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Abstract

We develop a framework to theoretically and empirically analyze the fluctuations of the ag-
gregate stock market. Households allocate capital to institutions, which are fairly constrained,
for example operating with a mandate to maintain a fixed equity share or with moderate scope
for variation in response to changing market conditions. As a result, the price elasticity of
demand of the aggregate stock market is small, and flows in and out of the stock market have
large impacts on prices.

Using the recent method of granular instrumental variables, we find that investing $1 in
the stock market increases the market’s aggregate value by about $5. We also develop a new
measure of capital flows into the market, consistent with our theory. We relate it to prices,
macroeconomic variables, and survey expectations of returns.

We analyze how key parts of macro-finance change if markets are inelastic. We show how
general equilibrium models and pricing kernels can be generalized to incorporate flows, which
makes them amenable to use in more realistic macroeconomic models and to policy analysis.

Our framework allows us to give a dynamic economic structure to old and recent datasets
comprising holdings and flows in various segments of the market. The mystery of apparently
random movements of the stock market, hard to link to fundamentals, is replaced by the
more manageable problem of understanding the determinants of flows in inelastic markets. We
delineate a research agenda that can explore a number of questions raised by this analysis,
and might lead to a more concrete understanding of the origins of financial fluctuations across
markets.
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1 Introduction
One key open question is why the stock market exhibits so much volatility. This paper provides
a new model and new evidence suggesting that this is because of flows and demand shocks in
surprisingly inelastic markets. We make the case for this theoretically and empirically, and delineate
some of the numerous implications of that perspective.

We start by asking a simple question: when an investor sells $1 worth of bonds and buys $1
worth of stocks, what happens to the valuation of the aggregate stock market? In the simplest
“efficient markets” model, the price is the present value of future dividends, so the valuation of the
aggregate market should not change. However, we find both theoretically and empirically, using
an instrumental variables strategy, that the market’s aggregate value goes up by about $5 (our
estimates are between $3 and $8, and we will use $5 for simplicity in the theory and discussion).1
Hence, the stock market in this simple model is a very reactive economic machine, which turns an
additional $1 of investment into an increase of $5 in aggregate market valuations.

Put another way, if investors create a flow of 1% as a fraction of the value of equities, the model
implies that the value of the equity market goes up by 5%. This is the mirror image of the low
aggregate price-elasticity of demand for stocks: if the price of the equity market portfolio goes up
by 5%, demand falls by only 1%, so that the price elasticity is 0.2. In contrast, most rational or
behavioral models would predict a very small impact, about 100 times smaller, and a price elasticity
about 100 times larger. This high sensitivity of prices to flows has large consequences: flows in the
market and demand shocks affect prices and expected returns in a quantitatively important way.
We refer to this notion as the “inelastic markets hypothesis.”

We lay out a simple model explaining market inelasticity. In its most basic version, a represen-
tative consumer can invest in two funds: a pure bond fund, and a mixed fund that invests in stocks
and bonds according to a given mandate — for instance, that 80% of the fund’s assets should be
invested in equities. Then, we trace out what happens if the consumer sells $1 of the pure bond
fund and invests this $1 in the mixed fund. The mixed fund must invest this inflow into stocks and
bonds: but that pushes up the prices of stocks, which again makes the mixed fund want to invest
more in stocks, which pushes prices up, and so on. In equilibrium, we find that the total value of
the equity market increases by $5.

Then, the paper explores inelasticity in richer setups and finds that the ramifications of this
simple model are robust. For instance, the core economics survives, suitably modified, if the fund
is more actively contrarian, so that its policy is to buy more equities when the expected excess
return on equities is high. Moreover, the model aggregates well. If different investors have different
elasticities, the total market elasticity is the size-weighted elasticity of market participants. Impor-
tantly, the correct measure of size is the share of equity they hold. The model also clarifies how to
measure net flows into the aggregate stock market (even though for every buyer there is a seller),
which guides the empirical analysis. Moreover, it extends readily to an infinite horizon: in that
case, the price today is influenced by the cumulative inflows to date and the present value of future
expected flows — divided again by the market elasticity.

The empirical core of this paper is to provide a quantification of the market’s aggregate elasticity.
To do that, we use a new instrumental variables approach, which was conceived for this paper and
worked out in a stand-alone paper (Gabaix and Koijen (2020)), the “granular instrumental variables”

1The price impact is linear and symmetric: selling $2 worth of equities (buying $2 worth of bonds) decreases the
valuation of aggregate equities by $10.
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(GIV) approach. The key idea is that we use the idiosyncratic demand shocks of large institutions
or sectors as a source of exogenous variation. We extract these idiosyncratic shocks from factor
models estimated on the changes in holdings of various institutions and sectors. We then take the
size-weighted sum of these idiosyncratic shocks (the GIV), and use it as a primitive instrument
to see how these demand shocks affect aggregate prices and the demand of other investors. This
way, we can estimate both the aggregate sensitivity of equity prices to demand shocks (which is the
multiplier around 5 we mentioned above) and the demand elasticity of various institutions (around
0.2).

Importantly, the data are consistent with a quite long-lasting price impact of flows. Indeed, in
the simplest version of the model, the price impact is perfectly long-lasting. This is not necessarily
because flows release information, but instead simply because the permanent shift in the demand
for stocks must create a permanent shift in their equilibrium price. We perform a large number of
robustness checks, for example using different data sets (the Flow of Funds as well as 13F filings).
The findings are consistent across specifications, in the sense that the price impact multiplier remains
around 5. We also construct a measure of capital flows into the market. We find that this measure
is strongly correlated with realized returns and survey expectations of returns, but it is only weakly
correlated with macroeconomic growth.

Here are three a priori reasons to entertain that markets would be inelastic First of
all, if one wants to buy $1 worth of equities, many funds actually cannot supply that: for instance, a
fund that invests entirely in equities cannot exchange them for bonds. Many institutions have tight
mandates, something that we confirm empirically. Relatedly, it is hard to find investors who could
act as macro arbitrageurs. For instance, hedge funds are relatively small (they hold less than 5% of
the equity market), and they tend to reduce their equity allocations in bad times (due to outflows
and binding risk constraints; see Ben-David et al. (2012)). Second, the transfer of equity risk across
investor sectors is small (about 0.6% of the aggregate value of the equity market per quarter for
the average pair of investor sectors). This implies that the demand elasticity of most investors is
quite small or that investors experience nearly identical demand shocks (as if they were to disagree,
we would see large flows in elastic markets), something which may be implausible. Third, a large
literature estimates demand elasticities for individual stocks using a variety of methodologies, where
the latest estimates of this “micro” demand elasticity are approximately 1 (we provide complete
references below). As the macro elasticity should arguably be lower than the micro elasticity
(considering that, for example, Ford and General Motors are closer substitutes than the stock
market index and a bond), this suggests a low macro elasticity, perhaps less than 1. Consistent
with this reasoning, a new literature explores elasticities for “factors” in the US, such as size and
value, and finds elasticities of around 0.2. Hence, in light of this existing evidence, our low macro
elasticity may be less surprising.

Suppose that the “inelastic markets hypothesis” is true; why do we care? First, investor-
specific flows and demand shocks are quantitatively impactful. As a result, one can replace the “dark
matter” of asset pricing (whereby price movements are explained by hard-to-measure latent forces)
with tangible flows and the demand shocks of different investors. This suggests a research program
in which determinants of asset prices can be traced back to measurable demand shocks and flows
of concrete investors. By studying the actions of these investors, we can infer their demand curves,
and theorize about their determinants.
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If equity markets are indeed inelastic, several questions that are irrelevant or uninteresting in
traditional models become interesting. For instance, if the government buys stocks, stock prices go
up — again by this factor of 5. This may be useful as a policy tool — a “quantitative easing” policy
for stocks rather than long-term bonds. It may also be used to analyze previous policy experiments,
in Hong Kong, Japan, and China, and give a quantitative framework to complement the previous
qualitative discussions of policy proposals of this kind (Tobin (1998); Farmer (2010); Brunnermeier
et al. (2020)).

Also, firms as financiers materially impact the market in our calibration. Prior research showed
that firms react to price signals, such as in their decisions to issue dividends or raise funds in stocks
versus bonds (Baker and Wurgler (2004); Ma (2019)): now we can quantify how firms’ actions
impact the market. For instance, stock buybacks can have a large aggregate effect. Suppose that
the corporate sector buys back $1 worth of equities rather than paying $1 worth of dividends. In the
traditional Modigliani-Miller world, the market value of equities does not change at all. In contrast,
in an inelastic world, the value of equities goes up, by a tentative estimate of around $2.2 As a
naive non-economist might think, “if firms buy shares, that drives up the price of shares.” A rational
financial economist might say that this is illiterate. But the naive thinking is actually qualitatively
correct in inelastic markets. Hence, potentially, as share buybacks account for a large portion of
flows (they have been about as large as dividend payments in the recent decade), corporate actions
account for a sizable share of equity purchases, and therefore of the volatility and increase in the
value of the stock market. This “corporate finance of inelastic markets” is an interesting avenue of
research.

If markets are inelastic, then macro-finance should reflect that. Accordingly, we construct a
general equilibrium model in the spirit of Lucas (1978) where there is a central role for flows and
inelasticity. It clarifies the role of demand shocks and flows, the determination of the interest rate,
and shows how to augment traditional general equilibrium models with flows in inelastic markets.
That makes those models more realistic, and better suited for policy. This model may serve as a
prototype for models enriched by inelasticity. Indeed, it calibrates well, and replicates quantitatively
the salient features of the stock market, such as the volatility and size of the equity premium, the
slow mean-reversion of the price-dividend ratio, and the ability to predict stock return with the
price-dividend ratio at different horizons. We also show how the model can be used to match the
strong correlation between prices and subjective beliefs about long-term growth (Bordalo et al.
(2020)), even if fluctuations in beliefs have only a modest impact on actions (Giglio et al. (2021a)),
as the resulting flows are amplified in inelastic markets. We conclude that our general equilibrium
model with “inelastic markets” is competitive with other widely-used general equilibrium models
that match equity market moments, be it via habit formation (Campbell and Cochrane (1999)), long
run risks (Bansal and Yaron (2004)), or variable rare disasters (Gabaix (2012), Wachter (2013)).
In addition to proposing a new amplification mechanism, its main advantage, as we see it, is that
is relies on an observable force, flows in and out of equities.

We also show how to connect flows to the “stochastic discount factor” (SDF) approach: the flows
are primitive, and the SDF is a book-keeping device to record their influence on prices. This model
could be helpful to get correct risk prices in macroeconomic models, including their variation due
to flows.

One limitation of our study is that we postpone to future research the detailed investigation
of what determines flows in the first place: instead, we provide descriptive statistics showing they

2The estimate is tentative, in part as it relies on estimates of the rationality of the consumer after the buybacks.
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correlate sensibly with other variables, such as prices and measured beliefs. The reason is chiefly
that this would be a stand-alone paper. But we think it is quite doable, and indeed we are working
on this. Rather than studying “shocks to noise traders” abstractly, we replace them with investor-
level flows and demand shocks that may be easier to understand. Indeed, episode by episode, one
can ask questions such as “why did firms lower their buybacks?” (answer: because they had lower
earnings), “why did pension funds buy?” (answer: because their mandate forces them to buy stocks
after stocks fall), or “why did hedge funds sell?” (answer: their investors sold, given their low past
returns).

Literature review Our paper is about the macro elasticity, in contrast to the micro elasticity
estimated in the literature, including Shleifer (1986), Harris and Gurel (1986a), Wurgler and Zhu-
ravskaya (2002), and Duffie (2010).3 We summarize the evidence on existing elasticity estimates in
more detail in Section 2.4.

We build on the insights of De Long et al. (1990), who write an equilibrium model in which
noisy beliefs create demand shocks that move the market and the equity premium. They discuss a
rich set of qualitative ideas, some of which we can formally analyze and quantify, such as the failure
of the Modigliani-Miller theorem and the notion that if most market participants passively hold
the market portfolio, prices react sharply to flows. De Long et al. (1990) dealt with these issues
qualitatively, but, influenced by it, a literature has studied the impact of mutual fund flows in the
market, for example Warther (1995).4 In addition, an active literature studies the impact of mutual
fund and ETF flows on the cross-section of equity prices, for instance Frazzini and Lamont (2008),
Lou (2012), Ben-David et al. (2018), Dou et al. (2020), and Dong et al. (2021). One innovation
of our paper is to provide a systematic quantitative framework to think about this, to include all
sectors (not just mutual funds), and to think about causal inference at the level of the aggregate
stock market via GIV. Deuskar and Johnson (2011a) use high-frequency order flow data for S&P 500
futures to show that about half of the price variation can be attributed to flows shocks. Moreover,
they find these shocks to be permanent over the horizons that they consider.5

A few papers have modeled how flows might be important, examining general flows in currencies
(Gabaix and Maggiori (2015), Greenwood et al. (2019), Gourinchas et al. (2020)), slow rebalancing
mechanisms in currencies (Bacchetta and Van Wincoop (2010)) and equities (Chien et al. (2012),
who emphasize flows coming from the supply of shares by firms), or switching between types of
stocks (Barberis and Shleifer (2003), Vayanos and Woolley (2013b)). However, we believe we are
the first to conceptually and quantitatively explore the elasticity of the aggregate stock market using
a simple economic model to link data on total holdings and flows to fluctuations in the aggregate
stock market. We also provide the first instrumental variables estimate of the elasticity of the US
equity market. Camanho et al. (2019) provide a partial-equilibrium model of exchange rates with
flows, quantified with the GIV methodology developed for the present paper and spelled out in

3A growing literature studies elasticities in global financial markets, see for instance Dierker et al. (2016) and
Charoenwong et al. (2020).

4See also Edelen and Warner (2001), Goetzmann and Massa (2003), and Ben-Rephael et al. (2012).
5Deuskar and Johnson (2011a) study a system of equations in which flows may impact returns and returns may

impact flows. To identify price impact, they rely on identification via heteroskedasticity as in Rigobon (2003). As
only the demand shock in futures markets is used, and not in cash markets, we cannot directly translate the estimates
into multipliers. However, under the assumption that flows in cash markets are highly correlated with flows in futures
markets, their results do show that flows explain a large fraction of market fluctuations, which is consistent with the
inelastic markets hypothesis.
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Gabaix and Koijen (2020).
A related literature finds convincing evidence that supply and demand changes do affect prices

and premia in partially segmented markets, for bonds (for example as in Greenwood and Vayanos
(2014), Greenwood and Hanson (2013), and Vayanos and Vila (2020)), mortgage-backed securities
(Gabaix et al. (2007)), or options (Garleanu et al. (2009)), with models which typically feature
CARA investors and partial equilibrium. Here our focus is on stocks, while our model is quite
different from the models in that literature (in particular, it avoids CARA restrictions on investor
preferences) and is also developed in general equilibrium.

Our work also relates back to the work on flows and asset demand systems by Brainard and
Tobin (1968) and Friedman (1977), among others. This literature faced two important challenges
that we address; first, data on asset holdings were not as readily available as they are now and,
second, there were no obvious methods to identify the slopes of asset demand curves. We share
with Koijen and Yogo (2019) and Koijen et al. (2019) our reliance on holdings data by institutions,
and the desire to estimate a demand function. We are mostly interested in the equilibrium in the
aggregate stock market, as opposed to the cross-sectional focus of Koijen and Yogo (2019), and
we emphasize the role of flows, and the dynamics of prices and capital flows over time. Using a
similar modeling strategy as in Koijen and Yogo (2019), Koijen and Yogo (2020) estimate a global
demand system across global equity and bond markets to understand exchange rates, bond prices,
and equity prices across countries. We also relate to the literature on slow-moving capital (Mitchell
et al. (2007); Duffie (2010); Duffie and Strulovici (2012); Moreira (2019); Li (2018)), providing a
new model for price impact with long-lasting effects, and an identified estimation. Finally, part of
our contribution is a new model of intermediaries (He and Krishnamurthy (2013)), with a central
role for flows, trading mandates, and inelasticity.

Much more distant to our paper is the theoretical microstructure literature (Kyle (1985)). There,
inflows cause price changes, but crucially those inflows do not change the equity premium on average
(as the mechanism is rational Bayesian updating, rather than limited risk-bearing capacity, unlike
Kondor and Vayanos (2019)), and hence do not create excess volatility. In contrast, in our paper,
inflows do change the equity premium, creating excessively volatile prices.

Outline Section 2 gives some simple suggestive facts on equity shares and potential macro ar-
bitrageurs such as broker dealers and hedge funds. It also summarizes the existing literature on
elasticity estimates. Section 3 develops our basic model of the stock market: it lays out the basic
notions, and defines clearly elasticity and its link with price impact. It also gives the theoretical
framework that we take to the data. Section 4 contains the empirical analysis, including with an
instrumental variable estimation of the aggregate market elasticity. Section 5 provides a general
equilibrium model that helps to think about how everything fits together: it specializes the ba-
sic model of Section 3 as it endogenizes the interest rate and links cash flows to production and
consumption. Section 6 discusses how the effectiveness of government policy and corporate finance
change with inelastic markets. Section 7 provides a conclusion and thoughts about the research
directions suggested by the present approach. The appendix contains the basic proofs, and details.
The online appendix contains a number of robustness checks and extensions.

Notations We use E for equities, E for expectations, and E for equal-weighted averages. We
call � the average dividend-price ratio of the equity market. We generally use lowercase notations
for deviations from a baseline. For a vector X = (Xi)i=1...N and a series of relative shares Si with
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PN
i=1 Si = 1, we let XE := 1

N

PN
i=1 Xi, XS :=

PN
i=1 SiXi, X� := XS � XE so that XE is the

equal-weighted average of the vector’s elements, XS is the size-weighted average, and X� is their
difference. We define the mean of Xi (with i = 1 . . . N) with weights !i as: E! [Xi] :=

P
i
!iXiP
i
!i

.

2 Data and Suggestive Facts on Equity Shares and Flows
In this section we document several stylized facts and discuss how they are related to our model and
to traditional, elastic asset pricing models. These facts are meant to be no more than suggestive:
the core empirical results are in Section 4, in which we try to carefully quantify the key parameters
of our model.

After discussing the data construction in Section 2.1, we document that institutions often have
quite stable equity shares in Section 2.2, and relatedly we seek to identify investors with elastic
demand for the aggregate stock market in Section 2.3. That is, we ask: who are the deep-pocketed
arbitrageurs that could make the aggregate stock market elastic? This question relates to the work
by Brunnermeier and Nagel (2004), who show that hedge funds did not provide elasticity to the
market during the technology bubble in the late nineties.

2.1 Data sources and construction
We summarize the data sources that we use and define some of the key variables. We leave a
detailed description for Appendix C.

We use sector-level data from the Flow of Funds (FoF) on holdings of equities and bonds as well
as flows into both asset classes. Flows are differences in levels adjusted for mechanical valuation
effects. We compute total bond holdings as the sum of Treasury and corporate bond holdings, and
analogously for flows. As the FoF reports combined values of holdings and flows of foreign and US
assets (except for Treasuries), we adjust these series (Appendix C.1.3). We assume that the flows
transact at end-of-period prices. The sample is quarterly from 1993 to 2018 and we use the June
2019 vintage of the FoF data.6

We use monthly disaggregated data on assets under management, the share invested in US
equities, and flows from Morningstar for mutual funds and ETFs that are domiciled in the US and
that have the US dollar as the base currency. We select the funds in Morningstar’s US category
groups “US Equity,” “Sector Equity,” “Allocation,” and “International Equity.”7 We use the sample
from 1993 to 2019 for mutual funds and from 2002 to 2019 for ETFs.8

For state and local pension funds, we use data from the Center for Retirement Research at
Boston College. The sample is from 2002 to 2019. We use data on the share invested in equities
and fixed income as well as target holdings in equities and fixed income (including cash). State and
local pension funds report once a year (although in different quarters). We use a fund’s actual and
target allocation to equity and fixed income and scale it so that the sum of the shares equals 100%
for each fund.

We use disaggregated data on equity holdings by institutional investors via form 13F filings. We
source the 13F filings from FactSet and the construction is as in Koijen et al. (2019). The sample

6Data of different vintages can be downloaded from this website.
7We remove fund of funds in our analysis to avoid double counting.
8We omit a small number of fund-quarters in which the US equity share exceeds 300% or is lower than -300%, as

these may be data errors.
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Figure 1: Equity shares. The left panel of the figure plots the equity share in 1993 (orange bars)
and in 2018 (green bars) by institutional sector using Flow of Funds data. The right panel displays
the value-weighted average equity share of mutual funds, ETFs, and state and local pension plans.
The equity share of the different institutions are averaged using the relative equity size of each
investor. The construction of the data is discussed in Appendix C.
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is from 1999 to 2019.
We use quarterly data on real GDP growth from the St. Louis Federal Reserve Bank FRED

database, series GDPC1. Data on returns with and without dividends are from the Center for
Research in Security Prices. We use the monthly, value-weighted return with and without dividends
to compute the monthly dividend payment.

Lastly, we use survey expectations of returns from Gallup, as also used by Greenwood and
Shleifer (2014), who use the fraction of investors who are bullish (optimistic or very optimistic)
minus the fraction of investors who are bearish. We update their data, which starts in 1996.Q4, to
2018.Q4, and the resulting series has some gaps.

2.2 Institutions often have a quite stable equity share
As a point of reference, we summarize in Figure 1 the evolution of ownership of the US equity
market from 1993 (orange bars) to 2018 (green bars) based on FoF data. During the last 25 years,
equity ownership moved from households’ direct holdings to institutions. The figure understates
this trend as the “household sector” in the FoF includes various institutional investors such as hedge
funds and non-profits (e.g., endowments). Broker dealers, who received much attention in the recent
asset pricing literature, hold only a small fraction of the US equity market. This limits their ability
to provide elasticity to the market.

For some of these sectors, such as mutual funds, exchange-traded funds, and pension funds, we
have investor-level data on equities and fixed income holdings. In the right panel of Figure 1, we
plot the equity share. We aggregate different investors in a given sector using the relative sizes of
their equity portfolios as opposed to assets under management, consistently with our theory (see
the discussion around 15). To appreciate the importance of this difference, consider an economy
with only pure equity and pure bond funds that have the same amount of assets under management.
The equity-weighted equity share equals 100% while the asset-weighted equity share equals only
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50%. As the relative size of equity and bond assets move, so will the asset-weighted equity share.
Yet, the equity-weighted share will be a constant 100%. It is the equity-weighted equity share that
is relevant per our theory.

The plot shows that equity shares are quite stable over time for broad classes of investors. This
is consistent with many institutions having a rather rigid mandate to maintain a stable equity
share. In the model that we introduce in Section 3, this mandate rigidity will be captured by a low
elasticity () of funds’ asset location to the expected return on equities. In recent work, Cole et
al. (2021) show that a large fraction of households9 also have a high average equity share at 79.2%
with little variation over time (the equity-weighted equity share only drops to 76.4% at the end of
2008). This stability is in part explained by the introduction of target date funds.

2.3 In search of macro arbitrageurs
Figure 1 shows that the equity shares of large groups of investors, such as mutual funds, ETFs, and
pension funds, are stable over time. As the foreign sector consists of similar institutions, this fact
naturally raises the question of who carries out arbitrage across asset classes or, equivalently, which
group of investors aggressively times the market. In the survey that we discuss in the introduction,
two investor sectors are frequently mentioned: hedge funds and broker dealers.10

As Figure 1 shows, broker dealers are very small and hold less than 0.5% of the equity market
directly. So while perhaps important for the micro elasticity, broker dealers are not well-positioned
to absorb large equity flows over longer periods of time. The hedge fund sector is also quite small,
with holdings below 4% of the equity market in long positions going into the financial crisis. Ben-
David et al. (2012) document two important facts. First, hedge funds sold a large fraction of their
equity holdings during the financial crisis, averaging to 3.06% per quarter from 2007.Q3 to 2009.Q1.
Given their small size, this corresponds to selling on average 0.1% of the market each quarter (or
0.7% in total). Redemptions and leverage constraints explain about 80% of this decline in equity
holdings. Second, flows across sectors are small. Ben-David et al. (2012) decompose the market
into hedge funds, mutual funds, short sellers, other institutional investors (e.g., pension funds and
insurance companies), and non-institutional investors (e.g., households). Measured as a fraction of
the market, these investor sectors sell or buy on average just 0.25% of the market per quarter. We
extend these calculations using data from the FoF for the technology crash in 2000-2002 and the
2008 global financial crisis in Appendix D.3. As a fraction of the market, flows between groups
average to at most 0.5% of the market.

In summary, many funds appear to have fairly tight mandates, hedge funds do not appear to
arbitrage the aggregate stock market and amplify demand shocks during severe downturns, and
flows between sectors are small.

The small flows across sectors has implications for the properties of demand shocks, which
are shocks to investors’ beliefs or risk appetite, given the elasticity of demand. The signature of
elastic demand is that disagreement among investors is associated with large flows and quantity
movements. As flows are small, theories featuring elastic demand imply that investors should agree
almost perfectly in their beliefs about expected growth rates and their riskiness, and also have similar
risk aversion. In inelastic markets, in contrast, there can still be large common shocks to beliefs, for

9Their sample appears to be representative of the middle 80% of the retirement wealth distribution of retirement
investors between age 25 and 65.

10While a large literature explores the micro elasticity of hedge funds, we are interested in their market elasticity.
In the FoF, hedge funds are part of the household sector and we cannot study them separately using these data.
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Figure 2: Elasticity estimates in the existing literature. The figure reports elasticity estimates in
the existing literature for individual stocks, factors such as size and value, and the aggregate stock
marke. The elasticity is defined as the percent change in demand per percent change in prices.
We discuss in footnote 12 and Appendix G.5 how to interpret the trade-level estimates of Frazzini
et al. (2018); here, we simply report the “prima facie” estimates. In the bottom of the figure, we
summarize the methodology used to identify the elasticities. For papers with a *, we compute the
elasticity based on the tables reported in the paper ourselves.

instance as during the 2008 financial crisis, but there is much more scope for disagreement.11 This
second interpretation of financial markets may be more consistent with the data on beliefs, which
points to significant fluctuations in disagreement over time (Giglio et al. (2021a)).

2.4 The micro and macro elasticity of markets: Summary of existing
evidence

This paper is about the macro elasticity of the market (that is, how the aggregate stock market’s
valuation increases if one buys $1 worth of stock by selling $1 worth of bonds). This is in contrast
with the very large literature that studies the micro elasticity of the market (which describes how
much the relative price of two stocks changes if one buys $1 of one, and sells $1 of the other). A
more recent literature studies multipliers at different levels of aggregation.

We summarize this literature in Figure 2 and Table 1. In the figure, we report recent demand
elasticity estimates, which are defined as the percent change in aggregate demand per percent

11To make this more concrete, using the notation of the next section, consider the simple decomposition of demand
�qit = �⇣�pt + f⌫

it. If markets are as elastic as in standard models, say ⇣ = 10, then f⌫
it = �qit + 10�pt. As the

volatility of �qit is modest, demand shocks are largely dominated by the second term, 10�pt, and almost perfectly
correlated. This leaves little room for disagreement among investors, even though this is widely document in beliefs
data, as the signature prediction of a model with elastic markets and belief disagreement is the presence of large
flows coupled with small price changes. When markets are inelastic, say ⇣ = 0.2, then f⌫

it = �qit + 0.2�pt. Demand
shocks still contain a large common component, but the correlation between demand shocks is much lower and there
is more scope for disagreement.
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Table 1: Multiplier estimates in the existing literature. The table reports multiplier estimates in
the existing literature for individual stocks (Panel A), factors such as size and value (Panel B), and
the aggregate stock market (Panel C). The multiplier is defined as the percent change in prices per
percent change in shares outstanding purchased or sold by an investor. †We discuss in footnote 12
and Appendix G.5 how to interpret the trade-level estimates of Frazzini et al. (2018) and Bouchaud
et al. (2018); here, we simply report the “prima facie” estimates.

Panel A: Micro multiplier
Methodology Multiplier

Chang, Hong and Liskovich (2014) Index inclusion 0.7 to 2.5
Pavlova and Sikorskaya (2020) Index inclusion 0.3 to 0.5
Schmickler (2020) Dividend payouts 0.8
Lou (2012) Mutual fund flows 1.2
Frazzini et al. (2018), Bouchaud et al. (2018) Trade-level permanent price impact 15†

Panel B: Factor-level multiplier
Ben-David, Li, Rossi and Song (2020a) Morningstar ratings change 5.3
Peng and Wang (2021) Fund flows 4.8
Li (2021) Fund flows+SVAR 5.7

Panel C: Macro multiplier
Hartzmark and Solomon (2022) Dividend payouts, US 1.5-2.3
Da, Larrain, Sialm and Tessada (2018) Pension fund rebalancing, Chile 2.2
Li, Pearson and Zhang (2020b) IPO restrictions, China 2.6-6.5

change in prices. In the bottom of the figure, we summarize the methodology used to identify the
elasticities.

In Panel A of Table 1, we provide a summary of recent estimates of the micro multiplier, which is
the percent change in prices when an investors purchases a certain fraction of the shares outstanding
in a particular company, while controlling for movements in the aggregate market.12 While there is
a range of estimates, the order of magnitude of the multiplier is around 1. That is, buying 1% of
the shares outstanding of a given stock results makes its price increase by around 1%.

12Also, the empirical market microstructure estimates of price impact are larger than what we find: the price
impact that the microstructure literature finds is a factor of about 15 (Bouchaud et al. (2018); Frazzini et al. (2018)),
which may make our estimate of 5 seem moderate. Microstructure results are typically couched in a form such as
“buying 2.5% of the daily volume of a stock creates a permanent price increase of 0.15%”. At first glance, values in
this range might appear to imply a small price impact. However, they work out to a large price impact multiplier of
M = 15: with 250 days of trading in a year, and a 100% per year turnover, the trade in our example would represent
a purchase of 2.5%

250 = 0.01% of the market capitalization of a stock, so that the impact of 0.15% on the price results in
a multiplier of 15. The interpretation of this kind of microstructure estimates requires some caution, as we discuss in
Section G.5. To sum up, a microstructure estimate of 15 may have the following interpretation: in inelastic markets
with a micro elasticity equal to 1, a large market-wide desired trade (“metaorder”) is on average split into 15 smaller
trades executed over time, by one or several institutions collectively (for example, by three funds pursuing a similar
strategy, each splitting their desired position change into five smaller trades). These microstructure estimates are
also themselves to be taken with caution, since identification tends to be difficult as trades are not exogenous to
prices. Using high frequency data with a GIV-based identification may be a promising way to enrich identification
procedures in microstructure.
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In addition, several recent studies (sometimes motivated by the present paper) have looked at
the “factor-level” multiplier, which is the price impact if an investor buys a fraction of the shares
outstanding of a cross-sectional factor such as size or value. We report those estimates in Panel B.
The studies report a multiplier that is substantially above 1 and closer to 5. In Panel C, we report
recent estimates of the “macro multiplier,” the parameter of interest in this paper, for various stock
markets.13 Once again, the multiplier estimates are well above 1. Equivalently, the macro elasticity,
which is the inverse of the multiplier, is well below 1.

In addition to these estimates, Haddad et al. (2021) find that micro multipliers increase in firm
size and, relatedly, Li and Lin (2022a) find that multipliers increase in the level of aggregation.
They find a micro multiplier around 2 and a multiplier around 5 at the factor level.

Another important question is whether prices revert back to their levels prior to the shock and
how long this takes. While this question is explored only in a subset of the papers, Lou (2012) finds
that it takes between six to nine quarters for prices to revert back. Ben-David et al. (2020a) find that
it takes about two to three years for prices to revert back at the factor level. Pavlova and Sikorskaya
(2020) show how stocks included or excluded in an index have differences in average returns from
one year up to five years. Taken together, the existing evidence in the literature suggests a micro
multiplier around 1 (so, a micro elasticity around 1), and a factor or macro multiplier that is well
above 1 (so, a macro elasticity below 1). In addition, the estimated effects are not confined to high
frequency effects, and are of relevance to macro finance theories.

How do these estimates compare to the elasticities implied by standard asset pricing models? It
is well known (e.g. Petajisto (2009)) that the micro elasticity in standard models is very large, of the
order of 5000 or above. This implies that the micro multiplier (the inverse of the micro elasticity)
is essentially zero and “demand curves are virtually flat.” Based on the estimates reported in Table
1, the models are several orders of magnitudes off in terms of the micro elasticity.

Our focus is on the macro elasticity and we compute it for various frictionless neoclassical asset
pricing models in Section F.4.14 The summary is that in traditional, elastic asset pricing models the
macro elasticity is around 10 to 20, leading to a multiplier around 0.1 to 0.05. As any two stocks
are closer substitutes than stocks and bonds, the micro multiplier is much lower than the macro
multiplier in standard asset pricing models. However, the micro multiplier as estimated in the
literature (see Panel A) is already an order of magnitude larger than the macro multiplier implied
by standard asset pricing models. The macro multiplier estimates are even larger, which deepens
the disconnect between existing estimates and asset pricing models. In Figure 3, we provide a direct
comparison of the empirical estimates to both the macro elasticities implied by theoretical models.
The micro elasticity implied by theory is two orders of magnitude larger.

The profession’s view on the macro elasticity and the underlying mechanism While
the disconnect between the empirical estimates and asset pricing models follows from the existing
literature, these facts have typically not been targeted in macro-finance asset pricing models. In
fact, as we will discuss now, this evidence does not appear to be widely known or accepted in the
profession.

13In interpreting the multipliers in the context of various theories, it is important to note that some shocks are in
principle anticipated (for instance, those related to dividend payouts), while others are unanticipated (for instance,
those related to mutual fund flows). In traditional models, and also in our theory, anticipated flows have a smaller
impact on prices compared to unanticipated flows.

14We discuss the elasticity in the models of Lucas (1978), Bansal and Yaron (2004), Barro (2006), Gabaix (2012),
and the link between our findings and Johnson (2006).
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Figure 3: Comparison of elasticity estimates to the elasticities implied by frictionless neoclassical
theories. We compare the empirical elasticity estimates reported in Figure 2 to the elasticity implied
by theory, which is around 20 (depending on the model). The theoretical micro elasticity is two
orders of magnitudes larger and omitted for clarity.

We quantify this via two surveys. We provide a detailed discussion in Section E and summarize
the main insights here. We conducted a first survey by putting out a request via Twitter (using
the #econtwitter tag) to complete an online survey. In addition, we asked participants of an
online seminar at VirtualFinance.org to complete the same survey – this latter audience being
naturally more representative of the population of academic researchers in finance. Both surveys
were conducted before the paper was available online and before the seminar was conducted. We
received 192 responses for the Twitter survey and 102 responses for the survey connected to the
finance seminar.

The survey question was the following: “If a fund buys $1 billion worth of US equities (perma-
nently; it sells bonds to finance that position), slowly over a quarter, how much does the aggregate
market value of equities change?” The answer given in this paper is M times a billion, where M is
the macro multiplier, which we estimate to be around M = 5. In both surveys, the median answer
was M = 0: surveyed economists, logically enough, rely on the traditional asset pricing model in
which prices are unperturbed by flows. The median positive answer was M = 0.01.15 Hence, sur-
veyed economists’ views are in line with the traditional model, but far from the estimates reported
in the empirical literature, and the new estimates we provide.

We also asked about the sector supposedly providing elasticity to the market to be able to
explore the mechanism. The two most common responses were hedge funds and broker dealers.
As discussed before, those sectors are unlikely to provide elasticity to the aggregate market, in
particular during times of stress.

