
,

where R̂t is defined by (15) with the estimator F̂ being constructed using data from

the second subsample, DT1+1, . . . , DT1+T2 . It is then straightforward to show that the

estimator β̂ = (β̂1 + β̂2)/2 will satisfy

√
T (β̂ − β) =

(
1

T2

T∑
t=1

XtX
′
t

)−1(
1√
T

T∑
t=1

Xtet

)
+ oP (1)→d N(0,Σ),

where

Σ = (E[XX ′])−1
(
E[e2XX ′]

)
(E[XX ′])−1.

For estimation of Σ and construction of standard errors and confidence intervals, it

is then possible to use the conventional Eicker-Huber-White formula. �

Next, we consider consistent estimation of the covariance matrix Σ appearing in

Theorem 5.1. As discussed in the previous section, we focus on the Newey-West

4Gateaux differentiability can be retained by assuming that the function s 7→ F̂ (s|X) is increasing
almost surely but this is unattractive because machine learning methods may or may not give
increasing estimators and applying monotonization procedure may be computationally costly since
the procedure would have to be carried out for each observation separately.
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estimator:

Σ̂ =

(
1

T2

T1+T2∑
t=T1+1

XtX
′
t

)−1(
Ω̂0 +

m∑
j=1

w(j,m)(Ω̂j + Ω̂′j)

)(
1

T2

T1+T2∑
t=T1+1

XtX
′
t

)−1

, (23)

where m is a tuning parameter, w is a weighting function, and

Ω̂j =
1

T2 − T1

T1+T2∑
t=T1+j+1

êtêt−jXtX
′
t−j, for all j = 0, . . . ,m. (24)

The tuning parameter m is often chosen so that m = m(T )→∞ as T →∞ and the

weighting function is typically defined by w(j,m) = 1−j/(m+1) for all j = 1, . . . ,m.

To prove consistency of the estimator Σ̂, we will need the following additional

notation:

Ω̄ = Ω̄0 +
m∑
j=1

w(j,m)(Ω̄j + Ω̄′j),

where

Ω̄j =
1

T2 − T1

T1+T2∑
t=T1+j+1

etet−jXtX
′
t−j, for all j = 0, . . . ,m.

We will impose the following assumptions.

Assumption 5.6. (i) The matrix Ω̄ is consistent for Ω: Ω̄ →P Ω. (ii) In addition,

the weighting function w is such that 0 ≤ w(j,m) ≤ 1 for all j = 1, . . . ,m. (iii)

Moreover, the smoothing parameter m is such that m = o(T 1/4).

Assumption 5.6(i) is a high-level condition that is familiar from the literature.

Primitive conditions ensuring that this assumption is satisfied can be found in Newey

and West (1987). Assumption 5.6(ii) is satisfied if we set w(j,m) = 1− j/(m+1), for

example, which is a typical choice for the weighting function. Assumption 5.6(iii) is

a mild growth condition meaning that the tuning parameter m should not grow too

fast as T gets large.

In the next result, we prove consistency of the estimator Σ̂.

Theorem 5.2. Under Assumptions 5.1–5.6, the estimator Σ̂ is consistent:

Σ̂→P Σ.

Remark 5.3 (Transformations of X). Although we focused on the case of linear

weighted-average quantile regressions
∫ 1

0
qY |X(u)ψ(u)du = X ′β throughout the pa-

per, inspecting the proofs reveals that our results equally apply to the more general



WEIGHTED-AVERAGE QUANTILE REGRESSION 23

case where we include transformations of X, such as interactions and other higher-

order polynomial terms, on the right-hand side of the regression:
∫ 1

0
qY |X(u)ψ(u)du =

p(X)′β, where x 7→ p(x) = (p1(x), . . . , pk(x))′ is a vector of transformations. In this

case, one should simply replace all Xt’s in (16), (23), and (24) by the corresponding

p(Xt)’s. Theorems 5.1 and 5.2 still apply in this case modulo obvious modifications.�

Remark 5.4 (Weighted-Average Quantile Regression Estimator as Best Linear Pre-

dictor). When the weighted-average quantile function x 7→
∫ 1

0
qY |X=x(u)ψ(u)du is not

linear, i.e. there exists no β such that
∫ 1

0
qY |X(u)ψ(u)du = X ′β, it is straightforward

to check that Theorems 5.1 and 5.2 continue to hold with

β = arg min
b∈Rp

E

[(∫ 1

0

qY |X(u)ψ(u)du−X ′b
)2
]
.

It thus follows that our weighted-average quantile regression method consistently

estimate parameters of the best linear approximation to x 7→
∫ 1

0
qY |X=x(u)ψ(u)du. In

this sense, running our estimator makes sense even if it is believed that the linearity

assumption of the regression model (1) is satisfied not exactly but only approximately.

�

6. Monte Carlo Simulation Study

In this section, we present results of a small-scale Monte Carlo simulation study

that sheds light on finite-sample properties of the weighted-average quantile regression

estimator.

We consider the following data-generating processes:

DGP1: Y = ε−X ′β̄,

DGP2: Y = (1 + 0.2X1)ε−X ′β̄.

Depending on the experiment, X = (X1, . . . , Xp)′ and β̄ = (β̄1, . . . , β̄p)
′ are vectors

either in R2 or in R5, so that p = 2 or 5, respectively. in the former case, we set

β̄2 = 0.5 and vary β̄1 over {0, 0.3, 0.6, 0.9}. In the latter case, we set β̄2 = 0.5,

β̄3 = β̄4 = β̄5 = 0, and again vary β̄1 over {0, 0.3, 0.6, 0.9}. We consider cases with

ε ∼ N(0, 1) and ε ∼ t(4). In both cases, ε is independent of X. Note that in

the latter case, Assumption 5.2 is actually not satisfied, as random variables with

the t(4) distribution have finite moments up-to the 4th order but excluding the 4th

order itself, and so this case serves as a way to check whether our methods continue

to work if our asymptotic theory assumptions are slightly violated. Finally, we set
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X = (X1, . . . , Xp)′ so that X1 = |X̃1| and Xj = X̃j for all j = 2, . . . , p, where

X̃ = (X̃1, . . . , X̃p)′ is a standard normal random vector in Rp. For simplicity, we

assume that the data (X1, Y1), . . . , (XT , YT ) consists of T i.i.d. realizations of the

pair (X, Y ). We consider samples of size T = 1000 and 2000.

As a machine learning estimator of the function F , we use a version of a random

forest. Specifically, recall that any random forest estimator takes the weighted-average

form, i.e. an estimator of E[V |Z = z] based on the data (Z1, V1), . . . , (ZT , VT ) will

take the form Ê[V |Z = z] =
∑T

t=1 wtVt. We do two changes to this estimator. First,

once we have the weights wt from the random forest, we replace the weighted-average

estimator by a local linear estimator:

Ê[V |Z = z] = z′ arg min
b

T∑
t=1

wt(Vt − Z ′tb)2.

This helps to improve the accuracy of the estimator, e.g. Friedberg et al. (2021).

Second, recall that we need an estimator of x 7→ F̂ (s|x) for all s ∈ {Y1, . . . , YT1},
which is computationally straightforward but costly when T1 is large. We therefore

first split the interval [min1≤t≤T1 Yt,max1≤t≤T1 Yt] into log T1 equal intervals, calculate

random forest weights with s being the center of each interval, and then apply the

same weights for all s in the same interval. This substantially reduces computational

costs as we now need to calculate only log T1 random forests rather than T1 of them.

Closely related ideas were previously used in Meinshausen (2006) who constructed a

quantile random forest by applying a local linear quantile estimator based on weights

obtained from a (mean) random forest. The main reason we rely on random forest

estimators in this paper is that they are easy to train and allow for computational

simplifications as explained here.

Also, for our simulations, we set T1 = 2T2, so that the random forest estimator

uses twice as many observations as the OLS estimator. This is meaningful because

random forest estimator, being a nonparametric estimator, has a much slower rate of

convergence than that of OLS. In addition, to choose the number of leaves in each

tree of the random forest estimator, we use sample splitting, namely we use T/2

observations to build random forest estimators corresponding to different number of

leaves and we use remaining T1−T/2 = T/6 observations to choose the best random

forest estimator according to the mean squared error criterion.

Note that both DGP1 and DGP2 satisfy our linear weighted-average quantile reg-

ression model (1). DGP1 corresponds to the homoscedastic case and yields β in (1)
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equal to −β̄
∫ 1

0
ψ(u)du. For this data-generating process, we thus have β = β̄ for the

lower, middle, upper as well as exponential and polynomial regression models5 and

β = 0p for the inequality regression model. DGP2 corresponds to the heteroscedas-

tic case and yields β in (1) such that β1 = 0.2
∫ 1

0
qε(u)ψ(u)du − β̄1

∫ 1

0
ψ(u)du and

(β2, . . . , βp)
′ = −(β̄2, . . . , β̄)′

∫ 1

0
ψ(u)du, where qε : [0, 1] → R is the quantile function

of the random variable ε. For this data-generating process, (β2, . . . , βp)
′ thus coincides

with the same vector under DGP1 but β1 can only be calculated numerically.

For each specification of parameter values and each DGP, we repeat the experiment

500 times and estimate the coverage probability for the 90% confidence interval for

β1 constructed using t-statistics. In addition, we estimate the mean absolute error

E[|β̂1 − β1|]. We present results for the coverage probability and the mean absolute

error in Tables A.1 and A.2 of the Appendix, respectively. For each case, we give

results for 4 regression models: upper, inequality, middle, and exponential regressions,

which are denoted in the tables by ψ-type 1, 2, 3, and 4, respectively.

Overall, Table A.1 shows that asymptotic theory from the previous section yields

good approximation to the finite sample situation. In particular, the empirical cover-

age probability of 90% confidence intervals is close to the nominal coverage probabil-

ity. The only exception perhaps is the case of the upper and exponential regressions

(ψ = 1, 4) with heteroscedastic noise, T = 1000, p = 5, and the t(4) distribution,

in which case the asymptotic confidence intervals undercover the true parameter val-

ues. However, the coverage improves substantially as we increase the sample size

from T = 1000 to T = 2000. Table A.2 also shows that the mean absolute error

for the case with p = 5 is similar to that for the case with p = 2, especially when

T = 2000. This reinforces the conclusion that the asymptotic theory provides a good

approximation to the finite-sample situation.

