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Preface

Actions performed in an organization differ, in general, from those of a
single person in two respects.

First, the kind of information on the basis of which each member of an
organization decides about his actions may differ from one member to
another. Thus the production manager and the personnel manager of a
company do not compictely share information, nor do the commanders
of two divisions of the same army.

Second, the interests and beliefs of each member of an organization
may differ from the interests and beliefs of his fellow members.

A team is defined as an organization in which the first but not the second
characteristic is present. The authors feel that the study of this inter-
mediate case is useful as a step toward a {fuller and more complex economic
theory of organization.

The members of a team have the same interests and beliefs but do not
share the same information. We can also regard the team problem as
that facing an organizer. How should the tasks of inquiring, communicat-
ing, and deciding be allocated among the members of an organization so
as to achieve results that would be best from the point of view of their
common interests and beliefs, or of those of the orpanizer?

Accordingly, the bulk of the present book is concerned with economic,
that is, optimal, efficient ways of providing information and of allocating
it among the decision-makers who constitute a team: optimal, that is,
with respect to common interests and beliefs. This is preceded by a
Prologue dealing with the still simpler problem, that of a single person’s
optimal choice of information. An Epilogue points to a fuller theory of
organization, in which the concept of optimality is appropriately revised.

The book was started while both authors were on the stafl of the
Cowles Commission for Research in Economics at the University of
Chicago (later Cowles Foundation at Yale University). Some of the
earlier ideas were discussed in various Papers (reprints) and mimeo-
graphed Discussion Papers of that organization, both by the authors
and by their colleagues, notably Martin Beckmann, Donald Bratton,
Karl Faxen, C. B. McGuire, Leo Tornqvist, A, Tritler, and Daniel
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Waterman. At a later stage, individual chapters of the book were read
and commented upon by John Harsanyi, Thomas Marschak, Kenneth
MacCrimmon, C. B. McGuire, Sandra Schwartz, and Lloyd Shapley;
Truman Bewley and Reinhard Selten did the same for the entire manu-
script. We acknowledge our debt to them, and also to Leo Hurwicz,
Koichi Miyasawa, L. J. Savage, and Herbert Simon for many fruitful
discussions. ‘

At various times, the authors were able to use the facilities of the Cowles
Commission (Foundation) at Chicagoe and Yale, and of the Center for
Research in Management Science and the Western Management Science
Institute on the Berkeley and the Los Angeles campuses, respectively, of
the University of California. The support provided by the Office of Naval
Research, the Ford Foundation, and the National Science Foundation 1s
gratefully acknowledged.

Finally, our thanks to Miss Barbara Ellis for her editorial contributions,
and to Mrs. Julia Rubalcava for her customarily beautiful job of typing
the manuscript.

JM.
RR.
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Introduction

Economics is concerned with efficient (**best,” “optimal™) use of limited
resources. A decision is “‘economical” i[, among available decisions, it is
the most desirable one. During the last two or three decades, explicitly
economic thinking has been extended beyond its traditional domain,
that of the production and distribution of marketable goods. The same
general principles that are used to determine eflicient sites and production
plans for factories and farms, to explain the prices agreed upon by
presumably efficient buyers and sellers, or to outline plans for the material
development of a country have been applied to broader fields of human
decisions and of interactions between men.

The economic concern, the interest in optimal choices, has of course
characterized practical arts such as engineering, military planning, and
medicine from their very inception. In our generation, this concern has
become articulate. Under names such as operations research, cost-
efficiency analysis, systems analysis, mathematical programming —clumsy,
casual names suggesting their origin in practice rather thanin philosophy-—
complex decision problems are being stated explicitly as such. That is to
say, both the constraints of feasibility {limited resources, set of available
actions) and the criteria of desirability (ordering of preferences, goals,
values) are stated, opening the way to a systematic solution of some
maximization problem.

Parallel with these practical developments, economic thinking has also
penetrated the very foundations of empirical science. The current logic of
inductive inference developed by logicians and mathematicians—notably
F. P. Ramsey (1931), B. de Finetti (1937), R. Carnap (1962), and L. J.
Savage (1954)—has related a man’s “beliefs” about the “probabilities™
of uncertain events to his choices between actions that have unceriain
outcomes and are viewed as “bets.” Moreover, the decision-maker’s
beliefs will vary depending on his access to information, and his choice
of action can be improved by changing his instrument of information.
For example, suppose that the results of each possible experiment {ora
sampling, a survey) will be used to choose the best possible action ; which
is then the best possible cxperiment? Such problems have occupied

3



4 Economic Theory of Teams

workers in statistics—beginning with J. Neyman and E. S. Pearson (1928
1o 1938) and A. Wald (1950)—and in “adaptive control processes,” so
called by R. Bellman (1961). In esscnce, decision theory can be called the
“sconomics of information,”

The economic approach has been applied not only to efficient choices
of a single person, but also to joint actions of several men. In the theory
of games of von Neumann and Morgenstern (1943), further developed by
other mathematicians and economists, two or more persons follow
generally different desirability criteria (*“interests,” “preferences™), and
are constrained by different feasibility conditions (“‘rules of the game™)
or at least attach to them different probabilities; but each player is efficient
in a well-defined sense. The problem is to find which arrangements exist
(if any) that would be supported by each player’s self-interest as he sees it,
because no change that he might be able to ¢nforce would better him.
Such arrangements, if attained, would be maintained. They are called
viable. In this sense, viability can be regarded as a generalization of the
optimality requirement, extended from decision-making by a single
person to the case of several persons. Corresponding to the choice of the
best information instrument, and of the best action based on the informa-
tion it provides, the viable arrangement between players of a game is
implemented by allocating to each certain activities, possibly including
the tasks of gathering or communicating specified kinds of information.
Viewed in this way, the problem of viable arrangements in games can be
conveniently called a theory of efficient organizations. The problem of
the optimal information instrument and the optimal decision for a single
person can then be regarded as a special (though by no means trivial) case.

The economic theory of teams attacks a middle ground. We study the
case in which several persons perform various tasks including those of
gathering and communicating information and of making decisions; but
they have common, not divergent, interests and beliefs. Hence the
optimality requirement is easily defined, just as in the case of a single
person. But the single person’s problem of optimizing his information
instrument and its use is replaced by that of optimizing the allocation of
tasks among the members of the team.

We have equated economical and efficient to denote an arrangement
that 1s most desirable (or, in the general case of organization, one that is
viable), under given feasibility constraints. These constraints include the
limitations of human capacities for communication and good decision-
making (and analogous limitations of inanimate instruments). While our
concern is a practical, purposive, prescriptive one, the general solutions
we discuss would depend, when applied to any concrele case, on data
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supplied by workers in descriptive fields—the names of R. Cyert, J. March,
and H. Simon come to mind!* —psychological or sociological data along
with those of natural technology. On the other hand, our results may
prove of some value to descriptive theorists of human organization by
pointing to those data, quantitative and otherwise, that would be of most
importance if one wanted (o increase the efficiency of a given organization.

Part One of this book, the Prologue, prepares the ground for she theory
of teams by discussing the case in which the team consists of gne man.
Chapter | defines his tastes and beliefs, under the condition that he is
consistent in the sense of obeying the rules of logic and certain plansible,
quasi-logical postulates of decision behavior.

These conditions imply the “‘expected utility theorem,” which is then
used throughout the book. Chapter 2 outlines what we have called above
the economics of information: the problem of choosing an optimal
information instrument. Chapter 3 provides simple illustrations.

In the centrat Part Two of the book, the team problem is first simplified
into the problem of optimal information structure: we ask “who should
know what?”, without inquiring how this allocation of information is
achieved. We proceed from some simple illustrative examples in Chapter 4
to the problem, treated in Chapter 5, of finding optimal decision rules
for the team members when the information structure is given. In Chapter 6,
various important information structures are compared as to the maximum
expected payofls that they can yield. In most of the cases studied in the
book, a *‘stalic”” environment is assumed, but Chapter 7 outlines an
approach to the case in which the environment is a process over time, and
in which delays intervening between information and decision may,
under certain conditions, result in losses.

A given information structure can be generated by a variety of “net-
works.” Each element of a network is characterized by a “task function”
transforming the clement’s inputs into its outputs. The task may be one
of observing the environment, of making a decision, of communicating
messages about the environment or the decisions, or of performing
“final actions™ that impinge upon the environment and thus affect the
payofl to the team. A network is “impiemented” by associating a set of
its elements with a physically defined “instrument”™—possibly a team
member— thus allocating tasks among individuals. Chapter & defines
the study of networks and analyzes a few simple examples of phenomena
that are usually denoted by terms such as coordination, subordination,
and so forth. The usual vocabulary is, however, less rich than the variety

1. (§ee, for example, Cyert and March 1963 and March and Simon 1958.
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of possible network configurations. The authors regret not having been
able to pursue a systematic study of such configurations, to compare the
(gross) payoffs they can yield under given payoff and environment con-
ditions, and to attempt, whenever possible, an intuitive interpretation
of such results. This is somewhat foreshadowed by the examples given in
Chapter 8. Tt is followed, in Chapter 9, by a rather informal outline of the
problems-of costs and constraints that must be taken into account when
choosing among networks, and thus allocating tasks, optimally. This
choice is in itsell a complex decision problem; we suppose that it is being
solved by an “organizer,” a fictitious construct possibly implemented in a
physically identifiable “leader” or a leading group of team members.
The logic of solving complex problems involves difficult paradoxes,
which we meet in an empirical fashion, showing that it may be economical
to ignore some information and to treat logical alternatives as if they
were 50 many states of the physical environment. This chapter applies
cerlain previously developed concepts—such as delegation, specialization,
and postponement of decision—to the task of organizing.

In Part Three, the Epilogue, we take up again the theme of this Intro-
duction: to specify the place of the economic theory of teams within the
general perspective of the problem of efficient organization, and its
relation to descriptive theories.



PART ONE
PROLOGUE: SINGLE-PERSON
DECISION PROBLEMS






CHAPTER 1
Decision under Uncertainty

1. Teams 2 Economic behavior 3.Consistent tastes under certainty 4.Descrip-
tion vs. norm  5.Actions and outcomes 6.Environment and uncertainty 7.Con-
sistent beliefs and tastes under uncertainty R.Subjective probability orderings
9.Numerical subjective probabilities 10.Subjective and objective probabilities
11.Expected utility: case of two outcomes 12.Expected utility: general case
13.Generality of the expected utility principle 14.Expected payoff of an action

1. TEAMS

Wedefinean organization asa group of persons whose actions (decisions)
agree with certain rules that further their common interests, We define
a feam as an organization the members of which have only common
interests. We are going to discuss an economic theory of teams.

We have just used such terms as “interests,” “rules,” and *“‘economic”
but have not yet defined them. If we first confine our attention to a simple
case, the one-man team (that is, a single decision-maker), we shall be able
not only to present convenient definitions of those terms, but also to
introduce some other important aspects of the economic theory of teams.
Most of the complications that arise from the presence of several persons
in a team will be postponed unti] Part Two of the book.

2. EcoNoMIC BEHAVIOR

It is usual to define economic behavior as the best use of limited alter-
natives. In practice, economists confine their study more particularly to
the use of limited alternatives in producing and consuming so-called
commodilies, or goods and services, assumed to be divisible into small
physical units. Yet the best use of limited alternatives is also the subject of
disciplines such as military and political science, We use the adjective
economic in the title of our book in its more general sense, and some of
our results should be applicable outside the economics of commodities.

It so happens, however, that our concern with the best use of available
alternatives (resources) finds its clearest expression when we are dealing
with divisible commodities. This divisibility permits the extensive use of
continuous real variables; under certain conditions prevailing in our
colture (and some others), market prices of goods and services can be

g



10 Prologue . Single Person Decision Problems

used to express the complex results of many actions in the form of a single
continuous quantity such as monetary profit. Accordingly, our general
ideas will often be mosi simiply illustrated by examples taken from the
special domain of commeodities and money. The business firm will often
furnish the most convenient example of a team concerned with the best
use of its alternatives, However, the reader should remain aware that,
event in a business firm, decisions on indivisible things (site of plant,
appointment of executives, methods of financing) play an important role.

3, CoNSISTENT TASTES UNDER CERTAINTY

If the criterion of what the individual considers *good” were not in
some sense fixed, making his decisions “‘consistent,” it would not be
ascertainable whether a good use is or is not made of available alternatives,
and the word economic would therefore be meaningless. Consistency of
decisions can be defined operationally and can be ascertained from the
chooser’s actions, not merely from his verbal statements, in the following
convenient way.

First, we shall say that a given decision-maker desires the alternative
a more than b (and b less than a)—or prefers a to b—if he never chooses
b when a is available ; second, we shall say that he desires a and b equally—
or is indifferent between a and b—if from sets of alternatives containing
‘both a and b he sometimes chooses @, sometimes b. It follows that his
preferences are complete: he is either indifferent between any a and b
or he prefers one of them. Finally, we say he is consistent under certainty
if his preferences are transitive; that is, if, whenever he desires a not less
than b, and b not less than ¢, he desires a not less than c.

It follows that it 1s possible to rank all alternatives that can ever face a
given consistent man in a unique order of desirabilities {also called order of
utilities, or preference order), with the understanding thatequally desirable
alternatives have equal rank (a tie). We can describe a given consistent
man'’s interests (or tastes) by his particular ordering of alternatives.!

1. Our definitiont of preference is based on observing actions (“he has chosen a when
b was available™}, rather than on recording verbal statements (“he has said, ‘[ prefer a
to &’ ). It can be presumed that future choices are better predicted from actual past choices
than from past verbal statements using an undefined term (1 prefer™).

Moreover, our definition is based on a person’s “muitiple choices,” ie. on choices
made from any number—not necessarily a pair—of alternatives. If we wanted to predict a
multipte choice [rom our knowledge of a person’s past choices from pairs only, we should
need an additional, independent assumption, such as Arrow’s {1963) principle of “*independ-
ence of irrelevant allernatives.” With our definitions, this principle need not be assumed
independently. 1 a consistent man prefers a to b in our sense, he will never choose b when
a is available, regardless of whether a third alternative, ¢, is or is not available,
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4. DESCRIPTION V5. NORM

If taken literally, the above definition of consistency is no doubt too
strong to describe real men. The word ““never” in the definition of desir-
ability should be replaced by *‘very seldom,” lest the majority of people
be classified either as indifferent among almost all alternatives or as
inconsistent. Accordingly, and in agreement with some practices of
empirical psychology, a morc general approach has been offered. This
describes a man’s choice in terms of the probability that, when offered a
given set of alternatives; he will choose a particular one; so that, for
example, “indiflerence between a and b” is defined as a 50-50 chance of
choosing a out of the pair (a, b).2 We shall not pursue this approach here.
Instead we shall assume that departures from consistency, as defined, are
not serious enough to make consistency useless as an approximate
description of some people and as an attainable norm for all. Following
Ramsey (1931), onc can regard the theory of consistent choice as a branch
of logic, a normative discipline. The theory of consistent choice may be
related to actual choices as is ordinary logic—the logic of thought—to
the psychology of thought.® But just as the logic of thought is a guide and
first approximation to the psychology of thought, so is the logic of choice
a guide to the study of actual decision.

This twofold use of theory, as an approximate description and as a
system of prescriptions or norms, is quite common to all disciplines
bearing on practice. Economics offers theories descriptive of human
responses (to price changes, for example), as well as policies for statesmen
and businessmen. Mililary science has prodiiced war histories as well as
army manuals. Medicine describes sick men and has the ideal of a healthy
man. Consistency of choice is a possible norm of human behavior, and
it is the economic norm; but because it also serves as an approximate
description of reality, this norm is not completely inapplicable. As we
proceed to develop the consistency concept, the reader should keep in
mind this double orientation of our book.* The team concept itself will be
seen to play this double role: to say that a firm is a team of executives is
not only to approximate reality; it also establishes a useful norm, desired
by the organizer,

2. Luce 195%; 1. Marschak 1960; Luce and Suppes 1965. In a more recent alternative
approach (Fishburn 1970), the indiflerence relation is not assumed transitive.

3. Abelson and Rosenberg (1958} have shown how logical rules can be replaced by those
of a "psycho-logic.” See also Bruner, Goodnow, and Austin 1956.

4. With respect to the subject matter of the present chapter, this double orientation is
well represented in Edwards and Tversky 1967,
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5. ACcTioNS AND QuTCOMES

So far we have considered only one kind of action: choosing among
available alternatives. Here the action and its result coincide: each can
be identified with the alternative chosen. In a more general case, it is
useful to distinguish between an action a and its result (outcome), » = p(a),
and to call p the outcome function.® Thus a, and a, {(two values of the
variable a) may be two methods of production, and r, = p{a,),r, = pla,)
the respective money profits. There is a preference ordering on sums of
money: if r, and r, were available directly, the larger one would be
chosen. But it is the actions, not the sums of money, that are available for
choice. In subsequent sections, it will prove useful to define preference
ordering on outcomes as a special case of preference ordering on actions.

We shall use interchangeably the words decision and action, and the
words result and outcome, sometimes called consequence.

6. ENVIRONMENT AND UNCERTAINTY

The same action can result in different outcomes, depending on factors
not controlled by the decision-makers. These factors can be denoted by
a variable, x, called nature, environment, or the external world. We have
thus to rewrite the outcome function: r = p(x, a). In general, the value of
x is not known to the decision-maker in advance, and therefore the result
r of the action a is not known even if the outcome function p is known.
We say that there is uncertainty about the variable x, and therefore also
about the variable r, given a.

For example, suppose that a firm producing for a competitive market
isabout to set the level of production for the coming month, but is uncertain
about the price that will prevail during that month, If @ denotes the
amount produced, x the price, and x{a) the cost of producing an amount a,
then the resulting profit to the firm is given by the outcome function

plx,a) = xa — kla).

Here the action variable is the quantity g, and the state of the environment
is described by the price x.

What if there is uncertainty about the outcome function itself, as well
as about the state of the environment? This difficulty can always be
overcome by describing the possible states of the environment in suffi-
ciently great detail. With reference again to the production example,
the firm may not know which of several cost functions will actually apply—

5. As far as possible, we shall use Greek letters for functions and the corresponding
Latin letier for the values of the funclions.
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for example, because of the possibility of technological improvements.
If we denote the various possible alternative cost functions by «,, x,,
and so forth, then we can describe the state of the environment by the
price p and the number n corresponding to the true cost function. The
appropriate outcome function is now

plp,n; a) = pa — x,(a);

the form of the function is once again ceriain, although the variables
p and n describing the state of the environment are not. The environment
variable x is now a vector: x = (p, n).

Let us denote by X the set of all possible states of the environment,
and let R be the set of results. Every action a determines a function, say
f.. from X to R, namely,

(6.1a) £(x) = p(x. ).

Conversely, every function f from X to R can be thought of as being
generated by an “action,” say a;, with the outcome function defined by

{6.1b) px, af) = T(x).

From an abstract point of view, the function f, tells us all we need to
know about the action a; if two actions, say a and b, determine the same
outcome in ¢ach state of the environment, then we have no real need to
distinguish them. Thus, for our theory, two actions are essentially equiva-
lent if

6.2} plx, a) = p(x, b) for all x in X,
or, in the notation of (6.1a), if
(6.3) fx) = fi{x) forali x in X.

Following Savage (1954), we shall cail a function f from X to R an act.
Dealing with acts, rather than with actions and an outcome function,
has the advantages of conceptual economy and of focusing attention on
the important point that the essential thing to know about an action is
not its “name,” but its consequences under alternative states of the
environment. Nevertheless, in this book we shall retain the concepts of
“action” and “outcome function” as we have introduced them above,
since they correspond more closely to the everyday connotations of the
words.

The concept of act does help us to define what we mean by the set of
all conceivable actions; by this last we shall mean either the set of al! acts
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(i.e., the set of all functions from X to R), or some suitable index set for
the set of all acts. This set will be denoted by A.

In any given decision situation, typically not all conceivable actions
will be feasible. Therefore a feasible subset of 4 will have to be indicated.
- Up to this point, then, our decision problem is characterized by a set X
of alternative states (of the environment) x, a set R of alternative outcomes
r, the set A of conceivable actions ¢, and an outcome function g from
X % A to R, which specifies the outcome resulting from each state-action
pair,

{6.4) r = pix,a.

7. CONSISTENT BELIEFS AND TASTES UNDER UNCERTAINTY

Formally, one might maintain the original definition of consistency—
even after introducing uncertainty. One might simply say that a consistent
man has a preference ordering on his actions, and not inquire into the
reasons underlying this ordering, just as the economist does not inquire
into the reasons for a man’s preferring pickles to olives. This approach,
taken, for example, by Debreu (1959), will not suffice for the purposes of
this book.

To study concrete problems of decision under uncertainty, it will prove
useful to define not only consistent interests (*‘tastes™), but also consistent
“beliefs.” A decision-maker is said to have consistent tastes if he can rank
the alternative choices confronting him in accordance with his preferences.
Under uncertainty, each of these alternatives is an action resulting in
several possible outcomes depending on the environment. A decision-
maker is said to have consistent beliefs if he can rank future alternative
events {sets of states of environment) according to his views of their com-
parative probabilities, Moreover, we require a consistent decision-maker to
be free of both “wishful thinking” and “persecution mania’’; that is, his
ranking of the probabilities of events should not depend on whether a
given event will result in a more or a less desirable outcome of a given
action.

We shall also require that the decision-maker’s preferences among
actions under uncertainty and his preferences among outcomes under
certainty be consistent. Roughly speaking, et a and b be two actions such
that the outcome p(x, a) is preferred to the outcome p(x, b) for every state
x; then we shali require that action a be preferred to action b. This require-
ment, together with those assumptions needed to give it a precise meaning,
goes a long way toward structuring the decision-maker’s preferences
among actions.
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Finally, we shall require that our decision-maker obey the rules of logic.

We shall show in outline that, under fairly general conditions, these
properties of a consistent decision-maker imply that he “maximizes
expected utility,” in the following sense.® The preference ranks that he
assigns to allernative outcomes can be replaced by numbers called
utilities; and the probability ranks that he assigns to allernative events
can be replaced by numbers called subjective probabilities. These numbers
retain the same respective orderings as the ranks they have replaced:
but, unlike mere ranks, utilities and subjective probabilities can be meaning-
fully added and multiplied. Moreover, subjective probabilitics obey the
usual rules of the probability calculus. The expected utility of an action
under uncertainty is defined to be the average of the utilities of its several
possible outcomes, each weighted by the probability of the event under
which that outcome will obtain. The expected utility of an action under
cerlainty is then, of course, identical with the utility of its (unique) outcome.
The ordering of actions by expected utilities will be shown to be identical
to their ordering by preference. Therefore, since the action chosen is that
with the highest preference rank, it will also be the one with the highest
expected utility.

The given preferencesamongactions will be denoted by the symbol %, so
that 4

a=<bh
A

is to be read “‘action a is not preferred to action b.”

By an event we shall mean any set of states, that is, any subset of X.
Suppose that the set R of alternative oulcomes is finite, so that R consists
of the N alternative outcomes ry,...,ry. For any action a, let Z,(a)
denote the set of states x such that

p(x$ a) = ri;

in other words, Z(a) is the event “action a has outcome r,.”
In the remainder of this chapter, we shall discuss the representation of
the preference ordering =< of actions by means of two “auxiliary” numerical

A
functions: a function n on the events, called the subjective probability
Junction, and a function v on R, called the utility function. The expected
utility Q(a) for a given action a is defined by
N

(7.1) Qa)y = ¥ v(rin[Z{a)).

6. See also Luce and Suppes 1965; J. Marschak 1968; and numerous references given in
Fishburn 1968.
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The expected utility function Q is said to represent the preference ordering
= if for all actions @ and b in 4
A

{1.2) a<b if and only if Qfa) = Q(b).
A

Qur concern will be to show that, under certain plausible conditions,
a preference ordering can thus be represented, and to explain how the
probability and utility functions can be measured in any particular case.
Although our discussion will fall short of being completely rigorous, we
shall go into some detail to expose the logical structure of the problem.

We have already mentioned that we shall require the consistent
decision-maker to display a certain independence between his tastes and
his beliefs. One can distinguish three aspects of this independence.
They can be associated, respectively, with the possibility of defining:

i. Conditional preferences among actions, given events,

2. An ordering of outcomes according to preference, independent of
the states in which they occur,

3. An ordering of states according to probability, independent of the
outcomes with which they are associated.

PREFERENCES AMONG ACTIONS

Consider a given event Z, and consider any two actions, a’ and ¥/,
that result in the same consequences outside Z (i.e, when Z does not
happen). That is,

(7.3) plx, a’) = p(x, b) for x notin Z.

This is illustrated by the first two rows of Table 1.1a, where the four
states x,,..., x, are divided into two disjoint events Z and Z, and the
entries in the body of the table indicate the outcomes. Thus, for example,
plx,, b’y = 5. To fix the tdeas still further, the entries in Table 1.1b are
dollar amounts, the state x; is candidate i will be elected, and the actions
are bets, '

The first independence condition states that the preference ordering of
two such actions should be independent of their (common) outcomes
outside Z. Formally, let «” and b” (as in Table 1.1} be two other actions
such that

p(x, ") = plx, &)
(7.4) plx, b") = plx, b)

plx, a’) = plx, b") forx¢Z.

} forxeZ,
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TABLE 1.1a TaBLE 1.1h
Events Zz 7 Z Z
Staies
X, X Xy Xy X, X X3 X4
Actions

a ryor ry 13 a -3 8 =5 7
b 57 8 ty b -1 6 -5 7
a" R D a” -3 8 4 -9
b 5 ooy b -~ 6 4 -9

The pairs (g, &) and (a”, #") will now be considered separately, each as a
different feasible subset of the set 4 of all conceivable actions.

INDEPENDENCE CONDITION ] : CONDITIONAL PREFERENCES IN ONE EVENT
ARE INDEPENDENT OF CONSEQUENCES IN OTHER EVENTS. For o', a”, b,
and b, satisfying (7.3) and (7 4),

@< fandonlyif o XD
! p

Notice that a” and b” can be thought of as obtained from & and & by
modifying their common outcomes outside Z. Independence Condition 1
states that, as long as these outcomes remain common to both actions,
such modifications should not affect the choice between actions.

Independence Condition ! makes it possible to define conditional
preferences among actions, Consider any two actions, a and b, and any
event Z; construct two other actions ' and & such that {as in Table 1.2),
if Z happens, then a' has the same outcomes as g, and b’ has the same
outcomes as b, but, if Z does not happen, then 4’ and b have common
outcomes:

plx, a) = plx, a)
(7.5} plx, b) = plx, b)
plx, a’} = plx, b)) forx¢ Z.

} for xe Z,

We define
a=<b givenZ
A

to mean

alA
o
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The situation described by (7.5)is illustrated by Table 1.2. Independence
Condition 1 guarantees that, for fixed « and b, the ordering of any pair
a and b will be the same, provided that g” and &’ satisfy (7.5). In other
words, Independence Condition ! puarantees that the definition of
conditional preference just given does not depend upon the particular
choice of @’ and b that satisfies {7.5).

TaBLE 1.2a TasLe 1.2b
Events ! Z Z V4 Z
Stales
X, X3 Xy X4 Xy X X3 X4
Actions

a ry T2 ri Fg a -3 8 -5 7
b s 5 Sy S84 b -1 6 4 -9
a ry r; 1, 14 a’ -3 8 1 -2
¥ Sy Sz 13 I b -1 6 1 -2

An important consequence of Independence Condition 1 is what we
shall call the Sure-Thing Theorem for Conditional Preferences.” Before
proceeding to a discussion of this principle, we make a few definitions.

First, in the realm of notation, we define

“a~ b”tomean “ga X band b <X a”
“a < b" tomean "¢ 5 bbutnoth < a”

The first is to be read “a is equivalent to b,” and the second, b is strictly
preferred to a.” The second could also be written “b > a.”
Second, by a partition of X we shall mean a collection of events
Zi,...,Z,such that
every state x is in some event Z;; and
no state x is in two different events Z; and Z,.
We are now in a position to state the following theorem:

SURE-THING THEOREM FOR CONDITIONAL PREFERENCES. Ler {Z;}
i=1,...,nbea partition of X, and let a and b be rwo actions.
(i) If, for every i, a < b given Z,, then a ;; b.
(i} If, further, a < b given Z; for some j, then a < b.
An immediate consequence of condition (i} is:
(iii) If, for every i, a v b given Z,, then a ~ b.

3

7. The term sure-thing principle was introduced by Savage (1954). We efaborale somewhai
ot Savape's presentation by formally distinguishing two theorems, as will be seen shortly.
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We shall not give a complete proof that this proposition follows from
complete ordering of actions and Independence Condition I, but only
illustrate the proof by an example. The extension to a general proof will,
we hope, be obvious. Consider the situation described by Table 1.3, with
four states, and a partition of the siates into {two events.

TaBLE 13a TapLE 1.3b
Events z, Z,
States _
Xy X Xy Xg
Actions
a o Fy o Fa a -3 &8 -5 7
b . 5 5 S3 84 b -1 6 4 -9

Suppose that [as in condition (1) above], g < b given Z,, and a < b given
A A
Z,.Toshow that a =< b, we construct a third action, ¢, which we can show
A
10 be between a and b, with respect to preference, as displayed in Table 1.4.

TapLE 1.4a TaBLE 1.4b
Z, Z, Z, Z,
Xy X3 X3y X4 ’ Xp X3 X3 X4
a ryoF, F3 by a -3 8 -5 17
¢ Sy S; r3; Fg c -1 6 -5 7
b 5 5 Sy 8 b -1 6 4 -9

By the definition of conditional preference, a < ¢, since a < b given Z, .
A
Similarly, ¢ < b, since a<Xb given Z,. Hence, by the transitivity of
A
preferences, a ;; b.

Independence Condition 1, together witl certain continuity assumptions, already
implies the possibility of representing the preference ordering < by a numerical
. A
function of a rather special form,® namely,

Q*a) = ¥ v*[x, plx, a)].

The two additional independence conditions to be discussed have the further
imphication that v* can be expressed in the form

p¥(x, r} = PlxpAr).

8. Apply Theorem 3 of Debreuw 1960. In addition to certain regularity conditions, the
application of this theorem requires that X be finite and have at least three states.
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PREFERENCES AMONG OUTCOMES

We shall now consider the case in which an event Z consists of a single
state x. Thus Z = {x}. The conditional ordering of actions given the
event {x} defines a conditional ordering of outcomes r given the event {x),
since an action (a function from the set of states to the set of outcomes)
results in a unique outcome for any given state. We can express the
conditional ordering of outcomes r and s given {x} by writing

r é s given {x}

whenever v = p(x, a), s = p{x, b) and

a=<b given {x}.
A

The second independence condition states that these conditional orderings
of outcomes should be identical,?

INDEPENDENCE CONDITION 2: TASTES ARE INDEPENDENT OF BELIEFS.
The conditional ordering of outcomes given {x} is independent of x.
By virtue of this second independence condition, the ordering <

R . . . A
of actions induces a unique ordering of outcomes, which we shall denote
by <. The ordering may be interpreted as the ordering of outcomes under
R
certainty.
An immediate consequence of Independence Condition 2 and the Sure-
Thing Theorem for Conditional Preferences is the following:

SURE-THING THEOREM FOR QUTCOMES. If for every state x in X

plx, a) § plx, b),
then a =<5 b.

Anot‘l‘wr interpretation of “preferences among outcomes under cer-
tainty” arises from the consideration of ‘‘constant actions,” that is,
actions that have the same outcome for all states. If actions a and b are
such that

plx,a)=r  forallx
p(x,b) =5 for all x,
and if ¢ -< b, then it seems reasonable to say that outcome r is not preferred

to outcome s {under certainty). The Second Independence Condition

9. The statement given here is actually a little simpler than is desirable; see the fme
print at the end of this section.
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(and the Sure-Thing Theorem for Qutcomes) tell us, in cffect, that this
latter ordering of outcomes is identical with the ordering given by con-
ditional preferences.

The third independence condition will be introduced in connection
with the concept of subjective probability.

There may be evenis Z such that the decision-maker is (conditionally) indifferent
among all actions given Z; this would be the case if he regarded the event Z as
impossible. Such an event would have the property that modifying the consequence
of any action for states in Z would not affect the preference ordering of the action.
Of course, we conld assume that there are no such cvents for the decision-maker
in question; if there were, the corresponding states could be eliminated from the
description of X. However, for technical reasons it is sometimes convenient to allow
such events in the theory.

Formally, we define an event Z to be nulf if for all actions a and b,

a~ b given Z;

a state x is said to be nuil if the event {x} is null, Independence Condition 2 shouid
now be modified by adding the phrase “for all nonnull x.”

If X is infinite but not denumerable, then a slightly more general statement is
required, in which one defines conditional orderings of outcomes given (any) events;
the Second Independence Condition then would read: The conditional ordering of
outcomes given Z is independent of Z, for all nonnull events Z,

8. SUBJECTIVE PROBABRILITY ORDERINGS

To give an idea of the reasoning that establishes the existence of
numerical subjective probabilities, we consider first a farmer who must
choose between two actions. Action « consists in planting a crop that
thrives oniy in a wet summer (event W), action a* is to plant another
crop, which requires low humidity (event non-W, denoted by W). Suppose
the success of either crop is equally desirable: for example, let success
mean in both cases the same large money gain. Similarly, let the desir-
ability of failure of either crop be the same, failure consisting in both
cases of a certain small money gain, or a loss, as in Table 1.5.

TaBLE 1.5

Events w w

Actions

51000 -$% 200
-5 200 £100C
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It is consistent with ordinary usage to say that the farmer’s comparison
of probabilities of the two events is revealed by his preference ordering of
the two actions. For, if he prefers to plant the wet crop (action a), we
usually say that he believes a wet summer (event W) to be more probabie
than a dry summer (event W). More generally, in Table 1.6a,let Y and ¥

TaBLE 1.6a
w w Y ¥ Zz Z
a 31000 —$200 b §1000 3200 ¢ $1000 —3200

be another pair of exhaustive and mutually exclusive events. For example,
Y may be: “‘a certain presidential candidate is ¢lected.” Let b denote an
action (a bet) that will yield $1000 il ¥ occurs, and —3$200 otherwise.
Similarly, let ¢ be still another bet, with the same outcomes (51000 and
~§200), but this bet depends on whether the ¢vent Z occurs. For example,
Z may be: “the next card drawn from this deck will be a spade.” When
the decision-maker prefers action a to action b (i.e., he bets, with the same
amounts at stake, on event W rather than on event Y), it is usual to say
that, to him, W seems to be more probable than Y. Now il he prefers
a to b and b to ¢, and is consistent, he will prefer a to c. Hence, if, to a
conststent man, W seems more probable than ¥, and Y than Z; then, to
him, W seems more probable than Z—the ordering of the probabilities
of these events having been defined, so far, with respect to a particular
pair (31000, —$200) of outcomes. Thus the transitivity of preferences
among actions has induced the transitivity of probabilities of events with
respect to the particular pair of outcomes.

1t has been pointed cut (Dreze 1960 and 1961) that the choices between bets such
as those in Table 1.6a do not always make a comparison between probabilities of
the corresponding events possible. For example, let ¥ = “your favorite candidate
is elected” and Z = “the next card is a spade.” Then the payofis entered for ¥ and
¥ should be not “$1000” and “* —$200," respectively, but rather “$1000 and the
viclory of your candidate™ (which is better than $1000) and “—$200 and the defeat
of your candidate” (which is worse than just the loss of $200). In the language of
F. P. Ramsey (1931), event Y is “ethically non-neutral.”” The payoffs of bet b, as
entered in Table 1.6, are, then, not the same as those of bet ¢; and your preference
between b and ¢ does not reveal whether you judge ¥ more probable or less probable
than event Z. However (as suggested by T. Marschak), you can correct the entries in
Table 1.6 so as to make such a comparison possible. Ask yourself whether “$1000
and victory” is preferable o $1100, 1200, . .., 2000, . . . to find thai youare indifferent
between “$1000 and victory” and *1500,” say. Enter, then “$1500" (instead of
$1000) as your payoff in case bet ¢ succeeds {i.¢, if the next card is a spade), Simitarly,
if your cash equivalent of ““—$200 and defeat” s *—$800", enter this amount as
the payoff of bet ¢ if event Z takes place. If you now prefer bet b to the (modified)
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bet ¢, you have judged event Y to be more probable than event Z, Note that we have
modified the payofis, not the events. But to modify the payoffs we have implicitly
used a continuity assumption : if an outcome is preferred to x,; dollars but is not
preferred to x, dollars, then there exists a doltar amount x4 (where x; < x4 < x;)
such that you are indifferent between the outcome and x,.

So far, only one characteristic of consistency has been used: the
existence of a preference ordering among actions. From this, an ordering
of the probabilities of events has followed, the ordering having been
defined in accordance with ordinary language, but with only one pair of
possible outcomes considered. We now introduce, as a further character-
istic of the consistent man, the independence of tastes and beliefs. The
same man who bets on W rather than Y, and on Y rather than Z when
the pair of outcomes is ($1000, —$200) will, if he is consistent, preserve
the same ordering among the bets when the pair of oulcomes is (s, f),
where 5 (“success™) is something, anything, that he prefers to f (“failure™).
{The outcomes s and f may, or may not, be money amounts.) Thus in
Table 1.6b, if he prefers a to b to ¢, he should prefer a' to b to ¢’ if he is
consistent; his judgment aboul comparative probabilities of events
should not depend on what rewards or punishments they entail.

TABLE 1.6b
w W Y Y Z Z
a $1000 —$200 b %1000 5200 c $i000 —3200
a’ 5 I b s f ¢ 5 I

More formally, we have the following condition.

INDEPENDENCE CONDITION 3: BELIEFS ARE INDEPENDENT OF TASTES. Let
1.5, [, s be outcomes such that

f<s  f<s
R R

Let W and Z be two events, and define actions a, b, a', b’ by

5 if xin W
plx, a) = . .

f if xnotin W
plx, b) = {S YxinZ

I if xnotinZ

&.1) , s ifxinW
plx,a)y=+ .

f if x not in W
o= 1x02

! if xnotinZ;
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then
aéb ifandonlyif o =SB

~

The situation described by (8.1) is depicted in Table 1.7.

TaBLE 1.7
w oW zZ Z
a s f b s f
a! Sf j‘f bl sf f‘f

The independence of tastes and beliefs permits us to order events by
probability without reference to the particular outcomes considered.
If, in the situation of (8.1}, a =< b, then we shall say that event W is not

A

more probable than event Z, and write

wsz.

It follows that, if a 5 b, then W Z (W and Z are equally probable).
The ordering < '< will bc called the subjectwe probability ordermg of events.

The word sub)ectwe emphasizes that Lhe ordering is valid for the particular
decision-maker in question, and that two different persons may (but need
not) have different probability orderings of events.

9. NUMERICAL SUBIECTIVE PROBABILITIES

We can now indicate how the consistency requirement leads logically
to the existence of numerical subjective probabilities that obey the usual
Jaws of the probability calculus, For a while, let us distinguish just two
possible outcomes, s and f, of which s (“‘success™) is preferable to f
(“failure”); and let there be n mutually exclusive and exhaustive events W.
Consider, to begin with, n actions a,,...,a, such that g; succeeds only
if W. happens, and fails otherwise, as in the upper part of Table 1.8.
The first n rows of this table are merely an extension of Table 1.5 from
2 to n events, Again, if ¢, i1s preferred to a,, a, t0 a,y,...,4,- O a,,
then it is usual to say that the decision-maker ranks the subjective
probabitities thus:

W, > W, > ...> W,
X X X

Now let us suppose we can define the n events W, and n actions g, in
such a way that the decision-maker is indifferent among all actions
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TABLE 1.8

W, W, W, e W W, W,
a s i ! I f J
ay S s J S S I
s f T foos o f
a, f f j f f 5
b, s f i I S s
b, i 5 s f S s
Y S S5 s
<) 5 ! I f $ 5
<2 f s I f J 5
S

a,,...,4, Thus in our example of the farmer, we can adjust, up and

down, the humidity degrees that define the boundaries between pairs of
adjacent events (“very dry summer,” “‘moderately dry,” etc), until
indifference between correspondingly defined actions is achieved.'® As in
~ the case n = 2 considered before, it will then again accord with ordinary
language to say that the decision-maker regards all thenevents Wy, ..., W,
as equally probable.

With the n events Wy, ..., W, and » actions a,, ..., a, of Table 1.8 thus
redefined, let us consider, in the same table, a new set of (n — 1) actions
by,...,h,— such that b; is successful il and only if the compounded event
“W; or W, happens. Now we compare b, with a,. These two actions
result in the same outcome if the event “‘non-W,”” happens; but the result
(s) of b, is preferable to the result {/) of ¢; when W, happens. Hence, by
the Sure-Thing Theorem for Ouicomes, b, is prelerred to a, ; we conclude
that, for the decision-maker, the event “W, or W, is subjectively more
probable than “W,” and also than “W,.” Clearly, a corresponding
conclusion is reached if we replace W, by any W, (i # n),

(W, or W) = W, i=1...,n—1
x

{thus, a larger subjective probability is assigned to a larger set of states).
Moreover, indifference between @, and @, implies indifference between

10. We have made here, in fact, a continuity assumption,
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b, and b,, by Independence Condition 1, so that replacing W, W, by
any W;, W, (i, j distinct from n) gives

(W, of W,) ~ (W; or W) > W, ~ W, ~ W,
X X X X

Since, instead of replacing failures by successes in the ath column, we
could do the same thing in any column, we have, for any column &,

(W or W) 7 (W, or Wy) (i, j distinct from k).

We have similarly (W, or W) + (W, or W)) (h, k distinct from i); and,
since "W, or W is logically the same event as “W, or W,,"” then by transi-
tivity

O.0) (W, or W) ~ (W, o1 W) > W, ~ W,

{(h and i distinct, j and k distinct).

Further, we can define, in Table 1.8, a set of actions¢;(i=1,...,n — 2},
each succeeding in three cases and failing in all others. Reasoning as
before, we can show that indifference between by, ..., b,_; implies that
all actions ¢; are equally desirable and each is preferable to any of the
actions b,,...,b,_,. By similar reasoning, all actions that succeed
exactly in m (£n) cases are equally desirable, and are better than any
action that succeeds in m’' { <m) cases. Therefore (9.1) can be generalized
thus:

9.2) (W, or W, or... W, ) (W, or W, or... W, )
X

if the W’s are equiprobable, all the i’s are distinct, al! the j’s are distinct,
andm = m'.

We can now represent the ordering =5 of events according to subjective

iy . . X,
probability by a numerical function n in such a way that the numbers
(W), (W, or W), and so forth, obey the laws of the probability calculus.
We introduce, without loss of generality, the convention

(9.3} > W) =1,

i=1
for any n-tuple of exhaustive and mutually exclusive events W, (ie, any
partition of X). In the particular case considered, indifference among all
actions a; implies that alf m{W)) are equal, and hence n{W,) = 1/n for all i.
Moreover, the implication {9.2) is not contradicted if we put

(9.4) (W, or W,or...W, ) =m/n all i distinct.
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Let Z=(W;, or W, or... W), Z'=(W, or W, or... W, ),
m<nm £ n, where i,,...,1i, are distinct, j,,...,j,, are distinct, and
some i’s are identical with some j’s. That is, there is an overlap, “Z and Z™
being constituted of those mutually exclusive events that are common to
Z and Z'. If there are r such common events, then the event “Z or Z'

consists of m + m’ — ¥ mutually exclusive events. Hence by (9.4),
nZorZy=(m+ m - r)n,

and, since (m + m' = r)fin = (mfn) + (m'[n) — (v/n),

9.5) nZ or Z') = n(Z) + n(Z") — n(Z and Z);

thus numerical subjective probabilities obey the addition rule of the
probability calculus.

Let us summarize our progress thus far. For a given positive integer n
we have partitioned X into n equiprobable events W,,..., W,. Let %"
denote the class of all events (sets) of the {form

9.6) (W, or W,or...or W),

where iy, i,...., 1, are distinct integers between | and n. (Note that X
is in #”.) Each event W of the form (9.6) has been assigned the numerical
subjective probability (W) = m/n. This function = represents the ordering
of events in ¥ according to subjective probability, in the sense that for
W Wi #,

(9.7) W W ifandonlyif o(W) < n(W"),

Finaly, the function = satisfies the following properties:

(i) ={W) = 0, for all Win %~
(9.8) (ii) n(X) =1
(iii) w(Wor W = a(W) + =(¥W'), for all disjoint Wand W' in %~

Thus by (9.8), the function = has all the properties of a probability measure
for those events beloriging to #7".

Suppose, now, that for arbitrarily large integers n we can partition X
into n equiprobable events. To be precise, suppose that such a partition
can be constructed for each number »; in some increasing, unbounded
sequence iy, n,, and so forth, of positive integers. Then, for each n;, we
can construct a class %] of events and a probability measure n;, satisfying
{9.7) to (9.8).
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Suppose, further, that if #; = n;, then #; contains #;, that is every
event in # is also in #;. This could be accomplished, in particular, if
the partitions in question could be constructed by a process of successive
subdivisions, for example, by dividing each event in any onc partition
into two equally probable events, 1o yicld the succeeding partition.
{In the example of the larmer, this could be done by exploiting the con-
tinuity of the variable **humidity.””) In this case, the sequence of numbers
n; would be 2, 4, 8, and so on.

If each class # includes the preceding one, as in the above construction,
then it is obvious that all the probability measures n; agree, in the sense
that, if an cvent W belongs to both %/, and #;, then

(9.9) T W) = n(W).

By virtue of (9.9) we are justified in dropping the subscript i on the measures
;.
Let us pause again for a summary. We have now arrived at a numerical
representation n of the subjective probability ordering < for a large
X

class of events, namely, the class # of all events W that arc in class ¥,
for some i. For this class %, & has the properties (9.7) and (9.8), with %"
replaced by #. Let & be the set of rational numbers of the form {m/n),
0 = m £ n;; then r has the property:

©.10) (i) for every cvent Win %, n(W) is a rational number in &#

(ii) for every rational number m/n in &, there is an event W in
W such that n{ W) = m/n.

By virtue of (9.10) we can assign to every rational number k in & an
event W, with probability k. We shall use these events W, as “‘bench
marks” to measure the probabilities of other events.

Qur final task in this section is to extend the measurement of subjective
probability to events outside the class ¥ Using the bench mark events
W, just derived, we can measure the probability of any event Z to any
desired degree of accuracy. If for some rational number k in 22,

ZzZ e w,,
then we define
(9.11a) - awlZ) =k

More generally, we employ a method of successive approximation. Note
that every number between 0 and | can be approximated as well as one
pleases by a number in #. For example, suppose that & is the set of all
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rational numbers of the form (m/27), p 2 1, 0 £ m < 27, We may first
ask whether

Z= Wy
X
if the answer is “yes,” then we ask whether
Z < Wl,m.;
X
if the answer is ““no,” then we ask whether

Z:; Wi

and so forth. In this way we construct a sequence of approximations, so
that after N steps we can make a statement of the form

Wiy = Z < Wy 0= My <2Y;
o X 2N
furthermore, by construction, the sequence (M /2" is nondecreasing, and
the sequence (My + 1)/2V is nonincreasing [in our example above, the
sequence (M /2") might start out 0, 1/4, 1/4, and the sequence (M y + 1)/2"
might start out 1/2, 1/2, 3/8]. We define the subjective probability ol Z to be

. My

{9.11b) oZ) = nET:o N
The definition (9.11b} includes {9.11a) as a spccial case, since all real
numbers between 0 and 1, rational or otherwise, can be approximated to
any desired degree of accuracy by numbers of the form (M/2"), with
0 M =2V

That the probability measure, n, as extended by (9.11b), possesses
properties (9.7) and (9 .8) for all events is, we hope, plausible in view of the
method of measurement, since these properties are satisfied for events in
#. We omit a proof, however, because of the mathematical technicalities
involved. We should mention here that, in typical developments of the
mathematical theory of probability, one does not suppose that all events’
have a probability measure, but only those belonging to some suitably
restricted class (see remarks at the end of this section). For our purpose,
it will suffice to suppose that = has been cxtended to some class, say 7,
with the following properties:

M Xisin@
912y () if Zisin &, then (not-Z) isin &
{iii} il Z and Z’ arein &, then (Z and Z’) and (Z or Z') are in &
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For events in the class &, we can summarize the required properties of
the subjective probability measure =, rewriting (9.7) and (9.8} as follows:
for every Z and Z'in 7,

(i) n(Z)z 0
(i) m(X) = 1

{iii} 7(Z or Z') = n(Z} + n(Z"), i Z and Z' are disjoint (mutually
exclusive)

(iv) Z < 2" if and only if n{Z) £ n(Z").
X

9.13)

From (9.12) and (9.13), the usual theory of probability follows, inctuding
the development of the concepts of conditional probability, independence,
and so forth {see, however, the remarks at the end of this section).

In particular, the conditional probability of Z given Z’ is defined by

(9.13a) © Prob[Z|Z]] = ELZT:_;Z_)

provided that =(Z’) > 0. The sets Z and Z' are said to be independent if
{9.13h) mZ and Z) = w(Z)r(Z').

This implies

(9.13c) Prob[ZIZ'] = r(Z)

if Z and Z' are independent.

In extending 7 to some class 2 of measurable events, it is natural to
suppose that 2 is sufficiently rich so that the following extension of
property (i) of (9.10) holds: For any event Z in &, and any real number k -
between 0 and 1, there is a partition of Z into two (disjoint) events Z' and
Z” such that

MZ) = kn(Z)
Z") = (1 ~ ki Z).

In particular, for any k between 0 and 1, we can find an event W, in &
such that =(W,) = k. In other words, the family {W,} of bench mark events
can be extended from k in # 1o all real k. These bench mark events will
be used in measuring utility.

In the sections on utility (Sections 11 and 12), it will be useful to have
property {iv} of {(9.13) restated in terms of actions. Consider two actions,
a and & whose outcomes are restricted to the pair (s, f) where [ i s.

(9.14)
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Let Z be the set of states x for which p(x,a) = s, and similarly for Z'
and a'; that is, _
] forxin Z

p(x,a) = {

! for x notin Z
%.15)

) ) forxin 2’
plx, a’) = : .
) for xnotin Z".

By the definition of the orobability ordering <,
X
axa fand onlyif Z < Z'.
A ¥

Hence, by property {iv) of (9.13)
(9.16) asd if and only if n(2) £ ~(Z').
A

Condition (9.16} can be paraphrased as [ollows: “If each of two actions
can result in either success or failure, then the preferred action is the one
with the highest probability of success.”

The general method deseribed here for deriving subjective probabilities from
orderings on actions is due to Ramsey 1931, de Finetti 1937, and Savage 1954,
Raiffa {1968) gives a vivid elementary presentation, and Winkler (1967) reports
some interesling experiments. In particular, the third independence condition is
due to Ramsey; it also corresponds to Savage's postulate P4. Independence Con-
dition 1 is Savage’s postulate P2, and Independence Condition 2 corresponds to,
but is not the same as, Savage’s P3. It should be noted that, although our statement
of Independence Condition 3 has a clear intuitive meaning, it would not be con-
venient for a rigorous mathematical discussion, since in a formulation with an
infinite number of states every single state might well have probability zero, and
therefore constitute a null event (recall that an event Z is null if, for every pair of
actions a and b, a ~ b given Z).