15The answer M � 1 was given by only 2.5% of respondents in the Twitter survey and by 4% of respondents in
the VirtualFinance.org survey. Section E provides further details.
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3 The Inelastic Markets Hypothesis: Theory
We now provide a model that we think is more realistic to think concretely about the determinants
of stock demand, and about how flows impact prices. It is highly stylized, but will be useful to
think about the determinants of elasticity (both conceptually and in terms of calibration) and to
guide empirical work. We start with a two-period version, and then proceed to an infinite-horizon
variant.

3.1 Two-period model
There is a representative stock in fixed supply of Q shares, with an endogenous price P . The
economy lasts for two periods t = 0, 1. The dividend D is paid at time 1. We call ⇡ = De

P � 1� rf
the equity premium (with De := E[D] the expected dividend at time 0 and rf the risk-free rate), ⇡̄
the average equity premium, and ⇡̂ := ⇡ � ⇡̄ the deviation of the equity premium from its average.
There is also a riskless bond with time-0 price equal to 1 (we endogenize the risk-free rate in Section
5).16

A representative consumer invests into stocks and bonds via I institutions or funds.17 We call
Wi fund i’s wealth (or equivalently assets under management) and Qi the number of stock market
shares it holds. Therefore the fraction of fund i’s wealth invested in equities is PQi

Wi

. We assume that
fund i’s demand for stocks is given by a mandate, saying that it should have a fraction invested in
equities equal to:18

PQi

Wi
= ✓ie

i⇡̂, (1)

while the rest is in the riskless bond. In the simplest case, i = 0, fund i has a fixed mandate to
invest a fraction ✓i � 0 of its wealth in equities. When i > 0 the fund allocates more in equities
when they have higher expected excess returns (hence, i indexes how contrarian or forward-looking
the fund is). This demand function appears sensible, and could be micro-founded along many lines
– but to go straight to the effects we are interested in, we take it as an exogenous mandate.19020021

We use the index i = 0 for a special fund, a “pure bond fund” that only holds bonds (so, its ✓i and
i are 0).

If consumers were fully rational, the mandate would not matter: consumers would undo all
mechanical impacts of the mandate. But consumers will not be fully rational, so mandates will

16Here, flows move equity prices but not bond prices. In the general equilibrium version of Section 5, this happens
because the consumer’s demand is infinitely elastic with respect to bond prices. We sketch the case where both
equity and bond demands are inelastic in Section G.1: the economics is similar, replacing the elasticity by a matrix
of own- and cross-elasticities.

17Those funds act competitively, i.e. are price takers.
18We write the mandate in “number of shares,” but it is equivalent to a “fraction of assets invested in equity”

formulation.
19This fund’s mandate can be viewed as a stand-in for other frictions such as inertia or a rule of thumb that a

behavioral household might follow for its stock allocation. As a result, the institutionalization of the market does
not necessarily result in more inelasticity as it depends on how households manage their own portfolios. Parker et
al. (2020) argue that the growth of target date funds made the market more elastic. In the our notation, target date
funds have i = 0.

20Buffa et al. (2019) explore the implications of tracking error constraints on asset prices.
21The mandate does not feature volatility, as volatility is not crucial here to obtain demand curves (though volatility

is crucial for that in the traditional model). One could easily write extensions where the allocation decreases in
volatility. In the dynamic model, we add a demand shock that can include volatility terms.
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have an impact.

The elasticity of demand for stocks of a fund We use bars to denote values at time t = 0�,
before any shocks. At that time 0�, fund i has wealth W̄i, and holds Q̄i shares. We assume that
before the shocks, equities have an equity premium ⇡̄, so that the dividend-price ratio is at its
corresponding value, � = D̄e

P̄
, where P̄ , D̄e are the baseline values for the stock’s price and the

expected dividend.
At time 0, the representative household invests �Fi extra dollars in each fund i (taking those

dollars from the pure bond fund), which represents a fractional inflow fi = �Fi

W̄i

. An outflow
corresponds to �Fi < 0. We study the impact of this on the aggregate market, independently of
the reasons for the flows, which may be rational or behavioral. We also assume that there may be a
change d in the value of expected fundamentals. We call qi and d the fractional deviations of equity
demand and of the expected dividend from their baseline values:

qi =
Qi

Q̄i
� 1, d =

De

D̄e
� 1. (2)

The next proposition gives the change in demand by fund i. Its proof is in Appendix A. We
perform the analysis for small disturbances fi, d, and hence small p, qi, here and throughout the
paper.22

Proposition 1. (Demand for aggregate equities in the two-period model) Fund i’s demand change
(compared to the baseline) is, linearizing:

qi = �⇣ip+ i�d+ fi, (3)

where � is the baseline dividend-price ratio, and ⇣i is the elasticity of equity demand by fund i,

⇣i = 1� ✓i + i�. (4)

The aggregate elasticity of demand for stocks, and the “representative mixed fund” We
now move from fund-level demand to the aggregate demand for stocks, which is Q =

P
i Q̄i (1 + qi) .

We call W E
i the equity holdings (in dollars) of fund i, and Si its share of total equity holdings:

W E
i = QiP = ✓iWi, Si =

W̄ E
iP

j W̄
E
j

=
Q̄iP
j Q̄j

. (5)

Finally, for a given variable xi (with i = 1 . . . I), we define xS to be its equity-holdings weighted
mean:

xS :=
X

i

Sixi. (6)

So, the aggregate demand change is:

q =
�Q

Q
=

P
i Q̄iqi
Q

=
X

i

Siqi = qS.

22Following common practice in macro-finance, we do Taylor expansions of the leading terms, omitting the formal
mentions of O (·) terms.
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To derive an expression for it, we take the individual demand curves (3), and consider their equity-
holdings weighted average, which gives the (linearized) aggregate demand curve for equities:

qS = �⇣Sp+ S�d+ fS.

Proposition 2 sums this up.

Proposition 2. (Aggregate demand for aggregate equities in the two-period model) The aggregate
demand for equities is

q = �⇣p+ �d+ f, (7)

where ⇣ = ⇣S =
P

i Si⇣i is the equity-holdings weighted demand elasticity of all funds i, and likewise
for the other quantities:

✓ = ✓S,  = S, ⇣ = ⇣S, f = fS. (8)

In particular, ⇣ is the macro elasticity of demand:

⇣ = 1� ✓ + �. (9)

Hence, the universe of equity-holding funds in the model aggregates (up to second order terms in fi
and d) to a “representative mixed fund” with wealth W =

PI
i=1 Wi, and whose mandate is to hold

an equity share PQ
W = ✓e⇡̂.

The “aggregate flow into equities” is non-zero even though “for every buyer there is a
seller” The equity-share weighted flow fS =

P
i Sifi in (8) can also be expressed as23

fS =

P
i ✓i�Fi

W̄ E , (10)

i.e. as the sum of the dollar inflows �Fi into each fund i, times the marginal propensity of fund i
to invest in equities, ✓i, as a fraction of the the baseline value of aggregate equities W E = QP̄ .24

At the same time the net total flow is 0,
P

i �Fi = 0, as one bond removed from one fund goes to
another fund, and the net amount of equities purchased is 0,

P
i �Qi = 0, as the net amount of

shares is constant:25 X

i

�Fi = 0,
X

i

�Qi = 0. (11)

Hence, there is a well-defined notion of “the aggregate flow into equities,” fS (equation (10)) which
is generically non-zero, even though “for every buyer there is a seller” (equation (11)).

The impact of flows on the aggregate price We now analyze what happens after the aggregate
inflow fS in equities. We assume from now on that ⇣ > 0. As the supply of shares does not change,
we must have q = 0 in the equilibrium after the flow shock. Given (7), we have 0 = q = �⇣p + f ,
and the price change must be p = f

⇣ . Proposition 3 summarizes this.26

23Indeed, as ✓i =
W̄E

i

W̄i

,we have fS =
P

i Sifi =
P

i
W̄E

i

WE
�Fi

W̄i

= 1
WE

P
i ✓i�F E

i .
24This is analogous to the marginal propensity to take risk in Kekre and Lenel (2020).
25For instance, if there are just the pure bond fund and a mixed fund, then the bond flow into the mixed fund

�F1 is compensated by a flow out of the pure bond fund, so �F0 = ��F1.
26It is exact when all i = 0 and it uses a first-order Taylor expansion for small flows f when i 6= 0.
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Proposition 3. Suppose that the representative consumer invests �Fi in each fund i, so that the
total inflow in equities is a fraction f = fS =

P
i Si

�Fi

W̄i

of the value of equities. Then, the stock
price changes by a fraction p := P�P̄

P̄
equal to:

p =
f

⇣
, (12)

where ⇣ is the macro elasticity of demand defined in (9).

This illustrates that flows can have large price impacts if the price elasticity of demand ⇣ is
sufficiently low, and shows the key role of this price elasticity, which is the center of this paper.27

An undergraduate example To think through the economics of Proposition 3, we found the
following simple, undergraduate-level example useful. Suppose that there are just two funds: the
pure bond fund and the representative mixed fund, which always holds 80% in equities (the mag-
nitude suggested by Figure 1). Then, ✓ = 0.8,  = 0, so that ⇣ = 1� ✓ = 0.2 and 1

⇣ = 5. Then an
extra 1% inflow into the stock market increases the total market valuation by 5%.

It is instructive to think through the logic of this example. Suppose that the representative
mixed fund starts with $80 in stocks (of which there are 80 shares, worth $1 each) and $20 in
bonds. There are also $B worth of bonds outstanding. Suppose now that an outside investor sells
$1 of bonds from the pure bond fund (he had $B � $20 in the pure bond fund, and now he has
$B�$21), and invests this $1 into the mixed fund. In terms of “direct impact”, there is a $0.8 extra
demand for the stock (equal to 1% of the stock market valuation), and $0.2 for the bonds. But that
is before market equilibrium forces kick in.

What is the final outcome? In equilibrium, the pure bond fund still holds $B � $21 worth of
bonds. The balanced fund’s holdings are $21 in bonds (indeed, it holds the remaining $21 of bonds)
and 4 ⇥ $21 = $84 in stocks (as the balanced fund keeps a 4:1 ratio of stocks to bonds, the value
of the stocks it holds must be $84). As the balanced fund holds all 80 shares, the stock price is
P = $84

80 = $1.05, whereas it started at P = $1: stock prices have increased by 5%. The fund’s
value also has increased by 5%, to $105.

We see that the increase in stock prices is indeed by a factor 1
⇣ = 1

1�✓ = 5. Only $0.8 was
invested in equities, yet the value of the equity market increased by $4, again a five-fold multiplier.
We conclude with a few remarks.

Share repurchases and issuances are just a type of flow Suppose that corporations buy
back shares, meaning that they buy:

fC =
Net repurchases (in value)

Total equity value
= �Net issuances (in value)

Total equity value
. (13)

Then, the basic net demand for shares is as above, using the total flow:

f := fS + fC , (14)

which is equal to the size-weighted total flow in the funds, fS, plus share repurchases (as a fraction
of the market value of equities). In short, on top of the traditional flows of investors into equities,

27If d 6= 0, there is an extra effect, and p = f
⇣ + �

⇣ d, with �
⇣ < 1. This implies that unaided by flows, prices

under-react to fundamentals in inelastic markets.
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we want to add share repurchases by corporations. In addition, if firms have a supply elasticity ⇣C ,
then the basic equilibrium is: fS � ⇣p = �fC + ⇣Cp. That is, a change in demand fS � ⇣p equals a
change in supply �fC + ⇣Cp. Therefore p = fS+fC

⇣+⇣C
, so that the effective market elasticity is ⇣ + ⇣C .

In much of the paper, we assume that the supply of shares is inelastic, ⇣C = 0, which will prove to
be a good approximation.

The representative mixed fund’s equity share vs. the market-wide equity share There
are two notions of equity share. The traditional one is the wealth-weighted equity share:

✓W =
W E

W E +WB =
Total value of Equities

Total value of Equities + Bonds
, (15)

which can also be expressed as ✓W =
P

i
Wi✓iP
i
Wi

. The other one is the equity-holdings weighted equity

share defined earlier, ✓S =
P

i
WE

i
✓iP

i
WE

i

, where W E
i was the equity holding of fund i. The former

share (✓W ) is directly available in aggregated data, while the latter (✓S) is what matters for the
macro elasticity. They are different, and indeed ✓S > ✓W .28 This makes the disaggregation issues
potentially non-trivial, and will require some care in the empirical part.

Take the undergraduate example with just two funds, the mixed fund and the pure bond fund,
and  = 0. Then, whatever the flows, ✓S = ✓ is always constant, pinned by the mandate ✓ of that
mixed fund. However, ✓W varies over time, as flows in and out of equities change the market value
of equities, P .

3.2 Infinite horizon model
We extend the static model to a dynamic one. The forces will generalize in an empirically imple-
mentable way. There is again a constant risk-free rate rf , taken here to be exogenous. Section 5
endogenizes it in general equilibrium, but here we concentrate on the core economics of inelasticity.
The representative stock gives a dividend Dt.

We consider the case where there is a pure bond fund and “representative mixed fund” trading
stocks and bonds. This allows us to zoom in on the core economics: an economy with several
funds can be represented via a single mixed fund to the leading order, as in Proposition 2.29 The
representative mixed fund has a mandate: the fraction invested in equities, PtQt

Wt

, should be

PtQt

Wt
= ✓e⇡̂t+⌫t , (16)

where as before ⇡̂t := ⇡t � ⇡̄ is the deviation of the equity premium from its average, and we allow
for additional demand shocks, ⌫t. These can be thought of as shocks to tastes or perceptions of risk.
We assume that dividends and interest rates on bonds are passed to consumers: hence, reinvesting
dividends counts as an inflow.

To analyze this economy, it is useful to linearize it. This needs to be done around a simpler,
“baseline” economy, which is on a balanced growth path with a constant equity premium ⇡̄. We call

28Indeed, using W E
i = ✓iWi, ✓S = ES [✓i] =

P
i Si✓i =

P
i
WE

i
✓iP

i
WE

i

=
P

i
Wi✓

2
iP

i
Wi✓i

=
EW [✓2

i ]
EW [✓i]

� EW [✓i] = ✓W . As long as
there is a pure bond fund, the ✓i are not identical, and the inequality is strict. Formally, we assume that all funds
have weakly positive total wealth.

29This is detailed in Appendix G.7.
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P̄t, D̄t, W̄t, and Q̄ the baseline price, dividend, wealth, and quantity of shares held by the mixed
fund. We assume that

�
P̄t, D̄t, W̄t

�
=
�
P̄0, D̄0, W̄0

�
Gt: they grow with a common cumulative growth

factor Gt, such that Gt+1

Gt

follows an i.i.d. growth process with mean g. As the equity premium is
always ⇡̄ in the baseline economy, rf + ⇡̄ � g = (1 + g) �, with P̄tQ̄

W̄t

= ✓ and D̄t

P̄t

= �.30 At the same
time, the bond holdings of the mixed fund are B̄0 + F̄t, where F̄t is the cumulative dollar inflow
since time 0 (so F̄0 = 0): the only “new” bonds that the representative mixed fund has must come
from inflows, like in the undergraduate model above. They should also represent a fraction 1� ✓ of
the wealth of the fund, so that we have: B̄0 + F̄t =

1�✓
✓ P̄tQ. This means that F̄t =

1�✓
✓

�
P̄t � P̄0

�
Q̄.

This is the flow consistent with a balanced growth path in the rational economy.
We call pt, wt, dt, qt the deviations from the baseline, so that dt = Dt

D̄t

�1, pt = Pt

P̄t

�1, wt =
Wt

W̄t

�1,
and qt =

Qt

Q̄
� 1. We define the flow ft as the scaled cumulative inflow in excess of the baseline:31

ft =
Ft � F̄t

W̄t
. (17)

We call the expected dividend deviation det = Etdt+1. The expected excess return is ⇡t = Et[�Pt+1+Dt+1]
Pt

�
rf , and we use the following Taylor expansion (see Section F for a derivation):

⇡̂t = � (det � pt) + Et [�pt+1] . (18)

The aggregate demand for stocks is as follows, generalizing (7).

Proposition 4. (Demand for aggregate equities in the infinite-horizon model) The demand change
for equities (compared to the baseline) is

qt = �⇣pt + ft + ⌫t + �det + Et [�pt+1] , (19)

where ⇣ = 1� ✓ + � is the aggregate elasticity of the demand for stocks, as in (9).

As the total number of shares is constant, the equilibrium condition is given by qt = 0. This
yields the stock price as follows (the proof is in Appendix A).

Proposition 5. (Equilibrium price in the infinite-horizon model) The equilibrium price of aggregate
equities is (expressed as a deviation from the baseline):

pt = Et

1X

⌧=t

1

(1 + ⇢)⌧�t+1

✓
⇢
f⌧ + ⌫⌧
⇣

+ �de⌧

◆
, (20)

where ⇢ = ⇣
 is the “macro market effective discount rate”,

⇢ =
⇣


= � +

1� ✓


. (21)

The deviation of the equity premium from its average is:

⇡̂t =
(1� ✓) pt � (ft + ⌫t)


. (22)

30Indeed, 1 + rf + ⇡̄ = Et

h
P̄t+1+D̄t+1

P̄t

i
= Et

h
P̄t+1(1+�)

P̄t

i
= (1 + g) (1 + �) .

31This is extremely close to another definition, ft =
Pt

s=0
�Fs��F̄s

Ws�1
, but the above definition is the one warranted

by the theory.
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We next analyze the economics of Proposition 5. The classical (or undergraduate) “efficient
markets” benchmark, where the risk premium is kept constant by very strong arbitrage forces,
corresponds to  = 1, so that ⇣ = 1 and ⇢ = �.32

In (20), the price discounts future dividends at a rate ⇢ � � given in (21). So, the market is
more myopic (higher ⇢) when it is less sensitive to the equity premium (lower ) and when the mixed
fund has a lower equity share (lower ✓).33 It makes good sense that a lower sensitivity to the equity
premium makes the market less reactive to the future, hence more myopic.34,35 In the rest of this
section, we set ⌫t = 0; the general case simply comes from replacing ft by ft + ⌫t.

A permanent inflow has a permanent effect on the price and future expected returns
of equities Suppose that at time 0 there is an inflow f0 that does not mean-revert. Then, the
impact on the price at time t � 0 is (via (20), with E0 [f⌧ ] = f0):

E0 [pt] =
1

⇣
f0. (23)

So, the “price impact” is permanent. As a result, the equity premium is permanently lower, E0 [⇡̂t] =
�� f0⇣ (see (18)) This is simply because, if the equity demand has permanently increased, equity
prices should be permanently higher.36

Quantitatively, if prices increase by 10% due to uninformed flows, the per annum expected excess
return falls by a mere 0.3% (indeed, assuming a dividend yield of 3%, ⇡̂ = ��p = �3%⇥0.1 = 0.3%).
This is a vivid reminder that the absence of detectable market timing strategies tells us little about
market efficiency (Shiller (1984)). Similarly, Black (1986) famously argued that the aggregate stock
market can be mispriced by as much as a factor of two; in our model, if this is due to a permanent
inflow, that would lead to a 2% change in the expected excess return,37 which is less than a single
standard error deviation of the expected excess return estimate if one were to use 30 years of data.

The impact of a mean-reverting flow Suppose now that at time 0 there is an inflow f0 that
mean-reverts at a rate �f 2 [0, 1], so that the cumulative flow is E0 [f⌧ ] = (1� �f )

⌧ f0. Then, if
32Strictly speaking, this is only true with risk-neutral arbitrageurs, so that the risk premium is 0. The general case

is in Section F.4 where the elasticity is still very high.
33The formula extends to changes in the interest rate, as in rft = r̄f + r̂ft. As (18) becomes ⇡̂t = Et�pt+1 +

� (det � pt)� r̂ft, all expressions are the same, replacing det by det � 1
� r̂ft, including in (20). We assume here that the

bond is very short term, with zero duration. If the bond has non-zero duration, there is another term corresponding
to the capital gains on bonds.

34The intuition for the sign of the impact of ✓ on ⇢ is as follows: the extra term 1�✓
 in ⇢ = � + 1�✓

 is the ratio
of the “present looking” (myopic) demand elasticity 1 � ✓ to the “forward looking” elasticity . Hence a higher ✓
leads to a less myopic demand. This myopia in (20) generates momentum: because the market is myopic (by (20)),
dividend news are only slowly incorporated into the price.

35Here the demand (19) depends on the equity premium as ⇡̂t = Et�pt+1 + � (det � pt). A variant would be
that investors “see” the price-dividend ratio as differently predictive from the expected price movement, so that in
their demand we equalize ⇡̂t with Et�pt+1 + D� (det � pt) where potentially D 6=  (e.g., if “tangible” predictors
are deemed more reliable,  < D). Then the demand elasticity is ⇣ = 1 � ✓ + D�, the effective discount factor is
⇢ = ⇣

 , and (20) still holds, after multiplying �de⌧ by D

 . This highlights that D increases the market elasticity ⇣,
while  increases market “forward-lookingness” 1

⇢ .
36In a Kyle (1985) model, flows change prices, like in our model; but they do not on change the equity premium

(on average), which is a crucial difference with our model. Section G.5 details the link with the Kyle model.
37Indeed, with p = ln 2, ⇡̂ = ��p = � (3%)⇥ 0.7 ' �2%.
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there are no further disturbances, the impact on the time-t price is pt =
ft

⇣+�f
(see (20)), implying

E0 [pt] =
(1� �f )

t

⇣ + �f
f0, (24)

and the change in the equity premium is E0 [⇡̂t] = � �+�f
⇣+�f

(1� �f )
t f0 (see (22)). Hence, an inflow

that has faster mean reversion leads to a smaller change in the price of equities (compared to
a permanent inflow), but a larger change in their equity premium on impact (indeed, �+�f

⇣+�f
is

increasing in �f ). Those effects dissipate as the inflow mean-reverts, at a rate �f .

Predictable future inflows or changes in fundamentals create predictable price drifts
Suppose that it is announced at time 0 that a permanent inflow fT will happen at time T > 0. The
price impact for t 2 [0, T ] is pt =

1
(1+⇢)T�t

fT
⇣ (see (20), using f⌧ = 1⌧�TfT ), so that after the initial

jump, the price gradually drifts upward (assuming for concreteness that the inflow is positive).
Hence, the risk premium is elevated by ⇡̂t =

1�✓
 pt (for t 2 [0, T ), see (22)), and more elevated as

one nears the inflow. After the inflow, though, we are back to the case of a permanently elevated
price and permanently lower equity premium (pt = fT

⇣ and ⇡̂t = �� fT⇣ for t � T ). The same price
drift before the shock happens for a predictable increase in future fundamentals such as dividends.

A simple benchmark To think about the stochastic steady state, it is useful to consider ft as
an autoregressive process with speed of mean-reversion �f :

ft = (1� �f ) ft�1 + "ft , (25)

with Et�1

h
"ft

i
= 0. Then, a high inflow increases equity prices and hence lowers the equity premium,

in the following precise manner:38

pt = bpfft, ⇡̂t = b⇡fft, bpf =
1

⇣ + �f
, b⇡f = � (� + �f ) b

p
f . (26)

Calibration We want to understand how a macro price impact of M ' 5 might arise, and for
this we calibrate the model. When flows are mean-reverting with speed �f , the price impact is
M = 1

⇣M , with ⇣M = ⇣ + �f = 1 � ✓ +  (� + �f ) (see (9), (24), and (26)). Some parameters
are easy to estimate. We take a dividend-price ratio � = D

P = 3.7%/year (we use annualized units
throughout).39 We calibrate �f = 4%/year to match the speed of mean-reversion of the dividend-
price ratio.40 Given the results in Figure 1, we take an equity share ✓ = 87.5% (equity-holdings
weighted as in ✓S).

Calibrating  is most challenging. We perform a few thought experiments to see what we
might expect  to be. The simplest rational model of portfolio choice where ✓it = ⇡t

�i�2 gives

38This can be derived by plugging in those values in (19) with q = 0 in equilibrium, or via (20).
39Section H.1 details how to go from continuous to discrete time.
40We compute the dividend yield by summing dividends during the last 12 months relative to the current level

of the CRSP value-weighted return index from January 1947 to December 2018. The annual autocorrelation of the
log dividend yield during this sample is equal to ⇢OLS = 0.91 with OLS standard errors equal to 0.048. We then
remove the Kendall (1954) bias 1+3⇢

T over our sample of T = 72 years, which is around 4
72 . Thus we calibrate

�f = 1� ⇢OLS � 4
72 ' 4%.
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 = d ln ✓it
d⇡t

= 1
⇡̄ = 22, using an annual equity premium of 4.4%.41 But, we rarely observe such large

swings in investors’ portfolios: the frictionless rational model predicts agents that are much too
reactive, like in much of this paper, and in much of economics (Gabaix (2019)). To get a further
feel for , suppose the equity premium increases from ⇡t = 5% to ⇡t = 10%, which is a shift
equal to about one to two standard deviations of its unconditional time-series variation (Cochrane
(2011); Martin (2017)). A very flexible fund with an average equity share of 50% might change
its equity allocation from 50% to 75%. This flexible fund would have i = d ln ✓i

d⇡ = ln 0.75�ln .5
0.05 ' 8.

However, these are large swings in a fund’s strategic asset allocation that are not typically observed
empirically, so that they are at most valid only for very flexible investors. As many balanced funds
have a fixed-share mandate and  = 0, we hypothesize a i for a typical fund with equity share of 50%
equal to about 4. Moreover, a 100% equity funds needs to have i = 0; more generally, the rigidity
mechanically should increase with the equity share ✓i. So, we might tentatively parametrize a typical
value of  as i = K (1� ✓i), with K ' 8. So, we obtain  = S = K (1� ✓S) ' 8⇥ (1� 0.88) ' 1.
This gives a simple microeconomic interpretation for the value  = 1. Together, this yields ⇣ = 0.16,
and ⇣M = 0.2, so that the price impact is indeed M = 1

⇣M = 5. If the flows are extremely persistent,
the subtle difference between ⇣ and ⇣M vanishes (�f ,which is 0.04 in the calibration, goes to 0).

4 Estimating the Aggregate Market Multiplier and Elastici-
ties

The previous sections illustrate the importance of estimating the elasticity of the aggregate stock
market. Estimating this parameter is a challenge, as is the case for most elasticities in macroeco-
nomics. In the context of asset pricing, large literatures try to estimate the coefficient of relative
risk aversion, the elasticity of inter-temporal substitution, and the micro elasticity of demand, but
the macro elasticity is a new parameter of interest that is first estimated in this paper.42

The key difficulty is that prices, equity demand, and flows are in part driven by aggregate shocks,
such as macroeconomic news, so that naively regressing prices on flows or flows on prices would not
yield a consistent estimate of the elasticity or multiplier. Hence, we need an instrument.

We show how to estimate macro multipliers and elasticities by decomposing demand shocks of
different investors into (i) aggregate shocks, which shift the equity demand of all investors at the
same time (albeit with potentially different loadings), and (ii) idiosyncratic shocks that only shift
the equity demand of a subset of investors. We first develop the general intuition in Section 4.1.
We also use this framework to interpret the identifying assumptions in Table 1 that have been used
in the related literature. Our empirical strategy is an application of the method called Granular
Instrumental Variables (GIV), which we conceived for the present paper, and lay out in Gabaix and
Koijen (2020).

In Section 4.2 to Section 4.3, we provide two implementations of our general idea. First, in
Section 4.2, we estimate the aggregate multiplier using shocks to mutual fund flows and data from
13F filings to construct aggregate factors. Second, in Section 4.3, we use data from the Flow of
Funds to estimate the aggregate elasticity and multiplier.

41This is for a fund maximizing rationally a CRRA function of financial wealth. In Section F.4 we consider a more
sophisticated thought experiment, with a consumer maximizing lifetime utility out of labor income in additional to
financial wealth. Then, the value of ⇣ is even higher.

42See Table 1 for a summary of related estimates in the literature.
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Each settings has advantages and disadvantages in terms of the assumptions that we have to
make, and there are differences in the quality of the data that are available to us in estimating the
elasticities and the multiplier. With that said, the combined evidence suggests that the aggregate
stock market is inelastic (in line with the findings of Table 1).

Given the relevance of this parameter, we believe it would be valuable for future empirical asset
pricing research to explore different estimation and identification strategies in estimating its value.

We conclude this section by connecting capital flows to macroeconomic variables and measures
of beliefs to provide an initial analysis of the potential determinants of flows into the equity market.

4.1 Estimating aggregate elasticities and multipliers
Notation We first provide a brief summary of the GIV method—the appendix and Gabaix and
Koijen (2020) provide further details, such as a justification of consistency and extensions. Recall
that we use the following notations, with the shares Si adding up to 1:

XEt :=
1

N

NX

i=1

Xit, XSt :=
NX

i=1

Si,t�1Xit, X�i
St :=

X

j,j 6=i

Sj,t�1Xjt, X�t := XSt �XEt. (27)

The shares, Sit =
QitP
i
Qit

, is the fraction of the market held by investor i.

A factor-based demand system for the aggregate stock market Let �qit = Qit�Qi,t�1

Qi,t�1

denote a time series of fractional changes in investors’ equity holdings, where i indexes investors as
before. To develop the main idea, we model �qit as (omitting constants):43

�qit = �⇣i�pt + f ⌫it, (28)

where �pt is the aggregate stock return and ⇣i is the demand elasticity of investor i. Depending on
the empirical setting, we will impose additional restrictions on the elasticities.

We model the demand disturbance f ⌫it as:

f ⌫it = �0i⌘t + uit, (29)

where ⌘t is a vector of common shocks (which can include observable factors, such as GDP growth,
or latent factors), �i is a vector of factor loadings, and uit is an idiosyncratic shock. The key
identifying assumption that we make throughout is that

E [uit⌘t] = 0. (30)

Estimating the multiplier and elasticities Aggregating the individuals demands (28) as in
Proposition 2, the aggregate demand is �qSt = �⇣S�pt + f ⌫St. Using market clearing, we have
�qSt = 0, that is

�pt = M (�0S⌘t + uSt) , (31)
for the multiplier

M =
1

⇣S
.

43To lighten things up, we simplify a bit the notations. Compared to (19), we use the notation f⌫
it for �f⌫

it :=
�fit +�⌫it, whete we absorb the change-in-expectation terms i�Et [�det +�pt+1] into the “demand shifter” �⌫it.
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The goal is to estimate the multiplier M or, equivalently, the aggregate elasticity, ⇣S.
If we substitute the market clearing price into the demand equation (28), we have

�qit = �̃0i⌘t �
⇣i
⇣S

uSt + uit, (32)

where �̃i = �i � ⇣i
⇣S
�S.

The key idea of the GIV method is to identify M and ⇣S using variation that comes from the
idiosyncratic shocks, uit. Indeed, if we have access to uSt, we can just estimate M by OLS, regressing
�pt = MuSt+"t (this is warranted from our assumption (30). Likewise, to estimate the elasticity ⇣i
of a sector i, we can use the (size-weighted average) of idiosyncratic shocks u�it across other sectors
to instrument the price. The GIV method also provides a way to estimate the idiosyncratic shocks
uit,or a proxy for them: we explain the specifics below.

While we can use the idiosyncratic shocks uit, it is worth highlighting that we cannot use
aggregate shocks ⌘t for identification. As can be seen from (32), the covariance matrix of demand
changes can identify �̃i, which depends on �i and ⇣i

⇣S
, hence we cannot identify our parameters of

interest. Intuitively, if an investor sells in response to an aggregate shock, we do not know whether
this is because of a high exposure in �i or because the investor’s demand elasticity differs from the
aggregate demand elasticity, ⇣i 6= ⇣S.

We detail in each application how to estimate those idiosyncratic shocks empirically to make
the above reasoning valid. The general case is covered in Gabaix and Koijen (2020).

GIV: Requirements and threats to identification For the GIV to be consistent, we need
E[uit⌘t] = 0 to hold: the idea is that there are random “bets” or “shocks” to various fund managers,
institutions and sectors, that are orthogonal to all reasonable common macro factors such as GDP,
TFP, and so forth. For the GIV to be a powerful instrument, we need large idiosyncratic shocks,
and a few large sectors, so that the market is “granular” in the sense that the idiosyncratic shocks to
a few large sectors meaningfully affect the aggregate.44 Fortunately, this is verified in our setting, as
it is in related settings in macro (Gabaix (2011), Carvalho and Grassi (2019)), trade (Di Giovanni
and Levchenko (2012)) or finance (Amiti and Weinstein (2018), Herskovic et al. (forthcoming),
Galaasen et al. (2020)). Ben-David et al. (forthcoming) and Ghysels et al. (2021) study the impact
of investor granularity on the cross-section of US stock returns.

The main threats to identification with GIV are that we do not properly control for common
factors, or that the loadings on the omitted factor are correlated with size, such that �S � �E 6= 0.
To mitigate the risk of omitted factors, we extract additional factors and explore the stability of
the estimates as we add extra factors.

Connection to other identifying strategies in the literature The intuition behind our
identification strategy ties back to the empirical strategies that have been used in the literature
so far. Indeed, the typical approach is to isolate an idiosyncratic demand shock to a (group of)
investors that does not affect the demand of other investors other than through price.

The classic approach is to look at stocks that have been included in (or deleted from) a bench-
mark. If changes in the composition of the benchmark are random, the inelastic demand from

44Indeed, when flow shocks have volatility �u, var (uS) = H�2
u, with H =

P
j S

2
j . This “Herfindahl” H of the

holdings shares must be high: so we need a few large entities, such as funds or sectors.
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benchmark-restricted investors provide exogenous demand shocks. This demand shock is idiosyn-
cratic from the perspective of investors who are not compared to the benchmark. This uit from
benchmark-restricted investors can thus be used to estimate the (micro) multiplier and the elasticity
of unconstrained investors.

As a second example, a recent literature that constructs instruments using payouts by firms.
The basic intuition is that there is a long lag between the date that a dividend is declared (and
thus when investors learn new information about the firm or the market) and when the dividend is
actually paid. This anticipated cash flow provides a shift in demand and several papers have used
it to estimate micro and macro multipliers (Schmickler, 2020; Hartzmark and Solomon, 2022).

As a third example, Ben-David et al. (2020a) use a change in the Morningstar ratings method-
ology that changed how flows are directed to different factors. This is an idiosyncratic demand
shocks from the perspective of all investors other than mutual funds and can thus be used as a valid
instrument.

Obtaining such events at the level of the aggregate stock market is challenging, and we there-
fore rely on estimating a factor model to isolate the idiosyncratic shocks. In each of the three
applications, we discuss how we specialize the general methodology to our specific setting.

When firms are elastic and flows mean-revert When firms have a supply elasticity ⇣C , the
total elasticity is ⇣ + ⇣C , as we saw in Section 3.1. When flows mean-revert with speed �f , the
measured elasticity is ⇣ + �f , as we saw in (24) and (26). Combining those two extensions, the
measured price impact is

M =
1

⇣M
, ⇣M := ⇣ + �f + ⇣C . (33)

As �f and ⇣C appear to be small, the difference between ⇣, ⇣ +�f and ⇣M is rather minor, and is
best ignored in the first pass. Still, to be completely explicit, when we empirically measure “⇣,” we
actually measure a quantity that is ⇣ + �f + ⇣C if flows mean-revert at speed �f and firms have a
supply elasticity ⇣C , and is strictly speaking ⇣ only when flows do not mean-revert and ⇣C = 0.

4.2 Multiplier estimates: Evidence from mutual fund flows
Data In this section, we combine investor-level data from 13F filings and fund-level mutual fund
data.45 We use 13F data from FactSet that cover the period from 2000.Q1 to 2019.Q4, and we follow
the data construction as in Koijen et al. (2019). Monthly mutual fund data come from Morningstar
and it covers the period from January 1993 to December 2019.