7. Empirical Applications

In this section, we apply our weighted-average quantile regression (WAQR) esti-

mator in two empirical settings. In the first one, we focus on financial market data

and study the expected shortfall regression. In the second one, we focus on wage data

and study the inequality and social welfare regressions.

7.1. Financial Market Data. In this subsection, we apply the WAQR estimator

in the asset pricing setting. We investigate the factor loadings of the risk measures

5Following Section 2.1, we define the exponential and polynomial regressions by (1) with ψ(u) =
a exp(−a(1− u))/(1− exp(−a)) for a > 0 and ψ(u) = aua−1 for a > 1, respectively.
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of the industry returns. Although our method is general, we focus on the expected

shortfall (ES), which is one of the most used risk measures in finance (e.g., Gandhi

and Lustig, 2014; Adrian and Brunnermeier, 2016; Acharya et al., 2017). In this case,

our WAQR can be referred to as the expected shortfall regression estimator.

7.1.1. Expected Shortfall Regression Estimator. We investigate the factor structures

of the 10% expected shortfalls of the Fama-French 5 industries. We use the Fama-

French 5-factor model standard in the literature to capture industries’ expected short-

falls (e.g., Fama and French, 2015, 2016). Table 1 reports the factor exposure results

for the 10% ES regressions. For comparison, the table also shows the results based

on the mean regression and the 10% quantile regression.6

The point estimates to the market excess returns based on the 10% ES regression

are negative and statistically significant at -1.196, -1.293, -1.400, -1.153, and -1.330

for the consumer, manufacturing, high tech, health, and other industries, respectively.

The negative coefficients imply that the 10% ES of the industry returns are lower when

the market excess returns are high. The point estimates for the 10% ES regression

are slightly larger in magnitude than those of mean regressions and 10% quantile

regressions.

The exposures to the other four factors can substantially differ across the mean,

quantile, and risk measures. For the size factor, the magnitude of the exposure for

the manufacturing industry is similar across the mean, quantile, and risk measures.

The magnitudes of the exposures for the other industries are consistently larger for

the risk measures relative to those from the mean and quantile regressions. For the

value factor, the magnitudes of the exposures for the consumer, high tech, and health

industries are similar across the mean, quantile, and risk measures. However, the

magnitudes of exposures are markedly higher for the risk measures than for the means

and 10% quantiles for the manufacturing and the other industries. For example, for

the manufacturing industry, the coefficient estimate to the value factor is -0.514 for

the 10% ES regression, while the coefficient estimates are -0.110 and -0.140 for the

mean and 10% quantile, respectively. For the profitability factor, the magnitudes of

the coefficient estimates for the 10% ES regressions are generally larger to those of

the mean and 10% quantile regressions. For example, for the consumer industry, the

coefficient estimate to the profitability factor is -0.779 based on the 10% ES regression,

while the estimates are -0.197 and -0.195 for the mean and 10% quintile, respectively.

6The estimates in the mean and 10% quantile regressions are multiplied by -1 to be consistent with
the risk regressions.
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For the investment factor, the magnitudes of the coefficient estimates for the 10% ES

are consistently higher than those of the mean and 10% quantile regressions for the

consumer, the high tech, and the other industries.7

In summary, the baseline results show that the 10% ES of the industry returns are

highly exposed to the factors that are designed to explain the mean returns. The

results highlight the different dynamics between the risk measures and the means or

quantiles of returns and the importance of the factors in capturing the variations of

the risk measures of the portfolio returns.

We further study the time-varying exposures of the 10% ES of the industry returns

to the Fama-French 5 factors. The period used for estimation is the past twenty years

and we roll the estimation period every year. The results are summarized in Figure

1. The exposures of the 10% ES to the market factor have a downward spike for the

industries around the internet bubble period, implying that the exposures of the 10%

ES to the market factor increase during this period.

The exposures of the 10% ES to the other factors vary substantially during the

sample period. We discuss several examples. For the health industry, the exposures

of the 10% ES to the value factor are consistently positive, suggesting that the risk

of the health industry as measured by 10% ES increases when the value premium

is high. The magnitude of the coefficient estimate increases substantially to around

three from 1990 to early 2000. For the profitability factor, the exposures of the 10%

ES of the high tech industry increase drastically in the 200s, but decrease to the

pre-2000 level since 2010. For the investment factor, the health industry tends to

have negative exposures of its 10% ES, while the high tech industry tends to have

positive exposures of their 10% ES. In other words, the risk measured by the 10%

ES of the health industry decreases when the investment premium is high, while the

risk measured by 10% ES of the high tech industry increases when the investment

premium is high. The magnitudes of the 10% ES of the industries all increased during

the early 2000s or the burst of the internet bubble period.

The time-series results suggest that exposures of the 10% ES to the factors varied

substantially during the 1990s to the early 2000 period, coinciding with the begin-

ning and the subsequent burst of the internet bubble. However, the exposures were

relatively stable during the 2008-2009 financial crisis period, although the market

experienced drastic volatility during the crisis period.

7Table A.3 in the Online Appendix further shows the results of Table 1 and uses the Newey-West
procedure to adjust the standard errors. The significance levels are largely unchanged with the
adjustment.
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7.1.2. Parametric Estimator. As discussed above, a (potentially inconsistent) alter-

native to our WAQR estimator is a parametric estimator. This alternative method

estimates exposures of risk measures to a set of covariates by taking the weighted

average of the point estimates from the individual quantile regressions. Here, we

compare our estimation results with those based on the parametric estimator. The

results are documented in Table 2.8 Table 2 shows the estimation results for the 10%

ES using the parametric estimator alongside those from our WAQR estimator.

For the exposures to the market factor, the point estimates of the 10% ES to the

market factor from the WAQR estimator are slightly larger than those based on the

parametric estimators. However, the coefficient estimates of the 10% ES based on the

parametric estimator and the WAQR estimator can differ significantly for the other

factors. We provide several examples of the differences. For the high tech industry,

the coefficient estimate of the 10% ES to the size factor is 0.119 based on the WAQR

estimator but is 0.062 based on the parametric estimator, which is close in magnitude

to that of the mean and 10% quantile regressions. For the manufacturing industry,

the coefficient estimate of the 10% ES to the value factor is -0.514 based on the

WAQR estimator but is only -0.084 based on the parametric estimator. Again, the

coefficient estimate based on the parametric estimator is close to those based on the

mean and 10% quantile regressions.

Overall, we find that the WAQR and parametric estimators can differ substantially.

In particular, when the exposures of the risk measures differ from those of the mean

and quantiles, the parametric estimator tends to underestimate the exposures. The

magnitudes of the coefficient estimates based on the parametric estimator tend to

fall between those based on the WAQR estimator and those from mean and quantile

regressions.

Furthermore, we investigate the underlying reasons behind this discrepancy be-

tween our WAQR estimator and the simple parametric estimator. Relative to the

parametric estimator, an important assumption our WAQR estimator relaxed is the

assumption that the quantiles are linear in the covariates. So far, we have shown

that the WAQR estimator and the parametric estimator tend to provide different

coefficient estimates in financial data. We directly test whether the differences stem

from the violation of the linearity assumption the parametric method imposes.

We test whether the 10% quantile and the 5% quantile of the industry returns are

significantly exposed to the higher moments and interactions of the Fama-French 5

8The individual quantile regression results from 1% to 10% quantiles are reported in Figure A.1.
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factors. We document the results in Table A.4 in the Online Appendix. Panel A

of the table shows the quantile regression results of regressing the industry returns

to the first, second, and third moments of the Fama-French 5 factors. Inconsistent

with the assumption that the quantiles are linear with the covariates, we find that

the 10% and 5% quantiles of the industry returns are significantly exposed to many

of the second and third moments of the Fama-French 5 factors. Panel B of the

table reports the quantile regression results of regressing the industry returns to the

standalone and interactions of the Fama-French 5 factors. Again, inconsistent with

the assumption that the quantiles are linear with the covariates, we show that the

10% and 5% quantiles of the industry returns are significantly exposed to a number

of the interaction terms of the Fama-French 5 factors.

Overall, we conclude that the discrepancies of the results between the WAQR

estimator and the parametric estimator stem from the fact that the quantiles are not

linear in the covariates, and that estimates from the parametric estimator method

are not reliable in the financial setting.

7.2. Wage Data. In this subsection, we apply our method to study wage inequality

and social welfare. We start with the wage inequality.

7.2.1. Inequality Regression. We consider several standard individual characteristics

in the literature when wage or consumption is studied (e.g., Angrist et al., 2006;

Blundell et al., 2008; Attanasio and Pistaferri, 2016), including family size, an indi-

cator variable for no children, age, and education. The sample goes from 2001 to

2018. The sample and variables are discussed in detail in Appendix E. We apply

the WAQR estimator for the inequality regression each year using all the indepen-

dent variables, and show coefficient estimates in Figure 2. For comparison, we also

show the estimates based on a parametric estimator which is the differences of the

coefficient estimates for the 90% quantile and the 10% quantile regressions.

We discuss the time trends of the coefficient estimates based on the WAQR esti-

mator. The coefficient estimates for the family size decrease over time, going from

positive to significantly negative since 2011. That is, the inequality, or the average

wage difference between the top and bottom of the distribution, decreases in family

size in the latter part of the sample. When the parametric estimator is used, the

point estimates slightly decrease over time but stay positive even towards the end of

the sample. The WAQR coefficient estimates for the indicator variable of no chil-

dren increase over time, going from significantly negative to insignificantly positive.
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The coefficient estimates for age are relatively stable over time. The point estimates

based on the WAQR estimator are relatively similar to those based on the parametric

estimator for these two variables.

The point WAQR estimates of education stay significantly positive over time, sug-

gesting that inequality increases with education. When the parametric estimator is

used the point estimates are also positive for all years. However, the point estimates

based on the parametric estimator are markedly lower than those based on the WAQR

estimator before 2010. For example, the magnitude of the point estimate based on

the parametric estimator is only half of that based on the WAQR estimator for year

2001. In the latter part of the sample, the point estimates based on the two methods

are relatively similar.