Some readers may have noticed that we have required that the class 4 of measur-
ableevenis bejust a ring, and not necessarily a g-ring, and that the probability measure
m be finitely additive, but not necessarily countably additive (see, for example,
Halmos 1950 for definitions of these concepts). This was done to simplify the exposi-
tion, but in subsequent parts of this book we shall not hesitate to petform probability
calculations that are based on countable additivity. This is related to the problem
of restricting the class of events that are considered measurable. For a discussion of
these and related matters, see Savage (1954, Chapter 3, Section 4).

10. SUBJECTIVE AND OBJECTIVE PROBABILITIES

We have not inquired why a given consistent decision-maker makes
particular choices that reveal particular subjective probabilities of given
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events. Note that he can bet on repeatable events (weather, or the suit
of a card) as well as nonrepeatable ones. Our discussion can apply, for
example, to betting that men will first Jand on Mars between the years
2000 and 2010; or to betting that the specific weight of a metal not yet
available in one’s laboratory will be such and such.

We have seen that it is possible to calibrate subjective probabilities
using as bench marks a set of mutuaily exclusive and exhaustive events
(i.e., a partition of X) such that the subject is indifferent among bets on any
of them, as is the case, in Table 1.8 for the bets a,, a;, .. ., a, on the events
W,, W,,..., W,, respectively. In this way one may calibrate a person’s
subjective probabilities of events that are nonrepeatable such as the
alternative values of an unknown datum of physics or history or, for that
matter, mathematics.'! Now, we can assume that different subjects will
display such indifferences among bets when they have reason (pending
further information) to regard the corresponding events as interchange-
able, in the sense illustraied by the following examples:

The subject believes that a certain die is almost “‘well made,” and the events
considered are the following six : the upper face of the die shows 1,2....,6 dots,

The subject has no information about the 5th and subsequent digits of \/5, and
the events considered are the following ten : the 100th digit ofﬁ i50,1,...,9

If it is granted that all reasonable persons are indifferent among all
the six bets of the first exaniple, and among all the ten bets of the second
example, their behavior will reveal the same subjective probabilities:
1/6 for each of the events of the first example, and 1/10 for each of the
events of the second example. Because of this intersubjective agreement
about preferences among bets, the above subjective probabilities will also
be objective. The almost “well made™ (or almost “ideal”) die is quite
analogous to the almost “ideal” straight edge or solid body, in the sense
that people agree about certain properties of it. (See also de Finetti 1968.)

In an important case, (1) there exists intersubjective agreement that
certain (“repeatable”) events are interchangeable; and (2) it is possible
to observe some (a “sample”) of these events. For example, suppose there
is no reason Lo assume that any change in the structure of a not necessarily
well-made die or in its environment occurs from one throw to the next, and
hence no reason to prefer betting on the ace in one rather than another
throw. Ot suppose there is no reason for an insurance company to prefer
betting on the survival, over the period of one year, of one rather than
another native-born white male of a given age and occupation. Let a
sequence of throws of that die, or let a sampie of those males, be observed.

11. See, however, Chapter 9, Section 6, with regard to the logical difficulty in applying
subjective probabilities to the outcomes of logical or mathematical operations.
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Such observations are called “‘repeated and independent,” and these
properties will be defined more precisely in Chapter 2, Section 10. Let the
refative frequency of the occurrence of aces or of survivors, respectively,
be honestly recorded. There is then no intersubjective disagreement about
these recorded numbers for the particular samples observed. Nor is there
(as already remarked) disagreement about the indifference among bets
on the first, second, or any successive throw resulting in an ace ; nor about
the indifference among bets on the survival of any of the appropriately
specified males. To this extent, the probabilities estimated from observed
frequencies would have the feature of “objectivity.” _
Would a man be well advised to behave as if his subjective probabilities
were equal to corresponding (and “objective™) relative frequencies? In a
certain sense the answer is “yes.” It corresponds to common sense to say
that, if 2 man with consistent tastes has a belief in the probability of an
event, which was originally formed without repeatedly observing the
occurrence or nonoccurrence of the event, then he will reveal, by a revised
decision, a revised probability belief after being able to make such
observations. The more numerous the observations, the more drastic
may be this revision; the subjective probability of an event will approach
more and more the observed relative frequency of its occurrence, and
will depend less and less on the original “uninformed” belief. We cannot
give here a completely riporous formulation and proof, which combines
Thomas Bayes's {1763) old idea of *a posteriori probabilities™ with some
properties of consistent behavior discussed here.'? However, we do
provide some further discussion of this topic in Chapter 2, Sections 9 to 11,

11, ExrecTED UTILITY: CASE oF Two OUTCOMES

We begin our discussion of the measurement of the utility of outcomes
and the representation of preferences among actions with the case in
which the set R consists of only two oltcomes. We do this, first, because
the case of two outcomes is extremely simple, and second, because it can
be used as a first step in the discussion of the general case.

Let the two outcomes in R be denoted by s (success) and [ {failure),
with
(1.1 f<s

R

12, See Savage 1954 and Marschak 1970b, Economic thought and terminology have
been much influenced by F. Knight (1921) who emphasized the prevalence of nonrepeatable
events in practical life and reserved the word “uncertainty™ for the case of nonrepeatable
events, using the term “risk™ for the case of repeatable events. He took a resigied stand as
to the possibility of an economic analysis of behavior under “uncertainty” thus defined.
For an excellent survey, see Arrow 1951,
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For any action a, let Z{a) denote (for the purposes of this section only)
the set of states for which a results in success, that is,

3 for x in Z(a)

(11.2) plx, a}_ - {f for x not in Z(a).

Our task will be 1o find two numbers v(s) and u(f), called the utilities
of s and f, respectively, such that for any two actions a and b,

(11.3) a<bhb if and only if Qfa) = Q(b),
A

where for any action a,
(11.4) Qfa) = v(s)n(Zla)) + o(/)NT ~ MZ{a))].

[This is the special form taken by (7.1) in the case of two outcomes, in view
of {9.3)]. The number Qa) is called the expected utility of the action a.

We shall show that, for v(s) and v(f), one may take any two numbers
v, and v, such that vy < v,. In particular, one may take

vis) =1
o(f) =0

Indeed, with this last assignment of utilities, the expected utility (11.4)
of an action is equal to the probability of success. We have already noted
at the end of Section 9 that, for two-outcome actions, the preference
ordering is the same as the ordering by probability of success. Hence the
preference ordering < can be represented by expected wutility [in the

A
sense of {7.2)] if the utilities of success and failure are | and 0, respectively.
More generally, we rewrite (11.4) as

(11.5)

(11.6) Qa) = [v(s) — v(NH]r[Z(a)]) + (/).

It is clear that the function Q orders actions a in the same order as the
probability of success n[Z{a)] if and only if

(11.7) v(s) —o(f) > 0.

Hence any assignment of utilities satisfying (11.7) will yield an expected
utility function  that represents the preference ordering <.
p
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12. EXPECTED UTILITY: GENERAL CASE

Suppose now that the set R of alternative outcomes is finite;'® we may
label the outcomes ry,...,ry In R in such a way that, for all r; in R,

(12.1) rLS S Py
® 'R

To avoid an uninieresting degenerate case, we suppose that ry, is strictly
preferred to ry:

(122} | r<

For any action a, let Z(a) be the event'* g has the ontcome r;”:
(12.3) plx.a)=r for x in Z (),

a generalization of {11.2). Notice that, for each action &, the events
Za), ..., Zyl(a) form a partition of X,

Recall that our goal is to find a function v on R, the utility function,
such that the expected utility function

N
(12.4) Qa) = I vir)n[Z(a)]

i=}
represents the preference ordering =< of actions [see (7.1) and (7.2)].

A

We shall first show how to measure a utility function v, and then show
that the corresponding expected utility function Q does represent the
preference ordering <.

A
Following an approach suggested by the two-outcome case, first define
the utilities of the worst and best outcomes in R to be 0 and 1, respectively,
viry) =0,
(12.5)

viry) = L.

To measure the utilities of the other outcomes in R, we construct a
class of bench-mark actions. By (9.14) we can, for each number & between
0 and 1, find an event W, such that n{W,) = k. Define the action g, by

Fu for x in W,
(12.6) plx, a) =

" for x not in W,.

13, For the case of an infinite R, see Savage 1954, Chapter 5, Section 4.
4. It is assumed that, for all actions a in A4, the events ZJ{a) are measurable, i.e. are in
the class & {see (9.12) to {9.14)].
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The expected utility of the bench-mark action a, is immediately seen
to be k:

(12.7) Qa,) = k.
Now consider any culcome r; in R, Since

rS S N
R

we may write, applying definition {12.6) with k = 0 or 1,
{12.8) e S < ay

(this comparison between actions and outcomes is meaningful by virtue
of Independence Condition 2 and the Sure-Thing Theorem for Outcomes;
henceforth we shall often omit the letters R and A under the < symbol
without risk of ambiguity).

1t follows [rom (12.8) that there is some number k such that v, ~ a,;
we define that number k to be the utility of r;. To measure k, one can use
the same type of process of successive approximation that was used to
measure the subjective probability of an event. To summarize, the utility
u(r;) of an outcome r; in R is defined by -
(129) ri ~ au(r.-)'

It remains to show that the determination (12.9) of the utility function
v vields an expected utility function Q that represents the preference
ordering é such that for any two actions ¢ and b,

(12.10) a<sb if and only if }{a) = Q(b).

First note that in Section 11 (the two-outcome case} it was demonstrated
in essence that (12.10) is satisfied for all actions a and b that result in the
outcomes r, and ry only (this includes, of course, the bench-mark actions).
Our method of proving that {(12.10) holds for all actions will be to show
that any action is equivalent in preference to some action with the same
expected utility, but resulting in the outcomes ry and ry only; (12.10) will
then follow by the transitivity of preferences.

We first prove the following auxiliary proposition.

LeEMMaA. Suppoese that

() r is an outcome, with utility u = v(r);

{ii) W is an event, with probability p = n(W);
(ill) c is an action such that p(x,¢) = r for x in W;
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{iv) b is a two-outcome action such that
n[Znb)] = u
wlZpb)and W] = up
ZP)] =1 —u;

then
¢ ~ b given W.

Proof. By the use of (12.5), one notes that the expected utility of action b is u, and
hence r ~ b. Also, in the language of probability theory, W and Zy(b) arc independent
evenis. It will suffice to consider the case in which p is a rational number (m/n),
the irrational case following by approximation. By repeated application of (9.14)
one can partition X into Wy, Wy,...., W, ., W,,,..., W, W, such that

1)

W) =
(W) n
i=1l...,n
I —u
ﬁ(Wj1)= "
(12.11) W ={Wyor W, or... ot W, or W,,},

Znlby = (W yor... or W),
Zyby= (W, ,or...or W,

Foreachj=1,...,n, define actions ¢;and b; by

r for x in Wy or W,
P(-\'w Cj) =

ry otherwise
(12.12)

ry for x in Wy,

p(x! b}) = .,

r otherwise,
Define ¢ by ‘
(12.13) plx.c)=r for all x:
thenc ~ b.

The situation defined by (12.11) 1o {12.13) is illustrated in Table 1.9. All the c;are
equivalent (as to preference} and all the b, are also equivalent, since all the Wy are
equiprobable and all the W, are equiprobable.

Suppose that b < ¢ given (W, or W;,) for some i Then b; < ¢;; hence b, < c;
forallj=1,...,nand b < c given (W or W,,) for all j. Then, by the Sure-Thing
Theorem for Conditional Preferences, b < ¢. Similarly, if ¢ < b given (W, or W}
for some i, then ¢ < b. Hence ¢ ~ b implics that ¢ ~ b given (W, or W;,) for ali .
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By repeated application of Independence Condition I, we can easily show that

¢ ~ b given W, which completes the proof of the lemma.

TaBLE 1.9
Events w non-W
~ % ~ o
Actions wlN Wll WMN wml “II'IN wnl
c i r ¥ r r r
b rn ry 'y ry N r
() r r ry ry r ¥y
b, P 1 F1 F1 5 "
Cr ry r r r ry r,
b, ry r T " ry Ty

Now consider any action a. By application of (9.14) one can partition

each event Z4a) inlo two events, Z;y and Z;, such that
n(Zy) = [L(r)ir(Z(a)]

aZyy) = [1 — v(r)]n(Z ().
Define an action b by

ry il xin Z;y for any i

(12.14) olx, b) :{

By construction
ZN(b) = (ZIN or...or ZnN)

Ziby=(Zy or...or Z,;):
hence

r{Zy(b)] = _Zl [o(rd]alZ{a)]

(12.15) Q(b) = Na).

r, if xin 7, for any i.

We shall now show that b ~ a. For each i, the preceding lemma applies,
so that b ~ « given Z(a). Hence, by the Sure-Thing Theorem for Con-
ditional Preferences, b ~ 4. We have thus concluded the demonstration
that, with the utility function determined by {12.9), the expected utility

function (12.4) does represent the preference ordering <.
A
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THE UTILITY FUNCTION DETERMINED UP TO
ORIGIN AND SCALE

The question ariscs whether there are other functions beside the function
v determined by (12.9) that can serve as utility functions in our present
sense, [t can be shown that any utility function v* must have the form
v¥(r) = (uy ~ uu){r) + u
(12.16a) S °
= u{r) + ug[l — u{r)],

where is the function determined by (12.9), and u, and ug are any numbers
such that

{12.16b) Hy > ug.
Notice that, with v* given by (12.16a),
v¥(ry) = uy,

(12.17)
u¥(ry) = ug.

In other words, the utility function is determined up to an arbitrary
choice of origin and scale,
To prove that a v* of the form (12.16a) and (12.16b) is a utility function
is an easy exercise, which we leave to the reader. To prove the converse is
more difficult; see, for example, Savage 1954, Section 5.3, Theorem 3.

The treatment of utility just presented is due essentiaily to von Neumann and
Morgenstern (1953), except that their development of the concept is not tied to any
particular concept of probability. Ramsey (1931) had earlier developed the expected
utility concept from preferences among actions, in connection with his work on
subjective probability. Our treatment of utility, as of subjective probability, follows
the more complete one of Savage (1954), who also provides extended historical and
critical comments. Other references are J. Marschak 1950, Herstein and Milnor
1953, and Debreu 1960.

Two important consequences of the representation of preferences among actions
by expected utility have not been brought cut explicitly in the course of our abbre-
viated treatment. These propositions are often stated as postulates in those treat-
ments of the subject that are not tied to a concept of subjective probability. To

state these propositions, we need the concept of a prospect. Consider a given action
a, and let p; be the probability that a results in the outcome r;, that is

p; = n[Z{a)].
The n-tuple
play=(py,....p,)
will be called the prospect'® associated with the action a.

15. Savage (1954) uses the term “gamble.”
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It is an immediate consequence of the representability of < by expected utility

that any two actions with the same associated prospect are eq':.:ivalem with respect
to preference. Developments of utility that start with probability as a primitive
concept take as a point of departure a preference ordering among prospects.

Ifp ={ps,....p.) is a prospect, then

pi=0, i=1...,n

Z pi=1
i=1

We may suppose that for every n-tuple p satisfying these last two conditions, there
is an action for which p is the corresponding prospect. It follows that if p and q
are prospects, and k is a number between 0 and |, then

kp + (1 — kg = [kp, + (1 - Klgy,... kp, + (1 = kig,]

is also a prospect. This “mixture” of p and q may be thought of as being concretely
represented by a lottery in which the “prizes™ are themselves prospects.

A special kind of mixture may be interpreted as resulting from the “substitution”
of a prospect p for a given oulcome r; in another prospect g, to yield a prospect q*
defined by

{‘?1 + P i#j,
g =

qiP; i=j
A simple calculation shows that, if Q{p) = »(r,), then Q(gq*) = Qiq). or, in terms of
preference orderings,

ifp ~ r;, then q* ~ q.

This last form of the proposition, which may be called the substitution principle,
was essentially proved for a special case in the lemma of this section, and has been
taken as a postulate in alternative treatments of utility.

Confusion sometimes arises between the concept of a utility function as developed
here, and another concept of utility funciion as simply a numerical represenlation
of prelerences among outcomes. It is true that any utility function v satisfying (7.1}
and (7.2) will, in particular, have the property that
{12.18) r<r; ifand only if o{r,) = vir}),

~ "]

R

for ali outcomes r; and r;. However, it was pointed out that the class of utility
functions satisfying (7.1) and ¢7.2) is determined up to the choice of origin and scale,
that is, up to a strictly increasing linear transformation, whereas the class of functions
satislying (12.18) is determined only up to a stricily increasing transformation,
One may say that the utility function of (7.1} and (7.2) represents not only preferences
among outcomes, but also the decision-maker’s attitude towards risk. For example,
if the outcome variable r is numerical-valued (or vector-valued), then a decision-
maker with & concave utility function (diminishing marginal utility) would be called
averse to risk. For further remarks on this point, see the next section.
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13. GENERALITY OF THE EXPECTED UTILITY PRINCIPLE

In the last six sections, we have shown how certain consistency require-
ments constrain a decision-maker to choose an action that maximizes
expected utility on the set of feasible actions, with suitable definitions of
the probabilities of events and of the utilities of outcomes. These con-
sistency requirements fall primarily into two groups:

1. The complete ordering of actions according to preference.
2. The independence of 1astes and beliefs.

The independence of tastes and beliefs is expressed in three independence
conditions; the first two lead, respectively, to the definition of conditional
preferences among actions, given events, and to the definition of preferences
among outcomes (Section 7). The third condition leads to the definition
of an ordering of events by {subjective) probability.

In a third category are the cssentially technical conditions: (1) there
are at least two actions that are not equivalent with respect to preference,
(2) the set X of ail slates can be partitioned into arbitrarily many equi-
probable events, and (3) the set R of alternative outcomes is finite.

Although all these conditions place some restriction on an individual’s
preferences with respect to actions, they still leave room for a wide variety
of preference orderings. Thus both risk aversion (leading a person to a
diversification of his investments, taking out insurance, etc.) and risk
preference (leading him to speculation, participation in lotteries, etc.) are
possible modes of behavior under these conditions, and can be related to
the shape of the function (called the utility function of money) assigning
numerical utilities to varying levels of monetary wealth.!® On the other
hand, the independence of tastes and beliefs, and hence the expected
utility principle, is incompatible with “love of danger,” that is, a preference
for some actions in spite of their lower success probability.!”

16, Sec Friedman and Savage 1948, Radner 1964, Prati 1964, and Arrow 1971 (Chap. 3).
Risk aversion and risk preference require the utility function of money to be nonlinear.

I7. “Love of danger in this sense may very well be present in what are usually considered
economic decisions. The danger of loss, including ruin, though probably shunned in the
conservative code or cant of husiness, has quite possibly added to the zest and desirability
of many an historically imporiant venture, in the careers of the leaders of mercenary armies,
in the financing of great geographic discoveries, or, closer to our time, in the financing of
inventions and theater plays, and in stock and commodity speculation.” }. Marschak (1950).
Alternatively, one can preserve the expected utility principle by redefining each outcome as
represented, not only by an amount of money but, additionally, by aspects of the outcome
that are related to ambition, curiosity, etc. But with this interpretation the prospects chosen
by a “lover of danger™ will still fail to reveal the utility function of money, unless one finds
a way to keep the nonmonetary aspects of outcomes constant.
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In many practical instances, the utility function on the set of outcomes
has been given a sinple form. In the business of large companies, it suffices
for many purposes to identify utility with money profit (thus neglecting
both risk preference and aversion), at least as long as bankruptcy is not
considered possible. Fruitful results have been obtained from the simple
assumption that the company is interested in maximizing the mathematical
expectation of its profit, or in minimizing the mathematical expectation
of its cost {the sales value being given). Examples of such results are rules
for the control of inventories and of production under uncertainty (see,
for example, Arrow, Karlin, and Scarf 1958). For still more special
purposes, there are useful implications of minimizing the mathematical
expectation of waiting time, as in the analysis of gueues (Cox and Smith
1961), or of some other physical quantities relevant to a particular aspect
of business. This is also true of industrial quality control and other applica-
tions of statistics, Modern statistics led by A, Wald (1950) has found in
the minimization of “expected loss” a principle for selecting among
alternative procedures of getting and processing observational- data.
This has been often exemplified by assuming that losses increase as the
gstimation error increases.

When replacing utility by some handy monetary or physical variable,
one should not be too light-hearted. The wise physician will not com-
pletely identify his patient’s health with his state of nutrition, or identify
good nutrition with the intake of numerous calories. While the techno-
crats’ identification of public welfare with the amount of encrgy leads to
absurdities, a cautious use of the “national income™ figure yields fruitful
results. 1f, as pointed out by Hitch (1953), one forgets that the goal of
transatlantic convoys of the two World Wars was to increase Europe’s
supplics, and maximizes instead the more easily computed ratio of
U-boats sunk to Allied ships sunk, one ends up with the ridiculous
recommendation that Allied destroyers accompany no merchant ships
at all.

An even more drastically simple approximation to utility is obtained
if one classifies all outcomes into “‘bad” and “‘good” ones. In this case,
maximizing expected utility is equivalent to maximizing the probability
of a “good” outcome (see Section 11).

Not all authors have found it necessary, or even desirable, to accept
the expected utility principle (see references in Arrow 1951 and in J,
Marschak 1950). In the case of actions that result in numerical outcomes,
such as money income, the most common alternative is the suggestion
that an action be evaluated in terms of the mean and variance of the
corresponding probability distribution (see, e.g., Markowitz 1959} In
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general, such an evaluation will generate a preference ordering that
violates the conditions of the expected utility principle, though there are
special cases in which no conflict arises. Other paramcters of the probabil-
ity distribution have also been suggested as being relevant. We shall not
follow up the implications of such suggestions here; they are merely
mentioned to place the expected utility principle in the proper perspec-
hve,

14. ExpPECTED PAYOFF OF AN ACTION

It will be recalled that each outcome r is the result of an action a in a
given state x of the environment. Thus r = p(x, a), where p is the outcome
function. If, as before, Z{a) denotes the event “action a results in outcome
ri,” then the expected utility for action a is

n

(14.1) Qa; p,mv) = 3 vlrn[ZLa)],

i=1

where 7 is the subjective probability function and v is the utility function.
The expression on the left-hand side of (14.1) emphasizes that the expected
utility depends on the decision-maker’s action only, given the functions
p. n, and u. These functions summarize the factors beyond his control : -
his beliefs n, his tastes v, and his idea of the “‘physical” relation p that
states how outcomes are determined by himsell and by the environment.
His action g, on the other hand, is under his control. He chooses an action
with the greatest expected utility.

Since r = p(x, @), and the utility of r is v(r), we can express the utility of
outcome directly as a function of x and a:

(14.2) v(r) = vlplx, a)] = w(x, a).

Here w will be called the payoff function; it is equivalent to the successive
application of the outcome function and the utility function. It is thus a
combined expression of a person’s tastes and of his explanation of the
outcome as determined by his action and the environment.

To simplify the notation, suppose that the set X of alternative states
of the environment is finite, and write ¢(x} for the probability of the
state!® x,

(14.3) Ptx) = nml({x}).

18. Strictly speaking, we should say “'probability of the set consisting of the single el-
emenl x,” which we have denoted by {x}.
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The function ¢ is usually called a probabi!itj; density function. We can
now rewritc the expected utility of an action in the simpler form

(14.4) Qfa; w, ¢) = Enlx, a) = } w(x, a)¢(x)

=Y vlplx, a)d(x).

We call this quantity the expected payoff of the action a. Again, the
symbols ¢ and ¢ summarize the noncontrolled conditions.'®

To sum up, we shall say that a person is consistent under uncertairity
if his behavior agrees with the expected utility principle, That is, for a
consistent man, there exist a probability distribution ¢ on the set of the
states of environment, an outcome function p by which he explains the
outcome as a joint result of his and nature’s actions, and a utility func-
tion v on the set of outcomes, with the following property: the action
chosen is one that makes the expression 2 o[ p(x, @)l¢(x) = I wlx, a)p(x)
as large as possible.

9. Even if X is denumerably infinite, the netation of (14.3) and (14.4) need not be modified.
More generally, ¢ may be a density function with respect to some underlying measure, in
which case the sum in (14.4) would be replaced by an integral. In general, {14.4} would be
a generalized integral with respect to the probability measure = (se¢ any standard text on
measure and integration),
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1. RULE OF AcCTION

So far we have discussed the consistency of decisions and emerged
with the concept of the expected payoll as our primary tool for the
evaluation of actions under uncertainty. Given the (subjective) prob-
ability distribution of the states of the environment, the best action is
the one with the highest expected payofl. Choice under certainty is a
special case, with probability 1 assigned to one particular state of the
environment,

We now modify—and, in a sense, generalize—the problem in the
following way: the individual chooses, not among actions, but among
rules of action. A rule of action (also called a decision rule, a strategy, or a
decision function) is a schedule that determines in advance, for each
possible future information signal, the action that will be taken.in response
to it. Rules of action (sometimes called ‘‘roles”) for the individual members
of an organization are essential for the very concept of organization as
we have defined it. The search for the best rules of action is essential to
the economic theory of teams, as we shall show. It is also essential for a
realistic theory of single-person decisions, since one often has to decide
in advance how to respond to each of possible future contingencies. This
will be shown in various examples in the present and the next chapters.
As emphasized by Wald (1950) and by von Neumann and Morgenstern
{(1943), this introduction of the possibility of using new information will
not alter the basic features of the decision problem. Formally, the rules of
action will now play the same role as did the actions themselves in the
previous chapter.

45
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The “future” information that enters in the decision rule is to be dis-
tinguished from “prier” information. The prior information consists of
the description of the set X of possible states x of the environment,!
the probability distribution z on X, the set A of alternative actions a,
and the payoff function w. In what follows, information will always mean
future information. This will be defined more precisely in Section 2, but
we shall use a familiar example to illustrate the meaning of our concepts.

Consider a firm producing a single commodity for a market in which
the price is set by the government al the beginning of cach year, al which
time the firm sets its production for the coming year. If the goal of the
firm is to maximize profits for the coming year then, under the usual
assumptions of increasing marginal costs, and so forth, one derives the
familiar rule: *Choose the level of production that will make marginal
cost equal to price.” This rule defines implicitly a functional relation
between the action (the quantity a4 produced) and the information (the
price y set by the government),

a = aly).

Thus « is the decision function prescribed by economic theory.

One can, of course, imagine other decision functions for this firm, say
the one implied by the rule: “Choose a level of production such that
average cost is 90 percent of price.” (This decision function typically will
not maximize profits, however.) Another decision function, although a
somewhat ““degenerate™ one, is the constamt function, namely, the rule
that fixes the same level of production year after year, whatever the price
happens to be.

In general, let Y be the set of possible alternative information signals
then a decision function « is a function from Y to the set A of feasible
actions.? (In the example of the firm just given, Y is the set of possible
prices, and A is the set of alternative possible levels of production.) An
action a depends on the information y; thus a = «{y). The set of alternative
decision functions is, in principle, the set of all functions from Y to A.
However, in actual decision problems, there may be some restrictions.
It may not be feasible to compute certain decision functions; for example,
if 2 and y are numerical, the computation of nonlinear functions o may be
physically infeasible with given equipment within available time.

I. To avoid certain technical mathematical complications, we shall assume that the
set X is finite, except in some special applications, in which cases the reader will be warned.
For convenience, we shall also assume, except where noted, that X does not contain any
states that have zero probability.

2. Note that 4 will denote the set of feasible actions, not the (generally larger) set of
conceivable actions. See Chapter 1, Section 6.
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We can now rewrite the payofl w(x,a) as w[x, a(y)), where x is the
generic element of X and y is the generic element of Y. Il y, and y, are
elements of Y, we shall also say that they are two alternative information
signals or two values of the information variable y. We shall show presently
the relation between X and Y.

2 INFORMATION

Typically, information will give only a partial description of the state of
the world; this description can have varying degrees of completeness.
For example, instead of gelling a complete list of today’s closing prices
on the New York Stock Exchange, one may get information only about al
- the oil stock prices; or only about the average of all stock prices; or only
about the average oil stock price. Each of these types of information
specifies some set of states of the environment within which the true state
lies. This set is, of course, the set of all states that have in common the
partial description given by the information. Thus, to be told that the
average closing stock price was 55 is to be told that the list of prices is
in the set of all those lists that have an average of 55.

Thus each information signal y (an clement of Y) is identified with a
particular subset of X, the set of states. To take another cxample, the
information relevant to a motorist’s decision in traffic may be a signal,
green, or red. In this case, the set Y consists of two elements. The set X
of all possible traffic situations is thus partitioned in two subsets; if
traffic is in one subset, the signal is green; otherwise it is red. This partition-
ing defines y, the information structure; given n, certain signals (symbols)
are assigned to certain subsets of X.

Sometimes a decision is to be based on mformanon that reflects
aspects of the environment that, in fact, do not influence the payoff.
For example, in choosing the parts of a country in which a campaign
apainst infantile diseases is most urgent, one may have to base the decision,
in the absence of better data, on mortality figures not broken down by
age groups. The decision is then based on what is sometimes called
“incorrect” or, in the language of communication engineers, “noisy”
information. There is, in principle, no need for a special concept of
incorrect information. Every item of information is correct with respect
to some aspect of the state of the environment, although that aspect may
be irrelevant o the payofl. For example, instead of saying that the resulits
of a market survey are “incorrect,” we can say that those results reflect
not only the responses of the people interviewed, but alse the character-
istics of the interviewer, the method of recording the data, and so forth;
and that, if one ignores this nature of the particular information, he can
make poor decisions.
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Thus, if two states of the environment are identical in all respects except
that a given signal-producing instrument behaves differently in the two
states, we consider the two states as distinct elements of the set X.

To give another example, suppose that an urn is known to contain two
balls, of which each may be cither red or black. A single ball is drawn from
the urn; its color (but not the identity of the ball) is observed. Thus the
color 1s the information signal. There are 22 = 4 possible original com-
positions of the urn, and two possible outcomes of the samplingexperirment ;
hence, there might be said to be 2 x 4 = B alternative states. Of these,
two would be considered impossible, since one could not draw a red
ball if the urn contained only black balls, and vice versa. The six remaining
states are lisied in Table 2.1. We must regard states x, and x5 as distinct,
even though the composition of the urn is the same in both, becausc the
signals (the colors of the ball drawn) are different. The same is true of
x4 and x5,

TasrE 2.1 STATES
State Urn Sample
Bail! Bail2 Ball drawn

X, B B B
X3 R B R
X3 R B B
Xq B R R
Xs B R B
Xg R R R

In summary, then, an information signal represents a subset of the
states of the environment; in the formulation of a decision problem, the
states of the environment must be described in sufficient detail to cover
not only those aspetts relevant to the payoff lunction, but also those
aspects relevant to the type of information on which the decisions may
be based. '

3. INFORMATION STRUCTURE; ORGANIZATIONAL FORrRM

Information can be regarded as the outcome of information-gathering,
A given method of information-gathering applied to the true state of
environment x results in a particular signal. As before, let ¥ denolte the
set of alternative possible information signals y. To cach x in X will
correspond a signal y. Thus, to a given information-gathering method is
associated a function, say #, from X to Y. We shall call such a function
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an information function or an information structure. Thus,
¥ = nix)

For a fixed information structure n, each signal y is identified in a
natural way with a subset of X, namely, the set of states x for which
nix) = y. It follows that every information structure induces a partition
of X into an exhaustive family of mutually exclusive subsets, each subset
identified with a particular information signal. We shall denote this
partition by %,

Without danger of ambiguity, we shall sometimes denote by the same
letter y both the physical signal (an element of Y} and the corresponding
element of #, that is, a subset of X.

For the purposes of this book, it will be convenient to give to the pair
{n, «}—the combination of an information structure with a decision rule
possible under this structure-—a special name: the organizational form,

Any partition of the set X' (for example, an information structure) can
be regarded as a method of description of states of the environment,
typically in an incomplete fashion. Descriptions of the environment
specially related to the payoff function will be discussed in Section 7.

4. EXPECTED PAYOFF REFORMULATED

Given the information structure # and the true state of environment x,
the information signat y is determined by y = n(x); we can therefore
rewrite the payoff again, as follows:

alx, a) = olx, aly)} = ofx, afp{x])].

Hence, given the true state of environment, the payofl is determined by
the information structure, the decision function, and the payoff function.

Using now the probability density function, ¢, we can write the expected
payoff U thus:

{4.1) U= Z wlx, a(n[x])]t;f)(x) = Qn, a; o, P).

This quantity depends on the noncontrolled conditions w, ¢; and on the
decision flunction « and the information structure . In general, these two
latter functions are under the control of the decision-maker. He has at his
disposal more than one pair (1, «), and he will choose that pair which makes
the expected payoff U a maximum. This justifies our previous assertion
that the problem of choosing the best decision function (and we may now
add, the best information structure) is formally the same as the simpler
one of choosing the best action.
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We shall often be able to simplily the discussion by assuming # as given,
thus leaving only « to the individual's choice. The expected payoff yielded
by the best decision function, given the information structure #, will be
denoted by

(4.2) Qs o, @) = max Qfo, 3 o, ¢).

Consider the example of a firm (see Section 1 above), but now introduce
an additional factor into the description of the states of the environment,
namely, the price of an important raw material. Denote by x, the price
of product, and by x, the price of raw material Suppose that, at the time
the decision about the level of production is to be made, x, is known but
not x,; that is, it is not known what price will have to be paid for the raw
material during the coming year. Thus the information variable y is not
identical with the state of environment x. The latter is described by the
pair

x = (xy,X,);

the information y consists of the price x, alone. The information structure
is given by

H(x) = x,.

Let us assume this to be the only information structure available. Suppose
that the cost of producing a quantity a, for given x,, is k{x,, a), and that
the firm takes as its measure of utility the net profit; then the payofl
function is

(43) CU(XI, X2, a) = X, = x(xb a).

If the firm decides upon a rule that tells it to produce the quantity
a = o(x,), when it learns that the price of the product is to be x; (regardless
of x,), then the payofl for any state (x,, x,) is

U= w(xy, Xz, @) = xq0(x;} — K[xy, (x,}].

The prices x; and x, will have some joint probability distribution ¢(x,, x,),
and the decision function a will be evaluated by the expected value of the
payoff u just given.
5. MaximIzZING CONDITIONAL EXPECTATION
A dectsion function is best if it results in the largest possible expected
payofl, that is, the largest possible value of Ew(x, ). We shall now show

that the nature of Ew(x, a) enables one to give a more detailed characteriza-
tion of a best decision function, for a fixed information structure ».
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First, consider the situation in which the decision-maker finds himself
after he has received the information signal y(x) = y. He is about Lo take an
action, a(y), and the consequence of this action is (typically) uncertain,
since he knows only that the true state of the environment is one of the
(typically) many that could have resulted in the particular information
signal y.

We shall show that, given the information signal y, the best action
a = ofy) is the one that maximizes the conditional expectation of the pay-
off, given that the true state x i1s in y (considered as a subset of X). The
probability that the signal y is received is
(5.1} a(y) = Y $(x);

xey
Since x is contained in y, the join! probability of x and y is ¢{x). Hence
the conditional probability of x, given that x is in y, is

$(x)
ny)
provided, of course, that a{y) # O [see (9.13a) of Chapter 1]. It will be
seen that these conditional probabilities naturally arise in the course of
determining a best decision function.

To prove the above characterization of a best decision function,

consider again the expression (4.1) for the expected payofl for a given
decision function:

(5.3) U=3 wlx, afn[xD]g(x).

(5.2) P(xly) =

If we group the states x according to the corresponding signals y = n(x),
then the expected payoff (5.3) can be rewritten

(5.4) U=73 Y ofx,ay)]d(x).
y xey
Choosing a decision function o that maximizes (5.4) is equivalent to

choosing, for each signal y for which n{y) > 0, an action of y) that maximizes
the term

(5.5) Y olx, dpigx) = ¥ olx, dy)]¢(xly)n(y)

XEY XEY

= my) Y. wlx, a(p)Id(xly)

xey

[see (5.2)). This last is equivalent to maximizing

(5.6) Y. olx, a(y)id(xiy).

xey
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The reader will easily recognize (5.6) as the conditional expected payoff
for the action a(y), given that x is 1n y.

Using {5.2) to (5.6), we may rewrile the expected utility of a decision
function « as’

6.7 U= n() 2 wlx, ay)ex]y).
¥

Xey

We have proved the following theorem:

For o to be a best decision function, it is necessary and sufficient that,
for every y with positive probability, «(y) be an action that maximizes the
conditional expected payoff given y(x) = y. ‘

To illustrate, consider the last example of the production decision
problem (Section 4). Here x = (x,,x;), y = §{x) = x,. For any level of
production a, the expected net profit, given output price x,, is

(5.8 E[w(x, alx,] = x,a — E[x(x,, a)lx,]

[see (4.3)]. Setting the derivative, with respect to g, of this last expression
equal to zero, we find that the best value of a, given x, must satisfy’

5.9 E[aé-x(xz,a)hl] = Xi.
a

In other words, “‘conditional expected marginal cost musi equal price.”

The conditionat distribution ¢(xly) is sometimes called the posterior
probability distribution, relative to a given information signal y, because
it is the distribution that is relevant to action ““after” the signat y has been
received. Similarly, the unconditional distribution ¢(x) is sometimes called
the prior distribution. We shall return to a more detailed consideration of
the posterior distribution in Section 7.

In our definition of a best decision function we have thus far ignored
one important factor, the costs of using a decision function.* The mere
calculation of the action prescribed by a complicated decision function for
given information may be a costly procedure. Beyond this, some decision
functions may be more difficult to explain, to remember, or to apply, and
thus may involve greater “administrative™ expense than others. Some of
the decision costs are fixed once the decision function a is chosen. Others
depend on the state of the world x (in particular, they might depend on the
information y) and are therefore themselves variables. Unfortunately,

3. It is assumed, of course, that the various conditions necessary for this “marginal
analysis” to be valid are satisfied.

4. However, the cass ol nonfeasible and thus infinitely costly decision functions was
mentioned at the end of Section 1.
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there has been very little theoretical analysis of costs of decision that we
are aware of, and aside from this brief acknowledgment of the importance
of these costs, they shall play no role in our formal theory.®

6. COMPARISON OF INFORMATION STRUCTURES: FINENESS

Once a best decision function has been chosen, given the information
structure, nothing more can be achieved in the way of increasing the
expected payoff without changing the information structure itself. A
different information structure would, of course, typically require a
different best decision function, and might possibly result also in a higher
expected payoff. Thus one is led to a natural comparison between two
information structures in terms of the maximum ¢xpected payoffs that
can be achieved through their use.

We shall say of two information structures, 5, and 55, that n, is not more
valuable than #,, rclative to a payolf function w and a probability distribu-
tion ¢, if

6.1) Ny w, @) = Qs o, @),
where (n; w, ¢) s the maximum expected payoff
(6.2) max Y. wlx, a(plx])e(x),

as in (4.1) and (4.2). This comparison does not take into account the cost
of information (let alone the cost of decision; see Section 5), and therefore
might be called a gross comparison. A reformulation including the cost of
information is given in Section 12.

Is it possible for one information structure to be more valuable than
another, or at least not less valuable, whatever the payoff function @ and
the probability distribution ¢? The answer is ““yes,” and the characteriza-
tion of such a relationship is provided by the concept of fineness.

In the remainder of this section, we shall consider an information
structure to be a partition of X, as indicated in Section 3; that is, we
shall regard two information structures as identical if they induce the same
partition (regardless of physical differences in the signals used). We shall
say of two given information structures, #, and 5,, that n, 1s as fine as
nzil#, 15 a subpartition of n, ; that is, if every set in 5, is contained in some
set in-y,. (Thus #, tells us all that #, can tell, and possibly more besides.)®
I{ %, and #, are distinct, and #, is as fine as 5, then we shall say that n,
is finer than y,.

5. See, however, Chapter 9 for an informal discussion.
6. In another terminology, #, is an extension of 1,, and 1, a contraction of ;.
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For example, if X is the set of all numbers between 0 and 1, and #,
partitions X into 10 equal intervals, while n, partitions X into 100 equal
intervals, then #, is finer than s, (1, has one digit more). If X is the set of
all pairs (x, x2) of integers, and under #, each pair constitutes a subset,
while under #, ali pairs with the same value of x, constitute a subset, », is
finer than #,.

Clearly, it cannot be said of every pair ), 5,{n, # n;} that one of
them is finer than the other. For example, let X be the set of all numbers
between 0 and 1; let i, be the partition of X into two sets: “elements of X
larger than 1/2,” and “elements of X not larger than 1/2”; and let #,
partition X into three sets; “elements of X larger than 2/3,” “clements of
X smaller than 1/3” and “other elements of X.” Then 5, is not finer than
n, in the sense defined, nor is #, finer than #,. In such a case, we say that
1, and #», are noncomparable with respect io fineness. (Thus the relation
“as fine as” induces only a partial, not a complete, ordering of partitions
of X))

The finest possible information structure is complete information, defined
by

(6.3) nx) = §x} forall xin X.

In this partition, each set consists of a single state.

On the other hand, the least fine (or “coarsest”) information structure is
the partition consisting of the set X itself. It is clear that this information
structure gives no information at all that has not already been incorporated
into the formulation of the decision problem. We call this structure no
information.

A decision function based upon no information is constant, that is, the -
same action is taken for all states x.

The significance, for the present question, of the concept of fineness lies in
the following theorem.

THEOREM. Let 5, and n, be distinct information structures; if n, is as
Jine as n,, then, and only then, n, is at least as valuable as n, for every
probability density and every payoff function, that is,

O d) 2 Oy 0,¢)  forall wand ¢.

~ The *'then” part of this theorem is fairly obvious, for the set of decision

functions available to a person using », includes essentially all of the
decision functions available to a person using 5,, and possibly more, so
that the first person cannot do worse than the second.
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The “only then” part of the theorem is pcrhaps not quite so obvious.
Suppose that n, and n, are noncomparable with respect to fineness.
Let ¢ be a strictly positive density function on X. We shall show that, for
some payoff function, 5, is more valuable than #,, and for some other
payoff function, n, is less valuable than n,.

Since 1, and #, are not comparable (and are distinct), #, is not finer
than 1,, and therefore there are two distinct states, say x, and x5, such
that

nil{x1) = n,(x,),
na(x ) # nalx;).

Similarly, since n, is not finer than n,, there are two distinct states, say
x3 and xg4, such that

(6.4)

nu(xs) # n4(x4),
na(x3) = Halxy).

The pairs {x,, x;} and {x3, x,} may have no stale in common or one state
in common (but not both states in common). Consider the two cases
separately.

Case I: x,,x5 %3, and x, are distinct.

Figure 2.1 represents the properties (6.4) and (6.5) of the two information
structures for this case. Only the states x,, x,, x3, and x4 are shown in the
figure; #, is indicated by the solid-line curves, and #, by the dashed-line
curves.

{6.5)

FIGURE 2.1. Non-comparable information structures:
Casel. ny———. 1y _.

We shall construct two decision problems, (i) and (if). In problem (i),
the payoff function is such that it is important for the decision-maker to
distinguish between x; and x,, but not between x, and x, (for this problem
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1, would be the more valuable structure). In problem (ii) the reverse is
true.

To define decision problem (i), let there be two alternative actions, a,
and a,, and let the payoff function be

wfx;,a;) =1
wix,a;)) =0 forall x +# x
(66) (x,a;) 3
Xy, ap) =1
ofx,a;) =0 forall x # x,.

The payofl function (6.6} is given in Table 2.2. (Notice, incidentally, that

@, and a, are actions one might use for the measurement of the probabili-

ties of the states x5 and x,, respectively; see Chapter 1, Sections 8 and 9))
TABLE 2.2

States

Actions\ X, X; X3 X4 X5 Xg

a O 0 1 0 0 0
a&; |0 0 0 1 0 0

It is easily verified that, with the information structure #,, the maximum
expected payoff is
Blxz) + Plxy);

whereas with the information structure 1,, the maximum expected payoff
is

max{$(xa), dlxs)].

Hence for decision problem (i), n, is more valuable than n,.

Now define decision problem (ii) by changing the payoiT function (6.6)
to

w(xy,a;) =1
w(x,a,) =0 forall x # x,
w(xz,ciz) =1
alx,a,) =0 forall x # x,.

This payoff function is given in Table 2.3. For problem (ii) one easily
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TaBLE 2.3
States
Actions\  x; x, X3 x4 X5 Xg
a; l 1 ¢ 0 0 0 ¢
s o 1 0 0 0 0

verifies that the maximum expected payoff for information structure #, is

max{g(x,), $(x;)},

whereas for n, it is

Plx1) + lxy).

Hence, in problem (i), #; is more vaiuable than 5.
Case 2: the pairs {x,, x,} and (x5, x,) have a state in common.

Without loss of generality, we may suppose that x, = x,. This case is
illustrated by Figure 2.2.

FiGure 2.2. Non-comparable information structures:
CaseII. ny— . 9, __.

The construction of two decision problems corresponding to problems
(i) and (ii) of case 1, which would complete the proof, is left as an exercise.

One interesting corollary of this theorem is that it is impossible to define
a single measure of the “amount”™ of information (without regard to the
payofl function) such that, if one information structure adds a greater
amount of information than another, the first will be more valuable than
the second, for every payoff function. A measure of the amount of informa-
tion independent of the payoff function and depending only on the prob-
abilities of the alternative signals y, was proposed by C. Shannon (Shannon
and Weaver 1949). In the simple case in which the signals are finite in
number and equiprobable, Shannon’s measure is an increasing function
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(the logarithm) of the number of signals. For example, if x is uniformly
distributed over an interval X, which is divided into n equat subintervals,
and if the information y = #(x) consists of stating the subinterval in which
the number x falls, then Shannon’s measure is the larger, the larger n.
Yet this ranking of information structures according to the number of
subintervals need not coincide with the ranking of the values of those
information structures. In our Example 3B, the payoff function is such that
the value of information is highest when the number of subintervals is
two or any even number; so that it is more valuable to use two equal sub-
intervals than to use one hundred and one!

We give here, for future reference, a useful formula for the “iteration” of expecta-
tions conditional on partitions of increasing fineness. Let partition %, be as fine as
the partition &, , let ¢ be a probability density function on X, and let { be any
real-valued function defined on the partition %, . For any y, in %,, define the con-
ditional expectation

6.3) E[fly,] = Z Sy miylys),

yied,

mc
where m(y,ly,) denotes the conditional probability of y, given y, [sec 9.13a of
Chapter 11. In particular, %, could be the finest possible partition of X {ie., the
partition of X into one-glement subsets), in which case (6.7) would define the con-
ditional expectation of a function of x. Notice that E{ f|y,] depends upon y,, that is,
E[fly.] is a function on the partition %,. We shall denote this function by the
symbol E[ f1%,].

Now consider three partitions of X, %,, %,, and %,, such that %, is as fine as %,

and %, is in turn as fine as %,. Let f again be a real-valued function defined on
@, . We shall show that

(6.8) E(f1#3) = E[E(f1%,)%;]

The formula {6.8) is equivalent to asserting that for every y, in %,,

(6.9) Z Fyoa(yilya) = Z 2 f(}’i)n{hlh)ﬂ(}’zl)’a)
New) Viedl hedl
From {9.13a) of Chapter 1,
w(yilys) = :g;;: w{ylys) = ;;((';%
apd hence
nylyatvalys) = 22 = ngylyy)

n(y;)
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(recall that we are concerned with the case y, = y, = y,). Hence the right side of
(6.9) equals

(6.10) Y Y Salnly,y.

yrc¥: Yic:
v2edy yie¥

The set of y,’s over which the sum {6.10) is taken is the set of all y; in %, such that
for some y, in ¥,, '
Vi & Y2 & ¥s,

but since %, is as fine as %, and %, 1s as fine as %, this set is simply the set of all
vy in %, such that y, « y;. Hence (6.10) is equal to the left-hand side of (6.9), which
completes the proof of (6.8).

In the course of proving the Theorem of this section, we have actually demon-
strated a stronger result: Let ¢° be a strictly positive probability density function
on X, and let n; and #, be distinct information structures; then #, is as fine as n,
if and only if 5, is as valuable as i1, [or $° and every payofl function w. One can
also prove an analogous result in which the payoff function is fixed. Call a payoff
function sensitipe if for every state x there 1s an action a, such that, when the state
is x, the payoff for action a, is one, and the payoff for any other action is zero. One
can prove the following theorem: Let »° be a sensitive payoff function, and let
1, and 1, be two distinct information structures ; then #, is as fine as », if and only
if ) is as valuable as n, for ©% and every probability density function ¢.

7. PAYOFF-ADEQUATE DESCRIPTION, NOISY INFORMATION,
BAYES'S THEOREM

In Section 2, the term noisy was used heuristically in introducing the
concept of information. In Section 5, we showed that a best decision must
be based on the posterior probability distribution, conditional upon the
information signal. In this section, we give a precise definition of noisy
information and derive Bayes’s theorem,” a particular representation of
posterior probability distributions based upon noisy information.

A partition Z of the set X of states is called payofi-adequate if it is
sufficiently fine, with respect to the payoff function o, in the following
sense : for every set z (event) in the partition,® every pair x,, x, of states in
z, and every action q,

(7.1} wlxy, a} = wix,y, a).

It is clear that, if an information structure induces a payoff-adequate
partition of X, then it is as valuable as complete information. (The con-
verse, however, is not true.) '

7. Wamed after Thomas Bayes (1763).
8. Warning: we depart here somewhat from the notation used in Chapter {, where subsets
of X were denoted by capital letters, Z, W, etc. Recall that y, too, is a subset of X.-
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Let & be a given payoff-adequate partition of X, and let 5 be an
information structure inducing a partition % (not necessarily the same as
). '

Clearly, for these partitions, the probability distribution 7 on X
determines the joint probabilities n{z m y), and thercfore the conditional
probabilities

n(ylz) = Prob{xe ylxe i} = ji;{.:)y)
(7.2a) e
a(zly) = Prob{xedxey) = :T(yTy

[see (9.13a) of Chapter 11.° Cortesponding to ={ - [z) and =( - |y) we have the
conditional probability density functions,

¢x) forxez
qe) = n(z)
Pz 0 forxéz
{7.2b)
P(x) i
T orxey
Sixly) = n{y)
ny= 0 for x¢ y.

The information structure n is said to be noiseless (with respect to %)
if, for each z in Z, the conditional probability distribution n{ - |z) assigns
probability one to some signal; otherwise # is said to be noisy. In Section 2,
the average stock price was an example of a noiseless information structure,
whereas the market survey would, in most instances, turn out to be noisy.