We use the disaggregated mutual fund data to construct a measure of aggregate mutual fund
flows. We use equity weights in aggregating the flows of individual funds, as warranted by our
theory, see (10). Concretely, we start from the share invested in US equities by fund i, ✓it, assets
under management, Wit, and the flow �Fit as defined by Morningstar. We compute �fit =

�Fit

Wi,t�1

and measure the aggregate flow into mutual funds as �fMF
t =

P
i
✓i,t�1Wi,t�1�fitP
i
✓i,t�1Wi,t�1

, which uses equity-
weighting. We include “US equity,” “sector equity,” “international equity,” and “allocation” funds
in the analysis. When equity shares are missing at a monthly frequency, which are only used in
determining the weighting scheme, we fill them in using the most recent value for a given fund.

45In the US, all institutional investment managers managing over $100 million or more in “13F securities” (which
include stocks) must report their holdings on Form 13F every quarter.
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Lastly, we winsorize �fit at 1% and 99% in each period before computing the aggregate flow. We
provide further details on the data construction in Appendix C.2.

Methodology Our first estimate of the multiplier starts from equation (31). We decompose
uSt = u�MF

St + SMF
t�1 u

MF
t and write the price equation as

�pt = M�0S⌘t +Mu�MF
St +MSMF

t�1 u
MF
t . (34)

The common factors, ⌘t, capture the comovement between the flows of mutual fund investors and
the aggregate demand shocks of other investors, for instance, in response to macroeconomic news.
The second term, u�MF

St , captures the idiosyncratic demand shocks of all other investors. The
final term captures the shocks specific to the mutual fund sector, SMF

t�1 u
MF
t , multiplied by M . Our

objective in this section is to measure SMF
t�1 u

MF
t and then use it to estimate the multiplier, M .

We proceed in four steps:

1. We estimate innovations in mutual fund flows by removing the predictable component:

�fMF
t = a0 +

kX

l=1

al�fMF
t�l + ct+ ✏MF

mt , (35)

We estimate the model at a monthly frequency. The estimates are reported in Table D.12
in Online Appendix D.6. Based on the estimated model AR(k) model for flows, we define
K = 1

1�
P

k

l=1 al
. It is the cumulative flow due to shocks ✏MF

mt . K✏MF
mt is what matters according to

Proposition 5 as it measures the cumulative flow following an innovation ✏MF
mt .46 We aggregate

the monthly innovations, ✏MF
mt , for k = 3, in each quarter and refer to these innovations as

✏MF
t .

2. It is well known that the innovations, ✏MF
t , are correlated with contemporaneous realized re-

turns (Warther (1995); Edelen and Warner (2001); Goetzmann and Massa (2003)). However,
this correlation may simply be driven by aggregate demand shocks, ⌘t. We extend this litera-
ture by removing aggregate demand factors and isolating the idiosyncratic demand shocks of
mutual fund investors. Concretely, we model

✏MF
t = �0

0⌘t + �0
1Ct + uMF

t , (36)

where ⌘t are common unobserved factors, Ct are common observed factors, and uMF
t are the

unique shocks to fund flows.

3. To estimate ⌘t, we use the 13F filings of investors outside of the mutual fund industry (e.g.,
pension funds, insurance companies, and so forth). We omit investors in the mutual fund
industry, using the same assignment of investor types as in Koijen et al. (2019), by removing
investment advisors and mutual funds. To estimate ⌘t, we consider an extension of the model
in (28) and allow for heterogeneity in demand elasticities, ⇣i,t�1, across investors and over
time:

�qit = ↵i � ⇣i,t�1�pt + �0i,t�1⌘t + �0
iCt + uit.

46We abstract from additional discounting at a rate ⇢, as it is immaterial at the horizon of a few months that we
use. See Section G.5 for details.
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We assume a parametric specification for elasticities and a semi-parametric specification for
factor loadings:

⇣i,t�1 = ⇣̇ 0xi,t�1, �i,t�1 = �̇0xi,t�1 + �̈i,

where xi,t�1 is a vector of investor characteristics of which the first element is equal to 1, and
⇣̇, �̇, and �̈i are to be estimated. As investor characteristics, we use an investor’s active share
and log AUM. In addition, we allow for non-parametric factors via �̈i. We also control for
macroeconomic factors, Ct, and allow for heterogeneous exposures via �0

iCt. We discuss in
Section B.1 how we estimate the common factors, ⌘t, and we refer to the estimates as ⌘et .

4. With estimates of ✏MF
t and ⌘t in hand, we regress returns on fund flow innovations, while

controlling for common factors,

�pt = a+MZt + �0⌘et +m0Ct + et,

where Zt = KSMF
t�1 ✏

MF
t . After controls, Zt is the surprise inflow unique to mutual funds, and

implements (34). As a common observed factor, Ct, we use GDP growth. We also explore
robustness to controlling for changes in volatility in Ct.

Empirical results The results are summarized in Table 2. The first column presents the results
with only Zt and GDP growth. The next four columns add the factors extracted from the 13F
data, ⌘et , as recommended by the GIV. In the final column, we also control for the quarterly
(percentage) change in volatility. Without controls other than GDP in Column 1, the multiplier
estimate equals M = 10.9. By adding additional controls, the R-squared value increases significantly
and the multiplier estimate lowers, as we would expect since demand shocks and prices are positively
correlated. With four additional factors, the R-squared value equals approximately 60% and the
multiplier drops to M = 7.7 with a standard error of 2.3. In the final column, we add changes
in volatility. While these do not correlate strongly with fund flow innovations, they do correlate
with returns. This suggests that other investors are negatively sensitive to volatility and this also
captures a source of demand shocks. The multiplier lowers further to 7.6 and the R-squared is now
70%.47 In Figure D.8, we also repeat the long-horizon analysis as in Figure 4. As before the impact
of flow shocks on prices is persistent although the confidence interval is wide at longer horizons of
one year.

In summary, we find that the multiplier estimates are quite consistent with the estimates we
found using the FoF data. These estimates well above 1 are consistent with the estimates for other
countries and for style factors, see Table 1. Future research can explore other strategies to control
for common demand factors to sharpen the identification.

4.3 Multiplier and elasticity estimates: Evidence from the Flow of Funds
For our second application, we use data from the Flow of Funds. The advantages are that we use
a longer sample and that we can use the idiosyncratic shocks of all sectors, not just mutual funds.
As such, it is a typical implementation of the GIV procedure.

A disadvantage is that the Flow of Funds data require additional measurement assumptions as
we discuss in Online Appendix C. Also, as the number of sectors is relatively small, we need to
make an additional assumption that ⇣i = ⇣.

47As volatility is endogenous, it can be included only with interpretative circumspection. We include it here for
descriptive purposes.
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Table 2: Estimates of the macro elasticity using mutual fund and 13F data. The first five columns
provide estimates of the multiplier M , which is the coefficient on Zt = KSMF

t�1 ✏
f
t , the innovation in

the cumulated inflow into mutual funds after controls. We regress returns on unexpected flows, ✏ft ,
times the share of aggregate equities held by the mutual fund sector, SMF

t�1 , and adjusting for the fact
that inflows are autocorrelated (see (35) and the surrounding definition of K). In the first column
we only control for GDP growth and in the next four columns we add one to four common factors
to isolate the idiosyncratic component in mutual fund flows. The common factors are extracted
from 13F filings of institutions outside of the mutual fund industry. In the final column, we add
the change in quarterly volatility as an additional control. We report the standard errors, which
are corrected for autocorrelation, in parentheses. The sample is from 2000.Q1 to 2019.Q4.

�p �p �p �p �p �p
Z 10.93 10.85 8.54 7.69 7.69 7.62

(2.64) (2.78) (2.18) (2.32) (2.34) (1.92)

GDP growth 4.19 4.21 4.94 4.99 5.00 3.43
(1.23) (1.25) (0.96) (1.17) (1.17) (1.17)

PC1 -0.91 -0.94 -0.95 -0.95 0.06
(0.74) (0.60) (0.63) (0.63) (0.61)

PC2 -2.98 -3.07 -3.07 -0.82
(0.66) (0.48) (0.48) (0.37)

PC3 -0.87 -0.87 -1.25
(0.56) (0.56) (0.41)

PC4 0.11 -0.21
(0.33) (0.38)

�� -0.10
(0.01)

Constant 0.00 0.00 -0.00 -0.00 -0.00 0.00
(0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

Observations 80 80 80 80 80 80
R2 0.426 0.438 0.556 0.565 0.566 0.699
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Methodology: Simple example with uniform loadings We start with the case where there
is a single factor, ⌘t, and �i = 1, so that all loadings on the common shock are uniform. Then, the
GIV is constructed from data as follows:

Zt := �q�t = �qSt ��qEt.

As �qSt = �⇣�pt + ⌘t + uSt and �qEt = �⇣�pt + ⌘t + uEt, we have:

Zt = uSt � uEt = u�t. (37)

As u�t is a combination of idiosyncratic shocks only, it is uncorrelated with ⌘t, see (30). This
orthogonality condition makes Zt = u�t a valid instrument: it is our GIV. Furthermore, if uit is
homoskedastic, then u�t is uncorrelated with uEt.48 This implies that �pt = Mu�t + et, where
et = M (⌘t + uEt) is uncorrelated with Zt. Hence, if we estimate the OLS regression

�pt = MZt + et, (38)

then this identifies the true multiplier M . Alternatively, we can estimate ⇣ directly using Zt as an
instrumental variable for �pt in the regression

�qEt = �⇣�pt + ✏t, (39)

with �pt instrumented by Zt.
Intuitively, we use the sector-specific, or idiosyncratic, demand shocks of one sector as a source

of exogenous price variation to estimate the demand elasticity of another sector. Viewed this
way, the GIV estimator generalizes the idea behind the index inclusion literature to estimate the
micro elasticity. In the index inclusion literature, a demand shock to the group of index investors
(assuming the inclusion of a stock into the index is random) can be used to estimate the slope of
the demand curve of the non-index investors.

We reiterate that the methodology works even if we do not have data on flows fit—it is enough
to have data on changes in equity holdings �qit. This implies that we identify idiosyncratic shocks
to f ⌫it = fit + ⌫it, where fit are capital flows and ⌫it are demand shocks.

Methodology: General case with non-uniform loadings In the general case with non-
uniform loadings and an r-dimensional vector of common latent shocks ⌘t, we define ǎit := ait�aEt,
that is, the cross-sectionally demeaned value of a vector at. We run a principal component analysis
(PCA) via the model

�q̌it = �̌0i⌘t + ǔit. (40)

In this way, we extract r principal components, ⌘t. Then, we run the following OLS regression,
using the extracted factors ⌘t as controls:

�pt = MZt + �0⌘t + et, (41)

and estimate the multiplier M as the coefficient on the GIV Zt. The rest of Gabaix and Koijen
(2020) discusses numerous extensions of this basic structure and show its optimality by various

48The same condition holds in the more general case of uncorrelated heteroskedastic uit, with the inverse variance
weights Ẽ, so Zt := �qSt ��qẼt (see Gabaix and Koijen (2020)).
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metrics (e.g. it is GMM optimal). As before, we can estimate ⇣ directly using Zt as an instrumental
variable for �pt in the regression

�qEt = �⇣�pt + �0⌘t + ✏t.

We leave the technical details of the specific algorithms that we use to Appendix B.2. We demon-
strate the performance of the GIV estimator in our specific setting in Appendix D.1 using simula-
tions.

Empirical results We first report the GIV estimates of the macro elasticity using data from
1993.Q1 to 2018.Q4 using the Flow of Funds (FoF). Throughout this section, we model investors’
demand as

�qit = ↵i � ⇣�pt + �0i⌘t + uit, (42)

where we assume that the demand elasticity is the same across sectors. We relax this assumption
below using 13F data. We consider the same model for the corporate sector, but allow for a different
demand elasticity, ⇣C . The vector ⌘t includes GDP growth, a time trend,49 and one or more latent
factors, ⌘PC

t .
The results are presented in Table 3. The first column reports the estimates where we use a

single principal component to isolate the idiosyncratic shocks to various sectors, in addition to a
common factor on which all sectors load equally.

We estimate a multiplier of M = 7.1, implying that purchasing 1% of the market results in a
7.1% change in prices. The corresponding standard error is 1.9.50 In the second column, we add a
second principal component. This lowers the multiplier estimate to M = 5.3. That is, purchasing
1% of the market results in a 5.3% change in prices. Both estimates imply that the aggregate stock
market is quite macro inelastic.

In the next two columns, we estimate the elasticities, ⇣, by regressing demand changes on
instrumented changes in prices, as in (39). With one principal component, we estimate an elasticity
of ⇣ = 0.13 and with two principal components, we estimate ⇣ = 0.17. In the next two columns, we
estimate the supply elasticity ⇣C of the corporate sector. The short-run elasticity is low at ⇣C = 0.01
for both one and two principal components.51 This implies that the combined elasticity is 0.14 (with
one principal component) or 0.18 (with two principal components). The corresponding multipliers,
M = 1

⇣+⇣C
, are M = 7.1 and M = 5.9, respectively.

In the final column, we report the same regression as in the first column but without the
instrument Zt. By comparing the R-squared values, we obtain an estimate of the importance of
sector-specific shocks on prices. We find that the difference in R-squared values is 16%, which
highlights the importance of sector-specific shocks on prices.

49We include a time trend as some sectors grew faster in the nineties, for instance, than in the later period. We
show the robustness of our results to not including the time trend.

50We report Newey-West standard errors using the bandwidth selection as in Newey and West (1994).
51This small contemporaneous elasticity of the supply of shares by the corporate sector, estimated here causally

by IV, is consistent with the OLS findings of Ma (2019). She finds (Table VII) that Gross equity issuance
Assets = 0.01⇡̂ (plus

other terms) at the quarterly frequency. Using that equity is about two thirds of assets, this leads, at the annual
frequency, to �qC = 3

2 · 4 · 0.01⇡̂ = 0.06⇡̂, so that (by (18)) ⇣C = �⇥ 0.06 = 0.0024. However, these estimates do not
rule out the possibility that the medium- or long-run elasticities are higher and that firms play an important role in
stabilizing asset prices.
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Table 3: Estimates of the macro elasticity. The first two columns report estimates of M with
one and two principal components, ⌘t, respectively. The next two columns report the elasticity
estimates, ⇣, regressing the equal-weighted change in equity holdings �qE on the price change �p
instrumented by the GIV Z. The next two columns report the elasticity of the corporate sector,
⇣C . The final column reports the estimates of the same specification as the first column, but we
omit Zt, where Zt =

P
i Si,t�1�q̌it and �q̌it defined in (67), to estimate the impact of sector-specific

shocks on prices. In constructing �q̌it, all estimates control for quarterly GDP growth. We report
the standard errors, which are corrected for autocorrelation, in parentheses. The sample is from
1993.Q1 to 2018.Q4.

�p �p �qE �qE �qC �qC �p
Z 7.08 5.28

(1.86) (1.10)

�p -0.13 -0.17 -0.01 -0.01
(0.04) (0.05) (0.01) (0.02)

GDP growth 5.99 5.97 0.56 0.85 0.22 0.23 5.93
(0.69) (0.67) (0.27) (0.33) (0.13) (0.16) (0.91)

⌘1 21.06 23.72 3.98 5.49 -0.72 -0.64 31.50
(13.58) (12.79) (2.08) (2.07) (0.69) (0.81) (15.57)

⌘2 29.95 5.62 0.29
(6.54) (2.15) (0.67)

Constant -0.01 -0.01 0.00 0.00 -0.00 -0.00 -0.01
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01)

Observations 104 104 104 104 104 104 104
R2 0.436 0.515 0.279
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Figure 4: Estimates of the aggregate multiplier M = 1
⇣ by horizon. The figure plots the multi-

period impact of demand shocks: a demand shock of ft at date t increases the (log) price of equities
from t � 1 to t + h by Mft. We use the GIV for instrumentation, see (43). The horizontal axis
indicates the horizon in quarters, from zero (that is, the current) to four quarters. Standard errors
are adjusted for autocorrelation. The sample is from 1993.Q1 to 2018.Q4.
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The impact of flows at longer horizons In Figure 4, we explore how demand and flow shocks
propagate across time. To this end, we extend the earlier analysis by estimating

pt+h � pt�1 = ah +MhZt + ch⌘
PC,e
t + dh�yt + ✏t+h, (43)

for h = 0, 1, . . . , 4 quarters, where pt+h � pt�1 is the (h + 1)�quarter (geometric) return on the
aggregate stock market. Recall that ⌘PC,e

t is the principal component, extracted in the third step
of the GIV procedure as outlined in Section B.2. The figure reports Mh at a certain horizon. We
also consider a regression where we replace the left-hand side by pt�1 � pt�2, which we refer to as
h = �1. To construct the confidence intervals, we account for the autocorrelation in the residuals
due to overlapping data.

We find that the cumulative impact is fairly stable over time. This is intuitive as sharp reversals
would imply a strong negative autocorrelation in returns, which is not something that we observe
for the aggregate stock market at a quarterly frequency. As such, and consistent with the theory,
persistent flow shocks lead to persistent deviations in prices. Size-weighted sector-specific demand
shocks are also not correlated with returns at t� 1 (that is, h = �1). Unfortunately, however, the
confidence interval widens quite rapidly with the horizon, which limits what we can say about the
long-run multiplier.

Robustness We explore the robustness of our estimates along various dimensions. In the interest
of space, we report and discuss the tables in Appendix D.4. In Tables D.8–D.10, we consider a
variety of robustness checks related to the sample period, data construction, and implementation
choices of the GIV estimator. We conclude that our results are robust to these changes in the
empirical strategy with multiplier estimates ranging from 3.5 to 8.
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4.4 A new measure of capital flows into the stock market
In this final section, we construct a new measure of capital flows into the stock market consistent
with the theory in Section 3. While our theory provides conceptual clarity in terms of how to
measure flows into the market, and to get around the problem that “for every buyer there is a
seller,” the data required are unfortunately not available for all investors.

In Section 4.4, we propose a way to construct an empirical counterpart to the measure based
on the available data. As this measure is new to the literature, we show its connection to prices,
macroeconomic variables, and beliefs. The results in this section provide an initial analysis of the
potential determinants of flows into the aggregate stock market. These results are intentionally
descriptive in nature and understanding the primitive drivers of these flows is an important task
for future research.

Measuring flows into the stock market We rely on the FoF data for these calculations and
we refer to Appendix C for details on the data construction of the fixed income positions and flows.
As (10) shows, the flow into the aggregate stock market can be measured by first computing the
flow for each investor, �fit = �Fit

Wi,t�1
, and then computing the equity weighted average, �fSt =

P
i

✓i,t�1Wi,t�1P
i
✓i,t�1Wi,t�1

�fit. Unfortunately, the FoF aggregates data across many institutions and the
reported flows can be mismeasured by this definition. To see this, consider the case in which some
households only invest in bonds and other households only invest in equities. If we view this as a
combined household, a 1% combined inflow into financial markets does not necessarily lead to a 1%
increase in equity holdings as the flow may be a flow to bond funds only. With disaggregated data,
such problems can be solved, but such data are unfortunately unavailable.

We propose a simple diagnostic to assess whether flows are measured accurately. In particular,
in our model, the elasticity of demand to flows equals one, see (7). We therefore estimate

�qit = ↵ + �ifit + �i�pt + �i�yt + ✏it. (44)

We report the estimates of �j in Table D.13 in Appendix D. When we cannot reject H0 : �i = 1
at the 5% significance level, we use the total flow. If this null hypothesis is rejected, we use the
equity flow instead. We refer to these “screened flows” as f ⇤

it. The aggregate flow is then given by
f ⇤
St =

P
i Si,t�1f ⇤

it + fCt, where fCt corresponds to net repurchases of equities by firms.

The correlation between capital flows and equity returns We relate our measure of capital
flows into the stock market to returns. In the left panel of Figure 5, we show that our measure
of flows is strongly correlated with returns using a binned scatter plot in the left panel. We again
find that the slope is high, but we emphasize that, because of endogeneity, the slope is not a good
measure of the impact of flows of the price. This is why earlier we developed an IV strategy to
measure that impact.52

We can also illustrate the strong co-movement between flows and prices at lower frequencies.
In particular, we construct a cumulative (log) return index and compute cumulative flows. We
then extract the cyclical component using the methodology developed in Hamilton (2018). We
standardize both measures, by removing the time-series mean and dividing them by their standard

52If one has data on capital flows for a substantial number of sectors, then it would be possible to construct a GIV
estimate based on capital flows alone. This would make it possible to estimate the causal impact of prices on capital
flows and of capital flows on prices.
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Figure 5: Capital flows into the stock market and price changes. We plot the aggregate flow
into the stock market, using the screened flows, f ⇤

jt, f ⇤
St =

PN
j=0 Sjf ⇤

jt, versus the return on the
aggregate stock market in the left panel used a binned scatter plot. In the right panel, we construct
a cumulative (log) return index and compute cumulative flows. We extract the cyclical component
using the methodology developed in Hamilton (2018). In the right panel, we standardize both
measures over the full sample to be able to plot them in the same figure so that they have mean 0
and standard deviation 1. The sample for both panels is from 1993.Q1 to 2018.Q4.
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deviations, over the full sample to be able to plot them in the same figure. These are shown in
the right panel of Figure 5. Consistent with the high-frequency co-movement that we uncover in
the left panel of Figure 5, we find that prices and flows co-move at a business cycle frequency. We
re-emphasize once again that these are merely correlations and it may be the case, for example,
that they reflect positive feedback trading by investors (Cutler et al. (1990), Shleifer (2000)).

Relating flows to shocks to GDP and to return expectations To conclude this initial
exploration of capital flows into equity markets, we relate flows to shocks to economic activity and
survey expectations of returns. We use GDP growth as our measure of economic activity, as before.
For return expectations, we use the survey from Gallup. The data are described in more detail
in Appendix C. Gallup has several missing observations and only starts in 1996.Q4. We only use
data for all series when they are non-missing, which gives us 79 quarterly observations. To obtain
innovations, we estimate an AR(1) model for each of the series (except returns). We standardize
each of the innovation series, by removing the time-series mean and dividing them by their standard
deviations, to simplify the interpretations of the regressions.

The results are presented in Table 4. In the first three columns, we relate capital flows to
survey expectations and economic growth. We find that flows and survey expectations are strongly
correlated, confirming Greenwood and Shleifer (2014) using a more comprehensive measure of capital
flows. A one standard deviation increase in survey expectations of future returns is associated with
a 0.48 standard deviation increase in capital flows.

This finding may point to a resolution of a recent challenge posed to the beliefs literature by
Giglio et al. (2021a). In particular, they find that although survey expectations of returns are
volatile, the pass-through to actions (that is, portfolio rebalancing) is low. One possibility is that
the strong correlation between innovations to beliefs and prices (which equals 61% in our sample)
arises even though the pass-through is low, but small flows into inelastic markets lead to large price
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Table 4: Descriptive statistics on capital flows, survey expectations of beliefs, economic activity,
and stock returns. The table reports the time-series regressions of innovations to flows in the first
three columns on innovations to survey expectations of returns (column 1), GDP growth innovations
(column 2), and both variables combined (column 3). We estimate the innovations in all cases by
estimating an AR(1) model, and normalize them to have unit standard deviation. Then we regress
returns on flow innovations (column 4), innovations to survey expectations of returns (column 5),
GDP growth innovations (column 6), and all three variables combined (column 7). The sample is
from 1997.Q1 to 2018.Q4, with some gaps, due to missing data for the Gallup survey.

Flow Flow Flow Return Return Return Return
Gallup 0.48 0.46 0.61 0.33

(0.10) (0.11) (0.09) (0.09)

GDP growth 0.21 0.06 0.41 0.21
(0.11) (0.11) (0.10) (0.08)

Flow 0.65 0.45
(0.09) (0.09)

Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.10) (0.11) (0.10) (0.09) (0.09) (0.10) (0.07)

Observations 79 79 79 79 79 79 79
R2 0.233 0.046 0.237 0.426 0.376 0.171 0.582

effects.
Flows and economic activity, as analyzed in the second column, are also positively correlated,

but the relation is substantially weaker. In the third column, we combine survey expectations and
economic activity, and find that the latter is insignificant. In the remaining columns, we study the
association between returns and flows, beliefs, and economic activity. A one standard deviation
increase in capital flows is associated with a 0.65 standard deviation increase in returns, which
is similar to a 0.61 standard increase in case of survey expectations. The link to GDP growth is
significant, but weaker with a slope coefficient of 0.41. In the final column, we combine all flows,
beliefs, and GDP growth and find that even in this multiple regression, all variables are significant.
The R-squared of this final regression is high and amounts to R2 = 58%.

Obviously, this analysis is just an initial exploration into the determinants of flows, and more
disaggregated data may be used to explore the determinants of capital flows for various institutions
and across households. If the inelastic markets hypothesis holds, this is an important area for future
research.

5 General Equilibrium with Inelastic Markets
So far, we took both the risk-free rate rf and the average equity premium ⇡̄ as exogenous. We now
endogenize them. For instance, we shall see how flows from bonds to stocks, which alter the price
of stocks, can at the same time keep the risk-free rate constant (in our model, this is because the
optimizing household also trades off saving in bonds versus consumption, and this way ensures that
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the consumption-based Euler equation for bonds holds). We view this as a prototype for how to
build general equilibrium models with inelastic markets, merging behavioral disturbances, the flows
they create, their impact on prices, and potentially their impact on production.

5.1 Setup
For simplicity, we discuss in detail an endowment economy. It will be easy to then generalize the
model to a production economy. This general equilibrium model is a specialization of our infinite-
horizon model of Section 3.2 – it specifies things left general in that model, such as the origin of
the interest rate.

The endowment Yt follows a proportional growth process, with an i.i.d. lognormal growth rate
Gt: Yt

Yt�1
= Gt = eg+"

y

t
� 1

2�
2
y , with "yt+1 ⇠ N

�
0, �2

y

�
. Utility is

P
t �

tu (Ct) with u (C) = C1��

1�� .
Because empirically dividend growth and GDP growth are not very correlated, we model that GDP
Yt is divided as Yt = Dt + ⌦t into an aggregate dividend Dt and a residual ⌦t, where the dividend
stream has i.i.d. lognormal growth, Dt

Dt�1
= GD

t = eg+"
D

t
� 1

2�
2
D , so that the balanced growth path

specified in Section 3.2 has a cumulative growth factor Gt = GD
t . . . GD

1 . The “residual” ⌦t can be
thought of as a combination of wages, entrepreneurial income, and so forth (and indeed it is the
vast majority of GDP).53 The representative firm raises capital entirely through equity, and passes
the endowment stream as a per-share dividend Dt =

Dt

Q , where Q is the number of shares of equities
supplied by the corporate sector, which is an unimportant constant in this baseline model without
share buybacks and issuances. Bonds are in zero net supply.54 We write the price of equities as
Pt =

Dt

� e
pt , where � is the average dividend-price ratio and pt is the deviation of the price from the

baseline pt = 0. Those quantities are all endogenous.
There are two funds: a pure bond fund, which just holds bonds, and the representative mixed

fund, which holds bonds and equities. The mixed fund has a mandate, to hold a fraction in equities
equal to:

✓t = ✓ exp
�
�Dpt + Et [�pt+1]

�
, (45)

which is the same as before in (1), to the leading order (in terms of deviations from the steady
state), with D = �. The formulation here is slightly more general.55

Consumption and investment by households We describe the behavior of the representative
household. Section G.8 provides more formalism and further details. The dynamic budget constraint
of household h entails:56

QB,h
t +Dh

t + ⌦h
t = Ch

t +�F h
t +

QB,h
t+1

Rf,t
. (46)

Indeed, the left-hand side is the bond asset position of the household at the beginning of period t:
QB,h

t gives the bond holdings at the beginning of period t, while Dh
t and ⌦h

t are the dividend and
53Formally, it could become negative, as in Campbell and Cochrane (1999), though this is a very low probability

event in our calibration. Then, the interpretation is that of a residual liability. In addition, it would be easy to keep
Dt/Yt stationary, at the cost of having it as one more state variable, reverting to its mean.

54We can easily have the government issue bonds, backed by taxation, see Section G.8.1.
55But here we allow the mandate to potentially differentiate between “return predictability coming from the price-

dividend ratio” (captured by �Dpt) and “return predictability because the price is predictable”. In a number of
settings the first one (the “carry”) is stronger than the last one (Koijen et al. (2018)), so having two ’s is sensible.

56There is also the usual transversality condition, limt!1 �t
�
Ch

t

���
QB,h

t = 0.
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residual income received by the household in its pure bond fund (which includes the “dividends”
paid by the mixed fund). This bond position is spent on consumption Ch

t , flows �F h
t into the mixed

fund, and investment in bonds, with a face value QB,h
t+1.

We need a behavioral element, otherwise the investor would fully undo the funds’ mandate. We
choose to decompose the household as a rational consumer, who only decides on consumption (so
dissaving from the pure bond fund), and a behavioral investor, who trades between the pure bond
fund and the mixed fund.

The rational consumer part of the household chooses consumption (but not equity shares) to
maximize lifetime utility, subject to the dynamic budget constraint for bonds (46). She takes the
actions of the investor as given.57 As she is rational, she satisfies the Euler equation for bonds:

Et

"
�

✓
Ct+1

Ct

◆��

Rft

#
= 1, (47)

with Ct = Yt in equilibrium. This pins down the interest rate Rft, which is constant in our i.i.d.
growth economy.

The behavioral investor part of the household is influenced by bt, a behavioral disturbance. It
is a simple stand-in for noise in institutions, beliefs, tastes, fears, and so on. We assume that the
investor trades (between stocks and bonds) with a form of “narrow framing” objective function (as
in Barberis et al. (2006)). He seeks to maximize Et [V p (Wt+1)] with V p (W ) = W 1���1

1�� a proxy
value function. Specifically, when bt = 0, he chooses his allocation ✓̄M in the mixed fund as:

✓̄M = argmax
✓M

E
⇥
V p
��
1� ✓M

�
Rft + ✓MRM,t+1

�
|bt = 0

⇤
, (48)

where RM,t+1 is the stochastic rate of return of the mixed fund. This choice of a “narrow framing”
benchmark is opposed to the fully rational value function, which would have all the Merton-style
hedging demand terms, and would lead to the consumption CAPM holding on average: in particular,
the equity premium would be too small, as in the equity premium puzzle (at ⇡̄ = �cov

�
"Dt , "

y
t

�
).

Instead, the above formulation with narrow framing will lead to a high equity premium ⇡̄ = ��2
r ,

where the �2
r is the volatility of the stock market, which is affected by flow shocks.58

If there are no behavioral disturbances, an investor wishing to maintain a constant allocation ✓̄M
in the mixed fund should invest via F̄t =

1�✓
✓

�
P̄t � P̄0

�
Q̄, as in Section 3.2, that is, �F̄t =

1�✓
✓� �Dt.

We assume that his policy, however, is affected by the behavioral disturbance bt, so that the actual
flow is

�Ft =
1� ✓

✓�
�Dt +

1

�
� (btDt) , (49)

which is higher than the baseline amount �F̄t by a fraction �bt of the “fundamental value” Dt

� of
the equity market. Here we will specify that bt is an AR(1).

In Appendix G.9, we provide a formal microfoundation of flows via beliefs: the financier part of
the household believes that the deviation of the equity premium from trend is ⇡̂H

t . Under simple
conditions, this leads to a flow

ft = H ⇡̂H
t , (50)

57One could imagine a variant, where the consumer manipulates the investor’s actions. This would lead her to
distort her Euler equation for consumption.

58This choice of “narrow framing” leads to a high equity premium. It could be replaced by another device such as
disasters. We choose here narrow framing as this behavioral ingredient is well in the behavioral spirit of this section.
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with H the sensitivity to the risk premium, and to a behavioral deviation bt = ft
✓ . Using the

empirical findings of Giglio et al. (2021a), we estimate that H ' 2, a value that we rationalize by
calibrating it in terms of other behavioral parameters. This estimate is in contrast with a rational
model, which would imply H = 1

⇡̄ ' 22, a very large pass-through from beliefs to portfolio shares.
A low value of H means that people have “bold forecasts” (excess variations in the perceived equity
premium) but make “timid choices” (small flows), very much as in Kahneman and Lovallo (1993).59

This type of model can be also made to match the perspective in Bordalo et al. (2020), in which
all variation in prices, flows, and the perceived risk premium ⇡̂H

t comes from changes in the long-
term growth forecast gt (all in deviations from a trend), in a way still governed by (50): Section G.9
provides details and a calibration. One could image a richer model for the perceived risk premium
⇡̂H
t , e.g. with extrapolative beliefs based on realized returns or growth rates. One could then work

out the implications for flows (via (50)) and prices (via Proposition (5)).
We conclude that linking flows to beliefs is a promising and manageable line of research, and

the analytics that we provide in this section and in Appendix G.9 help thinking about this. At the
same time, there may be other determinants of flows, for instance binding risk constraints, changes
in regulation or policy, and reaction to fairly irrelevant news, which is why we find it useful to
separate the impact of the behavioral deviation bt from its determinants.

We finally formally define the equilibrium.

Definition 1. The state vector is Zt = (Yt,Dt,Dt�1, bt) . An equilibrium comprises the following
functions: the stock price P (Z), the interest rate Rf (Z), and the consumption and asset allocation
C (Z), B (Z), such that the mixed fund’s allocation ✓ (P,Z) follows its mandate, and: (i) the
consumer follows the consumption policy C (Z), which maximizes utility subject to the above
constraints; (ii) the investor follows the behavioral policy (49), where the average allocation in the
mixed fund is given by (48), so that it is quasi-rational with narrow framing on average, but with
disturbance bt; (iii) the mixed fund’s demand for stocks Q (Z) follows its mandate (45); (iv) the
consumption market clears, C (Z) = Y (Z); and (v) the equity market clears, Q (Z) = Q.

5.2 Model solution
Proposition 6 describes the solution of this economy. In particular, it shows that the link between
the disturbance bt and the cumulative flow ft is as follows. Starting from an equilibrium situation,
where b0 = 0, the cumulative “excess” flow is equal to:

ft = ✓bt. (51)

This holds for any process bt. Now, we specialize to the case where bt follows an AR(1) with speed of
mean-reversion �f . Then, so does ft, so that we are in the “simple benchmark” case of (25)-(26), and
now with an endogenous interest rate and unconditional equity premium. This AR(1) assumption is
just a placeholder for richer behavioral assumptions, for example driven by time-varying beliefs (as
in Caballero and Simsek (2019), Bordalo et al. (2020)), positive or negative feedback trading rules,
and so on. We defer to future research for richer, empirically-grounded models of the “behavioral
deviation” bt, and hence of the flows. The limited goal of this framework is to have a simple model
of the impact of the flows in general equilibrium, which can be fully solved and which lends itself
to a number of variants. Importantly, it relies on observable flows.

59Quantitatively, to match the calibrated volatility of flows of �f = 2.8% (as in Table 6) we need a moderate
variation of beliefs �⇡H = 1.4%.
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Proposition 6. The solution of the economy obtains in closed form as follows, taking the limit of
small time intervals and only the first order terms in ft. The market elasticity ⇣ and the “macro
market effective discount rate” ⇢ (see Proposition 5) are:

⇣ = 1� ✓ + D, ⇢ =
⇣


. (52)

The price of equities is:
Pt =

Dt

�
ept , (53)

where Dt is the dividend, � = rf + ⇡̄ � g is the average dividend-price ratio, and pt is the deviation
of the price from its rational average, which increases with flows:

pt = bpfft, bpf =
1

⇣ + �f
. (54)

Hence the variance of stock market returns is

�2
r = var

⇣
"Dt + bpf"

f
t

⌘
, (55)

and depends on both fundamental risk ( "Dt ) and flow risk ("ft ). Both contribute to the average equity
premium, which is:

⇡̄ = ��2
r . (56)

The equity premium at time t is lower than its average when flows have been high, as:

⇡t = ⇡̄ + b⇡fft, b⇡f = � (� + �f ) b
p
f . (57)

Finally, the interest rate is constant, and given by the consumption Euler equation (47):

rf = � ln � + �g � � (� + 1)
�2
y

2
. (58)

Hence, we have a fairly traditional economy, except that, crucially, prices and risk premia are
now driven by flows and flow risk, in addition to fundamentals, and that markets are inelastic.
Hence, the equity premium is time-varying (because of flows), and on average higher than in the
consumption CAPM (because it reacts to flow risk, not just fundamental risk, and because the nar-
row framing makes the investor react to the variance of equity returns, rather than their covariance
with consumption), as given in (56).