7.2.2. Social Welfare Regression. We now apply our WAQR estimator to study the

relationship between the weighted average wage and the individual characteristics.

We assume that the weights are exponential with more weights being placed to the

lower income (specifically, we use the exponential weighting function ψ from Section

2.1 with u replaced by 1− u and a = 10).

We report the WAQR estimation results in Figure 3 below. For comparison, we also

provide the mean regression (OLS) results. The blue line shows the point estimates

based on the WAQR estimator over time, while the red line documents the point

estimates for the mean regression (OLS).

We discuss the time trends of the coefficient estimates based on the WAQR. The

point estimates for the family size variable increase over time, going from insignifi-

cantly negative to positive. For the mean regressions, the point estimates also increase

over time but stay negative even towards the end of the sample. The point estimates

for the indicator variable of no children decrease over time, and are lower than those

based on the mean regression in the latter part of the sample. The point estimates

based on the WAQR are similar to those based on the mean regressions for the age

variable.

The point estimates for the education variable stay significantly positive over time

based on the WAQR, suggesting that the average wage of the low income group

increases with education. When OLS is used, the point estimates are also positive for

all years. However, the point estimates based on the WAQR are significantly lower

than those based on the mean regression before 2010. The point estimates converge

towards the latter part of the sample.
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8. Conclusion

We introduce the weighted-average quantile regression that significantly generalizes

the commonly used mean and quantile regressions. We develop estimators of such

regressions that are straightforward to apply in a variety of empirical settings. In

the examples of risk, inequality, and social welfare regressions, the weighted-average

quantile regression estimators yield results that are different from those based on both

mean and quantile regression methods.
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Figure 1. Rolling 20 Year Coefficient

This figure shows the WAQR estimates for the time-varying exposures
of the 10% ES of the industry returns to the Fama-French 5 factors.
The industries include the Fama-French 5 industries: consumer, manu-
facturing, high tech, health, and other. The period used for estimation
is the past 20 years and the estimation period is rolled over every year.
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Figure 2. Inequality Regression Coefficients

This figure shows the time-varying WAQR coefficient estimates of the
difference between the average logged weekly wages of the top and
bottom 10% to several standard individual characteristics, including
family size, an indicator variable of no children, age, and education.
Each year, one inequality regression is conducted with all the indepen-
dent variables. The blue lines represent coefficient estimates based on
the inequality regression and red lines represent coefficient estimates
based on a native method. The 95% confidence intervals for the point
estimates based on the inequality regressions are plotted in dash lines.
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Figure 3. Social Welfare Regression Coefficients

This figure shows the time-varying WAQR coefficient estimates for the
social welfare (exponential) regression, with dependent variable being
wage and the vector of independent variables including individual char-
acteristics (family size, an indicator variable of no children, age, and
education). Each year, one social welfare (exponential) regression is
conducted with all the independent variables. The blue lines represent
coefficient estimates based on the social welfare (exponential) regres-
sion and red lines represent coefficient estimates based on the mean
regression. The 95% confidence intervals for the point estimates based
on the social welfare (exponential) regressions are plotted in dash lines.
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Appendix A. Proof of Theorem 5.1

The proof of the theorem is long. We therefore start with a sequence of useful

lemmas. Throughout this section, we will assume, without loss of generality, that

D = (X ′, Y )′ is independent of {Dt}t∈Z.

Lemma A.1. Under Assumptions 5.3, 5.4, and 5.5(i), we have∫ +∞

−∞

∣∣∣ψ(F̂ (s|x))− ψ(F (s|x))
∣∣∣ ds ≤ C∆(x) (25)

for all x ∈ X with probability approaching one, where C > 0 is some constant.

Proof. By Assumption 5.3(i), the function ψ can be decomposed as ψ = ψ1 − ψ2,

where both ψ1 : [0, 1]→ R and ψ2 : [0, 1]→ R are bounded and increasing functions.

Moreover, by Assumption 5.3(ii), we can choose ψ1 and ψ2 such that they are both

continuously differentiable on (0, u0) and (1−u0, 1) with bounded derivatives. More-

over, by suitable shifting these functions, we can assume, without loss of generality,

that they are both non-negative. We will show how to prove that (25) holds with ψ

replaced by ψ1. We will then note that the same argument applies in the case of ψ2

as well, and so (25) will follow from the triangle inequality.

For all x ∈ X , denote

∆1(x) = sup
s∈R

∣∣∣F̂ (s|x)− F (s|x)
∣∣∣ and ∆2(x) =

∫ +∞

−∞

∣∣∣F̂ (s|x)− F (s|x)
∣∣∣ ds

so that ∆(x) = ∆1(x) + ∆2(x). In addition, extend the function ψ1 from [0, 1] to R
by setting ψ1(u) = ψ1(0) for all u < 0 and ψ1(u) = ψ1(1) for all u > 1. Defined this

way, the function ψ1 is bounded, increasing, and non-negative on R.

Now, since ψ1 is increasing, we have for all x ∈ X and s ∈ R that

ψ1(F̂ (s|x))− ψ1(F (s|x)) ≤ ψ1(F (s|x) + ∆1(x))− ψ1(F (s|x))

and

ψ1(F (s|x))− ψ1(F̂ (s|x)) ≤ ψ1(F (s|x))− ψ1(F (s|x)−∆1(x)).

Hence,∣∣∣ψ1(F̂ (s|x))− ψ1(F (s|x))
∣∣∣

≤ max
(
ψ1(F (s|x) + ∆1(x))− ψ1(F (s|x)), ψ1(F (s|x))− ψ1(F (s|x)−∆1(x))

)
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≤ ψ1(F (s|x) + ∆1(x))− ψ1(F (s|x)−∆1(x)).

Therefore,∫ s2

s1

|ψ1(F̂ (s|x))− ψ1(F (s|x))|ds

≤
∫ s2

s1

(ψ1(F (s|x) + ∆1(x))− ψ1(F (s|x)−∆1(x))) ds

≤ 1

c

∫ F (s2|x)

F (s1|x)

(ψ1(z + ∆1(x))− ψ1(z −∆1(x)))dz

=
1

c

∫ F (s2|x)+∆1(x)

F (s2|x)−∆1(x)

ψ1(z)dz − 1

c

∫ F (s1|x)+∆1(x)

F (s1|x)−∆1(x)

ψ1(z)dz ≤ 2∆1(x)ψ1(1)

c
, (26)

where the second inequality follows from Assumption 5.4(ii) by carrying out the

change of variables s 7→ F (s|x) = z, and the third from the fact that ψ1 is non-

negative.

Moreover, by Assumptions 5.4(i) and 5.5(i), we have

sup
s≤s1

F̂ (s|x) ≤ sup
s≤s1

F (s|x) + ∆1(x) ≤ F (s1|x) + ∆1(x) < u0/2 + u0/2 ≤ u0

and

inf
s≥s2

F̂ (s|x) ≥ inf
s≥s2

F (s|x)−∆1(x) ≥ F (s2|x)−∆1(x) > 1− u0/2− u0/2 = 1− u0

with probability approaching one uniformly over x ∈ X . Therefore, by Assumptions

5.3(iii) and 5.4(i), for some constant Cψ > 0,∫ s1

−∞

∣∣∣ψ1(F̂ (s|x))− ψ1(F (s|x))
∣∣∣ ds ≤ Cψ

∫ s1

−∞

∣∣∣F̂ (s|x)− F (s|x)
∣∣∣ ds ≤ Cψ∆2(x) (27)

and∫ ∞
s2

∣∣∣ψ1(F̂ (s|x))− ψ1(F (s|x))
∣∣∣ ds ≤ Cψ

∫ ∞
s2

∣∣∣F̂ (s|x)− F (s|x)
∣∣∣ ds ≤ Cψ∆2(x) (28)

with probability approaching one uniformly over x ∈ X . Combining (26), (27), and

(28) gives (25) with ψ replaced by ψ1. In addition, we can prove by the same argument

that (25) holds with ψ replaced by ψ2 as well. The asserted claim now follows from

the triangle inequality. �
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Lemma A.2. Consider a sequence of functions {fT}T≥2 such that for all T ≥ 2, the

function fT is mapping D ×DT1 into R, where D is the support of D. Then

Var

(
T1+T2∑
t=T1+1

fT (Dt, D
T1
1 ) | DT1

1

)
= oP (T )

as long as
T1+T2∑
t=T1+1

E
[
|fT (Dt, D

T1
1 )|4 | DT1

1

]
= oP (1) (29)

and Assumption 5.1 is satisfied.

Proof. For brevity of notations, for all t = T1 + 1, . . . , T1 +T2, we will write ft instead

of fT (Dt, D
T1
1 ) throughout the proof. Then it follows from (29) that there exists

γT → 0 as T →∞ such that

P

(
T1+T2∑
t=T1+1

E
[
|ft|4 | DT1

1

]
≤ γ2

T

)
≥ 1− γT . (30)

Next, for all t = T1+1, . . . , T1+T2, denote ft,+ = ftI{ft ≥ 0} and ft,− = −ftI{ft < 0},
so that ft = ft,+ − ft,−. Then

ft =

∫ +∞

0

(I{ft,+ > s} − I{ft,− > s})ds,

and so

Var

(
T1+T2∑
t=T1+1

ft | DT1
1

)
=

T1+T2∑
t1,t2=T1+1

Cov(ft1 , ft2 | DT1
1 )

=

∫ +∞

0

∫ +∞

0

T1+T2∑
t1,t2=T1+1

Cov
(
I{ft1,+ > s1} − I{ft1,− > s1},

I{ft2,+ > s2} − I{ft2,− > s2} | DT1
1

)
ds1ds2. (31)

Denoting the integrand here by R(s1, s2), we now derive three different bounds on it.

First, observe that for any t1 < t2 and any random variables Z1 and Z2 such that

Z1 depends only on Dt1 and DT1
1 and Z2 depends only on Dt2 and DT1

1 , we have

Cov(Z1, Z2 | DT1
1 ) = E[Z1Z2 | DT1

1 ]− E[Z1 | DT1
1 ]E[Z2 | DT1

1 ]

= E
[
Z1(E[Z2 | Dt1 , D

T1
1 ]− E[Z2 | DT1

1 ]) | DT1
1

]
,
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and so if |Z1| ≤ 1 a.s., then

|Cov(Z1, Z2 | DT1
1 )| ≤ E[|E[Z2 | Dt1 , D

T1
1 ]− E[Z2 | DT1

1 ]| | DT1
1 ].