Many decision problems are naturally, or conventionally, described in
terms of a payoff-adequate partition, and the conditional distribution
n( - |z). Indeed, this is the standard form for a problem of statistical infer-
ence. We shall illustrate this form with the “classical” random sampling
problem already introduced at the end of Section 2. An urn is known to
contain two balls, of which each one may be either red or black. A single
ball is drawn from the urn; on the basis of observing the color of this ball,
it s desired to estimate the original number (0, 1, or 2) of red balls in the
urn. The set of states is given in Table 2.1,

9. We shall freely use the usual symbols ~ and o for the words and and or, respectively,
of Chapter 1.
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State Um Sample

Ball 1 Ball 2 Balldrawn

B B B
X R B R
X5 R B B
Xq B R R
Xs B R B
Xg R R R

The alternative actions are the three alternative estimates of the number
of red balls, namely 0, 1, and 2. Consider the payofl function that yields a

pavoff of | for a correct estimate, and 0 for an incorrect estimate (se¢
Table 2.4).

TABLE 2.4. PAYOrF FUNCTION
States

Actions| x; X, x3 X4 X5 X4

0 1 0 0 0 0 O
1 0 1 1 1 1 0
2 0 0 0 0 0 1
A payoff-adequate partition % of X 1s
Z’={XI}9
(73} z” == {XZ, X3, Xas x5},
zm’={x6};

this partitions X according to the initial number of red balls. (In fact,
& is the coarsest possible payoff-adequate partition,)'®
An information structure representing the sampling of one ball is

B ifx = x,,x3, X5
(7.4) nx) = .
R ifx = x;,x4, Xq.

This information structure induces the twofold partition,
(75) * ¥ = [{xl’x39_x5}a {x2:x45x6}]'
The two partitions % and % are represented in Figure 2.3.

10. The partition & is payofl-rclevant in the sense of J. Marschak 1963.
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N 4 \ ~

~— s — N s e —

Figure 2.3. Partition Z._ . Partition % .

The probability distribution =z(z) will, of course, depend upon the
decision-maker in question. However, many people who would not agree
on a probability distribution n(z) would agree on assigning conditional
probabilities, as follows. Given that the urn contains only black balls,
they would be indifferent between betting a dollar on the event “‘the
drawn ball is black™ and receiving a doltar whatever the color of the
drawn ball. (A similar statement would apply if there were only red balis.)
On the other hand, given that the urn contains one red and one black ball,
most people would be indifferent between betting on red and betting on
black, These preferences would imply the following conditional (subjec-
tive) probabilities:

n(Blz') = 1 aRlz) = 0
(7.6) n(Blz") = 1/2 n(Rlz") = 1/2
a(Blz"} = 0 m(Rz") = 1.

(In(7.6) the symbol B denotes the event ““n(x) = B,” i.e, theset {x,, x3, x5},
etc., and similarly for R.] Because of the second line of (7.6}, the information
structure n is noisy. )

MAXIMIZING CONDITIONAL EXPECTED PAYOFF; BAYES'S
THEOREM

Returning to a general discussion of payoff-adequate partitions, we now
derive a particular form that will be obtained by the condition of maxi-
mizing conditional expected payoff, which characterizes best decision
functions {(Section 5}.

Let # be a given information function, and let & be an optimal decision
function (for n). For a given signal y, the best action &y} maximizes the



2: Organizational Form: Information and Decision Functions. § 7 63

conditional expected payoff

(7.7} Y. w(x, ayp(xly).

XeEY

If & is payoff-adequate, we may define a payoff function @ in terms of the
sets z Iin 2

(7.8) w(z, a) = wi{x, d) fxez,ze?.

In terms of @, we may rewrite the conditional expected payoff (7.7) as

(7.9) Y @z 3, dlxly) = 3 oz, aynlaly),

zed XEynI 2€

and the maximum total expected payoff as

(7.10) 0¥, o,m) = Y r(y)max Y @z, anlzly)
ye¥ a4 zeZ

= Xy Y olz,8y)nlzly)
yed e

As in the terminology introduced in Section 5, the unconditional probabili-
ties n(z) are called the prior probabilities of the sets z, and the conditional
probabilities a(zly) are called their posterior probabilities.

A simple formula, known as Bayes's theorem, relates the prior and
posterior probabilities, and the conditional probabilities =(y|z): for any
two sets zand z’ in &,

n(zly)  w(yl)n(z)
7.11 =
(710 m(zy)  mllz)n(z)

For, from the second line of (7.2a),

(7.12) afzlyy _ n(zny)

n(zly) 7l Ay
From the first line of (7.2a),
(z ~ y) = nlylzjn(z),
a2 ) = 7i2)n(z).

Substituting (7.13) in (7.12), we obiain (7.11).
Bayes’s theorem (7.11) can also be written in another form:

{1.13)

(7.14) n(zly) = —Z—"%;l—:()‘;’(z-)

e
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For example, in the case of the sampling from an urn described above,
if the prior probabilities are all equal [n(z;) = 1/3], then the posterior
probabilities are, from (7.14),

n(2'|B) = 2/3 n(z|R) = 0
(7.18) n(z"|B) = 1/3 a(z"|R) = 1/3
n(z"|By =0 n(z"|R) = 2/3.

8. COMPARISON OF INFORMATION STRUCTURES: GARBLING

If, in a decision problem, the payoff-adequate partition Z is fixed,
then one can obtain a sharper condition for comparing the values of
information structures than the fineness condition of Section 6. Let Q,
denote the set of all payofl functions « for which & is payofi-adequate.
For any two information structures, with respective partitions % and %',
we shall say that % is at least as valuable as &, given &, if

&5 Q(@;w, )= ﬁ(@’;w, ) forall win Qy and n on &.

Recall that, if & is as fine as @, then it is at least as valuable as &'
{Section 6); in this case any signal y in % determines a signal ' in &',
in the sense that, for any y in %, there is exactly one ¥’ in %' that contains
y. Thus 4 can be related to % by a {unction:

(8.2) f(y) = that ¥ in @ for which y = y';
the corresponding information functions, # and ' are then related by

(8.3) 7'(x) = finfx)].

In the case of a noisy information structure # (noisy relative to the
given payvofi-adequate partition &), there corresponds to the information
function n the family of conditional probability distributions n(y|z).
This suggests generalizing the condition “as fine as™ to one in which the
deterministic function f is replaced by a possibly “noisy” determination
of the signal y' given the signal y. One could imagine that given z the
signal y is determined by a conditional probability distribution n(ylz);
and thereupon the signal )" is determined by a conditional probability
distribution, say p(y'ly), that is independent of z. This latter condition ex-
presses the condition that ¥ is determined solely by y, but possibly with the
intervention of “noise.” We are thus led to the following condition on the
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joint probabilities of z, y, and y':
(8.4) a{y'lz ~ y) is independent of z,
forallze &, yed,y c¥'".

In this case, we shall say that 4" is a garbling of ¥.

Note that if, for every z and y, n{y'{z n y) is equal to 1 for some y
then the garbling condition reduces to the fineness condition.

We shall show that a sufficient condition for % to be as valuable as
4, given &, is that &’ be a garbling of %. However, garbling is not a
necessary condition; a condilion that is both necessary and sufficient
is given in the following theorem, due to Blackwell (see Blackwell and
Girshick (1954), Theorem 12.2.2).

THEGREM. % is at least as valuable as %', given %, if and only if there
are nonnegative numbers B, such that

(8.5) n(ylz) = Y B,mflz)  foreveryze Z, yed;
yed

(8.6) > B, =1 for every ye@.
yed

CoROLLARY. If %' is a garbling of ¥, given Z, then ¥ is at least as
valuable as %', given &,

For further discussion of this topic, see J. Marschak and Miyasawa
1968, J. Marschak 1971, with some differences in terminology.

For an intuitive interpretation of the theorem and of its relation to the corollary,
we can imagine that the decision-maker, upon receiving signal y in %, uses a random
device that chooses signal y' in % with probability §,,., thus satisfying condition
(8.5), (8.6). A decision is taken that is optimal for signal ¥' {i.e., maximizes conditional
expected payoff, given ). It will not necessarily be optimal for the original
signal y. A4 fortiori, the expected payoff cannot be larger than if decisions optimal
for the originat signals y were used. This is what the sufficiency part of the theorem
asserts. Note that the signal ¥ in %" chosen by the random device need not coincide
with the actual signal that is produced by an information system % when event :z
occurs and when system % produces signal y. That is, the conditional probability
B, characterizing the random device, is not necessarily equal to the conditional
probability #(y'ly) characterizing the information system #. In the corollary, such a
coincidence is indeed assumed. Therefore, the corollary follows from the theorem,
but not conversely. .

To prove the corollary from the theorem, first note that, by (8.4),

n(y)z o y) = wlyly),
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and hence

ayle) = ¥ wlylz n ) aliz) = ¥ miyiy- alylz)
ye¥ . ye¥
Hence the hypothesis of the theorem is satisfied by taking 8,., = =(y'ly).
Concerning the theorem itself, we give here only a proof of the sufficiency of
(8.5)and {8.6); for a proof of the necessity, see Blackwell and Girschick (1954, Theorem
12.2.2). Let « and o denote, respectively, best decision rules for the information
structures % and %, The value of @' is, from (7.10),

&7 Q@ om) = 3. aly) Eycﬁ[z, o(yYln(zly),

b7

where ¢ is the optimal function from % to 4. From the definition of conditional
probability [see 9.13a of Chapter 1], and the hypothesis (8.5) of the theorem,

ly)zly} = n(y’ 0 2) = nfz)a(y'lz)
1'[(2) 'Zg ﬂy')'n(ylz)

= Z By'pn'(ynz)

ye¥
= E@ Iﬁy'yn(zly)n(y)'

Hence (8.7} can be rewritten:

Q¥ w,m) = Zg @z, & (y)1B, (2l y}m(y)

4
=Yy ¥ By, ¥ oz, a (v a(zly)
yed yed e

By (7.10), since « is an optimal decision rule for %,

Y @z, (y)nfey) £ 3 32, aly)ln(zly),

zed ¥

so that [making use of (8.6)]

Q¥ 0,m) £ Y, ) ZS@[& a(y)]n(zly)

yed¥

= W w, ).

This completes the proof of the sufficiency of (8.5) and (8.6).

The following example shows that garbling is not itsglf a necessary condition for
¥ to be as valuable as %' given . Let us suppose that &, &, and % each have two
elements, that n(z,) = =(z;} = 1/2, and that the conditional probabilities z(y  ylz)
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are as follows
nly r ylz) aly 0 ylz,)

¥ YVa Y1 2

v 1932 132y (532 732
va |532 0 320 vy 13/32 17732

We leave it as an exercise to verify that this distribution satisfies the hypothesis of
the theorem, but that % is not a garbling of #.

One can easily verify that condition (8.4), garbling, is equivalent to each of the
following conditions:

(8.8) a{zly m 3 is independent of y'.

(3.9) wy n ylz) = m{lz)niyly).

9. ADAPTATION TO INCREASING INFORMATION

Suppose that a decision-maker is faced with a sequence of decision
problems, identical except with respect to information structure. Suppose
further that in the sequence each information structure is finer than its
predecessor and independent of previous actions. How will the corres-
ponding sequence of optimal decision functions, and the actual actions
taken, look?

We shall call such a situation one of increasing information. In principle,

one should analyze such a situation as a single decision problem, in
which

1. The action variable a is itself a sequence (a,, a,, ..., a;) of variables.

2. The decision concerning the fth component, a,, is based upon an

information function #,.

Fort=1,...,T—1,n,., is finer than #,.

4. There is a single over-all payoff function w, and the payoff u for a
given state x and a given action (sequence) a = (a,, ..., ay) is

P.)

(9.1} u=wx,a,...,arh

To fix the idea that the decision-maker faces a “sequence of identical
decision problems” (except for the changing information), we shall
assume that the components g, can all take on the same set of alternative
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values, and that the overall payoff function  in (9.1) has the form!!
T
9.2) wlx,a,,...,ar) = Y. @(x,a).
=1

(This approach to a dynamic decision problem will be explored further,
in a2 more general setting, in Chapter 7.) For example, a firm might maxi-
mize the expectation of the sum (but not, for example, the expectation of
the product) of (nondiscounted) profits made in T successive years, the
profit of each year being related to the action of that year only by a func-
tion & that does not vary over time,

The special form (9.2) of the over-all payoff function makes possible
a determination of the optimal sequence of decision functions “component
by component.” For any given sequence (a,,...,a;) of component
decision functions, the expected payofl is, from (9.2),

T
(9.3) Ewlx,a n 6, ..., ap{n{x))} = T E@{x, o,[n,(x)]}.
=1

Hence the tth component of the optimal sequence of decision functions is
the optimal decision function for a decision problem that one may call the
*“tth component decision problem,” defined as follows:

1. The state variable is x.

2. The action variable is 4,.

1. The payoff function is i5.

4. The information function is #,.

For example, suppose that a hotel cook must prepare an egg for each
of two guests every day, and each egg may be cither hard-boiled or soft-
boiled. Each of the two diners has a definite preference for hard or soft-
boiled eggs, the same for all days, and we shall say that the cook’s action
is “correct” on any day if he boils the right type of egg for each diner.
Unfortunately, on the first day the cook does not know the diners’ pre-
ferences; he learns the first one’s preference after the first day, and the
second one’s preference after the second day.

The cook’s decision problem might be formulated as follows. The
state x is the state of the two diners; that is, it can take on one of the four
values,

(9.4) HH, 1S, SH, S8,

L. For a discussion of preferences that are additively “decomposable™ in time, see
Koopmans 1960.
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where, for example, “x = HS” means that the first person’s egg should
be hard and the second person’s egg should be soft. The action variable
for any one day is also a pair, which can take on any of the four values
{9.4). The payoff function for any one day is

1  a, = x (correct)
(9.5) o(x, a) = { . )

0 il a, # x (incorrect).
Then the expected payoff is the expected number of days on which the
cook prepared the correct pair of eggs. .

If there are three days, the three information structures induce the

following partitions of X :

@,:{HH, HS,SH, SS),
9.6) @,:{HH, HS}, {SH, §5),
@, {HH), {HS), (SH}, {SS}.

The example just given brings out the fact thal, if the set X of alternative
states is finite, then a sequence of information structures strictly increasing
in fineness cannot be indefinitely long. (Thus, in the example, the cook can
learn nothing new about the state of the world after the third day) Il X
is finite, then a sufficiently long sequence of information structures with
strictly increasing fineness will eventually reach camplete information.

REVISION OF POSTERIOR PROBABILITIES

If ;. 74, ... is a sequence of increasingly fine information structures,
then the corresponding posterior probabilities can be obtained by a
process of successive revision. It will be seen that the postetior probabilities
based upon the information y, ., can be calculated, using a modification
of Bayes’s theorem {Seciion 7) in which the role of the prior probabilities
is played by the posterior probabilities based on the information y,.

More precisely, we shall show that, for any z and 2" in &, the ratio of the
new posterior probabilities is obtained by multiplying the old ratio by a
correction factor reflecting the new information, as follows:

©.7) TL’(Z!)JH W) _ n(zly,) ] ™Y, . llz My
‘ mzlyes)  wZly) wlylz o )

Equation 9.7 is a formal expression of the decision-maker’s *“learning
process.”

To prove (9.7), first observe that, since 1, | is finer than #,,

9.8) H+a(x) = nyfx) for all x in' X.
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Consider then y, €%, and ¥,,, € ¥ ., with y,,, < y,; for such sets,

99) Frer = Yea1 MYy
By (7.2a),
Vi1 0 z)
( ' i = E—_“" -
walyiea) Y4 1)

Again by (7.2a), with (9.9),

Wy N2 =aly . KNI

e v 0 Daly, n 2)
(Y, lfy: N z)rt(ziy,)n(y,},

so that

(9.10} 7‘(2|Yr+ 1= ﬁ(J’rHIJ’: n z)alzly,) [‘T}E:y_:)l)]

Dividing (9.10) by the corresponding expression for a(zly, . ,) gives the desired for-
mula (9.7}

10. CONDITIONALLY INDEPENDENT PARTITIONS

The most intensively studied type of sequence of increasingly fine
information structures is that associated with what are commonly called
repeated, independent observations. Random sampling with replacement,
and independent repiications of experiments, are examples of such se-
quences. In this type of situation one deals with a given payoff-adequate
partition, say &, and a sequence of information structures #, of increasing
fineness, but such that no #, 1s as fine as & (i.¢., induces a partition that 1§
as fine as &). This last condition expresses the impossibility of “direct
observation™ of &. We shall show, nevertheless, that under certain con-
ditions one can obtain an information structure 1, as close us one likes to
being as fine as Z (in a sense to be defined), by taking ¢ sufficiently large.
This result may be interpreted as saying that, even if one cannot observe
directly in which set z in & the true state x lies, by making sufficiently many
(suitable) independent observations, one can come as close to certainty
as one likes about the set z in which the true x lies, and therefore as close-as
one likes to. the maximum possible payoff.

AN EXAMPLE

Before presenting a general formulation, we shall first study in some
detail an example of random sampling with replacement. Consider an
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urn with a fixed number of balls, say N, which is known to the decision-
maker. Each ball may be red or black; let i denote the number of red balls.
The information structure 5, will be generated by a random sample, with
replacement, of ¢ balls from the urn; any particular random sample of ¢
balls will be denoted by {(b,,....b,), wherefors = 1,.. .t

E
red

black.

Suppose that for any single ¢, the decision-maker must estimate the
number of red balls in the urn, on the basis of the random sample of ¢
balls. If therc is an upper limii, say T, to the sample size, then one can
represent a typical state of nature as

(10.2) X =(i,by,... by

1
(10.1) b, = {0 means the sth ball sampled is{

If the sample size is uniimited, then one must in principle describe a
typical state as an infinite sequence

{10.3} x=(isb1!h29"'!)'

Therefore in this case X is infinite. In either case, the sampling is re-
presented by the information function

{10.4) yo=ndx) = (by,...,b)

For any :, the action taken is an estimate of i, that is, some one of the
numbers 0, 1,..., N. To be definite, lel us assume the single-period payoff
function @ of (9.2) is

(10.5) @lx, a,) = {

1 ila, =i
0 ifa, # .

For this payoff function, the partition % of X according to the values of |
is payoff-adequate. Notice that it is not possible to determine the value of i
exactly from any finite sample, that is, no #, is as fine as %.

To express precisely the concept of random sampling with replacement,
for each s we denote by f(x) the value of b, {sth ball sampled), and
suppose that the decision-maker assumes that, for each ¢,

(a) Prob{f(x) = lli} = — = p,,

2z oz~

a%)(mpmMNﬂ=mn=_§J:1—m

ey fi(x)..., B,(x)are statistically independent, given i,
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Using (9.13b} of Chapter 1, it follows from the independence assumption
(c) that

(10.7)  Prob{n(x) = (by, ..., b)li} = pF"& (1 — pY ¥" = a(yi)

For each number j=0,...,N,n(j) denotes the prior probability
that there are j red balls in the urn; and =n(jly,) denotes the posterior
(conditional) probability that there are j red balls in the umn given that
nx) = ;. '

We shall show that, if 1 is sufficiently large, then, given i, the decision-
maker is very sure that the posterior probability r{ fim[x]) will be close to
zerofor allj # i, and close to one for j = i. To be precise, we shall show that,
for any ¢ > 0,

lim Prob{n(jin[x]) < eli} =1  forj # i;

lim Prob{a(iin[x]) = 1 — eli} = 1.

[ ks 2}

(10.8)

[In (10.8), both probabilities (“Prob” and “=”) are, of course, subjective
and thus refiected in the choice of action, as in (9.16) of Chapter 1.]

Before proceeding to sketch the proof of {10.8), we note an important
corollary. If information were complete, the best action would be a = i,
and the expected (one-period) payoff would be 1. It is easy to verify, using
the rule of maximizing conditional expected payoff (Sections 5 and 7)
that the best decision ¢, for each y, is

(10.9) a, = &{y,) = that j for which n(jly,) is maximum.

Hence the assertion (10.8) about the posterior probabilities implies that,
for t sufficiently large, the expected payoff using &, is close to 1, the maximum
possible.

To sketch the proof of assertion (10.8) about the posterior probabilities,
we use Bayes's theorem (7.11), to calculate the ratios of the posterior
probabilities for a given t and a given sample y, = (b,...,b): by (10.7),

w(jlyy

ﬂj)z‘.b,(l _ pj)r-rﬁ b [E(J):l
akly)  \mf \1 - p n(k)

= (Eﬁt)l ' [%] *

(10.10)
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where
be N Ve
ez
10.11) | o P
by=-%b,.
15

By the law of large numbers,'? for large f the decision-maker is very sure
that b, is close to p,, given that the urn has i red balls; hence he is VEry sure
that, given i, L, is close to

(10.12) (5)“(1—*&)1_”'.

n Al —
In particular, for large ¢, he is very sure that L is close to
- APilY —pl\t-pi
(10.13) L= ("_f) (—ﬂ) .
pif A1 —p

Now note that L; = 1; whereas if j # i, then (by the strict concavity of
the logarithmic function)

7 p; - 1 —p;
log L; = p,log (J) +(1 -p)lo —’)
! Pi Poiok 1 —p;
. 1 — p.
< log [P:’ B + 1 - Pi)(—& ]
Pi 1 - p
= log |
=0,
0 that
(10.14) L,<l

Hence for large t, (T ;) 18 close to-zero, for j # i; and hence, given i red
balls in the urn, if j # i, then the ratio of posterior probabilitics

nljly)

n(i]yr)
is very sure to be close to zero."? It follows that, given i red balls in the urn,

the posterior probability n{jly,) is very sure to be close to zero for j # i,
and close to one for | = i, for large t.

12. This sketch of a proof is only heuristic. For a detailed prool, see the end of this section.
For the law of large numbers, see Chapter 10 of Feller 1968,
13. A separate argument must be made ifiorjis® or V.
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Note that this last 1s a conditional probability statement about the
values of the posterior probabilities, and an expression of the decision-
maker’s probability judgments. Nevertheless, the convergence of the
posterior probabilities, and the resuiting convergence of the expected
payofl to the maximum possible, take place whatever the numerical values
of the prior probabilities n(j), provided only that they are all positive. Thus
two different decision-makers facing the same problem, who agree on
the conditional probability statements (10.6) but who disagree on the prior
probabilities n(j), will nevertheless agree closely on the posterior probabili-
ties 7{jly,) if they have both been exposed to the same information signal
y,, if t is sufficiently large, and if all the prior probabilities are positive for
" both decision-makers. '

GENERAL CASE

We turn now to a more general treatment of the convergence of pos-
terior probabilities and the approach Lo the maximum possible expected
payofl. Consider again a decision problem with a sequence of increasingly
fine tnformation structures #,, as described in Section 9, and let & be a
finite payoff-adequate partition of X. To formalize the idea of independent
repeated observations, let B be some finite set (the set of alternative values
of the “variable” that 1s observed), and for each s = 1,2,...,let B, be a
function from X to B. Foreach t = 1, 2,..., define the information struc-
ture 3, by

(10.15) nix) = [Brlx), ..., Bilx))
Let = be a probability measure on X. The functions §,,..., f, are said

to be statistically independent with respect to the given probability
measure if, for any ¢ elements by, ..., b, in B (not necessarily distinct),

(10.16) Prob{f,(x) = b,,....3(x)=h} = ﬁ Prab{B.(x) = b,}.
s=1

Similatly, 8,,..., 8, are (conditionally) statistically independent given
the partition & if, for every set z in & and every ¢ elements b,,...,b, In
B)

oy Bdx) = b)x e z}

(10.17) Prob{f,(x) = b,

[ Prob{f{x) = blx e z}.

t
5=
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First, we shall assume that, for s = 1,2,... and for every z in & and
every bin B,

(10.18) Prob{f{x) = blx ez} = p(blz).

Note that the probability (10.18) is the same for all s. This corresponds to
conditions (10.6a) and (10.6b) in the example of random sampling and
expresses the repetition of the observations. (To avoid trivial situations, we
shall assume that, if z # 2, then the two distributions p(hlz) and p(biz)
are different.)

Second, we shall assume that, for ¢t = 1,2, ..., the functions §,,..., ,
arc statistically independent given &. This corresponds to condition
© {10.6c).

For the above assumptions to be satisfied for an infinite sequence of
observations, it is necessary that X be infinite.

The posterior probability of a set z, given that n{x) = y,, is denoted by
n(z|y,). We shall prove that the posterior probabilities converge, in a sense
to be made precise. The expression

(10.19) n(zlndx))

indicates that the posterior probabilities that are actually realized in the
course of observation depend upon the true state x, so that for any set z,
and any ¢, the probability measure = on X implies certain probabilities
of the diffcrent values of (10.19). For example, it is meaningful to talk about
the conditional probability

{10.20) Prob{a(zly,[x]) > 1 - &xez).

This 1s the conditional probability that the posterior probability of a
set z will turn out to be within ¢ of 1, given that the true state is actually
in z. We shall show that for fixed z and &, this probability (10.20) converges
to 1 as ¢ increases without limit.'*

THEOREM. If z is in &, then for any ¢ > 0,

(10.21) lim Prob{n{zln,[x]) > 1 — edxez} = 1.

Belore proving this theorem, we discuss some of its consequences. An
immediate consequence is that, for any z' # z in &,

(10.22) lim Prob{n{z'ln,[x]) < elxez} = 1.

14. In the language of probability theory, =(zl{x)) “‘converges in probability” to 1,
given that x is in z, as ¢ increases without limit. We are assuming, as uswal, that Az} > 0
for all zin &,
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A further consequence concerns the maximum expected payoll in
period ¢ that can be obtained through the use of the information structure
n,; this expected payoff converges to the maximum possible payoff
obtainable under complete information, as stated in the following corol-
lary.

COROLLARY. For every t, let &, denote the best (component) decision
Junction for period t, using the information structure n,; then

(10.23) lim Eaxx, &,(p{x)]) = E max afx, a).

By (10.17) and (10.18), the conditional probability of an information signal
¥, =(by,--, b)), given that the true state is in z, is

(10.24) Prob{nix) = (b,...,blxez} = n plbJz).

For simplicity, consider only the case.in which p(blz) > 0 for ali b in B. (For the case
in which p(blz) = 0 for some b, the proof must be slightly modified.} By Bayes's
theorem. (7.11), the ratio of posterior probabilities of 2’ and z, given i,(x} = v, =
(by,....,b)is -

m{z'{y,) ﬂ . Plb; IZ) nz'}

10.25 i 5=
H0.25) 7(ely) = 11y p04D) 7
or
{10.26) Liz. 2y, [ JRLXES z)] ”((2))
where

o b2
(10.27) Mb; 2z, z) = o)

ooy )
(10.28) Lz, z;y) = ETIR
Taking the logarithm of both sides of {10.26), we obtain
(10.29) log L{z\ z; y) = Z log Mby; 2, ) + log[ ‘(22))]

In (10.29), if we substitute »,(x} for y,, and f{x) for b , we get

(10.30) log L(, z; #{x)) = tL{x; 2, 2) + log ((zz)’
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where

(t0.31) Lix; 2,z =—: Z log 2[Bdx): 7', 2]

By (10.18), the condirional probability distribution of Jog A[f{x); z’, z]. given that
X 15 in- 2, is the same for all 5. The mean of this distribution is

(10.32) Lz 2y = Y log Mb; 2, 2)piblz).

bel

If 2’ # z, then the numbers A(b; ', z) are not all equal. Hence, since the logarithm is
a strictly concave function,

(10.33) Lz < log[ ¥ Ab; ', z)p(blz)] =logl = 0.
beB

By Chebyshev’s inequality (see, e.g., Feller 1968, Chapter 9, Section 6), for any
number &k > 0,
2
{10.34) Prob!|Lix; 2", z) — Lz, 2) 2 kixez} < _ﬁ,

where ¢? is the conditional variance of log A[f(x); 2, z), given xe z, and hence
{(o2jt) is the conditional variance of L(x: 2, 2}, given x € z.
By (10.33), I[{z. z) is strictly negative. Taking

{10.35) ko= — —mii2le

inequality (10.34) implies

Prob{tL(t s ——— rf(z Z)

4g°
SETEp e

which in turn implies
4ot
(z, 2

For any £ > 0, letting ¢ increase without limit in (10.36) implies

{10.36) Problettx=.a) g pilF a2y e st > |

{10.37) lim Prob{e'™™=#"2 < flxez} = 1,

A
since L(z', z) is strictly negative, by {10.33).
Comparison of (10.37) with {10.30) shows that, for any ¢ > 0,

{10.38) lim Prob{Liz,z;nfx)) £ éxez} = 1.

1o

From this, and the definition (10.28) of L, the conclusion of the theorem follows
immediately.
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11. CONDITIONAL PROBABILITIES CONVERGE TO QBSERVED
FREQUENCIES

We continue our analysis of repeated independent observations and
now pose the question: After large samples, what is the decision-maker’s
conditional subjective probability that the next observation will take on
a particular value, say b, given that in t previous observations the relative
frequency of the value b has been f. Denoting this subjective conditional
probability by F( f), we shall show, roughly speaking, that for ¢ sufficiently
large, P{f) is close to f, provided the prior distribution satisfies certain
conditions.

To simplify the discussion, we shall deal only with the case in which
each observation can take only one of two alternative values, that is
b = 0 or 1. In the notation of Section 10, the set B has two elements. This
would correspond to the example of sampling from an urn with red and
black balls (beginning of Section 10), were it not for the fact that we shall
assumne that the payoff-adequate partition & of X is infinite, and further-
more that the conditional probability

p(blz) = Prob{f,(x) = bix e z}

[see (10.18)] takes on all values between 0 and 1 as z varies in . It will
be seen below that this assumption is crucial for the above-mentioned
convergence.

Since we are dealing with a two-element set B,

pl0lz) = 1 — p(1l2),

for every z in &, and so we can index the partition & by the values of
p(liz), and represent 2 by the closed interval [0, 1]. Writing

p = plil2),
(10.17) and (10.18), defining the process of observation, imply
(1L1) Prob{B(x) = by,..., B(x) = bjjz = p} = pY«(1 — py1 =79,

where
(11.2) ',s%zm

is the relative frequency of 1’s in the sample b,, ..., b,. This corresponds
to (10.7) in the example of sampling from an urn.

Suppose that the prior probability distribution can be represented by a
probability density function, ¢, on the closed interval [0, 1] (the formal
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meaning of this statement is given below). We wish to analyze the condi-
tional probability

(11.3) PrOb{ﬁH l(x) = ”ﬁl(x) =b,... aﬁt(x) - br}

that the (r + 1)st observation is 2 1, given that the first t observations were
b,....b.
We shall show first that the conditional probability (11.3) is equal to

,rwﬁm—m“*wm@
(11.4) Pfy="tr——————

I 1
[ 7 = o g0ap
0

where, again, f, is the relative frequency of I's in the sample b,,....b,,
asin (11.2). Second, we shall show that, if the prior density ¢(p) is positive
for all p in [0, 1], and if its first derivative ¢'(p) is bounded on [0, 1], then
thereisanumber K > Osuchthatforallzand f(witht = 1and0 < f < 1),

11s) oy - Sk
Note that the number K depends upon the prior density function ¢ but
not on the observed relative frequency f.

If some assumption like the one that the prior distribution of p has a
posilivé density is not made, then one cannot expect to get convergence
of IP{f} — | 10 zero. For example, if the partition 2 is finite, so that the
prior distribution is concentrated on a finite set of values p(1z), then for
large ¢, P{f} will be close to that value p(1/z) which is, roughly speaking,
closest to f. Thus, if & were a four-fold partition, with p(1|z) taking values,
say, 0, 1/3,2/3, or |, and if /' = 1/4, then for very large 7. P(1/4) would be
approximately equal to /3.

Before turning to the proof of {11.4) and (11.5), we make precise the meaning of
the density function ¢. For any interval [, b] contained in the unit interval [0, 1]
we define, for the moment,

ta,b)= v i{z:ze & and a = p(ll2} £ B).
We assume that the subjective probability measure # on X satisfies

nmmwuzj*mmdn

where ¢ is a probability density function on [0, 1], that is ¢ 2= O and [ ¢(p)dp = L.
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By Lhe definition of conditional probability [sce (9.13a) of Chapter 1],
(116} Prob{B. {x) = UB,(x) = by,.... Bix) = by}

_ Prob{B,(x) = b, Bix) = by, Biay(x) =1}
B Prob{f;(x} = b,,...,B{x} = b} '

Averaging (11.1) over p, weighted by the density ¢, gives

1

(17 ﬁwmm=mpMMﬂ=m=prhwW”www

[+]
Similarly,

{11.8) Prob{f(x) = b,.....Bfx) = b, B, ((x) =1}

1 .
=j'p”*%1-m“*fWUﬁda
0

Division of {11.8) by (11.7) yields (11.4).

It is of some interest to note that P{f) is equal to the mean of the posterior {con-
ditional) distribution of p given the sample b,,---,b,. Let ¢f(plb, ..., b} denote the
density function of this posterior distribution. The extension of Bayes’s theorem
[in the form of (7.14)] to the case of continuous distributions yields for this problem

Pt — p)~ Pg(p)
19 ey =R TR
( ) ¢l(p'b1 ) b) D‘(f)
where
i
(1.10) &miLﬂm—wW%mm

Hence (11.4) can be rewritten

1
{11.11) ' P(y= L podplb, .-, b)dp.

To prove (11.5), we use (11.4) and (1 i.!O) to write

L
J‘ AL = p¥ - Ddip)dp — 1 DLS)

= [
(11.12) Py D[}

LW{mM—wW%m@
T Ty
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At this point we must make more precise our definition of the integrand in (11.10)
and (11.12). Define,for0 s p £ 1,

lfp f=0v
(11.13) gp.N1=9p0 -7 O0<f<l,
P =1L

In terms of (11.13), (11.12) can-be written

_ oY)
(11.14) PN =T~ 5
where
1
(11.152) NS = L (p — Niglp. /)1 6(p) dp,

and by (11.10},

1
{11.15b) D{f) = L [&lp, /N'dlp) dp.
One routinely verifies that

(11.16} %{P(l — pp(pdlgle, O} = o f ~ p)glp.N)]élp)
+ {1 = 2p)d(p) + p(t — P (M)iglp. )]

Intcgration of (11.16) from 0 10 1 gives

0=~ N/} + L {1 - 2p)(p) + p(l ~ p)pp)ialp. /)] dp.

or
(1L17) NS} = }[u.(f) — INV(f) + Nakf)]

where

i
Ndf) = L plale /)Y o) dp,

1
Nudf) = j A1 — Dlelp SN Pp) dp.
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Since by hypothesis ¢' is bounded on [0, 1], and ¢ is positive and continuous on
[0, 1], there are numbers M and m such that,** {or all p in [0, 1],

(11.18) el =M, 0<mz Plp)

Hence, noting that 0 £ p < 1 and 0 £ p{l — p) £ I, we wrile

1
Nqﬂgﬁjmuwwm@=bum
1
(11.19) WAMéMLMMWm

1
mnszwmmwn

From (11.14) and (11.17), we have

The inequalities (11.19) imply

Nulf) _
D(fy ="
(11.21)
Wzr(f}l < M
Dify =m’
Applying these inequalities to (11.20), one gets
(11.22) |mnﬁﬂ§33+%y

which proves {11.5}.
12. CoST AND VALUE OF INFORMATION

Information, like decision, usually costs something. The information
structure that resuits in the highest expected payofl may involve costs of
decision and of information that are so high as to make some other
information structure preferable.

One part of the information cost may be fixed once the information
structure is chosen, For example, one may choose to base his future de-
cisions on the outcome of a sample of a fixed size, or on the information of a
forecaster who charges a fixed fee regardless of the outcome of each fore-
cast, Another part of the information cost may be a random variable whose

15. Since ¢ is continuous on [0, 1], it attains a minimum on [0, 1], and since ¢ is positive
on [0, 1], its minimum is positive.
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value depends on the actual state of the world. For example, instead of
fixing the sample size in advance, one may make the decision whether to
continue or stop sampling dependent on the outcome of observations
alrcady made (sequential sampling). One may arrange with the forecaster
to pay him larger sums for those forecasts that prove to be more suc-
cessful. One may also arrange to pay him a fixed overhead sum phus a
success bonus. Thus, in general, total information cost will be a random
variable.

As 15 the case for decision cost, little is known about the cost of in-
formation. It is important to note that, unlike the value of information,
the cost of information typically does not depend in a direct way on the
payofl function. Like Shannon’s (1949) amount of information, the cost of
information does depend on mathematical properties of the set Y of
signals, and on the probability distribution over this set. This, in turn,
depends on the information structure » and on the probability distribution
m over the set X of states of nature. However, two systems of signals with
the same probability distributions may involve different costs. The cost
in time that it takes a decision-maker to get information on his own, or
the money cost that is charged in the market of purchaseable information
services, depends on additional factors. The fees for information services
depend, lor example, on the relative bargaining positions of sellers and
buyers of such services, so that, ultimately, the values of a given information
structure—for other uscrs of this kind of information as well as for the
particular decision-maker—do influence the cost of information. This
subject matter has been opened up by Good (1952) and McCarthy (1956)
but we shall not pursue it here.

In general, taking account of the costs of information and decision
will require a fairly drastic reformulation of the decision problem as
we have presented it. The outcome will depend generally on the state of
nature, x, on the decision function, «, and on the information structure,
n, thus:

(12.1) r* = p¥x, a, n)

The decision-maker would choose, from some set of feasible pairs, a
pair (¢, #) that maximizes the expected utility of (12.1) with respect to his
probability distribution = on X. Note that a particular pair (&, #) may not
be feasible, even though action «{y) is feasible for each y.

One might call p* the net outcome function, to emphasize that, for
any state x, the outcome depends upon a« and u, and not just on the
particular action a = afx{x)] that is taken. Corresponding to the net
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outcome function we define the net payoff function,
(12.2) o*(x, o0} = v[p*(x, o, )},

where, as before, v denotes the utility function on the set of outcomes.

It does not appear that muoch of interest can be said at this level of
generality. A special case of interest is the one in which the outcome
variable is vector-valued {or, in particular, numerical), and the net out-
come (12.1) is a difference between a term that depends only on x and a—
the gross outcome - and a term that depends upon x, &, and p—the cost.
Thus

(12.3) p*(x, 0, ) = plx, a[n(x}]) — yx, o, 1),
where p 1s the gross outcome function, and y is 1o be interpreted as the cost
Sunction.'®

If the utility function v is a linear function of outcome, then, by an
appropriate choice of the origin from which utility is measured, one can
take v to be homogencous as well. (Recall that the utility function is
defined only up to an increasing linear transformation; see Chapter 1,
Section 12.) In thus case, the net payoff function takes the form

(124) w*(x, o, ) = v[p(x, a[n(x}N] — v{y(x, a, )}

= w(x, a{’?(x)]) - ?(xa o, ﬂ),
where, as before (Chapter 1, Section 14),

(12.5) wlx, a) = vip(x, a)l,
and further,
(12.6) H(x, o, 1) = v[y(x, o, ).

The function w is the gross payoff function, and § is the cost function in
terms of utility.

From the point of view of general ulility theory as discussed in Chapter
1, the separation, and subtraction, of *““costs” from “gross payoff”’ is not
permissible except in special cases. The decision-maker assigns a utility
to each outcome of his decisions and the state of the world. If he has to
sacrifice time or other factors in order to achieve certain desirable results,
then the “outcome™ is the combination of the sacrifices and the achigve-
ments. The utility assigned to this combination is noi, in general, repre-

16. Of course, in a formal sense (12.3} is no less general than (12.1), as can be seen by
taking p(x,a) =0, and y = —p*. The formulation (12.3) becomes interesting when one
can attribute special properties to the functions p and v.
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sentable as a difference between some “utility of things achieved” and
“utility of things sacrificed.” However, because of its simplicity, the
assumption that such separation of achievements from sacrifices is
possible has great methodological advantages, at least as an approxima-
tion. For example, insofar as the cost of information has entered into the
analysis of statistical problems, this assumption has typically been made
(sce Savage 1954, pp. 116-19 and Wald 1950, pp. 8-10). In particular, in the
analysis of problems with repeated observations {(sequential or not), it is
usually assumed, if only implicitly, that the cost of sampling in terms of
utility is a linear function of the number of observations (see Wald 1950,
pp. 10, 103).

The problem of decision-making, especially in its applications to several-
person organizations, is so full of subtle complications that it seems
worthwhile to make the assumption of separable achievements and sacri-
fices in order to throw some hght on the problem,

VALUE OF INFORMATION

Suppose that
(i) The outcome variabie is numerical (e.g., profit).

{ii) The net outcome function can be decomposed into a difference
between gross outcome and cost, as in (12.3),

(iti) The cost y(x, &, n) is actually independent of x and «, that is, is a
(nonstochastic) number that depends only on the information
structure.

(iv) The utility function v of (12.2) is continuous and strictly increasing
(but not necessarily linear).

In this situation one can define a simple and useful concept of the value
of an information structure, namely, that cost which would eguate the
maximum net expected utility for the given information structure to the
maximum net expected utility obtained with no information.

If the cost is C for a given information structure n, then the maximum
net expected utility that can be obtained using # is

(12.7) max E{ulp(x, «[(x)]) — C1}.

We may suppose, without loss of generality, that the cost of no information
is zero,;'7 then the maximum net expected utility with no information is

(12.8) max Ev{p(x, a)).

i7. This can be achieved by a suitable choice of origin for the measurement of outcomes.
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The value of , denoted by V(»), is defined (o be that value of C that makes
{12.7) equal to (12.8), that is, the solution of the equation

(129)  max E{vlp(x.aln(x)) ~ V(m)]} ~ max Ev[p(x, )}

It will be shown below that, under assumptions (i} to (iv), (12.9) does indeed
have a unique solution.

The concept of value of information just defined is related to, but not
the same as, the concept implicit in the relation “not more valuable than™
that was defined in Section 6, namely, '

{12.10) ‘ max Ev{p{x, a[n(x)])} — max Eofpix, a)].

In the next section, we shall give an example in which two information
siructures are ranked in one order if the value of information is measured
according to {12.9), and in the opposite order according to (12.10). .

However, the basic theorem of Section 6, relating fineness of information
to value of information, remains true with the definition (12.9) of value.

There is one important special case in which (12.9) and (12.10) give
the same measure of value, namely, the case of a linear utility function o.
We shall restrict our analysis to this special case throughout the greater
part of this book.'8 :

To prove that (12.9) has a unique solution, let  be a given information structure,
and define, for the purpose of this proof only, the functions f and g by

J{(C, ) = Ev{p(x, afn(x)]) — C}
£(C) = max f(C, «).

{12.11}

Since v is strictly increasing, f(C, o) is strictly decreasing in C for each «. Therefore g
is strictly decreasing. Now every information structure is as fine as no information;
hence

(12.12) £{0} = max Euv[p(x, ).

On the other hand, for C sufficiently large, g{C) can be made not to exceed the right-
hand side of {12.12). The continuity of v implies the continuity'® of g; hence there isa
solution to

(12.13) glC) = max Ev[p(x, a)],
and by the strict monotonicity of g, it is unique.

18. G. Debreu suggested the present extension of the definition of value of information
10 the case of a nenlinear utility function.

19. We assume here that X is finite; if not, then some {uriher regularity conditions are
needed. We also implicitly assume that g(C) is well defined for all C and all 5.
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13. AN EXAMPLE

A simple example will serve to illustrate the concept of value of in-
formation and to show that the two definitions of value, (12.9) and (12.10),
need not lead to the same ranking of information structures.

Let there be four equally likely states and five actions, with a numerical
outcome function as shown in Table 2.5.

TABLE 2.5. QUTCOMF FUNCTION

States {equally likely)

Actions 1 2 3 4
1 | 0 - 100 — 190
2 —100 — 100 1 0
3 04 —100 04 —-100
4 — 10 04 —i00 - 04
5. o 0 0 0

We shall consider three information structures, no,%,, and n,.
(13.1} Nolx) = 0 for all x,
M1 = n,(2) = 0,
m(3) = n(4) = L.
n2(1) = n,(3) = 0,
72(2) = na(8) = 1.

The first is “no information™; the second partitions X into the two sets

{1.2} and {3,4}; and the third partitions X into the two sets {1, 3} and

{2,4}. The partitions corresponding to %, and », are shown in Figure 2.4.

Note that 77, and #, are not comparable with respect to fineness.
Suppose that the utility function is

r ) forr £1/2
(134) vir) ={
172 + (0.2)[r — (1/2)] forr = 1/2.

{13.2)

(13.3)

Figure 2.5 shows a graph of this (nonlinear) utility function.

It is easily verified that the best action (constant decision function)
under no information (y,) is 2o = 5, and the expected utility for this
action (assuming the cost of no information to be zero) is zero, that is,

(13.5) max Euvlp(x,a)] = 0
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FIGURE 2.4, Information structures.
My Moo
Suppose now, for the time being, that the information structure #,

also has zero cost. We shall show that the best decision function for 4,
is

(13.6) “a®=1 ol

2

We apply the theorem on maximizing conditional expectations (Section
5). Given that #,(x) =0, we find that the states 1 and 2 each have con-
ditional probability 1/2. The conditional expected payoff for each of the
five actions is given in Table 2.6. Note that if one applies (13.4) in the
calculation of Table 2.6, v{r} = r for all of the outcomes involved except
r=1;p(1) = 06

v(r}

0.5

FIGure 2.5. Utility function.
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TABLE 2.6. CONDITIONAL EXPECTED UTILITY

Action a E{vlp(x, @)l {x) = 0}

{1/2}{0.6) + (1/2){0) =

(1/2)(— 100} + (1/2){— 160) = — 100
(1/2)(0.4) + (1j2)(—100) = ~498
(1/2)(—100) + (1/2)(0.4) = — 498
(/20 + (1/2)(0) =

L S

From Table 2.6 it is clear that action 1 is best when mix) = 0; that is,

2,(0) = 1. A similar argument shows that « 1{1) = 2. The details are left
to the reader.

In the same way, one can show that the best decision function for 4, is
(13.7) %,(0) = 3, oy(l) = 4.

Table 2.7 shows the gross oulcomes and ihe gross payofis (utility of
gross outcome) that result from using each of the decision functions «,
and «, . Recalling that the four states are equally likely, one calculates from
Table 2.7 the expected gross payoffs for «, and =, :

Ev{p(x, o, [5,(x)})} = 0.3,

Eu[p(x, as[n2(x)])] = 0.4.

{For example, the expected gross payoff for o, is
(1/4)(0.6) + (1/4)(0) + (1/4)0.6) + (1/4)(0) =

Since the expected payoff for no information is zero, (13.8) also gives the
value of information for #, and 5, when calculated according to (12.10).

(13.8)

TaBLE 2.7. Gross PAYOFFs AND OUTCOMES FOR ; AND @

Gross Outcome Gross Payoff
State Xy O o, o,
1 1 04 0.6 04
2 0 04 0 04
3 ] 0.4 0.5 04
4 0 04 0 04

Consider now the value of information determined by (12.9). We shall
verify that the values of #, and n, are

(13.9) Vi) = 0.5, Vigy) = 0.4,
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Indeed il one takes the cost of #, to be 0.5 and the cost of #, to be 0.4,
then it is easy to verify that a, and a, are still the best decision functions
for 17, and n,, respectively. The net outcomes for (n,,a,) and (n,, a,) are
shown in Table 2.8. Since none of the net outcomes in Table 2.8 excecds
1/2, the utility of outcome equals the outcome for all of them, and it is
immediately found that the expected net payoff is zero for both &, and o,
Hence the values 0.5 and 0.4 do solve (12.9) for 5, and 5,, respectively.

TasLe 2.8. NeT OUTCOMES

Net Qutcome

State ni,0) {2, 3)
1 0.5 0
2 —0.5 0
3 0.5 ]
4 —0.5 0

Thus, if value is calculated according to (12.9), #, is more valuable
than 5,, but, if value is calculated according to (12.10), the ranking is
reversed. In this case, the reason is that the decision function &, results
in a more “risky” distribution of outcomes than does «,, and the {non-
linear) utility function v of (13.4) expresses risk aversion. On the other
hand, the expected outcome for a4 is higher than that for o, . The subtraction
of the costs brings all the net outcomes down into a range in which v is
linear (i.c., a range of “neutrality toward risk”), which in this example is
sufficient to reverse the ranking of the two information structures.

14. SUMMARY OF CONCEPTS

Our brief sketch of the single-person organization problem is complete,
and this seems to be a good place for a list of the concepts, and the symbols
denoting them, that will be used in the following chapters. The reader will
notice that not all the concepts that have been introduced in this chapter
are included in the list. Some of them, such as “‘bench-mark event,” have
already fulfilled their roles as introductory or intermediary ideas. Others,
such as “*sequence of independent repeated observations,” will be used only
rarely, if at all, in the remainder of the book.

Symbol Concept

X The set of (mutually exclusive) states, x, of the environment. The
unceriainly aboul x is expressed by a probability distribution
on X.

R The set of allernative possible outcomes of action.
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A The set of all conceivable actions, a, equivalent to the set of all
functions from X to R. It is larger than the set of feasible actions,
but the latter will also be denoted by A4 if the meaning is clear
from the context.

p The outcome function. If the decision-maker takes action a, and
the true state of the environment is x, then the outcome is
r = p(x, a).

n Probability measure on X. The probability of an event W {a
subset of X) is a(W).

& Probability density function on X ; for example, if X is finite,
W) = Eer lx).

) Utility function; a real-valued function on R. The utility to the
decision-maker of the outcome r is u(r).

@ Gross payoff function; for any state x and action a,

wlx, a) = op(x, a)}.

Here w(x, a} is the payoff, in utility, to the decision-maker when
he takes action g, and x is the truc state of the environment,
provided costs of information and decision are disregarded.

F Payoff-adequate partition of X

m(xl ! a) = U)(Xz, ﬂ)

forall zin 2, all x,, x, in z, and all q in the set of feasible actions.

Y A set of possible alternative information signals, y.

i An information function {or structure): a function from X to Y.
The symbol y(x) denotes the information signal when x is the
true state of the environment.

o A decision function (or decision rule); a function from Y o A.
The symbol «(y) denotes the action prescribed by the decision
function « when signal y is received.

{n, o) An organizational form.

Qfn, «; w,m) The expected gross payofl resulting from the use of the informa-
tion structure # and the decision function «;

Qfn, o5 o, 1) = Eedx, aln(x})).

If w and r are clearly identified by the contexi, this may be
abbreviated to Q(n, o).

Qo m Maximum expected gross payoff for a given information struc-
ture n, sometimes abbreviated to f).{q),

Hx,m Cost of information.

Fx, #) Cost of information in units of utility;

¥(x, ) = v{p(x, n)].
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w* Net payoff function,
w*(x, a1} = v[p(x,a) — v(x. )]

Notice that we have restricted ourselves to the special case in
which outcomes and costs are numbers, or possibly vectors, and
cost can be subtracted from gross outcome,

.Q*(Pf, o; p, %, mv) Expected net payofl. May be abbreviated to Q*(n, a).
Vim Net value of the information structure », defined as the solution
for C of the equation :

max Q*(n,a; p, C, m, b) = max Eelx, a),
& a
whers outcome and C are numerical. In the case of a linear
utility function one has?°®

Vin} = max Qn, «) — max Euxx, a).