5.3 Pricing kernel consistent with flow-based pricing
We show how to express the economics of flows in inelastic markets in the language of pricing
kernels or stochastic discount factors (SDFs). To do so, we use a simple general method to complete
a “default” pricing kernel so that it reflects the impact of flows on asset prices. The idea is simply
that there is a fringe of infinitesimal traders that can absorb any infinitesimal amount of new
assets. That gives rise to a “flow-based” pricing kernel (see Section G.10 for details). In our general
equilibrium model, this SDF is:

Mt+1 = exp(�rf � ⇡t
"Dt+1

�2
D

+ ⇠t), ⇡t = ⇡̄ + b⇡fft, (59)

39



where �2
D = var

�
"Dt+1

�
and ⇠t is a deterministic term ensuring that Et [Mt+1] erf = 1, so that

⇠t = � ⇡2
t

2�2
D

if "Dt+1 is Gaussian.
This “flow-based” pricing kernel is an alternative to the consumption-based kernel of Lucas

(1978). The core economics is in how flows affect prices, and the pricing kernel (59) just reflects
that. The flow ft modifies the price Pt according to Proposition 6 and also the pricing kernel Mt+1,
in such a way that Pt = Et [Mt+1 (Dt+1 + Pt+1)] holds. The pricing kernel is in a sense a symptom
rather than a cause in that market.

To sum up, the flow-based SDF (59) reacts to flows, and prices equities and bonds:

Et [Mt+1RM,t+1] = 1, Et [Mt+1Rft] = 1.

However, in this model, consumption does not directly price equities, though it does price bonds:

Et[�

✓
Ct+1

Ct

◆��

RM,t+1] 6= 1, Et[�

✓
Ct+1

Ct

◆��

Rft] = 1.

5.4 Calibration of the general equilibrium model
We now calibrate the general equilibrium model. This extends the calibration of Section 3.2, which
is natural as the general equilibrium model is an extension of the basic infinite horizon model. We
use the parameter values given in Table 5, which are all presented in annualized terms for clarity.
We provide a summary discussion of our parameter choices here, leaving some details to Section H.
Risk aversion is moderate, at � = 2. The macroeconomic parameter values are standard, except for
the pure rate of time preference.60 We set a speed of mean reversion of the behavioral disturbance
of �b = 4%/year, which induces the same speed of mean reversion for flows ft and for the P/D
ratio. Likewise, we choose its standard deviation to generate the requisite volatility of flows. For
parsimony, we assume zero correlation between flow shocks and dividend shocks.

Table 6 shows the resulting moments implied by the model. It verifies that we match all the
“classic” moments, for instance the risk-free rate, the average equity premium, and the volatility of
stock returns. We see that the model features a large “excess volatility”: the flow shocks (with their
2.8% annual standard deviation) account for almost 90% of the variance of stock returns. It may
be surprising that we can match the equity premium without any of the “modern” asset pricing
ingredients, such as a very high risk aversion or disaster risk. The reason is that the preferences of
our behavioral investors feature “narrow framing”, which leads to an average risk premium given by
⇡̄ = ��2

r .
Table 7 shows more moments specific to the stock market. We broadly match the volatility of

the log P/D ratio, its speed of mean reversion, and the predictive power of forecasting regressions
with that P/D ratio.

We conclude that our general equilibrium model featuring inelastic markets is competitive with
other widely-used general equilibrium models that match equity market moments. Its main advan-
tages, as we see it, are that it relies on an observable force, flows in and out of equities and that it

60To get a small risk-free rate of 1% (and only for this reason), we need to make the agents very patient, so that
� > 1. Indeed, this comes from the Ramsey equation (58), which is rf ' � ln� + �g (neglecting precautionary
effects, which are very small in our calibration) with �g = 4%. We share this issue with the overwhelming majority
of the macroeconomics literature: if we normalized the average growth rate to zero, like most of the macroeconomics
literature, we would not have this difficulty. It would be easy to amend that, for example by adding a small probability
of a disaster risk or by using Epstein-Zin preferences. We do not do that, because we do not wish to complicate the
model.
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Table 5: Parameter values used in the calibration

Variable Value
Growth rate of endowment and dividend g = 2%
Std. dev. of endowment growth �y = 0.8%
Std. dev. of dividend growth �D = 5%
Mixed fund’s equity share ✓ = 87.5%
Mixed fund’s sensitivity to risk premium  = 1
Speed of mean-reversion rate of behavioral disturbance �b = 4%
Std. dev. of innovations to behavioral disturbance �b = 3.3%
Time preference � = 1.03
Risk aversion � = 2

Notes. Values are annualized.

Table 6: Moments generated by the calibration

Variable Value
Macro elasticity ⇣ = 0.16
Macro elasticity with mean-reverting flow ⇣M = ⇣ + �f = 0.2
Macro market effective discount factor, ⇢ = ⇣/ ⇢ = 16%
Risk free rate rf = 1%
Average equity premium ⇡̄ = 4.4%
Average dividend-price ratio � = 3.4%
Std. dev. of stock returns �r = 15%
Share of variance of stock returns due to flows 89%
Share of variance of stock returns due to fundamentals 11%
Mean reversion rate of cumulative flow and logD/P �f = 4%
Std. dev. of innovation to cumulative flow �f = 2.8%
Slope of log price deviation to flow bpf = 5
Slope of equity premium to flow b⇡f = �0.37

Notes. Values are annualized.
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Table 7: Some stock market moments and predictive regressions

(a) Stock market moments

Data Model
Std. dev. of excess stock returns 0.17 0.15
Mean P/D 37 33
Std. dev. of logP/D 0.42 0.5

(b) Predictive regressions

Data Model
Horizon Slope S.E. R2 Mean of slope 95% CI of slope S.E. R2

1 yr 0.11 (0.034) 0.07 0.14 [0.04, 0.32] (0.048) 0.09
4 yr 0.36 (0.14) 0.18 0.61 [0.18, 1.19] (0.17) 0.28
8 yr 1.00 (0.34) 0.40 1.34 [0.39, 2.50] (0.31) 0.43

Notes. The data are for the United States for 1947-2018, and are calculated based on the CRSP
value-weighted index. The predictive regressions for the expected stock return in panel (b) are
Rt!t+T = ↵T + �T ln Dt

Pt
, at horizon T (annual frequency). S.E. denotes the Newey-West standard errors

with 8 lags. 95% CI denotes the 95% confidence interval of the estimated coefficients on the simulated
data. Each run in the simulation uses 72 years.

matches our evidence on the macro elasticity of the market. Also, it retains the CRRA structure, so
it is easier to mesh with the basic macro models. Hence, it might be a useful prototype highlighting
how to think about inelastic market in general equilibrium.

6 Government Policy and Corporate Finance in Inelastic Mar-
kets

We now examine how a number of issues in finance change when markets are inelastic: government
and corporate policies. Many readers may wish to skip to the conclusion, but in our experience a
good fraction of readers will be interested in these topics.

6.1 Governments might stabilize the stock market via quantitative easing
in equities

In inelastic markets, the government might prop up asset values, perhaps in times of crisis, or to
help firms invest by raising equity at a high price. Indeed, suppose that the government buys fG

percent of the market, and keeps it forever. Then, the market’s valuation increases by p = fG

⇣ .61 So,

61Note that we assume that investors do not change their holdings to counteract the government’s holdings,
meaning that Ricardian equivalence does not hold, perhaps because of a form of inattention to the government’s
actions (Gabaix (2020)).
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if the government buys 1% of the market (which may represent roughly 1% of GDP), the market
goes up by 5%.62

This is what a number of central banks have done. In August 1998, the Hong Kong government,
when it was under a speculative attack, bought 6% of the Hong Kong stock market: this resulted in a
24% abnormal return, which was not reversed in the following eight weeks (Bhanot and Kadapakkam
(2006)). This effect is not entirely well-identified, but is consistent with a large price impact
multiplier 1

⇣ , around 4. Likewise, the Bank of Japan owned 5% of the Japanese stock market in
March 2018 (Charoenwong et al. (2020)) and the Chinese “national team” (a government outfit)
owned a similar 5% of Chinese stocks in early 2020.63 In inelastic markets, this may have a large
price impact.64 Those government purchases of equities offer a potentially attractive government
policy, as they increase market values and lower the cost of capital for firms, and relax credit
constraints. So, they might increase hiring and real investments by firms, and GDP. We think this
is an interesting direction for future research.65

6.2 Corporate finance in inelastic markets
Imagine that firms (the aggregate corporate sector) buy back shares in one period, reducing divi-
dends and hence keeping total payouts constant. What happens?

In a frictionless model, this does not affect the firms’ values, as per Modigliani-Miller. In an
inelastic model, it should now be clear that buybacks can increase the aggregate value of equities.
How much depends on the rationality of households, as we now detail. For clarity and brevity,
we focus on the two-period model (the same economics holds with an infinite horizon, but the
expressions are more complicated; see Section G.11). At time 0, we imagine the representative firm
buys back a fraction b of the equity shares, where b is small (so that the new number of shares is
Q0

0 = (1� b)Q0). The buyback is financed by a fall in the time-0 dividend, so the total dividend
payout falls from D0 to D0

0 = D0 � P0Q0b, where P0 is the ex-dividend price, and P0Q0b is used to
finance the share buyback.

We need to take a stance on the households’ reaction to those buybacks. Call µD (respectively
µG) the fraction of the change in dividends (respectively, of the change in capital gain) that is
“absorbed” by the households – that is, consumed or reinvested in the pure bond fund. If the extra
dividend (respectively extra capital gain) is X dollars, consumers will “remove from the mixed fund”
µDX (respectively µGX) dollars. As households’ marginal propensity to consume is higher after a $1
dividend rather than a $1 capital gain (Baker et al. (2007)), it is likely that 0 < µG < µD < 1. We do
not seek here to endogenize µD and µG, which would be a good application of limited attention. We
simply trace their implications for the price impact of share buybacks in the following proposition
(which is proved in Section F).

Proposition 7. (Impact of share buybacks in a two-period model) Suppose that, at time 0, corpo-
rations buy back a fraction b of shares, lowering their dividend payments by the corresponding dollar

62If the government buys it for just T periods, the impact is p =
⇣
1� 1

(1+⇢)T

⌘
fG

⇣ . Set ft = fG10t<T in (20).
With the above calibration, this can be a moderate dampening if T is large enough.

63Lockett, Hudson. “How the invisible hand of the state works in Chinese stocks.” Financial Times, 2/4/2020.
64We are not aware of a quantification of the macro elasticity for Japan. Barbon and Gianinazzi (2019) and

Charoenwong et al. (2020) quantity a micro elasticity – the differential impact on individual stocks that are owned
versus not owned by the government.

65Brunnermeier et al. (2020) caution about potentially adverse effect if the government’s purchases might become
too central.
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amount, hence keeping total payout constant at time 0. Then, the aggregate value of equities moves
by a fraction

v =

�
µD � µG

�
✓

⇣ + µG✓
b, (60)

where µD (respectively µG) is the fraction of the change in dividends (respectively change in capital
gains) “absorbed” by households, i.e. removed from the mixed fund. If µD > µG (so that the marginal
propensity to consume out of dividends is higher than that out of capital gains), then share buybacks
increase the aggregate market value: v > 0.

A provisional calibration Using the estimates of Di Maggio et al. (2020b), we set µD '
0.5 and µG ' 0.03. Then, (60) says that a buyback of 1% of the market increases the market
capitalization by 2.2%. The above papers (Baker et al. (2007); Di Maggio et al. (2020b)) do not
exactly measure µD and µG: they measure the impact on consumption, not on consumption plus
reallocation to pure bond funds. It is conceivable that some of the capital gains or dividends are
reinvested in bonds, even if they’re not consumed. So, µD (respectively µG) is likely to be higher
than the marginal propensity to consume out of dividends (respectively capital gains). In addition,
what matters is the “long run” propensity, which is hard to measure, and one may conjecture that
the long-run consumption adjustment to a lasting policy change will have µD � µG closer to 0.
One upshot is that it would be interesting for the empirical literature to estimate the long-run µD

and µG, as it is important to understand the impact of firms’ actions such as buybacks in inelastic
markets.

7 Conclusion
This paper finds, both theoretically and empirically, that the aggregate stock market is surprisingly
price-inelastic, so that flows in and out of the market have a significant impact on prices and risk
premia. We refer to this as the inelastic markets hypothesis. We provide tools to analyze inelastic
markets, with a simple model featuring key elasticities and an identification strategy using the
recently developed method of granular instrumental variables, conceived for this project and laid
out in detail in Gabaix and Koijen (2020).

We emphasize though that the “inelastic market hypothesis” remains just that: a hypothesis.
Our empirical analysis relies on a new empirical methodology and on fairly unexplored data in this
context. An important takeaway from this paper is that the demand elasticity of the aggregate
stock market is a key parameter of interest in asset pricing and macro-finance, just like investors’
risk aversion, their elasticity of inter-temporal substitution, and the micro elasticity of demand. We
provide a first estimate, and we hope that future research will explore other identification strategies
to improve and sharpen this estimate.

If the inelastic markets hypothesis is correct, it invalidates or qualifies a number of common
views in finance and it provides new directions to answer longstanding questions in finance. We
outline and then discuss those tenets.

How tenets of finance change if the inelastic markets hypothesis is correct
“Permanent price impact must reflect information.” In Proposition 5, a one-time, non mean-

reverting inflow permanently changes prices (as in p = f
⇣ ), even if it contains no information
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whatsoever. This is because a permanent change in the demand for equities must permanently
change their equilibrium prices – and this effect is quantitatively important in inelastic markets.
The typical empirical strategy to look for reversals as signs of flows (rather than information) moving
prices does not work in this case. By the same logic, we can see large changes in prices but small
changes in long-horizon expected returns.

“Fast and smart investors (perhaps hedge funds) will provide enough elasticity to the market.”
This is not true: in part because hedge funds are small (they own less than 5% of the market,
see Section 2), they cannot provide much elasticity for the market as a whole (so ⇣ remains low),
even though they might ensure short term news are incorporated quickly (so that  is quite high).
In addition, those smart-money investors often face risk constraints and outflows that limit their
ability to aggressively step in during aggregate downturns.

“Trading volume is very high, so the equity market must be very elastic.” Trading volume in the
equity market is high (about 100% of the value of the market each year), but most of it exchanges
one share for another share (perhaps via a round-trip through cash). These trades within the
universe of equities do no count toward the aggregate flow f , which is a (signed) flow from bonds
to equities.

“For every buyer there is a seller; so, saying ‘there was an increase in the demand for equities’
is meaningless.” Economists often appeal to the truism that “for every buyer there is a seller” to
disregard the notion that a measurable increase in the willingness of the average trader to buy
more of the market will push prices up (“buying pressure”). Our model clarifies that this reasoning
is incorrect. In Proposition 2, f is the pressure to buy stocks (if it is positive), and the demand
q = �⇣p + f has a component �⇣p expressing that “sellers” appetite to sell shares to “buyers”
represented by f . So there are both buyers and sellers (or really, a force making the representative
fund buy, and a force making it sell), but at the same time, buying pressure f does move the price
by p = f

⇣ . Moreover, it is directly measurable via the change in asset holdings (bonds in the case of
the undergraduate example of Section 3.1), as in (10).

“The market often looks impressively efficient in the short run, so it must be quite macro-
efficient.” The contrast between the market’s “short run efficiency” and “macro-efficiency” is sharp
in equation (20): future events are discounted at a rate ⇢ = ⇣

 = � + 1�✓
 , so that a highly far-

sighted market has a lower value of ⇢. So, the market can be very forward-looking (low ⇢), even if
it is very macro-inelastic (low ⇣), provided that “far-sightedness”  is relatively high compared to
⇣ (for example, because there are a few powerfully forward-looking arbitrageurs). As an example,
consider the announcement of an event that will take effect in a week, such as a permanent increase
in dividends or inflows. In our calibration, the market’s current reaction to the announcement is a
fraction 99.8% of the eventual present value of the future dividends or inflows.66 In that sense, the
market looks impressively efficient. But again, it is “short-term predictability efficient” (it smooths
announcements) and “micro efficient” (it processes well the relative valuations of stocks), but it is
not “macro efficient” (as Samuelson (1998) put it) or “long-term predictability efficient” – it does
not absorb well very persistent shocks. Furthermore, even though prices respond promptly around
major events, it is generally hard to assess whether the market moved by just the right amount,
or instead under- or over-reacted. In addition to a large literature demonstrating drifts in prices
before and after macro events (such as Federal Open Market Committee meetings), our model
implies that persistent flows around such events can lead to persistent deviations in prices, and
typical event study graphs that do not display much of a drift in prices following the event would

66Indeed, (1 + ⇢)�T = 99.8%, taking the ⇢ calibrated in Section 3.2 and T = 1/52 years.
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be uninformative about macro efficiency.
“Share buybacks do not affect equity returns, as proved by the Modigliani-Miller theorem.” In

the traditional frictionless model, the return impact of a share buyback should be zero. However,
in our model, if firms in the aggregate buy back $1 worth of equity, that can increase aggregate
valuations (Section 6.2 detailed this). Hence, share buybacks are potentially a source of fluctuations
in the market. In our model, a combination of fund mandates and consumers’ bounded rationality
leads to a violation of the Modigliani-Miller neutrality. More broadly, corporate actions such as
share issuances, transactions by insiders, et cetera, may have a large impact on prices beyond any
informational channel. Most extant empirical evidence focuses on announcements at the firm level,
while we emphasize their impact at the aggregate level. By focusing on well-identified firm-level
responses, one identifies the micro-elasticity, not the macro elasticity ⇣. It will be interesting to
explore in detail how important corporate decisions are for fluctuations in the aggregate stock
market.

“Markets must be macro elastic as otherwise small flows would imply large price changes and
market timing strategies would be too profitable.” The Sharpe ratios of market timing strategies
depend on the properties of flows, see (23) and (24). If flows are highly persistent, prices may move
a lot, but the per-period expected excess returns do not change much. Indeed, in the model in
Section 5, the persistence of the dividend yield matches its empirical counterpart and using it for
market-timing purposes does not work well out of sample.

We next discuss a few questions that seem important for future research.

Why is the aggregate demand for equities so inelastic? The core of the inelastic markets
hypothesis is that the macro demand elasticity ⇣ is low. Why is it so low? We highlighted two
reasons, namely fixed-share mandates (so that ⇣ > 0,  = 0), such as those of many funds that
are 100% in equities and hence have zero elasticity, and inertia (i.e., some funds or people are just
buy-and-hold, creating ⇣ =  = 0). This may be due to a taste for simplicity, or to agency frictions:
as the household is not sure about the quality of the manager, a simple scheme like a constant share
in equities may be sensible – otherwise the manager may take foolish risks.

There are other possibilities. If some funds have a Value-at-Risk constraint, and volatility
goes up a lot in bad times, they need to sell when the markets fall, so that their ⇣ and  are
negative. A different possibility is that when prices move, people’s subjective perception of the
equity premium does not move much. One reason might be that investors think the rest of the
market is well-informed. Also, going from market prices to the equity premium is a statistically
error-prone procedure, so that market participants may shrink towards no reaction to this (Black
(1986), Summers (1986)). Alternatively, many investors may not place much weight on the price-
earnings ratio as a reliable forecasting tool, perhaps because they want parsimonious models and
price-dividend ratios are not that useful as short-run forecasters, or because many investors just
do not wish to bother paying attention to them (Gabaix (2014), ?). The pass-through between
subjective beliefs and actions might be low, as it is for retail investors (Giglio et al. (2021a)).
Finally, demand may respond little to prices because demand shocks are highly persistent.67 In the

67For instance, imagine a very simple model ft =
P

k FkI
�
t 2

⇥
⌧0k , ⌧

1
k

⇤�
, where Fk is constant,

⇥
⌧0k , ⌧

1
k

⇤
the period of

time that a flows stays in the market, and ⌧1k � ⌧0k ⇠ exp (�) . From an institutional perspective, one can also imagine
that a large asset manager launches a fund that attracts capital, and that this capital is sticky, but the period for
which it stays is unclear. If � is low, then prices will respond sharply to the flow, even though the expected return
does not move much. Uncertainty about the persistence of the demand shock introduces uncertainty about how
the price change maps to expected returns, leading to a muted response and a low ⇣. This model is in quite sharp
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end, while identifying the exact reasons for low market elasticity is interesting, this question has a
large number of plausible answers. Fortunately, it is possible to write a framework in a way that is
relatively independent to the exact source of low elasticity, and this is the path we chose.

What are the determinants of flows? It is clear that it would be desirable to know more
about the determinants of flows at a high frequency. We provided a minimalist model with a
“behavioral disturbance” (which was enough to study its general equilibrium impact), and some
simple correlations in Section 4.4, but this is clearly a first pass. Establishing the various channels
of flows could be a whole line of enquiry, perhaps with micro data such as those used by Calvet et
al. (2009) or Giglio et al. (2021a).

To appreciate the richness of those determinants, let us observe that flow shocks could come from
various sources, such as: (i) changes in beliefs about future flows or fundamentals, as these both
affect expected returns, per Proposition 5; (ii) “liquidity needs”, for instance insurance companies
selling stocks after a hurricane; (iii) more generally, heterogeneous income or wealth shocks to
different groups (including foreign versus domestic investors) changing the effective propensity to
invest in stocks by the average investor; (iv) corporate actions by firms such as decisions to buy
back or issue shares; (v) shocks to substitute assets, which might for example prompt investors to
rebalance towards stocks when bond yields go down; (vi) changes in the advertising or advice by
institutional advisers, as explored in Ben-David et al. (2020b); (vii) “road shows” in which firms
or governments try to convince potential investors to buy into a prospective equity offering or
privatization; (viii) mechanical forced trading via “delta hedging,” whereby traders who have sold
put options and continuously hedge them need to sell stocks when stock prices fall.

Some further outstanding questions In addition to the two questions we just discussed, our
framework makes a number of further issues interesting and researchable. For example, how much
can and should governments intervene in equity markets? Do share buybacks account for a large
share of market fluctuations? How forward-looking are the policies of funds ()? Generalizing,
what are the cross-market elasticities, meaning the forces that create “contagion” across market?
These same effects will also generalize to other markets (such as the markets for corporate bonds
and currencies): if so, how and what are the policy implications? This is a rich number of questions
that hopefully economists will be able to answer in the coming years.

A Appendix: Main proofs
Proof of Proposition 2 At time 0�, before the inflow shocks, fund i’s wealth is W̄i = P̄ Q̄i + B̄,
where P̄ Q̄i and B̄i are respectively the fund’s holdings of equities and bonds:

P̄ Q̄i = ✓iW̄i, B̄i = (1� ✓i) W̄i.

At time 0, after the inflow shock, and the change in the equilibrium price to P , the fund’s wealth
is Wi = PQ̄i + B̄i + �Fi, so that �Wi = (�P ) Q̄i + �Fi. So, the value of the assets in the fund
changes by a fraction:

wi :=
�Wi

W̄i
=

Q̄i�P

W̄i
+

�Fi

W̄i
=

P̄ Q̄i

W̄i
⇥ �P

P̄
+ fi = ✓i ⇥ p+ fi,

contrast with the traditional view in which flows have a temporary price impact (for instance Coval and Stafford
(2007)).
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that is:
wi = ✓ip+ fi. (61)

This means that the value of the fund increases via the inflow of fi, and via the appreciation of the
stock p, to which the fund has an exposure ✓i.

Let us first take the case i = 0. The demand (1) is:

Qi =
✓iWi

P
=
✓iW̄i (1 + wi)

P̄ (1 + p)
= Q̄i

1 + wi

1 + p
,

so that the fractional change in the fund’s demand for shares is:

qi =
Qi

Q̄i
� 1 =

wi � p

1 + p
=
✓ip+ fi � p

1 + p
=

fi � ⇣ip

1 + p
,

with ⇣i = 1 � ✓i. We see how �⇣i is the (signed) demand elasticity, which includes crucial income
effects.68 For small price changes, this gives qi ' fi � ⇣pi. We also see that, when i = 0 for all
funds, the equilibrium condition qDS = 0 leads to p = fS

⇣S
exactly.

Next, consider the case with a general i. Taking logs and then deviations from the baseline
D/P ratio gives:

� ln
De

P
= � lnDe �� lnP = d� p.

On the other hand, as � = De

P = 1+ rf +⇡, we have � ln De

P = �⇡
1+rf+⇡

= �⇡̂ (with ⇡̂ = �⇡), so that:

⇡̂ = � (d� p) . (62)

We take logs in (1), so that lnQi = lnWi + ln ✓i � lnPi + i⇡̂. Given that initially ln Q̄i =
ln W̄i+ ln ✓i� ln P̄ , taking differences we have � lnQi = � lnWi�� lnP +i⇡̂. Finally, we use the
Taylor expansion � lnWi ' wi and � lnP ' p to yield:

qi = wi � p+ i⇡̂. (63)

Using (61), we obtain (7):

qi = � (1� ✓i) p+ fi + i� (d� p) = � (1� ✓i + i�) p+ fi + i�d.

Proof of Proposition 4 We call Ft the cumulative inflow into the mixed fund, normalizing F0 to
be the mixed fund’s initial endowment of bonds. Then, as all dividend and bond coupon are given
to the consumer, Wt = PtQ+Ft, and in the baseline economy W̄t = P̄tQ+ F̄t. We call F̃t := Ft� F̄t

the deviation of the dollar flows from the baseline. Subtracting, we have Wt�W̄t =
�
Pt � P̄t

�
Q+F̃t,

i.e. W̄twt = P̄tQpt + F̃t, so with ft =
F̃t

W̄t

,

wt = ✓pt + ft. (64)
68This is the compensated or Hicksian elasticity of demand: indeed, after the price change, the fund can purchase

its old holdings (which is the foundation of the Hicksian demand), simply because it already owns them). Controlling
for fund wealth, the demand elasticity is �1. But given fund wealth has an elasticity ✓ to the price, the total demand
elasticity (�⇣) is �1 + ✓.
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Now, from the demand for stocks, we have QtPt = Wt✓e⇡̂t+⌫t , while in the baseline economy
Q̄tP̄t = W̄t✓. Dividing through, we get: QtPt

Q̄tP̄t

= Wt

W̄t

e⇡̂t+⌫t , so that (1 + qt) (1 + pt) = (1 + wt) e⇡̂t+⌫t .
Linearizing, qt + pt = wt + ⇡̂t + ⌫t. Hence, by (64),

qt = � (1� ✓) pt + ⇡̂t + ft + ⌫t. (65)

Finally, using ⇡̂t = � (det � pt) + Et [�pt+1] (see (18)), we obtain qt = � (1� ✓ + �) pt + �det +
Et [�pt+1] + ft + ⌫t.

Proof of Proposition 5 Equation (19) can be rewritten as qt =  (Et�pt+1 � ⇢pt + �det )+ft+⌫t.
As qt = 0, this is also:

Et�pt+1 � ⇢pt + �det +
ft + ⌫t


= 0. (66)

Defining zt := �det +
ft+⌫t
 , this gives pt = Etpt+1+zt

1+⇢ , so that pt = Et

P1
⌧�t

z⌧
(1+⇢)⌧�t+1 . The equity

premium comes from (65) with qt = 0.

B Appendix: Identification methodology
We summarize the algorithms that we use to estimate the multipliers in Section 4.2 the multipliers
and elasticities in Section 4.3. The algorithms are the same, with some minor adjustments given
the unique features of either the FoF data or 13F data.

B.1 Algorithm used for investor-level data
We summarize the algorithm that we use to extract factors, ⌘t, in Section 4.2.

1. We run the panel regression

�qit = ai + bi�yt + ct + ⌘1tx1i,t�1 + ⌘2tx2i,t�1 +�q̌it,

where �yt is GDP growth, ai is an investor fixed effect, ct is a time fixed effect, x1i,t�1 is
lagged size, and x2i,t�1 lagged active share. We collect the residuals, �q̌it.

2. We compute the time-series standard deviation of �q̌it by investor. In each quarter, we sort
investors into 20 groups based on this standard deviation. Intuitively, funds with different
volatilities of �q̌it are likely to have different exposures to the factors. By group and quarter,
we average �q̌it, �q̌Egt, where g indexes the groups.

3. We extract principal components based on the panel of 20 groups of �q̌Egt.

B.2 Algorithm used for sector-level data
We summarize the algorithm that we use for the Flow of Funds (FoF) data in Section 4.3.

1. We construct pseudo-equal value weights Ẽi,t�1, where we start from Ẽ�
i =

��2
iP

N

k=1 �
�2
k

, where

�i = � (�qit), and define Ẽi = min
n
⇠Ẽ�

i ,
1.5
N

o
, where ⇠ � 1 is tuned so that

P
i Ẽi = 1. We
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exclude the corporate sector in constructing the instrument. This winsorizes the quasi-equal
weights to be at most 50% higher than strict equal weights. This adjustment ensures that the
equal weights are not too concentrated for sectors with very stable �qit.69 This is relevant
when the number of sectors is small, as is the case for the FoF.

2. We run the panel regression

�qit = ↵i + �t + �i�yt + �it+�q̌it, (67)

using Ẽ as regression weights, and construct the �q̌it as the residuals. Here �yt is quarterly
real GDP growth and we allow for a time trend as some sectors grew substantially faster in,
for instance, the nineties than in the subsequent period.

3. We extract the principal components of Ẽ
1
2
i �q̌it and denote the estimated vector of principal

components by ⌘PC,e
t .

4. We construct the GIV instrument:70

Zt =
NX

i=1

Si,t�1�q̌it. (68)

5. We estimate the multiplier, M , using the time-series regression

�pt = ↵ +MZt + �0P⌘
e
t + et, (69)

where ⌘et =
⇣
�yt, ⌘

PC,e
t

⌘
. This regression is also the first stage to estimate the elasticities.

Instrumenting �pt by Zt in both cases, we estimate the demand elasticity via

�qEt = ↵E � ⇣�pt + �0E⌘
e
t + et, (70)

and the supply elasticity via

�qCt = ↵C � ⇣C�pt + �0C⌘
e
t + et. (71)
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C Data Sources and Construction

C.1 Sector-level data from the Flow of Funds
We summarize the adjustments we make to the FoF data and the precise mapping to our model.

C.1.1 Data items

We use Corporate Equities (Table 223) for equities. For fixed income, we take the sum of Treasury
Securities (Table 210) and Corporate and Foreign Bonds (Table 213). We use unadjusted flows
(FU) and, for the levels, we use the unadjusted market values when available (LM) and otherwise
the estimated level (FL). Net issuances are equal to the total aggregate flow. The Flow of Funds
revises historical data every quarter and we use the June 2019 vintage of the data.

C.1.2 Notation and data definitions

Sectors are indexed by i = 1, ..., I, where i = Foreign refers to the foreign sector. We observe
holdings of equities, W E

it , Treasuries, Trit, and corporate bonds, Cit. We refer to the sum of
Treasuries and corporate bonds as bonds, Bit = Trit + Cit. The flows corresponding to each asset
class are denoted by �F a

it, a = W E , T r, C,B. Aggregate levels and flows omit the subscript i,
implying, for instance, for equities

P
i W

E
it = W E

t and for bonds Bt =
P

i Bit. Lastly, the gross
capital gain for equities is denoted by RX

t and the return inclusive of dividend payments is denoted
by Rt. We define the total assets of sector i as Wit = W E

it + Bit. Net issuances, nit = NIt
WE

t�1
, are

based on equity markets.
In the FoF, equity flows are defined by �F E

it = W E
it � W E

i,t�1R
X
t .

71 We assume in what follows
that the securities are adjusted at the end of the quarter, �F a

it = �F a
it = (�Qa

it)P
a
t , a = E , B.

The total per-period flow is �Fit = �F E
it + �FB

it and in relative terms �fE
it =

�FE
it

WE
i,t�1

for equities

71When possible, the FoF also follows this definition in other classes and has moved to market values for fixed
income securities as well. However, in some cases, investors report holdings at book value for fixed income and no
direct data on purchases are available, in which case flows are impacted by valuation effects.
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and �fB
it = �FB

it

Bi,t�1
for bonds. The proportional per-period total flow is given by �fit = �Fit

Wi,t�1
.

The equity shares are Sit =
WE

it

WE
t

. The relative change in equity demand, adjusted for price effects,

is given by �qEit = �fE
it

�
RX

t

��1
= �QE

it

QE
i,t�1

. The aggregate per-period flow measure is defined as
�fSt =

P
i Si,t�1�fit.

In the remainder of this subsection, we summarize the adjustments we make to the raw data
to account for measurement challenges in the data. In every step, we make sure that the market
clearing conditions hold for both levels and flows.

C.1.3 Adjustment for foreign holdings of equity and corporate bonds

The FoF reports total flows and holdings of corporate equities and corporate bonds, including
foreign assets held by US investors. As we are interested in measuring the flow into the US equity
market, we adjust the holdings and flows for foreign positions. Unfortunately, we do not know
the holdings and flows of foreign assets by sector, but we do know the aggregate positions across
investors. We discuss our measurement approach in the context of equities, but we apply the same
procedure to corporate bonds.72

Let W E,j
it be the equity holdings of sector i in period t for j = D,F, T , that is, the investment

in domestic (D) and in foreign (F ) securities as well as their total (T ). We define the set of all US
institutions by US. We define xUS,t :=

P
i2US xit for x = W E ,�F E , that is, for equity levels and

equity flows.
We start from the following identities, for j = D,F, T ,

xD
it + xF

it = xT
it, (72)

W E,j
it = W E,j

i,t�1R
X,j
t +�F E,j

it , (73)

where RX,j
t is the capital gain as before. We observe xD

t , xF
t , xT

it for x = W E ,�F E . We assume
that the capital gain that different investors earn in the US is the same across investors (that is,
RX,D

it = RX,D
t ), and we make the same assumption for the capital gain on foreign investments (that

is, RX,F
it = RX,F

t ).
We assume for all US institutions, i 2 US, that their equity holdings are split in the same way

across foreign and domestic equities:

W E,D
it = �tW

E,T
it , 8i 2 US.

It then follows that

�t =
W E,D

US,t

W E,T
US,t

= 1�
W E,F

US,t

W E,T
US,t

,

where W E,F
US,t and W E,T

US,t can directly be observed in the FoF. This measures �t.
For flows, we assume that

�F E,D
it = W E,D

i,t�1⌘
D
t + �t�1�F E,T

it ,

72As US Treasuries are only issued in the US, obviously no adjustment is required for US Treasuries.
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where ⌘Dt is a taste shock that we assume to be common across investors and it impacts investors in
proportion to their position in the previous period. Aggregating across all US institutions implies

�F E,D
US,t = W E,D

US,t�1⌘
D
t + �t�1�F E,T

US,t,

implying

⌘Dt =
�F E,D

US,t � �t�1�F E,T
US,t

W E,D
US,t�1

=
(1� �t�1)�F E,T

US,t ��F E,F
US,t

W E,T
US,t�1 �W E,F

US,t�1

,

which can be computed directly from the FoF. With ⌘t and �t in hand, we compute the estimate
of domestic equity holdings and flows. We also adjust aggregate flows and levels to ensure that
market clearing holds.