Substituting here Z1 = I{ft1,+ > s1}−I{ft1,− > s1} and Z2 = I{ft2,+ > s2}−I{ft2,− >
s2}, we obtain∣∣∣Cov

(
I{ft1,+ > s1} − I{ft1,− > s1}, I{ft2,+ > s2} − I{ft2,− > s2} | DT1

1

)∣∣∣
≤ E

[∣∣P(fT (Dt2 , D
T1
1 ) > s2 | Dt1 , D

T1
1 )− P(fT (Dt2 , D

T1
1 ) > s2 | DT1

1 )
∣∣ | DT1

1

]
+ E

[∣∣P(fT (Dt2 , D
T1
1 ) < −s2 | Dt1 , D

T1
1 )− P(fT (Dt2 , D

T1
1 ) < −s2 | DT1

1 )
∣∣ | DT1

1

]
≤ 2E

[
sup
B

∣∣P(Dt2 ∈ B | Dt1 , D
T1
1 )− P(Dt2 ∈ B | DT1

1 )
∣∣ | DT1

1

]
,

where the penultimate inequality follows from the definition of the β-mixing coeffi-

cients. Therefore,

E

[
sup

s1,s2∈(0,∞)

|R(s1, s2)|

]
≤

T1+T2∑
t=T1+1

1 + 2

T1+T2−1∑
t1=T1+1

T1+T2∑
t2=t1+1

2(βt2−t1 + βt2−T1)

≤ (T2 − T1)

(
1 + 8

∞∑
t=1

βt

)
by the definition of the β-mixing coefficients. Hence, by Markov’s inequality,

|R(s1, s2)| ≤ T2 − T1

γT

(
1 + 8

∞∑
t=1

βt

)
(32)

with probability at least 1−γT uniformly over s1, s2 ∈ (0,∞), which is our first bound

on R(s1, s2).

Next, observe that for any random variables Z1 and Z2 such that |Z1| ≤ 1 a.s., we

have

|Cov(Z1, Z2 | DT1
1 )| = |E[(Z1 − E[Z1 | DT1

1 ])(Z2 − E[Z2 | DT1
1 ]) | DT1

1 ]|

= |E[Z1(Z2 − E[Z2 | DT1
1 ]) | DT1

1 ]| ≤ E[|Z2 − E[Z2 | DT1
1 ]| | DT1

1 ]

≤ E[|Z2| | DT1
1 ] + |E[Z2 | DT1

1 ]| ≤ 2E[|Z2| | DT1
1 ].

Substituting here Z1 = I{ft1,+ > s1}−I{ft1,− > s1} and Z2 = I{ft2,+ > s2}−I{ft2,− >
s2} again, we obtain∣∣∣Cov

(
I{ft1,+ > s1} − I{ft1,− > s1}, I{ft2,+ > s2} − I{ft2,− > s2} | DT1

1

)∣∣∣
≤ 2
(

P(ft2 > s2 | DT1
1 ) + P(ft2 < −s2 | DT1

1 )
)
≤ 2P(|ft2| > s2 | DT1

1 ).
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Therefore,

|R(s1, s2)| ≤ 2

T1+T2∑
t1,t2=T1+1

P(|ft2| > s2 | DT1
1 ) ≤ 2(T2 − T1)

T1+T2∑
t=T1+1

P(|ft| > s2 | DT1
1 ),

and so, by Markov’s inequality and (30),

|R(s1, s2)| ≤ 2(T2 − T1)

s4
2

T1+T2∑
t=T1+1

E[|ft|4 | DT1
1 ] ≤ 2γ2

T (T2 − T1)

s4
2

with probability at least 1 − γT uniformly over s1, s2 ∈ (0,∞), which is our second

bound on R(s1, s2). In addition, by the same argument, with interchanged Z1 and

Z2,

|R(s1, s2)| ≤ 2(T2 − T1)

T1+T2∑
t=T1+1

P(|ft| > s1 | DT1
1 ) ≤ 2γ2

T (T2 − T1)

s4
1

,

with probability at least 1 − γT uniformly over s1, s2 ∈ (0,∞), which is our third

bound on R(s1, s2).

Now, denoting the right-hand side of (32) by R̄ and combining all three bounds,

we have

|R(s1, s2)| ≤
∫ R̄

0

I
{
u ≤ 2γ2

T (T2 − T1)

s4
1

}
I
{
u ≤ 2γ2

T (T2 − T1)

s4
2

}
du

with probability at least 1− 3γT . Substituting this bound into (31), we obtain

Var

(
T1+T2∑
t=T1+1

ft | DT1
1

)
≤
∫ +∞

0

∫ +∞

0

|R(s1, s2)|ds1ds2

≤
∫ +∞

0

∫ +∞

0

∫ R̄

0

I
{
u ≤ 2γ2

T (T2 − T1)

s4
1

}
I
{
u ≤ 2γ2

T (T2 − T1)

s4
2

}
duds1ds2

=

∫ R̄

0

(
2γ2

T (T2 − T1)

u

)1/4(
2γ2

T (T2 − T1)

u

)1/4

du

= 2γT
√

2(T2 − T1)
√
R̄ ≤ 2

√√√√2γT

(
1 +

∞∑
t=1

βt

)
(T2 − T1)

with probability at least 1 − 3γT . Since γT → 0 and
∑∞

t=1 βt < ∞ by Assumption

5.1, the asserted claim follows. �

Lemma A.3. Consider a sequence of functions {fT}T≥2 such that for all T ≥ 2, the

function fT is mapping D × DT1 into R, where D is the support of D. Let {AT}T≥2

be a sequence of positive numbers. Also, let D = (X ′, Y )′ be independent of {Dt}t∈Z.
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Finally, let δ > 0 be some number. Then

T1+T2∑
t=T1+1

(
E
[
fT (Dt, D

T1
1 ) | DT1

1

]
− E

[
fT (D,DT1

1 ) | DT1
1

])
= oP (AT )

as long as

T1+T2∑
t=T1+1

(
E
[
|fT (Dt, D

T1
1 )|1+δ | DT1

1

]
+ E

[
|fT (D,DT1

1 )|1+δ | DT1
1

])
= oP (A1+δ

T ) (33)

and Assumption 5.1 is satisfied.

Proof. For brevity of notations, for all t = T1 + 1, . . . , T2, we will write ft instead of

fT (Dt, D
T1
1 ) throughout the proof. In addition, we will write f̃ instead of fT (D,DT1

1 ).

Then it follows from (33) that there exists γT → 0 as T →∞ such that

P

(
T1+T2∑
t=T1+1

(
E
[
|ft|1+δ | DT1

1

]
+ E

[
|f̃ |1+δ | DT1

1

])
≤ (γTAT )1+δ

)
≥ 1− γT . (34)

Next, for all t = T1 + 1, . . . , T2, denote ft,+ = ftI{ft ≥ 0} and ft,− = −ftI{ft < 0},
so that

ft = ft,+ − ft,− =

∫ +∞

0

(I{ft,+ > s} − I{ft,− > s})ds. (35)

Similarly, denote f̃+ = f̃I{f̃ ≥ 0} and f̃− = −f̃I{f̃ < 0}, so that

f̃ = f̃+ − f̃− =

∫ +∞

0

(I{f̃+ > s} − I{f̃− > s})ds. (36)

Further, for all s > 0, denote

R1(s) =

T1+T2∑
t=T1+1

∣∣∣P(ft,+ > s | DT1
1 )− P(f̃+ > s | DT1

1 )
∣∣∣

and

R2(s) =

T1+T2∑
t=T1+1

∣∣∣P(ft,− > s | DT1
1 )− P(f̃− > s | DT1

1 )
∣∣∣ .

Then it follows from (35), (36), and the triangle inequality that∣∣∣∣∣
T1+T2∑
t=T1+1

(E[ft | DT1
1 ]− E[f̃ | DT1

1 ])

∣∣∣∣∣ ≤
∫ +∞

0

R1(s)ds+

∫ +∞

0

R2(s)ds. (37)

We will bound
∫ +∞

0
R1(s)ds and note that

∫ +∞
0

R2(s)ds can be bounded by the same

argument.
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Observe that

R1(s) ≤
T1+T2∑
t=T1+1

sup
B

∣∣P(Dt ∈ B | DT1
1 )− P(D ∈ B | DT1

1 )
∣∣

=

T1+T2∑
t=T1+1

sup
B

∣∣P(Dt ∈ B | DT1
1 )− P(D ∈ B)

∣∣
=

T1+T2∑
t=T1+1

sup
B

∣∣P(Dt ∈ B | DT1
1 )− P(Dt ∈ B)

∣∣ ,
and so

E

[
sup

s∈(0,∞)

R1(s)

]
≤

∞∑
t=1

βt.

Therefore, R1(s) ≤
∑∞

t=1 βt/γT with probability at least 1 − γT uniformly over s ∈
(0,∞) by Markov’s inequality. In addition,

R1(s) ≤
T1+T2∑
t=T1+1

(
P(ft,+ > s | DT1

1 ) + P(f̃+ > s | DT1
1 )
)

≤ 1

s1+δ

T1+T2∑
t=T1+1

(
E[|ft,+|1+δ | DT1

1 ] + E[|f̃+|1+δ | DT1
1 ]
)
≤ (γTAT )1+δ

s1+δ

with probability at least 1−γT uniformly over s ∈ (0,∞) by Markov’s inequality and

(34). Hence, for any s0 > 0, we have∫ ∞
0

R1(s)ds =

∫ s0

0

R1(s)ds+

∫ ∞
s0

R1(s)ds ≤ s0

γT

∞∑
t=1

βt +
(γTAT )1+δ

δsδ0

with probability at least 1 − 2γT . Therefore, setting s0 = AT (γ2+δ
T /δ

∑∞
t=1 βt)

1/(1+δ),

it follows that ∫ ∞
0

R1(s)ds ≤ 2At

(
∞∑
t=1

βt

)δ/(1+δ) (γT
δ

)1/(1+δ)

with probability at least 1−2γT . Hence, given that
∑∞

t=1 βt <∞ by Assumption 5.1, it

follows that
∫∞

0
R1(s)ds = oP (AT ) and, by the same argument,

∫∞
0
R2(s)ds = oP (AT ).