We shall characterize the single-person decision problem as: given
X, R, A, p,y,m,and s, choose an organizational form (1, &) so as Lo maximize
the expected net payoff O*(n, o), which in the case of vector outcomes can
be written

(14.1) Q¥ a; p, 7, 7, 0) = Ev[p{x, oln(x)]) — ¥(x, 1)l

In the special case of a linear utility function, the expected net payoff
f14.1) may be rewritten

{(14.2) Q*(n, a) = Qn, ) — Eu[y(x, 1)]
= Ew(x, «[n(x))) — EF(x, n).

Note that in both expressions we ignore the cost of decision.

20. Ome is also justified in using this as a definition of value of information if the outcome
is vector-valued and v is linear.



CHAPTER 3

Some Special Models

LIntroduction 2.Assumed probability distributions 3. Assumed payoff func-
tions 4.Example 3A: Buying faultless markel information 5.Example 3B: The
speculator  6.Example 3C: Production with constant returns 7.Example 3D:
Decreasing returns - outpul a quadratic function of a single input 8. Example 3E:
Output a quadratic function of two inputs

l. INTRODUCTION

In expression (14.2) for the expected net payoff at the end of (he last
chapter,

Q*(}?,'I) = Ew(x,ct[q(x}]) - E?(X, '?)s

the state variable x is a dummy variable: the net payofl is averaged over all
values of x; its expectation depends only on the functions

oW, Y.

The functions «, § are chosen, or controlled, by the decision-maker. But
he cannot control the payoff function w, the probability distribution =,
and the cost function §. These functions are the givens of the problem,
while o and # are the unknowns.!

We shall propose in this chapter some restrictions on the givens of the
problem and shall specify the restrictions still further in a series of examples.
Some of the restrictions, duly modified, will be carried over to the multi-
person team problem of Part Two.

We shall restrict the probability distributions, the payoff functions, and
(to an even more drastic extent) the organizational cost functions in such a
way as to bring out some essentials of the problem, while maintaining the
greatest possible mathematical simplicity. The properties of most of the
distribution functions and payoff functions we are going to use are

1. One might think that the utility and probability functions, representing as they do the
tastes and beliefs of the decision-maker, would be under his own control. The norm repre-
sented by our theory prohibits this. Of course, beliefs may change in the sense that posterior

(conditional) probabilities represent revisions of prior probabilities in the light of information
received.

93
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thoroughly familiar to students of statistics and economics, respectively.
But it seems worthwhile to repeat the familiar in order 1o show how those
properties are related to our problem of optimal decision functions and
information structures,

Each of the simple functions used will involve only a few parameters,
mostly amenable to intuitive interpretation. This is customary scientific
strategy. Many theories start with the assumption of linearity, or even strict
proportionality, using the cocfficients to define some basic concepts:
mass, resistance, or, in economics, the velocity of circulation, the marginal
propensity to consume, and so forth. Many propositions of theoretical and
descriptive economics are discussed in terms of “elasticities” (logarithmic
derivatives) assumed constant in the first approximation; that is, the
relevant relationship is assumed linear in the logarithms of the dependent
and the independent variables. In applied statistics certain distributions
(normal, uniform, Poisson, etc.) are tried as approximations, mostly
because of their simplicity. In addition to serving as approximations,
subject to revision and refinement in the light of experience, the simple
functions fulfili the important task of clarifying the logical nature of a
problem. They help “to fix the ideas.”

2. ASSUMED PROBABILITY DISTRIBUTIONS

THE CASE OF DISCRETE STATES

In some of our examples, we shall assign arbitrary probabilities to each
of the finite number of alternative states x. Even the case of Jjust two alter-
native states, with respective probabilities ¢ and (1 — @) (or the still
simpler case of two equiprobable alternatives) is sometimes instructive.
The distribution parameter — X ¢(x) log ¢(x) has sometimes been pro-
posed as the measure of “uncertainty” in the discrete case,

THE STATES AS VALUES OF A SINGLE NUMERICAL VARIABLE

When it is meaningful to consider the state x as a numerical variable

(whether discrete or continuous), it becomes useful to employ parameters
such as

the mean = m = Ex,

the variance = s = E(x - m)?.

The variance (or sometimes the “range”—the difference between the
maximum and minimum value of x) is often taken to gauge “‘uncertainty.”
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CONTINUOUS UNIVARIATE DISTRIBUTIONS:
UNIFORM; NORMAL

When x is a continuous variable, it will be convenient to use a uniform
distribution if x is confined to an interval, or a normal distribution if x
runs over all real numbers(from — oo to + o). In both cases, the distribu-
tion is fully described by its mean and variance. In the uniform distribution,
m coincides with the midpoint of the interval over which x varies, and the
standard deviation s (the square root of the variance) is proportional to
the range. .

MULTIVARIATE DISTRIBUTIONS;
STATISTICAL INTERDEPENDENCE

‘When each state of the world is represented by a vector, x = {x,, ..., xy),
a new feature of the distribution becomes important: the degree of statisti-
cal interdependence between the variables. To what extent does the
occurrence of a particular value of one variable affect the probability
distribution of another? It is intuitively plausible that this should influence
the choice of information structure, If the probabilities attached to the
various values of the variable x, depend on the value actually taken by x,,
then the knowledge of this value of x, will diminish the uncertainty about
X, onecan ‘estimate” x, better when x, is known that when it is unknown.
Statistical interdependence may even make it superfluous to observe the
second variable if the cost of such observations is large. If two local
newspapers are likely to contain the same news, I shall subscribe to only
one of them! ‘

In the case in which x,,...,xx are numerical variables, statistical
interdependence is often conveniently measured, for each pair x;, x, of
distinct variables, by the correlation coefficient r,;, = ry. It indicates the
degree to which the two variables tend, on the average, to move together
or to move in opposite directions, and i1s defined thus:

i = E(x; = m)(x — my)/fs;s, i#k
If each variable is measured from its mean, so that m, = m; = 0, the

formula is simplified to:
Ve — Exix,‘fS,-Sk i # k.

Further simplification is obtained by choosing units such that 5, = 5, = |;
then ry = Ex;x;; i # k.
MULTIVARIATE NORMAL DISTRIBUTION

In particular, if the joint distribution of the K variables is normal, it is
fully described by the K means, K variances, and K(K — 1)/2 correlation
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coeflicients. Thus ff K = 2 (in which case we shall simply write r;, = ), a
normal distribution is fufly described by the five parameters m,, my, 5,, 55,
r.

It will be recalled {Chapter 2, Section 5) that, under uncertainty, the
decision-maker has to maximize the conditional expectation of the payofi,
given the information. For an important class of payoff functions, this
involves computing conditional expectations of some state variables
given others; and in particular, expressing E(x,Jx;) (i # k) as a function of
x; (called regression function of x, on x;). It is a convenient property of the
normal distribution that this function is linear:

(2.1) El(xe — ml(x; — m)] = ry - (si/s3)- (x; — my)

(rusk/s; is the regression coefficient of x, on x;); or when m; = 0= my,
(2.1a) E(xkixi) = Fi - (S8} - x;.

A SIMPLE JOINT DISTRIBUTION OF TWO-VALUED
YARIABLES

It will simplify some of our illustrations if we assume that each variable
xw k =1,..., K, is capable of taking just two numerical values, each with
probability 1/2. This multivariate extension of the case in which a single
variable takes two equiprobable values turns out to be very convenient,
for it yields the same linear regression equations, (2.1) or (2.1a), as the
normal distribution. Because of its simplicity, the suggested discrete
distribution provides direct insight into the logic of the problem by
enabling the reader to proceed step by step instead of relymg on ready-
made results from textbooks.

The two equiprobable values of x; can be expressed in terms of its mean
and its standard deviation: as m; + s, and m, — s, (s, > 0). To verify this,
compute

E(x) = (1/2)(my + 5¢) + (1/2)(my — 5,) = g,
Bl — my? = (1/2s,% + (1/2)(—5)* = 52
It will often be convenient to measure each variable from its mean, that is,
to take the mean as the origin. Then x, takes the values +5, and —s, with

equal probabilities; it has zero mean and variance s5,%. For every pair
x;, Xy, the correlation coefficient can be computed as follows: If we write
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p = Prob(x; = s5; and x, = 5.}, then the joint distribution becomes
Xy =8 Xg= — 5

o (d-p

12— p p

Hence ry = E(x;x. )58, = 4p — 1 therefore p = (1 + r,)/4, and the
above joint distribution of x; and x; can be rewritien as

= Si
= =5

Xy
(2.2) .
X

X = 5 Xy = —5&
23) xp=85 {1+ ru)d (1 —ry)d
X = =5 ({1 —ra)/d (1 + ryjé

(IfK = 2, this matrix fully describes the distribution.) We can now evaluate
the conditional probabilities

Prob{x, = + slx; = + 5) = Prob(x, = — slx; = — 5) = (I + rg)/2,
Prob{x, = — sdx; = + 5 = Prob(x, = + sdx, = — s) = (1 — ry)/2,
and the conditional expectations E(x,x,):
S - Prix, = slx; = 5) + (= sk)-Pr(xk = — slx; = 5,
ifx; =5
Elx]x) =4 5:- Pr(x, = sjx; = —5) + (= 5)- Pr{x, = —5,)x; = —s))
ifx; = — 5
FiSy if x; = 5
- {—- F Sk ifx; = — s
or
{24) E(x x) = ry - (s/5) - x,.

Thus (2.1a), or using the original variables, (2.1), is valid not only for a
joint normal distribution but also for a joint distribution in which each
variable takes two equiprobable values, When there are only two variables,
the distribution (2.2) will be called a “simple 2 x 2 distribution.”

3. ASSUMED PaYorFrF FuncTIONS
RELATION TO GAME THEQRY AND OPERATIONS RESEARCH

The set 4 of feasible actions a may be discrete (e.g., buy, sell, do nothing).
Ifthe set X of states x is also discrete (e.g., market price high, medium, low),
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the payoff function can be represented by a matrix with a finite number of
rows and columns such as one encounters in the elementary theory of
two-person games: one player (the decision-maker) has at his disposal the
set A of (pure) strategies, the other player (nature) has a set X of (pure)
strategies; so that a given probabilily distribution m on X represents one
of nature’s mixed strategies. Since n is known to the decision-maker, he
will not find it advantageous 1o use mixed instead of pure strategies. For
the expected payofl of a mixed strategy is an average of expected payoffs of
pure strategies, and an average cannot exceed each of its components.

This relation to game theory carries over to cases in which X or 4 or
both are continuous, with the action a a real number or a real vector.

The single-person decision problem, under the assumption of known
probability distribution =, is a trivial one from the point of view of game
theory. Yet, if the payoff function is not too simple, the problem is identical
with many difficult problems of firm management and of military science,
now often identified as “operations research.” Particularly important
difficulties arise in the case of “dynamic programming”: here X is the
set of possible time sequences of states, and the payofl function depends
on this sequence and on the time sequence of actions. We shall return to
this in Chapter 7.

NONSMOOTH PAYOFF FUNCTIONS

Often a nonsmooth or even noncontinuous payoff function of real
action variables is essential to describe a decision situation. For example,
the inventory control problem under uncertainty, even in its simplest,
nondynamic form, gives rise to a discontinuous function. If a is the amount
chosen (o be held in stock, and x is the unknown demand, the profit is a
certain smooth (i.e., differentiable) function of @ and x when ¢ — x = 0;
and another smooth function of g and x when a — x < 0: for if the firm
is out of stock it suffers a ““depletion penalty,” through the necessity of
placing a costly emergency order or through the loss of goodwill. Another
nonsmooth case (which, in a modified form, will later be extended to a
multi-person case in Chapter 4, Section 8) is of the form

(3.1) profit u = min{a, x} — ca,

where a is the output (in dollars) of a nonstorable commodity, ¢ its unit cost,
and x the amount demanded (in dollars); so that the sales value is equal to
a or x, whichever is smaller.

LINEAR PAYOFF FUNCTIONS: BOUNDED ACTION VARIABLES

Among smooth payoff functions, our examples will make use of both
linear and nonlinear functions of numerical action variables, each bringing
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out some essential features of the general problem. Let the payoff be
tinear in a:

= ulx) a+ vix)

where u and v are numerical functions on X. If a can 1ake all values from
— 1o + oo, the payoff, at a given value of x, will not achieve a maximum
at any finite value of a. On the other hand, if o has 2 maximum fminimum)
value and p(x) is positive (negative), maximum payoff will be at the
maximum (minimum) value of a. It follows that, in the case of a linear
payoff function, only the two extremal values of « have to be considered.
The problem becomes identical with one in which the action variable is
two-valued. Thus in Example 3C below, the only decisions to consider are
production at full capacity or no production at all. This accounts for some
peculiarities of the linear case, which (as the reader will find) may outweigh
its simplicity in other respects.

The expectation of the linear payofl is itself a linear function of the action
variable. Therefore our problem is, in effect, one of linear programming (see
Chapter 5, Section 4) : Lo maximize a linear form subject to linear inequali-
ties.

SMOOTH NONLINEAR PAYOFF FUNCTIONS:
THE CONCAVITY CONDITION )

In general, a nonlinear payoff function yields a problem in nonlincar
programming: lo maximize a nonlinear form, subject to constraints.
Whenever we shal! find it useful, in our simpler examples, to introduce
smooth payoff functions not linear in the action variable, we shall assume
that the optimal value of the action variable is in the interior of the set of
possible values and not at a boundary. Hence we shall be able to make use
of the usual first-order conditions of the differential calculus—the marginal
conditions, in the economists’ language-—in characterizing an optimum.
In applying the second-order conditions, an important role is played by
the assumption of strict concavity of the payoff function. This is implied,
for example, in the “law of diminishing returns” of traditional economics.
The concavity condition is expressed, in the case of a smooth function of 2
single numerical action variable, by the negativity of the second derivative
02ujda?.

CONCAVE SMOOTH MULTIVARIATE PAYOFF FUNCTIONS

When the decision-maker can vary simultancously several numerical
variables, so that action a can be thought of as an M-tuple of numbers,
a ={a,,...,ay) the strict concavity of a smooth payofl function is
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expressed by the condition that the matrix [8%u/dada,] (i,m = 1,..., M)
of second derivatives must be negative definite. Consider, lor example, the
case of a quadratic payofl function of two variables. We shall find it
convenient to write it in the form

(32)  w=—a*—-a,® + 2ga,a; + 2u,(x)a; + 2u;(x)a; + Ax).

We have %ufda,’ = ’ujda,® = ~ 2, 0%u/da,da, = 2g, so that the
concavity condition

a2y - 0%u
) azu 5(!12 aalaaz
33 < 0, )
(3:3) da,? 2% 2%y

da laaz ‘6_6}22
is satisfied when |g| < 1. This result will be used in Example 3E.

ADDITIVE AND NONADDITIVE PAYOFF FUNCTIONS;
INTERACTION

When, as in the case just discussed, the action variable is an M-tuple,
a =(ay,...,ay) where a; may or may not be a number, an important
distinction arises between additive and nonadditive payoff functions. The

payoft function ¢ is said to be additive if and only if it can be represented
as a sum

(3.4) O‘J(x,al,..,aM) = wl(x,(h) + ...+ C{)M(x, aM)-

Clearly, if o is additive, if ay,...,a, are real numbers, and h is an
increment of, say, a,, then the corresponding increment of payoff is

wlx,a; + h,a,, ..., ay) — w(x,dq,a,, ..., ay)
=wl(xs ay + h) - wl(x,al);

that is, a change in the action variable a, (from a, to a, + k) results in a
change of payoff by an amount that does not depend on the other action
variables, a5, a3, ..., a,,.

The linear payoff function

ofx, a) = {a, + ﬂz)kx[ + x,)

is clearly additive. So is the quadratic payoff function (3.2), provided that
q is zero. In fact, we can use the absolute value |4 as a measure of non-
additivity in the quadratic two-variable case. We also say that ¢ measures
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the interaction between the action variables a,, #,. In general, if the func-
tion is twice differentiable in a,, .. .. a,, then the second derivative

may be used to gauge the interaction between action i and action j, that is,
the degree to which a change in a; influences the effect of a change in 4, on
the payoff, for given values of the other action variables and of x. In general,
this interaction depends upon the values of x and all the action variables.
In the special case (3.2), it is a constant. This parameter of the payoff
function ¢« will be shown to affect the optimal decisions and the values of
information structures, just as they are affected by the parameters (e.g.,
variances, correlation coefficients) of the distribution 7.

COMPLEMENTARITY IN TEAMS

The concepts of a nonadditive payoff function and of interaction, while
playing a role in the analysis of the decision-making of a single person,
will acquire a new and still more important interpretation when, in Part
Two, we shall investigate multi-person teams. A team consists of A
persons, each acting on the basis of information y, {m = 1,..., M) that,
in general, differs from person to person. We shall define the team action a
as an M-tuple of actions of the team members, & = (a,, ..., ay). Each a,,
(m = 1,..., M) may, in turn, consist of M,, components: a,, = (@1, @2,

.- fuy,,); but the decision about each of these components is always
based on the same information p,,. It is intuitively plausible that, if the
actions a,, a5 of the members 1 and 2 interact in the sense defined, the
team will benefit from communication between these two members,
provided that communication is not too costly.

4 EXAMPLE 3A: BUYING FAULTLESS MARKET INFORMATION

A fiem suffers a loss if it either underestimates or overestimates the
demand for its product. Assume this loss to be proportional to the ahsolute
value of the error:

loss = k- |x — 4,

k > 0, where x is the true demand and a is the amount (called supply) that
the firm brings to the market, equal to its estimate of demand. The firm
knows the probability distribution of demand: x can be small (1), medium
{2), or large (3), with probabilities .1, .3, and .6, respectively. The firm is
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faced with the following alternatives:

l. To determine the supply on the basis of its own knowledge of the
probabilities of demand.
2. To pay a market research agency, which we shall suppose faultless,
and which, for different fees, can tell whether the demand will be
2": small or not small;
2”: large or not large; or
2" medium or not medium.
3. To pay the market research agency for information on whether the
demand will be small, medium, or large.

Problem: What are the minimum expected losses under each of the five
alternatives (1, 2, 2%, 2", 3), nol counting the research fees? How much
should the firm be willing to pay, at most, for each of the four research
services, if it tries to maximize its expected profit, or in other words, to
minimize its expected losses? (We thus assume a linear utility function of
money.)

Since the main purpose of the example is to illusteate certain abstract
concepts, let us perform a translation. The five cases are identified with
five different information structures, which can be numbered in the same
way. Thusn = 1,2',2",2”, or 3. To each of the five values of  corresponds a
different set % of subsets of X (a different partition of X), which we repre-
sent, by enclosing each relevant subset of X (ie, each element of %)
in braces:

1= 1:% = ({1,2,3}); (one subset of X)

n=2:9 = ({1},{2,3)); (two subsets of X)

n=2":%9 = ({1,2}, {3}); (two subsets of X)

n=2":% = ({1,3}, {2}); (two subsets of X)

n=3:% = ({1), {2}, {3}); (three subsets of X).

We can compui¢ and compare the minimal expected losses, {(),? for

each of the five information structures. First let us conveniently tabulate
our foss function (instead of the payoff function), w(x, a), and the prob-

abilities ¢(x) of the states of nature (see Table 3.1). The quantities x and a
are expressed in units chosen so that & = 1; then {x — al = loss.

2. Tn our list of concepts (Chapter 2, Section 14), the maximum expected payoll was
denoted by {3(n); here we minimize loss instead of maximizing payoff.
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TanLE 3.1
Demand (x)

Supply 1 2 3
(a}

1 o 1

2 b0
3 21

= C:»—-Ni

Probabilities | .1 3

In case 1, the expected losses Ew(x, a} for each of the three actions are:
Ew(x, 1) = (O)(.1) + (1)(.3) + 2){.6) = 1.5
Eox(x,2) = (D) + ((3) + ()(6) = 7
Emfx, 3) = (2)(.1) + (1)(.3) + (0}.6) = .5.

The best {(constant) decision is ¢ = 3, resulting in an average loss of .5.
Thus the minimum expected loss Q(n) is equal to .5 when n =1 Wewrite
(1) = 5.

For case 2, first compute the mimimum expected losses conditional
upon each of the two possible communications obtained: x = 1 and
x # 1. Then compute the weighted average of the two conditional
expectations. When x = 1, the optimal action is @ = 1, and the minimum
loss = 0. When x # 1, the optimal a is the one that gives the smallest of
the following expected losses (use columns 2 and 3 of Table 3.1):

(1) (3/9 + (2} (6/9) = 5/3 (whena = 1),
(0)- (3/9) + (1) - (6/9) = 2/3 (when a = 2),
(1)-(3/9) + (0) - (6/9) = 1/3 (when a = 3).

Hence the best a is equal to 3, yielding the minimum conditional expected
foss 1/3. Since x = 1 occurs with probability .1, and x # | with probability
.9, we have

Q2) = (O)(1) + (1319 = 3.
By similar operations we find:

Q2") = (0}(.6) + min(3/4, 1/4, 5/4)- (4) = .1
02" = (O)(3) + min(12/7,1,2/7)-(7) = .2
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Finally, if the research agency identifies the demand precisely, then the
optimal decision function is «(x) = x, and hence (}(3} = 0. We summarize
our results in Table 3.2, remembering that a linear utility function of
money was used.

TABLE 3.2
Information Minimum Expected Value of Information
Structure Loss Structure
1 Qfn) 1) — Q)
1 5 0
p 3 2
2" 1 4
o 2 3
3 0 5

The ranking of the figures in the second column agrees with the state-
ments made in Chapter 2, Section 6. Information structure n = 3 is finer
than any of the structures 2', 2, 2", and, accordingly, is not less profitable
than any one of these. No comparison of fineness can be made among 2,
27, and 2”; the ranking of their expected loss will vary with the parameters
of the problem,

The lowest profit (highest loss} being, under all conditions, associated
with the information structure n = I, the values of the information
structures in column 3 of Table 3.2 are as defined in (12.10) of Chapter 2.
The column gives the upper bounds on the research fees that the firm
should be willing to pay for each kind of service.

5. Examrrt 3B: THE SPECULATOR

Suppose a speculator cannot sell short or buy more than one share of a
stock. Let x be the diflerence between future and present price and suppose
x is distributed uniformly over the interval [ 1, + 1} Our problem again
13 to compare the maximum expected payofls possible under several
alternative information structures. This time, each will be characterized
by a different number n of subintervals of equal length into which the
whole interval {— 1, + 1] is partitioned. Each of these information
structures can be unambiguously labelied as n = 1,2,.... We have to
evaluate {(n) for various integers n.

Denote by a the amount bought (if a = 0) or sold (if @ < 0). Then
— 1 £ a £ 1, and the payoff lunction is

u = wix,q) = ax.
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Let n = 1, that is, the speculator is not informed about the amount or
direction of the price change. Since Eax = aEx and he knows that Ex =0
(in fact, this is the only relevant a priori information, in this case), all
decisions a based on this information yield the same expecled payoff—
zero—and are therefore equally good. Hence &y =0

Let n = 2; since the speculalor knows whether the price will rise or fall,
he will buy or sell, accordingly. In fact, if x = 0, optimal decision is
a=1;if x <0, a= — 1. The payoff yiclded by this decision rule is
u = |x}; the conditional expected payoff is equal to 1/2 (midvalue between
0 and !) whether the price rises or falls, and, since cach of these two cases is
equally probable, the expected payoft is O(2) = 172.

Let n = 4; that is, the speculator is informed not only whether the price
will rise or fall, but alse whether it will change by more or less than 1/2.
Clearly this additional information will not change the best decision rule;
to buy (sell) one unit when the price is going to rise (fall); at each x the
payoff will be u = |x|; and the expected payoff £2(4) = &(2) = 1/2. This
will remain so, no matter in how many subintervals the positive and the
negative parts of the interval [ - 1, + 1] are partitioned. Hence Q(2k) = 1/2
for any positive integer k. It is also clear that, if x is always exactly known
to the decision-maker, this will not change the decision rule just given nor
add to the expected payoff of 1/2. We can say that Q(w) = 1/2.

But now let n = 3. Although the problem remains simple, we shall
explicitly introduce here the information signal y to illustrate our System

of concepts more fully. The signal y will now have three possible values,
which we can denote thus;

y- (-1, —1/3)
Y=<V, if x is in the interval { [—1/3, 1/3],
Vi (173, 11.

Clearly if y = y, or y_ the best actions are d(y) = | or — 1, respectively,
and u = |x|; the conditional expected payoffs are in each of these two cases
equal to 2/3 (midvalue between 1/3 and 1). Bui, if ¥ = y,, any action yields
the same conditional expected payoff 0 (analogous to the case n = 1
above); thus

2/3 V4
E{or(x, &[yDnp(x) = y} =40 iy =<y,
2/3 V...

€(3) is the weighted average of these three quantities {with equal weights
1/3); hence £Y3) = 4/9,
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The fact that §(1) < (2) = Q4) = Q2k) = (o) (with k any positive
integer} agrees with the “then™ part of the theorem in Chapter 2, Section
6: with any payoff function, making the information structure finer (in the
sense defined) never decreases, but may possibly increase, the expected
payoff. Moreover, our payof! function happens to be such that (3) < Q(2).
This 1s in agreement with the “only then” part of the statement. For, in
the sense defined, neither of the structures 2 or 3 is finer than the other
(although the latter carries a larger “amount of mformation™ in Shannon’s
sense; see Shannon and Weaver 1949). Our payoff conditions make 1t more
important to distinguish between, say, x = /5 and x = — I/5 (which,
with information structure 3 result in the same signal y, but with 2 result in
different signals) than to distinguish between 1/5 and 2/5 (which is possible
with 3 but impossible with 2). In fact, dividing the interval [— 1, 1] into any
odd number, however large, of equal subintervals will always be less
valuable to our decision-maker than dividing it into just two subintervals,
the positive and the nonpositive. This is due to the fact that, when the
number of subintervals is odd, the knowledge that x has fallen into the
middle subinterval is of no value to the speculator, who needs to know
whether x is positive or negative,

6. ExaMpPLE 3C: PRODUCTION WITH CONSTANT RETURNS

Suppose that a firm operates under constant returns to scale with fixed
capacity. Denote the input by a, and choose the units of measurement so
that output equals input and total capacity equals 1 ; thus

{6.1) 0<as.

Denote by m, + x, the unit price of output, and by —(m, + x,) the unit
price of input, where x, and x, are random variables with zero means. The
expected profit at full capacity production is equal to

E(m1+xi+m2+x3]-] = nn +m2,

a constant. We shall measure profits as deviations from this constant.
This will simplify the algebra without affecting the difference between the

TaBLE 3.3
i
X3 7SE +Sl
~s5; (L + 14 (- ry4
+5 0 {1~ r)fd (1 + )4
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expected profits yielded by any two different decision rules. Accordingly,
we put my + my = 0, Then the profit is

(6.2} u=(x;+x5) a

We shall assume the price variables x,, x, to have the simple 2 x 2
distribution® defined in (2.3). See the table of joint probabilities, Table 3.3.

If the correlation coefficient r is positive, a high price x, of output is
more likely to be accompanied by a low than by a high price {—x,) of
input; if r is negative, both prices are more likely to move in the same
direction. We shall assumc s, = s, the results can easily be applied to the
case 5; < §; by interchanging 1 and 2 (since x, and x; enter the payofl
function, as well as the distribution, symmetrically}.

The only free parameters of our problem are the distribution parameters
51, 52, 7. We want to inquire how they influence the expected payofls of

the four possible information structures:
n = [00]: neither x, nor x, is known
[10]:x, but not x, is known
[01]: x, but not x, is known,

{11]: x; and x, are both known.

As before, we denote the maximum expected payoff for 5 by (»).
Let n = [00]. Then Eu = 0 for any a. Therefore £}(00) = 0.

Let # = [11]. Then the sum (x, + x,) 1s known exactly, and a good
decision rule {comparable to that of the case “n = oo™ of Example 3B} is

a=11x; +x; >0; a = 0 otherwise.

Butsince s, 2 s, > 0,thesum(x; + x,}is positive if and only ifxy = +5.
Hence, if one knows x,, information on x, is uscless. Therefore Q(11) =
Q(10).

To evaluate €(10), and also €3(01), we shall first compute

E(ulx) = E{a(x; + x2)x;} = alx; + E(xlx)] &k #1i;

3. If the joint distribution of x,, x, were normal with means zero, variances 5,2 and 5,2,
and correlation coefficient r, the results would be similar in many respecis. {(See Footnote 4.)
We have chosen distribution (2.3) to enable the reader to compute the conditional expected
payoll without relying on any classical theorems. This gives a betier insight into the essence
of the problem at the present introductory stage of our argument.
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but we have seen in Section 1 that, in the case of a simple 2 x 2 distribu-
tion (as i the case of a normal distribution)

(6.3) E(xx) = r-(s/s)-x;, fori#k;
hence
als; + rs) ifx; = +s,

5, X;
E(ulx) = ax, + axp X =L als; + rsy) =
s, s

L3 i

—afs; + rs) ifx; = —s,.
Suppose 5; + s, = 0. Then clearly a good decision rule is
a=oax)=1 whenx; = +5s;; . a = 0otherwise.

Since Prob(x; = s) = 1/2 = Prob(x; = —sg,), the expected profit yielded
by this rule is:

(1/2)- {s; + rs) + (172)-0 = (5, + r8)/2.
If, on the other hand, s; + rs, < 0, a good decision rule is
a=1when x; = —s;; a = 0 otherwise.

This yields an expected profit —(s; + rs)/2.
In summary, the expected profit obtained under a good decision rule,
when only the variable x; is observed, is

max E{a(x;) (x, + xlx;} = lsi + rsdf2,

a nonnegative number. We thus have the following maximum expected
profits :#

Q00) = 0,
Q1) = Is, + rs,1/2 = §00),
Q(11) = Q10) = (s, + rs,)2201);

(6.4)

the last line follows from our assumption s, = 5, These results can be

4. If the prices were continuous variables, instead of each having just two possible levels,
and if x,, x,, the deviations from their means, had a joint normal distribution with standard
deviations sy, 5, and with correlation r (see footnote 3): then, apart from a scale factor, the
results for §(00), £3(10), and ${01) would be exactly the same as in our example, But €Y11)
would become proporticnal to {s,2 + s;° + 2r5,5,)'"/? (this quanlity is the slandard devia-
tion of the sum x, + x;); and we would have $Y11) = {¥10} (with equality holding at
W = 1)
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interpreted as follows. Consider first the symmetrical case, s, = 5y = 5.
Then €(01) = 10) = Q(ll) = s(1 + r)/2; so that, since (00} = 0, the
value of getting informed on at least one variable increases with the degree
of uncertainty measured by s. Moreover, this information value increases
with the correlation coefficient. This is as it should be, for the expected
profit from plant operation (with optimal a > 0) i$ lowest when the
correlation is perfect between the output price, m, + x,, and the input
price, —(m, + x,), that is, when r = —1; and is highest in the opposite
case.

Consider now the case s; > s,. Then the relation O(10) = Q(01) is
still true but the equality holds only when | = 1. Thus, it is, on the
average, more profitable 1o know the more uncertain of the two variables
(i€, x,), except when perfect correlation (positive or negative) makes each
variable cxactly predictable from the other. The maximum profit, {}01),
from observing the less uncertain of the two variables (x,) reaches its
minimum, zero; and the advantage [$(10) - Q(Ol)} of observmg, instead,
the more uncertain variable (x,) reaches its maximum, (5,2 — szz)/2sl,
when the correlation coefficient r = — s,/s; < 0. In this critical case,
by (6.3), the estimate of x, from x,, E{x,|x;) = —x,, so that the estimated
profit E(ulx,) = alx, + E(x,|x,)} = 0 (measured from m, + m,) regard-
less of &, the scale of operations.

Because of information cost, the equality of (11) and $(10) under our
assumption of two-valued price variables rules out the information
structure [11]; for it requires observing both x, and x,, while [10] requires
observing only x, . One can easily find the observation costs at which [10],
[01], or [00] is the best information structure.

To conclude, note that the information amounts (Shannon measures),
say I(n), of the considered structures obey the following relation;

I(11) > I(10) = I{01) > 1{0Q).

On the other hand, the payoffs were shown—for s, > s;——to obey the
relations

O(11) = Q(10) > A1) > §(00).

Finally, the relations of fineness were:

[11] is finer than both [10]and [01];
both [10] and [01] are finer than [00];
[10] and [01] are not comparable in fineness,

This confirms again the statements of Chapter 2, Section 6.
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7. ExampLE 3D : DECREASING RETURNS:
OUTPUT A QUADRATIC FUNCTION OF A SINGLE INPUT

This model is adapted from those of traditional economists, who with
good instinct exploited the simple mathematical properties of the case in
which the marginal productivity of an input smoothly diminishes as the
amount of input increases (“law of diminishing returns”). We make the
case more specific by using a quadratic approximation, Denote by b the
single input (or, more generally, a bundle of inputs that can be applied
only in constant proportions), and assume output (b) to be quadratic
in b, with a negative sccond derivative (this is implied by diminishing
marginal productivity). Then it is possible to choose input units so as to
make the coefficient of the quadratic term in (b} equal 10 — 1; thus

W) = — b* + gb + h.

Let the output have a constant unmit price. An appropriate choice of
output units will make this price equal to unity. Denote by m the mean of
input unit price, and by (m + x) the current input unit price hence, Ex = 0).
Then the profit is quadratic in b:

wb)-1 —{(m + x)b
u=—>b*+(g—mb+h-bx

u

.1

This can be further simplified without loss of generality by measuring
input from an appropriate origin, as follows. Replace b by a new action
variable a = b — b*, the deviation of input from a certain constant,
b* = (g — m)/2 (the economic meaning of this constant will become
apparent presently). Then b = a + b*, and by substituting into (7.1), the
profit can be rewritten as

(7.2) u=wx,a) = —a’ - ax + u* — b*x

where u* is another constant. Clearly, if x = 0, then the profit u has a
unique maximum at ¢ = 0; that is, when the input b is equal to b*, Thus
the constant b*, the new origin we have chosen, is the input that is optimal
when the input price is at its mean level; and the constant u* is the maxi-
mum profit that is then obtained. The payoff function w depends on the
environment variable x {input price measured from its mean level) and the
action variable a (input measured from that level which is the best one at
the mean input price).

The term (u* — b*x) in (7.2) is of little interest, since it does not depend
on the decision variable a. The same value of a that maximizes the profit u
also maximizes the profit measured as a deviation from (u* — bx). We
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can therefore redefine the origin from which profits are measured and
express the profit thus measured (thereby changing the meaning of the
symbols x and w in a trivial way and making maximum profit at mean price
equal to zero) as

(7.3) u=uxa = —a>—-ax.

Our problem is to derive the best decision functions and measure the
resulting expected profits under various alternative information structures.
We shall consider two information structures:

(1) #{x) = x, 1., the producer is kept informed of the price;

(2) n(x) = X, i.e., the producer is not so informed (the set
X comprises all nonnegative numbers).

As in Example 3B, we may call the first information structure “co0” and
the second **1.”” We shall denote the maximum expected profits by (o)
and Q(1), respectively.

If y = oo, the prodacer will, upon learning the value of x, choose the
input &(x) that maximizes  for that value of x, Setting the derivative of
{7.3),{—2a — x), equal to zero (thus “equating the marginal product to the
price of input™), we obtain the optimal decision

(7.5) &x) = —x/2.

The second derivative is negative (—2). The maximum profit is i = x%/4.
Since the expectation of x is zero, the maximum expected payoff

(7.6) _ Qo) = Ex?/4 = s%/4,

where s? is the variance of x.

On the other hand, if n = 1, so that the producer does not know x, the
best action will be some constant independent of x. It is obtained by
maximizing, with respect to a, the expected profit

2

Eu= —a* — aEx;

hence the optimal output 4 must satisfy the condition
(7.7) = —24—Ex, d= —Ex/2=0.

We note here cerlain important properties of the quadratic payoff
function. This will simplify our presentation in all future examples where
such payoff functions are used. If we denote by & the optimum decision
function in the case of certainty (ic., if, for every x, &x) is best), and
by @ the (constant) optimum action in the case of no information, the
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comparison of {(7.5) and (7.7) yields two properties, both due to the
linearity of &:

{7.8) a = §(Ex),
and
{1.9) i = E&(x).

Property (7.8) is sometimes described by saying that, when w is quadratic,
then Ex is the *‘certainty equivalent” of the random variable x; in the face
of uncertainty the decision-maker does well to behave as if he were certain
that x takes its value equal to its mean.® Property (7.9) states that the best
action under uncertainty is an average of the best actions that would be
taken under certainiy. (Other payoff functions do not, in general, have this
property. For example, it is not true that, if we do not know which of two
events will happen, our best decision must be a compromise between two
decisions each of which is best for one of the events: If I do not know
whether I shall be invited to a formal dinner or to a beach party, I shall
be ill-advised to combine bathing trunks with a white tie.) For the case of
ro information (n = 1), we have obtained the optimal output & = 0. This
yields the maximum expected profit, zero {measured from the appropriate
origin, as stated above).

The advantage of the information structure *‘oo” over “1,” that is the
advantage of being kept informed about the current price of input, is
(7.10) Qo) — Q(1) = s2/4.

In terms of Chapter 2, expression (12.10), this is the value of the informa-
tion structure “ob,” that is, the value of getting exact information about x.

The result (7.10) seems to agree with common sense: the advantage of
knowing the value of a variabie should be the larger, the less “certain™
or “predictable” it is, or the larger is “variability.” However, variance is
not the only possible measure of the vague property, variability; variance

happens to be relevant in our particular case: that of a quadratic payoff
function.®

5. In Chapter 7, Section 2, this is extended 10 a “dynamic” case.

6. One might use a different economic illustration of a quadratic payofl function, also
adapted from ancient mathematical economics (Cournot). A monopolist chooses a price a of
his product so as to maximize the profit u = a{a) — ¢ where ys(a) is the quantity demanded at
price a, and ¢ is the total cost, assumed constant. Assume the demand function linear. Then
(using appropriate units of measurement) ¢{a) = —a + m + x where Ex = 0. x measures
the random “shift” in the public’s desire for the product. If x is known, the best decision rule -
is &(x) = (m + x)/2; il x is not known, the best action is & = m/2. The value of information
about x is again proportional to the variance of x.

It is also worthy of note that the example given in the text extends to the case of imperfect
markets. Suppose the price of input is a linear function, m + x + kb, where x is a random
“shift with zero mean. Then (7.1) still applies, with the coefficients properly reinterpreted.
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8. ExaMPLE 3E: OuTPUT A QUADRATIC FUNCTION OF
Two INPUTS

We shall generalize Example 3D to the case in which two inputs have to
be used, and the producer can freely vary their quantities. This will bring
out the role of an important characteristic of the payoff function, the
complementarity between various actions. The distinction between payoff
functions with and without complementarity will prove of great im-
portance in the theory of teams but is already present in the case of
single-person decisions. Morcover, the example will throw additional
light on the role of correlation between states of the world, already
discussed in Example 3C.

Let x; (i = 1,2) denote the price of the ith input, measured from the
mean level of that price. Suppose as before that the cutput priceisconstant;
set it equal to 1 by a proper choice of the units in which the output is
measured. Suppose the output is a quadratic function of the two inputs. It
is possible to measure inputs in such units, and from such origins, as would
cnable us to express the profit thus:

&.1) u=qwix,a) =wlx,6x,, d,,a;)

= —a, — a,” + 2qa,a; — A xq — Ayx; + u* — b¥x, — bix,.

This profit function is analogous to that of (7.2), Example 3D, with the
single-action variable a replaced by the vector (ay, a,). The input units
being fixed (so as to make the coefficients of both a,* and a,? equal to — 1),
the price variables are measured in units depending on the chosen money
unit; and they arc measured from their respective means. The constant g
measures the degree of interaction, as defined in Section 3. In the
present economic example, and using a term of older economics, g
measures the complementarity (and — ¢ the substitutability) between the
two inputs.” (On notation, see Note, Table 4.14, p. 151)) '

To guarantee that maximum profit is achieved at input levels other
than the boundaries, the absolute value lgl must be bounded: l¢l < 1, as
was shown in Section 3. Larger complementarity (whether positive or
negative) has the same effect as increasing returns: It drives the optimal
inputs to their highest or lowest possible levels.

7. Foltowing J. R. Hicks (1946), the term complementarity has become attached to a
property of the production function (or of the utility function) that is mathematically some-
what more complicated. For our purposes, the older use of the word is more convenient. Also,
“interference™ mighi be a better term than “substitutability,” in our context.
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As in Example 3D, if both prices are at their mean levels, x;, = x, =),
then the maximum profit (equal then to u*) is attained at a;, = q; = 0.8
This is the economic interpretation of the term u* and of the origins from
which the inputs are measured. Moreover, as in (7.3} of Example 3D, it is
convenient to measure the profit itself from an origin chosen so as to get
rid of the terms that are not affected by the actions variables ¢, and a,.
With this new definition of u (and u*),

2

(82) u=owlx,a,,a)= —a,? — a,® + 29a,a, — a;x; — arx,.

As in Example 3C, the state of nature is described by two variables
(%1, x3), giving rise to the same four information structures [00), [10], [01],
and [11]; but the action that was described by a single variable in Example
3C will now have two dimensions ¢, and a,.

We now proceed to find the optimal decision rules and the resulting
expected payoffs under each of the four information structures considered.

If n = [00], that s, no information about prices is gathered and actions
are ‘‘routine,” the expected profit is equal to

(8.3) Eu = —a,% — a,? + 2qa,a, + 0 + 0,

which is to be maximized with respect to a, and a,. The optimal actions
are constant,

(8.4) a4, =d, =0,

and the maximum expected profit is

{8.5) Q(00) = 0.

Because of (8.5), the vatue On) — 400) of any information structure
1 [in the sense of (12.10) of Chapter 2] will simply be equal to the expected
payoff £(»).

If n = [11], that is, both prices are known before the decision is made,
the optimal inputs for given x, and x, are obtained by differentiating the
prefit wix,,x,,a,,q;) in (8.2), separately with respect to a, and with

8. For, if x, = x, = 0, then {8.1) can be rewritten thus:

u=u*—{a, - 2qa,a, + ¢%a,}) + g%a,? — a,?

=u* —(a, — ga)* — a, {1 — ¢%).

The term —(a, — ga,)* is largest { =0) when a; = ga,; and the term —a,*(1 — g%)is largest
when a, = 0, since we have assumed ¢* < 1. Hence when a, = a, = 0, the profit attains its
maximum value, ¥*. Thus the condition —1 < g < | guarantecs that the “profit surface™
has a “summit.”” A more general discussion is given in Chapter 5.
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respect to a,, and equating each partial derivative to 0. This will result in a
maximum (and not a minimum} profit because of the condition —1 < g
<1, as shown in footnotc 8,

We obtain two equations:

(8.6) —2ay + 2qa, = x,
2qa; = 2a; = X,,
that is, the “marginal product of each input should equal its price.”” This

result is, of course, well known from the economics of certainty. Solving
(8.6) for a,, a, we obtain two decision functions, each linear in x; and x,:

T e ST

x3 = d&,(xy, X3}
(8.7)
—q -1

S, x + —————

A=) Al - )
Thus (remembering that g> < 1) the optimal quantity of an input falls as
its price rises, and it falls (rises) when the price of the other input rises if ¢
is positive (negative). If ¢ = 0, each optimal input depends on its own price
only (in fact, we obtain again the result of Example 3D). Comparing (8.4)
and (8.7), we see once more the convenient property of the quadratic payoff

function that has already been discussed in the single-input case of
Example 3D [(7.8) and (7.9)]:

{8.8) b&; = &(Ey) = EG(y),

Xq = &z(xl, xz).

where 4; is the best ith input under no information {(# = [00]); and &, is the
best decision function for the ith input under complete information
[n =1}y = (x,, x5)].
Substituting(8.7)into(8.2), we obtain for given x,, x, the maximum profit
X2+ 2gx,x, + x,°
A1 — g%
The expected maximum profit is therefore

(89) w(xl)x2361962)=

$;2 + 2qrs,5; + 557

41 - q%) ’
where as before, 52 is the variance of x; and r is the correlation coefficient.
The quantity [Q(11) — Q00)] = Q(11) measures the advantage of
decisions taken in full knowledge of both prices over mere “‘routine”

actions. Equation (8.10) shows that this advantage depends not only on the
variances of the prices—compare the result of Example 3D-—but also on

(8.10) Q1 =
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their correlation, provided that there is interaction. This advantage is
larger, the larger the product {gr) of the coefficients of interaction and
correlation. Hence, if correlation is positive but complementarity is
negative, then the advantage of using information about both prices (as
against using information on none) is smaller than if interaction and
correlation are both positive or both negative.

To compare the value of knowing both prices with the value of knowing
only one, and to compare the value of knowing only x; with that of knowing
only x,. we must consider the remaining information structures [10] and
(Ot

Consider the case n = [10]:x,, but not x,, is known when the decision
is made. We have to maximize, with respect to a, and a,, the conditional
expected profit

(8.11)  Efulx,) = —a,? — a;® + 2qa,a; — a,x, — a2E(x3lx,).

Equating the partial derivatives of this expression to zero with respect to
a, and a,, we obtain

—2a, + 2qu; = x,
8.12
(8.12) 2ga, — 2a, = E(x,|x,)
that is, “The marpinal product of cach input should equal the conditional
expectation of its price,” a statement more general than the one we used
after (8.6).
System (8.12) can be obtained Irom (8.6) by replacing x, by E(x,lx,), 2
quantity that can be regarded as the estimate of x, on the basis of x,.

Accordingly, the solution of {8.12) is obtained by substituting E{x,|x ) for
x; 1 (8.7):

xy + gE(x,|x,)

a, = —(1/‘2) 1 — qz
(8.13) gx, + E(x,lx,)
a; = —(1/2)-—-3_—(12—-

Subtracting the expression for each ; in (8.13) from the corresponding
expression in (8.7), we see that the inputs that are optimal when x, is not
known differ from the inputs that are optimal under complete information
by amounts proportional to the “estimation etror,” E(x,/x;) — x5.

At this point, it is useful to specify the assumed distribution of (x,, x,)
in order 1o evaluate E(x,lx,) explicitly. If we assume the simple 2 x 2
distribution {and also if we assume a joint normal distribution}, we have
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the regression equation
E(xolx)) = 1 (s2/5y) - x,.

Substituting into (8.13), we obtain two decision functions, each linear in
xy, the one price that is known 1o the decision-maker:

Bl =5 - g2

21 - ¢%) 8y

(8.14) . .
dylx)) = ‘-——2(] — qz)' (q + r»Swl-)

We note that the decision about g, is simply the routine decision,
d, = 0 (that is, the knowledge of x, remains unused in determining a,)
if there is neither correlation between x, and x, nor interaction between a,
and u,, that is, if g = r = 0. This clearly makes sense. It also makes sense
that, if g = 0 but r # 0, then 4, does depend on x,. For, aithough the
profit can then be decomposed into two independent subprofits w; = —a;?
—a;x; due to each of the two inputs separately, as in (3.4), and although
each subprofit depends only on the corresponding price, information about
x; does help to increase u, because that knowledge contains some informa-
tion about the correlated variable x,. The coefficient of x; in each of the
equations (8.14) is best understood by comparing (8.14) with equations
{8.7), remembering that x, is now replaced by its estimate. Thus, in the
second of the equations (8.14), the coefficient [g + r(s,/s,)] consists of two
parts: g expresses the effect of the change in the price of the first input upon
the best second input, due to complementarity; r(s,/s,) expresses the
effect upon the second input of its estimated price. This latter effect is the
larger, the larger the correlation.

Inserting (8.14) into (8.11), we find the best conditional expected payoff,
given x,. Taking the expected value (with respect to x,) of the resulting
expression, we obtain after collecting terms

512+ 5% + 2grsys,

4l - 4%
As for the information structure »# = {01], we obtain a,, a, {this time as
functions of x, only) by interchanging the subscripts | and 2 in (8.14);

and by a similar interchange of subscripts in (8.15), we gel the expected
payoff

(8.13) {10) =

2 2.2
. 527 + 5.1 4 2qrs, s,
8.16 Qony=—=—2.° - 017
(8.16) (o) A
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It is interesting to0 compare Q(IO) and Q(01). Subtracting, we obtain

A A (5,2 =501 — 7Y

(8.17) Q(10) — Q(01) = W= .
Suppose that {with measurement units chosen as they were, namely, so as
to make the coefficients of a,? and a,” in the payoff function both equal to
— 1), the two prices have equal variances. Then it is equally useful to know
only x; or only x,. The formula (8.17) also shows that, if the two prices are
strongly correlated, either positively or negatively {so that the one can be
estimated from the other without a large error), it does not matter much
which of the two prices is known. On the other hand, the advantage of
knowing the more volatile, rather than the more constant price, is greater
the stronger is the (positive or negative) interaction.

What is the advantage of knowing both prices over that of knowing only
one, say x,7 From (8.10) and (8.15),

322{1 )

. ’ Q
(8.18) Q11) - Q10) = Wi

Hence, adding information about x, to that about x, is the more advan-
tageous the stronger the interaction g (positive or negative) between the two
action variables @, and @, , the smaller the correlation (positive or negative)
between the state variables x,, x,, and the larger the variance of x;. This
advantage is, in fact, proportional to 5,1 — r?) = E[E(x,|x,) — x,]% the
square of the so-called “'standard error of estimating x, from x, .

A more complete discussion becomes possible if the costs of information
are known and, as before, linear utility of money is assumed. Let ¢ be the
cost of getting information about either x, or x,; and let 2¢ be the cost of
getting information on both. Since

(8.19) O(11) = max[€X10), 01)] = H(00),

the best information structure is {11] when ¢ = 0 and [00) when ¢ is very
large. One may ask whether, for some intermediate ¢, either the informa-
tion structure {10] or [01] (depending on whether s, or s, is larger) is
best, so that

(8.20)  max[{)10) — ¢,€(01) — c] = max[Q(00), (1) — 2¢].
Let 5, Z 5, (without loss of generality); then (10} = §(01), and (8.20)
requires that

Q(11) - G{10) = ¢ < H(10) — H(O0).
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Thus a necessary condition for the optimality of observing just one vari-
able is that “nonincreasing returns to information” prevail, in the sense
that

(8.21) Q11 — O(10) = H(10) — Q).

Substituting from (8.18), (8.15), and (8.5), and recaliing that ¢* < 1, we
obtain the condition

(8.22) 512+ 5,220 — 1) 2 —2grs,s,.

Since s, 2 5, > 0, this condition is always satisfied when there is no
interaction (g = 0) or no correlation (r = ), or if g and r have the same
signs. In the symmetry case s, = 5, we obtain, moreover,

{(8.23) Hr+q) = 0.

If (8.22) or, in the symmetry case, {8.23) does not hold, then either both
variables or neither have to be observed, depending on the cost ¢ of
observing each variable.
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the information structure concept is not applicable

1. MuLTI-PERSON TEAMS

At the beginning of this book, an organization was defined to be a group
of persons whose actions agree with certain rules that further their com-
mon interests. When they have only common interests, these persons are
said to form a team.