C.1.4 The impact of the 2008-2009 financial crisis

Three sectors have non-zero equity holdings only since the 2008-2009 financial crisis: the Federal
Government (sector 31), the Monetary Authority (sector 50), and Funding Corporations (sector 71).
These positions are all associated with the federal financial stabilization programs. We describe the
adjustments we make to these series.

The holdings of the Federal Government are derived from “corporate equities issued by com-
mercial banking under the federal financial stabilization programs,” “corporate equities issued by
funding corporations (AIG) under the federal financial stabilization programs,” “corporate equities
issued by bank-holding companies (GMAC) under the federal financial stabilization programs,”
and “corporate equities issued by GSEs under the federal financial stabilization programs.” From
2009.Q4 - 2011.Q1, Funding Corporations and the Monetary Authority record the exact same eq-
uity holdings. Their holdings are zero elsewhere. It is only a small position, and it comes from the
way the AIG bailout was structured (per correspondence with economists at the FoF). The holdings
are described as “Federal Reserve Bank of New York’s Preferred Interests in AIA Aurora LLC and
ALICO Holdings LLC.” Both are life insurance subsidiaries of AIG.

The dynamics of the levels are plotted in the left panel of Figure C.1 from 1993.Q1 to 2018.Q4.
The dynamics of net issuances alongside the flows associated with the three sectors are plotted in
the right panel of Figure C.1 from 2008.Q1 to 2014.Q4. The flows from funding corporations and
the monetary authority are identical and cannot be distinguished visually. As can be seen from
the graph, the stabilization programs created a spike in net issuances and these issuances are not
absorbed by the typical investor sectors.

We aggregate the flows of these three sectors and subtract them from net issuances. We adjust
the levels as well, and then remove these three sectors from our analysis.

C.1.5 Foreign banking offices in the US and non-financial corporate business holdings

We make adjustments for two additional sectors. First, the sector Foreign Banking Offices in the US
(sector 75) has zero flows since 1993 in most periods, see the left panel of Figure C.2. Second, for
the asset holdings of non-financial corporate businesses (sector 10), the quarterly flows are poorly
measured, see the right panel of Figure C.2 showing the series from 1993.Q1 to 2018.Q4. The
reason is that the FoF interpolates annual flows.73 These flows and holdings reflect firms’ holdings
of other firms’ equity, for instance for strategic or speculative reasons. Prior to the September 2018

73For details of the current procedure, please see here.
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Figure C.1: Equity levels and flows around the 2008-2009 financial crisis. The left panel shows the
levels for the Federal government, the monetary authority, and funding corporations. The last two
sectors have identical holdings and flows, and are therefore visually indistinguishable. The sample
is from 1993.Q1 to 2018.Q4. The right panel reports the flows associated with the same sectors
as well as net issuances from 2008.Q1 to 2014.Q4. Levels and flows are in expressed in millions of
nominal dollars.
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publication, the FoF showed the equity liability of the non-financial corporate sector net of these
inter-corporate equity investments. The current release added the inter-corporate holdings as an
asset and a liability. We undo this adjustment. For both sectors, we subtract the flows from net
issuances and adjust the levels accordingly.

C.1.6 Examples of measurement issues

Even though the FoF data are the best data to use for both equity and fixed income holdings, certain
measurement issues remain. We list them here and perhaps future research can refine some of our
calculations. First, in the FoF, shares issued by ETFs, closed-end funds, and real estate investment
trusts (REITS) are included in the corporate equities instrument category. This may impact the
net issuance statistics, for instance. Most investor sectors do not separately report on holdings of
ETFs, for instance, versus direct investments. As a result, we cannot adjust the holdings. Similarly,
the total holdings include closely held equity. While the supply side is separated, we do not have
disaggregated holdings, which implies we cannot adjust for this on the demand side.

We start our sample in 1993. In part, this starting date is driven by the fact that institutional
ownership has been rising, and this allows us to disaggregate a large fraction of the holdings. Also,
the dynamics of equity flows, �q, also looks more erratic in the earlier years. In Figure C.3, we plot
the dynamics of equity flows across sectors to illustrate this issue. Lastly, ETFs become available
in 1993. ETFs have been growing since then, in part to replace mutual funds, and we merge ETFs
and mutual funds for parts of our analysis.
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Figure C.2: Flows of Foreign Banking Offices in the US and Non-financial Corporate Businesses.
The left panel shows the flows for Foreign Banking Offices in the US and the right panel for Non-
financial Corporate Businesses. The sample is from 1993.Q1 to 2018.Q4. Flows are in expressed in
millions of nominal dollars.
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C.1.7 Sample construction of the data for the GIV estimation

Before implementing the GIV procedure, we make two adjustments to the data to mitigate the
impact of outliers. First, we merge the mutual fund and ETF sectors. ETFs were introduced in
1993, which is the start of our sample. The initial flows are very volatile, but their share of the
overall market was small. This volatility gradually dissipates as the sector grows, in part at the
expense of mutual funds. The volatility of the combined sector is much more stable over time.

Second, we winsorize the data by first removing the time-series median of each series, which is a
robust way to remove differences in the levels of the series. We then winsorize the data across time
and sectors at the 5%- and 95%-percentiles for the period from 1993.Q1 to 2006.Q4 to mitigate
the influence of outliers. This avoids the need to winsorize the data during the financial crisis and
the larger, as well as in the case of the more volatile flows happening during the earlier part of
the sample. Winsorizing the data unconditionally does not impact our results much as we show in
Section D.4. We exclude the corporate sector in winsorizing the data.

C.2 Investor-level data from 13F filings
We summarize the construction of the 13F data in this section.

C.2.1 Data construction

We source the 13F data from FactSet following Koijen et al. (2019). We start from the holdings
data (table own_inst_13f_detail_eq) and we aggregate the holdings by roll-up entity (using table
own_ent_13f_combined_inst). This combines filers that FactSet assigns as subsidiaries of the
same investor. In addition, we aggregate the subsidiaries of BlackRock based on their names into a
single entity. We identify an investor’s type using table own_ent_institutions. We compute the
market capitalization and holdings using the adjusted variables in FactSet (variables adj_price,
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Figure C.3: Dynamics of equity flows across sectors. The figure shows the equity flows, �qEit, for
the final 13 sectors in our sample from 1960.Q1 to 2018.Q4.
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adj_shares_outstanding, and adj_mv). In some rare cases, the total holdings exceeds the shares
outstanding, which may be due to short-selling activity or filing errors. In these cases, we scale the
holdings of all investors for a particular security to ensure that the market clearing condition holds.
We then merge these data with the CRSP-Compustat merged data using CUSIPs. We select the
securities with share code 10 or 11 and an exchange code equal to 1, 2 or 3.

C.2.2 Measuring changes in equity demand

We first discuss how we construct changes in equity demand, �qit. We denote by Hiat = QiatPat

investor i’s dollar holdings of security a at time t, where time t corresponds to the last day of
the quarter. Total equity holdings are given by Eit =

P
a Hiat. We also define E�

it =
P

a H
�
iat,

where H�
iat = Hiat

1+RX

at

, where RX
at is the capital gain. In the absence of (reverse) splits, it holds

H�
iat = QiatPa,t�1. We now define the change in equity demand as

�qit =
E�
it � Ei,t�1

E⇤
it

,

where E⇤
it =

1
2

�
E�
it + Ei,t�1

�
, which implies �qit 2 [�2, 2]. This measure of flows is less sensitive to

outliers than the alternative measure that uses only Ei,t�1 in the denominator, as in e.g. Davis and
Haltiwanger (1992).

C.2.3 Constructing characteristics

Next, we discuss how we construct the characteristics that we use in Section B.1. We define the
following characteristics

1. Log investor size, ln E⇤
it.

2. Active share, which is defined as
1

2

X

a

|✓iat � ✓miat| ,

where ✓iat is the portfolio share and ✓miat the market-weighted portfolio of securities held by
investor i at time t.

These characteristics define xit, and we use their lagged values, xi,t�1, to extract the factors.

C.2.4 Sample selection

We use 13F data to extract common factors, ⌘t, based on investors outside of the mutual fund
industry using the same assignment of investor types as in Koijen et al. (2019). To mitigate the
impact of outliers, we focus on the largest 1,000 investors in each period and we remove fund-quarter
observations for which |�qit| > 3�i, where �i = IQRi/1.35 and IQRi is the interquartile range, a
robust estimator of the standard deviation. We compute IQRi using the full sample for a given
investor. Lastly, we keep investors for which we have at least 20 observations after imposing these
screens.
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Figure D.4: Simulation results. The horizontal axis shows the multiplier in the data generating
process and the vertical axis the average estimated multiplier, alongside the 2.5% and 97.5% per-
centiles, across 50,000 replications. We use the same sample size as in the empirical application in
the next section. The text provides further details.
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D Additional Empirical Results

D.1 Performance of the GIV Estimator: Simulations
We illustrate the performance of the GIV estimator in an environment that closely mimics our
empirical setting. We refer to Gabaix and Koijen (2020) for a more extended analysis of the GIV
estimator. In particular, we proceed as follows to construct a realistic set of simulations. We start
from our original sample and pick a value of ⇣ that we vary from ⇣ = 1 (a multiplier of 1, a typical
estimate for the micro elasticity) to ⇣ = 0.1 (a multiplier of 10). For each value of ⇣, we construct
f ⌫t = �qt + ⇣�pt. We then assume that the data follow a one-factor factor model and estimate
f ⌫t = �⌘t + ut using principal components analysis. This provides us with an estimate of � and
� = �(ut). These are the estimates one would obtain given the data we observed historically and
if the true elasticity were equal to the assumed value. It tells us the volatility of aggregate shocks
(µ� = ◆0�/N), the average volatility of idiosyncratic shocks (µln� = ◆0 ln �/N), and the dispersion
in these parameters across investors (�� = �(�) and �ln� = �(ln �)).

To simulate the data, we assume that � ⇠ N (µ�, �2
�), ln � ⇠ N (µln�, �2

ln�), and that the shocks
are normally distributed. In doing so, we ensure that the volatility of prices is the same as in the
data. Throughout, we use the same size distribution across sectors, which on average equals the
one that we observe empirically. We then follow the standard procedure to estimate the multiplier.

We consider 50,000 replications for each value of ⇣ = 0.1, 0.2, . . . , 1 and report the average
estimate alongside the 2.5% and 97.5% percentiles across all replications in Figure D.4. We report
the multiplier M corresponding to the true data-generating process on the horizontal axis and the
distribution of the estimated multipliers, M e, on the vertical axis. The key takeaway is that our
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estimates uncover the true multipliers accurately with the dimensions of N and T that we observe
empirically.

D.2 Drawdown dynamics
In Figure D.5, we plot the drawdowns, defined as the decline in the cumulative stock market index
relative to its maximum so far, of the CRSP value-weighted index. We use these drawdowns to
date recessions that we study in Section 2.

Figure D.5: The figure illustrates the drawdowns of the US stock market from 1993.Q1 to 2018.Q4.
Drawdowns are defined as the ratio of the cumulative return index relative to its running maximum
minus one.
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D.3 Flows across investor classes are small
If market fluctuations are the result of small demand or flow shocks hitting macro inelastic markets,
studying extreme episodes may provide a hint as to which investor sectors have volatile demand
and flow shocks and which investor sectors provide elasticity to the market. We therefore consider
a case study of the two largest equity downturns in our sample, namely from 2000.Q2 to 2002.Q3
(the technology crash) and from 2007.Q4 to 2009.Q1 (the 2008 global financial crisis), as shown in
Appendix D.2. To measure equity flows, we scale the dollar equity flows for each sector j, �F E

jt,

by the size of the aggregate market in the previous quarter, Et�1,
�FE

jt

Et�1
. We remove the mechanical

effects due to revaluation, so that we show only the “active” flows. We then average the percent
flow by sector across quarters for a given downturn.

The left panel of Figure D.6 corresponds to the tech crash and the right panel to the 2008
financial crisis. In the case of the 2008 financial crisis, we separately report the results for 2008.Q4,
which is the worst quarterly return in our sample. In both cases, we select the eight sectors with
the largest absolute flows as well as the corporate sector. While the total equity risk reallocation,
on average per quarter, remains small, households sell about 0.5% of the market per quarter.74

74We emphasize once more that the household sector in the FoF includes institutional investors such as hedge
funds and non-profits (e.g., endowments), as it is computed as a residual.
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Figure D.6: The figure illustrates the rebalancing of investors during drawdowns of the US stock
market from 1993.Q1 to 2018.Q4. The left panel summarizes the data from the tech crash (from
2000.Q2 to 2002.Q3) and the right panel from the 2008 global financial crisis (from 2007.Q4 to
2009.Q1). We plot the average quarterly rebalancing by sector expressed as a fraction of the total
market capitalization (expressed in %). In the right panel, we also replicate the calculation for the
fourth quarter of 2008, which is the most negative quarterly return in our sample. In all cases, we
select the eight sectors with the largest absolute flows as well as the corporate sector.
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During the 2008 financial crisis, net repurchases by firms fell (as firms cut their share buybacks
in bad times) and indeed turned negative, implying that they issued equity. If we zoom in on
2008.Q4, we see large issuances (for instance by financial firms, in part forced by the government
to issue shares),75 which may have further amplified the market decline if the market is inelastic.

Who is providing elasticity to the market during these episodes? Quite surprisingly, the foreign
sector as well as state and local pension funds are the sectors purchasing the most during each of the
episodes. For the pension funds, this may reflect their mandate to maintain a fixed-share strategy
instead of a conscious effort to time the market (see Proposition 2).76

The flows across sectors are not only small during downturns, but also on average. To assess the
magnitude of equity risk reallocation across sectors, we compute yGross

t =
P|�FE

jt|+|�FFirm

t |
2Et�1

, where
�F Firm

t denotes net issuances of equity by firms. We divide the measure by two as for every buyer
of $1 of equity, there is a seller of the same amount. As some of the flows are associated with net
repurchases, we separately measure the equity risk “creation” and “redemption” as a result of such
corporate actions via yAbsNet

t =
|�FFirm

t |
Et�1

, which we will refer to as absolute net flows.
The average absolute net flow equals 0.30% per quarter and the average gross flows average to

0.87% per quarter for the period from 1993.Q1 to 2018.Q4. The standard deviations are 0.26%
and 0.37%, respectively. The difference between the series measures the risk reallocation in equity

75During this period, several firms received support from the government. In the FoF, new sectors were created
that otherwise hold no equity positions. We adjust net repurchases and flows for these sectors in order not to distort
our calculations; see Appendix C for details.

76Relatedly, Timmer (2018) finds that in German data, banks (broker dealers) sell when stock prices fall, and
pension funds buy.
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markets across institutional sectors, which averages to approximately 0.6% per quarter.77 We plot
the time series of both measures in Figure D.7 for the period from 1993.Q1 to 2018.Q4. The key
takeaway is that the amount of equity risk that gets reallocated across sectors is small. These
small flows contrast with the high levels of trading volume that are observed. However, much of
this trading activity is at the single stock level, that is, exchanging stock A for stock B, instead of
movements in or out of the stock market.

Small flows are not necessarily inconsistent with elastic markets. Many modern asset pricing
models do not feature any trade. However, in the presence of volatile preference or belief shocks,
this evidence implies that investors must experience the same shocks to preferences or beliefs, and
have virtually the same exposure to these shocks, as otherwise we would see large flows across
sectors.

In addition to quantities alone, Appendix N.3 also provides some additional first evidence on
the link between flows and prices. Indeed, the demand by households (including mutual funds and
ETFs) is positively correlated with price changes while the demand of the other sectors is strongly
negatively correlated with price changes. This is consistent with the inelastic markets hypothesis
in which shocks from the household sector, as defined by the FoF, lead to volatile prices as market
are inelastic.

Figure D.7: The figure illustrates the reallocation of equity risk across various institutional sectors.
The gross and net flow are defined in the main text. The sample is from 1993.Q1 to 2018.Q4.
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D.4 GIV estimates using FoF data: Robustness
In this section, we illustrate the robustness of our estimate of the multiplier, M . Given the small
number of sectors in the FoF data, we focus on the case with a single principal component (in
addition to a factor with uniform loadings). In Table D.8, we first repeat the benchmark estimate
as a point of reference in the first column. In the second column, we omit all principal components.

77This number is an upper bound to the extent that we care about the aggregate market elasticity as some of
the flows between sectors are low-frequency time trends such as the shift from pension funds to mutual funds in the
nineties or the shift from mutual funds to ETFs during the last twenty years.
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In the third column, we do not merge mutual funds and ETFs. In the fourth column, we do merge
mutual funds and ETFs again, but now winsorize over the full sample from 1993.Q1 to 2018.Q4
instead of from 1993.Q1 to 2006.Q4 (and hence omit the financial crisis). In column five, we omit
the time trend in (67). In column six, we control for the lagged value of �qjt in (67) and we allow
for heterogeneous slope coefficients across sectors on �qj,t�1. In the seventh column, we start the
sample in 2000.Q1. In the last two columns, we change the winsorization of the regression weights
to 1.25

Nt

(Column 8) or 1.75
Nt

(Column 9), see the first step of the GIV algorithm. The main takeaway
is that the multiplier estimates are quite stable across the various specifications. The estimates of
the multiplier vary between 5.1 and 8.0.

Table D.8: Robustness of the GIV estimates. The table reports estimates of the multiplier under
different measurement assumptions. We first repeat the benchmark estimate as a point of reference
in the first column from 1993.Q1 to 2018.Q4. In the second column, we omit all principal compo-
nents. In the third column, we do not merge mutual funds and ETFs. In the fourth column, we
do merge mutual funds and ETFs again, but now winsorize over the full sample from 1993.Q1 to
2018.Q4 instead of from 1993.Q1 to 2006.Q4. In column five, we omit the time trend. In column
six, we control for the lagged value of �qjt in (67) and we allow for heterogeneous persistence co-
efficients across sectors on �qj,t�1. In the seventh column, we start the sample in 2000.Q1. In the
last two columns, we change the winsorization of the regression weights to 1.25

Nt

(Column 8) or 1.75
Nt

(Column 9). Standard errors that account for autocorrelation are reported in parentheses.

�p �p �p �p �p �p �p �p �p
Z 7.08 8.00 6.94 7.65 6.63 6.77 6.79 7.17 5.12

(1.86) (1.24) (1.48) (1.37) (1.17) (2.18) (2.02) (1.18) (2.33)

GDP growth 5.99 5.99 6.06 6.02 6.14 6.01 6.20 5.99 5.97
(0.69) (0.59) (0.66) (0.75) (0.69) (0.73) (0.74) (0.62) (0.80)

⌘1 21.06 22.09 15.59 32.54 25.24 -30.65 14.44 26.23
(13.58) (11.11) (11.58) (6.40) (13.64) (15.65) (10.71) (15.45)

Constant -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Observations 104 104 104 104 104 103 76 104 104

In Table D.9, we replicate Table 3, but now adding the lagged value of Zt. Across various
specifications, Zt has a small positive autocorrelation of approximately 10-15%. As is clear by
comparing both sets of estimates, including a lag does not change the estimates in a meaningful
way, and the lagged value of Zt is in all cases insignificant.

In Table D.10, we start from the benchmark results in the previous table and add additional
principal components. Given that the cross-section is small (we only have 12 sectors once we merge
mutual funds and ETFs), the data are not well suited to go beyond one or two principal components,
unfortunately. Nevertheless, for transparency, we show the results up to five principal components
for completeness in Table D.10. By adding additional principal components, idiosyncratic shocks
will end up as factors, which makes it more challenging for us to identify the multiplier precisely.
If we go beyond two principal components, the multiplier declines somewhat from 5.3 with two
principal components to a range from 3.5 to 4.2 with three to five principal components.
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Table D.9: Robustness of the GIV estimates for the Flow of Funds: Persistence in Z. The table
replicates Table 3, but now adding the lagged value of Zt. The sample is from 1993.Q1 to 2018.Q4.
Standard errors are reported in parentheses.

�p �p �qE �qE �qC �qC
Z 7.41 5.62

(1.96) (1.21)

�p -0.12 -0.16 -0.01 -0.01
(0.03) (0.04) (0.01) (0.02)

Z (lag) -1.59 -1.75 -0.30 -0.40 -0.02 -0.02
(1.84) (1.46) (0.26) (0.29) (0.09) (0.08)

GDP growth 6.41 6.42 0.59 0.86 0.22 0.24
(0.93) (0.90) (0.25) (0.24) (0.13) (0.12)

⌘1 21.64 24.36 3.88 5.24 -0.72 -0.64
(13.74) (13.10) (1.58) (2.42) (0.62) (0.66)

⌘2 30.11 5.13 0.28
(6.02) (1.16) (0.80)

Constant -0.01 -0.02 0.00 0.00 -0.00 -0.00
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

Observations 103 103 103 103 103 103

D.5 The volatility of idiosyncratic demand shocks
In Table D.11, we report the standard deviation of sector-specific demand shocks, uit.

D.6 Dynamics of mutual fund flows
In Table D.12, we report the estimates of the dynamic model of mutual fund flows that we use in
Section 4.2.

D.7 The impact of mutual fund flows at longer horizons
In Figure D.8, we repeat the analysis as in Section 4.3 but now using mutual fund flow innovations
as in Section 4.2. We estimate the same regression as in (43), but now Zt is constructed using data
on mutual fund flows and ⌘t is estimated using 13F data. We present the results in Figure D.8. As
before the impact of flow shocks on prices is persistent although the confidence interval is wide at
longer horizons of one year.
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Table D.10: Robustness of the GIV estimates for the Flow of Funds: Additional principal com-
ponents. The table adds principal components starting from a single principal component. The
sample is from 1993.Q1 to 2018.Q4. Standard errors are reported in parentheses.

�p �p �p �p �p
Z 7.08 5.28 3.89 4.23 3.46

(1.86) (1.10) (0.92) (0.60) (0.54)

GDP growth 5.99 5.97 5.96 5.96 5.96
(0.69) (0.67) (0.64) (0.51) (0.51)

⌘1 21.06 23.72 25.76 25.26 26.39
(13.58) (12.79) (7.26) (7.66) (8.36)

⌘2 29.95 32.56 31.92 33.36
(6.54) (5.37) (5.35) (5.93)

⌘3 -25.57 -25.06 -26.21
(5.57) (5.20) (5.16)

⌘4 16.34 15.93
(8.34) (6.68)

⌘5 -18.10
(6.20)

Constant -0.01 -0.01 -0.01 -0.01 -0.01
(0.01) (0.01) (0.01) (0.01) (0.00)

Observations 104 104 104 104 104

D.8 Screening capital flows
In Table D.13, we report the slope estimates, �j, of the regression in equation (44). In the first
column we list the sector, in the second column whether we consider a flow to be mismeasured, and
in the third column the estimate of �j for that particular sector.
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Table D.11: Volatility of idiosyncratic demand shocks by sector of the Flow of Funds. The table
reports the volatility of idiosyncratic demand shocks by sector. We follow the procedure outlined
in Section 4.3 to estimate the demand shocks. The sample is from 1993.Q1 to 2018.Q4.

Sector Sit�(uit) �(uit)
Households 0.43 1.05
Mutual funds 0.22 0.92
Foreign sector 0.19 1.44
State & local pension funds 0.13 1.69
Private pension funds 0.12 1.22
Broker dealers 0.04 7.24
Life insurers 0.03 1.45
Property & casualty insurers 0.02 1.66
State and local govts 0.02 3.18
Closed-end funds 0.01 2.99
Fed govt retirement funds 0.01 2.20
Banks 0.01 3.17

Table D.12: Dynamics of mutual fund flows. The table reports the dynamics of fund flows that
we use in Section 4.2. We consider an AR(1), in Column 1, to AR(4) model of flows, in Column
4. In all cases we include a time trend. The standard errors, which correct for autocorrelation, are
reported in parentheses.

f f f f
L.f 0.56 0.44 0.41 0.40

(0.04) (0.04) (0.04) (0.04)

L2.f 0.22 0.18 0.17
(0.03) (0.04) (0.04)

L3.f 0.11 0.11
(0.04) (0.04)

L4.f 0.03
(0.06)

t -0.19 -0.15 -0.13 -0.12
(0.03) (0.03) (0.02) (0.02)

Constant 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

Observations 321 320 319 318
R2 0.692 0.702 0.703 0.701
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Figure D.8: Estimates of the aggregate multiplier M = 1
⇣ by horizon. The figure plots the multi-

period impact of demand shocks: a demand shock of ft at date t increases the (log) price of equities
from t � 1 to t + h by Mft. We use the GIV for instrumentation, see (43). The horizontal axis
indicates the horizon in quarters, from zero (that is, the current) to four quarters. Standard errors
are adjusted for autocorrelation. The sample is from 2000.Q1 to 2019.Q4.
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Table D.13: Assessing the mismeasurement of capital flows. The table reports the slope coefficient
of the regression in equation (44) to assess whether capital flows are mismeasured. We consider
a flow to be correctly measured when �j is significantly different from one. The sample is from
1993.Q1 to 2018.Q4.

Sector Flows included �j T-statistics for H0 : �j = 1
Households 0 0.47 9.11
State and local govts 1 0.49 1.95
State & local pension funds 1 1.04 0.73
Foreign sector 0 0.35 6.90
Fed govt retirement funds 0 -0.03 12.08
Property & casualty insurers 0 0.55 3.30
Life insurance companies 0 0.61 2.61
Closed-end funds 1 1.08 0.85
ETFs 1 1.01 0.93
Private pension funds 1 1.10 1.49
Mutual funds 1 0.98 0.53
Broker dealers 0 0.07 22.78
Banks 0 -0.06 10.67
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E Survey Details
We conducted three surveys. The first survey by putting out a request via Twitter (using the
#EconTwitter tag) to complete an online survey. In addition, we asked participants of an online
seminar at VirtualFinance.org to complete the same survey – this latter audience being naturally
more representative of the population of academic researchers in finance. Both surveys were con-
ducted before the paper was available online and before the seminar on May 8, 2020. We launched
the Twitter survey on May 7, 2020. We asked four questions:

1. If a fund buys $1 billion worth of US equities (permanently; it sells bonds to finance that
position), slowly over a quarter, how much does the aggregate market value of equities change?

2. In response to the fund buying $1 billion over the quarter, some other investors need to sell.
Who are the likely investors (by type) to sell their positions? (Pick at most two investor
types).

• Potential answers:
(a) Hedge funds.
(b) Mutual funds or ETFs.
(c) Long-term investors such as pension funds and insurance companies.
(d) Broker dealers.
(e) Households.
(f) Foreign investors (of any type).
(g) Firms issuing new equity
(h) Other [open text box]. We received hardly any additional sectors and will omit it

from the discussion.

3. Since December 2019, did the equity risk premium:78

• Potential answers:
(a) Increase by more than 2.5%.
(b) Increase between 0% and 2.5%.
(c) Decrease between 0% and 2.5%.
(d) Decrease by more than 2.5%.

4. Can you tell us a bit about yourself

• Potential answers:
(a) I am a student in economics / finance / business.
(b) I have a PhD / doctorate in economics / finance / business, and do research.
(c) None of the above.

78For the sake of brevity, we do not report the results for this question. It shows a significant amount of disagreement
across respondents. In some models, such uncertainty about the exact value of the equity risk premium gives rise to
inaction and therefore inelastic demand.
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Figure E.9: Composition of survey respondents. The figure plots the distribution of respondents
across two surveys; one conducted via Twitter (using the hashtag #EconTwitter) and one conducted
at the beginning of a VirtualFinance.org seminar. The abbreviation EFB stands for Economics,
Finance, and Business.
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We also presented the paper a week later in the Virtual Macro Seminars (VMACS) on May 14.
We repeated only the first and the last question, but attendees may have already seen the earlier
presentation or have seen the slides. While the results are comparable, we consider it to be slightly
polluted and focus on the earlier two surveys as a result. We remove responses that only signed the
effect (e.g., “positive” or “negative” or “>0”). We received 192 responses via EconTwitter and 102
responses via VirtualFinance.org. In Figure E.9, we summarize the composition of responses.
The abbreviation EFB stands for Economics, Finance, and Business. At least 85% of respondents
are EFB students or have a PhD in EFB and do research.

In Table E.14, we summarize the responses about the multiplier, M . The main takeaway is that
the profession views the aggregate stock market as highly elastic. Only 3% expects the multiplier
to be larger than one and, in fact, fewer than 50% of the respondents expects a positive multiplier
in each of the surveys. As a result the median multiplier estimate is zero in both surveys, and the
mean is about 0.1. Note that this is even an order of magnitude smaller than the recent estimates
of the micro elasticity of demand.

Given this feedback, it is interesting to explore the mechanism that may give rise to such high
elasticities.79 In Figure E.10, we provide the results to the third question, which points to hedge
funds and broker dealers. We will explore these sectors in more detail in the paper. However, the
bottom line is that broker dealers are fairly small as a sector and hedge funds do not appear to
provide elasticity, and in particular not during economic downturns when the equity premium tends
to rise sharply.

79This approach to “testing the mechanism” is similar in spirit to the ideas in Chinco et al. (2020) .
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Table E.14: Survey responses regarding the multiplier. The table summarizes the distribution of
survey responses about the multiplier, M . The data are from two surveys; one conducted via Twitter
(using the hashtag #EconTwitter) and one conducted at the beginning of a VirtualFinance.org
seminar. The first column reports the number of respondents. Columns 2 to 6 report the fraction
of respondents who consider the multiplier to exceed one, be greater or equal to one, to exceed zero,
equal to zero, or negative.

Fraction of responses for which
Survey No. obs. M > 1 M � 1 M > 0 M = 0 M < 0
VirtualFinance 102 2.9% 5.9% 47.1% 52.0% 1.0%
EconTwitter 192 3.1% 5.2% 29.5% 67.9% 2.6%

Percentiles
Survey Mean 5 25 50 75 95 Max
VirtualFinance 0.13 0 0 0 0.01 1 5
EconTwitter 0.11 0 0 0 0 0.75 10

Figure E.10: Who provides elasticity to the market? The figure reports the fraction of respon-
dents pointing to a particular sector as providing elasticity when an investors wants to sell $1bn
worth of equities. The data are from two surveys; one conducted via Twitter (using the hashtag
#EconTwitter) and one conducted at the beginning of a VirtualFinance.org seminar.
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F Omitted Proofs

F.1 Derivation of (18)

1 + rf + ⇡̄ + ⇡̂t = 1 + rf + ⇡t

=
Et [Pt+1 +Dt+1]

Pt

=
Et

⇥
P̄t+1 (1 + pt+1) + D̄t+1 (1 + dt+1)

⇤

P̄t (1 + pt)

= Et


P̄t+1

P̄t
(1 + pt+1 � pt) +

D̄t+1

D̄t

D̄t

P̄t
(1 + dt+1 � pt)

�

= Et [(1 + g) (1 + pt+1 � pt) + (1 + g) � (1 + dt+1 � pt)] (74)
= (1 + g) (1 + �) + (1 + g)Et [�pt+1 + � (dt+1 � pt)] (75)

The zero-th order term gives 1 + rf + ⇡̄ = (1 + g) (1 + �), which is the Gordon growth formula,
rf + ⇡̄ � g = (1 + g) � = Et[Dt+1]

Pt

. The next order term gives

⇡̂t = (1 + g)Et [�pt+1 + � (dt+1 � pt)] (76)

In the text, to reduce the notational clutter, we take (18), which is this expression using the
definition of � as the baseline (i.e., frictionless) value of E[Dt+1]

Pt

rather than of Dt

Pt

. This can be also
interpreted as this expression in the limit of small time intervals, or when the trend growth rate g
is 0, or by changing  as  (1 + g).

F.2 Proof of Proposition 6
The values of pt, ⇡̂t and so on, were derived in (26). We need to derive the flow ft, the interest rate
rf , and the average risk premium ⇡̄.

As W̄t =
1
✓
Dt

� the baseline value of the mixed fund (when the behavioral friction is 0), (17) and

(49) give: ft =
Ft�F̄t

W̄t

=
bt

Dt

�

1
✓�

Dt

= ✓bt.

Next, we derive the risk-free rate. The consumer’s first order condition gives the Euler equation

1 = �Rf,tEt

⇣
Ct+1

Ct

⌘���
. As in equilibrium Ct = Yt, the interest rate satisfies the Euler equation

for bonds.
Now, we move to stocks. The average allocation in equities maximizes a risk-adjusted return,

Et [V p (Rt+1)] , with V p (R) = R1���1
1�� . Then, approximately, the allocation in equities is ✓̄E = ⇡̄

��2
r

.
Given that in equilibrium all the wealth comes from equity, the equity premium is ⇡̄ = ��2

r .

F.3 Proof of Proposition 7
Calling D1 the aggregate dividend, the dividend per share goes from D1 = D1

Q0
to D0

1 = D1
Q0

0
= D1

1�b .
So, the time-1 dividend per share increases by a fraction d = b.

Let us first consider a frictionless, elastic / rational model. The price per share increase by the
same fraction as the time-1 dividend per share, i.e. p = b. Calling v = � ln (PQ) = p + qS the
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change in the market value of the firm, and r the excess return created by the buyback, we have:

Frictionless model: qS = �b, d = b, p = b, v = 0, r = 0. (77)

The market value does not change: the lowering of the number of share outstanding by b is com-
pensated by the increase in the price per share by a fraction, which is the same b.

Let us next consider an inelastic model. The buyback decreases the total dividend payout from
D0 to D0 � P0Q0b. So the households experience a change in dividend received �D0 = �P0Q0b
(recall that the all dividends are passed on by the fund to the consumers)80 and a capital gain
Q0�P = P0Q0p. Recall that we said that if the extra dividend (respectively extra capital gain)
is X dollars, consumers will “remove from the mixed fund” µDX (respectively µGX) dollars. This
means that the flow is

�F0 =
�
1� µD

�
�D0 � µGQ0�P (78)

Indeed, if the extra dividend received is �D0, there is a counteracting flow of
�
1� µD

�
�D0, so that

the total dividend change removed from the mixed fund is µD�D0. Likewise µGQ0�P is “removed”
from the mixed fund. This means that the flow is

f =
�F0

W0
=

Q0P0

W0

�
1� µD

�
�D0 � µGQ0�P

Q0P0
= ✓

⇥�
1� µD

�
(�b)� µGp

⇤

The total demand change by the mixed fund is then q = �⇣p+ �d+ f , and should be equal to
the supply change qS = �b. So

0 = q � qS = �⇣p+ �d+ f + b = �⇣p+ �b� ✓
�
1� µD

�
b� ✓µGp+ b

and the share price change is:

p =
⇣ + µD✓

⇣ + µG✓
b. (79)

This yields (60) and implies that p > b if µD > µG. A share buyback increases the market value
by v = p+ qS = p� b > 0.

F.4 Traditional rational or behavioral models predict that markets are
extremely price-elastic

In this section, we contrast our findings with the typical macro demand elasticities implied by most
frictionless rational or behavioral models, and find that these are strongly inconsistent with the low
price elasticities that we model and estimate empirically.

First, as a partial intuition, if agents were risk neutral and the equity premium were 0, any
price discrepancy would lead to an arbitrage, and the price elasticity of demand would be infinite,
⇣r = 1. This is the intuition behind the most basic form of the efficient markets hypothesis,
where the price is always equal to the present value of dividends (with a constant discount rate),
independently of flows.