Substituting these bounds into (37), we obtain the asserted claim. �

Lemma A.4. Under Assumptions 5.1, 5.2, and 5.5,

E
[
‖X‖2∆(X)2 | DT1

1

]
= oP (1).
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Proof. By Jensen’s inequality,

E
[
‖X‖2∆(X)2 | DT1

1

]
≤
√

E[‖X‖4 | DT1
1 ]

√
E[∆(X)4 | DT1

1 ].

Therefore, given that E[‖X‖4 | DT1
1 ] = OP (1) by Assumption 5.2(i) and Markov’s

inequality, it suffices to prove that E[∆(X)4 | DT1
1 ] = oP (1). To do so, observe that

by Assumption 5.5(ii), there exists γT → 0 as T →∞ such that

P

(
T1+T2∑
t=T1+1

E[∆(Xt)
4 | DT1

1 ] ≤ γT

)
≥ 1− γT .

Hence,

T1+T2∑
t=T1+1

P(∆(Xt) > γ
1/8
T | DT1

1 ) =

T1+T2∑
t=T1+1

P(∆(Xt)
4 >
√
γT | DT1

1 )

≤ 1
√
γT

T1+T2∑
t=T1+1

E[∆(Xt)
4 | DT1

1 ] ≤ √γT

with probability at least 1− γT . Also,

T1+T2∑
t=T1+1

E
[
|P(∆(Xt) > γ

1/8
T | DT1

1 )− P(∆(X) > γ
1/8
T | DT1

1 )|
]
≤

∞∑
t=1

βt,

and so, by Markov’s inequality,

1

T2 − T1

T1+T2∑
t=T1+1

|P(∆(Xt) > γ
1/8
T | DT1

1 )− P(∆(X) > γ
1/8
T | DT1

1 )| ≤ 1√
T2 − T1

∞∑
t=1

βt

with probability at least 1− 1/
√
T2 − T1. Therefore, by the union bound,

P(∆(X) > γ
1/8
T | DT1

1 ) ≤ 1√
T2 − T1

∞∑
t=1

βt +

√
γT

T2 − T1

with probability at least 1−γT−1/
√
T2 − T1. Combining this bound with Assumption

5.5(i) shows that E[∆(X)4 | DT1
1 ] = oP (1) and completes the proof of the lemma. �

We are now ready to proof Theorem 5.1:

Proof of Theorem 5.1. Observe that

1

T2

T1+T2∑
t=T1+1

XtX
′
t →P E[XX ′] (38)
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by Assumptions 5.1 and 5.2(i) and Proposition 2.8 in Fan and Yao (2005) since

β-mixing coefficients dominate α-mixing coefficients. Combining this result with

Assumptions 5.2(ii,iii) and using the continuous mapping theorem and the Slutsky

lemma gives the second convergence result in (22).

To prove the first convergence result in (22), denote

rt1 =

∫ +∞

−∞
(Ψ(F (s|Xt))−Ψ(F̂ (s|Xt)))ds+

∫ +∞

−∞
(F̂ (s|Xt)− F (s|Xt))ψ(F̂ (s|Xt))ds

and

rt2 =

∫ +∞

−∞
(F (s|Xt)− I{Yt ≤ s})(ψ(F̂ (s|Xt))− ψ(F (s|Xt)))ds

for all t = T1 + 1, . . . , T1 + T2. Then

√
T2(β̂ − β) =

(
1

T2

T1+T2∑
t=T1+1

XtX
′
t

)−1(
1√
T2

T1+T2∑
t=T1+1

Xtet

)

+

(
1

T2

T1+T2∑
t=T1+1

XtX
′
t

)−1(
1√
T2

T1+T2∑
t=T1+1

Xt(rt1 + rt2)

)
.

Therefore, given that T−1
2

∑T1+T2
t=T1+1XtX

′
t converges to a positive-definite matrix by

(38) and Assumption 5.2(ii), we only need to prove that

E1 =
1√
T2

T1+T2∑
t=T1+1

Xtrt1 = oP (1) and E2 =
1√
T2

T1+T2∑
t=T1+1

Xtrt2 = oP (1). (39)

We do so in turn. In addition, as in the proof of Lemma A.1, we can decompose

the function ψ as ψ = ψ1 − ψ2, where the functions ψ1 and ψ2 are both bounded,

increasing, and non-negative. Therefore, given that both rt1 and rt2 are linear in

ψ (and Ψ), it suffices to prove (39) assuming that the function ψ is itself bounded,

increasing, and non-negative. This is what we do below. (Note also that the new

function ψ still satisfies Assumption 5.3, and so Lemma A.1 is still applicable.)

We start with E1. Since Ψ(s) =
∫ s

0
ψ(u)du and ψ is increasing, the function Ψ is

convex, and so

Ψ(F (s|Xt))−Ψ(F̂ (s|Xt)) = Ψ′(F̃ (s|Xt))(F (s|Xt)− F̂ (s|Xt)),

where F̃ (s|Xt) belongs to the interval connecting F (s|Xt) and F̂ (s|Xt), and Ψ′(F̃ (s|Xt))

is an element of the sub-differential of Ψ(F̃ (s|Xt)). Hence,

rt1 =

∫ +∞

−∞
(F̂ (s|Xt)− F (s|Xt))(ψ(F̂ (s|Xt))−Ψ′(F̃ (s|Xt)))ds,
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and so, for some constant C > 0,

|rt1| ≤
∫ +∞

−∞
|F̂ (s|Xt)− F (s|Xt)| × |ψ(F̂ (s|Xt))−Ψ′(F̃ (s|Xt))|ds

≤
∫ +∞

−∞
|F̂ (s|Xt)− F (s|Xt)| × |ψ(F̂ (s|Xt))− ψ(F (s|Xt))|ds ≤ C∆(Xt)

2,

with probability approaching one uniformly over t = T1 + 1, . . . , T1 + T2, where the

second inequality follows from the facts that the function ψ is increasing and that

Ψ′(F̃ (s|Xt)) ∈ [ψ(F̃ (s|Xt) − 0), ψ(F̃ (s|Xt) + 0)] and the third from Lemma A.1.

Therefore,

‖E1‖ ≤
1√
T2

T1+T2∑
t=T1+1

‖Xt‖ × |rt1| ≤
C√
T2

T1+T2∑
t=T1+1

‖Xt‖∆(Xt)
2 (40)

with probability approaching one. In addition,

1√
T2

T1+T2∑
t=T1+1

E[‖Xt‖∆(Xt)
2 | DT1

1 ] ≤

√√√√ T1+T2∑
t=T1+1

E[‖Xt‖2∆(Xt)4 | DT1
1 ] = oP (1) (41)

by the Cauchy-Schwarz inequality and Assumption 5.5(ii). Combining (40) and (41)

with Markov’s inequality gives E1 = oP (1).

Next, we consider E2. Observe that

E

[
X

∫ +∞

−∞
(F (s|X)− I{Y ≤ s})(ψ(F̂ (s|X))− ψ(F (s|X)))ds | DT1

1

]
= 0.

Also, for some constant C > 0,

E

[(
‖X‖

∫ +∞

−∞
(F (s|X)− I{Y ≤ s})(ψ(F̂ (s|X))− ψ(F (s|X)))ds

)2

| DT1
1

]
≤ CE

[
‖X‖2∆(X)2 | DT1

1

]
+ oP (1) = oP (1)

by Lemmas A.1 and A.4. In addition,

T1+T2∑
t=T1+1

E

[(
‖Xt‖

∫ +∞

−∞
(F (s|Xt)− I{Yt ≤ s})(ψ(F̂ (s|Xt))− ψ(F (s|Xt)))ds

)2

| DT1
1

]

≤ C

T1+T2∑
t=T1+1

E
[
‖Xt‖2∆(Xt)

2 | DT1
1

]
+ oP (1)

≤
√
T2 − T1

√√√√ T1+T2∑
t=T1+1

E
[
‖Xt‖4∆(Xt)4 | DT1

1

]
+ oP (1) = oP (T )
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by Lemma A.1, the Cauchy-Schwarz inequality, and Assumption 5.5(ii). Hence,

‖E[E2 | DT1
1 ]‖ =

∥∥∥∥∥E

[
1√
T2

T1+T2∑
t=T1+1

Xtrt2 | DT1
1

]∥∥∥∥∥ = oP (1) (42)

by Lemma A.3. Further,

T1+T2∑
t=T1+1

E
[
(‖Xt‖ × |rt2|)4 | DT1

1

]
≤ C2

T1+T2∑
t=T1+1

E
[
‖Xt‖4∆(Xt)

4 | DT1
1

]
+ oP (1) = oP (1)

by Lemma A.1 and Assumption 5.5(ii). Hence, by Lemma A.2,

‖Var(E2 | DT1
1 )‖ = oP (1). (43)

Combining (42) and (43) gives E2 = oP (1) and completes the proof of the theorem.

�

Appendix B. Proof of Theorem 5.2

Denote w(0,m) = 1/2, so that Ω̄ =
∑m

j=0w(j,m)(Ω̄j + Ω̄′j). Also, denote

Ω̂ =
m∑
j=0

w(j,m)(Ω̂′j + Ω̂′j), so that Σ̂ =

(
1

T2

T1+T2∑
t=T1+1

XtX
′
t

)−1

Ω̂

(
1

T2

T1+T2∑
t=T1+1

XtX
′
t

)−1

.