In a trivial sense, a single decision-maker is a team: a one-person team.
Optimality problems essential to the more general theory already arise in
this special, simple case. They were treated in Part One. The proper,
multi-person team differs from the one-person team mainly in the extended
meaning that must be given to the term rules. Each individual member of
a team decides about a different action variable, and each member’s
decision is based, in general, on different information. Accordingly, the
concepts of decision rule and information structure developed in Part
One for the single-person case must be reinterpreted, Ifthere are n members,
the team’s information structure and decision rule will consist, respectively,
of n information structures and » decision rules. The problem is to choose
the pair of n-tuples that best serves the well-defined interests of the team.

We must now define interests more precisely. They are usually identified
with goals, or, better, the hierarchy of goals; these are other expressions
for the preference ordering among outcomes of actions (“tastes™), which
we analyzed in Chapter 1 in the case of a single consistent decision-maket.
However, in our context it is useful to let the term interests embrace both
tastes and beliefs. We have seen that the ordering of the consistent man’s
actions (as to which of any two actions is beltter) and his ordering of non-
controlled events (as to which of any two events is more probable) can be
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represented by numerical utilities and probabilities, respectively, in such
a way that, of any two actions, the one with greater expected utility will be
chosen. If, then, the consistent decision-maker can choose among various
information structures and, for each information structure, among various
decision rules, then his choice should maximize expected utility, taking
account of the cost of information and decision. _

Similarly, the joint outcome of any combination of actions of team
members wilt be associated with a utility common to all members and
hence justifiably called utility to the team; any event not influenced by their
actions wil! be associated with a probability “from the point of view of the
team,” the same for all its members. The team problem is to choose
simultaneously the team information structure and the team decision rule
that will yield the highest expected utility, taking account of information
and decision costs. The information and the decision rule of the team taken
together can be called its organizational form.

As an example, in the pre-computer age, airline companies had a
number of ticket agents who were authorized to sell reservations on
future flights with only partial (if any) information about what reserva-
tions had been booked by other agents. One can study the best rules for
these agents to use under such circumstances, taking account of the joint
probability distribution of demands for reservations at the several offices,
the losses due to selling too many or too few reservations in total, and so
forth, M. Beckmann (1958) analyzed an airline’s reservation problem
along these lines; and C. B. McGuire {1961) has studied certain other
models of sales organization, also from a (eam theoretic point of view.

As a second example, the decision-maker might be an individual making
different decisions in successive time periods, the payofl being a function
of all the decisions made over the total time period. In such a case, if the
decision-maker does not “forget” anything from one time period to the
next, then the problem is a typical sequential or dynamic programming
problem. However, the keeping of records might be so ¢ostly that it would
be worthwhile to forget some things, in which case new problems emerge :
see Chapter 7.

2. TEAMS AND ORGANIZATIONS

The assumption of identical interests of its members makes the team
simpler than a general organization. However, the team problem is
sufficiently complex to justify our attacking it separately, instead of
introducing at once the additional difficulty of conflicting interests.

Some thoughts on the relation of the team problem to those arising in a
full-fledged, conflict-ridden organization, and in particular to the problem
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of a nonzero sum game, will be found at the end of the book. Here we
may add that formally equivalent to the team problem is that of the organ-
izer—for example, a management consuliant or the author of an army
manual. Given the interests of the organization as stated to him by his
client, the organizer’s task is to draft the information and decision rules
that best serve these interests, assuming that the rules will be obeyed. To be
sure, this assumption is seldom fully valid, although the problem of organiz-
ing a system of automata does have both practical importance and
theoretical value. Accordingly, the organizer will modify the information
and decision rules by introducing incentives, such that each member will
serve his own interests best (i.e. will maximize the expected utility to him)
by actling in a manner that will serve the interests of the organization.
However, we shall neglect the problem of incentives. In a general analysis
like the present one, there is a virtuc in taking up the difficulties one at a
time. See, however, Groves (1970).

Instead of an “organizer” we can think of a “foundation.” The interests
of a foundation are, in general, diffierent from those of its staff members.
But the staff members’ task is to serve these interests. We can judge the
performance of a church, an army, or a business firm according to set
standards and proclaim the organization more or less efficient according
to those standards,

The student of organizations can also apply a variety of standards of
his own and thus go beyond the case of “foundations.” He can ask
whether a certain set of rules has been efficient according to some given
standards (e.g., in making both management and labor prosperous} or
according to some other standards (e.g., in achieving the prosperity of
management). In particular he can, like the student of evolutionary
biology, ask whether a particular organizational form does or does not
have good chances of survival and longevity in a given environment. This
is equivalent to setting utility equal to 1 for survival to a certain date, and
equal to O for nonsurvival, or, more generally, utility can be associated with
the number of years of survival. Viabilily is thus a particular case of
efficiency (see J. Marschak, 1959). '

To judge an organization’s efficiency by its expected utility presupposes
a consistent system of tastes and beliefs. This may seem artificial and
unrealistic, since in real organizations the interests vary from member to
member; cven the organizer himself, as a real person, will lack perfect
consistency. And yet it will prove useful to compare the advantages of
various organizational forms under various assumptions about the payoff
conditions and the cost of information and decision, from the point of view
of rational team efficiency. The reader who follows our development of the
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theory of efficient teams will, again and again, recognize important
features of actual organizations. Considerations of efficiency seem indeed
to have shaped many characteristics of actual organizations, either because
of deliberate efforts of organizers, or because of the weeding out of in-
efficient or nonviable organizational forms in a gradual process of adapta-
tion and selection.

3. TEAM PAYOFF AND ACTION

In a single-person team, such as those considered in Chapter 3, the
decision-maker chooses an action a from the set 4 of feasible actions, In a
muiti-person or general team, there are n members. Memberi(i = 1,...,#)
chooses an action ; from some set A, of ali the actions that he can perform.
The gross payoff function

(3.1} u=wlx,a;,d,...),

which was introduced in Part One for a single person controlling several
variables a,, g, ..., can be retained, with the symbol u now denoting the
utility to the team (and to each of its members). The symbol x stands as
before for the state of the world; it is an element of the set X on which a
subjective probability measure is defined, denoted as before by = and now
characterizing the beliefs of the team. The symbol a; will now stand for the
action variable controlled by the ith member, so that any particular value
of a; is an element of the feasible set A; assigned to the ith member. Note
that g, itself may be an m-tuple of several physically distinct variables, all
controlled by the same member i,

We can now reinterpret and reapply the concepts of additive and
nonadditive payoff functions introduced in Chapter 3, Section 3. If w is
additive, then there exist n “‘subpayoff” functions w; (i = 1,...,n) such
that, with ¢ = (¢,,....a,)

(3.2) w(x, a) = L wyx, a;).

We then say that there is no.interaction. Whenever 4, and a; are real
numbers and the cross derivative,

dux(x, a}

(3.3) qi =

fa; da;

exists, g; can be taken as the measure of interaction. This quantity is, in
general, not constant but depends on a; and a; as well as on x.

For brevity, we shall speak of a team as additive, quadratic, and so forth,
whenever its payoff function has these properties as a function ofa,, . . ., a,,
for each x.
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4. DECISION AND INFORMATION FUNCTIONS IN A TEAM

In a single-person team, the action « is related to the information y of the
decision-maker by the decision function (dccision rule) a; thus a = a(y).
Similarly, the ith member of a general team takes his action a; on the basis
of his information, y,. Accordingly, there are n decision functions «,,...,
a,; and «; = «(y;). The n-tuple of decision functions can then be denoted
by a = {;,...,a,) and called the decision rule of the team. If we write
a = (a,...,a,)for the (joint} action of the team membersand y = (yy, . ..
y.) for their information, then the equation

[}

a = a(y),

which was set up in Chapter 2 {or the single-person team, can continue to
be used, properly interpreted for the general team.
It will also be recalled that, in the single-person team, the information
vaniable y is related to the true state of the world x by a function n, which
we called the information function or information structure. Thus
y = n{x), a = a[n{x)}. Correspondingly, the information variabie y, of the
ith member of a general team is related 1o the state of the world x by a
function #;; that is, if the world is in state x, then member i will have
information y; = n{x). The n-tuple n = {,,...,n,) may be called the .
information function (structure) of the team. Again in condensed notation,

¥y = n(x)a = aly) = aln(x)],

thus reinterpreting the equations of Chapter 2, In particufar, the gross
payoff (3.1) of a team can be written as

@n u = wlx,a) = olx, «[7x)])
= olx, ay[n,(x)]. ..., a,[n0]);
the gross expecled payoff of a team is

(4.2) Eu = Qn, &) = Ewlx, a[n(x)]).

The maximal pross expected payoff of a team, given its information
structure # = (#y, ..., #,), is the gross expected payofl maximized with
respect to «:

(4.3) Q) = max Qy, o)

= max Ew(x, 051('1 l{x)]a rees an[’?n(x)})‘

-3 PN En
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It was shown in Chapter 2 that every information structure # for a single
decision-maker can be identified with some partition of the set X of all
states of the world into subsets. For exampile, if X is the set of all cards that
can happen to be at the top of a deck of cards, # may be the partition of X
into two colors (red and black), or into four suits, or into 13 values (ace,
2,3,...,jack, etc.). The same applies to the information structure #, of the
ith member of a general team. Thus member i may learn about the
color of the top card, member j may learn about the suit, and member k&
abount its value. The extensions to the “noisy” case (Chapter 2, Section 8)
is obvious.

We shall often consider cases in which the information structure of a
team is [ully described by a statement as to “who knows what.” H is then
convenient to represent the information structure as a matrix, 1 = [1,]
(i=1,...,mk=1,...,K), such that

0 if a; does not depend on x;
4.4 Hiw =

1 if a; does depend on x,.

This case does not exhaust all possible information structures. For
example, the notation just suggested would fail to state *who knows what
with what precision.” The notation applies only if the relevant set X of the
states of the world can be represented by points in a finite-dimensional
space of variables—so that each state of the worid is described by the values
. ofa K-tuple x ={x,,. .., xx)—and if the set X is partitioned only according
to the values of some or all of these variables. Such was the case with the
single-person information structures [00), [10], [01], and {11}, of Example
3D; they could be regarded as single-row matrices [n;;].

5. CaN ONE-PERSON SoLUTIONS BE APPLIED TO TEAMS?

It is instructive to point out some obvious, but very special, cases in
which solutions of one-person problems can be directly applied to an
n-person problem,

One such case is that of fully shared information. Suppose that each
team member learns, directly or through some clearing agency, all the
information available to the other members; then let

{5.1) n = n* i=1...,n.

Referring to (4.3), we see that, in this case, the maximal gross payoff of the
team can be regarded as the maximal gross payoff of a single person
controlling n variables.

Another case will be given in Section 10.



4. The Problem and Some Examples. §6 129

6. SPECIALIZATION, ORGANIZATIONAL COST,
NeT EXPECTED PAYOFF

It is intuitively evident that, by adding to a team member’s knowledge
the knowledge of some or all of his pariners, the (gross) expected payoff of
the team cannot be decreased, and may be increased. This is an extension
of the results of Chapter 2; after noiseless communication with other
members, a team member has a finer information structure than before. If
communication were costless, it would indeed be worthwhile to have all
team members share their information fully, as in the case (5.1) of the
preceding section.

We said in previous chapters that the cost of information might lead a
single decision-maker not to obtain complete information. For the same
reason, it will not, in general, be worthwhile to have every member of a
team informed about the same events, and in the same detail. In a business
corporation, the executive in charge of finance and the one in charge of
personnel will share some information {on the general business conditions
and the broad problems of the firm, for example) but will also “specialize,”
that is, will keep informed of things that are particularly relevant to
financial decisions or to decisions on personnel, respectively,

The information cost considered in the chapters that dealt with a
single-person team was the cost of gathering information from outside ; we
shall call it the cost of observation. We should now add the cost of com-
munication among the members of the team. The capacity of men to transmit
and receive information is limited even when enlarged by mechanical
communication devices. People and devices with high capacity are in rare
supply {and therefore expensive), or just do not exist at all, so that certain
information structures are not [easible (or can be said o be infinitely
costly).

The information cost, consisting of costs of observation and of com-
munication, may thus justify a specialization of information in the sense
that the information structures »; and n; of any two members may be
different.

There is also specialization of action in the sense that the distinct sets
A; and 4; are physically dissimilar—they are, of course, never identical
formally). This is partly a consequetice of specialization of information;
it is cheaper to assign the hiring of personnel to the man who receives
information on personnel. But even if team members shared the same
knowledge (information cost being assumed negligible for a moment),
it might pay to specialize their actions. This is due to the cost of decision,
the study of which we shall not pursue here. It would lead us, in fact, into
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the economics (and the underlying psychology or physiology) of the
division of labor, and the advantages and penalties of specialization of
any work. We shall use the term organizational cost to include the decision
as well as the information cost, and we shall give some further elaboration
in Chapter 9.
" We shall say that a team has centralized or decentralized information
or, more briefly, is a centralized or decentralized leam, depending on
whether all its members have or do not have the same information struc-
ture. Ifit were not for the organizational cost, the problem of a centralized
team would be identical with that of a single-person team and, accordingly,
all nontrivial problems arising in a several-person {(or proper) team would
be those of a decentralized team. Organization cost (and noise) wili
be neglected in our Chapters 5, 6, and 7, but will be taken up explicitly in
Chapter 8, on Networks.

1t will be remembered from Chapter 2, Section 12, that the concept of a
net payoff to the single decision-maker as a difference between the gross
payoff and the cost of information and decision is applicable, with payoffs
and costs expressed in money, when the person’s utility function of money
is linear. The same clearly applies to the general team. If the organizer
can assume the team’s utility function of outcome to be linear, his task is
to maximize, with respect to o and #, the net expected payoff

Ew(x, a[n(x)]) ~ Ey(x, &, 1),

where y(x, x, 1) is the team’s cost of information and decision when the
environment is in state x. If the assumption of a linear utility function is
dropped, the problem becomes more complex, as shown in Chapter 2.
One then has to specify the function retating expected utility to each
feasible combination (#, ). At present too little is known about the nature
of such functions. More is known about monetary gross payoff functions,
and some few (too few!) statements can be made about monetary organiza-
tional cost. We therefore choose, rather than speculate on the implications
of various utility functions, to confine ourselves to the special case in which
maximization of the net expected monetary payoff is indicated.

7. COSPECIALIZATION OF ACTION AND OBSERVATION

Suppose that there is a one-to-one correspondence between the action
variables g, (i = 1,..., n) and the state variables x, (k = 1.2,...,n) in the
following sense: The cost ¢, of having the kth variable observed by the ith
member s prohibitively large when i 3 &, but is not wheni = k. Then the
ith member can be said to be a specialist (and the only one) on the ith
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variable. Any other member can obtain information about that variable
only by communicating with the ith member, directly or indirectly.

In this case, which we shall call cospecialization (of action and observa-
tion), many information structures can at once be excluded from considera-
tion as being definitely less profitable than some other information
structure. For example, if we apply the matrix notation suggested in (4.4),
to a two-person team with two appropriately indexed state variables, we
could have in general 4 x 4 = 16 information structures, since the first
row can be either [00], (10], [01], or [11], and similarly for the second row.
Cospecialization eliminates all those matrices in which 7; = 0 (i.e,
member i does not observe x;) but 5; =1 (i.e., member j knows x;),
where j # i. The 16 information structures are shown in the {ollowing
4 x 41able, Table 4.1. A dash means that the corresponding matrix is not
eligible when there is cospecialization. When a matrix is eligible, the
symbols entered show the “network™ that can generate it.! An arrow (—)
indicates the direction of communicalion; a cross { x) on the left-hand
(or right-hand) side means, respectively, that member 1 (or 2) does observe
variable 1 (or 2) in which he is a specialist; the hollow square ((J) on the
left-hand (or right-hand) side means, similarly, that the member in question
does not observe “his” variable. There are altogether nine eligible net-
works, and 16 — 9 = 7 ineligible networks. Moreover, the total cost of
observation plus communication is entered in parentheses, assuming for
itlustrative purposes that the cost of observation is the same for all
variables, ¢; = c; that the cost of one-way communication, ¢, is always
the same; and that the cost of two-way communication is 2¢’ (e.g., an
exchange of letters, not a conference).

TaBLE 4.1 INETWORKS AND ASSUMED INFORMATION COsTS IN A TWO-PERSON TEAM
WITH COSPECIALIZATION

M )
1, 00 10 01 11
00 0 x D — -
0 (c)
01 0O x % x [7e x X & X
() (2¢) c+¢) {2¢ + )
10 - x = - -
c+¢)
il — X = X - X = X
' (2c + ¢) (2¢ + 2"

1. The network concept will be treated more generally in Chapter 8.
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8. ExaMPLE 4A: A Two-PERSON TEAM WITH
NONADDITIVE, NONSMOOTH PAYOFF

Let a firm have two sales managers, each specializing in a different
market for its product. Let it have two production facilities, one producing
at low cost and another, more costly, lo be used as a standby. This second
facility can be visualized as a separate plant or as the use of the same plant
at “‘overtime” periods, which involves higher wages. A conveniently
simple case (J. Marschak 1959) is offered by a shipyard firm with two docks
(a new one and an old, less efficient one) and two markets {(“'Eas(™ and
“West™). Each sales manager is offered a price for a ship to be delivered in
his market. The prices offered in each of the two markets are the two state
variables. There are two decision variables, each of them taking one of
two values: either accept or reject the order.

Of the nine information structures entered in Table 4.1, we shall
confine ourselves to the following five:?

0 0]
, to be called routine
0 0]

1 1]
[l e to be called centralized complete information

1 0] .
[O nE to be called decentralized information

1 0] 0 1 '
[1 0 and [0 1:I,to be called centralized incomplete information

. We shall now study the profits (gross payoffs) associated with each
information structure; assumptions about organizational cost will be
introduced later. Let

k = the cost of building a ship in the new dock
kX 4 = the cost of building a ship in the old dock
k 4+ xy = the price offered in the East
k + xy, = the price offered in the West
1 if the order in the ith market is accepted {i - F W}
T if the order in the ith market is not accepted |~

2. See Chapter 6 for further elaboration.
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The pair x = (xg, xy) is the pair of prices, measured from the minimum
cost k. For a given x = (xg, xy), the profit u = w(x, ag, ay,) is®

o, LD)=k+xd+k+xp)—k-—(k+d)=x, +x, — d
wix,1,0) =k + xp) — k = x,.

w(x,0,1) =(k + xy) — k = x

w(x,0,0) =0,

or in tabular form as in Table 4.2,

TaBLE 4.2
ag
Ay 1 ‘ 0
1 Xg+ Xy — d Xy
0 Xg [}

ASSUMED DISTRIBUTION, NUMERICAL ASSUMPTIONS

We shall assume the simple 2 x 2 distribution of prices defined in (2.2)
and (2.3) of Chapter 3. Moreover, we shall specify all the givens numerically
and thus forego the task of studying various subcases; the numerical
example will suffice to bring out the essentials of the problem, Assume that

k=20d=15

m = mean of xg = mean of xy = 10,
s¢ = standard deviation of x; = 9,
sy = standard deviation of xy = 1,

r = correlation coefficient = .6,

Then the prices take the values py = k + m + sz (= 3% or 21) and p,, =
k + m % sy (=31 or 29); and since (1 + r)/4 = 4, the assumed joint
probabilities are as shown in Table 4.3,

TABLE 4.3
Xg \ PE
Xw 19 1 Pw 39 21
11 4 1 31 4 1
9 B 4 29 A 4

3. In a more general case, when more than one unit can be produced in each plant so that
ag and ayy are real numbers bounded by capacity ¢, v = Xgilg + Xyay — d-max(0, ag +
ay — c). See McGuire 1961 and Chapter 5, Section 4 below.
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Far gach of the four possible pairs xz and x, the previous table (Table
4.2) of profits as a function of a; and &, becomes Table 4.4,

TasLE 4.4
Xg Xy Profits  Probabilities

15 19

19 11 T T o 4
13 19

9 —-—— .
19 9 5 1
Con =1 1

ROUTINE CASE
Constder first the routine structure [0 0} that is let the same team
0o

action be used regardless of prices. The expected profit U for each of the
four possible team actions is as in Table 4.5.

TasLe 4.5
dg Ay
00 U= = 00
1 0 U=05(19) + (5K = 100
0 1 U=0(5)+ (59 = 10.0
[

U=(4015+ (13 + (D=3} + (N (-5 = 50

Thus the best expected profit under routine structure is 10.0 units. It is
achieved if only one of the two orders is accepted and the old dock is kept
idle. Let us see how the (gross) expected payoff can be raised by using
information. Take first the extreme case.

CENTRALIZED COMPLETE INFORMATION

Using the tabulation of profits in Table 4.4, the team chooses for each
pair of prices the best pair of actions, that is, the one yielding maximum
profit. Averaging these over the four price situations, we obtain the
expected profit. In each row of Table 4.6 (i.e., for each price situation), the
maximum profit is circled.
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TaBLE 4.6 CENTRALIZED COMPLETE [NFORMATION

Best
Team Action Max Team
(ag, aw) Profit | Probability | Action

xx  xw (0,00,0 ©D (L)

19 1y 0 @ 15 |19 4 (1,0
19 91 0o 49 9 13 |19 N (1,0)
1 1| o | % -3 |1 1 ©n
i 91 o | -5 9 4 0.

Average max profit = 14.2.

Thus the best team decision rule is to accept one order only, either East or
West, depending on whether x; is high or low. The resulting maximum
expected profit is 14.2. The value of centralized complete information,
that is, its advantage over the routine case, is 14.2 -- 10.0 = 4.2.

CENTRALIZED INCOMPLETE INFORMATION

We shall consider two such information structures: (1) both members
know only xg, and (2) both members know only x.

1. If both members know only xg the best team action rule follows
from the result just obtained for the case of centralized complete informa-
tion, since the added knowledge of x, was shown to be without effect on
the choice of the best team action. (This was, of course, due to the smallness
of the variance of the western price.) Thus, with the numerical values of
our example, centralized incomplete information such that x is the only
observed variable is as profitable as centralized complete information. It
has the same expected profit (= 14.2). Presumably it has lower cost.

2. If both members know only x,, we must choose the pair of actions
ay and ag that will achieve the maximum conditional expected profit
{circled) in Table 4.7 given that xy is high (=11); and, similarly, given that
it is low (=9). The conditional probabilities P(xglxy) and the marginal
probabilities P(x,) are, of course, derived from Table 4.3.

Here the best rule of action is: Accept the western order only if the
western price is low; otherwise accept the eastern order. We chose our
numerical data deliberately to produce this paradox. In the West, the high
price is only two units above the low price; in the East, the assumed
variance is much stronger. Since the means are the same, and the assumed
correlation is positive and sufficiently strong, it pays, on the average, to
accept orders from the East whenever the western price is high {and the
estimated eastern price still higher) and to accept the western order
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whenever the western price is low {and the estimated eastern price still
lower). The resulting expected profit is 12.2.

TABLE 4.7 CENTRALIZED INCOMPLETE INFORMATION
(about Western Price Only)

xp=19 xp=1

Xy = 11 P(XE|Xw) =
Plxy) =5 8 .2
l Conditional

ty Oy Profits  Expected Profits

0 0 0 0 0.0
1 0 19 ]

0 1 11 11 1T.0
1 1 15 | -3 114

X =9 P(xelxw) =
Plxy) = .5 2 8

Conditional
ag ay. Profits  Expected Profits
.0 0 0 0 0.0
| 0 19 1 4.6
o L 9] 9
| 1 13 | -5 —il4

Maximum Expected Profit = (154)(.5) + (9.0}.5) = 12.2.
DECENTRALIZED INFORMATION

In this case, the western (eastern) member knows only the western
(eastern) price. We shall call it “*his” price. Each member can apply one
of four rules of action: (1} “always accept order™ (A4), (2) “accept order
when my price is high” (H), (3} “accept order when my price is low” (L),
and (4) “never accept order” (N). There are therefore 4 x 4 = 16 team
action rules. The corresponding expected profits are computed and
tabulated in Table 4.8 in the following manner: In each of the 16 cells
corresponding to a team action rule, a corner is occupied by the profit
obtained for each of the four possible pairs of prices, arranged as in the
probability distribution table, Table 4.3. Most of the 16 team action rules
are inadmissible, being dominated by one or more other action rules that
promise a higher profit at some price pairs and a lower profit at no price
pairs. For the remaining, admissible team action rules, the expected profit
is shown in the center of the cell and is circled. The highest expected profit
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(=12.5)is circled twice. It is yielded by the action rule: “The western mem-
ber accepts order only when he is offered a low price; the eastern member
accepts order only when he is offered a high price.” (See the remark above

about the “paradox.”) This, then, is the best tcam action rule under
decentralized information.

TABLE 4.8 DECENTRALIZED INFORMATION
East accepts order

og | . if eastern |if eastern
atways | price high }price low | never
P {4) () (L} (N)
always 15 -3 115 I -3 prn
() @
13 =5 {13 9{ 9 -5 |9 ¢
g
T ifwestern [15 -3 |15 11 -3 fitn
@ |price high ®
g (H) |19 1|19 0j 01 |00
™
G [ifwestern | 19 1|19 o 61 [0 D
= [price low @
{L) 13 =-5]13% 91 9 =519 9
never 19 119 0] ¢ L0 0
(N) i
19 119 6l 0 1]0 0

In the lollowing summary (Tabie 4.9}, for illustrative purposes we shall
make the same assumptions about organizational cost as in Section 7. 1t
will be recalled that we use “profit” and “'gross payofi” interchangeably.

TABLE 4.9 COMPARISON OF FIVE INFORMATION STRUCTURES

Gross Net
Information Structure  Expected Information Qrganizational Expected
Payoff Value Cost Payoff
1. Rouline 10.0 0 0 10.0
2. Decentralized 125 2.5 Zc 125 — 2¢
Centralized incomplete :
3. xp known 1o both 12.2 22 c+ 122 —{c + )
4. xg known to both [4.2 42 c+ 142 - e+ )

5. Centralized complete 142 4.2 AHe + ¢} 142 — 2(c + ¢)
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o
=
L
N
4 3
]
g Routine
[¥]
&
- 3
w
=]
(3]
1=
2
F o2p
‘8
=
g .
E |1 Centralized
S incomplete

Observation cost

Figuge 4.1. Optimal information structures for different cost combina-
tions. '

it so happens that, in our example, for any positive information cost,
centralized incomplete information about xg is better than the other type
of centralized incomplete information and also better than centralized
complete information. But to choose between the remaining three
information structures, (1), (2), or {4), one would have to know more about

the actual cost ¢ of information and ¢’ of communication. (See Table 4.10
and Figure 4.1)

TABLE 4,10 OPTIMAL INFORMATION STRUCTURES

Routine if ¢ 2 max(1.25,42 -~ ¢
Decentralized ife £ min(l.25,¢ — 1.7)
Centralized Incomplete

(xg knnown to both) otherwise

0. PERSON-BY-PERSON SATISFACTORY TEAM
DEcisioN RULES

We shall use Example 4A of the preceding section to illustrate a principle

that can sometimes help to find the optimal decision rule for the team with a
given information structure.
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We see in Table 4.8, calculated for the case of decentralized information,
that the optimal team decision rule (“East accepts at high price onty,
West accepts at low price only”’) has the following obvious property : This
rule yields a higher, or at least not lower, profit than do other rules in the
same row (i.e., al] other team decision rules that prescribe that West should
accept at low price only) and also yields a higher, or at least not lower,
profit than other rules in the same column (ie., all other team decision
rules that make East accept at high price only). This is obvious, since the
considered team decision rule is optimal in comparison with all other team
rules whether or not in the same row or the same column. Such a rule is
“person-by-person satisfactory™: a team decision rule, @ = (&, ag) in
our case, will be called person-by-person (p.b.p.) satisfactory if it cannot be
improved by changing one of its components (i.e., oy alone or a alone).
As already remarked, an optimal team rule is always person-by-person
satisfactory. But the converse is not true. For example, Table 4.8 contains
the following rule: **East accepts always, West never.” This rule is not
optimal, since its payoff (10) is lower than the maximal one (12.5). But it
is person-by-person satisfactory, since it dominates all the rules in the
same column (“East accepts always”) and the same row (“West never
accepts”). For brevity, we shall sometimes write p.b.p. instead of persen-
by-person.

In order to find an optima!l team decision rule, one need not compare all
possible team decision rules, but only those that are p.b.p. satisfactory.

In Exampie 4B of the next section, p.b.p. satisfactoriness will not only be
necessary, but will also be sufficient for optimality; a more general class
of payoff functions for which this is the case will be defined in Chapter 5.
Our present example, in which the p.b.p. satisfactoriness is not a sufficient
condition for optimality, will merely help to elucidate the general method
of searching for an optimum among the set of p.b.p.-satisfactory rules.

Let the pair (&, &) denote a team decision rule that is p.b.p. satis-
factory. Consider, for a while, & (a row of Table 4.8) as fixed. Then, to
find & is to solve the one-person problem stated in Chapter 2, Section 5:
one has to find, for each observation made {(or, more generally, cach
message received) by the eastern member, that action a; which inaximizes
the conditional expected profit, given that observation. In our case
(that of decentratized information), the eastern member is informed
only about x, and the western member is informed only about x,,. For
each of the actions ag (1 and 0), and each of the vatues of xg (19 and 1), the
conditional expected profit is

©.h Y elxg, ag) = E{wlxg, xw, ay, “W(xw)]lxt;} .
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This is to be maximized with respect to ag, first when x is high, then when
x is low. This yields the function &g, the best individual rule for the eastern
member, when his pariner'sruleis tentatively fixed at diyy . In this manner one
obtains, for each assumed row d,, a tentalive team decision rule (&, 8g), 2
row-optimal rule. An analogous process yields, for each column, the
column-optimal team rule. A rule that is both row-optimal and column-
optimal is, by definition, person-by-person satisfactory.

Under other conditions, the procedure might be simpler. If the payoff
function were concave and differentiable with respect to ag and ay, we
should differentiate the corresponding expression W {xy , ay) with respect
to ayp, for each x,, ; and similarly for a;. We should then let the two partial
derivatives vanish simultaneously, thus satisfying a necessary condition’
for the maximum. Such a procedure will be feasible in our next example,
4B. In our present example, with the payoff function nondifferentiable,
other simplifying properties will be exploited: namely there are only two
values for each action variable and for each information variable.

We shall use the payoff table {Table 4.2), remembering that d = 15.

ag
Ay i 0
1 Xp+ xy — 15 X
0 Xg 0

We note that, when xz = 19, East is doing best by accepting the order,
regardless of West’s individual rule of decision: high eastern price exceeds
the cost in either dock. Thus, always &¢(19} = 1. On the other hand, when
the eastern price is low, x, = 1, we shali have to consider each of West’s
four possible rules, one by one, and lock up our payoff table to find East’s
best rule: .

1. If West never accepts (a, = 0), then §g(1) = 1,since xp = 1 > 0.

2. 1f West always accepts {ay = 1), then &g{1) = 0,since xy — 14 < xy.

3. If West accepts at high price only, we compute the conditional
expected profit for each ag, using conditional probabilities .8 and .2 as
weights, according to the assumed 2 x 2 probability distribution of
Table 4.3, as shown in Table 4.11.

4. If West accepts at low price only, we make a similar computation,
shown in Table 4.12.

We summarize East’s best rules, obtained so far with West’s rule fixed:
1. If West never accepts, East should always accept.
2, If West uses any other rule, East should accept at high price only.
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TaBLE 4.11
xg=1 ag =1 ag =0
xp Plwlxg)  ay Profits
1 2 1 IH+1-15= -3 11
9 3 0 1 0
Conditional cxpected profits: 2
Best ag(l} = 0
Tapre 4.12
xg=1 ag =1 ag = 0
xw  Plewlxp)  aw Profits:
1t 2 0 1 0
9 8 ! 9+ 1 -15= -5 9
Conditional expected profits;: —38 a2

Best ag(1} =0

141

Thus only two rules for East have to be considered-{i.e., only the firsi two
columns of Table 4.8). We shall derive for West those rules that best

combine with each of the two rules for East, and show that they cortespond

to the last two rows of Table 4.6.

I East always accepts, the payoff table {Table 4.2) shows, since xp < 15
= ¢, that West should never accept: The cost in the old dock exceeds any
price obltainable in the West. Thus the team decision rule West never

accepts, East always accepts is person-by-person satisfactory.

FABLE 4.13
X = 11 aw =1 ay =0
Xy Plgdxw) ag Profils:
19 8 1 114+19-15=15 19
1 2 0 11 _ 0
Conditional expected profits:  14.2 5.2
Best ay(11) =0
xp =9 aw =1 ay =10
xg  Plxglxy) g Profits:
19 58 0 9 0
1 2 Il 94+19-15=13 19
Conditional expected profits: 38

Best ap(9) = 1
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There remains the case in which East accepts at high price only. What
should be West’s rule? The profits at each of the possible prices in the
West are entered in Table 4.13.

Thus when East’s rule is ““accept only at high price,” then West’s rule
should be “accept only at low price.”” This is consistent with the result
obtained when West's rule was the fixed one. We thus obtain the second
p.b.p.-satisfactory rule for the team: East accepts at high price, West at low
price. _

We can now compare the expected payofls yielded by each of these rules
{none of the other 14 rules need be considered); they are 10.0 and 12.5, as
seen on Table 4.8. Hence only the second p.b.p.-satisfactory team rule is
optimal. We thus obtain the same result as in Section 8.

10. EXAMPLE 4B: TwWO-PERSON TEAM WITH QUADRATIC
PAYOFF

In Example 3E, a single person has to decide about two physically
distinct action variables: he chooses simultaneously the quantities
(@, and a,) of the two inputs on the basis of some information about prices.
We shall now replace a single decision-maker by a team of two, each to
decide upon only one of the action variables, on the basis of his individual
information. The environment is, as before, characterized by two state
variables, the deviations (x, and x,) of the two input prices from their
respective means. The payoff function, afier the appropriate choice of
units and origins, discussed in Example 3E, retains its simple form

(10.1) u = wlxy, X3, 0y,a2) = — a,” — a;* + 29a10; — a, % — azx,,

but a,, @, are now chosen by two different persons. The payoff (profit) to
the team is quadratic; moreover, we assume —1 < g < 1 to make it
strictly concave (see Chapter 3, Section 3). The payoff is nonadditive
except when ¢ = 0.

INFORMATION STRUCTURE

The ith member can decide about a; on the basis of four different
information structures [00], (10}, [01],and [11]. Hence thereared x 4 = 16
information structures each represented by a matrix: the ith row of such a
matrix (as in Table 4.1) represents the information available to the ith
person. When the two rows are identical, the profits are the same as those
obtained in the single-person example (3E). This is the “shared informa-
tion™ case, represented by each of the four matrices:

[ooh Lok Lo} L)
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It is true that, even for these information structures, the computation of
the net payolf will introduce new problems not present in the single-
person case; for the cost of information in our new setup will be due not
only to the expense of observation, but also to that of communication.
For example, [}8] may be implemented by letting both team members
observe the same variable x, ; or if person 1 “specializes™ in x,, by letting
him observe it and inform person 2.

PERSON-BY-PERSON-SATISFACTORY TEAM DECISION RULES

We have seen in Section 9 that every optimal team decision rule is also
person-by-person satisfactory and that the converse is, in general, not
true. However, it will be shown in Chapter 5 that, if the payoff function is
differentiable and concave in the action variables, then every person-by-
person-satisfactory team decision rule is also optimal, Now, our quadratic
payoff function w in (10.1) is indeed differentiable, and if ¢* < 1, @ is also
concave (see Chapter 3, Section 3). Therefore, for each information
structure a person-by-person-satisfactory rule will also be optimal.

To bring out the essential features of optimization in the case of a
quadratic and concave two-person team, let us recall, as a matter of
contrast, the reasoning applied {in Example 3E)} to the case of a single
person when the payoff function of his two action variables is quadratic
and concave. We shall take up the various information structures one
after another. When y = [00] (routine information), the optimal decision
rule was that constant pair (d,, d,) which made both partial derivatives
J0Eu/da; vanish. That is, we solved, for 4, and 4, simultaneously, the two
equations
(10.2) Q{‘ﬂ] =0 =12

aai 6=
In the case of complete information n = [11], the optimal decision rule
was a pair (&,, &), each & being a function of both external variables x,
and x,. Considering x; and x, as given, we obtain the best pair of action
variables 4, = &,(x,, x,), 8, = @,(x,, x,) by solving with respect to 4, , 8,
the two equations

(10.3) @} =0 i=12.
Oa; ai =&

1

Finally, in the case of incomplete information the optimal decision rule
was the pair of functions {#,, &,} of a single variable. For example, when
the incompiete information was [10]. this variable was x,, so that &, =
&{xy), & = &,;(x,). One obtains these functions by considering x, as
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given, and solving for 4, and 4, the pair of equalions,

OE(ulx,) =0 i=12
aa,’ ai=dy o

The maximands Eu, », E(u|x,) that appear in each of the three equation
systems, (10.2), (10.3), and (10.4), can all be regarded as special cases of
the conditional expected payoff, given the information:

(10.4)

constant when g = [00]
y=nx) =< x;,x; when » = [11]
b when g = [10],

respectively. We can rewrite the conditional expected payoffs in the form
ifar, y) = E{wlx, ay, 0;(0)lnix) = p}
Yalas, y) = E{olx, a,(y), aslin(x) = p}.

(10.5)

The equations to be solved are

(10.6) ‘3—'!’%’1’-] =0 =12,

Associating each value of y with the corresponding value of 4, we obtain
the functions &; (i = 1, 2).

As we proceed from a single-person to a two-person team, cach action
variable a; (now assoctated with an individual person i) becomes depend-
ent on information y; = #,(x), which in general varies with i. Therefore the
conditional expected payoffs (10.5) must be redefined:

(10.7) ri(ay, y1) = E{wlx, ay, ay(y,)]ln,(x) = Vi)
' Vala, y2) = E{wlx, 2,(y1), 2,10 (x) = y,}.

These have to be maximized person-by-person. The procedure can be
most easily stated if we assume for a while that y, and y, can each take a
finite number of values:

Yr=Yin Vi s Viw-- 5 Yans

Ya=DVYetuVaaso s Vaus oo -3 Vag-

The corresponding values of the two action variables, generated by some
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pair of functions («,, a,) can be denoted thus:
a; = alliaIZ" el ceallygg,

Ay = 031,833, Gap,- ., 3k,

where, for example, a;, = a,(y,,). (We shall not attempt, in this chapter,
toextend the proof to y , y, continuous: but see Chapter 5.) The person-by-
person-satisfactory* team decision rule ¢ 1> @2 can be expressed as the set
of H numbersd,,(h = 1,..., H)and the set of K numbersd, (k = 1,... K),
obtained by solving the H + K equations with respect to these unknowns:

i@y Vi) —0 h=1 H
aa”, an=an s

10.8
( ) Q‘f’z(azka Yau)

R =0 k=1, ... K.
aaZk ]qu=52k

Associating d,, with y,,, .. -, dyy with y, . we obtain the function &, ;
and associating 4, with y,,, .. .+ dyx with y, .., we obtain the function &,.

We shall now apply these considerations explicitly to our quadratic
case. The first of the two conditional expected payoffs in (10.7), with q,
and y, fixed at some values a,,, y,,, is

(10.9) d’l(ﬂ‘m-hh) = "amz - E{“zz{h)l}'w} + qum:E{“z(yz.)iYm)
—thE{xl;th} - E{az(}’z)xzij’u.} h=1,.. H.

It is understood that “|y,," is written for brevity, instead of “|n, (x) = o
The K expressions for ValVamanh k = 1,.. . K are analogous to (10.9).
To find the team decision rule (&, &,} that maximizes, person-by-person,
the conditional expected payoff for a given tean information structure
(1. 12). we differentiate partially. The resulting H + K equations can be
writlen as follows:
—2d,, + 29E{G{y o)y} = E{xiy} h=1,....H

10.10 . .
( ) 2fIE{ﬁ9|(YI)¥)’2k} - 2dy, = L‘{lel’zk} k=1...K.

Each of these two sets of equations can be rewritten in condensed form:
=28(y,) + 2QE{§2(}’2)|.V1} = E{-\'li}’l}

(10.11)
ZCIE{&L(J’_x)'Yz} = 285(y2) = Elx,ly,}.

4. In general {e.g, Section 9), we denote the p.b.p-satisfactory rute by &, and the truly
optimal rule by & But when the payoff function is differentiable and concave, the two coincide.
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For economic interpretation consider, for example, the first equation
(h = 1) of the first line of (10.10). The expression on the right-hand side,
E{x,ly,,}, is the conditional expectation of the price of the first input,
and that on the left-hand side is the conditional expectation of the marginal
product of the first input given that the first member’s information is y; ;.
Thus the classical rule of cquating the marginal product of each input to
its price is retained in a generalized form, while taking account of the
possible incompleteness of the team member’s information about the
prices of inputs as well as about the other member’s action.

ASSUMED PROBABILITY DISTRIBUTION

We have already assumed that the information variables y, and y, take
only a finite number of values. We are considering only information
structures in which a team member is informed about one or both or none
of the observables. It is natural, therefore, to use in our example the
“simple 2 x 2 distribution™ of (x,, x,) described in (2.2) of Chapter 3.
Thus H =K = 2.

THE CASE OF DECENTRALIZED INFORMATION

Let us begin with the case {see also Section 8 above)

= lai)

In this case, for each i(= 1,2), y; = x(= §; or —s;), so that

Yuu =85, Y12 = — Sy ¥21 = 8 Va2 = — 8,

ayy = 04(8y), @z = ay(—35y), @21 = aa(82), azz = wx(—52).
To use (10.10), note that

E(xllJ’u) = E(xllxl $1) = 5y,

I

E(x)ly,2) = E(xqlx; = —s57) = —s,,etc.
and, applying the results of Chapter 3, Section 2, we evaluate, for example,

E{az(_'i’z)h?u} = E{“z(h)lxl = 51}

= C(z(Sz) Pl'(x2 = Szlxl = Sl} + az(—SZ) Pl'(xz = —5|X, = Sl)

_ay(l+7) 4 az(l — 1)
= 5 5
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Equations (10.10) become

(10.12) =24y, + g(1 + )y + g(l — 1)dyy = +3,
(10.12") —2dyy + gq(l — 1Yy, + gl + Py, = —5y
(10.13) gl + Ndy, + gl — r)d,, — 2d,; = +5,
(10.13) g1 — Pdy, + qll + ¥a,, — 2, = — 55,

Adding the first two equations, and adding the last two equations, we
obtam, respectively

dyy + diz = gldy, + dyy)
gldyy + di2) = {dy, + dy3),

so that,since ¢> # 1,8,, = —8,,,8,, = —f,; [that is, &(s) = —&(—s):
opposite information will call for opposite and equal action]. Substituting
into (10.12), (10.13) and solving the resulting pair of equations, we obtain

PR + g5y s 1 + grsy/s, p
SR TS R P =2(1 — 4*rY) oo
Sp+grsy L 4agrsys, .

tay =

T R | I

Thus (as in Example 3E) the decision functions are linear with no constant
term,

{10.14) &y = by = bix; i=12,
where
1 + grsy/s;
. b= ——"—"7_" P # .
(10.15) Rt A

For economic interpretation, consider first the symmetric case. Write
b; = b when s, = 5,; then
-1

10.16 bl = —— i=12.
(10.16} v

Thus when both prices are equally uncertain, the optimal input of
kind i changes in the direction opposite to the change in its price: for b,°
is negative, since gr < 1. Furthermore, b,° increases (in absolute value)
as gr increases, consistent with the following reasoning. Suppose the
correlation r is close to + 1. Then when the first member observes a low
price of the first input, he is on the average justified in estimating the
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other price also to be low and in assuming therefore that his colleague has
decided on a high input of the kind he controls; this in turn calls for a high
input by the first member if g is large and positive (high complementarity)
or for a low input if g is large in absolute value and negative (high inter-
ference).

By comparing the effects (—b; and — %) of prices on corresponding
inputs in the symmetric and the asymmetric cases, we may study the effect
of the relative degree of unceriainly about the environmental variables,
measured by [ — (s;/s,)]:

b; = b + gr(l — ;821 — qr?).

The first term on the right-hand side represents, as in (10.16), the effect of
the price change repardless of relative uncertainties. The second term
does depend on the relative uncertainties about x; and x;. If the uncertainty
about x; is greater than that about x; (s; > s)), then the smaller (s;/s;), the
greater the second term is in absolute value; greater relative uncertainty
about x; leads to greater “caution” of the ith member.?

This correction for relative uncertainty may be strong enough to lead
to a “paradox’’ analogous to the one shown in the shipyard example
(Section 8 of this chapter). The coefficient b, (say) defined in (10.15)
becomes positive if gr < 0and s, /s, < |grl. That is, if the first team member
controls the input with the less volatile price (s, < s,), he may do well to
respond to a rise in this price by increasing the input, provided that the
prices are strongly positively correlated and there is strong interference
between inputs.

The reader may also find it instructive to compare (10.15) with (8.14) in
Chapter 3, which gives the optimal decision rule for a single person who
controls both inputs while knowing the price of only one of them.

All such economic interpretations of mathematical results may be
compared with the results of the reader’s “intuition.” Even in the simple
cases treated so far, some of the mathematical results seem to outrun those
of an intuitive and discursive argument,

AN ALTERNATIVE APPROACH

The linearity of the optimal decision function suggests for the case
considered an alternative use of the person-by-person maximization
principle. This approach will not only simplify the computations for the
case of the particular (and discrete) probability distribution we have used,

5. It will be recalied that the ratio s,/s; does not depend on the choice of money unit but

does depend on the chosen units of cutput and input quantilies: they were chosen so as to
reduce the quadratic profit function to the form (10.1).



4. The Problem and Some Examples. § 10 149

but can also be extended to the important case of normal distribution of
environmental variables. The approach consists in proving that linear
decision functions satisfy the maximizing conditions (10.10) and in finding
the coefficients of those functions.

Still considering the case of decentralized information, y, = X;, we put
tentatively: a(y;} = b;x;. Then (10.11) becomes

_2b1x1 + Zq' E{bz}fglxl}
Zq . E{b‘x,lxz} - 2!)2122 = xz.

Il

X1

Inserting from the regression equation (2.4) of Chapter 3,
(10.17) E(xi{x;) = x;- r(sifs;),
we obtatn a pair of linear equations in the unknowns b,, b,
—51x; by + grs,x, by = 5,x,/2,
qrs;xa by — 535 - by = 5,x,/2.

Since this is to hold for any values of x, or x,, we can equate the co-
efficients of x, {or x,) on each side of each equation:

—s8y-by + qrsy - by, = 5,2,

qrs; by — s5- by = 5,/2.

i

The existence of a solution validates the tentative assumption that the
person-lo-person-satisfactory decision functions «, are linear. In fact, the
solution is (10.15), as is easily verified.

EXTENSION TO THE CASE OF A NORMAL DISTRIBUTION

The regression equation (10.17), which was derived for the case of a
special discrete distribution, holds also for the normal distribution with
zero means (Chapter 3, Section 2). Hence the result (10.15), obtained from
the maximizing equations {10.11), holds also for the case of a normal
distribution. For the general discrete case, these equations summarized
the set of H 4 K linear equations (10.10). When the states of the world x
and the information signals y, arc normally distributed, the averages
{expectations) are expressed by integrals. It follows from Theorem 5 of
Chapter 5 that (10.11) remains in force in this case.

We are therefore permitted, continuing our study of the two-person
quadratic team, to assume either the simple 2 x 2 distribution or the
normal distribution with the same results. (A generalization of the normal
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distribution case to quadratic teams with more than two members will be
pursued in Chapter 5.)

APPLICATION TO OTHER INFORMATION STRUCTURES

In the case of decentralized information, [}]], we have exploited the
linearity of the optimal decision function in the quadratic casc with a
normal distribution {or with the simple 2 x 2 distribution). We can apply
the same method to any other of the 16 information structures, including
those in which an information variable y; 1s not a single number but a
-vector (an action is taken on the basis of knowledge of both x, and x,).
Consider, for example, the information structure [3}]: person I has
complete information, person 2 has only partial information. Again,
assume tentatively that

§1(yy) = 84(xy, x3) = by, + byax,
8a(y,) = 0(x3) = byx;y

and find the three coefficients b,,, b,,, b, (if they exist). Equations (10.11)
become

—2by 1%,y + byaxs) + 2qE{boxabxy, x,) = E{x,lx,, x5},
20E{(by 1%, + byaXa)ixg} = 2byx, = E{x,|x,}.
Now E{xy|x,, x5} = E{x,|x,;} = x,; E{x;|x,, x,} = x,. Hence
—by -xy —baoxy +gby o x; = x,/2
qby 1{(s1/52) - X2 + gbya Xy — by - Xy = x,/2,

by (10.17). Equating the coefficients of x; and those of x, in each equation,
we obtain

~byy =1/2, —by, +.gb; =0 from the first equation, and
grisy/s:)b,, + ghy; — by = 1/2 from the second equation.
This is solved by

b= —12;b; = — (li%‘i_ﬁ%ﬁ,'

b . 9+ arsyss)
12 2(! R qz)

Hence the person-by-person-satisfactory decision rule (which, in the



TABLE 4.14

Best Decision Rules

Information Member 1: Member 2:
Network Structure Coefficient of Coefficient of Net Expected Payoff
X, X5 X x,
o0
0
10 O 00 0 0 0 0
2x O [ 10] —1/2 0 a 0 1/4
L hwi h /4 —C
[10] o 1+ r+gq 1+ 2+
I x - ~ 12— 0 -12—1 —_— =
*=0 R b= g4 0 -4 7 F
ax x |1° ! 0 0 Y SURL I P S
01 | 1 ~rg 1 —rg {2(8 —rg)
10 L+ - 4l + gr) {1+rg?
7 x - —1,2 5 0 -2 = -1 T -2t~
x x [”_ / =g / 1= 4 1 4(1fq3)+l/4 ¢ —c
11 1 ] 4 1 Il +rq
9 x 12 =12 -~1/2 s —172-= — 1 2
T [15 T R e 2 e R R g Py ‘

Note: These results are, of course, consistent with those of the next two chapters if the transformations (3.5) of Chapter 5 are carried
out. In particular, replace g by —¢: and, in the last column, because of the change in units for x,, multiply the gross expected profit

by 4.
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It is interesting to compare this resuit with (8.7) of Chapter 3, where a
single person determined both inputs on the basis of the knowledge of
both prices. in (10.18}; the first input is also based on the knowledge of both
prices, but the decision rule (of the first team member, the one who controls
this input) is quite different from that in the single-person case. Note in
particular the role of the regression coefficient 75, /5,. 1t is used, as it were,
by the second member, who must estimate the price x,; (unknown to him)
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on the basis of the known price x,, for x; will influence his partner’s
decision and hence, by complementarity, the effect of his own decision,
This estimate influences his own decision, and therefore in turn, his
partner’s decision. Only when there is no complementarity {g = 0) does
the team decision rule coincide with that of the singie person, namely,
@ = —Xx;f2.