Second, let us examine the more sophisticated case with risk-averse agents. We model aggregate
income Yt as going to the equity dividend as Dt =  Yt, and the rest going to labor and other forms

80The outcome would be the same if the rule was different. The total dividend change removed from the mixed
fund would still be µD�D0.
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of business as ⌦t = (1�  )Yt. For simplicity, we consider the most classic case: the consumer
has utility

P
t e

�⇢t C
1��

t

1�� and the endowment Yt has i.i.d. growth, Yt = GtYt�1. The basic case is

the lognormal one, Gt = eg�t+�"t��
2

2 �t (with "t a standard Gaussian variable). We also consider a
disaster model, where Gt = eg�t if there is no disaster (which happens with probability 1� pD�t),
and Gt = eg�tB if there is a disaster (which happens with probability pD�t), so that if there is a
disaster, the economy shrinks by a factor B 2 (0, 1].

Suppose that for some reason the market value of equities is different from its rational level,
permanently, by a fraction p – that is, the price of equities is permanently Pt = P ⇤

t (1 + p), where P ⇤
t

is the rational price.81 How much capital should flow into equities? The next proposition answers
this (the proof is at the end of this subsection).

Proposition 8. (Market elasticity in frictionless rational or behavioral models) We derive the
price-elasticity of the demand for stocks in two classes of frictionless models. We suppose that all
agents are frictionless (and with common beliefs, which can be rational or behavioral), with CRRA
utility and with i.i.d. endowment growth. In the basic model in which growth rates are lognormal,
the elasticity of demand for equities is:

⇣r =
1

⇡

C

W E , (80)

where ⇡ is the equity premium, C is aggregate consumption and W E is the stock market capital-
ization. In a disaster model where growth rates follow a jump process, the elasticity of demand for
equities is ⇣r,D = 1

⇡
C
WE

(1�B�)B
�(1�B) , where B is the recovery rate of the endowment after a disaster.

Take the calibrated values C = 0.8Y , where Y is GDP, W E = Y (as the typical market capital-
ization is roughly equal to GDP), and ⇡ = 4%. Then (80) implies that the elasticity predicted by
rational models is ⇣r = 20. Hence, with a calibrated and empirical elasticity ⇣ = 0.2, we find that
the basic rational model predicts an elasticity of demand 100 times bigger than the empirical one:

⇣r

⇣
= 100. (81)

Summing up, we find that frictionless rational or behavioral models (of the common “wrong
beliefs” type) predict an elasticity of demand 100 times bigger than the calibrated and empirical
one. Indeed, in a behavioral model agents may have wrong beliefs, but they strongly act on their
beliefs, with the same elasticity as in rational models (replacing the equity premium ⇡ in (80) by
the perceived equity premium, but both are typically calibrated to have the same average value).

Now take the disaster model. Using the above calibration and the values B = 2/3, � = 4 (Barro
(2006), Gabaix (2012)), the elasticity in a disaster model given by Proposition 8 is ⇣r,D = 8, so

81Johnson (2006) introduces a definition of market illiquidity that pertains to asset pricing models, whether or
not there is trade between agents. His measure quantifies the equilibrium price change induced by a perturbation
in asset supplies. Johnson (2006) examines this measure in the context of several rational setups, including a Lucas
model, and this measure of illiquidity can be large and variable. We cannot use his results here because his definition
of liquidity allows the interest rate to change when equity prices change, unlike our demand elasticity ⇣, which holds
for a given interest rate. His notion of liquidity is generally lower than our elasticity, sometimes by an infinite factor.
Indeed, take the case where there is no risk (the equity market is mispriced, so that the price is not the discounted
value of the known dividend). In our model, the elasticity of demand is infinite (see Proposition 8), as it would be in
most models with a riskless arbitrage opportunity, but Johnson’s liquidity measure remains finite. In addition, we
account for human capital, which is absent in Johnson’s definition, and is quantitatively important.
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that it is 40 times larger than the empirical one. In Section I we verify numerically that a similar
reasoning works for long run risks models (Bansal and Yaron (2004)). We suspect that it would
also apply to a habit formation model (Campbell and Cochrane (1999)).82,83

Proof of Proposition 8 Case 1: Gaussian risk. We first deal with the case of Gaussian risk, for
simplicity in the continuous-time limit. The desired holding of risky wealth is ✓t = ⇡t

��2 . Initially,
that holding was ✓t = 1: all wealth (human wealth and wealth capitalized in the stock market) is
risky, with equal riskiness. This implies that ��2 = ⇡ initially. But after the change in the equity
premium, the desired change in equity share is: d✓ = d⇡

��2 , i.e.

d✓ =
d⇡

⇡
. (82)

The consumer can sell his wealth for Pt, so that his market wealth is Wt = QPt, where Q is the
total number of shares (of which QE are in equities, the rest in human wealth, i.e. promises to a
stream of labor income). His dollar demand for risky assets is Wt✓t, so that in number of shares
this is:

QD =
Wt

Pt
✓t =

QPt

Pt
✓t = Q✓t = Q

✓
1 +

�⇡

⇡

◆
.

All the trading is in the equity market, so that this net demand for equities is:

�Q = Q
�⇡

⇡
.

This flow, expressed as a fraction of the equity market (which has a number of shares QE =  Q),
is also:

�Q

QE =
�⇡

 ⇡
. (83)

If the value of equity changes by p, the equity premium changes by �⇡ = ��p (see (18)), so we
have

�Q

QE = � �

 ⇡
p = �⇣rp,

where the rational elasticity is:
⇣r =

�

 ⇡
.

Finally, consumption is Ct = Yt, while aggregate stock dividends are only DtQE =  Yt.84 So,

⇣r =
�

 ⇡
=

Dt

Pt

DtQE

Ct

⇡
=

Ct

(PtQE) ⇡
=

Ct

W E
t ⇡

,

82One could imagine other models, with idiosyncratic risk, but that would take us far afield.
83As a correlate, traditional models counterfactually predict very correlated flows and beliefs. Indeed, with several

institutions and a demand qit = �⇣rpt+f⌫
it, and ⇣r ' 20, the term ⇣rpt has an annual volatility of ⇣r�r = 20⇥0.15 = 3,

or 300% per year. However, the annual volatility of equity holdings changes, we have seen, is about �qi ' 2%. Hence,
to account for the empirical facts, we would need extremely volatile flows and demand changes f⌫

it of about 300%.
In contrast, empirical flows fit (when they can be measured) are about 1%. Hence, we would need almost perfectly
correlated news and taste shocks ⌫it, of 300% per year. All of this strikes us as quite implausible. It seems like a
very difficult challenge to fit our facts with a traditional model.

84This is true in the logic of the Lucas tree model with no investment. In the calibration, we take the “fruit” to be
consumption, which less than GDP as there is investment (in a closed economy), and indeed we take Ct = 0.8Yt.
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which is the announced expression.
Case 2: Disaster risk. The reasoning is the same, except that expression (82) is different with

disaster risk. To derive it, observe that the value function must take the form V (Wt) = KW 1��

t

1�� for
some constant K. Hence, calling R̃t+1 the rate of return on stocks, the consumer’s problem is:

max
C,✓

u (C) + �EV
⇣
(Wt � Ct)

⇣
Rf + ✓

⇣
R̃t+1 �Rf

⌘⌘⌘

It entails the following sub-problem for portfolio choice: max✓ E

(Rf+✓(R̃t+1�Rf))

1��

1��

�
. Calling

r̃t+1 =
Rt+1

Rf

� 1 the normalized excess return on stocks, the problem is

max
✓

E
"
(1 + ✓r̃t+1)

1��

1� �

#
,

so the FOC characterizing the equity share is:

E
⇥
(1 + ✓r̃t+1)

�� r̃t+1

⇤
= 0. (84)

This expression holds for any i.i.d. excess return distribution r̃t+1. In particular, it recovers the
traditional expression ✓ = ⇡

��2 in the Gaussian case, r̃t = ⇡�t+"t (this is an exercise for the reader).
Now take the disaster case,

r̃t = ⇡�t� (1� B) Jt

where ⇡ is the equity premium conditional on no disasters, where Jt = 0 if there is no disaster and
1 otherwise. Then (84) becomes

�
1� pD�t

�
(1 + ✓⇡�t)�� ⇡�t+ pD�t (1 + ✓ (⇡�t� (1� B)))�� (⇡�t� (1� B)) = 0,

i.e. taking the small �t ! 0 limit,

⇡ = pD (1� ✓ (1� B))�� (1� B) . (85)

Taking logs on both sides and differentiating this expression (for small changes in ⇡ and ✓) around
✓ = 1 gives:

d⇡

⇡
= d ln ⇡ = d ln

⇥
pD (1� ✓ (1� B))�� (1� B)

⇤
=
� (1� B)

B
d✓,

i.e.
d✓ =

d⇡

⇡

B

� (1� B)
(86)

Finally, as ⇡ = pDB�� (1� B) by (85), the risk premium in a full sample (including an average
number of disasters) is: ⇡̄ = ⇡ � pD (1� B) = pD (B�� � 1) (1� B), so ⇡̄

⇡ = 1� B�. So (86) gives

d✓ =
d⇡

⇡̄

B (1� B�)

� (1� B)
, (87)

which is the disaster counterpart to (82): how the desired equity share changes as the equity
premium changes.

The rest of the derivation is exactly as in the lognormal Case 1, replacing (82) by (87).
In a behavioral model agents may have wrong beliefs, but they strongly act on their beliefs, with

the same elasticity as in rational models (replacing the equity premium ⇡ by the perceived equity
premium).
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G Theory Complements

G.1 The model with many asset classes
We can easily extend the model to K asset classes, indexed by A 2 {1, . . . , K}, such as stocks,
long-term government bonds, and long-term corporate bonds. This way, we can study cross-market
contagion effects, and the impact of those on real investment.

Two-period model We sketch this for the two-period model of Section 3.1.
The mandate leads to the following demand for asset A (at least, for some small deviations from

0 in d and p):

PAQ
D
A = ✓AW exp

 
KX

B=1

DAB (dB � pB)

!
.

For instance, if DAB = 0 the mixed fund seeks to keep a constant share ✓A in asset A. When DAB is
different from 0, a change in the risk premium in asset B leads to a change in the amount allocated
to asset A.

Suppose that there are shocks changing the prices and expected dividends for a given set of assets
by fractions indexed as pB and dB. Then, the value of the fund changes by w = �W

W = f+
P

B ✓BpB,
so that the demand for a particular asset class A changes by a fraction85

qDA = �
X

B

⇣ABpB + fA +
X

B

DABdB, (88)

where the cross-elasticities of demand ⇣AB express how demand for asset A changes with a change
in the price of asset B: ⇣AB = 1A=B � ✓B + DAB. In vector form, this gives

q = �⇣p+ f + Dd, (89)

where now q, p, d, f are vectors, and ⇣ and D are matrices, with dimension K. This generalizes
Proposition 2. So, the equilibrium after a change in flows and expected dividends (but still constant
asset supply is):

p = ⇣�1
�
f + Dd

�
. (90)

In this paper we shall not measure, for example, how much the price of long-term bonds affects
the demand for stocks. But one can readily contemplate a host of interesting cross-market effects.
For instance, when investors sell stocks and invest in long-term bonds, bond yields will go down,
which encourages firms to invest. Hence, we see an impact from stocks to corporate bonds, to real
investment, and to GDP.

Infinite horizon model The formulas of the papers extend again, replacing scalars by matrices.
For instance, the demand is

qt = �⇣pt + ft + Ddet + Et [pt+1 � pt] ,

85With just one fund, fA is the same across assets classes A. But with several funds, by aggregation, fA differs
across asset classes so we use that more general notation.
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where qt,ft, dt, pt are vectors and , D, ⇣ are matrices. In equilibrium, qt = 0 at all dates, so that

pt = (⇣ + )�1 �Et [pt+1] + ft + Ddet
�
.

Defining the matrix ⇢:
⇢ := �1⇣, (91)

we have
pt = a

�
ft + Ddet

�
+ (1 + ⇢)�1 Et [pt+1]

with a = (⇣ + )�1 . Solving forward, we have the multi-asset equivalent of (20):

pt = Et

1X

⌧=t

1

(1 + ⇢)⌧�t

�
af⌧ + aDde⌧

�
. (92)

In the AR(1) case where ft = (1� �f ) ft�1 + "ft , with �f a matrix now, we have pt = bpfft with bpf
a matrix equal to:

bpf =
1X

h=0

(1 + ⇢)�h a (1� �f )
h . (93)

In general, there is no closed form, but bpf can be computed iteratively as:

bpf = a+ (1 + ⇢)�1 bpf (1� �f ) . (94)

G.2 The model with time-varying market inelasticity
Here we study the model with a time-varying market elasticity.

Suppose we have a time-varying ⇣t and t but (for simplicity), a constant ⇢ = ⇣t
t

. For simplicity,
we assume Etde⌧ = 0. Then, we have the following variant of Proposition 5 (the derivation is similar):

pt = Et

1X

⌧=t

⇢

(1 + ⇢)⌧�t+1

f⌧ + ⌫⌧
⇣⌧

. (95)

To be concrete, we study the case
1

⇣t
=

1

⇣
(1 +Mt) , EtMt+1 = (1� �⇣)Mt,

so that Mt is a temporary increase in market inelasticity, mean-reverting at a speed �⇣ . We consider
the impact of a permanent inflow, f⌧ = f0 for ⌧ � 0. Then the price follows, at t � 0,

pt =
f0
⇣

✓
1 +

⇢

⇢+ �⇣
Mt

◆
. (96)

So, if the flow f0 happens during a time of high market inelasticity 1
⇣0

(i.e. high M0), then the
price impact is higher, which makes sense. It is the average future value of the inelasticity shifter
( ⇢
⇢+�⇣

M0) that matters, rather than the current inelasticity shifter (M0). In the scenario above,
the price impact of f0 mean-reverts at a speed �⇣ .

More generally (if �⇣ > �f ), this implies that returns that happened during a high-volatility
period mean-revert faster.

A tentative calibration. With ⇢ = 0.16/year and �⇣ = 0.15/year, we have ⇢
⇢+�⇣

' 0.5, so have
then to get a price impact higher by a factor 0.5, we need Mt =

0.5
0.5 = 1, i.e. a halving of ⇣t. This

effect might be detectable, though not easily.
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G.3 Micro versus macro elasticity: The cross-section of stocks
We generalize to a model with several stocks. This allows us to distinguish between the macro
elasticity of demand for stocks, ⇣, and the micro-elasticity ⇣?. The upshot is that the effects are
the same, but with higher demand elasticity in the cross-section ⇣? > ⇣ than in the aggregate. We
recommend skipping this section at the first reading.

G.3.1 Stock-level demands

We call Pat the price of the stock, and pat its deviation from the baseline (as we did for the aggregate
market). We define p?a = pa� p as the asset-a specific price deviation. Likewise, all “perpendicular”
terms are the deviation of stock a from the aggregate stock market. We define ⇡?

at = ⇡a
t ��a⇡t as the

deviation of the equity premium of asset a from the CAPM benchmark (this could be generalized
of course), and ⇡̂?

at = ⇡?
at � ⇡̄?

a as its deviation from the average.
We start from a model of stock-level demand for stock a (as in asset), which comes from a

“tracking error” type of mandate: the fraction in equities allocated to asset a is

PatQat

PtQt
= ✓Eae

?⇡̂?
at
+✓?p?a +⌫?a . (97)

Indeed, PatQat is the dollar demand for asset a, and PtQt is the dollar demand for the aggregate
stock market. On average, their ratio is ✓Ea . The term ? is the micro-elasticity of demand with
respect to the anomalous part of the equity premium ⇡̂?

at. The term ✓? indicates a concern for
tracking error: if the fraction allocated to asset a is constant, then ✓? = 0 (this is the baseline
case). However, if the number of shares allocated to asset a is constant, then ✓? = 1.

Calling qat =
Qat

Q̄a

�1 the deviation of the demand from the baseline, and q?at = qat�qt how much
asset a deviates from the baseline, we obtain the following counterpart to Proposition 4 (the proof
is in Appendix F).

Proposition 9. (Demand for individual stocks in the infinite-horizon model) The demand change
(compared to the baseline) for an individual asset a is qat = qt + q?at, where qt is the demand change
for the aggregate stock market seen in Proposition 4, and q?at is the asset-a specific demand change,
given by

q?at = �⇣?p?at + ?�de,?at + ?Et

⇥
�p?a,t+1

⇤
+ ⌫?at (98)

where ⇣? is the micro-elasticity of demand for individual stocks:

⇣? = 1� ✓? + ?�. (99)

Proof. Equation (97) implies

q?at = �
�
1� ✓?

�
p?at + ?⇡̂?

at + ⌫?at. (100)

Likewise, the analogue of (18) is ⇡̂?
at = Et

⇥
�p?a,t+1

⇤
+ �

⇣
de,?at � p?a

⌘
, with de,?at := Et

⇥
d?a,t+1

⇤
. Com-

bining the two gives the announced expression.

This is exactly the same equation as the one for the aggregate stock market, but now in terms
of stock-specific deviations. Hence, the economics of the aggregate stock market works for the
individual stocks, but in “perpendicular space”, i.e. replacing ⇣, pt, qt by ⇣?, p?at, q?at, and so on. For
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instance, the equilibrium value of the price p?at is as in Proposition 5, replacing ⌫t by ⌫?a . We next
spell this out and draw consequences. See Betermier et al. (2019) for an alternative demand-based
model of the cross-section of stocks.Micro-elasticity of demand versus macro-elasticity of demand

Suppose that there is a “stock specific flow”, whereby someone buys �F?
a worth of stock a, while

selling �F?
a of the aggregate stock market, so that the total change in the demand for aggregate

stocks is 0. The asset-a specific fractional inflow is f?
a = �F?

a

PaQa

, where PaQa is the (pre-flow) market
value of stock a. As net demand is 0, we must have q?at + f?

a = 0. So, the impact of a flow is:

p?a =
f?
a

⇣?
, (101)

where ⇣? is the price micro-elasticity of demand (99). We see that the price impact is 1
⇣? , not 1

⇣ .

Calibration Most papers have estimated the micro-elasticity of demand, ⇣? (Shleifer (1986),
Wurgler and Zhuravskaya (2002), Duffie (2010), Chang et al. (2014), Koijen and Yogo (2019)),
while the present paper is about the macro-elasticity of demand, ⇣. Indeed, the literature finds
⇣? ' 1, with estimates in the 0.5 to 10 range. It makes sense that the macro-elasticity should be
much smaller than the micro-elasticity, ⇣ ⌧ ⇣?. One way to rationalize this is to set ✓? ' 0.2 for
the inertia or concern for tracking error term, � = 4%, and ? = 5.86

Micro versus macro price impact In the following illustrations, we take a micro elasticity
⇣? = 1 and a macro elasticity ⇣ = 0.2.

Consider what happens if an investor decides to buy $1 worth of Apple shares, while selling $1
worth of Google shares. Then, the market value of Apple goes up by $1 (that is, $1 ⇥ 1

⇣? ), and
that of Google falls by the same $1. But the aggregate value of equities does not change, as the net
demand for aggregate equities has not changed.

Next, suppose that an investor buys $1 of a very small stock (selling $1 worth of bonds), call it
Peanut. Then, the market value of that Peanut stock goes up by $1, and the market value of the
aggregate stock market goes up by $5 – so the aggregate market value of the other stocks increases
by $4.

If the consumer buys $1 of Apple, or any non-infinitesimal stock, the aggregate value of equities
still increases by $5, but the market value of Apple goes up by slightly more than $1 (indeed, if
Apple were the whole market, its would increase by $5). To see all this analytically, consider a flow
fa = �Fa

PaQa

into just one asset a, which accounts for a fraction !a of the total equity capitalization.
We do that in the two-period model, so we drop t (this is equivalent to doing that for the infinite-
horizon model, but assuming permanent inflows). The corresponding aggregate flow is f = !afa,
so that the impact on the aggregate market is p = f

⇣ , or

p =
!afa
⇣

.

The stock-specific flow to asset a is f?
a = fa � f = (1� !a) fa. Hence, the stock-specific impact is:

p?a = f?
a

⇣? = 1�!a

⇣? fa. Hence, the total impact is pa = p+ p?a , or

pa =
fa
⇣?

+

✓
1

⇣
� 1

⇣?

◆
!afa. (102)

86This ratio of price impact of roughly 1 to 5 is also consistent with Benzaquen et al. (2017).
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For the other stocks b 6= a, we have f?
b = �f = �!afa, so the impact is:

pb =

✓
1

⇣
� 1

⇣?

◆
!afa, for a stock b 6= a. (103)

As ⇣ < ⇣?, the cross-impact is positive.
For instance, suppose that Apple’s capitalization is !a = 5% of the stock market. Then, if

someone buys $1 of Apple (selling bonds), the market value of Apple increases by $1.2,87 and the
value of the aggregate equities still increases by $5 – so, the aggregate value of all the other stocks
increases by $3.8. This is a moderate deviation from the above “small stock” Peanut benchmark.

Infinite-horizon model for the cross-section The infinite horizon model is exactly as above,
but in “perpendicular” (asset-specific) space. We define ⇢? = ⇣?

? = 1�✓?
? + � and MD,? = ?�

1�✓?+?� .
The stock-specific deviation is given by (20) in asset-specific space:

p?a,t = Et

1X

⌧=t

⇢?

(1 + ⇢?)⌧�t+1

✓
f?
a⌧

⇣?
+MD,?de?a⌧

◆
. (104)

Conclusion: Aggregate versus cross-section We conclude that the aggregate model extends
well to the cross-section, and indeed is useful to think about the impact of flows in the cross-section
and in the aggregate in a unified manner. While most prior work has been on the estimation of the
cross-sectional elasticity ⇣?, the main object of interest in this study is the aggregate elasticity ⇣.

G.4 Short-term versus long-term elasticity when funds are inertial
The basic model describes price impacts and quantity adjustments assuming no inertia in funds’
reactions. Here we study what happens if funds react with some inertia: this creates additional
transitory dynamics.

We consider the case of a homogeneous type of fund, trading only the aggregate stock and a
risk-free short-term bond. Total demand qt can change because of the inflow ft and via an “active”
demand qat :

qt = qat + ft.

We model the actual active demand with inertia as:

�qat = µ�qa,⌫t + ��t
�
qa,vt�1 � qat�1

�
, (105)

where qa,vt is the “virtual active demand” – the one of a non-inertial fund:

qa,vt = � (1� ✓) pt + ⇡̂t + ⌫t = �⇣pt +  (Ept+1 � pt) + �dt + ⌫t, (106)

with µ 2 [0, 1] and � � 0. A frictionless investor has µ = 1. The lower µ and �, the more frictional
the investor. The adjustment to flows ft is instantaneous for simplicity, and as it does not require
a “strategic” decision by the fund, which simply rescales its investment after an inflow.

We derive quantity adjustments (the proof is by plug and verify).

87Indeed, 1
⇣? +

⇣
1
⇣ � 1

⇣?

⌘
⇥ !a = 1 + (5� 1)⇥ 5% = 1.2.
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Figure G.11: This figure shows the quantity adjustment of an inert fund after a change in the
aggregate stock price. It illustrates Proposition 10. If investors are inertial, there is a gradual
adjustment of the quantity over time. When there is no inertia, µ = 1 and the quantity adjustment
is instantaneous.

t
0

pt

p0

(a) Impulse

t

qt

�⇣µp0

�⇣p0

(b) Fund’s Quantity Response

Proposition 10. (Short-run versus long-run elasticity of demand) Suppose a fund that exhibit
inertia. Then, its short-run elasticity of demand is µ⇣, and its long-run elasticity of demand is ⇣.
More precisely, suppose that the log price of equities jumps by p0 at time 0, i.e. pt = 1t�0p0. Then,
at t � 0, the fund’s demand change is:

qt = �⇣
�
1 + (µ� 1) (1� �)t

�
p0, (107)

while its virtual demand is q⌫t = �⇣p0.

Figure G.11 illustrates the dynamics. The long run demand is q⌫1 = �⇣p0, but the impact at 0
is only µ times that, q⌫0 = �⇣µp0. In between there is an exponential relaxation at rate �.

The next proposition derives the price impact of a flow. We also assume � < µ, which is
automatically true in the limit of small time intervals.88

Proposition 11. (Price impact of an inflow when funds are inertial) When funds exhibit inertia,
the price impact of a permanent, unanticipated inflow f0 at time 0 is (for t � 0),

pt = Mtf0, Mt =
1

⇣
+ b (1� �)t (108)

where b = 1�µ
µ(⇣+�) and � = �

µ . So, the short run price impact is M0 = 1
⇣ + b, while the long run

impact is M1 = 1
⇣ .

Proof. We conjecture a solution of the type (108). We normalize f0 = �1. Plugging this in (106)
gives

qa,vt =
�
1 + b⇣ (1� �)t

�
+ b� (1� �)t = 1 + b (⇣ + �) (1� �)t = 1 + c (1� �)t .

For t � 0, equilibrium imposes qat + f0 = 0, i.e. qat = 1. So (105) gives, for t > 0

0 = �qat = µ�qa,⌫t + �
�
qa,vt�1 � qt�1

�
= c (��µ+ �) (1� �)t�1 ,

88In the limit of small time intervals, we replace (1� �)t in (108) by e��t.
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Figure G.12: This figure shows the price dynamics caused by an unanticipated time-0 demand
shock, when investors are inertial. It illustrates Proposition 11. The permanent demand shock ft
creates a permanent price change p1 = f0

⇣ . If investors are inertial, there is a small extra bump b
on impact, that decays exponentially over time. When investor are not inert, b = 0 and the price
immediately jumps to its permanent value p1.
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0
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which leads to � = �
µ . At time 0, (105) gives

qa0 = µqa,v0 = µ (1 + b (⇣ + �)) .

As qa0 = 1, this gives b = 1�µ
µ(⇣+�) .

Figure G.12 illustrates the dynamics of (108). An unanticipated, permanent inflow f0 at time
0 has an immediate price impact

⇣
1
⇣ + b

⌘
f0 that is bigger than the long-run price impact f0

⇣ . The
initial “excess reaction” bf0 dies down at the exponential rate �. When funds are not inert, b = 0.
This echoes the findings in Duffie (2010), with a somewhat different model.

For µ < 1, we have � > �: surprisingly, the speed of price dynamics � is faster than the fund-
level speed of adjustment of quantities �. This is because the movements of the equity premium
creates an incentive for adjustment beyond the “mechanical” speed �.89

Calibration We discuss the model calibration.90 For the fund-level inertia we take � = 1/year,
so that the half-life is about 0.7 years. We also take the instantaneous sensitivity to events to be
µ = 0.5, where the calibration isn’t too sensitive to that, provided that µ > 0.1. So, the speed of
mean-reversion coming from inertia is � = �

µ = 2/year, and the overshooting of flows on impact is,
using ⇣ = 0.16 (with ⇣M = 0.2) and  = 1 year for illustration:

b =
1� µ

µ⇣ + �
=

1� 0.5

0.5 · 0.16 + 1 · 1 ' 0.45.

The immediate price impact is 1
⇣ + b = 5.4, while the permanent price impact is 1

⇣ = 5. So, the
temporary bump b ⌧ 1

⇣ is pretty negligible in the big picture. As the price decays as bft (1� �)t,

89Imagine that the impulse is a positive inflow, which increases the price. First, the “active” part of the fund
strategy wants to sell shares, as the price is high and the equity premium low. But a low “instantaneous share” µ
creates a high initial price jump, so a very negative expected return, speeding up the selling of shares: hence, the
smaller the µ, the greater the price jump p0, and the faster the price adjustment �.

90We use a “continuous time” calibration: The expressions work in continuous time, which makes calibration easier,
replacing expressions like (1� �)t by e��t.
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the premium is b�f = 0.45 ·2 ·0.5% = 0.4% (if ft = 0.5%), again a small premium. A higher inertia
(lower �) creates a bigger difference between long run and short term price impact. So, examining
inertia across investor classes is a useful avenue for future research.

Impact of anticipated and unanticipated flows when funds are partially inert We next
generalize the price as present value formula (20) and the price impact with inertia (108).

Proposition 12. (Price impact with inertial funds) When funds exhibit inertia, the price impact
of inflows dfs is:

pt =
f�1

⇣
+

1X

s=�1
G (t� s)Et [�fs] , (109)

where

G (⌧) =

(⇣
1
⇣ + b

⌘
1

(1+⇢)⌧ if ⌧ < 0,
1
⇣ + b (1� �)⌧ if ⌧ � 0.

(110)

with ⇢ = ⇣/ is in (21), and b is in Proposition 11. When there is no inertia, b = 0.

Proof. This can be checked by the “plug and verify” method for market clearing, qt = 0.

Heterogeneity in inertia across funds One can generalize this model to the case of hetero-
geneous inertial funds. Things are particularly tractable when �i is the same across funds i (but
µi, ⇣i,i could be different): then (108) holds, with more complex expressions for b and �.

G.5 On the link between the Kyle lambda and the market inelasticity
G.5.1 Theory: Kyle’s lambda versus inelasticity

Suppose that within a certain time window, there is an “order flow” (realized signed trades), with
volume �ft expressed as a fraction of the market capitalization. A typical micro structure regression
is, as in Evans and Lyons (2002); Hasbrouck (2007):

pt � pt�1 = � (�ft � Et�1 [�ft]) (111)

where � is the so-called “Kyle lambda”, from Kyle (1985). We analyze what that regression would
estimate in our model.

We suppose that our model holds, and that there is completely symmetric information about
fundamentals – so, we remove the informational ingredient of Kyle. Still, trades will move prices –
because of inelasticity. We clarify this here. As we mentioned above, a very important difference
is that in Kyle flows do not change the equity premium on average, whereas in our model, positive
inflows lower the equity premium.

To analyze what happens in our model, we suppose some autocorrelation in the order flow (like
Madhavan et al. (1997), Lillo et al. (2005) and Bouchaud et al. (2018)):

�ft = (1� �g)�ft�1 + "t, (112)
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where "t is i.i.d. So, an innovation "t creates an innovation to the eventual cumulative flow:91

lim
h!1

Et [ft+h � ft�1] = K"t, K =
1

�g
.

For instance, if a large desired trade (“meta-order”) is on average “sliced” into 15 trades, executed
slowly over time, then K = 15. Likewise, if a fast fund trades, and is followed on average by similar
or “copycat” meta-orders by two other funds, then K = 3.92 The two forces combine: if a fund
splits its meta-order in five trades, and it is followed by two more similar funds doing a similar
trade (also splitting their trade into five chunks), then K = 5⇥ 3 = 15, the product of the number
of “similar” funds (3 in this example), and the number of “chunks” in which they split their trade
(5 in this example).

In our model, the total price impact is, in the limit of small time intervals,93

�pt =
K

⇣
"t =

K

⇣
(�ft � Et�1 [�ft]) .

Hence, an econometrician estimating (111), will find:

� =
K

⇣
. (113)

This means that, for the aggregate market, the Kyle lambda is the inelasticity 1
⇣ times the persistence

parameter K associated with the positive autocorrelation of the order flow.
Most empirical work in micro structure is done at the level of one asset, so that the � they

estimate is
� =

K

⇣?
, (114)

where �? is the micro-elasticity of Section G.3.
91Indeed, "t creates an innovation to the cumulative flow ft+h equal to

Et [ft+h � ft�1] = Et [�ft +�ft+1 + · · ·+�ft+h] = "t
⇣
1 + (1� �g) + · · ·+ (1� �g)

h
⌘
=
"t
�g

⇣
1� (1� �g)

h+1
⌘
.

92More generally (such as in models with multiple time scales, or some form of long memory, see Bouchaud et
al. (2018)), K is the “expected value of related orders, given the past”. So, the estimation of K is a bit delicate,
and not simply the inverse of the speed of mean-reversion of orders. Formally, with "t := �ft � Et�1 [�ft], K =
@

@"t
limh!1 Et [ft+h � ft�1|"t]. For instance, if we have (35)

�ft =
kX

l=1

al�ft�l + "t,

then the total innovation is K = 1
1�

P
k

l=1 al

. We use this in Section 4.2.
93Away from the limit of small time intervals, the calculation is the following. The price is pt = Aft�1 +B�ft for

two coefficients A, B to determine. Calculations based on Proposition 5 (plug in that expression in (19) with qt = 0)

show: A = 1
⇣ and B =

1+

⇣

⇣+�g

. So, in the limit of small time intervals (as in Section G.12.2), with  = /�t ! 1,
and ⇣ constant (as � = ��t, � is constant as �t ! 0), we get B ! 1

⇣�g

= K
⇣ , i.e. �pt =

K
⇣ "t.
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G.5.2 Empirical values from the micro structure literature

Frazzini et al. (2018) find that buying 2.5% of the daily volume of a stock creates a permanent price
impact �p = 15bp (indeed, it creates a total price impact of 18bp, of which 85% is permanent,
see their Figures 2 and 6). Using an annual turnover of 100%, and 250 trading days per year, this
means that buying a fraction �q = 2.5% ⇥ 1

250 = 1bp of the stock creates a 15bp price impact.
Hence, their Kyle lambda is94

� =
�p

�q
=

15bp
1bp

' 15.

Hence, the prima facie “micro structure” price impact is � ' 15.95 This can be compared with our
own M ' 5. However, in terms of our model, their � reflects the micro-elasticity rather than the
macro-elasticity: it is � = K

⇣? . As we calibrate ⇣? ' 1, this leads to K ' 15. This estimate has the
interpretation, in inelastic markets with a micro elasticity of 1, that a large market-wide desired
trade (“meta-order”) is on average split into 15 smaller trades executed over time, by one or several
institutions collectively (for example, by three funds pursuing a similar strategy, each splitting their
desired position change into five smaller trades).

This factor K > 10 may seen surprisingly large, but it is consistent with micro structure data.
Bouchaud et al. (2018) report a positive autocorrelation of the decay in the signed of trades "t =
sign (�ft), qualitatively consistent with the above model. Importantly, it is also roughly quantita-
tively consistent too. The empirical correlation between the signs of trades, c (h) = corr ("t, "t+h),
is approximately c (h) ' 0.25

h1/2 for h 2 [1, 103], which leads to K = 1 +
P103

h=1 c (h) = 16.96 This
means that a buy trade today announces 15 more buy trades in the future – a large empirical
autocorrelation of market orders. We explain this, in this section, by order splitting and copycat
trades (which is also Bouchaud et al. (2018)’s interpretation – here we also relate it to the micro
elasticity ⇣? of the market, by (114)). This gives, we think, a potentially satisfactory unification
of the very high impact measured impact of the micro structure literature, and the more moderate
impact measured in inelastic markets.

One lesson is that the market micro structure literature finds price impacts that are larger than
the ones we find (with a price impact multiplier over 15), which may help dispel some feeling that
our estimates are too large. By estimating things at a low frequency, and using a model taking
into account the autocorrelation of the order flow, we can structurally relate their price impact
estimates to the market micro-inelasticity (since most of the micro structure literature is about the
micro elasticity, not the macro elasticity).

94In practice, the measured price impact is not linear, and indeed looks more concave, perhaps like a square root,
which may be due to slower trading of large orders (Torre and Ferrari (1998); Gabaix et al. (2003, 2006); Bouchaud
et al. (2018)). We think that this elaboration is beyond the scope of this appendix.

95Frazzini et al. (2018) also explore the Trades And Quotes (TAQ) data, and find a price impact about 2.5 times
bigger (see their Figure 7). This would would then lead to � ' 37. In our discussion we use their baseline estimate,
which is instead constructed using trading data from AQR, a large institutional asset manager.