Then, recalling (38) from the proof of Theorem 5.1 and observing that Ω̄ →P Ω by

Assumption 5.6(i), it follows that Σ̂→P Σ as long as Ω̂− Ω̄→P 0. Thus, it suffices to

prove that
∑m

j=0 w(j,m)(Ω̂j − Ω̄j)→P 0. To do so, observe that for all j = 0, . . . ,m

and t = T1 + j + 1, . . . , T1 + T2, we have

êtêt−j − etet−j = et−j(êt − et) + êt(êt−j − et−j),

and so, denoting

S1 =
m∑
j=0

w(j,m)

T2 − T1

T1+T2∑
t=T1+j+1

et−j(êt − et)XtX
′
t−j

and

S2 =
m∑
j=0

w(j,m)

T2 − T1

T1+T2∑
t=T1+j+1

êt(êt−j − et−j)XtX
′
t−j,

we have
∑m

j=0 w(j,m)(Ω̂j− Ω̄j) = S1 +S2. We will prove that S1 →P 0 and note that

S2 →P 0 by a similar argument.
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By the Cauchy-Schwarz inequality and Assumption 5.6(ii),

‖S1‖ ≤
m∑
j=0

w(j,m)

T2 − T1

√√√√ T1+T2∑
t=T1+j+1

‖et−jXt−j‖2

√√√√ T1+T2∑
t=T1+j+1

‖(êt − et)Xt‖2

≤ m

T2 − T1

√√√√ T1+T2∑
t=T1+1

‖etXt‖2

√√√√ T1+T2∑
t=T1+1

‖(êt − et)Xt‖2.

Here, given that E[‖eX‖2] ≤
√

E[e4]E[‖X‖4] <∞ by Assumption 5.2(i),

1

T2 − T1

T1+T2∑
t=T1+1

‖etXt‖2 = OP (1)

by Assumptions 5.1 and Proposition 2.8 in Fan and Yao (2005). Also,

1

T2 − T1

T1+T2∑
t=T1+1

‖(êt − et)Xt‖2

≤ 2

T2 − T1

T1+T2∑
t=T1+1

|rt1 + rt2|2‖Xt‖2 +
2

T2 − T1

T1+T2∑
t=T1+1

‖β̂ − β‖2‖Xt‖4

for rt1 and rt2 defined in the proof of Theorem 5.1. Moreover,

1

T2 − T1

T1+T2∑
t=T1+1

‖Xt‖4 = OP (1)

by Assumptions 5.1 and 5.2(i) and Proposition 2.8 in Fan and Yao (2005). Therefore,

1

T2 − T1

T1+T2∑
t=T1+1

‖β̂ − β‖2‖Xt‖4 = OP

(
1

T

)
by Theorem 5.1. In addition, as in the proof of Theorem 5.1, for some constant C > 0,

we have |rt1 + rt2| ≤ C(∆(Xt)
2 + ∆(Xt)) with probability approaching one uniformly

over t = T1 + 1, . . . , T1 + T2. Hence,

1

T2 − T1

T1+T2∑
t=T1+1

|rt1+rt2|2‖Xt‖2 ≤ 2C2

T2 − T1

T1+T2∑
t=T1+1

(∆(Xt)
4+∆(Xt)

2)‖Xt‖2 = oP

(
1√
T

)
by Assumption 5.5(ii). We therefore conclude that ‖S1‖ = oP (m/T 1/4) = oP (1) by

Assumption 5.6(iii). Thus, given that ‖S2‖ = oP (1) by a similar argument, it follows

that
∑m

j=0 w(j,m)(Ω̂j − Ω̄j)→P 0, which completes the proof of the theorem.
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Appendix C. Weighted-Average Quantile Regression Estimators

versus Parametric Estimators

In this section, we compare our weighted-average quantile regression estimators

with parametric estimators outlined in the Introduction. Recall that given a weighting

function ψ, we define the parametric estimator by

β̃ =

∫ 1

0

β̃(u)ψ(u)du,

where each β̃(u) is the classical (linear) u-quantile regression estimator of Y on X.

This parametric estimator is rather intuitive and is simple to implement. However,

the key advantage of our weighted-average quantile regression estimator β̂ over the

parametric estimator β̃ is that our estimator is much more robust with respect to pos-

sible misspecification. In particular, our estimator requires fewer parametric assump-

tions for consistency. Indeed, we claim that consistency of the parametric estimator β̃

can only be guaranteed under a continuum of constraints, namely qY |X(u) = X ′β(u)

for all u ∈ (0, 1), whereas consistency of our estimator β̂, as discussed in the previous

section, requires only one constraint:
∫ 1

0
qY |X(u)ψ(u)du = X ′β.

To prove this claim, suppose that
∫ 1

0
qY |X(u)ψ(u)du = X ′β and recall that the

classical u-quantile regression estimator

β̃(u) = arg min
b∈Rd

(
u

T

T∑
t=1

(Yt −X ′tb)+ +
1− u
T

T∑
t=1

(Yt −X ′tb)−

)
(44)

converges in probability to

β̄(u) = arg min
b∈Rd

(
uE[(Y −X ′b)+] + (1− u)E[(Y −X ′b)−]

)
, (45)

where for any random variable Z, we use Z+ = ZI{Z ≥ 0} and Z− = ZI{Z < 0}
to denote its positive and negative parts. Whenever qY |X(u) is linear in X, i.e.

qY |X(u) = X ′β(u) for some β(u) almost surely, it is a standard exercise to show that

β̄(u) = β(u) by taking the first-order conditions of (45), meaning that β̃(u)→P β(u),

and so

β̃ =

∫ 1

0

β̃(u)ψ(u)du→P

∫ 1

0

β(u)ψ(u)du = β,

where the last equality follows from substituting qY |X(u) = X ′β(u) into the regression

model
∫ 1

0
qY |X(u)ψ(u)du = X ′β. On the other hand, whenever qY |X(u) is not linear

in X, we still have β̃(u) →P β̄(u), so that β̃ =
∫ 1

0
β̃(u)ψ(u)du →P

∫ 1

0
β̄(u)ψ(u)du,
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but in general
∫ 1

0
β̄(u)ψ(u)du 6= β in this case. Indeed, consider the following data-

generating process:

Y = Xβ +X2γ(U),

where X ∼ U [0, 2] and U ∼ U [0, 1] are independent random variables, β is any

constant, and γ(u) = 4u − 3 for all u ∈ [0, 1]. Suppose that ψ(u) = 2I{u > 1/2} for

all u ∈ (0, 1). It is then easy to check that
∫ 1

0
qY |X(u)ψ(u)du = X ′β but, as we show

below, 2
∫ 1

1/2
β̄(u)du = β+19/6−8/

√
6. Therefore, the parametric estimator β̃ is not

consistent in this case, whereas our estimator β̂ is. Of course, the problem for the

parametric estimator here is that qY |X(u) = Xβ(u) +X2γ(u) is not linear in X.

In addition, another advantage of our estimator β̂ over the parametric estimator

β̃ is that the latter requires estimating u-quantile regressions for values of u that

are close to the boundaries of the interval [0, 1]. This is problematic because such

quantile regression estimators may have a slow rate of convergence, undermining the

properties of the estimator β̃. In principle, one could consider a truncated version of

β̃, namely

β̃ε =

∫ 1−ε

ε

β̃(u)ψ(u)du

for some ε = εT → 0 as T → ∞ but in this case, one has to find a data-driven

method to choose ε, and we are not aware of such methods. In contrast, although our

estimator β̂ requires estimating the function F via nonparametric/machine learning

methods, which also rely on tuning parameters, there is a variety of methods in

the literature, such as sample splitting and cross-validation, to choose these tuning

parameters.

We now prove that 2
∫ 1

1/2
β̄(u)du = 2

∫ 2

1/2
β(u)du + 19/6 − 8/

√
6. This calculation

demonstrates that the parametric estimator described above is not consistent. Fix

u ∈ (0, 1) and b ∈ R and denote b̃ = b − β. First, consider the case b ≥ β. In this

case, we have

E[(Y −Xb)+ | X] = E[(X2γ(U)−Xb̃)+ | X] =

∫ ∞
0

P(X2γ(U)−Xb̃ > s | X)ds

=

∫ ∞
0

P

(
U >

1

4

(
3 +

b̃

X
+

s

X2

)
| X

)
ds =

0 if X ≤ b̃,

(X−b̃)2
8

if X > b̃,

and

E[(Y −Xb)− | X] =

∫ ∞
0

P

(
U <

1

4

(
3 +

b̃

X
− s

X2

)
| X

)
=

X2 +Xb̃ if X ≤ b̃,

(3X+b̃)2

8
if X > b̃.
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Therefore, for β ≤ b < β + 2,

d

db
E[(Y −Xb)+] = E

[
d

db
E[(Y −Xb)+ | X]

]
= E

[
b̃−X

4
I{X > b̃}

]
= − b̃

2

16
+
b̃

4
− 1

4

and

d

db
E[(Y −Xb)−] = E

[
d

db
E[(Y −Xb)− | X]

]
= E

[
3X + b̃

4
I{X > b̃}+XI{X ≤ b̃}

]
= − b̃

2

16
+
b̃

4
+

3

4
,

whereas for b ≥ β + 2,

d

db
E[(Y −Xb)+] = 0 and

d

db
E[(Y −Xb)−] = E[X] = 1.

Next, consider the case b < β. In this case, we have

E[(Y −Xb)+ | X] =

−X2 −Xb̃ if X ≤ −b̃/3,
(X−b̃)2

8
if X > −b̃/3.

and

E[(Y −Xb)− | X] =

0 if X ≤ −b̃/3,
(3X+b̃)2

8
if X > −b̃/3.

Therefore, for β − 6 < b < β,

d

db
E[(Y −Xb)+] = E

[
d

db
E[(Y −Xb)+ | X]

]
= E

[
b̃−X

4
I{X > −b̃/3} −XI{X ≤ −b̃/3}

]
=
b̃2

48
+
b̃

4
− 1

4

and

d

db
E[(Y−Xb)−] = E

[
d

db
E[(Y −Xb)− | X]

]
= E

[
3X + b̃

4
I{X > −b̃/3}

]
=
b̃2

48
+
b̃

4
+

3

4
,

whereas for b ≤ β − 6,

d

db
E[(Y −Xb)+] = −E[X] = −1 and

d

db
E[(Y −Xb)−] = 0.
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Hence,

d

db

{
uE[(Y −Xb)+] + (1− u)E[(Y −Xb)−]

}
=


−1 if b ≤ β − 6,

b̃2

48
+ b̃

4
+ 3

4
− u if β − 6 < b < β,

− b̃2

16
+ b̃

4
+ 3

4
− u if β ≤ b < β + 2,

+1 if b ≥ β + 2.