In summarizing the results in Table 4.14, we shall consider only the
symmetrical case s, = 5, = |. We can therefore omit one-half of those
cases of Table 4.1 that are obtainable by interchanging members [ and 2.
Moaoreover, as in Example 4A, we shall consider only teams with “co-
specialization’: member i is an “expert” about the variable x; and observes
it at cost ¢ while the cost of his observing x; is prohibitive. The cost of
one-way communication is ¢'; the cost of two-way communication is 2¢’.

We shall stop here and shall leave the further analysis of the results
to the reader. He will note especially how the optimality of a given network
depends on the parameters g and r on the one hand, and on the observation
and communication costs on the other. For example, fixing ¢ and ¢ at
some levels, he may study the regions of the (g, r) plane in which a given
network would be optimal. Figure 4.2 gives an example of this.

11. CASES IN WHICH THE INFORMATION STRUCTURE
CONCEPT IS NOT APPLICABLE

When discussing the single-person decision problem in Chapter 2,
Section 12, we showed that it is not always possible to express the net
expected payoff as the difference between gross expected payoff and the
sum of expected information and decision costs,

(1.1) Eo{x, a[n(x)]} — Ef(x, a,n).

Instead, for each value of x, a net payoff function, im*(x, ¢, #), is defined and
its expected value maximized.

- In particular, this difficulty may arise even in a sequential decision
problem for a *“single person™ il the person’s action at one time affects his
information at subsequent times. This is typical of problems of inventory
control, investment, and sequential sampling in statistics.

In the multi-person case, the formulation (11.1) may be too restrictive
for an additional reason, namely, one person’s action may affect another’s
information. For example, a scout’s action, taken on the basis of his own
observations, may consist of 2 message to his chief; these messages form
a part of the information on which the chief bases his subsequent actions.

Let 5, and 7, denote the information functions of the scout and his
chief, respectively, and let o, and a, represent their decision functions.
For each i, the set of decision functions ¢; that are feasible is of course
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restricted by the choice of ;. But, in addition, the set of information
functions #, that are feasible may be restricted by the particular action
a, = a,[n,(x)] taken by person | (the scout). In particular #, may simply
be

na(x) = ay{ndx)].

In this case it would not be possible to formulate the team problem as one
of choosing a best pair (&;, &) of decision functions for a given (fixed) pair
(11, 12) of information functions.

In the next three chapters, we analyze team decision problems in which
assumption (11.1) is made explicitly or implicitly. The consideration of
the more general case is deferred to Chapter 8, in which we use the concept
of a “network.”



CHAPTER 5§

Best Decision Functions

{.Introduction 2 Person-by-Person satisfactory decision functions 3.Teams

with quadratic payoff functions 4.Concave polyhedral payoff functions: linear
programming under uncertainty

l. INTROBUCTION

In this chapter, we consider problems of determining the best team
decision function for a given information structure. The motivation for
considering such problems has been given in Chapter 4; thus the concern
in this chapter is primarily technical. The methods developed here will be
used in Chapters 6 and 7 to analyze and evaluate specific classes of
information structures.

The concept of a person-by-person-satisfactory team decision function
was introduced in Chapter 4. In Section 2 of the present chapter, we show
that if for every state of the world the payoff function is a concave, differen-
tiable function of the team action variables, then every person -by-person
satisfactory team decision function is optimal.

The person-by-person principle provides a way of characterizing
optimal decision functions in a limited, but still fairly broad, class of cases.
Further progress in characterizing optimal decision functions is possible
if one considers even more limited classes of problems. These limitations
can be on the payoff functjon, on the probability distribution, on the set of
feasible decision functions, or on the information structure. in Sections 3
and 4, we consider two special classes of payoff functions, guadratic and
concave polyhedral. In the first case, the person-by-person principle
applies to give some fairly explicit characterizations of optimal decision
functions. This will facilitate the study {in Chapters 6 and 7) of the organ-
izational consequences of changes in the various parameters of the situa-
tion. In the second case (concave polyhedral), the person-by-person
principle typically does not apply, but the techniques of linear program-
ming provide a general method of solution; however, the effects of changes
in the conditions are not as easily discerncd. In addition to showing how,
in the concave polyhedral case, the problem of finding an optimal team

155
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decision function can be transformed into a linear programming problem,
we apply the duality theory of linear programming to obtain Lagrangian
muitipliers that can be interpreted as “random prices.” For the special
case of a linear payofl function, the formulation in Section 4 provides one
approach to “linear programming under uncertainty.”

Since during the discussion of any particular problem the information
structure will be fixed, we shall use the notation

Qo) = Eelx, a[n{x)])

to denote the expected payoff for any particular decision function o.
A decision function & is optimal if it maximizes ) in the set of decision
functions available to the team.

2. PERSON-BY-PERSON SATISFACTORY DEcIsion FUNCTIONS

A team decision function is defined to be person-by-person satisfactory if
it cannot be improved by changing any one component &; alone, More
formally, for any decision function &, let

(21) Qi(aii&') = Q(&la- . ’&f‘l!“t"&l"i’l!' . ,&");
then & is person-by-person satisfactory (p.b.p.s.) if, for every i,

(2.2) Q&) = max Qa;, &) i=1,...,n.

An optimal decision function is a fortiori person-by-person satisfactory,
but the converse is not, in general, true. This section describes a condition
under which p.b.p. satisfactoriness guarantees optimality.

The concept of p.b.p. satisfactoriness is useful in much the same way that
it is useful to be able to characterize (when possible) the maximum of a
function of several variables as being attained at a point at which the several
partial derivatives vanish, that is, at a point at which the function attains a
maximum in each variable alone. In the case of the team problem, the
“variables” in question are actually the several component decision
functions.

The conditions (2.2) for p.b.p. satisfactoriness further suggest a process
of adjustment whereby one might hope, starting from any team decision
function, to approach an optimal decision function by changing the team
decision function one component at a time. The convergence of such a
person-by-person adjustment process to an optimal team decision function
can be demonstrated under certain assumptions, but we shall not pursue
this topic here.
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MAXIMIZING CONDITIONAL EXPLECTATIONS

In a one-person decision probiem, the action prescribed by an optimal
decision function is an action that maximizes the conditional expected
payofl, given the observation (see Chapter 2, Section 3).

In the case of a p.b.p.s. decision function, each condition of (2.2) can be
throught of as referring to a one-person problem, namely, the problem
that person i faces when the decision functions of all persons j different
from i are fixed at &;. For any action g, of person i, and any value y, of
his information variable, the conditional expected payoff is

(23) 'fli(ais yi) = E{(D[x, &1(.}'1)1 ey @y e ay &n(yn)}lyl} .

Thus & is person-by-person satisfactory if and only if for every i and
every y; &{y,) maximizes y{a;, v} In particular, i a, is a real variable, and
i, is differentiable in g,, then the above maximum will occur at a value of
a; for which dy,/éa; = 0. This motivates the following definition: A team
decision function « is stationary if, for every i and every y;,

(2.4) >

=0,

o =aily)

A CONDITION UNDER WHICH EVERY
PERSON-BY-PERSON-SATISFACTORY DECISION FUNCTION
IS OPTIMAL

THEOREM 1. For each i let a; be a real variable, and suppose that for every
x, w is a concave, differentiable functionof a = (a,,. ... a,);thenany station-
ary team decision function is optimal.!

Sketch of Proof. Let & be stationary, let ¢ be any other team decision
function; define the function f by

J() = Q& + te),

where ¢ is any real number. Because the function w is concave and dif-
ferentiable in g, the function [ is concave and differentiable in t. Let w(x, a)
denote the partial derivative of w with respect (o g;; then the derivative

L. The theorem remains valid if the team action variable, a, is constrained to lie in a
convex sel, and the stationary team decision function takes all its values in the interior of that
set. An analogous theoremn can also be proved for the case in which the action variables of the

team members are vectors, and there are separate constraints on the actions of the individual
members,
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of f with respect 1o ¢ is?

yn 4 N
Sy = E{Ew(x,a + t&)

n
= Y Ewfx, & + te)s;.
i=1

(The change in the order of the operations of differentiation and expecta-
tion is valid here because the sets X, Y,,..., Y, are finite.) Hence

2.5 J) = i Ew{x, &e

For every i,

Ew(x, &)e; = Z Efwx, &elnix) = y;] Prob[ni(x) = yl

rig¥y

Since ¢ is a function of y,, this last equals

(2.6) Ewix, @) = Z edyi)E[wi(x, &)[’Ti(x) = y;] Prob[n(x) = y;].

yiek,

The stationarity condition (2.4) can be rewritten as follows by inter-
changing the operations of differentiation and e¢xpectation:

E[wfx,d)ln{x) = y] =0  everyiandy;.
Substitution of this in (2.5} gives
f'10)=0.

Hence f(¢) has a maximum at ¢ = O; hence, for any decision function ¥y
of the form y = & + ¢,

(2.7} Qy) = f{1) £ f(0) = Od).

Now any team decision function y can be put in the form y =& + t¢
for some ¢ and t. Thus the argument leading to (2.7) shows that, for any
team decision function y,

Qy) £ Q@);
that is, & is optimal.
2. Recall that, for notational compaciness, we wrile
Ew(x,u) for Eolx,a,[7,0)} . ..., e {n(x)0,

and similarly for other expectations. Note also that the symbols @ and £ of Part One will
be henceforth replaced by Y and Z.
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FiGURE 5.1. Person-by-person satisfactoriness is not sufficient for opti-
mality.

A condition of differentiability seems (o be essential to the above result,
as the following example suggests.

Consider a team of two members, whose payoff function is independent
of x, with contour lines as on Figure 5.1, say

(28)  wlay,a;) = min{—a,? - (a, ~ 1)%, ~{a, — 1 — a,%}.

It is casily verified that any {(a,, a,) for which a; = a, is person-by-person
satisfactory (e.g., the point P in Figure 5.1), whereas the maximum of o
is attained only at @, = @, = 1/2. Note that in this example w is actually
strictly concave.

For an extension of Theorem | to the case of an infinite X, see Radner
1962,

3. TEAMs WITH QUADRATIC PAYOFF FUNCTIONS

In this section we shall explore the consequences of assuming that, for
every state of the world, the payoff is a quadratic function of the team
action variables. Particular attention will be given to the case in which
(1) the coeflicients of the second degree terms do not depend upon the
state of the world, and (2) the relevant random variables are normally
distributed. In this case, the optimal decision variables will be shown to be
linear functions of the information variables, and an explicit algorithm
for their computation will be given.

A quadratic payoff function may be thought of as an approximation.
for each state of the world, to an arbitrary smooth payoff function in the
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neighborhood of the best team action, say f(x), corresponding to the state
of the world x.

In a quadratic formulation, the variances and correlations of the
information variables have an especially important role (whatever the
probability distribution). In fact, the theory of the quadratic team has
interesting connections with the statistical theory of regression (see
Radner 1962).

Almost all of the essential features of the “quadratic team’” are present
in the two-person case. We shall therefore first present a fairly complete
treatment of this case, which will be followed by a briefl discussion of the
quadratic team with any number of members.

THE TWO-PERSON CASE

Suppose that there are two real action variables, a, and a,, and that the
payoff function is given by

(3.1) wlx, a) = Mx) + 2uy{x)a; + 2p,(x)a,
_vll(x)a12 — 2vya(x)aya; — sz(x)azz,

where 4, u,, and v;; are all real-valued functions of the state of the world,
X.

It is reasonable to confine our attention to situations in which thereis a
maximum payoff for every fixed x; for this reason, we shall make the
assumption that v, (x), v;,(x), and

P’n(x,} le(x).
‘ ¥ialx)  vaa(x)
are positive for every x.

THEOREM 2. The optimal decision functions &, and &, are determined
by the following conditions: for every y, and y;,

{“n()’i)E(Vulh) + Efagvyalyy) = E(ulyy)
E(otyv23ly2) + 0afy2)E(vaalya) = E(uyly,).

Sketch of Proof® The conditions of Theorem | (Section 2) are satisfied
here, so that the person-by-person rule can be applied, in its special form
of stationarity {condition (2.4)]. This last directly yields (3.2) above.

If, as we have been assuming, the state of nature, x, can take on only a

finite number of values, then (3.2) represents a system of linear equations as
follows.

(3.2)

3. For an extension to the case of an infinite set X, sec Radner 1962,
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Suppose that

1. The possibie values of x are x,,. .., x,,.

2. For i = I,2, the possible values of the information variable y, are
Yivso s Ving,-

3. The conditional probability that y; = y,, given that y; = y, is Pim™

4. The value a{y,) is denoted by a,,.

Then, according 10 (3.2), the values Arys-o @iy, A0d dyy, ..o, day,
are to be chosen to satisfy the following (M, + M,) linear equations:

M3
anEvylyg) + Z B0 aly s YaomdPom ' = E(uyly i)

m=1

h= ]!""Ml
(3.3) M,

f;] alJIE(VZ llyl.h’ yZHI)IUHizm + a}.’mE(VZZEyZm)"__ E(“Zlylm)

m=1,....M,.

In Example 4B (Chapter 4, Section 10) the coefficients of the quadratic
terms were constant, and the following interpretation was oflered: ¢, and
a; denote inputs in a production process, x, and x, denote the prices of the
inputs, the production function is quadratic in the inputs, and by suitable
chotces of origins and units the payoff function can be put in the form [see
{(10.1) of Chapter 4]:

(3.4) wlx,a) = —x,a8, — X0, — a@,° + 2qa,a; — a,>.
Comparing this with the general formulation in (3.1), we see that

2

) =0, mxy= 2L ux)= 5

2
(3.5)

vilx) = vi(x) = 1, Vialx) = —gq.

Suppose, in this example, that each price x; can have only one of M
values x;{j = 1,..., M) and that the joint probabilities are
(36) Pl’(xl = xu, Xy = ka) = d)jk'

Suppose further that the decision about each input is made only on the

basis of knowledge about the corresponding price; that is, assume
“decentralized information™ as in Example 4B.

3.7 n{x) = x;.
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Each decision function ¢; will have the form
(3'8) ai(xim) = &, i = 1; 2a

that is, a;,, is the level of input i to be set by person i if he finds out that the
price of his input is x,,. The numbers a;, arc to be determined so as to
maximize the expected payoff; their optimal values are, by (3.3), determined
by the following system of 2M equations:

M
dy;—q z a2mPr(x2m‘xl}')= _x1j/2 i=L... .M
m=1
39

M
—{ (259" Pr(x“"IX2k) -+ tyy = _x2k/2 k= ],...,M.
=1

m=

EXAMPLE 4B RECONSIDERED

In Example 4B, we specialized further at one point by assuming the
simple 2 x 2 joint probability distribution [(2.2) of Chapter 3).

Xy
xZ\ —l +1
(3.10)

1 L+ 1-r
4 4

41 1 — v 14 r
4 4

(Recall that, in this simple distribution, x, and x; have the same marginal
distributions with the values + 1 and —1 equally likely, and with means 0,
variances 1, and correlation r.) The optimal decision functions, that is, the
solutions of (3.9), were found to be

_'
Al = rg)
-1
diz =83 = m

@y =4z =
3.11

It is interesting to compare these decision functions with those that would
be optimal in the following two extreme situations:

1. Complete information—each person knows the value of both x,; and
x, before taking action, that is #{x) = (x,, x5}
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2. No information—each person takes action with only knowledge -of
the probability distribution of x, and x,, that is, 5{x) constant.

These are, of course, the situations discussed in Examples 3E and 4B.

The results for the three information structures are summarized in
Table 5.1, which shows for each person the action that is actually 1aken
for each of the four possible states of the world, under each information
structure.

TaBLE 5.1. OrriMaL Decision FUNCTIONS FOR THREE
INFORMATION STRUCTURES

Complete Decentralized No
Information . Information Information
7x} = (xyq, X;} gdx) = x; #; constant
(x,.%3) da, a a; a, a, as
] ] 1 i
-1, -1 = 0 0
( Wl o9 MWrg | A =0
1 —1 1 -1
-1, e ) = =
GO T | wiTg | Aimre | T | O 0
—1 i —1 l
I, - - _ 0
=D 5| i | Tl X e 0
—1 - —1 -1
(1,1 ! 0 0

A —qy| 20—q | 20 —rq) | 21 —rg)

THE TWOQO-PERSON CASE CONTINUED—NORMALITY
AND LINEAR DECISION FUNCTIONS '

We shall now show that if .
1. the coefficients of the quadratic terms in (3.1) are constant, inde-
pendent of x, and
2. the coefficients of the linear terms, and the information variables,
are normally distributed,
then the optimal decision functions are linear.
This result will be used later to analyze the influence of the variability
and correlation of the information variables on the choice of optimal
information structures.*

4. The assumption of normality violates the assumption of finite X that we have been
making all along: sce Radner 1962 for a rigorous proof,



164 Team Organization Problems

According to assumption (1} above, the functions v;;in (3.1} are constant.
Let v, = —g, and let the units of a; and &, be chosen so that v, =
vy, = 1. This gives us the form of the payoff function

(3.12) wfx, @) = A(x) + 2uy{x)a, + 2uxx)a; — a,? + 2ga,a; — a,”.

The requirement that w{x, a) have a maximum in a, for every x, is
met by requiring that g2 < . Indeed, by differentiating (3.12) with respect
to a, and a,, we get the conditions for a maximum as

a; — qaz = p,(x)
{3.13)
—qay + a3 = alx). _
The solution of this gives the best values of a, and a, for any given value of
X as

_ Hulx) + gpalx)

1 1= qz = ﬂl(x)
(3.14)
a; = ‘?Fl(;c)_'i’qi‘z(x) = By,

[Compare this with (8.7) of Chapter 3.]°

Now suppose that #, and #, are the information functions for persons
1 and 2, respectively. It will simplify the exposition to assume that n,
and #, are scalar-valued functions, but the extension to vector-valued func-
tions (each person learning about several variables) is easy. Denote the
random variable n,{x) by y;, and let

(3.15) Correlation(y,, y,) = r.

There s no loss of generality in assuming that Ey, =0 and that
Variance(y;) = 1.

We now proceed to show that the optimal team decision functions are
linear.

First, we shall write the person-by-person satisfactoriness condition
for the present case [see (3.2)]:
(.16) { (y1) ~ qEleady)) = EGuily,)
—qEe;ly;) + aalyz) = Elpyly,).

We next show that changing p; and u, by adding constants resulisin a
change of the optimal o, and o, by adding constants. Let m, and m,

5. Henceforth, unless otherwise noted, the symbol fi; will be used to denote the optimal
decision function for person i under complete information,
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be any two numbers, and let ¢; and ¢, be the solutions of

(3.17) { oy —gey, = my

_qu ‘+ C2 - ntz‘
1t follows that, if &, and o, satisfy (3.16), then

(3.18) { ay{yy) + ¢y — qEley + calyy) = Eluy + myly,),
l —qE(ot, + cilya) + aa(ya) + €3 = Elpty + mylys)

In other words, when the constants m; and m, are added to 1, and pu,,
respectively, the constants ¢, and ¢, must be added to «; and «,, respec-
tively, to obtain new optimal decision functions.

Hence, there i1s no important loss of generality in assuming that
Eu, = Eu, = 0, and this will now be done.

We next show that there exists a solution (&, &,) to (3.16} of the form

(3.19) {0:51(}’1) = by,
&a(y2) = byy,.

In order to prove this, we substitute (3.19) into (3.16) and look for values of
b, and b, that satisfy that condition;

(3.20) {bm, — b3 E(yaly:) = Elu,ly)

—gbyE(y\lya) + by = E(ualy,).

Since the p; and the y; are normally distributed with zero means, and
the y; have unit variances, ’

E(relv) = d.v.
(3:21) {(#Jy.) d;y;

E(J’i')’j) =TV
where
d; = Covariance(y;, v},
r = Correlation{y,, y,).

(See Mood and Graybill [1963], Chapter 9.)
The substitution of (3.21) in {3.20) gives

biyy — qrbyy; = dyy,
—qrbyy; + byy, = dyy,,
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for all ¥, and y,. Thercfore

{ by —grb, = d,;

{3.22)
—grb, + by = d,,

which has the solution

d, + grd
by = ;“_‘:‘EJITE
(3.23)
dz + qr‘d1
b2 = —'_l — qzrz‘.

If we drop the assumption that E(u;) = 0, and now add the solution of
{3.17), with m; = E(u,),

_ By + qEu,

Cy

(3.24) -
' _ Eu, + gEp,
=g

we have, taking (3.23) and (3.24) together, the solution to our problem,
as summarized in the following theorem.

THEOREM 3. If the payoff function is given by (3.12) and if p,, pt3, y;, and
y, are normally distributed with Ey, =0, Vary, =1, Ey,y, = r, and
Cov(u;, ) = d;, then the optimal decision functions &, and &, are linear,

(3.25) Bky) = ¢ + by,
and the coefficients b; and ¢; are given by (3.23} and (3.24).

EXAMPLE

Consider Example 4B in its extension to the case of a normal distribu-
tion. Here x, and x, are the deviations of the input prices from their
respective means, and a; and a, are the deviations of the levels of input
from those values that would be best if the input prices had their mean
values (x; = 0). As before, denote the variance of x; by 5, and the correla-
tion between x, and x, by r.

For the case of “decentralized information,” we take

{3.26) Vi = X8,

in order to standardize the information variables as in the statement of
Theorem 3. Then d; = 5,/2, and the application of Theorem 3 immediately
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gives
R 1 + grs,/s
&,(y,) = —I:z‘l“g_%%]xl
(3.27) . (=),
&,(y,) = — lﬂ'_"?l’_lsﬁ X
22l = = g |*

The solution to the “full information™ case is, of course, given by {3.14),
which 11 the present example takes the form:

. Xy + gx
Bylxy, xz) = _i{ll _qul;
3.28
(328 . Xp +qx;
balxy, xz) = A - Y

It is left to the reader to verify that the solution to the “no information”
case is given by &; = &, = 0. The reader should compare the results of
this example with those of the previous example (Table 4.1).

THE GENERAL CASE

In this section, we shall generalize the resulis on the two-person case
to the case of any (finite) number of team members. The reader who has
difficulty with linear algebra may do well o skip this section and go on to
the next, with the assurance that the two-person results are generalizable,

Suppose that there are n real action variables a;, ..., a,, and that the
payofl function is

L] H

{3.29) w{x, a) = A(x) + .2 Z p{x)a; — Z v {x)aa;,

i=1 ij=1

where the A, 4, and v; are all real-valued functions of the state of the world
x. As before, we confine our atlention to situations m which there 1s a
maximum payoff for every fixed x; for this reason, we make the assumption
that the matrix ({v,[x])) 1s positive definite for every x.

THEOREM 4. If the payoff function is given by (3.29), and if y; = nd{x)
(i = t,...,n} are the information functions for the team, then the optimal
decision functions oy, ..., o, are determined {uniquely) by the following
conditions :

(3.30) Ofi(yi)E(vulyi) + z E(%‘V.‘j}}’i) = E(ﬂib'i) i=1,...,n
i
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Proof. The theorem follows directly from the sufficiency of stationarity
for optimality in this case [see (2.4) and Theorem 1, in Section 2).

If the set X of the states of nature is finite (as we have been assuming,
strictly speaking), then (3.30) represents a system of linear equations
whose unknowns are the values of the decision functions a; for the various
values of y;. This has already been exemplified by (3.3) above. More gener-
ally, (3.30) represents a system of integral equations. Thal sysiem may
have no solution, but if it does, it will be unique. The mathematical
questions associated with the case of an infinite set of statcs of nature are
discussed in Radner 1962,

One specific case of an infinite X, namely, normal distributions, is
noteworthy, however, for the linearity of the optimal decision functions.

THEOREM 5. If
1. the functions v; in (3.29) are constants, vi{x) = qy;.
2. the informution functions n; are vector-valued, with

(3.31) Hdx) = (Fir, 0oy YsMi) = Vi
3. the functions y; and n; are jointly normally distributed, with
Eyih =0
(3.32a) Variance(y;,,) = 1
Correlation(yy, ya) = ru’,  r' =0 forh #k
‘ Ep; = m;
{3.32b) )
Covarniance(y,, v,,) = d,;
then the optimal decision functions a,, ..., a, are linear,
M;
(3.33) afyy = 3 buya + o
h=1

where the coefficients b, and ¢; are determined by the systems of linear
equations:

n Mj
B34 Y g, Y rbp=dy i=1....nh=1..M,
J=1 k=1

(335) qijCJ‘:mi = 1,...,"1.
i=1
Remark. There is no loss of generality in assuming (3.32a}, since the
given function n; can always be transformed into a function that has these

properties without essentially changing the information structure.
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Sketch of Proof. The proofis based upon the person-by-person principle.
(For a complete proof of the present theorem see Radner 1962.) We first
consider the special case in which Ep; = 0. Just as in the corresponding
theorem for the two-person case, we shall show that there are linear
functions in the form of (3.33), with ¢; = 0, that satisfy the condition of
stationarity [(2.4) of Section 2]. We first note that

E(.ijij’i) = Z "m.ﬁ}’in
. k
{3.36)
E(uilyi) == Z dinVin-
h

Using (3.36), we find that the condition of stationarity applied to decision
functions of the form (3.33) immediately gives

(337 Z qij z bjk Z "u.ji)’m = Z dVins
7 k h 3

forevery i = I,...,n and every value of y,,, h = 1,..., M,. By equating
the coefficients of y;, on each side of (3.37), we get (3.34). It can be shown
that, if the matrix {(g;,)) is positive definite, then so is the matrix of coeffi- -
cients of the unknowns b; in (3.34) (see Radner 1962), and therefore (3.34)
has a unique solution. A second application of the stationarity condition
now shows that, if Ey; = m;, then the ¢; must be given by (3.35).

4. CoNCcAVE POLYHEDRAL PAYOFF FUNCTIONS:
LINEAR PROGRAMMING UNDER UNCERTAINTY

A polyhedrali function is a gencralization to the case of several variables
of a piecewise linear function of one variable. In this section, we shall
show how the problem of finding a best team decision function for a
given information structure can be transformed into a lincar programming
problem if the team payoff function is concave and polyhedral.

We shall begin with a discussion of a very simple example; this will be
followed by a general treatment,

The introduction of the complications of uncertainty and team structure
into a programming problem tends to resuli in a substantial increase in
the size of the problem. On the other hand, joint constraints on the actions
of team members with different information may result in very restrictive
constraints on the decision functions availabie to the team, thus simplifying
the problem. This section closes with a discussion of a class of cases in
which such simplification is possible.
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EXAMPLE 5A: A TEAM WITH A CONCAVE POLYHEDRAL
PAYOFF FUNCTION

Suppose that a firm has » salesmen, each of whom goes out at the
beginning of the period to get orders. Assume that the ith salesman faces an
unlimited demand at price {1 + x;); on the basis of knowledge of that
price, but not of the prices faced by the other salesmen, he must decide
on the quantity g; that he will accept in orders. The orders of all the sales-
men are filled centrally, and the unit cost depends upon the total quantity
ordered. The unit cost is 1 if the total quantity ordered does not exceed a
certain limit ¢; but, for the amount by which the total quantity ordered
exceeds ¢ the unit cost is (1 + d), with d > 0. {Compare Example 4A in
Chapter 4.)

Thus the action variable for the ith salesman is a nonnegative real
number q;; the state of nature is specified by the r-tuple x = (x,,...,x,);
and the payoff function is

L3 L
a.x; if Y a
=1 i=1

HA
)

1

4.1 w(x, a) =

1Y
)

T ax; —Ad( S a — c) it S a

i=1 i=1 i=1

= min{y a;x;, Y afx; — d} + dc}.

%
FiGURE 5.2. Contours of a concave polyhedral function.
Figure 5.2 shows contours of w for fixed x and n = 2. The arrows indi-
cate the directions in which the payoff is increasing. (We have assumed

that x; < d for all states of the environment; otherwise there would be
some states in which profit had no upper bound.)
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The state of nature x will be supposed to be subject to the probability
density function ¢.
The information structure is

4.2) nilx) = x;.

The team decision problem can therefore be formulated as follows:
Problem 1. Choose nonnegative functions «,, . .., 2, t0 maximize

Eofx,aln(x)]) = ¥ w(x.a[x], .., o, [x)b(x).

We shall now show that the optimal team decision functions can be
found by solving the following associated lincar programming problem:.
{Recall that x is assumed to be restricted to a finite set of possible values.)

Problem 2. Choose nonnegative functions «,,...,«, and a function &
of x, to maximize

Ee(x) = ) &x)p(x)

x

subject Lo the constraints

elx) < Zat,-(x,-)x,- for all x

(423) -
gx) £ zai(x;)(xi —d) + dc for all x.

{(Note that, because x is restricted to a finite set, the functions e, o, .. ., a,
are each characterized by a finite sequence of numbers, so that Problem 2
is a finite-dimensional linear programming problem.)

For an optimal team decision function &, consider the function

(4.4) Ex) = wix, &n(x)]).

By (4.1), for every x, & and & satisfy (4.3). On the other hand, if « is any

team decision function and ¢ is any function of x, with both satisfying
(4.3), then :

(4.5) &(x) £ wix, a[n(x)]) for every x,
and hence
{4.6) Ee(x) £ Eo(x, a[n(x)] < En(x, &[n(x)}) = E&x).

In other words, of all functions ¢ for which there exists a team decision

function « such that ¢ and a satisfy (4.3), the function ¢ has the largest
expected value,
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On the other hand, if any such function ¢ has an expected value as large
as EZ then it follows from (4.5) and (4.4) that the corresponding team
decision function « is as good as &

Thus we have shown that o is a solution of Problem 1 if and only il
(x, £) is a solution of Problem 2.

In the example just presented there were no constraints on the action
variables other than that of nonnegativity. Other linear constraints can
easily be handled by the above method—by simply adding them to both
maximization problems (1 and 2). This is so even if the constraints have
random parameters. For example, il the maximum total quantity that the
hypothetical firm just described can supply, at any cost, is ¢ (possibly a
random variable), and if the firm insists on making sure that all orders are
filled, then the constraint
@7 Yafx)s ¢ forall x (and possibly all ¢')

i
is simply added to both Problems 1 and 2 above.
EXAMPLE 5B: A TEAM WITH A LINEAR PAYOFF FUNCTION

The simplest case of a polyhedral function is a linear function. In this
case the original team decision problem is already in the linear programm-
ing form, and there is no need to go to the associated problem (Problem
2 above).

Consider Example 5A above, with the modification that supply is
restricted absolutely to be no greater than c¢. Thus

{4.8) olx,a) = Y ax;,
(4‘9) a; ; 0, Za,- é 4

Here the team decision problem is: Choose nonnegative functions ey, ...,
a, to maximize

{4.10) Eafx, a[n(x)]) = Z Z o(x;)x p(x)
subject to
(4.11) Za,-{x.-) =c for every x.

Note that (4.10) and (4.11) are linear in the functions a4, . . ., a,,.

It may help the reader to see in more detail the special case in which
n = 2 and in which x,; and x, can each take on one of two values, x;; and
x;2. Let the probability that x; = x;, be denoted by p;, and let a(x,,) be
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denoted by a,,,(i, m = 1, 2); then this team decision problem is: Choose
nonnegative numbers a,, (i, m = 1, 2} to maximize

(412) Z Z RimXimlim
i m
subject to the constraints
ay + a;, =¢
ap + [Ty g C
(4.13)
dy; + ay, =c
dia + iy =c

PERSON-BY-PERSON SATISFACTORY DECISION FUNCTIONS

A person-by-person satisfactory decision function is not, in general,
optimal if the payoff function is polyhedral. However, the fact that person-
by-person satisfactoriness is a necessary condition for optimatlity is often
helpful.

In Example 5B, the person-by-person principle leads almost immediately
to an explicit solution if one further assumption is made.

For any fixed i, the conditional expectation of w(x, a[n(x)]) given x; is
[see (4.8)]:

(4.14) afx)x; + Y Elofx)x fx;].

FEX]
Hence, for a to be person-by-person satisfactory a;(x;) = 0 if x; < 0; il
x; > 0, then o{x;) must be equal to the largest value of g, for which
(4.15) a+ Y afx)sc

N EA)
for every x such that x; has the given value. If it is assumed that the range
of every variable x, is independent of the values of the other variables,
then in (4.15) all combinations of x s are possible, so that a,(x;) must equal
some one number 4; for all x; > 0. Hence, in order for = to be person-
by-person satisfactory, it must be of the form

0 ifx; <0

(4.16} afx;) = . i=1,...,n
a; ifx; >0

where a@,, ..., a, arec nonnegative numbers, satisfying
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For such a team decision function,

(4.18) Qo) = Zﬁ,-E(x,-Ixi > 0).

Hence for the optimat team decision function «, @; = ¢ for some one i for
which E(x]x; > 0) is a maximum, and a; = 0 for all j # i. In other words,
in the optimal team decision function under the constraint that has been
assumed, only one salesman ever accepts any orders (the others are “fired”);
he accepts an order equal to the full capacity of the firm whenever the price
exceeds the unit cost, and otherwise accepts no orders at all.

GENERAL FORMULATION

A function { of n real variabies will be called concave polyhedral if
there exist linear functions f,, ..., y such that
(4.19) f= min f,.
15msM
An example is given by (4.1), in which o, for every fixed x, is a concave
polyhedral function of 2 with M = 2. A concave polyhedral function is a

generalization to the case of several variables of a concave piecewise
linear function of one variable.

Consider a team decision problem such that, for every state of nature,

the payoff function is concave polyhedral in the action variables, that is,
for every x,

4.20) wlx,a) = min A,(x,a),

1<m=M

where 4,,..., 4 are, for every x, linear functions of a. Suppose lurther
that the action variables are constrained by the conditions

4.21) 4z0 i=1,..,n

(4.22) Y 85X S nlx)  forevery x, k= 1,...,K.
i=1

where §,; and y, are given functions of the state of nature x.

Problem 1 (Team Decision Problem). Choose nonnegative Functions
oy, -, (Where g; is a function of y,) to maximize

(4.23) E min A,(x,a[nx)])

LEmsM
subject to

(4.24) "Z O xX)oti[mix)] £ yx) forevery x, k= 1,..., K.
i=1
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Associated with Problem 1, we consider another problem.

Problem 2 (Associated Linear Programming Problem). Choose functions
& ®,...,, (where £ is a function on X and «; is a nonnegative function
on Y, 10 maximize E#(x) subject to the constraints

(4.25) ¢x) < A,(x,an(x)]) forevery x,m=1,..., M,

@260 Y Sulomln(] S wix)  foreveryx k= 1,....K.

i=1

THEOREM 6. A team decision function o is optimal (i.e., is a solution of

Problem 1) if and only if there is a function & such that (o, &) is a solution of
Problem 2.

The proof of Theorem 6 follows the line of reasoning of the example of
Section 4.2 so closely that it will be omitted.

Note that, if the space X has N elements and if for each i the space Y, has
N; elements, then the number of “unknowns” in Problem 2 equals
(N + Z; N}, which is not greater than N{n + 1). The number of individual
constraints in (4.25} and (4.26) together is at the most N(M + K).

In the special case in which M = 1 (i.e., in which the payoff function is
linear in the action variables for every x), Problem 1 is already in the
linear programming form, and there is no need to go to Problem 2.

THE CASE OF INFORMATION VARIABLES
WITH INDEPENDENT RANGES

If the ranges of variation of the different information variables are
“independent,” in a sense that will be made precise, and if the payoff fune-
tion is linear in the action variables, then there will generally follow from
this a reduction in the “size” of the resulting linear programming problem
of finding an optimal team decision function.

If we assume that the set of states of the world is finite, the functions
M1y .-+ My are said to have independent ranges if every n-tuple of values
{(¥1.---.y,) has positive probability. If »,,...,n, are the information
functions, then this means that any one team member cannot rule out, on
the basis of his own information, any combination of values of the in-
formation variables of other team members that was a priori possible.

Consider the team decision prob(lein with a linear payoff function:
maximize (x)a[70)] = vl

(4.27) EY vix)atnx]),

subject to the constraint that, for every x, aix[x]) = o, [n4(x}), . - .,
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o, [n,(x)]) lies in the (convex) set x(x) defined by the linear inequalities
{4.24) and the condition that a; = 0.

Suppose that the functions «, #,,....H, have independent ranges.®
For any «, and for each i, let {g,,q,;] be the smallest closed interval such
that

(4.28) Problg, S o &} = 1,

and let /(o) be the Cartesian product of the intervals [g;,a,),i =, ...,
(For n =2, I is a rectangle; for n = 3, a rectanpular parallclopiped,
cte.)

It follows from the convexity of x(x} and the independence of the ranges
ol ¥, n,,...,1,, that the requirement that a(n[x]} be in x(x) for every x is
equivalent to the requirement that I(«) be contained in

(4.29) = 1 rix).

[That is, ic is the largest set that is contained in all the sets r(x).]

Given any particular rectangle I in n-dimensional space we may ask
what is the best a such that Ha) = I? Applying the person-by-person
satisfactoriness condition, one finds that & must satisfy

d, >
(4.30) aily;) ={ } as E(v.-l_w.-)§f }0-
d; <
Hence the best expected payoff corresponding to the rectangle [ is
(4.31) QXD = 3 (@d + ad),
where

d; = E[v|E(vly}) > 0] Prob{E(vly) > 0}
d; = E[v]E(vly) < 0] Prob{E(v)y, < 0}.

(4.32)

Thus the original problem has been reduced to one of maximizing Q*(I),
which is linear in the g; and d,, subject to the condition that I be contained
in &

If in the original constraints (4.24) the functions &;; and y, are all non-
negative, then the above problem is even more greatly simplified. In
that case, it is easy to see that all the ¢; must be zero (recall that all the
g; are nonnegative); furthermore, if the g; are zero, then J(#) is in % if and
only il (d,,...,a,) is in k.

6. Note that x is indeed a function, namely, a function from X to a set of convex subsets of
n-dimensional Euclidean space.
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Hence the problem reduces to one of choosing a,,...,a, so as to
maximize

2. da;
subject to the constraint that (a,,...,a,) be in i

DUALITY AND SHADOW PRICES

Associated with a linear programming problem there is a saddle point
problem involving the use of “Lagrangian multiplicrs™; furthermore,
these multipliers can be interpreted as prices (see Arrow, Hurwicz, and
Uzawa 1958, Chapter I; Dantzig 1963, Chapter 6, Section 5, and Chapter
12; and Koopmans 1951, Chapter 3). We now show how the multipliers
for the team problem with a concave polyhedral payofl lunction can be
interpreted as random prices.

To apply the well-known saddle point theorem of linear programming,
we first rewrite (4.25) and {4.26) of Problem 2 in a more standard form.
Let each linear function 4,(x, a} in (4.20} be expressed as

(4.33) A, @) = Z Al X5

Also, let ¢(x) denotc the probability of the state x, Without loss of genera-
lity, we may assume that for all x,

{4.34a) P(x) > 0

(4.34b) wlx, &ln(x)]) > 0,

where & denotes the optimal team decision function.’

‘With these convenlions and notation, we can restate Problem 2 in
the form: Choose nonnegative functions ¢, oy , . .., @, (Where 2 is a function
on X and « is a function on ¥) to maximize

(4.35) 2 d(x)elx)

subject Lo

{(4.36a) e(x) — rz Al X ndx)] £ 0 al xe X, m=1,..., M,

i=1

{4.36b) Zj S Indx)] £ ydx) allxe X, k=1,....K.

7. If @(x) = 0 for any state x. then that state can be eliminated from X ; hence (4.34a).
Inequality (4.34b) can be achieved by adding a suitably.large constant 1o the payoff lunction.
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Let the Lagrangian multipliers corresponding to the constraints (4.36a)
be denoted” by £,(x), and those corresponding to {4.36b) by {,(x). The
Lagrangian function® is, from {4.35) and (4.36),

@37 Mea;d0) =2 ¢0aelx) + X gvk{x)tfk(x)
- z Z (:m(x) {E(X] E Anu(x)al X)]}

- Z Zk: Culx) Z ddx)et (X))

According to the saddle point theorem of linear programming, (£, &)
is a solution of Problem 2 if and only if there exist nonnegative § =

{Cl, CM) and { = (C,,.. C,() such that (&, &; &, &) is a max-min saddle
point of L, that is

(4.38) Lig,a; 8,0 € Lig,8: 8.0 = L8,8,&,0)

for all nonnegative ¢, o, &, { (where « is a team decision function based on
the given information structure).

Notice that Li, o, E,fj) is linear in ¢ and o and that L{, &; &, {) is linear
in & and £. The coefficients of &(x) and o;(y;) in L(e, o ; E E’ ) are, respectively,

{4.39a) Ho(x) = lx) — fo (x),

(4.390) piy)= 3 [Z Eonl XM il X} ~ ZZJ:(X)(SM(X):I i=1...,n
The coefficients of £,{x) and {(x) in L(, &; &, L} are, respectively,
{4.40a) ValX) = — 8(x) + ¥ A0l {x)],

(4.40b) ilx) = yilx) — X du(x) ()],

Hence, since (2, 8; €, £) is a min-max saddle point of L, we have the duality
conditions of linear programming:

(4.41a) Holx) = 0
(4.41b) polx)E(x) = 0
(4.42a) )20
4.42b) plyRiy) = 0

&. This notation is for the purpose of this section only.
9. See Arrow, Hurwicz, and Uzawa 1958, pp. 4, 5.
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(4.43a) Vulx) 2 0
(4.43b) Vu(X)E,4x) = O
(4.44a) Ydxy 2 0
(4.44b) Yalx)ilx) = 0.

In particular, (4.43a) is a repetition of the constraint (4.36a}), and
{4.43b) implies that thc multiplier £,(x) is zero if the corresponding
constraint in (4.36a) is not effective [v,(x) > 0], that is if for state x and
for the optimal decision function, the payoff w(x,a[n(x}]) is not on the
“linear piece” A,(x, a).

Similarly, (4.44a) is a repetition of the constraint {4.36b), and (4.44b)
implies that the multiplier {,(x) is zero if the corresponding constraint
is not effective [ (x) = 0}.

To interpret the multipliers as random (state-dependent} prices, we
make the scale transformation

E _ ém(x}
‘:m('x) - dJ(X)
(4.45)
G = 2
e

The coefficient u,(y,) of &(y;) in L can be rewritten

uily) =Y, [Z E X)) il x) — ka{xlfi’(x)éu(x):l
@446) VLT *

= E[z Em(x)’lmi(x) - ; Ek(x)é.ki(x)

n{x) = yi] Prob{n{x) = v;}.
The convention {4.34b) implies that &(x) > 0 for all x; hence the duality
conditions (4.41) imply that py(x) = 0, that is

YEx) = ¢(x) allxeX

or

(4.47) YE{x)=1 allxeX.

Consider the typical situation in which for each x the payoff w(x, &[n(x)])
lies on exact}y one “linear piece” 1,(x, a); in this case, for each x exactly
one of the £ (x) will be unity, and all the others zero. Thus the & (%)
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indicate on which linear piece the payoff lies, and

(4.48} zj(x} = Z Em(x)lmi{x)
is the marginal payoff corresponding to the action variable a;, in slate x,
using the optimal decision function.!®

Using (4.48), we can rewrite the coeflicient ufy,) [see (4.46)} as

(449 ply;) = [ {x) - ZC& )6:x) | ndx) = ya] PTOb[’?:( )= i}'

In the usual price interpretation of the Lagrangian multipliers {{x),
we imagine that for each pair (k, x) there is a ““resource,” and that y,(x)
is the amount of the (k, x) resource available to the team. Further, we
imagine that, if action i has the value g; in state x, then a quantity §,,(x)a; is
used up. The constraint {(4.36b) can then be interpreted as a condition
that the total quantity used of the (k, x) resource cannot exceed the
available supply y,(x). If Z(x) is interpreted as marginal “‘gross revenue,”
and £,(x) as the “price” of resource (k, x), then the expression

Ax) — Z L)1)

can be interpreted as the “marginal profit” for the team member i, in state
x, using the optimal decision function. Similarly, the expression

(4.50) E[i.-(x} - ;Ck(x)éﬁ(x)

in (4.49) can be interpreted as the conditional expected marginal profit for
team member i given the information signal y;. From the duality conditions
(4.42), we see that ,ul(y) = 0 and that «,(y,) = 0if J(y) < 0.

Our duality or “profit” conditions are the probabilistic analogue
of the set of rules Koopmans {1951, Chapter 3) gives for the maintenance
of a best activity vector by a price mechanism under conditions of cer-
tainty, and are related to the welfare economics of competitive equilibrium
under uncertainty (see Arrow 1953, Debreu 1959, Chapter 11, and Radner
1968)." ! It should be emphasized that it is the price function {, that would
be used by the ith member in calcutating his conditional expected profit,
and not just the value {,{x) in any one state.

nidx) = y,] = jily:)

10. I wix, &n(x)]) lies on more than one Binear picce, then (4.48) is a weighted average of
“stopes”™ 2,.{x), and thus can still be interpreted as a marginal payoff corresponding to a;.

11. An extension of the duality theory to the case of an infinite set X of states has been
given by Fisher (1962).
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The duality conditions can be viewed as a refinement of the condition
of person-by-person satisfactoriness, specially adapted to the concave
polyhedral case. In this case, the condition of person-by-person satis-
factoriness is necessary, but not sufficient, for optimality, whereas the
duality conditions are both necessary and sufficient.



CHAPTER 6

The Evaluation of Information in Organizations

I.Introduction  2.Case of quadratic payoff function reviewed 3.Optimal de-
cision functions and value of information in the quadratic case 4.Observation,
communication, computation  5.Complete communication, complete information,
routine 6.No communicalion; complete informational decentralization 7.Par-
titioned communication 8.Dissemination of independent information 9.Error
in instruction 10.Complete communication of erroneous observations 11.Man-
agement by exception: Reporting exceptions 12.Management by exception:
Emergency conference  13.Comparisons among the several information structures
14.Interaction, team size, returns to scale

1. INTRODUCTION

In this chapter we describe, evaluate, and compare certain elementary
information structures in teams. Some of these information structures
{for example, complete information, complete decentralization) are of
interest because they are in a sense extreme; they are useful as bases of
comparison with other information structures. The others represent
simplified models that are suggested by common organizational devices.
The reader will recognize the primitive character of these models.

The entire discussion in this chapter is restricted to the case in which the
payofl to the team is a quadratic function of the action variables, for each
possible state of the world, that is, for each specification of the values of
the uncontrolled variables in the environment. The methods used here
were developed in Chapter 5. Some discussion of the case of a team
decision problem with a concave polyhedral payoff function was also
presented in Chapter 5. However, in that case explicit formulas for the
values of particular information structures appear to be very difficuit to
obtain, making it more difficult than in the quadratic case to derive con-
clusions about the relative values of the several information structures
described below.

For the convenience of the reader, we recall in Sections 2 and 3 the
formulation of the team decision problem with a quadratic payoff function
{Chapter 4) and the characterization of optimal decision functions and of
the value of information in the gquadratic case. In Section 4, we describe

182
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the information structures that are studied in the following sections.
The chapter closes with a comparison of the values of those information
structures.

2. CASE OF QUADRATIC PAYOFF FUNCTION REVIEWED

As already mentioned, in the team decision problems to be considered
in this chapter, the action variables will be taken to be rcal variables,
and the payoff to the team to be a quadratic function of the action variables
for every state of the world. Thus tet the action variable of team member i
be denoted by a, (real), i = 1,...,n; let the state of the environment be
denoted by x, where x is an element of some set X ; and let the payoff to
the team be

2.1 w(x, a) = g + 2a'u(x) — a'Qa,

where a denotes the (column) vector with coordinates a; fori=1,...,n,
i is a vector-valued function on X, and @ is a fixed positive definite
n x n matrix. It will be shown that, without loss of generality one can
take yt4 equal to 0. A probability measure = on X expresses the uncertainty
about which state of the world actually obtains.

The information upen which the several team members base their
decisions is expressed as follows. Foreach i = 1, ..., n, let Y; be some set;
Y; represents the set of allernative “signais” that can be received by
person i. Also, for each i, let n; be a function from X to Y, called the
information function for person i. The n-tuple n = (n,,...,n,) will be
called the information structure for the team. The function »; determines
the signals that person i receives under the alternative states of the world.
Thus

(2.2) yi = ndx).

Finally, the actions of the team members are to be determined according
to decision functions o;, where ¢ is a real-valued function on Y;, that is,

(2.3) : a; = uly;).

The vector o of decision functions «;, will be called the team decision
Sunction. Given an information structure #, a best team decision function
is one that maximizes the expected payoff,

(2'4) -Q(”l: Df) = Ew(x, &l[ql(x)]’ | C!"[f],,(.")]).

Beyond the choice of the best decision functions for given information
structures, it is of interest 1o compare alternative information structures
in terms of the maximum expected payoff that can be derived from their
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use. We take as an origin for measurement the maximum expected payoff
for the “null” information structure, which provides no information
beyond the knowledge of 7 itsell. Recall that, if utility is lincar in outcome,
then the value of an information structure # may be defined by (see
Chapter 2, Section 11)

(2.5) Vin) = max Q(n, o) — max Emlx, a).

In this chapter, a number of information structures suggested by various
organizational devices will be analyzed from the point of view of deter-
mining their values and the corresponding optimal decision functions.

If X is not finite, then a more detailed specification of the problem is required.
Let X be a measurable space (see, e.g., Halmos 1950, p, 73), with probability measure
n; for each i = 1,...,n Y. is a measurable space, »; is a measurable function from
X to Y;; and «; is a real-valued Borel measurable function on Y.

3. OrriMAL DECISION FUNCTIONS AND VALUE
OF INFORMATION IN THE QUADRATIC CASE

In this section, the main toocls of analysis for the following sections are
reviewed. Most of these resulls come from Chapter 5, Section 3.

The first tool characterizes the best team decision function lor a given
information structure in terms of the stationarity conditions, which in
turn derive from the person-by-person satisfactoriness condition. The
following theorem is a restalement of Theorem 4, Chapter 5, Section 3,
for the case in which the coefficients of the quadratic terms are constants,

TueOoREM 1. For any information structure w, the unigue almost every-
where' best team decision function is the solution of
(3.1) g0ty + z qijE(ajim) = E(#i"?.') i=1...,n

J#i

(If X is infinitc, we must add to the hypothesis the condition that Ep* < o,
i =1,...,n; see Radner 1962. Throughout this chapter, we make this
assumption.)

As a corollary to Theorem 1, we have the following result on the value
of an information structure,

COROLLARY 1. If & is an optimal team decision function with respect to
an information structure 1, then

(3.2) Vin) = Eapu — (E&)(Ep).

. The uniqueness of the best decision lunclion is, of course, only almost everywhere
{a.e.).1e., two best decision functions will differ at most on a set of states of probability measure
7ero.



6. The Evaluation of Information in- Organizations. § 3 185

A second corollary concerns the expected value of an oplimal decision
function.

COROLLARY 2. If & is optimal for some n, then
{3.3) Fa =0 'Ep

(See the end of this section for proofs of the two corollaries.)