96See their Figure 10.1. This model has a power law decay rather than an exponential decay, because it is a mixture
of several exponential decay. Also, a limitation is that Bouchaud et al. (2018) study the sign of flows, whereas our
model would like the signed traded, including their size.
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G.6 The model in continuous time
We use the notation Et

⇥
dpt
dt

⇤
= Et[dpt]

dt
:= limh#0 Et

⇥pt+h�pt
h

⇤
. So, if dpt = µtdt+�tdZt, then Et

⇥
dpt
dt

⇤
=

µt. Here we record the main expressions in continuous time. The equity premium

⇡t = Et


dPt

Pt

�
/dt+

Dt

Pt
� rf (115)

has the Taylor expansion:
⇡̂t = Et

dpt
dt

+ � (dt � pt) . (116)

We have:
qt = �⇣pt + �dt + Et


dpt
dt

�
+ ⌫t + ft,

which in equilibrium (with qt = 0) leads to the stock price equation:

Et


dpt
dt

�
� ⇢pt + �dt +

⌫t + ft


= 0. (117)

Integrating forward, the stock price is:

pt = Et

Z 1

t

e�⇢(⌧�t)

✓
⇢

⇣
(f⌧ + ⌫⌧ ) + �d⌧

◆
d⌧ (118)

=
�

⇢
dt +

1

⇣
(ft + ⌫t) + Et

Z 1

t

e�⇢(⌧�t)

 
ḟ⌧ + ⌫̇⌧
⇣

+
�

⇢
ḋ⌧

!
d⌧. (119)

This allows for easier calculations than the discrete time model. For instance, suppose that
flows and dividends follow autoregressive process, e.g. dft = ��fftdt + �tdZt (for dZt a mean-zero
increment process, e.g. a Brownian motion). Then we have Et [f⌧ ] = e��f (⌧�t)ft for ⌧ � t, so (118)
gives:

pt =
⇢

⇢+ �f

ft
⇣
+

�

⇢+ �d
dt =

1

⇣ + �f
ft +

�

⇣ + �d
dt. (120)

which is the continuous time equivalent of (26).
Combining (120) and (22) leads to:

⇡̂t = b⇡fft + b⇡ddt, (121)

with b⇡f < 0 and b⇡d > 0. In the random walk case, b⇡f = � �
⇣ and b⇡d = �(1�✓)

⇣ , while in the general

case, we have b⇡f = �(�+�f)⇢
⇢+�f

1
⇣ and b⇡d = �(1�✓)

⇣+�d
.

G.7 Infinite horizon model with heterogeneous funds
When there are several funds trading stocks, the setup is very similar to the case of a single mixed
fund, but with indices i for each fund. Fund i’s mandate says that the fraction invested in equities,
PtQt

Wit

, is:
PtQD

it

Wit
= ✓ie

i⇡̂t+⌫it , (122)
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where as before ⇡̂t := ⇡t � ⇡̄ is the deviation of the equity premium from its average, and we allow
for additional demand shocks, ⌫it. Dividends and bond coupons are passed on to consumer, so that
retained dividends would be counted as active flows.

Differentiating the demand for stocks (122) we get:

� lnQit = � lnWit �� lnPt + i�⇡̂t.

Now, from accounting the evolution of wealth of fund i is:

�Wit = Qi,t�1�Pt +�Fit,

that is,
�Wit

Wi,t�1
=

Qi,t�1Pt�1

Wi,t�1

�Pt

Pt�1
+

�Fit

Wi,t�1
= ✓i,t�1

�Pt

Pt�1
+

�Fit

Wi,t�1
,

so:

� lnQit = � (1� ✓i,t�1)� lnPt +
�Fit

Wi,t�1
+ i�⇡̂t = � (1� ✓i,t�1)�pt + i�⇡̂t +

�Fit

Wi,t�1
.

We use the linearization of the risk premium (18), ⇡̂t = �� (det � pt)+Et [�pt+1]. So, linearizing
throughout,

� lnQit = � (1� ✓i,t�1 + �)�pt + �Et [�pt+1] +�fit,

with:
�fit =

�Fit

Wit
� (1� ✓i,t�1)� ln P̄t. (123)

For instance, in the AR(1) model (26), we have Et [�pt+1] = ��pt, so �Et [�pt+1] = ���pt.
This definition of the flow is slightly different from that in (17): definition (123) is more useful
for empirical work, and (17) for the equilibrium price. They are obviously very close. They are
identical to the leading order when the baseline economy has a growth rate of zero. One can also
verify directly that the two expressions are consistent in the case of the mixed fund.

G.8 Complements to the general equilibrium model
G.8.1 The model with government bonds

We propose a way to include bonds. We assume that the government issues at the beginning
of period t bonds in quantities Bt. They are financed via lump-sum taxes: the tax at time t is
Tt = Rf,t�1Bt�1 � Bt, as taxes pay for the maturing bond value, Rf,t�1Bt�1, minus new bond
issuance, Bt. We assume that the government issued debt in amount:

Bt =
1�⇥

⇥
W̄ E

t (124)

for some ⇥ > 0, and where W̄ E
t = Dt

� is the aggregate value of equities in the baseline model. This
way, in the baseline model, total financial wealth is W̄ E

t +Bt =
1
⇥W̄

E
t , and a fraction ⇥ of wealth is

in equities, while the rest (1�⇥) is in government bonds. In short, the government issues enough
bonds to maintain a share 1�⇥ of bonds as a fraction of total financial wealth.
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With this additional feature of the model, everything remains the same, except that the average
equity premium is

⇡̄ = �⇥�2
r . (125)

The calibration can be modified in a parsimonious way: we target a average aggregate equity share
⇥ = 0.6, and increase � by a factor 1

⇥ to keep ⇡̄ constant, changing accordingly � to keep the same
interest rate rf in the consumption Euler equation (58). Nothing else needs to change.

G.8.2 Details of the household’s problem in general equilibrium: the consumer’s part
of the household

The consumer part of the household only decides on consumption, which entails withdrawing money
from the pure bond fond. The consumption decision is made under fully rational choice: as discussed
in the main text, this ensures that the standard consumption Euler equation for bonds holds,

Et


�
⇣

Ct+1

Ct

⌘��
Rft

�
= 1. Here we detail how this happens. We adopt a formulation based on

mental accounts that makes this idea portable to other contexts.
The household has, at the beginning of period t, a “consumption account” with wealth wt (this

might be, for example, a checking account), and a “financial wealth account” that holds a quantity
QB

t of bonds (with a dollar value of 1) and a quantity QE
t of equity shares. We let Qt =

�
QB

t , Q
E
t

�
.

While the aggregate bond holding of the household is QB
t + wt, we posit that its two components

are not fully interchangeable because of the presence of mental accounts. One can think of wt

as being small (in equilibrium, it will be 0), and QB
t as being big. We drop the superscript h in

this section for simplicity whenever there is no ambiguity, but all the quantities refer to a given
household h (which will be the representative household in equilibrium). Also, we directly refer to
the ultimate assets held, as the household is assumed to be smart enough to “see through” the veil
of mutual fund intermediation. Recall that Zt is the macro state vector (see Definition 1), and we
call Zh

t =
�
Zt, QB

t , Q
E
t , wt

�
the state vector specific to household h.

The evolution of wealth in the consumption account is

wt+1 = Rft

�
wt + Yh

t � Ct

�
, (126)

where
Yh

t = QB
t rf,t�1 +QE

t Dt + ⌦t � Tt =: Y
�
Zh

t

�
(127)

is the aggregate income to the household, coming from its “financial dividend” stream (from bonds in
the financial account, QB

t rf,t�1, as well as equities, QE
t Dt), plus residual income ⌦t (e.g., comprising

labor income), minus Tt.
The consumer’s problem is to maximize lifetime utility, subject to this dynamic budget con-

straint. Crucially, we assume that when the consumer does that, she takes the income Yh
t as

exogenous to her consumption decisions: in this sense, the decisions of the consumer and financier
sides of the households are decoupled. So, as in any consumption-saving problem, the consumer’s
Euler equation for bonds holds, (47). But the consumer does not see that as she consumes more,
and hence lowers the amount of bonds in the household’s holdings, she will induce a (typically
small) flow from stocks to bonds in the financier side of the household, so that Qt+1 is affected.
In equilibrium, wt = 0 and Yh

t = Yt = Ct at all dates, as the representative household consumes
aggregate income.
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It might be helpful to also state this same argument using dynamic programming. Namely, the
consumer side of the household solves:

V
�
wt, Z

h
t

�
= max

Ct

u (Ct) + �E
⇥
V
�
Rft

�
wt + Y

�
Zh

t

�
� Ct

�
, Zh

t+1

�⇤
, (128)

where the law of motion of Zh
t+1 is taken by the agent to be independent of ct. In the case of a

strategic consumer wishing to manipulate the financier part of the household, the agent would take
into account the (small) dependence on Zh

t+1 on ct.

G.8.3 Details of the household’s problem in general equilibrium: mutual fund shares
accounting

This section provides some extra details on the household’s problem of Section 5.1. We call t�
the beginning of period values, evaluated at the time t price Pt. The mixed fund gives a dividend
DM

t = QDt+ rf,t�1BM
t�1, so that its cum-dividend value is WM

t� = QPt+BM
t�1+DM

t , and the return
is RM

t =
WM

t�
WM

t�1
.

The mixed fund has issued Nt�1 shares, of which Nh
t�1 are owned by household h. The value of

a share in the mixed fund is vMt =
QPt+BM

t�1

Nt�1
. So, the beginning of period wealth of the household is:

W h
t� =

Nh
t�1

Nt�1
WM

t� +Bh
t�1Rf,t�1. (129)

Suppose there are household flows �F h
t into the mixed fund, while flows from the rest of the

economy are �Ft (in equilibrium, the two values are the same). Then, the number of shares owned
by the household and in the fund are:97 Nh

t = Nh
t�1 +

�Fh

t

vM
t

and Nt = Nt�1 +
�Ft

vM
t

. The household
holds Bh

t in the pure bond fund:

Bh
t = Bh

t�1Rf,t�1 +
Nh

t�1

Nt�1
DM

t � Ct ��F h
t ,

i.e. the proceeds from the pure bond fund, the dividend of the mixed fund, minus consumption,
minus the flow.

The household’s problem, in its rational form, is:

V (Wt� , Zt) = max
Ct,Bh

t

u (Ct) + �E
⇥
V
�
W h

t+1� , Zt+1

�⇤
.

This problem defines a consumption policy, and also desired holdings in the pure bond fund (hence,
a flow out of the bond fond).

G.8.4 On a production economy

If we had a production-based model with capital Kt, then investment It and labor demand Lt (with
 the cost of investment, w the wage) would be characterized by the following problem:

V (Kt, Zt) = max
It,Lt

{F (Kt, Lt, Zt)� w (Zt)Lt � It �  (It, Kt, Zt) (130)

+Et [Mt+1V ((1� �)Kt + It, Zt+1)]},

97We also have vMt = WM

t

Nt

=
QPt+BM

t�1

Nt�1
, BM

t = BM
t�1 + �Ft. Flows change the number of shares issued by the

fund, but not (controlling for stock prices) the value of each fund share.
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using the SDF Mt+1 developed in the paper (see (59)). Hence, we can trace how an inflow into
equities increases equity prices, lowers the risk premium, and increases investment. We leave the
full, quantitative analysis of this to future research, but hope that this will help economists see
more concretely how all fits together.

G.9 Linking flows to beliefs
G.9.1 Flows and perceived risk premia

We now develop a model in which flows are determined by households’ expectations of excess
returns. This simple notion turns out to be quite rich.

We will use the following notations. We call ⇥h
t the equity share of household h, and ⇥t

the aggregate equity share in the economy, and ⇥ its baseline value. We call ⇡̂h
t the perception

by household h of the excess risk premium ⇡̂t = ⇡t � ⇡̄, and ⇡̂H
t the perception of this excess

risk premium by the representative household. Those perceptions need not be rational. Suppose
that household h has an inflow fh

t into the market, while the average household has an inflow ft.
We simply consider a small, hypothetical divergence between household h and the representative
household that happened just before t. We start with with a bit of equity-share accounting.

Lemma 1. The equity share of household h is:

⇥h
t = ⇥

�
1 + fh

t � ft + (1�⇥) pt
�
. (131)

Proof. Let us call ⇥t the aggregate equity share (this is also ✓Wt in (15), but here we use a slightly
simpler notation), using (124) for the aggregate bond supply:

⇥t =
PtQ

PtQ+Bt
=

P̄tQept

P̄tQept + 1�⇥
⇥ P̄tQ

=
⇥ept

⇥ept + 1�⇥
,

so that, taking a first order expansion in small pt,

⇥t = ⇥ (1 + (1�⇥) pt) . (132)

Household h has an equity share ⇥h
t = PtQef

h
t
�ft

PtQ+Bt

, as it has the same aggregate wealth as the
representative household (in the denominator), i.e., as a Taylor expansion:

⇥h
t = ⇥t

�
1 + fh

t � ft
�
. (133)

Combining those two expressions gives (131).

Let us now discuss the modeling of the flow fh
t of a household h that perceives the equity premium

to be ⇡̂h
t . One natural model is that the financier optimizes over ⇥h

t (with V p (W ) = W 1���1
1�� ) the

“narrow framing” value function:

U
�
⇥h

t , ⇡̂
h
t

�
:= E

⇥
V p
�
Rft +⇥t

�
⇡̄ + ⇡̂h

t + "rt+1

��⇤
' 1 + rft +⇥h

t

�
⇡̄ + ⇡̂h

t

�
� 1

2
��2

r

�
⇥h

t

�2
, (134)
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where "rt+1 has mean 0 and variance �2
r , and the second expression is in the limit of small time

intervals. This implies a targeted equity share (using ⇡h
t = ⇡̄ + ⇡̂h

t ) equal to:

⇥h
t =

⇡h
t

��2
r

=
⇡̄
�
1 + H ⇡̂h

t

�

��2
r

,

with H = 1
⇡̄ .

This “attentive portfolio choice” formulation, while it may be appealing as it is traditional, leads
to three problems. First, in the cross-section, the attentive formulation predicts:

fh
t � ft = H

�
⇡̂h
t � ⇡̂H

t

�
, (135)

with a strength of H = 1
⇡̄ ' 22. This is a very large pass-through from beliefs to actions, and it

contradicts both intuition (as an agent seeing a higher equity premium by 2.5% would double his
equity share), and the evidence in Giglio et al. (2021a), who instead find a passthrough H ' 2 (using
yearly units). The second problem is that, with this formulation, we cannot model a plausible agent
who would let his equity share drift passively.98 The equity share ⇥h

t is always “actively managed”
by the household. The third problem is that the household is so active that it exactly cancels out
all the actions of intermediaries, i.e. of the mixed fund. Indeed, plugging this into (132) gives a
price equal to pt =

H ⇡̂H

t

(1�⇥) , so proportional to the risk premium ⇡̂H
t perceived by the representative

household, and independent of ⇣ and any other considerations.99

We propose a common resolution of those three problems, which relies on “behaviorally inatten-
tive” portfolio choice. We posit that a household h is partially inattentive to some of the normatively
relevant determinants of its flow, and chooses its flow according to:

max
fh

t

U
�
⇥h
�
fh
t ,m✓ft,m✓pt

�
,m⇡⇡̂

h
t

�
, (136)

where ⇥h
�
fh
t , ft, pt

�
= ⇥

�
1 + fh

t � ft + (1�⇥) pt
�

as in (131), U is in (134), m✓ 2 [0, 1] is the
attention to the rebalancing concerns, and m⇡ is the attention to one’s estimate of the risk premium.
The traditional case corresponds to m✓ and m⇡ equal to 1. However, when m✓ = 0, the household
pays no attention to rebalancing needs: it lets the portfolio drift. This sort of behavioral modeling
is tractable, it applies to a variety of micro and macro setups, and has good empirical support (see
the survey in Gabaix (2019)). We derive the resulting flows.

Proposition 13. In the above behavioral formulation, the aggregate flow is linked to the aggregate
belief ⇡̂H

t by:

ft =
H ⇡̂H

t �m✓ (1�⇥) pt
1�m✓

, (137)

where:
H =

m⇡

⇡̄
. (138)

98For instance, Giglio et al. (2021b) document a large fraction of investors who do not trade at all during the stock
market crash of early 2020.

99In a standard model with two types of agents, both agents matter. However, here the household is the principal,
and the mixed fund the agent, so that the household in fact owns all equities, and thus (if it is active enough) it can
undo the actions of the mixed fund.
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In the cross-section, a household h perceiving the equity premium deviation to be ⇡̂h
t has a flow:

fh
t = ft + H

�
⇡̂h
t � ⇡̂H

t

�
, (139)

so that the cross-sectional sensitivity of flows to the equity premium is H , less that then the aggregate
sensitivity of flows to the equity premium is, which is H

1�m✓

> H . Those two relations also imply
the following link:

fh
t = m✓ (ft � (1�⇥) pt) + H ⇡̂h

t . (140)

Proof. Given (136), at the optimal flow level we should have, with H = m⇡

⇡̄ :

⇥h
t =

⇡t +m⇡⇡̂h
t

��2
=
⇡̄
�
1 + H ⇡̂h

t

�

��2
= ⇥

�
1 + H ⇡̂h

t

�
.

We also have
⇥h

t = ⇥h
�
fh
t ,m✓ft,m✓pt

�
= ⇥

�
1 + fh

t �m✓ft + (1�⇥)m✓pt
�
.

This gives (140). Finally, the flow of the representative agent satisfies fh
t = ft, i.e. is (137).

We check that this formulation solves the three problems we outlined. First, the cross-household
sensitivity of flows to beliefs is smaller, and can be realistically calibrated. Intuitively, the household
does see that high perceived excess return ⇡̂h

t should lead to a high flow fh
t (m⇡ > 0), but doesn’t

agree that a 2.5% extra risk premium should lead it to increase its equity share from ⇥ = 60%
to 94%, as it would in the rational model (with H = 1

⇡̄ = 22). Indeed, Giglio et al. (2021a)
find H ' 2.100 To match their evidence, we need to calibrate m⇡ = H ⇡̄ = 0.08. This means
that people might have “bold forecasts” but “timid choices”, very much as in Kahneman and Lovallo
(1993). Second, we can model a very inactive household that would let its wealth drift independently
of any perception of the risk premium: that would correspond to the case in which m✓ = m⇡ = 0.
Third, now the household does not exactly cancel the actions of the mixed fund: in (137), because
m✓ < 1, the flow’s reaction is finite, and only in the completely reactive case (m✓ = 1) the household
would completely undo the actions of the mixed fund (when m✓ ! 1, to avoid an infinite flow the
numerator of (137) needs to go to 0, which pins the price to pt =

H ⇡̂H

t

1�⇥ ).

G.9.2 Application

Flows and expected risk premia: A simple specification As a simple calibration of (137),
let us take m✓ = 0. Then, we have:

ft = H ⇡̂H
t , (141)

i.e. the flow is just the perceived risk premium, times the sensitivity H . If H = 2, then the
volatility of the perceived risk premium is simply the volatility of the flows, divided by H = 2, so
about 1.4% per year in our calibration (see Section 5.4). Recall that we have ft = ✓bt (see (51)).
So, this is a model where the “behavioral disturbance” is simply a time-variation in the perceived
value of equities, bt = H

✓ ⇡̂
h
t

100For instance, column 6 of their Table III gives d⇥h

t

d⇡h

t

= 1.2. Given a typical ⇥ = 2/3, that leads to H = 1
⇥

d⇥h

t

d⇡h

t

=

1.8.
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Flows and expected growth of fundamentals Bordalo et al. (2020) propose that stock market
fluctuations are linked to subjective expectations of long-term growth in dividends. Let us see how
that would be linked to flows and prices in inelastic markets. Call gt the expectation of the growth
rate of dividends (expressed as a deviation from the average growth rate ḡ, so that the expected
growth rate is ḡ + gt), and for now suppose that

ft = bfggt,

for some parameter bfg � 0. We assume that gt mean-reverts with speed �, so that Et [gt+1] =
(1� �) gt. Then, the price deviation from the baseline is:101

pt =
+ bfg
⇣M

gt, (142)

with ⇣M = ⇣ + �. In a frictionless economy where agents hold those beliefs, the price would be
p⇤t = 1

�+�gt. So the flow passthrough that replicates that is bf,⇤g = ⇣M
�+� � . Calibrating, this gives

bf,⇤g = 0.2
0.034+0.04 � 1 ' 2 years. If the growth rate is perceived to be 1% higher, then the flow is 2%

higher.
Now, let us see how we link the flows more deeply to explicit beliefs about returns. We find

it useful to consider that households have time-varying beliefs about the long-term growth rate of
dividends, mggt, and the representative fund has beliefs gt. When mg > 1, the general public is
more reactive in its beliefs than institutions.

Proposition 14. The solution is as follows. Flows, prices, and the risk premium perceived by
institutions (⇡̂t) and households (⇡̂H

t ) follow:

ft = bfggt, pt = bpggt, ⇡̂t = b⇡ggt, ⇡̂H
t = b⇡,Hg gt,

where, with ⇣M = ⇣ + �,

bpg =
mgH + (1�m✓)

H (� + �) + (1�m✓) ⇣M +m✓ (1�⇥)
,

and bfg = ⇣Mbpg � , b⇡g = 1� (� + �) bpg, b⇡,Hg = mg � (� + �) bpg.

Proof. The risk premium perceived by institutions is the belief ⇡̂I
t = gt � (� + �) pt, so

b⇡g = 1� (� + �) bpg, (143)

while the belief of households is ⇡̂H
t = mggt � (� + �) pt, so that its sensitivity to gt is b⇡,Hg =

mg � (� + �) bpg.
101Indeed, replacing g by ḡ + gt in (74) we obtain (in the limit of small time intervals):

⇡̂t = gt + Et [�pt+1 + � (dt+1 � pt)] .

We seek a solution of the type pt = bpggt, and we also observe that the deviation of the dividend from the baseline is
simply dt+1 = 0. Plugging this in (65), setting ⌫t = 0 for simplicity, gives:

0 = qt = � (1� ✓) pt + ⇡̂t + ft = � (1� ✓) bpggt + 
�
gt � (�+ �) bpggt

�
+ bfggt,

which gives (142).

99



By market clearing in the equity market, the total demand change by the mixed fund should be
0:

0 = q = � (1� ✓) pt + ft + ⇡̂I
t = � (1� ✓) pt + ft +  (gt � (� + �) pt) ,

i.e., with ⇣M = 1� ✓ + (� + �) = ⇣ + �,

0 = �⇣Mbpg + bfg + ,

hence we recover (142),
bfg = ⇣Mbpg �  (144)

Finally, the flow of the representative investor is as in (137), so that:

0 = (1�m✓) ft + (1�⇥)m✓pt � H ⇡̂H
t ,

so

0 = (1�m✓) b
f
g +m✓ (1�⇥) bpg � Hb⇡,Hg

= (1�m✓)
�
⇣Mbpg � 

�
+m✓ (1�⇥) bpg � H

�
mg � (� + �) bpg

�
,

and
bpg =

mgH + (1�m✓)

H (� + �) + (1�m✓) ⇣M +m✓ (1�⇥)
. (145)

An illustrative calibration To match the low passthrough from beliefs to actions in Giglio et al.
(2021a), H ' 2 years, we use m⇡ = H ⇡̄ = 0.08. We set the attention to rebalancing to m✓ = 0.3,
and give equal beliefs to households and institutions. This leads to b⇡g = 0.5. This means that if
agents perceive the growth rate to be 1 percentage point higher than usual, they think that the risk
premium is only 0.5 percentage points higher: they believe that the market has incorporated half
of those news. This is also in line with Giglio et al. (2021a) (Table IX). This implies that bpg = 6.6
and bfg = 0.3. This calibration is illustrative. In future research, it would be highly desirable to
quantify those parameters directly, in particular the only partial tendency of households to rebalance
(m✓ < 1).

G.10 Pricing kernel consistent with flow-based pricing: Complements
This section gives complements to the flow-based SDF of Section 5.3.

G.10.1 Basics

Much of asset pricing uses pricing kernels, or stochastic discount factors (SDFs). We show how to
express the economics of flows in inelastic markets in the language of pricing kernels. To do so, we
outline a simple general method to complete a “default” pricing kernel so that it reflects the impact
of flows on asset prices.
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Pricing kernel completion: How to adjust a default pricing kernel to reflect the impact
of flows on asset prices For simplicity, we omit the time subscripts.

Default pricing kernel. We allow for a “default pricing kernel”, which prices bonds at the equi-
librium interest rate Rf . The simplest is the “risk-free” default pricing kernel: Md = 1

Rf

.102

From the default pricing kernel to the actual pricing kernel. The default pricing kernel Md will
not price assets correctly, as it does not react to flows. We propose a method of “pricing kernel
completion” that will augment the pricing kernel so that it correctly prices all assets. We posit the
existence of a very small mass " (which we will take to be infinitesimal, so that it will not impact
prices) of “agile optimizers,” who start with zero financial wealth and whose objective function is:

max
Q

E
h
�Mde�Q0R

i
, (146)

where R is the vector of excess returns at time 1.103 That is, they maximize (over a vector Q of
holdings over all assets) their expected return R = P1+D1

P0
�Rf , starting from zero wealth, but this

is their expected return “under the risk-neutral probability” generated by Md.104 Hence we have
E
⇥
Mde�Q0RR

⇤
= 0. So, the following M is a pricing kernel:

M = Mde�Q0R+⇠, (147)

where the constant ⇠ ensures that the risk-free rate is correctly priced (E [M] = E
⇥
Md

⇤
, so ⇠ =

ln
E[Md]

E[Mde�Q0R]
).

We call this the “completed” pricing kernel. Note that other SDFs could also work (as is generic
in incomplete markets), but the one given in (147) is the unique SDF coming from the “pricing
kernel completion” procedure. We treated here the simplest case, with just one risky asset, and the
simplest default pricing kernel Md,Rf = 1

Rf

.

Flow-based SDF for the two-period model Let us revisit the two-period model of Section
3.1. The excess equity premium is ⇡̂ = � (d� p) with

p =
f + �d

⇣
, (148)

so that, with f = (1� ✓) d+ f̃ , the total equity premium is: ⇡ = ⇡̄� � f̃⇣ . So, the completed pricing
kernel is:

M = exp

✓
�rf � ⇡

"D

�2
d

+ ⇠

◆
, ⇡ = ⇡̄ � �

f̃

⇣
, (149)

with ⇠ = � ⇡2

2�2
d

if "D is Gaussian. This SDF prices correctly stocks and bonds.
This gives the “flow-based” completed pricing kernel, which is an alternative to the consumption-

based kernel of Lucas (1978). The core economics is in how flows affect prices, and the pricing kernel
(149) just reflects that. If there is a flow f, that modifies the price P according to (148), and the
pricing kernel M, in such a way that P = P̄ (1 + p) = E [MD] holds. The pricing kernel is in a
sense a symptom rather than a cause in that market.

102In the spirit of maintaining a continuity with the heritage of Lucas (1978), we can also consider a “consumption
CAPM” default pricing kernel: Md,C = � u0(C1)

u0(C0)
. We develop this in Section G.10.2.

103The implicit risk aversion of 1 is just a normalization.
104They start with zero capital at each period, and rebate their profits and losses to the representative household.
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Flow-based SDF for the infinite-horizon model Section 5.3 developed the SDF for the
infinite-horizon model process for flows in (26), something also delivered by our general equilibrium
model of Section 5. A justification is that we assume that “dividend strips” are also traded. By the
above procedure we obtain the pricing kernel for each date. In the construction, then dividend strips
have an equity premium ⇡t independent of maturity. So, the maximum Sharpe ratio is achieved via
a one-period dividend strip.

Formally, one obtains the price of any asset, once we have a SDF. However, one can reasonably
hope to obtain a correct price only when the novel asset is in very small quantity, as the agile
optimizers, which form a very small group, will be able to absorb it. When there are substantially
different asset classes, one needs to think about flows in those different classes — they will affect
prices, and hence the SDF, along the lines we just saw. We next show how easy it is to generalize
the model to several asset classes.

G.10.2 More general cases to get a pricing kernel

Here we expand Section 5.3 to multiple risky assets and a consumption-based default SDF.

A Gaussian example We start with a basic example. We suppose that returns and consumption
are lognormal:

C1

C0
= egc+�c"

c� 1
2�

2
c , (150)

with "ct a standard Gaussian random variable. Consider the consumption pricing kernel, which is:

Md,C ⌘ eM
d,C

= �

✓
C1

C0

◆��

= e�rf���c"c� 1
2�

2�2
c

for the risk-free rate rf = � ln � + �gc � 1
2� (1 + �) �2

c .
We next consider the agile optimizers’ problem, going back to a general default pricing kernel:

Md = eM
d

,

which might be Md,Rf or Md,C . We recall that for two jointly Gaussian variables X, Y :

E
⇥
eXY

⇤

E [eX ]
= E [Y ] + cov (X, Y ) . (151)

For instance, the anomalous excess equity premium is

EMd

[R] :=
E
⇥
MdR

⇤

E [Md]
= E [R] + cov

�
Md, R

�
, (152)

which is the expected excess return of R that is not explained by the default pricing kernel: indeed,
if the pricing kernel Md correctly priced R, we’d have EMd

[R] = 0. Put another way, those are the
excess returns above and beyond what is warranted by the default pricing kernel.

The FOC of (146) is E
⇥
Mde�Q0RR

⇤
= 0, so that using (151), with VR = cov (R,R) the variance-

covariance matrix of returns,

E [R] + cov
�
Md, R

�
� VRQ = 0,
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where �cov
�
Md, R

�
is the equity premium warranted by the default pricing kernel. The optimal

portfolio of agile optimizers is Q = V �1
R EMd

[R] and their return is a form of “tangency portfolio”
return:

R⌧ = Q0R = EMd

[R]0 V �1
R R, (153)

which depends on the “anomalous” excess returns EMd

[R]. Their “excess Sharpe ratio” is:

S =
EMd

[R⌧ ]

�R⌧

, (154)

which is the Sharpe ratio they get in excess of the average returns warranted by the default pricing
kernel. Given that EMd

[R⌧ ] = EMd

[R]0 V �1
R EMd

[R] = �2
R⌧ , we have S = �R⌧ . Hence, the SDF is

their marginal utility (up to a proportional factor that is pinned down by the risk-free rate), which
is:

M = Mde
�S R

⌧�EM
d

[R⌧ ]
�
R⌧

� 1
2S

2

. (155)

This SDF M prices all assets correctly: Pa = E [MDa] for all assets.

G.11 Corporate finance in inelastic markets: Complements
We provide complements to Section 6.2.

G.11.1 An increase in buyback financed by a decrease in dividends: Infinite horizon

Here we complete the discussion of the main text, with the infinite horizon case.
We provide a simple thought experiment. Suppose that at time 0 there is a permanent change

in the share buyback policy: corporations devote a fraction b of their dividend payout to share
buybacks, the rest to dividends (see Boudoukh et al. (2007c) for an empirical analysis). So, the
aggregate dividend goes from Dt to D0

t = Dt (1� b), and at each date corporations spend bDt on
share buybacks. To streamline the computations, we use continuous time.

Buybacks in a frictionless rational model We first consider the rational model.

Proposition 15. Consider a firm that at time 0 changes its payout policy, and devotes a fraction b
of the payout to share buybacks, 1� b to dividends (starting from paying only dividends before time
0). Consider a frictionless, rational model. Then, the dividend-price ratio falls by a factor 1� b:

�0 = (1� b) �.

It goes from � = rf + ⇡ � g to �0 = (1� b) � = rf + ⇡ � g0, where g0 = g + G is the new average
growth rate of the dividend per share, which is increased by G = b�. At the same time, the market
value of the firm is unchanged, as per Modigliani-Miller.

The surprise is that it changes the dividend-price ratio by a big amount. The share of dividend
as a fraction of the payout has moved from roughly 100% to 50%, so b = 0.5. Hence, Proposition 15
implies that the price-dividend ratio went from � (empirically, about 4%) to half its value (about
2%). This is simply because the growth rate per share has increased by G = 2%, because the
number of shares has decreased by the same G = 2%.
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Proof. We had PtQt =
Dt

� . As bDt dollars are devoted to purchasing shares each period, the number
of shares follows Q̇t = � bDt

Pt

= �bQt�, so that the new number of shares is:

Q0
t = Q0e

�Gt, G = b�. (156)

Hence, the dividend per share in the new regime is D0
t =

(1�b)Dt

Q0
t

= (1�b)Dt

Q0e�Gt i.e. as Dt =
Dt

Q0
,

D0
t = (1� b) eGtDt. (157)

Because the value of the firm is constant, P 0
tQ

0
t = PtQ0, we have

P 0
t = Pte

Gt. (158)

This implies that the new dividend-price ratio is

D0
t

P 0
t

=
Dt

Pt
(1� b) . (159)

This is of course consistent with the Gordon formula: as � = rf +⇡�g, as under the new regime
the dividend per share grows at a rate g +G, we have

�0 = rf + ⇡ � g �G = � � b� = (1� b) �,

using (156) in the last equation.

Buybacks in an inelastic model We next study the situation in an inelastic model. We need a
stabilizing force, and we assume that the flow has a “reaction to the risk premium” component �⇡̂t
as in (162).

Proposition 16. (Impact of share buybacks in the infinite horizon model) In the inelastic model,
suppose that a change in policy on a scale b is announced, and should last forever: a fraction b of
the aggregate payout is devoted to share buybacks. Then the firm value increases by v⇤ =

(µD�µG)✓b
�

in the long run, and the risk premium is lower by ⇡̂⇤ = ��v⇤.

Hence, the economics is similar to the simple model of Proposition 7.

Proof. The proof is similar to that of Proposition 7 in Section F.105 As in the rational case, growth
rate in the number of shares is �G with G = �b, dt = �b + Gt. As each period the aggregate
dividends are lower by b, and they represented a fraction �✓ of the fund’s value, and capital gains
are increased by G, the inflow each period, from the households to the mixed fund, is:

d

dt
ft =

�
1� µD

�
(�b�✓)� µGG✓ + �⇡̂⇤ =

�
�1 + µD � µG

�
✓G+ �⇡̂⇤

We conjecture a long term equilibrium where dpt
dt = G, of the type: pt = Gt + p̃t, where p̃t = o (t).

The demand deviation by the mixed fund is still qt = �⇣pt + �dt + ft, and it should be equal to
the supply deviation, qSt = �Gt. This gives,

0 = lim
t!1

d

dt

�
qt � qSt

�
= �⇣G+ �G+

�
�1 + µD � µG

�
✓G+ �⇡̂ +G =

�
µD � µG

�
✓G+ �⇡̂⇤.

105Our deviation from the baseline are in logs, e.g. pt = ln Pt

P̄t

.
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This implies that the long run change in the risk premium is

⇡̂⇤ = �
�
µD � µG

�
✓G

�
= �

�
µD � µG

�
✓�

�
b.

The corresponding increase in market value if v⇤ = � ⇡̂⇤
� .

In the long run, it is very likely that the µD � µG will be more rational, and fall to a value closer
to 0—perhaps because the financier will more actively target a constant equity share (as in Section
G.9), which would create another corrective inflow. Examining this effect empirically would be
interesting.

G.11.2 An increase in buyback financed by increased debt rather than lower contem-
poraneous dividends.

Consider an increase in buybacks that is not compensated by a contemporaneous decrease in div-
idends — so that the total payout is increased, by a factor equal to b times the initial market
value.

Two period model. The buyback of B dollars decreases the number of shares by B
P0

, the future
aggregate dividend by BR, where R is the gross interest rate. The time-1 dividend is D0

1 = D1�BR,
the present value of D0

1 falls by a fraction b. As the number of shares also falls by b, the present
value of the time-1 dividend per share remains constant:

qS = �b, d = 0.

In a frictionless model, this buyback does not change the current price per share, and does not
change the time-0 return r

Frictionless model: p = 0, v = �b, r = 0.