Thus, by the first-order conditions, the solution to the optimization problem in (45)

is

β̄(u) =

β − 6 + 4
√

3u if u < 3/4,

β + 2− 4
√

1− u if u ≥ 3/4.

We conclude that

2

∫ 1

1/2

β̄(u)du = β+2

∫ 3/4

1/2

(−6+4
√

3u)du+2

∫ 1

3/4

(2−4
√

1− u)du = β+
19

6
− 8√

6
6= β.

This means that the parametric estimator described above is not consistent.
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Appendix D. Additional Tables & Figures

Table A.1. Results of Monte Carlo simulation study for the coverage

probability of 90% confidence intervals.

Panel A: Homoscedastic Noise

ψ-type β1

e ∼ N(0, 1) e ∼ t(4)
p = 2 p = 5 p = 2 p = 5

T = 1000 T = 2000 T = 1000 T = 2000 T = 1000 T = 2000 T = 1000 T = 2000

1

.0 0.912 0.918 0.894 0.874 0.896 0.898 0.874 0.874

.3 0.926 0.9 0.918 0.872 0.892 0.888 0.86 0.882

.6 0.906 0.89 0.906 0.888 0.916 0.898 0.866 0.878

.9 0.912 0.884 0.886 0.876 0.886 0.892 0.868 0.886

2

.0 0.882 0.908 0.922 0.888 0.91 0.888 0.89 0.882

.3 0.89 0.908 0.896 0.898 0.908 0.902 0.876 0.9

.6 0.9 0.906 0.878 0.866 0.89 0.89 0.874 0.898

.9 0.892 0.892 0.87 0.89 0.902 0.884 0.854 0.886

3

.0 0.884 0.874 0.892 0.904 0.874 0.896 0.888 0.898

.3 0.878 0.878 0.884 0.88 0.872 0.912 0.878 0.896

.6 0.89 0.886 0.876 0.89 0.878 0.898 0.882 0.908

.9 0.88 0.874 0.886 0.886 0.884 0.896 0.87 0.894

4

.0 0.92 0.906 0.912 0.884 0.906 0.896 0.866 0.89

.3 0.92 0.914 0.914 0.876 0.902 0.888 0.86 0.882

.6 0.918 0.914 0.912 0.874 0.914 0.882 0.848 0.896

.9 0.928 0.906 0.9 0.876 0.898 0.894 0.872 0.892

Panel B: Heteroscedastic noise

ψ-type β1

e ∼ N(0, 1) e ∼ t(4)
p = 2 p = 5 p = 2 p = 5

T = 1000 T = 2000 T = 1000 T = 2000 T = 1000 T = 2000 T = 1000 T = 2000

1

.0 0.916 0.906 0.872 0.862 0.884 0.888 0.846 0.88

.3 0.906 0.906 0.916 0.848 0.886 0.88 0.862 0.868

.6 0.902 0.908 0.91 0.886 0.88 0.89 0.844 0.872

.9 0.902 0.902 0.912 0.88 0.876 0.886 0.842 0.862

2

.0 0.882 0.896 0.894 0.884 0.888 0.87 0.872 0.888

.3 0.886 0.884 0.906 0.876 0.884 0.878 0.88 0.894

.6 0.886 0.91 0.894 0.88 0.882 0.892 0.854 0.89

.9 0.866 0.884 0.898 0.86 0.858 0.866 0.87 0.896

3

.0 0.89 0.87 0.884 0.882 0.886 0.918 0.878 0.9

.3 0.884 0.876 0.88 0.87 0.88 0.906 0.868 0.898

.6 0.886 0.88 0.878 0.884 0.892 0.914 0.876 0.908

.9 0.888 0.868 0.886 0.868 0.886 0.906 0.88 0.902

4

.0 0.898 0.916 0.882 0.876 0.876 0.894 0.846 0.878

.3 0.926 0.912 0.9 0.86 0.878 0.892 0.84 0.884

.6 0.914 0.912 0.918 0.864 0.88 0.892 0.842 0.878

.9 0.91 0.898 0.91 0.876 0.876 0.874 0.844 0.882
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Table A.2. Results of Monte Carlo simulation study for the mean absolute

error.

Panel A: DGP1, Homoscedastic Noise

ψ-type β1

e ∼ N(0, 1) e ∼ t(4)
p = 2 p = 5 p = 2 p = 5

T = 1000 T = 2000 T = 1000 T = 2000 T = 1000 T = 2000 T = 1000 T = 2000

1

.0 0.158 0.107 0.171 0.12 0.373 0.255 0.381 0.254

.3 0.152 0.109 0.166 0.123 0.368 0.252 0.379 0.257

.6 0.151 0.113 0.171 0.123 0.369 0.253 0.376 0.259

.9 0.152 0.115 0.175 0.123 0.368 0.243 0.375 0.255

2

.0 0.214 0.152 0.215 0.154 0.478 0.339 0.485 0.316

.3 0.212 0.147 0.224 0.153 0.463 0.332 0.472 0.319

.6 0.21 0.147 0.219 0.158 0.464 0.333 0.465 0.318

.9 0.2 0.15 0.229 0.159 0.467 0.321 0.483 0.319

3

.0 0.076 0.057 0.074 0.054 0.086 0.058 0.088 0.058

.3 0.078 0.058 0.074 0.056 0.086 0.058 0.089 0.058

.6 0.077 0.058 0.075 0.056 0.087 0.059 0.088 0.057

.9 0.079 0.06 0.077 0.056 0.089 0.06 0.093 0.059

4

.0 0.14 0.097 0.153 0.104 0.326 0.226 0.336 0.218

.3 0.138 0.097 0.152 0.108 0.324 0.218 0.336 0.221

.6 0.136 0.099 0.156 0.109 0.327 0.219 0.335 0.222

.9 0.131 0.1 0.152 0.107 0.323 0.215 0.331 0.224

Panel B: DGP2, Heteroscedastic noise

ψ-type β1

e ∼ N(0, 1) e ∼ t(4)
p = 2 p = 5 p = 2 p = 5

T = 1000 T = 2000 T = 1000 T = 2000 T = 1000 T = 2000 T = 1000 T = 2000

1

.0 0.201 0.143 0.232 0.159 0.479 0.335 0.497 0.32

.3 0.204 0.147 0.219 0.16 0.487 0.336 0.494 0.327

.6 0.206 0.152 0.234 0.168 0.483 0.332 0.494 0.331

.9 0.203 0.146 0.222 0.161 0.48 0.324 0.482 0.329

2

.0 0.278 0.194 0.278 0.194 0.596 0.435 0.634 0.407

.3 0.277 0.194 0.279 0.199 0.603 0.43 0.624 0.399

.6 0.272 0.191 0.279 0.208 0.601 0.426 0.622 0.401

.9 0.267 0.191 0.278 0.216 0.604 0.427 0.602 0.406

3

.0 0.098 0.074 0.095 0.071 0.112 0.075 0.113 0.073

.3 0.097 0.074 0.096 0.072 0.108 0.075 0.111 0.073

.6 0.098 0.074 0.095 0.071 0.111 0.075 0.111 0.073

.9 0.099 0.076 0.095 0.072 0.111 0.076 0.112 0.073

4

.0 0.183 0.127 0.2 0.138 0.425 0.294 0.429 0.278

.3 0.184 0.128 0.202 0.144 0.429 0.291 0.432 0.282

.6 0.187 0.132 0.205 0.149 0.42 0.291 0.439 0.286

.9 0.182 0.131 0.204 0.15 0.427 0.291 0.434 0.284
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Figure A.1. Coefficient by Percentiles

This figure plots the coefficient estimates and the 95% confidence inter-
vals for the 1% to 10% quantile regressions. The dependent variables
are the excess returns of the Fama-French 5 industries. The dependent
variables are the Fama-French 5 factors. The estimates are multiplied
by -1 to be consistent with the risk regressions.
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Table A.4. Quantile Regression – Higher Order

This table shows the quantile regression results of regressing the in-
dustry returns to the higher moments and interaction terms of the
Fama-French 5 factors. Standard errors are reported in parentheses.

Panel A (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind cnsmr cnsmr manuf manuf hitec hitec hlth hlth other other

Quantile 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

mktrf 0.88 0.89 0.99 0.99 1.08 1.10 0.82 0.83 1.07 1.07

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

smb 0.04 0.08 0.14 0.13 -0.06 -0.10 -0.06 -0.09 -0.03 -0.03

(0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.03) (0.04) (0.01) (0.02)

hml -0.17 -0.14 0.22 0.19 -0.34 -0.33 -0.43 -0.49 0.54 0.56

(0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.03) (0.04) (0.01) (0.02)

rmw 0.31 0.26 0.39 0.44 -0.33 -0.34 -0.31 -0.41 -0.20 -0.24

(0.03) (0.04) (0.04) (0.05) (0.03) (0.04) (0.04) (0.07) (0.02) (0.03)

cma 0.26 0.20 -0.05 -0.09 0.09 0.09 0.08 0.12 -0.19 -0.19

(0.03) (0.04) (0.05) (0.07) (0.03) (0.05) (0.05) (0.08) (0.03) (0.04)

mktrf2 -0.01 -0.02 -0.02 -0.02 -0.00 -0.00 -0.02 -0.01 -0.01 -0.01

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

smb2 -0.05 -0.06 -0.06 -0.02 -0.00 -0.02 -0.10 -0.14 -0.02 -0.02

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.03) (0.01) (0.01)

hml2 -0.00 0.01 -0.06 -0.10 -0.02 -0.02 -0.05 -0.08 -0.02 -0.03

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00) (0.01)

rmw2 -0.15 -0.24 -0.03 -0.15 -0.30 -0.31 -0.17 -0.24 -0.14 -0.22

(0.02) (0.03) (0.03) (0.05) (0.02) (0.03) (0.04) (0.06) (0.02) (0.03)

cma2 -0.17 -0.20 -0.41 -0.54 -0.45 -0.57 -0.26 -0.42 -0.13 -0.09

(0.04) (0.05) (0.05) (0.07) (0.04) (0.05) (0.05) (0.09) (0.03) (0.04)

mktrf3 -0.00 -0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

smb3 0.01 -0.00 -0.02 -0.02 0.00 0.00 0.02 0.03 0.00 0.00

(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00)

hml3 -0.00 -0.00 -0.02 -0.02 0.00 0.00 0.02 0.03 0.01 0.01

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

rmw3 0.03 0.08 -0.01 -0.05 -0.06 -0.09 0.19 0.23 0.08 0.11

(0.01) (0.02) (0.02) (0.03) (0.01) (0.02) (0.02) (0.03) (0.01) (0.01)

cma3 -0.07 0.10 0.02 0.09 -0.20 -0.25 0.13 -0.05 -0.08 -0.03

(0.02) (0.03) (0.03) (0.04) (0.02) (0.03) (0.03) (0.06) (0.02) (0.02)