It follows from these last results that there is no essential loss of genera-
lity in assuming Ep = 0, since adding or subtracting a constant vector to p
does nat change the value of any given information structure. To see this,
consider two team decision problems, one with u and the other with f,
with

Hx) = pu(x)+ ¢ for all x,

where ¢ is any given (constant) vector. (In particular, we could take
¢ = — Ep) Let the corresponding optimal team decision functions be «
and o, respectively. The optimality conditions for & corresponding to
(3.1) are

(3.1') quid; + Z ‘IUE(&;'IWI) = E(ﬁil’h) = E(!‘;I’Ii) + G i=1. .,n

J#i
Let @ be a constant vector satisfying

Zqijﬁjch f‘=|,‘..,n,
j

that is,

i=0'c

It follows immediately from (3.1) and (3.1} that

G=a+a=a+ 0 ¢

and from (3.2) that F(») is the same for the two problems.
In what follows we shall adopt the convention that Ey = 0. As con-
sequences of this convention, we have

34) Vi) = Ed'p.
(3.5) E& =0,

The second theorem deals with the important special case in which
the information variables and the random coefficients g, are normally
distributed (see Theorem 5, Chapter 5, Section 3).
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THEOREM 2. Suppose that vy, . .., 1, are vector-valued, and that v, ... .1,
and py, ..., u, are jointly normally distributed; then for the optimal team
decision function, w; is a linear function of y,;-

Proof of Corolluries | and 2 of Theorem 1. We first prove Corollary 2. By (6.8) of
Chapter 2, on iterated expectations, if we take the expected value of (3.1) we get, for
the optimal team decision function, &,

YoguEd; = By i=1,...,n
i
which can be writlen in matrix form as

(3.6) QF& = Eu.

Solving (3.6) for E&, we get (3.3).
To prove the first corollary, we first multiply (3.1) by &;:

3.7 g8 + Z qi;&iE(&jlrfi) = &Eluln).

i

Since &; 15 a function of #;, (3.7) can be rewritten

(3.8) E(Z q.-,&.&ﬂm) = E(p,é,-lu,-) i=h...m
4
Taking the expected value of {3.8) and summing on i, we obtain
EY q.f8; = E} ud,
or J
(39 E&'Q& = Eua.
From (2.1), the expcctcc} payoff for a team decision function « 15
Qln, o) = 26p'a — Ex'Qu — po.
Hence, by (3.9), the expected payoff for the optimal decision function, @, is
(3.10) Qly, &) = Ep'® — .

In particular, if there is no information (; constant, i = 1,...,n), and 4 is the cor-
responding best (constant) team action, then (3.10) implies

max Ewl(x,a) — py = Ep'a = dEpt — .
a
Note that, by Corollary 2,
E8 = d=0"'Ep,
so that

(3.11) GEp = (E8VEp.



6 The Evaluation of Information in Organizations. § 4 187

Hence the value of the information structure n is [see (2.5))
Vin) = Ey'd — (EpYd = En'c — (Ep)y(ER).
Since pp docs not enter equations (3.1) to {3.5), we may take p, equal to zero.

4. OBSERVATION, COMMUNICATION, COMPUTATION

The several information structures to be considered in the following
sections can all be viewed as being generated by certain processes of
observation, communication, and computation, Suppose that there are n
persons, and that person i observes a random variable {,(x) and takes
action g;. If there is no communication among the persons, then person
i’s information function is #,(x) = {;(x). On the other hand, if there is
complete communication among persons, then #{x) = {(x) = [{,(x),.. .,
{,{x)], Alternatively, the latter information structure could be generated
by all persons communicating their observations to a central agency,
which computes the best actions and communicates them 1o the corres-
ponding persons. (In either case the team would be a centralized one in
the sense of Chapter 4, Section 6.) Stili different information structures are
generated if errors are introduced into the communications to or from the
central agency or between team members.

Rarely does one encounter in a real organization the extremes of no
communication or complete communication just described. Rather, one
finds that numerous devices are used to bring about a partial exchange of
information. The usefulness of such devices is, of course, measured by the
excess of the additional value (expected payoff) they contribute, over the
costs of installing and operating them. Some simple devices of this kind
will be examined in the following sections. For example, if each person |
disseminates some contraction of his own observation, say 7f{(x)], to
all other persons in the team, then the resulting structure is

(4‘1) Th'z(f:l','f) i = 1,...,?‘!.

where © = (t,...,1,). A different type of partial decentralization is
achieved by partitioning thc persons into groups, with complete com-
munication within groups and no communication between groups.

A third type of partial decentralization is suggested by the phrase
“management by exception.” For example, suppose that the possible
values of person i’s observation are partitioned into two subsets, R, and

R;, labeled exceptional and ordinary, respectively. Suppose further that,
whenever person i’s observation is ordinary, he bases his action upon that
observation alone, whereas whenever his observation is exceptional he
reports it to a central agency, or manager, who then decides the values of
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all action variables corresponding to exceptional observations on the
basis of all those exceplional observations. The infermation thus generated
is, for each i, '

(4.2) nilx) = {C"‘"’ i (x)e R,

{C}{x)} CAxIER; if {{x)e R;,

and might be called reports of exceptions. _

In certain of the information structures investigated in this chapter, it
is assumed that the observation functions {,, .. ., {, are statistically inde-
pendent. This does not mean that the information functions »; for the
several team members are statistically independent ; on the contrary, such
depcendence is introduced when communication takes place. It would
also be of interest, of course, to study the effect of dependence among the
observations themselves. However, as the reader will soon see, the picture
is complicated enough with independent observations, and it has seemed
best at this time to leave the study of dependent observations for certain
structures to a separate investigation.

A special case of interest is the one in which

4.3) Cilx) = px),

where y(x) is the coefficient of a; in the quadratic payoff function (2.1).
This will be called the case of cospecialization of action and observation,
since in this case each person observes, in a sense, the first-order effect
of his own action variable upon the team payoff.

In order 1o see more clearly the effects of interactions between action
variables in the payoff function (as measured by the coefficients ¢, ; for
i # j}, it will from time to time be of interest to consider the special case

in which
(4.4) g = q4:'%q;"q i # )

By suitable changes in units of the action variabiles, this can be transformed
into the case '

(4.5) {1 =1
R qi; = . .
! q I # |
This will be called the case of identical interaction. It is noteworthy that,

in order for the matrix ({g;;)) of {4.5) to be positive definite, it is necessary
and sufficient that

(4.6) —

n~I<Q<I’
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which in this case is equivalent to 2
@w 1

= da;0a; = n—1

We shall continue the study of processes of observation, communica-
tion and computation in Chapier 8. It will be shown there that the concept
of information structure is not in fact adequate to characterize all such
processes, and we shall be led to formulate the more general concept of
network. {See also Chapter 4, Section 11.)

4.7} —1

5. CoMPLETE CoMMUNICATION, COMPLETE INFORMATION,
RouTINE

Complete communication among the team members results in providing
all team members with the same information on which to base their
decisions. Should this resulting commeon information be sufficient to
determine the best possible decision function (that is, the decision function
that would be optimal if the team had complete information about the
state of the world), then one is in the special case of complete information.
At the other extreme is the case in which the team members base their
decisions upon the knowledge of the probability distribution of the states
of the world only, which corresponds to no observation at ail. This will be
called the case of routine.

These three special cases are typically too extreme to be of practical
interest in an organization of any complexity. Nevertheless, they are
useful as base lines from which one can measure the effects of other
information structures. Thus, in (2.5), the value of an information struc-
ture # has been defined as the maximum expected payoff using 5, minus
the maximum expected payoff using the routine information structure.
From the other side, it is of interest to calculate the loss due to using 5 as
compared with complete communication or complete information.

In the special case of cospecialization of action and observation (see
Section 4), complele communication is equivalent to complete information,
as will be shown below.

COMPLETE COMMUNICATION

Denoting the observation of person i by {(x), as in the previous section,
the information structure called complete communication is defined by

{5.1) ndx) = {x),

2. One might say that the actions of the several leam members are complementary or
substitutes depending on whether g is negative or positive. In the figures of this chapter,
only positive values of g are considered since, for large n, only small absolute vaiues of ¢
negative are admitted by constraim (4.6},
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where

{5.2) {x) = (Ll L Llx)]

For the case of the quadratic payoff function (2.1), the best decision func-
tion is a linear transformation of the conditional expectation of u given (.
This is easily seen by applying Theorem 1, whose condition (3.1) reduces in
this case to

(3.3) Yoag; = E@ld),  i=1,...,n,
p)

or more concisely,

(5.4) Qu = E(ul0).

The optimal team decision function under complete communication is
therefore

(5.5) & = Q" 'E(ul)).

COMPLETE INFORMATION

In the special case in which {{x) = x, the team has complete information,
that is,

(5.6) nix) = x i=1,...,m
For this case, (5.5.) implies that the best team decision function is
(5.7) B=0Q '

Henceforth the symbol § will denote the best decision function under
complete information as given by (5.7). Note that f(x) depends upon x
through i only; hence complete knowledge of p is sufficient to allow each
team member to use f. From this it follows that, in the case of cospecializa-
tion of observation and information, complete communication is equiva-
lent to complete information.

‘ROUTINE
Routine is defined by

(5.8} n{x) = constant (independent of x) i=1,...,n

Under routine, any team decision function is a constant vector, say a,
and the best such constant vector is

(5.9) d=Q 'E(),
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as is easily seen by applying Theorem 1. Recall, however, the normalizing
assumption E{u) = 0, which with (5.9) implies

(5.10) 4 =0,

It follows immediately from (5.10) that the maximum expected value
under routine is zero. Thus with the normalization E() = 0, the value of
any information structure (2.3) and maximum expected payoff under that
structure become identical.

The value of complete information is easily inferred from (3.4) to be

{5.1H ' Vi = EWQ '
Also, from (3.4), the value of complete communication is
(5.12) Ve = E[EICYQ ™~ "E(ul)].

The loss due to using complete communication, relative to complete
information, is obtained by subtracting (5.12) from (5.11), which yields

(5.13) Ly = E{lp — EQOIQ ™ 'lu — EGON

- THE CASE OF IDENTICAL INTERACTION

Consider now the special case of identical interaction, as in (4.5):

1 i=j
4ij = ] ,
q 1# |
Let §, denote the average variance of 4, , .. ., u,, and §, denote the average
covariance of different y, and u j» that is,

Hl

1 1
5.14 § o= — o 3 - .
G19 WEnkse =R

One can show (see below) that the value of complete information in this
case is

_ n . - (an — §ﬂ)
(5.15) (el s [‘S» m - m]'

It is interesting to note that, for large n, the second term in the square
brackets in (5.15) is small relative to the first term, so that we have the
approximation

W = Mn(i":;").
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Hence i, for large n, both §, and §, are approximately independent of »,
say

S, xS, 5, ~ 3§,

then, in the special case considered, returns to scale for complete informa-

tion approach a constant as the size of the team gets large, and during this
approach returns to scale are increasing or decreasing according as g§
is greater than or less than §.

These last remarks concerning returns to scale implicitly assume that
the coefficient g remains constant as the team size, n, increases, Other
hypotheses are, of course, interesting; this question is explored in Section
14. However, in Section 5 through 13, whenever the effcct of increasing n
is considered, it is assumed that g is held constant.

For the case in which the y; are uncorrelated, (5.15) reduces to

ns,[l + (n — 2)q)

5.16 -

(.16 R T vy
= gﬂ.f(rr, q)’

where

(5.17) faq) = LT (8 = 2]

[T —q][1 + (n — 1g]’

These last formulas will appear useful in later sections.

In the case of identical interaction, as in (4.5), one can verify directly that the inverse
of @, which will be denoted by {(g")), is given by

1 +(n—2)4
L L d i=
. D
(5.18) g’ =
) b
where
(519 D=(1-gl +{n— 14l

From {5.11), {5.18}, and (5.19) one can compute the value of complete information in
this special case, obtaining

_[+m=2q9) ¢ g -
{5.20) h= T ‘-; Si = p & Siie

J

where

{3.21) sy = By,
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This can be rewritten in the form (5.15). If the limits

{5.22) 5= Im s, 5= hm3,,
RO n-m
exist, then
. V, §i—%
(5.23) lim (—‘) =27F
n—+wx | M 1 — q

Furthermore, in the special case in which 3, and §, are constant (with respect to n),
the appreach to the limit in(5.23) is either monotonically increasing or monotonically
decreasing according as ¢s is greater than or less than §.

6. No COMMUNICATION, COMPLETE INFORMATIONAL
DECENTRALIZATION

In the absence of communication, the information of team member i is
(6.1) i = {0

where {; is his own observation. Without further specification of the Cis
it does not appear thal anything interesting beyond Theorem 1 can be
said about the solution. Two specializations will be considered here:
first, the case of statistically independent observations; and second, the
case of cospecialization of observation and action,

In the case of independent observations, it will be shown that the vaiue
of the information structure is the sum of the values that the components
#; would have in “one-person™ prablems with payoff functions

(62) 2uix)a; — qua’.

Specifically, we shall show that the value of such an information structure
is

(6.3) V=Y —1-—E[E(u.-lc.-)2]-

i=1 Hii
Consider now the effect of adding the assumption of cospecialization
(£; = p;} In this case (6.3) becomes
8ii
(6.4) V=Y 1,
where, as before, s; = Eg2. This will be called the case of complete
informational decentralization, that is,

n;, = {; (no communication) i

it

.. R

if

(6.5) {; = p; (cospecialization) i=1,...,n

His. ..My, independent,
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The values of the coefficients g, are not, of course, invariant under a
change of units in which the variables a; are measured; by appropriate
changes of units, together with corresponding changes of the coefficients
i; and corresponding changes in their variances and covariances s;;, one
can achieve

and also

(67) V2 = Zsl'l'.

Hence, for constant 5, (see Section 3), the value of the infermation structure
(6.5)is simply proportional to n, that is, complete informational decentraliza-
tion exhibits constunt returns to scale.

Even without the assumption of independence of observations, further
information about the solution in the case of cospecialization of action
and observation can be obtained under the {urther assumption that
Hi,-.., 4y are normally distributed. As before, let s;; = Epyey, let H be the
matrix with elements h;; = ¢,;5;;, and let s be the vector with coordinates
S112- 105, We shall show that the value of the information structure
“no communication” is then

(6.8) V, = sH s,

In the special case of “identical interaction™ and “‘identical correlation,”
{6.8) reduces to a simple and revealing formuta. Assume that

©9) a 1 ifi=j
' Ylg Wi #
1 ifi=j
(6.10) SU:{ ‘ /
r ifi #J;

where —(l/n — 1) < g <1 and —{l/n — 1} £ r < 1. Then the value as
given by (6.8) reduces to

6.11) v, n

=1+(n—m’

If gr # 0, then V; approaches (1/g#) as a limit as i gets large. On the other
hand,ifgr = 0,then V;, = n.1In other words, in this special case of “‘identical
interaction™ and ““identical correlation™ with cospecialization of action
and observation, the value of no communication approaches a ( finite) limit
as the number of variables n increases without limit, if neither the interaction
nor the correlation is zero.
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To demonsirate (6.3), first note that, if #,,...,5, are statistically independent,
then for any team decision function «a,

(6.12) E(aln) = Ea; i+ j.

* In other words, person J's information does not help him to predict person j’s action.
By (3.5), then, any optimal team decision function « satisfies

{6.13) E(U-_,‘l'h) =10 P

Applying this to condition (3.1) of Theorem 1, we obtain

6.14) gy = Elpeln,) i=1..,n
1

{6.15) o = (;)E(ﬂ;’ﬂ;) i=1,...,n

for the optimal team decision rule. Equation 6.3 now follows easily using (3.4) and,
of course, (6.1).

We now consider the case of cospecialization, with the further assumption of
normality of uy, . . ., », but without the assumption of independence of observations.
By Theorem 2, components of the optimal team decision rule are each linear, that is,
for some constants b,,..., b

ns

(6.16) o = by i=1...,m

Hence, again using the normality,

617 E(ij!??i) = bf(?),ui-

Applying {6.16) and (6.17) to (3.1) of Theorem 1, we find that

(6.'8} qiib;p,- + Z qubj(ﬁg)lug = N i= ], P (8
Y Sid

Since (6.18) must hold for (almost) ali values of y,,

(6.19) Qb+ % q,.jb,.(ﬁ') =1 i=1..,n
Iy Sit

which can be rewritten
(6.20) Sausby =54 i=1,...,n
i
Let H = ((g;s:7), s = the vector with coordinates s,,,...,5,,, and b = the vector
with coordinates b, ..., b,. Then the solution of (6.20) can be expressed as
{6.21) b=H"1!s
Note that since ((g;))) is- positive definite and ({s;;)) is nonnegative semidefinite, H is

positive definite. [H is the so-called Hadamard product of {(g;;0 and {(s;))); see Halmos
1958, Section 85.]
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To get the value of the information structure in this case, applying {3.4), we find
that

V;=E Z ol
(6.22) =EY by’
=b's
By (6.21), this last gives a value of
(6.23} V, =5H ls

7. PARTITIONED COMMUNICATION

The resulis for no communication, with independent observations,
extend easily to the case in which the team members are partitioned into
a set of groups I, such that complete communication lakes place within
each group but no communication takes place between groups. Thus let

(7.1 = {idienes
then the information structure under discussion is defined by
(7.2) ndxy = &* ifiel,.

The results of this section might be thought of as describing certain types
of partial informational decentralization,

Denoting by o and ;* the vectors consisting of those components of
a and u, respectively, corresponding to the kth group, and by Q, the
corresponding submatrix of Q. then by reasoning similar to that of
Section 6 the reader can verify casily that the best team decision function is

(7.3) ot = @, TE(MEY,
and that the value of this information structure is
(7.4 V= Z*',E[E{M"li")'Qk-‘E(u"M")]

(with {,,...,{, assumed independent; actually, for this result, it is
sufficient that the * be independent).

In the case of cospecialization of action and observation (4.3), the
information structure (7.2) reduces to

(7.5) o= ifiel,,

and yields a value, by (7.4), of

(7‘6) V3 = Z Z qk“Sl'iv
L il
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1000 +
q=09
v
H
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H
q=0.5
weik q=0.1
0 ! | 1 1 1
20 40 60 80 100
M

FIGURE 6.1. Value of information for groups of
equal size. n = 100,

where

(7.7) 07" = ((a)

(recall that g, ..., g, are uncorrelated).
In the special case of identical interaction (4.5), the value (7.6) reduces to

(7.8) Vs = Y5/ (My, 9),

3
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where M, is the number of persons in group &,
(7.9 Si=— Y s,

and f(M,, q)is given by (5.17) [apply (5.18)]. In particular, if all groups are
of equal size M, then the value is

H

(7.10) v, = .e(M

)f (M, q)
where § = (1/n) Zs; [compare with the value of complete information in
{5.23)].

Figure 6.1 shows ¥; as a function of M, for § = 1, n = 100, and three
different values of g.

On the other hand, if a group (say the first) has M members, and each of
the rest has only one member, then the value is

(7.11) Vi=3f(M,q)+ Z Sii-

el

8. DISSEMINATION OF INDEPENDENT INFORMATION

As noted in the last section, partitioning of persons (or action variables)
is one way of moving away [rom complete informational decentralization
toward identical information. Another way is provided by the system that
will be called here dissemination of information. Specifically, consider a
situation in which each team member communicates some function of his
observations, that is, some statistic, to a “central agency,” which then
compiles {but does not “‘process™) all these reports and distributes this
compilation to all the members.

We shall show that the value of such an information structure can be
expressed exactly as a sum of two parts, one part attributable to the dis-
seminated information and one part attributable to the undissemimated
information.

To define the information structure precisely, for each i suppose the
observation function {; takes values in some set Z;, and let z; be a function
on Z;. The variable t; = 1z} is to be interpreted as the ith member’s

report to the central agent. Let 1(x) = [7,{x),..., 1,(x)]; then define the
information structure by

(8.1) nlx) = [{{x)1x)]  i=1,...,n

The variable ¢ = (1,,...,t,) is to be interpreted as the compilation sent
out by the central agent to all the team members. We consider here only
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the case in which the observations {; are statistically independent. We
also omit the possibility that the central agent further reduces the com-
pilation 1(x) to some summary statistic before sending it out to the team
members. {The “central agent” here does not himself directly control
any action variable.)

Define i, and f; by

8.2) Ayi) = Elwly;)
' A{t) = E(ude).
We shall show that the optimal decisions functions are
| _
{8.3) afy) = E(Blt) + ‘i[#r‘(yi) = 1)),

13

where, as in Section 5, § is the best team decision function under complete
information and is given by (3.N as f = Q"'
The corresponding expected payoff will be shown to be

(84) Vo= ERQ™ i + 3 —(ER” - ERY),

3 I

which can be shown to be equivalent to
(8.5) V, = Ef'Q " 'ji + ZLE[Var(g,-I:)].

i )
Note that the first term of (8.5) is the maximum expected payoff that could
be obtained if all team members had only the information function t;
whereas the second term is a weighted sum of terms, each of which
measures the degree to which that person can predict his y; better on the
basis of y; than on the basis of ¢ alone.

Again, before demonstrating these facts, we shall consider a special
case. Suppose (in addition to the assumptions already made) that the g,
are independent, and that each g, is independent of {{;},,;. (This would
be the case if, for example, each person’s observation {,{x) consisted of an
estimate of y(x), both y; and the error being independent of the p jand the
errors of the other persons.) It is shown below that, in this case,

(8.6) & = E(ul),
and that the value of the information structure is

N 1
8.7 Vi =2 4"ER® + ¥ ~(Ef? — Ep),

i 1

where, as before, (7)) = 0~ 1.
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Again, as in (8.4), the first sum in (8.7) is the maximum expected payoff
that could be obtained if all teamn members had only shared information t;
whereas the second term measures the additional value of cach individual's
knowing the part of his own observation that he did not share.

Another interpretation of (8.7) 15 suggested by rearranging the terms
to give '

Eu’ i _
(8.5) h=T+3 (q“ - )Euf.

i

1
13
The first sum in (8.8) is what the maximum expected payoff would be if
the ith member knew only {; {see Section 6 on no communication); the

second sum is the additional value attributable to dissemination of
Tisenees Ty '

Turn now to the derivation of the optimal team decision function and expected
payoffs. We shall usc the following lemma, the proof of which is given in Radner
1962. ’

LeMMa. Let A, C, and G be independent random variables (not necessarily real);
iet B be a contraction of A,* and D a contraction of C; and let F be a real random
variable defined by F = f(A, D, G), where J is some given measurable function; then

(8.9) E(FIB,C, G) = E(FIB, D, G).
In the present situation, the above lemma applies to give

&.10) Elajy) = Ealt)  ifi# |

This can be seen by taking (in the notation of the lemma)

A={;

B=r;
@.L1) €=t

D=

G = {Tk}ui.j

f=°fj

From (8.10) it follows that condition (3.1) of Theorem ! reduces, in this case, to
8.12) g + Y giEly =8  i=1...,n
J#i

3. Thatis, the partition induced by 4 is as fine as that induced by B see Chapter 2, Section
6.
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Applying the lemma again to J;, we find that the conditional expectation of (8.12)
given T is

(8.13) Y bty = [, i=1,...,n
i
We subtract (8.13) from (8.12):
qule; — Eledt)] = i, — &

14 o0 = Blaf) + G5, = 7).

if

On the other hand, solving (8.13) lor E(zir), we obtain
8.15) E(olty = © ' E(ult) = E(ilx).

Substitution of this into (8.14) gives the best team decision function,

(8.16) 8y) = EBIO +

Laiy) — wlo)],
. iy — wile)]
from which the values as given by (8.4) and (8.5) easily follow.

Equation 8.6 follows directly from the lemma, under the assumptions of the
special case, by taking

(817 A= (. (). B={,C = {7}, Deonstant, / = p,.

9. ERROR IN INSTRUCTION

Consider a team with compiete communication to a central agent, in
which the best team decision, f(x), is computed by the central agent,
and each team member is sent a message instructing him about the
appropriate action f{x). Suppose, however, that the actual message
received by member i 1s not the correct value 8,(x} but a value equal to the
correct value plus some random error. To be precise, suppose that the
information to member i is given by

{9.1) yi = nilx) = Bifx) + &dx),

where f§(x) is the best decision function for i under complete information
{Section 5) and ¢(x) is an error term.

Each team member can, of course, simply follow the “instruction™ y;
with the error, as he receives it. Indeed, this might at first appear to be the
correct procedure if ¢; is independent of f5;, and has mean zero. However,
we shall show that the team can do better if each team member is provided
with a decision rule that adjusts the received insiruction in a suitable way.
It will be shown that the proper adjustment for any one person depends in
general upon all the inferactions g;;, and that even if only some of the team
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members’ instructions are erroneous, all team members should typically
make some adjustments.
Throughout this section, we shall assume that

1. B(x) and &x} are normally distributed.
2. f# and ¢ are independent of each other.
3. The components ¢; are (mutually) independent.

There is no loss of generality in further assuming that
4 Eff = Ec =0,

We first give the results for this information structure, including those
for certain special cases, deferring the proofs to the end of the section.
First, denote the relevant variances and covariances by

(9.2) ry = EBf,,
9.3) t? = Eg.
Further, define the numbers f;;, v;, f”, and b; by

(9.4) fy= {q"(r“ Heh
qijfij ifi # |

(9.5) v = qqti’,

(9.6) (/) =rm

9.7) by =1-— Zf”vj.

i

We shall show that the best team decision function is

{9.8) () = by,
and that the resulting value of this information structure is
(9.9) Vs = Zﬁjbibj-

i

Thus each adjustment factor b, depends upon all the parameters g,
r;;» and 12,

Note that, if all the error variances are very smail, then the best decision
by; is very close to y; (set all 1> = 0). On the other hand, if the error
variances are very large, compared to the variances r; of the 8;, then b,
will be close to zero.

It is also interesting that even if, for some particular i, the error variance
12 is zero, the adjustment factor b; will in general be different from 1. In
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other words, error in the instructions to some team members should
cause otlier team members to adjust their actions accordingly, even if the
latter are receiving error-free instructions.

A SPECIAL CASE

Before demonstrating these results, consider the special case in which
all interactions are identical, all correlations between different §; and §;
are identical, and all error variances are identical, that is,

. _{1 i=j

= Do

(9.10) a 17
bl =
YT e P #
(=1

Iaving taken r; = 1, the parameter ¢ is to be mterpreted as the ratio of
the error variance to the (common) variance of the §,.
In this case, the adjustment factor b; [see (9.7)] reduces to

I2

0-11) bi=1- 1+ 62+ (n— 1)gc’

and the value of the information structure is

n[l + (n — Ngcp?
9.12 v, = .
©.12) 42+ {n — l)gc

Thus the term

ty,
9.13 :
©.13) 1+ 12+ (n - l)ge

is the “‘correction” subtracted by person i from the instruction y; that
he receives. Here it is quite easy Lo see that, if there are no errors (t* = 0),
then the correction is zero; whereas as t? gets large, the correction tends
to cancel out the information completely, that is, £2/{1 + 2 + (n — 1)gqc]
tends to 1.

Similar remarks apply to the value V; [see (9.12)]. When ¢t = 0, one
gets the value of complete information

(9.14) N[1 + (n = 1)qc);

but when ? gets large, the value ¥, approaches zero.
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Proof of results. By Theorem 2, the components of the optimal team decision
function are linear, say,

(9.15) ailyi) = biyi-
Hence condition (3.1) is
(9.16) qibiyi + ,;- abiE(ply) = Elwly)  i=1....n
From assumptions 1, 2, and 3, it follows that
o1 Elnly) = rn,,_]%r? i#J
B fv) = i%’};ﬁ alliand).
The function f# is related to u by
9.18) ' plx) = Zj;q.- B,

since f is the optimal team deciston function under complete information [condition
(5.7)]. The substitution of (9.17) and (9.18) in the stationarity condition (9.16) gives

which reduces to
(920) q::(Ju + L )(b - 1) + z q., ;;(b ]) = *qﬁ[iz'
J-Fl

‘The solution of this system I'or the values (b; — 1) gives (9.7), which completes the
derivation of the best team decision function. The value (9.9) is obtained, with some
straightforward algebra, by substituting the decision function of {9.7) and (9.8) in
the payoff function and taking the expected value.

To derive the results for the special case (9.10), we use the fact that the inverse of an
n x n matrix ((m;;) of the form

u i =j’
(0.21) my; = {
W i)
is
u+(nh— 2w .
S LA A i=j
(9.22) mi = b
—w P %
D PR A
where
(9.23) D=(uv=—wu+{n-—w.

[Compare with (5.18) and (5.19))
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The matrix (1)) of (94} is of this form (9.21), under the assumptions (9.10};
hence the inverse i5

L+ 0% 4 (n ~ wige
D

(9.24) Ji=
= i ],

D=(+1*—ga[l + ¢+ (n - l)gel.

Simple algebra now yields (9.11) and {9.12} from the general eipressions (9.7} and
{9.9).

10. CoMPLETE COMMUNICATION OF ERRONEQUS
OBSERVATIONS

In the preceding section, we considered the eflects of errors in instruc-
tions from a central decision agency to the individual team members.
In this section, we shall consider the effects of errors in the information
provided by the team members to such a ceniral agency.

For this information structure, we consider only the case of cospecia-
lization of action and observation ({; = g&,). Suppose that each team
member sends a message consisting of the value u{x) plus an error g,(x)
to a central agency. On the basis of the messages received from all n team
members, the central agency then computes the best decision for each team
member and communicates this to him (error-free). Note that in this case
all n decisions are based upon the same information. To be precise, the
information structure to be discussed is

(10.1) nilx) = [uy(x) + &4(x), ..., 1tdx) + €,(x)] for all i

Note that this information structure is {formally equivalent to that of
complete communication of observations p; + ¢;; in particular, the
results for this structure follow directly from those of Section 3, which are
repeated here for convenience. The best team decision function is

(10.2) aly) = @~ 'E(uiy),

with a corresponding value
(10.3) Ve = E{E(yYQ™"E(uly)} = ¥ 4" Cov[E(uly), EGuiy)
]

where ({¢")} is the inverse of the matrix ((g;;).
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Various special cases are of interest. If the y; and g, arc all statistically
independent, then

(10.4) EQuly) = E(ulu; + &)
If, further, the g, and ¢, are normaIly distributed (w1th means that can be
taken to be zero), then,
Sii
(10.5) E(#ilﬂr + &) = m{ﬂi + &),

where s; = E(;?) and > = E(e;%). In this case, the best team decision
function and corresponding value are, respectively,

(10.6) @ = Zq”(

510 + &),

JJ+r

(107) Zq“|: 1+ ({rl/s ):|

If one further specializes by assuming that

Eu? = s*

Eg? = t?

{1 i=j
4i; =
Tl i#]

ns?[1 + {n — 2)q] o
(I +2/s))(1 — {1 + (0 ~ gl

The reader can verify that, for t* = 0 (no error), V; eguals the value of
compiete information, whereas as {¢?/s%) gets large, V; approaches zero
as a himit.

The results (10.2) and (10.3) follow directly from (5.6) and (5.12). The
special case (10.9) is similar to that discussed i the previous section.

{10.8)

the value becomes

(10.9 Ve =

Il. MANAGEMENT BY EXCEPTION:; REPORTING
EXCEPTIONS

The term management by exception covers a number of organizational
devices whereby the decision about a given action variable is normally
made on the basis of relatively few information variables, but may be made
on the basis of more information if the original information variables take
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on exceptional values. In this and the next section, we analyze two such
management by exception devices. The first might be called reporting
exceptions, or more accurately, if somewhat colloquially, “passing the
buck.” The second device, discussed in the next section, can be described
as emergency conference. The comparison of the various information
structures considered in this chapter, which is made in Section 13, tends
to confirm the widely held belief that management by exception can
provide a relatively efficient way of utilizing information.

We shall analyze these particular management-by-exception informa-
tion structures in the context of cospecialization of action and observation
{{; = m) Before giving a precise definition of reports of exceptions, the
foliowing description may be helplul. Suppose that, for each team mem-
ber i, the range of possible values of y;(x) is divided into two parts, “‘ordi-
nary” values and “exceptional” values. Let R, denote the set of excep-
tional values. If, in a particular instance, member i observes u{x) to be
not exceplional, that is, not in R;, then he chooses a value of his action
variable ¢; on the basis of y(x) only, according 10 some decision function.
On the other hand, if he observes y;(x) to be exceptional, that is, in R;,
then he reports that value to a central agency. The central agency then
makes the decision about the values of the decision variables of all team
members i who have reported exceptional observations, on the basis of
. all those exceptional observations.

More precisely, the information structure to be analyzed in this section
1s defined as follows. For each i, let R; be a given subset of the real line
[the exceptional vaiues of p(x}]; and for each state of nature, let J{x) be
the set of all j such that uj{x)e R;. Then the information structure 7 is
defined by '

i if px) ¢ R;
(1L1) m(x)={ﬂ()c) if pilx) ¢

{#j(x}}jeux) if u{x)e R;.

Note that (11.1) defines a class of information structures, a particular
structure being determined by a particular choice of the exception sets
Ry,....R,.

Such an information structure can, of course, be described in a some-
what more general context than the one used here. The basic idea is that
the variables directly observed by member i have exceptional and ordinary
vajues: if they are ordinary, he makes the decisions about his action
variables just on the basis of that information; if they are exceptional,
the decisions are made by an agent on the basis of all the exceptional
information (and possibly other information as well).
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In what follows, it is assumed that the variables u(x) are statisticaily
independent, with means zero and variances s;°. It is also assumed that
each p{x) has a distribution that is symmetrical about its mean, zero.
Likewise, we only consider exceptional sets R; that are symmeirical
around zero; that is, if m s in R;, then so is —m,

It will be seen that, in this case, the following parameters are of central
importance in evaluatling the information structure corresponding to a
particular choice of R, ..., K,

P = Prob{udx)e R}

11.2
( ) 5&52 = Var{;t,-(x)lu,-(x)e R;].

Thus p; is the frequency with which the variable p{x) turns out 1o be
exceptional; and sg,? is the conditional variance of g (x), given that it is
exceptional. The larger p;, the more frequently the action variable a; is
determined by the central agent, and the Jarger will be the (gross) expected
payoff. Of course, the greater the frequency of exceptions, the more
costly one can expect such an information structure to be.

Tt will also appear that, other things being equal, the larger the con-
ditional variances sg;’, the larger the gross expected payofl. This is
plausible, in view of the quadratic payofl function. The precise result is this:
Given the probabilities p,, .. ., p,, the optimal choice of R; is that which
maximizes sz;%, and this is achieved by taking R; to be the complement
of an interval symmetric around zero. Note that, in this case, the values in
R, are indeed “‘exceptional,” in the usual sense of being farther from the
average than the “ordinary” values.

Before deriving the formulas for the best decision rules and the value
of this type of information structure, we present the results of some
numerical computations. For the purposes of these computations, it is
assumed that

1 0=
(1 1.3) q” = . .
q i#)

(11.4) u{x} is normally distributed, with mean 0

and variance I, for each i.

(This is the special case of identical interaction that has been discussed in
several previous sections.)

Taking ali the exception sets R; to be identical, and choosing them in
the best way (subject to the constraint of symmetry), we calculate the values
of the information structures for various values of the parameters: g,
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degree of interaction; n, number of action variables; p, probability of a
value of y(x) being exceptional. The parameters ¢ and » are to be thought
of as “technological,” whercas p is a parameter of the information struc-
ture, to be chosen by the organizer.

It should be noted that the parameters sg,” [see (11.2)] are all equal,
because the sets R; are identical: furthermore, their commeon value is
determined by p, once the distribution of uf{x) is given, and the best
choice of R; is made. It might also be noted that the effect of assuming the
variances of the p,(x) to be, say, s* instcad of 1, would be to multiply all
the computed values by s,

i L A H L 1 1 Il L 1

0.1 02 03 04 05 06 07 08 09
q

FiGURE 6.2. Reports of exceptions: V as a function
ofgforn = 10and p =0.1,0.2.



210 Tearn Organizarion Problems

660

580

500

420

340

260

180

100

0 Il I 1 L4 ] 1
01 02 03 04 05 06 0.7 08 09

q

FIGURE 6.3. Reports of exceptions: ¥ as a function’
ofgforn = 100and p = 0.1,0.2.

First, we consider the effect of changing the interaction parameter, q.
Figures 6.2 and 6.3 show the value, ¥, of the information structure, as a
function of g, for different pairs of values of p and n. As the figures illustrate,
the value is greater, the larger g, rising slowly when g is near zero and then
more rapidly as g approaches 1. Note, too, that the increment in value due
to going from p = .1 to p = 2 is larger, the larger q.

Figure 6.4 shows the effect of changing p, the relative frequency of
exceptions, for fixed values of g and n. As one would expect, the vatue V
increases with p; however, each successive increment of p produces a
smaller increment of value, so that p has decreasing marginal value. This
latter effect is quite marked, in this example at least, so that a frequency of

exceptions of 1/3 has achieved almost 80 percent of the possible increase
in value, '
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200

150

FIGURE 6.4. Reports of exceptions: I as a function
of pfor n = 100 and g = 0.5.

Turning to Figure 6.5, which shows the effect of changing n, one sees
that as n increases, with p and g fixed, the value V increases more than
proportionately. This is illustrated in the figure by plotting (V/n) as a func-
tion of n (the lower curve). Recall that, under these particular assumptions,
the value of complete information also increases more than proportionately
with n [see (5.16) and (5.17)]; this is shown by the upper curve in Figure 6.5.
As inspection of the two curves shows, (¥/n) approaches a constant much
more rapidly for compiete information than for reports of exceptions.

As n increases, the expected number of exceptions, np, increases pro-
portionately. If the costs of dealing with these exceptions were proportional
to the average number of exceptions, then we would have here an example
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2.00 Complete
information
Yy L
n
1.50
Reports of
exceptions
1.00 ~

-
ﬁ ! | L 1 1
20 40 60 80 100
n

FIGURE 6.5, Reports of exceptions and complete
information: V/rn as a function of
nforg =05and p = 0.1.

of increasing returns to scale in the size of the organization arising from
the use of this type of information structure.

Finally, Figure 6.6 shows the effect of increasing n while simultaneously
decreasing p, so that the expected number of exceptions, np, remains
constant. These curves show that, although in this case total value in-
creases with r, it does so less than proportionately to n. As n increases
without limit, the ratio ¥/n decreases to the limiting value 1, which is the
value of Vjn for complete decentralization in this case.



6: The Evaluation of Information in Organizations. § 11 213

np=10

\ np=1

20 40 60 80 160
n

FIGURE 6.6. Reports of exceptions: Vir as a
function of nforg = 0.5and np = 1, 10.

DERIVATION OF REST DECISION FUNCTIONS
Assume that

1. The distribution of each y, is symmetric around its mean, which can be taken
to be zero.

2. Each exception set R, is symmetric around zero.

3w ...,y are statistically independent.

Recal] that J(x) denotes, for each x, the set of indices of those variables pix) that
have exceptional values, thal is,

(11.5) Jix) = {jindx)e R,

Denote by ¢’(x) the vector of those coordinates of x for which f is in J(x); and denote
by 0, the matrix of those elements g;; of  for which 7 and j are in J{x). In this
notation, the information structure t¢ be analyzed can be described by

wlx) ¢ J(x)
{i11.6) nix) = {

wWix)  ifiedix).
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Consider now the particular team decision function & defined by

HLI) if i ¢ J(x)
qi

(1.7 Gily:) = .
(O ' ldx) il ie Jx).

In other words, the decision function & just defined directs team member i: (1) to
take that action that would be appropriate under “compiete decentralization,™ if
he observes an unexceptional value of g;; and (2) 10 take that action that would be
appropriale under **partitions with independent information,” with i in the group
J(x) if he observes an excepiional value of y;.

We shall now show that & satisfies (3.1) and is therefore optimal.

First note that '

0 ifig J(x)
{11.8) E(ajm) =40 if e Jix), j¢ Jix)
(Q,7'),  ilied(x),je(x).

This follows from the independence and symmetry of the g, distribution and the
symmetry ol the sets R,. Therefore, if i ¢ J(x)

(1.9 ZQUE[&J‘I’N] = ‘Ih{%),u.‘;
. J £i
and il i & J(x),
(11.10) Y. qEl&in) = Z‘«’qu[QJ’—lﬂJ]J = i
I 1€

Then (11.9) and (11.10) together verify that & satisfies (3.1) and is therefore optimal.

COMPUTATION OF THE VALUE OF THE INFORMATION
STRUCTURE

According to (3.4), the expected payoff yielded by the best team decision function
& is

{IREY V= EY g,
]
We shall now show that V; is given by (11.23) below. Given any particular set K,

(11.12) E{VlJ(x) = K} = E[ Sl Mx) = K:l

€K

= E{(u"YQx "uMluix)e R, for je K}

+ Y iI~:{p.‘2|.u.-(-‘t}€ R}

ieK Hii
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Define

Soi” = E{plufx) ¢ R}
(11.13)

sa’ = E{pflulx)e Ry
(1..14) 4" = ith diagonal element of gy !

Then (recalling that the yi; are independent), we find that

(11.15) E{(g*YQx 'wMimje Ry for je K} = 3 gplisg
jek

and {11.12) can be rewritten,

- (11.16) EiVMx} =K} = E ‘[KHSR + 3 )50;
jeK K\

We denote by p; the probability that g {x) is exceptional, that is,

(11.17) p; = Prob{px}e R}}.

Then the probability, for a given set K, that J(x) = K is

{11.18) P(Ky=[lp, [101=p)

- JEK jek

and taking the expected value of (11.16), we obtain

(IL.19) =3 P(K)[ Z ax’se? + Y (q )50, ]

atl X JEK

This last can be pul into a more useful form if we interchange the order of summation
over the sets K and the index j of the team members, thus,

vi= ¥ [ X P(Ryuxsw + 3, PfK)q—*o, ]

i= Kaj i

{11.20}

=7 {Sn, Y P(K)ay" +

f=1 Kaj

l
ry 5o/ ¥, PIK ]

i kij
First we note that
(11.21) T PK) =(1 - p).
Kbj

Second, we can write

(11.22) ¥ PiK)x" = Elquq"),

K aj
where by convention we take g,/ = 0 if j¢ K. The substitution of these last two
equations in (11.20) gives

(11.23) Vy = Z [SRsz(‘IJ:.\)”) + Sojzu - Pj)(a!‘”-

i=1 i
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This is the formula we shall use in the further analysis of the value of this informalion
structure.

We can now show that, given p,, the best set R; is the complement of an interval
{symmetric around zero, by assumption). Flrst by the synuetry assumptions,
the variance of y; is related to the conditional variances sg ;2 and 55,” by

(11.24) s = psgit + (1 — phso;.

Therefore, choosing the sets R; 1o maximize V7 for given probabilitics p, is equivalent
to choosing the conditional variances sz;? and s to maximize V¥, subject 1o
(11.24) and s4;%, 59,2 2 0. This can be done by making s.;* as large as possible if

.. 1
(11.25) E{gs/Wix)af) 2 -

ii
Now note that, since the matrix ¢ is positive definite (and hence so is every Qy),
{11.26) g/ 2 | all je J,

with strict inequality unless J = {j} or g;, = 0 for all k # j. Condition (11.25) is
therefore always satisfied.

Consider now a special case. Suppose that all the variances 5.2, sg;%, and 5.2 are
the same and equal to 52, 5,% and 54 respectively, and suppose that all the sets R; are
identical with p; = p. Let M{x) denote the number of clements in J(x); then M(x)
has the binomial distribution B(p, n). Decfine /*(M) and g{M) by

FHM) = E{ T g

jel(x)

g(M)zE{ ( )M(x)— }
A \9jj

Now (11.23) for ¥, reduces to

M{x) = M}
(11.27)

(11.28) by = [ Ef{(M[x]) + ( )Eg(M [x])]
In particular, in the case of identical interaction

i ifi=j
{11.29) gij =

qg ili#]

it follows from (5.14) and (5.2) that

M[1 + (M — 2)q]
(1 =@l + (M - 1)q]

gM)y=n—M,

SHM) =

=f(M, q),
(11.30)
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so that 14 is given by
2 o 2
(11.31) ¥, = nsl[(isﬂz_)if,[f‘_”'_fﬂ - P](i%‘ﬂ'

This is the formula used in the computation of the numerical results described earlier
in this section with s* = | and the u; normally distributed. There seems to be no
convenient closed expression for Ef{M(x), g].

Under the assumption of normality, with s* = 1, we find the following relationship
between p, sp?, and the interval [ —r, r] that defines the complement of R:

(11.32) p=2 _[ (1) dt,

(11.33) 52 = 2oy

PR AL R

where (1) = 1/./2rnexpl —12/2}. Formula (11.33) is derived easily, using integration
by parts. From (11.24), of course, we have

(11.34) pse’ + {1 — pso® = 1.

VALUE OF INFORMATION FOR LARGE n
In the special case covered by (11.31), (1/n) (M, g) can be written

SM, @) _ (M/ny{(1/n} + [(M — 2)/n]q}
no (= @il/m) + (M = Dfmg}

Hence, by the law of large numbers,

(11.35}

(11.36) i EIMO),g) _ p

a—co n T1-g

Together with (11.31)}, this last implies

Vo[ e s’ _ %
(11.37) lim ~* = s [1 —q(sz) +( p)($2 .
12. MANAGEMENT BY EXCEPTION: EMERGENCY
CONFERENCE

In the last section, it was assumed that the decisions about only those
variables corresponding to “‘exceptional” information were taken jointly,
whereas the decisions about the other variables were taken independently.
Another management-by-exception type of information structure, which
might be labeled emergency conference, stipulates that, whenever any
information variable takes on an exceptional value, all decisions are taken
jointly. More precisely, we shall analyze the following information
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structure:

Jdx) il for every j, ufix)¢ R,
(2.1 #i{x) = . .

1(x) if for some j, p{x}e R;,
where R;, ..., R, are given subsets of the real line.

Let R be the set of states of nature x for which at least one of the values
pi(x) is exceptional, that is,

(12.2) R = {xifor some j, u{x)e R;}.

It is clear that, when the state of nature x is in R, then the team is in a
situation of complete information, whereas when x is not in R, then the
team is in a situation of complete decentralization facing a conditional
distribution u given that x is not in R. If y4,,..., u, are independent, as
we shall assume in this section, then they will also be conditionally
independent given that x ¢ R.

As before, it turns out that the important parameters of the exception
sets K; are

(12.3) p: = Prob{ufx)e R},
(12.4) si* = Var(y,),
(12.5) so; = Var[uludx) ¢ R)].

Indeed, we shall show that (assuming, as we can without loss of generality,
that Eu = 0) the value of the information structure (12.1} is

i i

" " 1 -
{12.6) Ve =3 q's? — Z[q" - &—]so,z Prob{x ¢ R},
where (7)) = ¢, and
(12.7) Prob{x¢ R} = [](1 — py).
I
It will also be shown that, given p;, ..., p,, the best choices of the sets R;

are the complements of intervals.
In particular, if

(12.8)
i=j
q i#j’

o
L
n
p—P e,
—
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then (12.6) reduces to

(12.9) Ve = s (n.q) — so°(1 — pl"{ f(n.q) — n},
where f(n, g) is given by (5.17).

200

150

100 |-

(=]

FIGURE 6.7. Emergency conference: V as a func-
tion of p for g = 0.5 and n = 100.

Figure 6.7 shows the value of emergency conference as a function of p,
for g = .5 and n = 100, as given by (12.9). Note that the value rises
extremely rapidly for small values of p, so that by the time p has reached
035, the increase in value over p = 0 is 97 percent of the total possible
increase (p = 1). This is to be expected when n is fairly large, since it takes
only one exception to convene the entire conference and bring about a
state of complete information. The probability that one or more exceptions
will oceur is 1 — {1 — p)".

Figure 6.8 shows ¥/n as a function of n (with n varying from 1 to 100),
for g = .5, and p = .01 and .1. As & increases, for fixed (positive) p, the
probability of a conference, that is, of at least one exception’s occurring,
converges rapidly to 1. With p = .1, by the time n has reached 40 one is
practically in a situation of complete information.
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FIGURE 6.8. Emergency conference: F/n as a func-
tion of nforg = 0.5 and p = 0.01, 0.1,

The last remarks suggest looking at how ¥/n behaves as a function of n,
when the probability of a conference is kept constant. Figures 6.9 and
6.10 show two such curves (for ¢ = .5), the first with 1 — (1 — p)* held
constant at .99 and the second with 1 — (1 — p)" held constant at .90.
These figures reveal that, for any given value of the probability of a con-
ference, there is a value of n that maximizes Vn. In other words, with the
probability of a conference fixed, there are decreasing returns to scale
after some point. This is in contrast with the corresponding case for
reporting exceptions, as exemplified in Figure 6.5. Note that the decreasing
returns to scale in the present case occur even though the average size
of the conference n[l — (1 — p)'] is increasing. If the average size of the
conference were to be held constant, the tendency toward decreasing
returns Lo scale would be more marked. This last situation is the one that
is comparable to Figure 6.6.

BEST TEAM DECISION FUNCTIONS

Consider now the information structure of (12.1) with arbitrary sets R,,.... R
and assume that

ny

(12.10) . .., i, independent,
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(12.11) E(u) = 0, Var(u) = s>
Define m® and a° by
(1213 m® = E{plpdx) ¢ R.}.
(12.13) a® = Q@ 'ml.
By applying Theorem 1, it can be shown that the best team decision function & is
given by
Y T

o + M T e 4R
(12.13) dly) =9 G

[@ L)), if xe R

The proof is routine, and is omitted.

VALUE OF THE INFORMATION STRUCTURE

Again we consider the two cases x¢ R and xe R separately, by writing the value
of information as

(1215) V¥, = Elw(x.aly})] = E{w|x ¢ R} Prob(x ¢ R) + E{fwix e R} Prob(x ¢ R).

Because & satisfies condition (3.1) of Theorem 1 in each case (x ¢ B, x ¢ R) separ-
ately, one can apply (3.4} to each case. After some calculation, this application yields
(12.6).

Note that, since @ is positive definite, g* > 1/g;;, so that the term in brackets on
the right-hand side of (12.6) is nonnegative. The quantity g's;? is the value of com-
plete information under the current assumptions,

In the special case described by (12.8), it follows easily from (5.4) that the value ¥,
reduces to the expression given in (12.9).

BEST CHOICE OF THE EXCEPTION SETS

Given the probability of a conference, we find that the choice of the sets R,, . . ., R,
that maximizes the value (12.6) is the choice that minimizes

(12.16) Z(q“ - L)s.-ff
7 i
subject to
(12.17) [T{1 — p) = Prob{xe R}

(the p; and the 54, being related, of course. In particular, if we are given the values
of pi, .., Pa, the expression (12.16) is minimized by taking each set R, to be the com-
plement of some interval, symmetric around zero (the mean of ;). This characteristic
is therefore true of the best choice given only the value of Prob{x ¢ R}.