In an inelastic model, now q = �⇣p+ fh = qS = �b, so

p =
b+ fh

⇣
, v = p� b, r = p.

Hence, the aggregate values of equities increases, and the time-0 return r is positive, unless it’s
compensated by a flow fh = �b. Using the marginal propensities in Section 6.2, we have fh =
�µG✓p, so that in total:

p =
b

⇣ + ✓µG
. (160)

Infinite horizon. We suppose that the debt will be repaid very far in the future (at date T ! 1.)
Then, the economics is as in the two-period model.106

106In a rational model, we still have pt = 0, vt = �b. In an inelastic model, as ⇢ > �,we have dt = 0, qSt = �b, so
pt =

b+fh

⇣ (for all dates t ⌧ T ) also. Hence the expression is as in the two-period model.
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G.12 When flows respond to risk premia in the long run
G.12.1 Basic version

The present paper mostly points out how impactful flows are. We provided one microfoundation
for flows in the macro model of Section 5.1, via the “behavioral disturbance” bt, which is a stand-in
for the forces driving flows. Here, we examine variants of that formulation.

A necessary trend and cycle decomposition for flows First, we record that all models of
flows should satisfy the following decomposition to keep the price-dividend ratio stationary. For
clarity, we use the detrending procedure of Section 3.2, but with the baseline of

�
P̄t, D̄t, W̄t

�
=�

P̄0, D̄0, W̄0

�
Gt with Gt = 1. We also use log deviations, e.g., dt = ln Dt

D̄t

is the deviation of the
dividend from the initial date 0, and is typically non-stationary, for instance we might have E0 [dt] =
gt. This allows us to zoom in on the core issue of how households respond to trends in dt. This also
means that F̄t = 0, and that ft is the scaled flow.

Lemma 2. (Trend-cycle decomposition for flows) The price-dividend ratio is stationary if and only
if the cumulative flow ft admits the decomposition

ft = (1� ✓) dt + f̂t, (161)

where dt the realized long term deviation in dividends (Dt = D0edt), which is typically nonstationary,
✓ is the equity-weighted equity share, and f̂t is stationary.

Proof. Recall that q = ft�(1� ✓) pt+⇡̂t. As q = 0, (161) holds, with f̂t = �⇡̂t+(1� ✓) (pt � dt).

How does the market equilibrate in the long run? One might ask, how does the market
discover the trend (1� ✓) dt in (161)? It comes out in the model of Section 5.1, via the assumption
of (partial) rational expectations. But what about other models? It turns out that a variety of
plausible models of investor behavior also lead to stationarity. We briefly summarize the situation,
while Section G.12.2 provides proof and complements. Consider a behavioral rule of the type

�ft = �⇡̂t + "t, (162)

with � > 0: this means that people invest more in equities when they are undervalued, which makes
flows stabilizing. Then, one can show that this leads to a stationary P/D ratio, as in Lemma 2,
and hence the correct representation (161).107

This rule, in turn, generates the following realistic dynamics. We provide the expression in the
limit of small time intervals, as the expressions are simpler, and in the case dt = 0 to simplify the
analysis.

107Rule (162) can have microfoundations of the “behavioral inattention” type:

ft = mfr
t + (1�m) ft�1 + f̃t, (163)

where fr
t is the rational flow for an investor embedded in this economy, and ft�1 is the “default behavioral flow”,

corresponding to no action, f̃t is a stationary “behavioral disturbance”, and m 2 [0, 1) (along with the size of f̃t)
smoothly parametrizes the degree of rationality of the model. This captures that agents are “partially rational,” but
are also affected by some disturbance f̃t. Because the rational flow (maximizing Et [V p (Rt+1)]) is fr

t = ft +
⇡̂t

⇡̄ ,
behavior (163) generates (162) with � = m

1�m
1
⇡̄ > 0 and "t = f̃t

1�m . Formulation (163) extends more easily than
(162) to other contexts (Gabaix (2014)).
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Proposition 17. (Equilibrium when flows respond to the equity premium in a noisy fashion) In
the limit of small time intervals, the specification of flows (162) with i.i.d. shocks "t generates a
deviation of the price from trend equal to:

E0pt =
1

⇣ + �
E0ft, E0ft = (1� �)t f0. (164)

The speed of mean-reversion � is the positive solution of �2 + (⇣ � �)� = ��. The speed of mean-
reversion � is increasing in the intensity of the response to the equity premium, �, and decreasing
in ⇣ and . It is zero if � = 0.

For instance, consider a flow shock f0 at time 0. Then, the dynamics are those in (24). This
captures that flows are endogenously “digested” by the market at a rate �, which is higher when �
is higher, i.e. when investors chase risk premia more aggressively (see Bouchaud et al. (2009) for a
survey, more geared towards shorter time scales).

Illustrative calibration. If we assume � = 0.1, we replicate a slow mean-reversion of the P/D
ratio of � ' 4% per year.108

One could imagine agents with other behavioral rules, or agents optimizing on the parameters
�, m, this way providing additional cross-asset predictions.109 We leave that to future research.

G.12.2 When flows react to the risk premia: advanced material

Here we derive Proposition 17, and more generally explore the consequences of flows of the type:

�ft = �⇡̂t + "t. (166)

We first proceed in continuous time, which is cleanest.

Continuous time For simplicity, we assume away dividend surprises. They would be easy to
add back. The flows (166) are

dft = �⇡̂tdt+ �dzt. (167)

We use the operator D,

Dxt :=
Et [dxt]

dt
. (168)

So, ⇡̂t = ��pt + Et[dpt]
dt (see Section G.6) becomes:

⇡̂t = (D � �) pt (169)

and (167) gives
Dft = �⇡̂t. (170)

108The parameter � is unitless: in continuous time, dft = �⇡̂tdt+ �dzt.
109Alternatively, consider a rule like:

�ft = �⇡̂t + � (dt � pt) +�f̃t, (165)

where � and � are weakly positive, one of them is strictly positive, and f̃t is an AR(1). The coefficients � and � are
“stabilizing” forces: they make investors buy when expected returns are high. Then, the rule (165) also leads to the
correct form shown in Lemma 2. However, a rule like ft = �⇡̂t + � (dt � pt)+ f̃t would not lead to a stationary P/D
ratio: while the right-hand side would be stationary, by Lemma 2 the left-hand side should not be stationary.
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The basic dynamic pricing equation, (66), becomes:

0 = �⇣pt + Dpt + ft. (171)

Differentiating once and taking time-t expectations gives:

0 = �⇣Dpt + D2pt +Dft (172)
=

⇥
�⇣D + D2 + � (D � �)

⇤
pt (173)

= H (D) pt

where
H (x) = x2 � (⇣ � �) x� ��. (174)

The fundamental solutions of equation H (D) pt = 0 are of the form pt = Bext, with H (x) = 0.
There are two roots to H (x) = 0, of opposite sign: we call them ⇢ and ��, with ⇢ and � weakly

positive:

⇢ =
⇣ � �+

p
�

2
, � =

�⇣ + �+
p
�

2
, � = (⇣ � �)2 + 4��. (175)

When � = 0, ⇢ = ⇣
 (as in Proposition 5) and � = 0. We record that � solves:

(⇣ + �)� = � (�+ �) (176)

and as the product of the two roots, ��⇢ is equal to ���
 in (174),

� =
��

⇢
. (177)

This allows us to derive a variety of impulse responses. Calling yt the process dyt = ��ytdt+�dzt,
let us look for a solution of the form (or “Ansatz”):

pt = Ayt, ft = ayt.

Plugging this Ansatz in (167) and examining the �zt term gives:

a = 1.

Next, we have Dyt = ��yt, so plugging this in (171) and matching coefficients gives: 0 =
[� (⇣ + �)A+ a] yt, i.e.

A =
1

⇣ + �
.

This derived Proposition 17 in continuous time.⇤
One can derive other things. For instance, here is an expression for the price, expressed in

discrete time for convenience.

Proposition 18. (Equilibrium price in infinite horizon model, with enriched model of house-
holds)Suppose that �ft = �⇡̂t +�f̃t for some arbitrary f̃t. Then, the price at time t is:

pt =
ft�1

⇣̄
+ Et

1X

⌧=t

⇢

(1 + ⇢)⌧�t+1

 
f̃⌧ � f̃t�1

⇣̄
+MDde⌧

!
(178)

with ⇣̄ = ⇣ + � and MD = �
⇣̄
.

This generalizes Proposition 5. The economics is largely the same, except that ⇣ is replaced by
⇣̄, the expression of ⇢ changes to (175), and the price impact of an inflow �f̃t decays at a rate �.
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Discrete time We use the operator

rxt = Et [xt+1 � xt]

so that rxt ' Dxt ⇥�t, where D is the continuous time operator (168). So ⇡̂t = ��pt +Et [�pt+1]
becomes:

⇡̂t = (r� �) pt.

Likewise, �ft = �⇡̂t + "t (see (166)) implies:

rft = �⇡̂t+1 = � (r� �) pt+1 = � (r� �) (1 +r!) pt

with ! = �t = 1 in discrete time, and a formal sense that we clarify below, ! = 0 in the continuous
time limit.

Then, the basic equation (66) becomes:

0 = � (⇣ � r) pt + ft.

Pre-multiplying by r gives:

0 = �r (⇣ � r) pt +rft
= �r (⇣ � r) pt + � (r� �) (1 +r!) pt
= H̃ (r) pt

with
H̃ (x) = (+ �!) x2 � (⇣ � � (1� �!)) x� ��. (179)

Polynomial H̃ (x) is the discrete-time analogue to the continuous time polynomial H (x) seen above.
Then, we call ⇢ and �� the roots of polynomial H̃.
Now, defining yt = (1� �) yt�1 + "t, we seek solutions of the type:

pt = Ayt, ft = ayt. (180)

This implies
⇡̂t = (r� �) pt = � (�+ �)Ayt.

Plugging this in (166) gives:
a = ��! (�+ �)A+ 1.

Plugging the Ansatz (180) in (66) gives:

0 = � (⇣ + �)A+ a.

Hence, we obtain: A = a
⇣+� , with

a =
1

1 + �! �+�
⇣+�

. (181)

Again, formally, we obtain the continuous time limit when ! ! 0.
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From discrete to continuous time We draw from Section H.1, and denote with bolded
symbols the continuous-time version of the parameters, and �t the calendar value of a time interval.
As they are unitless, � and ⇣ are the same in discrete and continuous time.

We have ! = �t, and we can write Et [pt+1] = (1 + !r) pt. Hence, calling x = x�t,

H̃ (x) = (+ �!) x2 � (⇣ � � (1� �!)) x� ��!

H̃ (x) /�t = (+ ��t)x2 � (⇣ � � (1� ��t))x� ��

so that indeed, lim�t!0
H̃(x)
�t = H (x).

Impact of a trend on dividends We prove the following.

Proposition 19. Suppose that dt = gt. Then, if flows follow

�ft = �⇡̂t + (1� ✓) g + c

with f�1 = 0,with � > 0 and some constant c. Then in the long run, the equity premium is higher,
⇡̂⇤ = � c

� . We have pt = dt + p⇤, ft = (1� ✓) dt + f⇤, with p⇤ =
c
�� , i.e.

p⇤ =
c

��
=

c

�⇢
(182)

and f = ⇣p⇤. For finite t, we have

pt = dt +

✓
1� ⇣

⇣ + �
(1� �)t

◆
p⇤ (183)

so that on impact
p0 =

c

(⇣ + �) ⇢
(184)

where ⇢,�� are the of the characteristic polynomial H (x) in (174). The flows are

ft = (1� ✓) dt + f⇤
�
1� (1� �)t

�
. (185)

We write the rule as a deviation c from the rational flow, which is �ft = (1� ✓) g by Lemma
2. In the baseline case �ft = �⇡̂t + "t, then c = � (1� ✓) g < 0. Intuitively, if there is a low �, the
“flows don’t adjust enough”, so that the price is too low, and the equity premium is higher. This is
why the intercept p⇤ is negative.

Also, the long run impact is larger than the short run impact, because the mistakes c “pile up”
over time. The speed of convergence is �, which is about 9%. So, for most purposes, the impact p0
is more important than the long run impact.110

Proof. First, we derive the long run, which is simpler. Calling ⇡̂⇤ the steady state deviation of the
equity premium from ⇡̄, we have on average �ft = �⇡̂⇤ + (1� ✓) g + c. But Lemma 2 showed that
we need �ft = (1� ✓) g. So, this implies ⇡̂⇤ = �c

� . This in turn corresponds to pt = p⇤ + gt, with
p⇤ = � ⇡̂⇤

� .
110Note that it could be obtained in the case � ! 0 from Proposition 5, which gives p0 = c

⇣⇢ (by plugging in
f⌧ = c⌧).
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Next, we derive the finite-time behavior. For simplicity, we use continuous time, and set g = 0
for simplicity (the general case is similar). We have Dft = �⇡̂t + c. Insert this in (173) gives

H (D) pt + c = 0. (186)

The solution is pt = p⇤ +Ae��t +Be⇢t for constants A and B. The large t behavior implies B = 0.
As time t = 0, we must have f0 = 0, so

0 = �⇣p0 + 
Edpt
dt |t=0

= �⇣p⇤ � (⇣ + �)A.

This gives A = � ⇣
⇣+�p⇤. This implies

p0 = p⇤ + A =

✓
1� ⇣

⇣ + �

◆
p⇤ =

�

⇣ + �

c

��
.

We use that � = ��
⇢ from (177), which gives (184).

Finally, as 0 = �⇣pt + Dpt + ft, we have

ft = ⇣p⇤ + (⇣ + �)Ae��t = ⇣p⇤
�
1� e��t

�
.

Using our calibration g = 2%, ✓ = 87.5% and rule (162) with � = 0.1 we find: ⇡̂⇤ = 1�✓
� g = 2.5%.

We next prove a result that synthesizes and expands on our previous results.

Proposition 20. Suppose an economy with i.i.d. dividend growth �dt = g + "dt , and consumer
flows following the semi-behavioral rule:

�ft = �⇡̂t + (1� ✓ + �)�dt + c+ "ft (187)

where disturbances "dt , "
f
t have mean 0 and no time correlations. The rational case obtains when �,

�, c, var
⇣
"ft

⌘
are set to 0. Then, in the steady state, the equity premium is ⇡̄+ ⇡̂ with ⇡̂ = ��g+c

� ,
and using p⇤ = � ⇡̂

� , f⇤ = ⇣p⇤, and � the mean-reversion of Proposition 17,

ft = (1� ✓) dt + f̂t + f⇤, pt = dt +
f̂t

⇣ + �
+ p⇤ f̂t = (1� �) f̂t�1 + "ft + �"dt . (188)

Here in (187), � is a “gap”, as the rational case would entail � = 0. So, the “gap” creates a
permanent change in the equity premium (as in Proposition 19). The new part is really the impact
of disturbances "dt , "

f
t : their impact means-reverts at the rate �. Excess flows "ft make the price

temporarily too high, and high dividends not immediately compensated by a flow (�"dt ) make the
price temporarily too low, as in the myopia effect of Proposition 5.

Proof. The terms corresponding to the non-zero trend g and c are exactly as in Proposition 19,
using c0 = �g + c. So, by linearity, we can set g = c = 0 and focus on the stochastic terms. In
the case where "dt = 0, which is exactly Proposition 17. Then, the case "dt is very similar, as the
“mistake” in flows is the sum of the shock "ft and the “excess adjustment” �"dt .
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H Calibration of the general equilibrium model of Section 5:
Details

Here we provide a detailed justification of the calibration in Section 5.4.

H.1 From discrete to continuous time
Denote with bolded symbols the continuous-time version of the parameters, and �t the calendar
value of a time interval. Then, as �, �,⇢, ⇡̂ have units of [Time]�1, their discrete time counterparts
are:

� = ��t, � = ��t, ⇢ = ⇢�t, ⇡̂ = ⇡̂�t, (189)

but as  has unit of [Time] (indeed, ⇡̂ must be unitless in an expression like PQ
W = ✓e⇡̂, see (1))

its discrete time counterpart is:
 =  (�t)�1 . (190)

As it is unitless, ⇣ is the same in discrete and continuous time,

⇣ = ⇣.

Finally �f has the units of [Time]�1/2 so

�f = �f (�t)1/2

and similarly for �d.

H.2 Calibration steps
The calibration steps are the following.111 We express things in annualized values, but we use the
correspondence in Section H.1 to go between discrete vs continuous time notions.

1. For Tables 5 and 6, first we set � = 2, g = 2%, �y = 0.8%, �D = 5%, rf = 1%, �f = 2.8%. Next
we impute � from rf given

�
�, g, �2

y

�
. Then we calculate (�2

r , ⇡̄, �) and set �f = 4%, ⇣M =
0.2, = 1, ✓ = 0.875, which jointly imply ⇣ = ⇣M��f = 0.16. Last we calculate

�
⇢, bpf , b

⇡
f , �b

�
.

2. In Table 6, we use r̂t := rt�Et�1 [rt] = "Dt + bpf"
f
t : so, the share of the variance of excess stock

returns that is due to flows is cov(r̂,bp
f
"f
t
)

var(r̂) . Likewise, the share of the variance of stock returns

due to fundamentals is cov(r̂,"D
t
)

var(r̂) . The two shares add up to 1.

3. For Table 7a, the model implied mean of P/D is

E

P

D

�
= E


ept

�

�
=

1

�
E
h
exp

⇣
bpf f̃t

⌘i
=

1

�
exp

 
1

2

�
bpf
�2 �2

f

1� (1� �f )
2

!
, (191)

the log mean of P/D is
exp (E logP/D) =

1

�
, (192)

111We thank Lingxuan Wu for performing those computations.
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and the variance of log D/P is

Var (logD/P ) = Var (pt) =

�
bpf
�2
�2
f

1� (1� �f )
2 . (193)

Up to now, everything is in units of continuous time.

4. For Table 7b, we simulate the model with �t = 1
12 over 72 years with N = 1000 simulations.

We report the mean and 95% confidence interval for the slopes, the mean 8-lag Newey-West
standard errors and the mean R2 across the N = 1000 simulations as the model-generated
results.

(a) We generate T = 72
�t periods (72 years) of i.i.d. innovations "Dt ⇠ N (0, �2

D ·�t) , "ft ⇠
N
�
0, �2

f ·�t
�

with �t = 1
12 and calculate the path of dt, f̃t from

dt � dt�1 = g ·�t+ "Dt � 1

2
�2
D ·�t, (194)

f̃t � f̃t�1 = ��f�t · f̃t�1 + "ft , (195)

for a total of N = 1000 times.
(b) We calculate the time series for the log dividend, the deviation of prices from their

rational average, the log price, the log dividend price ratio, and the equity premium as
follows:

logDt = dt, (196)
pt = bpf f̃t, (197)

logPt = logDt + pt � log �, (198)
logDt/Pt = logDt � logPt, (199)

⇡t = ⇡̄ + b⇡f f̃t. (200)

(c) For the predictive return regressions, we collapse the data to a yearly frequency by
taking the price and the dividend paid in the last month of the year. Then we calculate
the 1-year, 4-year and 8-year cumulative returns, and run 1-year, 4-year and 8-year
predictive regressions on the collapsed yearly data. (For the 4-year and 8-year horizons,
the regressions have overlapping windows when calculating returns.) We report the 8-lag
Newey-West standard errors for all three regressions.

i. In both the data and the simulations, returns are calculated assuming that the
investor pockets the monthly dividends without reinvesting them at the risk-free
rate. For example, the return at the 1-year horizon is the month-12 post-dividend
P12 plus an average of D1 to D12 (approximating

R 1

0 D⌧d⌧ in continuous time) divided
by the month-0 post-dividend price P0.

ii. We generate the cumulative return for the 4-year and 8-year horizons by compound-
ing 1-year return (rt,t+4 = (1 + rt,t+1) (1 + rt+1,t+2) (1 + rt+2,t+3) (1 + rt+3,t+4) � 1)
for the predictive regressions.
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Table I.15: Parameters and elasticities in numerical models

Variable Lucas I Lucas II LRR I IRR II
Risk aversion (�) 4 4 10 10
IES ( 1

') 1/4 1/4 1.5 1.5
Time preference (�) 0.9 0.9 0.94 0.94
Mean output growth (g) 0.04 0.04 0.018 0.018
Std. dev. of output growth (�y) 0.1 0.1 0.046 0.046
Mean financialization ratio ( = D

Y ) 0.2 0.2 0.082 0.082
Persistence of financialization ratio (⇢x) 1.0 0.95 - -
Std. dev. of financialization shocks (�x) 0.0 0.05 - -
Growth rate persistence (⇢) - - 0.044 0.044
Growth risk loading ('e) - - 0.044 0.044
Stochastic volatility (�w) - - 0.0 0.8⇥ 10�5

Persistence of volatility (⌫1) - - 0.854 0.854
Macro elasticity (⇣) 20.0 17.5 28.85 28.96

Notes. All parameters in the table are annualized. The parameters are calibrated so that in each
model the risk premium is around 4% and the equity market’s capitalization is 1.25 times GDP.
These parameters are defined throughout our discussion. In Lucas I, we reproduce the analytical
results of Section F.4 using the numerical methods to confirm their consistency. In Lucas II,
we compute the macro elasticity in an economy where labor income is partially correlated with
financial market returns. LRR I follows the notation and parameterization of Case I in Bansal
and Yaron (2004) with long run risks and constant volatility. We adjust the discount rate and
output volatility in order to hit the calibration targets. LRR II follows the parameterization in
their Case II with stochastic volatility.

I Computing elasticities numerically in equilibrium models

I.1 Summary of the main results
This section computes numerically the macro elasticity in classic asset pricing models.112 This
complements the closed forms that we obtained in Section F.4. We consider two important classes
of models with different parameterizations: the Lucas (1978) model with labor income, and long
run risk models as in Bansal and Yaron (2004).

Table I.15 summarizes the parameterization and the moments generated by the numerical exer-
cises. These parameters are defined throughout our discussion. We find that the macro elasticity
is around 17.5 in a Lucas model with partially correlated labor income, and close to 30 in long
run risk models. Section I.2 describes the general procedure that we follow to compute the macro
elasticities numerically, and Sections I.3 to I.4 outline the models and the numerical algorithms in
detail.

112We thank Zhiyu Fu for performing those computations.
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I.2 General procedure

For both models considered, we suppose � lnYt = g � �2
Y

2 + "Y t and define ⌦t = Yt � Dt to be
residual “labor income” (broadly understood). Suppose that stocks are tradable (with dividends
Dt), but not labor income. The consumer receives a stream of labor income ⌦t every period. At
time 0, he is endowed with all the shares in the “stock market.”

Call  t =
Dt

Yt

= 1� ⌦t

Yt

the relative size of dividends versus aggregate consumption, to which we
refer as the degree of “financialization” of the economy. In Bansal and Yaron (2004), we assume
that  t is a constant at all dates. In the Lucas model, we allow  t to be time-varying so that labor
income is only partially correlated with the stock market.

I.2.1 General procedure

Define Zt to be a vector of aggregate state variables and Z̄ the unconditional mean of Zt. In a Lucas
model with partially-correlated labor income, Zt =  t, and in a long run risk model Zt = (xt, �2

t )
0.

We compute the equilibrium price-dividend ratio and risk-free rate, P ⇤
t

Dt

= pd⇤(Zt) and rf⇤t = rf⇤ (Zt).
We define the perturbed price-dividend ratio as:

pd (Zt, p) = pd⇤ (Zt) (1 + p)

for a small constant p close to 0.
Given

�
pd (Zt, p) , rf⇤ (Zt)

�
, we compute the value function, V (Zt, wt; p), the optimal portfolio

rule ✓(Zt, wt; p), and the optimal consumption plan c(Zt, wt; p) for households with different wt,
where wt = W E

t /Yt is their financial wealth relative to GDP, which equals aggregate consumption.
The representative household holds w̄(Zt) =  (Zt)(pd⇤(Zt)+1) in financial wealth relative to GDP.
We calibrate the parameters so that on average the consumption/market capitalization is equal to
Y
WE

t

= 1
w̄(Z̄)

= 0.8. Define ✓⇤(Zt, p) ⌘ ✓(Zt, w̄(Zt), p) and c⇤ (Zt, p) = c(Zt, w̄(Zt), p) as the policy
functions for the representative household given the perturbation p. We have ✓⇤(Z, 0) = 1 and
c⇤(Z, 0) = 1 for any Z.

The macro elasticity is then give as:

⇣r = �dQE/QE

dP/P
= �d✓⇤(Z̄, p)

dp

����
p=0

The numerical solution procedure is as follows:

1. We solve for the equilibrium objects pd⇤(Zt) and rf⇤ (Zt) on the grid of aggregate state vari-
ables Zt using standard methods, as discussed below.

2. Taking the unperturbed pd⇤(Zt), rf⇤ (Zt) as given, we solve for the optimal policy functions
via the following dynamic programming problem:

Vt (Zt, wt) = max
(✓,c)

u (c, Zt) + �Et

"✓
Yt+1

Yt

◆1��

V (Zt+1, wt+1)

#
,
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where113:
wt+1 =

Yt

Yt+1
(wt + 1�  t � ct)Rt+1,

with Rt+1 the gross return on financial assets:

Rt+1 = ✓t
Dt+1

Dt

pd (Zt+1) + 1

pd (Zt)
+ (1� ✓t)

⇣
1 + rf⇤t (Zt)

⌘
.

For the long run risk model, the wealth evolution is the same, but the Bellman equation uses
Epstein-Zin preferences, so it is nonlinear. We exploit the homotheticity of the long run risk
model to speed up the computation, as explained below.

3. We check the consistency of the policy functions with the aggregate equilibrium, ✓⇤(Z, 0) = 1
and c⇤(Z, 0) = 1.

4. We solve another dynamic programming with the perturbed price-dividend ratio, taking p =
0.01. We then compute:

⇣r = �✓
⇤(Z̄, 0.01)� ✓⇤(Z̄, 0)

0.01
.

I.3 Lucas models with partially correlated labor income
We allow for shocks to the financialization ratio  in the Lucas model. We consider the parameter-
ization  t =

xt

µx+xt

, where ln xt = ⇢x ln xt�1 + �x✏x,t, µx > 0. In the simple Lucas model studied in
the main body of the paper, we have  0 =  < 1, but �x = 0.

I.3.1 Stationary equilibrium

We first solve for the steady state price-dividend ratio. The asset pricing equation is, with Mt+1

being the SDF:

Et


Mt+1

Mt
Rt+1

�
= 1,

Et

"
�

✓
Yt+1

Yt

◆�� Dt+1

Dt

pd( t+1) + 1

pd( t)

#
= 1,

Et

"
�

✓
Yt+1

Yt

◆1��  t+1

 t

pd( t+1) + 1

pd( t)

#
= 1. (201)

For ease of computation, we decompose the shock to x into "Y,t and another component independent
from it:

ln xt = ⇢X ln xt�1 + �x✏xt + �x,Y "Y,t ✏x,t ?? "Y,t. (202)
The stationary equilibrium is defined as the function pd( ) that solves equation (201) subject

to the law of motion of the underlying state variable x in (202).
113Indeed, the law of motion for financial wealth is W E

t+1 =
�
W E

t + ⌦t � Ct

�
Rt+1, which gives

wt+1 =
W E

t+1

Yt+1
=

Yt

Yt+1

✓
W E

t + ⌦t � Ct

Yt

◆
Rt+1 =

Yt

Yt+1
(wt + 1�  t � ct)Rt+1.
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Discretization The function pd( ) is computed on a discrete grid over  . The upper and lower
boundaries of the grid are chosen to cover at least 99.9% of the stationary distribution of  . Off-
grid values are computed using linear interpolation or extrapolation. Expectations are computed
using Gauss–Hermite quadrature with 10 nodes. Increasing the number of nodes does not change
the results in a noticeable way. After discretization, the solution to (201) is essentially a vector
corresponding to the P/D ratio on the grid for  . This equation is then solved non-linearly using
Newton’s method.

The risk-free rate is the same as in the simple Lucas model, as the state variable  does not
enter the SDF. The expected risky return can be computed as:

ERt+1 = Et


Yt+1

Yt

 t+1

 t

pd( t+1) + 1

pd( t)

�
.

I.3.2 Dynamic programming: Outline of the algorithm

The dynamic programming problem is solved using policy function iteration and the endogenous
grid point method. For notational ease, for each variable x we denote its value in the next period
as x0.

The dynamic programming problem can be solved in two steps. First, given post-consumption
wealth w̃ = w + 1�  � c, the households solve a portfolio choice problem that maximizes:

max
✓

E
"✓

Y 0

Y

◆1��

V

✓
 0,

Y

Y 0 w̃R
⇤(✓)

◆#

s.t.
R⇤ = ✓R + (1� ✓) (1 + rf ) .

The maximization problem yields the first-order condition:

E

(
Y 0

Y
)��Vw

✓
 0,

Y

Y 0 w̃R
⇤(✓⇤)

◆
(R� rf )

�
= 0.

With knowledge of Vw (either from an initial guess or from the previous iteration), we can
solve for ✓⇤ non-linearly given each w̃. This way, we obtain the functions ✓⇤(w̃) and R⇤(w̃), which
map post-consumption wealth w̃ into the optimal portfolio choice ✓̃ and into the asset returns R⇤,
independently of the consumption policy.

Second, the household choose optimal consumption by maximizing:

max
c

u(c) + �E
"✓

Y 0

Y

◆1��

V

✓
 0,

Y

Y 0 w̃R
⇤(w̃)

◆#
(203)

s.t.
w̃ = w + 1�  � c, (204)

which gives the first-order condition:

c�� = �E
"✓

Y 0

Y

◆��

Vw

✓
 0,

Y

Y 0 w̃R
⇤(w̃)

◆
R⇤(w̃)

#
.
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Following the endogenous grid point method, we can solve for c explicitly as a function of the
post-consumption wealth w̃ on the grid, that is,

c⇤(w̃) =

(
�E
"✓

Y 0

Y

◆��

Vw

✓
 0,

Y

Y 0 w̃R
⇤(w̃)

◆
R⇤(w̃)

#)� 1
�

.

then we can back out pre-consumption wealth w (off grid) as a function of w̃ from the budget
constraint (204). Finally, using interpolation, we can get the desired policy function c⇤(w) on the
grid.

By the envelope theorem, we have:

Vw = u0(c⇤(w)) = (c⇤)�� .

Using the solved policy function c⇤(w) we obtain Vw from the envelope theorem and proceed to
the next iteration until we achieve the desired accuracy.

Verification Now, we verify that the policy functions are consistent with the aggregate equilib-
rium. For representative households, that is, households with financial wealth wE = (pd( ) + 1) ,
their consumption is exactly equal to GDP, c = 1, and their risky share is also equal to one, ✓ = 1.

Initial guess We make the initial guess by assuming the aggregate state  is constant. In this
case, the solutions for each value of  are independent of one another. We guess and verify that
the value function is of the form V (w) = A��w1��

1�� , where w includes capitalized labor income.

I.4 Long run risk model
I.4.1 Stationary equilibrium

As shown in Bansal and Yaron (2004), the SDF for a recursive utility function is:

Mt+1 = �#
✓
Yt+1

Yt

◆� #

'

R✓�1
w ,

where:

Rw =
pd(x0, �0) + 1

pd(x, �)

Yt+1

Yt
,

# =
1� �

1� 1
'

.

Following Bansal and Yaron (2004), the dynamics of the economy are:

xt+1 = ⇢xt + 'e�tet+1,

gt+1 = µ+ xt + �t⌘t+1,

�2
t+1 = �2 + v1

�
�2
t � �2

�
+ �wwt+1,

et+1, ut+1, ⌘t+1, wt+1 ⇠ N.i.i.d.(0, 1).
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The price-dividend ratio can be solved using:

E
"
�#
✓
Yt+1

Yt

◆� #

'

R#
t+1

#
= 1,

E
"
�# exp ((1� �)g)

✓
pd(xt+1) + 1

pd(xt)

◆##
= 1.

Moving the current pd outside of the expectation operator:

pd(x, �2) =
⇥
E�✓ exp ((1� �)g) (pd(x0, �2) + 1)#

⇤ 1
# ,

which gives a fixed point problem. We solve for pd(x, �2) by iterating upon this equation.

I.4.2 A shortcut for the dynamic programming problem

Labor income can also be modeled as the the dividend from human capital, WL. In our setup of
long run risk models, labor income is co-integrated with aggregate output, so human capital WL

and W E have the same return process. Therefore, we could first solve the bellman equation with
total wealth W = WL +W E as the state variable, and then take care of the difference between WL

and W E when calculating the elasticity.
The Bellman equation with Epstein-Zin preferences is:

V (x, w) = max
c,#

 
(1� �)c1�

1
' + �E

⇥
V 1��(x0, w0)

⇤ 1� 1
'

1��

! 1

1� 1
'

s.t.
w0 = (w � c)R⇤(x, x0),

R⇤ = #R(x, x0) + (1� #)Rf (x),

x0 = lom(x),

where here we use x as a shorthand for both state variables, and w total wealth normalized by
GDP, with a slight abuse of notation.

Exploiting the homotheticity in the Bellman equation, we can eliminate w and therefore reduce
the dimensionality of the state space by one. We define v(x) as V (x, w) = v(x)w. The Bellman
equation is then given by:

v(x)1�
1
'

w1� 1
'

1� 1
'

= max
c,✓

(1� �)
c1�

1
'

1� 1
'

+ �
E [v(x0)1��w01��]

1� 1
'

1��

1� 1
'

= max
c,✓

(1� �)
c1�

1
'

1� 1
'

+ �
(w � c)1�

1
'

1� 1
'

E
⇥
v(x0)1��R⇤1��⇤

1� 1
'

1�� .

The maximization problem is solved in two steps. First, we take the first order condition with
respect to ✓:

E
⇥
v(x0)1�� (✓⇤R + (1� ✓⇤)Rf )

�� (R�Rf )
⇤
= 0,
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which gives ✓⇤, independent of w. Defining A(x) = E [v(x0)1��R⇤1��]
1� 1

'

1�� , then optimal consumption
solves:

v(x)1�
1
'

w1� 1
'

1� 1
'

= max
c

(1� �)
c1�

1
'

1� 1
'

+ �A(x)
(w � c)1�

1
'

1� 1
'

.

The first-order condition is given by:

(1� �) (c⇤)�
1
' = �A(x)(w � c⇤)�

1
' ,

which yields:
c⇤(w)

w
=

1

( �
1�� )

'A' + 1
= &(x).

Again, the consumption-wealth ratio is only a function of x but not w. Plugging it into the Bellman
equation:

v(x)1�
1
' = (1� �)&1�

1
' (x) + �A(x)(1� &(x))1�

1
'
,

v(x) ⌘ F(v)(x).

Since it is derived from a Bellman equation, the operator F is also a contraction mapping. Therefore,
we can solve it by iteration.

I.4.3 Calculating the elasticity with labor income

Now we proceed to calculate the macro elasticity, recognizing that only a fraction  of total wealth
is capitalized.

Recall the definition of macro elasticity:

⇣r = �dQE/QE

dP/P
,

where  = QE

Q . Therefore, the elasticity can be calculated as:

⇣r = �d✓

dp

Q

QE =
d✓

dp

1

 
.

The share  is calibrated to match Y
W " = Y

 W = 1
 (pd+1) = 0.8, and d✓

dp can be computed by perturbing
pd as outlined above.

I.4.4 Calibration

The calibration closely follows Bansal and Yaron (2004), with two exceptions. In the original paper,
Bansal and Yaron (2004) obtain a high risk premium from leveraged dividends. In our model, as
we do not have an explicit dividend process, we calibrate �̄ to match a 4% risk premium on the
aggregate market. We also reduce � so that we have a reasonable risk-free rate and P/D ratio in
the stationary equilibrium.
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