Cons -0.30 -0.40 -0.40 -0.55 -0.30 -0.42 -0.46 -0.62 -0.27 -0.36

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.03) (0.01) (0.01)
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Panel B (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind cnsmr cnsmr manuf manuf hitec hitec hlth hlth other other

Quantile 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

mktrf 0.87 0.87 1.02 1.03 1.07 1.08 0.80 0.79 1.06 1.04

(0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01)

smb 0.06 0.09 0.10 0.07 -0.07 -0.08 -0.02 -0.05 0.00 -0.01

(0.02) (0.02) (0.02) (0.03) (0.02) (0.03) (0.02) (0.04) (0.01) (0.02)

hml -0.19 -0.18 0.14 0.11 -0.33 -0.32 -0.32 -0.32 0.60 0.62

(0.01) (0.02) (0.02) (0.03) (0.02) (0.03) (0.02) (0.04) (0.01) (0.02)

rmw 0.30 0.30 0.41 0.45 -0.40 -0.47 -0.14 -0.19 -0.16 -0.17

(0.02) (0.03) (0.04) (0.05) (0.03) (0.04) (0.03) (0.06) (0.02) (0.03)

cma 0.21 0.19 0.03 -0.02 0.07 0.05 0.07 0.09 -0.30 -0.30

(0.03) (0.04) (0.05) (0.06) (0.04) (0.05) (0.04) (0.08) (0.02) (0.04)

mktrf × smb 0.03 0.02 0.06 0.09 0.03 0.04 0.04 0.05 0.02 0.01

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

mktrf × hml -0.01 -0.02 -0.06 -0.06 -0.01 -0.00 -0.03 -0.04 -0.01 -0.01

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00) (0.01)

mktrf × rmw 0.02 0.00 -0.01 -0.02 0.06 0.06 0.08 0.08 -0.00 -0.02

(0.01) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.03) (0.01) (0.02)

mktrf × cma 0.01 -0.00 0.14 0.13 0.03 0.02 0.03 0.01 0.04 0.05

(0.02) (0.02) (0.03) (0.03) (0.02) (0.03) (0.02) (0.04) (0.01) (0.02)

smb× hml -0.03 -0.03 -0.10 -0.13 -0.05 -0.05 -0.03 -0.06 -0.06 -0.05

(0.01) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.03) (0.01) (0.02)

smb× rmw -0.01 -0.03 0.04 0.13 0.08 0.08 -0.02 -0.06 0.03 0.01

(0.03) (0.04) (0.04) (0.05) (0.03) (0.05) (0.04) (0.07) (0.02) (0.03)

smb× cma 0.05 0.03 0.21 0.20 -0.06 -0.04 0.10 0.13 0.04 0.04

(0.03) (0.05) (0.05) (0.07) (0.04) (0.06) (0.05) (0.09) (0.03) (0.04)

hml × rmw 0.02 0.03 0.09 0.15 0.08 0.09 -0.05 -0.00 0.01 0.04

(0.02) (0.03) (0.03) (0.04) (0.02) (0.04) (0.03) (0.05) (0.02) (0.03)

hml × cma -0.05 -0.08 -0.22 -0.30 -0.15 -0.15 -0.13 -0.21 -0.11 -0.09

(0.03) (0.04) (0.04) (0.05) (0.03) (0.05) (0.04) (0.07) (0.02) (0.03)

rmw × cma -0.04 -0.07 0.22 0.20 0.08 -0.04 -0.10 -0.16 0.04 -0.03

(0.05) (0.07) (0.07) (0.09) (0.06) (0.08) (0.07) (0.12) (0.04) (0.06)

Cons -0.36 -0.50 -0.50 -0.69 -0.39 -0.56 -0.57 -0.80 -0.32 -0.43

(0.01) (0.01) (0.02) (0.02) (0.01) (0.02) (0.01) (0.03) (0.01) (0.01)
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Table A.5. Inequality Regression

This table reports results of the inequality regression for each year from
2001 to 2018. Standard errors are reported in parentheses.

2001 2002 2003 2004 2005 2006 2007 2008 2009

Fam Size 0.147 0.061 0.021 0.089 0.051 -0.070 -0.004 -0.034 0.126

(0.052) (0.044) (0.049) (0.054) (0.053) (0.051) (0.048) (0.051) (0.049)

No Child -0.151 -0.111 -0.024 -0.134 -0.115 0.028 -0.026 0.038 -0.194

(0.062) (0.053) (0.060) (0.064) (0.063) (0.061) (0.057) (0.061) (0.058)

Age 0.019 0.010 0.034 0.011 0.013 0.013 0.001 0.019 0.020

(0.010) (0.009) (0.010) (0.011) (0.010) (0.010) (0.010) (0.010) (0.010)

Edu 0.140 0.122 0.134 0.061 0.118 0.129 0.117 0.099 0.113

(0.015) (0.014) (0.015) (0.016) (0.015) (0.015) (0.014) (0.015) (0.014)

Constant 0.055 0.705 -0.419 1.138 0.778 0.886 1.365 0.784 0.377

(0.480) (0.429) (0.482) (0.504) (0.489) (0.498) (0.467) (0.480) (0.463)

2010 2011 2012 2013 2014 2015 2016 2017 2018

Fam Size -0.011 -0.134 -0.114 -0.094 -0.019 -0.123 -0.090 -0.128 -0.083

(0.048) (0.044) (0.048) (0.052) (0.044) (0.047) (0.047) (0.047) (0.049)

No Child -0.042 0.060 0.067 0.077 -0.071 0.059 0.041 0.085 0.040

(0.058) (0.053) (0.058) (0.063) (0.053) (0.057) (0.057) (0.056) (0.060)

Age 0.000 0.030 0.012 0.016 0.007 0.022 0.010 -0.006 0.018

(0.010) (0.009) (0.010) (0.011) (0.010) (0.011) (0.011) (0.010) (0.011)

Edu 0.067 0.094 0.057 0.050 0.066 0.065 0.080 0.051 0.071

(0.015) (0.014) (0.015) (0.017) (0.014) (0.015) (0.016) (0.015) (0.016)

Constant 1.912 0.618 1.696 1.623 1.748 1.274 1.704 2.643 1.366

(0.469) (0.442) (0.490) (0.542) (0.459) (0.499) (0.520) (0.496) (0.528)
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Table A.6. Social Welfare Regression

This table reports results of the social welfare (exponential) regression for each year
from 2001 to 2018. Standard errors are reported in parentheses.

2001 2002 2003 2004 2005 2006 2007 2008 2009

Fam Size -0.061 -0.051 -0.026 -0.060 -0.050 0.030 0.009 0.031 -0.080

(0.038) (0.031) (0.039) (0.045) (0.039) (0.038) (0.033) (0.036) (0.036)

No Child 0.146 0.166 0.113 0.166 0.199 0.091 0.094 0.061 0.220

(0.046) (0.037) (0.047) (0.053) (0.046) (0.046) (0.040) (0.043) (0.043)

Age -0.005 0.004 -0.013 0.007 0.004 0.014 0.014 0.000 0.002

(0.008) (0.006) (0.008) (0.009) (0.008) (0.008) (0.007) (0.007) (0.007)

Edu 0.109 0.104 0.088 0.117 0.106 0.110 0.123 0.128 0.126

(0.011) (0.010) (0.012) (0.013) (0.011) (0.012) (0.010) (0.010) (0.010)

Constant 5.179 4.836 5.675 4.613 4.738 4.162 4.222 4.750 4.828

(0.356) (0.302) (0.380) (0.418) (0.361) (0.375) (0.327) (0.339) (0.339)

2010 2011 2012 2013 2014 2015 2016 2017 2018

Fam Size 0.043 0.054 0.091 0.073 0.009 0.071 0.052 0.123 0.081

(0.036) (0.032) (0.035) (0.040) (0.031) (0.034) (0.035) (0.035) (0.037)

No Child 0.082 0.101 0.025 0.052 0.149 0.090 0.092 0.011 0.038

(0.043) (0.039) (0.042) (0.049) (0.037) (0.041) (0.042) (0.042) (0.045)

Age 0.023 -0.005 0.015 0.012 0.018 0.008 0.020 0.018 0.003

(0.007) (0.007) (0.007) (0.009) (0.007) (0.008) (0.008) (0.008) (0.008)

Edu 0.157 0.150 0.171 0.176 0.164 0.168 0.149 0.170 0.169

(0.011) (0.010) (0.011) (0.013) (0.010) (0.011) (0.012) (0.011) (0.012)

Constant 3.370 4.651 3.533 3.598 3.622 3.890 3.516 3.370 4.178

(0.347) (0.325) (0.359) (0.415) (0.326) (0.360) (0.382) (0.368) (0.396)
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Appendix E. Data

Financial Market Data. The Fama-French industry daily returns are obtained

from Kenneth French’s website. In our main specifications, we use the Fama-French

5 industry definition. In the Appendix, we also provide results based on the Fama-

French 30-industry definition. The factor model data, including the Fama-French

3-factor and the Fama-French 5-factor, are also obtained from Kenneth French’s web-

site. The industry returns and the factor model returns span from 1963 to 2021.

Wage Data. The data are drawn from the IPUMS website. We apply filters similar

to Angrist et al. (2006). The sample for the calculations consists of US-born black

and white men with age 40-49 with at least 5 years of eduation, with positive wages

and hours worked. The data span from 2001 to 2018. For each year, we use a 30,000

random sample. The logged wage variable is the average logged weekly wage and is

calculated as the log of the annual income from work divided by weeks worked.
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