6 The Evaluation of Informartion in Organizations. § 13 223

In the case of symmetric sets R;, one has a® = m® = 0, so that the best team
decision function is given by
#ix}
(12.18) o(y) =4 i
@ 'uix)} ifxek

13. COMPARISONS AMONG THE SEVERAL INFORMATION
STRUCTURES

ifx¢ R

In this section, we shall present comparisons among the several
information structures that have been considered in the previous sections.
These comparisons will be made for the special case of cospecialization
of action and observation, with identical interactions, and independent
observations with identical variances.

The first set of comparisons is among the {ollowing four information
structures: (1) partition into equal groups, (2) partition into groups with
only one group having more than one member, (3) emergency conference,
and (4) reports of exceptions. As will be seen, these four structures are
comparable in the sense that structures (3) and (4) can be viewed as
resulting from variable partitioning into groups, the particular partition
used depending upon the information signals that are actually received
by the team members. It will be seen that, if one compares structures of
the above four types with the same average group size, then the above list
is in the order of increasing value.

This result can be explained heuristically as follows. Under the assump-
tions described above, the “technology” of the team exhibits increasing
returns to scale; that is, under complete information, value per person,
Vin, increases as n increases (see Section 5). With independent observations,
partition of the team is equivalent to substituting for the original team a
collection of smaller teams, with the same total number of members.
Because of the increasing returns to scale, if the number of groups is given,
the best allocation of the members to the groups is achieved by assigning
as many members as possible to one group, leaving the rest of the groups
with one member each. This accounts for the greater value of (2) as against
(1) in the above comparison. .

The superiority of (3) and (4) over (1) and (2) is plausible, when one
sees that structures (3) and (4) have something of the character of a two-
stage sequential analysis. Additional information is brought to bear on
decisions only under circumstances in which additiona) information is
more than ordinarily helpful. In this respect, “reports of exceptions”
is more selective than “‘emergency conference,” since it brings the addi-
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tional information to bear upon only those action variables that are
associated with the unusual observations, rather than upon all the action
variables. Indeed, it will be shown that for large values of n, “‘emergency
conference” is approximately no better than fixed groups with only one
group having more than one member,

The second comparison is between error in instruction (Section 9) and
complete communication of erroncous observation (Section 10). It will
be seen that, if one compares structures of the two types that have the
same ratio of variance of error to variance of message, then error in
observation is preferable to error in instruction. This is related to the
fact that, under complete information with nonzero interaction, the
optimal decision rules for the several members are correlated (Section 5).
In the case of error in observation, the complete, error-free communication
makes possible any desired degree of correlation between the decisions of
different team members; whereas the error in instruction introduces a
lack of correlation between the information on which different decisions
must be based.

GENERAL REMARKS ON COMPARISONS OF
INFORMATION STRUCTURES

Before going into the detailed comparisonsof this section, some general
remarks may be helpful. Ideally, one would want to compare information
structures on the basis of net value of information, namely gross value of
information minus the cost of both the information and the associated
best decision function. Therefore, any comparison between the gross values
of two information structures is meaningful only in the context of some
assumption about the relative costs of the two structures. Although no
explicit discussion of costs is presented here, certain assumptions are
implicit in the comparisons made below. Thus, in the comparisons among
information structures based upon fixed or variable partitions into groups,
the implicit assumption is that costs depend upon the average group size.
On the other hand, the comparison between error in instruction and error
in observation is meaningful if the costs depend upon the ratio of the
variance of the error to the variance of the message.

FIXED AND VARIABLE PARTITIONS

Consider now the case of cospecialization of action and observation,
(4.3), together with the special agsumptions of identical interactions,
(4.4) and (4.5), and independent, normally distributed observations
with identical variances. There is no further loss of generality in assuming
that the g, all have means zero and variances one.



6. The Evaluation of Information in Qrganizations. § 13 225

The two fixed-partition information struciures to be considered are
{1) partitions into equal proups, and (2) partitions such that at the most
one group has more than one member, Under the above assumptions,
the values for these two types of structure are given, respectively, by

H
(13.1) %=h3ﬂM%
(13.2) 5 =f(M,q} +(n — M),

[see (7.10) and (7.11)]; where in the first case M denotes the number of
persons in each group, and in the second case M denotes the number of
persons in the one group that can possibly have more than one member;
and where the function f'(u, v), as in (5.17), is defined by

[l + (u — 2]

(13.3) o) = T+ - ol

The two variable-partition information structures to be considered are
emergency conference (Section 12) and reports of exceptions (Section 11),
with values given, respectively, by

(13.4) Vo =fin,q) — so’(} — p)"[f(n,q) — n),
(13.5) Vo = sp2Ef(M, q) + n{l — plso?,

{see (12.9) and (11.31)]; where p is the probability that a value of an obser-
vation p,(x) is exceptional, 5,” is the conditional variance of g, given that
it is not exceptional, sg? is the conditional variance j; given that it is
exceptional, and in (13.5) M has the binomial distribution B(p, n). Recall
that, as in (11.34),

(13.6) psg® + (1 — plso® = 1,

and that sg? and s,> are determined by p [see (11.32) and (11.33)].

To compare the values of the above four types of information structure,
we shali compare structures that, roughly speaking, have the same average
group size. 1t will be more convenient, however, to consider explicitly,
for any fixed n, the average number of groups associated with the informa-
tion structure. Thus, for the case of partitions into equal groups of size M,
the number of groups is

(13.7) G =
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whereas for the case of one large group, of size M, the number of groups is
£13.8) G=n—-M+ 1

For the two variable-partition cases, the number of groups is a random
variable. For emergency conference, the expected number of groups is

(13.9) EG=nll —py"+ 1 —1(1 - py;
for reports of exceptions, the expected number of groups is
(13.10) EG =n{l —p) + p.

Figure 6.11 shows value V as a function of G (or EG) for the above four
types of information structure with n = 100 and ¢ = .5. In the fixed par-
tition cases, G is varied by varying M ; in the variable partition cases EG
is varied by varying p. As the figure shows, “reports of exceptions™ gives
the highest value (for G different from 1 or n); “emergency conference”
gives a barely higher value than fixed groups with one of size M and
these two in turn give a higher value than fixed equal groups.

The relations among the above four types of information structure
emerge quite clearly and simply for large values of n. Suppose that, as n
increases without limit, the {(average) number of groups increases propor-
tionately, so that G = yn {or EG = yn). It is easily verified, using (13.1)
to (13.10), that the limits, as n increases without limit, of value per person,
Vin, for the four types of information structure are

(13.11) R el S )
nool—g y+(Q-g
2 Ve -
(13.12) lim 22 = lim 221 %
n n 1 -9
— _ 2
(13.13) ' Iimﬁ - 1 —vq + Y1 — 50 )q.
h l-g¢g 1l —¢g

In (13.13), the limit value s,? co'rrcsponds to p =1 — y. lItisclear that the
above three limiting values are in order of increasing magnitude, except
when ¢ =0,y = 0, or y = 1, in which case all three limiting values are
equal.

COMMUNICATION ERRORS

Consider now the two information structures, error in instruction
(Section 9) and error in observation (Section 10). The discussion will
proceed under the same special assumptions of (1) cospecialization, (2)



6 : The Evaluation of Information in Organizations. § I3 227
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FiGure 6.11. Comparisons among fixed and vari-
able partitions: V as a function of
fixed or average number of groups,
G.

Curve 1: Fixed groups, equal size.
Curve 2: Fixed groups, one of size M.
Curve 3: Emergency conference.
Curve 4; Reports of exceptions.

identical interactions, and (3) independent and normally distributed
observations y; with identical variances. However, in this case the variance
of y; will be denoted by s?. .

The two information structures of Sections 9 and 10 are comparable
in that they are both concerned with complete communication in which
errors are introduced. In the one case, however, the errors are introduced
at the points at which the processed observations, that is, the instructions,
are being communicated from the central agent to the team members;
whereas, in the second case, the errors are introduced before the processing
of information, that is, in the communication of observations to the
centrat agent. For the purpose of the comparison to be made here, let 12
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denote the common variance of the several errors, which will be assumed
to be independent, normally distributed variables, with zero means, and
uncorrelated with the original messages (that is, instructions or observa-
tions) to which they have been added. It seems natural to compare
information structures of the two types that have the same ratio of variance
of error to variance of the original message.

For the special case being considered, the value of the “error in in-
struction™ information structure is

nw(l + (n - Dgle/w))?

(13.14) Vi = z ,
1+ (— A+ (n— Dyglc/w)
w
where
w ifi=j
c if i # j,

and f = 0~ 'pisthe team decision function that would be best for complete
information. Equation 13.14 is another version of (9.12) but without the
normalizing assumption that w = 1. Using (5.14) and (5.15) we can, after
some computation, arrive at . '

-3 +2
(13.16) == ~((n_ A Bk )

)g* + [1 + (n ~ 2)q]°

(n—1)g> +[1 +n— 2}q]2)
13.17 =52 .
(1317 ( {1 — gl + (n — DgT?
From (13.14) to (13.17), it follows that

2

’ V. 8
13.18 m 2] = =
(13.18) lim n) —
where
tz
{13.19) =

w

Note that r is the ratio of the variance of the error to the variance of signal
to which the error is added.

The value of the *‘error in observation™ information structure is, from
{10.9),

_ ns?[1 + (n - 2)q)
T+ (s~ g1 + (0 — 1)q)’

(13.20) v,
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[ 52
13.21 li i S
(13.21 .m ( n) TEIrTs
where
i Iz
(13.22) r=5.

By comparing (13.18) and (13.21) we see that, if » = ¥/, then
V.
(13.23) lim (J) < lim (5)

H— 1] "= n
with strict inequality if r and g are strictly positive.
14. INTERACTION, TEAM S1ZB, RETURNS TO SCALE

At various points in this chapter, we have considered how the value of
a particular information structure varies as the number of team members
increases. In particular, we have studied this question in the special case of
identical interaction, which by appropriate choice of units can be expressed
as

14.1) { Loy
(14 i g i¥Fj
[sce (4.4) and (4.5)]. We assumed that as n, the number of team members,
increased, the interaction coeflicient, g, remained constant,

We shall argue below, by means of an example, that this last assumption
(g constant as n increases) is plausible in some situations, but there may be
others in which it is not. For example, there are probably many situations
in which the average interaction decreases as the team size increases. A
particular hypothesis of this type has been proposed by Selten,* namely,
that the total interaction remains constant, which in this case translates
into

(14.2) nin — g = &,

for some constant k independent of n. We shall call this the constant total
interaction hypothesis, in contrast to the constant individual interaction
hypothesis of constant g, and we shall see that the two hypotheses may
have different implications for the way in which the value of a particular
information structure vaties with team size.

4. Private communication.
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First we recall that, in order for the matrix {14.1) to be positive definite,
it is necessary and sufficient that

(14.3) -

< g<l.

n—1
Hence the constant individual interaction hypothesis can hold for all »
only if g is nonnegative, that is, only if the interaction coefficient, 6*w/da,da;
1s zero or negative. If the constant total interaction hypothesis is to hold
for all n(=2), then (14.3) implies that |k < 2.

Consider now the case in which p,,..., 4, are uncorrelated, which
came up quite often in the previous sections, and let us first contrast how
the value of complete imformation varies with team size under the two
hypotheses. From (5.16), the value is

“44) Vl = j,,f(-"l, fi)

where

__n[] + (n — 2)q1m

S @) = o = S T Tl

and

5, = 1 i Var(y,).

Ly

We shall suppose that, as » increases, the average variance, §,, approaches

a limit, say §. Under the constant individual interaction hypothesis, we
saw that

' Y 5

lim = = “—

aire 1 1 —g

3

with ¥ /nincreasing if 3, is constant and ¢ > 0. We described this by saying
that, in this case, returns to scale for complete information approach a
constant as the size of the team gets large, and during this approach the
returns to scale are increasing (aithough more and more slowly).

On the other hand, under the hypothesis of constant total interaction,
we have, from (14.2) and (14.4),

S
lim -% =3,
n—ao R

and it is straightforward to verify that ¥,/n is decreasing as n increases.
Thus, in the limit, returns to scale are aiso constant (although the limiting
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constant of proportionality is different) but returns to scale are decreasing
during the approach to the limit,

Adopting the hypothesis of constant total interaction does not quali-
tatively change the conclusions of Sections 6 to 12 but it does alter the
asymptotic comparisons of information structures made in Section 13.
Indeed, under this hypothesis, the four “partition” information structures
have the same asymptotic value, and the two “error” structures have the
same asymptotic value. This is plausible if one notes that the coefficient

k
4=~

nn — 1j
is going to zero like 1/n* as n increases, so that, for large n, the effect of
interaction is essentially wiped out. {The specific calculations are left to
the reader.)

We close this section with an example of a tecam decision problem in
which the hypothesis of constant individual interaction is satisfied. This
example is a modification of the sales force example of Chapter 5, Section
4 (Example 5A). Let the team consist of n salesmen, and let the demand
function facing salesman i be

o=y ~ ba,

where p; is the price at which he can sell the quantity a;. Suppose that the
cost function for the team is

ofse] - efza)’

Thercfore, if salesman i sells the quantity a,,(i = 1,..., n), then the net
profit to the team will be

Z(?i = Cyla; — Z(b + ¢jat -~ Z Caa;.

P
Ify,,..., v, are random variables, and b, ¢,. and ¢, are constants, then
we have a special case of the quadratic payoff function (2.1), with
=9 — 0
gi = b + ¢

dij = €3 [# )
If we assume that adding new salesmen (e.g., by adding new sales terri-

tories) does not alter b, ¢, or ¢,, then we have a case of constant (identical)
individual interaction.



CHAPTER 7

The Team in a Dynamic Environment

lIntroduction 2. The single-person problem with a quadratic payofl function
3Single person, autoregressive environment, delayed information 4 Proper team,
auwtoregressive enviconment, delayed information 5.Periodic recovery of delayed
complete information  6.Substitution of timeliness for completeness

1. INTRODUCTION
TREATMENT OF TIME IN A TEAM DECISION PROBLEM

Thus far, our treaiment of the team decision problem has been static,
not in the sense that consideration of time has been excluded by our formu-
lation of the decision problem, but rather in the sense that the special
features of a decision problem associated with time have not been ex-
plicitly examined.

From a certain point of view, the introduction of time into a decision
problem requires no change in the formulation of Chapter 4. Decisions
about actions taken at different times are typically based on different
information. To express this, we may simply consider actions taken at
different times as corresponding to different team members. Thus, if
aft) denotes the action of person i at time ¢t = 1,..., T), and if x{7)
denotes the state of the world at time ¢, then the team action variable for
the complete problem (with nT persons) is

(1.1) a = {ayl),...,a(1),ai{2},...,a,(T)],
and the state of the world for the complete problem is
(1.2) x = [x(1),...,x(T)].

In particular, a “'single-person sequential (dynamic) decision problem”
looked at in this way can be interpreted as a team decision problem. The
reason for singling out the time index for special treatment is that there is
usually associated with the time element some special feature of the struc-
ture of information, of the statistical properties of the state of the world,
or of the payoff function.

232
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In what follows, we shall maintain explicit reference to time by retaining
the notation in which a(t) denotes the action of a person i at time ¢, and
it} = ni(x, t) denotes the information on the basis of which action a,(#)
is taken, according to a decision function «f -, 1), that s,

ai('[} = “:[Wi(x, !)a t]‘

{For brevity, we shall occasionally suppress the argument x and speak of
the function 5,(t).) Implicit in the everyday concept of time is the constraint
that the information y,(t} can depend at most on the history of the world
up through time ¢, that is, [x(1), ..., x(z)].

Perhaps the most common feature of the structure of information in
time is generated by the presence of memory. A sequence {r{-,t)} of
(one-period) information structures will be said to have memory if, for
cach , (-, 1 + )isas fine as n{ -, t). (See Chapter 2, Section 6.) However,
memory is in general costly, and is therefore not a universal feature of
dynamic decision problems. Indeed, the question of how much memory
to provide for in any given situation (e.g., when to throw away files) is a
special case of the general problem of choice of an information structure.

A typical feature of the statistical properties of the sequence of states
{x(r)} is the tendency of the statistical dependence between states at
different times to become weaker, in some sense or other, as the difference
in time increases. A consequence of this is that information about the dis-
tant past is less valuable than information about the recent past.!

An interesting class of stochastic processes x(z) is the class of Markoy
processes, in which the conditional distribution of the future, x(r + 1),
x(t + 2), and so forth, given the presemt and past, x(t), x(t — 1), and so
forth, is a function of the present, x{r), only. It should be pointed out,
however, that if z(f) = {[x(z)] is a sequence of values of some function {
on successive states x(t), then even if {x(r)} is a Markov process, the
sequence {z(z)} need not be a Markov process (and will typically not be).
Hence, if each z(t) is an observation on the corresponding state x{t), then
the fact that {x(t)} is a Markov process does not imply that it is of no value
to include past observations z(s), s < t, in addition to the current observa-
tion z(z), in the information upon which the decision a(t) is to be made.

Turning to the influence of time in the payoff function, we note that the
interaction between action variables at different times tends to be weaker
the greater the difference in time. If this is the case, there will be less need
for coordination of actions that are distant in time than of actions that are

1. This tendency toward weaker dependence need not be monotonic | if x(f) is real-valued
and one measures dependence by the correlation function Ris, 1), then for fixed r, Rit, ¢t + d)
will typically approach 0 as d increases, but not necessarily monotonically,
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close in time. In particular, if the payoff function is additive in time (i.e.,
if there is no interaction between actions at different times), the sequential
decision problem can be dealt with as a succession of one-period problems,
provided that there are no constraints linking actions at different times.

PAYOFF FUNCTIONS ADDITIVE IN TIME

For most of this chapter, we limit ourselves to the case in which there is
no interaction between actions taken at different times, Our main interest
in this case is to study the team in a changing environment. In other words,
we wish to study a succession of team decision problems of the type dis-
cussed in Chapters 5 and 6, with the environment, and information about
the environment, changing through time. In particular, we wish to study
the effects of delays in the receipt and use of information, and the possi-
bilities of substituting incomplete but slightly delayed information for
more complete but more delayed information.

Consider a payoff function, with dated action vectors as in (1.1) but
with no interaction through time,? that is,

T

(1.3) olx,a) = Y ox, at).

t=1

As above, let of -, f) denote the n-tuple [a;,(-,1),..., o , )] of decision
functions corresponding to time ¢; this may be called the team decision
Junction for time . Similarly, there is an information structure (-, 1) =
(-, ..., 0 -, )] for the team at time ¢. If the payoff function is additive,
as in (1.3), then it follows immediately that the best sequence of team
decision functions, {a( -, 1)}, is such that, for each ¢, &( -, 1) is best for the
“one-period™ decision problem with payoff function @, and information
structure (- , £). This additive decomposition also applies to comparisons of
the values of alternative information structures. :

DELAY

Suppose that, at time ¢, the available information about the state of
the world is some function of the states of the world up to and including
the time (t — 7). We shall then say that the information has delay .
The delay 7 is a variable that depends (possibly) upon the team member,
the time ¢, and the states of the world up to and including time . In this
and following sections, we shall elaborate on the concept of delay and on
the circumstances under which it arises; we shali investigate the losses due
to certain patterns of delay, under alternative simple assumptions about

2. 3ee Koopmans 1960 for a discussion of preferences that can be represented in this form.
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the stochastic process generating the state of the world; and we shall
explore some problems of achieving the optimal balance between delay
and incompleteness of information.

Formally, let x(t) denote the state of the world at time ¢, and let X
denote the complete history of the states of the world up to and including
time £ We shail say that an information structure exhibits simple delay
if, for each i,

(1.4) nix, £) = f{x(t — 1)),

where #; is a fixed function, for each i, _

At first glance, (1.4) may appear to place little, if any, restriction on the
information structure, but the fact that the function #; does not have time
directly as an argument is indeed a restriction. For example, if the state of
the world is described by two coordinates, and if information at time ¢
always consists of the value of the first coordinate at time (¢t — 1), then we
have a case of simple delay. However, if we modify the information struc-
ture of the example by letting the information at every tenth period (say)
consist of the values of both coordinates in the previous period, then we no
longer satisfy condition (1.4). We shall primarily be concerned with
exampies of simple delay, with one important exception (Sections 5
and 6).

If we consider the case of simple delay, the amount of delay, 1, can in
principle depend upon i, ¢, and X(t). If it is a periodic function of ¢, it is
natural to describe it as periodic delay.

Delays are typically caused by the time necessary to perform the various
aspects of information processing: observation, communication, and
computation. Delays can also be caused indirectly whenever a team limits
the frequency with which the actions are changed (because changing
actions may in itself be costly). While the action is being held constant, the
world is changing, so that there is eﬂ"cctively a delay between observation
and action.

Delays can usually be reduced at the expense of increased costs. (As
is usual with regard to costs, we have little empirical information on which
to base reasonable theories.) On the other hand, delays can also often be
reduced by contenting oneselfl with less complete information.

For example, information may consist of a sample of observations. By
spending more time, a larger sample can be obtained. However, suppose
that, until the sampling has stopped, a decision based only upon a priori
information must be in effect. The improvement in the final decision
because of increasing the sample size must be balanced against the loss
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that results from keeping the a priori decision (decision based on a priori
information only) in force for a longer period.?

As a second example, communication and computation delay can be
reduced by partitioning the team into groups (with littie or no communica-
tion between groups), but with a resulting loss due to less complete in-
formation (see Section 6 of this chapter). ' .

Computational delay can be reduced by not carrying certain computa-
tions to completion, at the expense of providing less accurate solutions to
computational problems (see T. Marschak 1959 and 1968).

Delays may cause losses because, until the delayed action is taken,
some other action {a priori action, or “inaction”) is in force, as in the
first example given above. Such losses will be experienced even if the
payoff-relevant aspect of the environment is not changing during the
interval of delay.

Delays may also cause losses because, during the interval of the delay,
the payoff-relevant aspect of the environment is changing, and by the time
the action is taken it is no longer appropriate. Since our main interest
in this chapter is to study the team in a changing environment, we shalt
concentrate on this second type of loss.

The comparison of information structures developed in Chapter 2,
Section &, and in particular the concept of garbling, throws some light
on the economic effect of message delays. Consider a single-person
decision problem in time with the payoff function additive in time. Let
Z, be a payofl-adequate partition of the set X of states of nature for the
payoff function w,. The event z, in Z, will, of course, depend at most on
X,, the history of the world up to time ¢.

Suppose the decision-maker’s information at time ¢ consists in being
informed of which event z, occurred at time (0 < 1), that is,

(1.5) n(x, 1) = z,.
Consider two alternative values of 8, say & and 6", with & > 8, and let
Y’ = Zg', Y” = Zﬂu.

Y’ is the partition of X corresponding to the information structure {1.5)
for @ = &, and similarly for Y.

We note in passing that, if ¢ = 1, then Y’ is complete information about
the payoff relevant description of nature for the decision at time ¢; hence
Y'is trivially at least as valuable as Y". Are there more general conditions

3. By citing this example, we of course do not intend to imply that there are not also situa-
tions in which one can modify the decision as cach observation in the sample is obtained,
See Chapter 2, Sections 9 and 10; and Sections 3 and 4 of the present chapter.
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for which the same conclusion is valid? We shall show that, if the sequence
{z,} is @ Markov process, then Y' is at least as valuable as Y*.

I the event sequence {z,} is a Markov process, then for any (finitc or
infinite) sequence of dates t; > ¢, > 5.,

(1.6) Problz, |z,,.z,,....) = Probiz |z,,).

It follows from this Markov property that, for any z,in Z,, ' in Y, and
y'inY",

(1.7 Probiz,y, y"} = Probizly).

By (8.8) and (8.4) of Chapter 2, Section 8, this is equivalent to the garbling
condition:

(1.8) Prob(y’lz,, ') = Prob(yly’)

Hence, by the corollary to the theorem of Chapter 2, Section 8, ¥’ is at
least as valyable as Y".

We might call Y’ (and Y") delayed complete information, since Y’
gives complete information about the payoff-adequate description of X
for the decision at some time § = t. We have just shown that, if {z,}
is a Markov process, then increasing the delay of complete information
decreases, or at least cannot increase, its value, This conclusion will
in general no longer be valid if the information is not complete. For
example, Y, although more delayed than Y, might be sufficiently finer
than Y’ to make up for the greater delay. Nor will the conclusion be valid
in general if {z,} is not a Markov process; for example, the statistical
dependence between z; and z, might be a periodic function of 8, for
fixed t.

CHAPTER SUMMARY

The chapter consists of two parts: the first part is concerned with a
single person in a dynamic environment (Sections 2 and 3), and the second
part with a “‘proper team” in a dynamic environment. By a proper team,
we mean one in which different actions at the same time are not alf based
on the same information.

The analysis in the whole chapter is restricted to the case of a quad-
ratic payofl function for the proper team we also assume that the payoff
function is additive in time.

In Section 2, we derive the optimal decision rule for the single-person
problem and apply it to prove the Simon-Theil theorem on certainty
equivalents. This theorem states that the solution of a single-person,
dynamic decision problem, with a quadratic payoff function, can be
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obtained by solving instead a sequence of decision problems, one for cach
time ¢, in which at each time t the random cocfficicnts in the quadratic
payolT function are replaced by the conditional expectation of those coeffi-
cients given the information at time ¢. This theorem is valid under the
condition that the information structure has memory, in the sense defined
above. The Simon-Theil theorem does not appear to be generalizable
to the case of a proper team, even with a quadratic payoff function, nor to
the case of a single person with a nonquadratic payoff function.

From Section 3 onward, we consider the case in which the random
coefficients in the quadratic payofl function form a first-order linear
autoregressive process in time, For the single person the results are well
known from the theory of prediction and extrapolation. Two special
cases call for special attention : the case in which the autoregressive process
is stable, and the case of Brownian motion, in which the coefficients are
formed by the successive addition of independent increments.

The contrast between the stable case and the nonstable case of Brownian
motion is especially significant in the problems with incomplete informa-
tion, and in particular for the proper team problem. In the case of stability,
the coeflicients tend to stay ncar a mean value, and the expected loss
per unit time due to the incompleteness of the information approaches
an upper bound as ¢ increases. In the Brownian motion case, however,
the expected loss per unit time depends upon the time. In the particular
case in which the coefficients are normally distributed and the informa-
tion functions are linear (we call this the special Brownian motion casc),
the expected loss per unit time because of the incompleteness of the
information increases lincarly as a function of time. In such a situation,
it periodically becomes worthwhile to obtain complete information about
the cocfficients, possibly with some delay, whatever the cost of doing so
(Section 5).

In Sections 3 and 4, we give special attention to the effect of delay on the
value of information, and we exhibit a decomposition of the loss at any
given time because of the use of delayed incomplete information into
the loss due to the delay and the loss due to the incompleteness of the
information.

Finally, we explore the situation in which the team’s information can
be made more complete only by increasing the delay with which the team
members receive it, and we derive conditions for an optimal balance
between timeliness and completeness of information. We apply these
conditions to the problem of partitioning the team into equal groups
(Chapter 6, Section 7), under the assumption that the larger the group size,
the longer the delay in achieving complete exchange of information within
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the group. We find that, in the above case of stable coefficients, the
optimal group size is independent of the size of the team; whereas, in
the special Brownian motion case, the optimal group size increases with
the size of the team bul not at the same rate.

2. THE SINGLE-PERSON PROBLEM WITH A QUADRATIC
PAayorF FuncrioN

Consider a “single person” who must make decisions sequentially with
respect to a (finite) sequence of action vectors a(l),...,a(T), the payoff
function being

T T
(2.1) olx,q) =2 z uix, tya(ty — 21 alsy Q(s, talr),

=1 5,t=
where for each x, s, and ¢, p(x, t} is a vector and Q(s,t) is a matrix. We
assume that the square matrix made up of the blocks (s, t) is positive
definite. Suppose further that, at time ¢, the person’s action a(t) is to be
based on the information ¥{t) = #(x, ) according to some decision func-
tion af -, ), that is,

(2.2) alt) = a(ylt], ) = a(nlx, 1], 1).

For a fixed information structure 7 = [y(-,1),..., (-, T)] the person is
to choose the best sequence «(-,1),...,a(-, T) of decision functions,
that is, the decision functions that maximize the expected payoff.

As we noted in Section 1, this decision problem can from a formal
point of view be regarded as a ““team decision problem,” with the person’s
decisions at different dates t corresponding to different members of
the team.

It follows immediately, from Theorem 4 of Chapter 5, that the optimal
decision functions &(-,t) are determined (uniquely) by the following
conditions:

T
(23) Y Qs OE[e -, (-, 5)] = Elp(-,9Mn(-,9)] s=1,...,T

i=1

This is the form taken by the “person-by-person satisfactoriness™ con-
dition in this case.

In the formulation of Chapter 5, each member of the team has a single numerical
action variable, In the present case there is a vector-valued action variable, af¢), for
each member (i.c., each time). But the result of Chapter 5, Theorem 4, can easily
be generalized to the case of vector-valued action variables by grouping together
into a single vector all of the numerical action variables based on the same informa-
tion.
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MEMORY AND CERTAINTY-EQUIVALENTS IN THE
QUADRATIC CASE (THE SIMON—THEIL THEOREM)

Suppose that the decision-maker’s information structure n has memory
in the sense defined in Section 1; that is, if s < ¢, then x(-, t) is at least as
fine as n{-,s). We shall show that there is a sccond decision problem
associated with the original one such that:

{2.4a) The payoff function is the same, except that in (2.1) each function
u( -, 1) is replaced by some function f( -, ¢) of the initial information
variable, y(1) = nix, 1};

{2.4b) The optimal decision function at time 1, say of -, 1), for the new
problem is the same as that for the original problem.

The function fi( -, t} that replaces u(-,t) is accordance with (2.4a) is
called the “certainty-equivalent™ of u( - , t}. We shall show that the certaint y-
equivalent of u(-,1) can be taken to be E[u(-,t)y(1)]. This property of
the quadratic payoff function was originally stated by Simon {1956) and
Theil (1957).

It should be emphasized that the optimal decision {unctions, &(-, ),
for t =2,..., T, will typically not be the same as the optimal decision
functions for 1 = 2,..., T in the original problem f[say &(-,:)]. The
former are sometimes called the planned decisions. These plans must
typically be revised when new information becomes available, as follows.

At time t = 1, the decision-maker knows y(1) = n(x, 1); he thercfore
knows fA{y(1),1],...,@[y(1), T] and can solve the second problem to
obtain the decisions &(t) = a[)(1),t],¢t = [,..., T(hence the term certainty-
equivalent, since at time 1 he knows (is certain of) all the parameters of
the second problem). Since (as we shall show), & -, 1) = &(-, 1), the best
decision at time 1 is d(1).

Fixing a(1) = &(1) in the payoff function (2.1) determines a new quadratic
function in the action variables a(?), ..., ®T). A new certainty-equivaient
problem can then be formulated at time 2, leading to the determination
of the best action at time 2, and so forth.

Finally, one can show that the planned decisions at time ! are the
mathematical expectations of the optimal decisions given the information
at time 1, that is,

(2.5) aly(1).t] = E@@),tliy()}  t=2,...,T

The importance of the certainty-equivalence theorem is that it enables
the decision-maker to substitute for the problem of determining T
decision functions, &(-,1),...,8(-, T), the problem of determining T
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decisions, a(1},...,a(T). Thus it is not necessary to determine the best
decision at a time t for any value of the information signal y{t) except
the one actuatly observed. On the other hand, to obtain the best decision
at time | requires solving a problem with T variables (d(1),..., &T));
to obtain the best decision at time 2 reqmres solving a problem with
(T — 1) variables, and so forth.

For example, if the decision-maker observes at each time t a variable
that can take on one of K values, and he remembers all past observations,
then his information signal, y{t), at time ¢ can in principle take on one of
K' different values. Suppose that his action variable at each time ¢t is
one-dimensional; then his decision function «f -, t) at time ¢ can effectively
be represented by a vector with K' coordinates, and his sequence
[ -, 1), ..., a(-, T)] of decision functions by a vector of

T KKTT - )
6 Ke —=—F—=
26 Z K1
coordinates. On the other hand, there are T variables &(l),...,&7) in

the certainty-equivalent problem at time I, (T — 1) variables in the
certainty- equwalenl problem at time 2, and so forth; all in all there are

@7 2 (T—t+1)= LT; D

variables in all the certainty-equivalent problems taken together. Note
that, asymptotically, (2.6) increases like KT ™!, whereas (2.7) only increases
like T2

Unfortunately, it does not appear that the certainty-cquivalence
theorem generalizes in any convenient way to the case of a proper team,
nor 10 nonquadratic payoff functions.

To prove the certainty-equivalence theorem, take the conditional expectation
of condition (2.3}, which determines the optimal decision functions, given #( ., 1).
This gives

}jg(s OELE[&(-, (-, s)lim( -, 1)} == {E[u( sha(- x)m(, 1) s=1,...,T
(2.8)

Since n(-, 5) is as fine as n(-, 1), for each s, it follows from the theorem on iterated
expectations that, for any [unction fon X, -

E{E{fln(-, s)n(-, D} = ELfIn(-, 1)]
In particular,
E{E[8(-, (-, s)lin(-, 1)} = E[4(-, (-, 1)],
ELEQ( -, )~ , s¥ln(-, 1)} = Elut -, sl -, D]
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Substituting these into (2.8), we obtain

2.9 Y Qs DE[&(-, tin( -, Bi = E[p(-, 8-, 1)]  s=1,...,T.
Define
(-, 0) = E[&-,0lp(-. 1]

(2.10) ) .
A0 = Elu(-,ola(-, Dl

then (2.9) becomes
(2.11) Yos, (-, 0=4-,5) s=1,..,T

T
But this is the condition that determines the optimal decision functions in a problem
with payoff function
Mx,a) =23 jlx, Yalt) — Y alsyQ(s, alt),
t ERS

and in which all decisions are based on complete information about j(-,1},...,
j( -, T); see Chapter 6, Section 5. Note, however, that from (2.10)

8-, 1) = E[8(-, Din{-, 1) = é(-, 1),

s0 that &( -, 1} is the optimal decision function at time 1 for the original problem.

Note that, in the proof, we only used the fact that 5( -, £} is as fineasn( -, Dforall ¢,
However, to continue the process at time 2, we would need that n(-, 1) is as fine as
n(-, 2y for all t = 2, and so forth.

3, SINGLE PERSON, AUTOREGRESSIVE ENVIRONMENT,
DELAYED INFORMATION

INTROGDUCTION

Although our primary interest isin the team, it may be helpful to continue
our review of single-person problems. We shall study some results on the
effects of delayed information in a succession of single-person decision
problems. These results are well known from the theory of prediction
and extrapolation. We shall take up in turn the following cases:

1. Delayed complete information, with a one-dimensional action
variable. ’

2. Delayed incomplete information, with a multidimensional action
variable.

In both cases, we shall assume that the quadratic payofl function is
additive in time, as in {1.3), and indeed with the matrix Q(t, ¢) of interaction
coefficients constant in time. The coeflicients u(x, 1), on the other hand,
will be assumed to form a lincar first-order autoregressive process (this
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concept will be explained below). In particular, we shall consider two
special cases: (1) the case in which the process is stable; {2) the case of
Brownian motion, in which the p(x,r) are formed by the successive
addition of independent increments.

As we shall see, the distinction between the stable case and that of
Brownian motion is especially significant in the problems with in-
complete information. In the case of stability, the cocfficients p(x,!)
tend to stay near a “"normal,” or mean, value, and the conditional
variance of u(x, ), given the initial value u{x, 0), approaches an upper
bound as t increases. Therefore the expected loss per unit time due to the
incompletencss of the information also approaches an upper bound as ¢
increases.

In the Brownian motion case, on the other hand, the variance of
u(x, t) increases linearly in 1, and therefore the expected loss per unit
time due to the incompleteness of the information also increases linearly
in t. A consequence of this is that it periodically becomes worthwhile to
obtain complete information about uix,t), possibly with some delay.
This aspect of the probiem is further explored in Section 5.

ONE-DIMENSIONAL ACTION VARIABLE

Consider now a single-person decision problem, with a one-dimensional
action variable a(t) in each peried + = 0, 1,..., T, and with a quadratic
payoff function that is additive in time [see 1.3)] such that

(3.1 wx, a(t)] = 2u(x, ha(t) — qla(t)i* g > 0.

We shall assume that the coefficients g{x, t), which we shall abbreviate
as y(t), form a first-order linear autoregressive process, that is to say,

(32) wlt) = wilt — 1) + o(t),

where w is a constant (the autoregression coefficient), where the &(t) are
independent and identically distributed, and &(r) is independent of
u(t ~ 1), e — 2),...,and so forth. Let the variance of &r) be denoted
by v. There is no essentxai loss of generallty in assuming that the p(f)
and &(t) have zero means. Thus

(3.3 Euft)y = Ee(t) =0 Var g(t) =

For this process, the state of the environment, x, could be taken to be
the infinite sequence, [u(0), &(1), £(2),.. ).
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PROPERTIES OF THE FIRST-ORDER LINEAR
AUTOREGRESSIVE PROCESS

We first give a short summary of the properties of the u(f) process.
We shall typically think of time as starting at ¢ = 0; the solution of (3.2)
for u(r) in terms of p{(0) and &(i), ..., () is

p(1) = wp(0) + (1),

#(2) = win(0) + =(2) + we(l), ete.
(3.4)
-1
pt) = wil0) + Y whe(t — m).

m=4

From (3.3} and (3.4) one easily obtains the variances

(3.5) Var uft) = w* Var p(0) + o,
where

k-1
(3.6 cl=v Yy wn

m=0

More generally, 1(2) is related to u(s) by

r-s-1

3.7) W)= wous) + Y whei—m)  ssu

m=0

One can easily show from (3.7) that the conditional mean and variance
of u{t) given u(s) are

E[u(t)u(s)] = w ~*uls),

Var[u(tiu(s)] = o,- 2.

One can classify the members of this family of processes according to
the value of the autoregression coefficient w.

If w =0, then the successive t) are independent and identically
distributed.

More generally, if iwl < 1, then as ¢ gets large the distribution of u()
approaches that of the random variable

(3.8)

@

3.9) > wmE(m),

m=90

where the &(m) are independent and identically distributed with the same
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distribution as the ¢(¢); the limiting variance of u(z) is, from (3.5),

(3.10) =Y.

1 — w?
Thus, in this case, the process tends toward a statistical equilibrium or
“steady state.” We shali call this the stable case. In particular, il 1(0)
already has the same distiribution as {3.9), then the process is stationary,
and all of the y(t) are identically distributed, with variance 4, as in (3.10).
If w = 1, then w(f) equals p(0) plus a sum of independent and identically
distributed random variables. In particular, if p(0) = 0, then we shall
call this the case of Brownian motion:

r

(.11 Coult)y =Y om).

m=1
The variance of u(t) increases lincarly with ¢, thus:
(3.12) Var p(t) = to.

If w= —1, the process is similar to Browniau motion but with an
oscillation. If [w| > 1, then the process is explosive in the sense that the
variance increases geometrically with time. In what follows, we shall
restrict our attention to the cases [wl < 1 and w = 1.

A stochastic process {x(/})} is said to be stationary if the joint distribution of any
finite number of the variables is invariant under a translation of the time index ¢,
that is, for any t,,...,t, and any ¢, the joint distribution of x{t; + #},...,x{t, + ¢)
is the same as the joint distribution of x{¢,), ..., x(1,). If we extend the sequence of
independent and identically distributed random variables £(t) backward indefinitely,
and rewrite (3.4) with an arbitrary starting time 74, we get, from (3.7},

ol 1

TR (S z whe(t — m) =t

m=0

Ifiw < L, then as ¢, tends toward — <o with ¢ fixed, f) converges to

oy

Hy= Y whet - m)

m=0

almost surely (use Theorem D, Section 46, of Halmos 1950), and it can be verified
that the process {ji(t)} is stationary. Note that every ff(t) has the same distribution
as does the random variable (3.9). If w(0) alrcady has this same distribution, then
it is clear that the {u(r)} process will be stationary.

We have called the case in which [wl < 1, stable, since the corresponding non-
stochastic difference equation is stable in this case (see Robinson 1959, p. 106);
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however, there appears to be no standard terminology for this case, In the auto-
regressive process that we are considering, stability is a necessary, but not sufficient,
condition for the process to be stationary.

The term Brownian motion is usually applied to the continuous time process in
which successive increments are independent and normally distributed. Here, on
the other hand, time is discrete and we do not assume normality.

VALUE AND LOSS WITH DELAYED INFORMATION

Suppose that the action at time ¢ is chosen on the basis of information
about the u-process that is delayed d periods; to be precise,

(3.13) nix, ) = ult — d) d=0.

It is an easy consequence of the principle of maximizing conditional
expectation in the quadratic case [see Chapter 2, Section 5, or (5.5) of
Chapter 6} that the best decision function for period t is proportional
to the conditional expectation of u(t) given u(t — d), namely,

1
(3.14) afplt ~ d)t] = (a) wi(t — d),
[Recall that the payoff function is given by (3.1).] The expected payofl
in period ¢, using the best decision function, is [see (5.11) of Chapter 6)
(3.15) (1/g)w? Var[p(t ~ d)).

Since the maximum expected payoff with no information at all is zero,
(3.15) also gives the value of the delayed information,
(3.16) Vid) = (1/q)w?® Var[u(t — d)].

The expected payoff in this expression is shown as depending on the
delay d of the information. In particular, for zero delay, the value is

(3.17} V{0) = (1/g) Varp(1)].

This is the maximum possible value, that is, the value of complete
information (see Chapter 6, Section 5).
Expression (3.16) for the value of delayed information can be rewritten

(3.18) Vi{d) = w2V, _ 40),
or alternatively,

B _ oo Varlu — )

Vioy Var[u(1)]
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The cxpected loss duc to delay is easily calculated to be [sublracting
V(d) from Vy0)]:

(3.20) Lid) = =

fuse {3.16), (3.17),(3.5), and {3.6)}. Notice that the loss ar date t because of
using delayed information depends on the delay but not on t.

TABLE 7.} VALUE AND L.0SS FOR DELAYED INFORMATION, AS A FUNCTION OF THE
DELAY (d) AND THE TIME (/) : Ong-DIMENSIONAL CASE

Type of Value Loss Limit of loss
pft) process V(d) L,(ey asd - o0
v
- ifd=0 0 ifd=0
q
Independent -
q
0 ifdz1 VS
q
1 o(l — w2 v
Stabl —{w*V 0} + wi¥al
able case q[w ar w0} + wi¥al ) prEg— prT—
Brownian motion t —dw dv o
q 4

Table 7.1 gives the value and loss as a function of delay for the three
cases of independence, stability, and Brownian motion. In the case of
independence, any positive delay is as bad as no information at all.
In the stable case (which of course includes independence as a special
casc), the loss increases toward a limit, v/g(1 — w?), as the delay, 4,
increases. In Brownian motion, on the other hand, the loss is proportional
to the delay. As we shall show, this important distinction between the
stable and the Brownian motion cases carries over to the proper team.

MULTIDIMENSIONAL ACTION VARIABLE AND u-PROCESS;
DELAYED INCOMPLETE INFORMATION

If the problem just considered is generalized to the extent that the
action variable is a real vector, the results are somewhat more complicated
but qualitatively similar. In particular, the stable case stiil has the feature
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thalt the loss due to delay remains bounded as the delay increases without
limit, while in the Brownian motion case the loss depends on the delay.

If the pu-process is also vector-valued, as in the guadratic payoff function
{2.1), then one is naturally led to consider the situation in which decisions
are based upon information that is not only delayed but incomplete, in
the sense that, even if it were undelayed, the information in question
would still be incomplete. We retain for the time being, however, the
assumption that all decisions in any given time period are based upon the
same information. We shall calculate the best decision functions and the
expected payoff, and identify the separate losses due to delay and incom-
pleteness of the information.

Suppose that the one-period payoff function is

(3.21) w(x, alt)] = 2{tyalt) — alt) Qalt),

where alt) is the n-dimensional action variable, u(7) is a random vector,
and Q is a fixed positive definite matrix. The coefficient vector u(1) is
assumed to be determined by a lincar first-order autoregressive process,

(3.22) p(t) = wult — 1) + s(0),

where w is a scalar constant,* the vectors &f) are independent and
identically distributed, and &(r) is independent of u(t — 1), u(t — 2),...,
and so forth. There is no essential loss of generality in further assuming
that the u(f) and 2(t) have zero means. The matrix of variances and co-
variances of the coordinates of &) will be denoted by ». Thus

(323 Eu(ty = Ee(t) = 0 Varg(t) = v.

Under these assumptions, (3.4) to (3.8) also describe the properties of the

vector-valued, u-process, and the classification of cases (independent,

stable, Brownian motion, etc.) applies as well. The symbol Var p(f) must

be interpreted as the matrix of variances and covariances of the vector u(r).
Let the information structure at time ¢ be

(3.24) nx, 1) = flult — d)],
where 7 is a fixed function and d is the delay. We may interpret
(3.25) 2s) = fi[pls)]

as an observation, possibly incomplete, of the u-process at time s. This

4. The more general case in which w is a matrix will be treated in the fine print at the
end of this section. However, the case in which w is a scalar already exhibits the influences
of delay and incompleteness of information that we want to illustrate, but with a minimum
of complication.



7: The Team in a Dynamic Environment. § 3 249

observation is available to the decision-maker, however, only with a delay
d (see Section 1}, so that the action at time ¢ is based on the information

(3.26) wWe) = =z(t — ).

Ii is important to distinguish at this peint beiween information about
u(t — d) and information about the entire path of the u-process up to and
including the time (t — d). We shall be analyzing the former situation;
the latter situation involves finer information structure and hence larger
value. It might be thought that, since (¢} is 2 Markov process, information
about u(s)along the entire path leading up to the period (r — ) is no more
helpful than information about gt — d) alone. But even if u(f) is a Markov
process, the process z(t) may not be, as was mentioned in Section 1.
Thus knowledge of the path z(s), s < t — 4, leading up to time (t — d)
will in general lead to a higher expected payofl than knowledge of z(t — )
alone.

One might say that we are going to deal with an information structure
that exhibits both delay and lack of memory. In certain special cases,
however, the observation process z(t) will have the Markov property, in
which case lack of memory will not result in any loss.

Let ji(s) denote the regression of u(s) on z{s), that is,

(3.27 fils) = Elu(s)z(s)].

We shall show that the best decision function at time + based on the
observation z(t — ) is

(3.28) a[ye), f] = W@~ it — d)
and that the value of this information structure is
(3.29) V(d) = wtrace{Q ™' Var it — d)}.

We shall also show that the loss L{d) duc to the delay and incompleteness
of the information can be expressed as

(3.30)  L{d) = [loss due to using complete information with
delay d at time 1]
+w?? . [loss due to using undelayed incomplete
information at time (t — d)].

Let d(s) denote the “‘residual™ in the regression of u(s) on z(s), that is

(3.31) 3(s) = pls) — jls).
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It is well known from regression theory that
(3.32) Var u(s) = Var ii{s) + Var i(s).

[The terms Var ji(s} and Var 8(s) are sometimes called the explained and
unexplained variances, respectively.] We shall show below that the exact
expression for the loss L(d) corresponding to (3.30) is

-1
(333) L(d)= ( 3 wz"') trace Q7 'v + w2 trace 07! Var §(t — d).
m=0

Table 7.2 gives the value and loss for the special cases of a stationary
p-process {|wl < 1) and Brownian motion (w = 1). We see again that, as
the delay gets large, the loss approaches an upper bound in the stationary
case; whereas it is unbounded in the Brownian motion case.

We see also that the loss is again independent of ¢ in the stationary
case, whereas in the Brownian motion case the loss depends on t if the
observation z(t} is not complete (i.e., if the variance of the residual 8(f) is
not zero). In the Brownian motion case, the loss L{d) depends on ¢ through
" Var &(t — d). There does not appear to be any simple general statement
about how Var d(t — d) depends on t for arbitrary # and distribution of
(t). However, an interesting special case is the one in which # is linear
and the &ft) are normally distributed. In this case it can be shown (see
below) that, for fixed d, Var d(t — d) increases linearly as a function of ¢,
and therefore so does L (d). Indeed it can be shown that in this special case

(3.34) Lid) = dtrace Q7 'v + (t — d) trace Q! Var §(1).

This case in which the &(t) are normally distributed and 7 is linear will be
calied here the special Brownian motion case.

We now derive the best decision functions and the formulas for value and loss in
the case of delayed incomplete information. We do this for the general first-order
autoregressive process

(3.35) o) = Wt — 1) + &li),

where all the assumptions of (3.22) and (3.23) are made, with the exception that W
is assumed to be a nonsingular matrix [rather than just a scalar as in (3.22)].

The relevant properties of the process (3.35) are similar to (3.4) to (3.8); however,
with the interpretation of the variance as a matrix and a more general definition of
a2 Thus

t—s-1

(3.36) () = W' su(s) + f Wms(t — m),
m=0

(3.37) Var u() = W' Var[u(0))W" + §,,



TABLE 7.2 VALUE AND L0OSS FOR DELAYED INCOMPLETE INFORMATION AS A FuNCTION OF THE DELAY (d) AND THE TIME {1}: MULTI-
DIMENSIONAL CASE

Type of Value Loss
H-Process Vi(d) L(d)
General w2 tracel Q! Var jit — d)}

or Vi{d) = wV(0)

I — w
(_lirj trace 0~ 'v + w?* trace{Q ™" Var 8t — d)]

Stationary case

2d -1 !
widtrace{Q ™" Var i}

or Vid) = Vid) = w™V(0)

1 - w?
=1, 2d ~1
( Tz | trace Q" 'v + witracelQ ! Var é}

Brownian motion

trace{(Q ~* Var jir — d}}

Brownian motion with
linear # and Gaussian &t}

(t — dytrace{Q ! Var }{1)}
or Vid) = (t — )V (0)

dtrace 0" 'v + (t — d)trace [Q "' Var 8(1)]
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k-1
(3.38) Se= ¥ WOW,
mn=0
(3.39a) EQpnlu(s)} = W''nls) s <,
(3.39b) Varltiu(s)) = S, st

To obtain the best decision functions, we apply (5.5) of Chapter 6:
dlzlr — )t} = @ "EQunlzte — ).
Since ult — d) is at least as fine as z{t — d), it follows from (6.8) of Chapter 2 that
(3.40) Bt — d)) = E{E[utlute ~ d))lze — d)}
EIWiult — d)|=(t — d)
WIEu(t — dilzlt — d)].

Define

(340 sy = E[us)izs)]:

then we have shown that the best decision function is
{342) glz(t — d), (] = Q™ 'Wiilr — d).

By {5.11) of Chapter 6, the corresponding expected payoff is
(343) Vid) = trace{Q W Var jilr — HIW')"}.

This is also the value of the information structure. The maximum possible value,
for zero delay (d = 0) and z(t) = plz), is

(3.44) V¥ = trace{Q ! Var u(1})}.

Subtracting (3.43) from (3.44), we obtain the loss due to the delay and incompleteness
of the information at date ¢:

(3.45) L{d) = trace Q™" Var ult) - trace Q' W? Var it — H{W'Y.

If z(t — d) = p{t — d), that is, if the observalion is complete, then the loss is, from
{3.45):

(346) . L¥d) = trace Q0 *[Var jr) — W* Var ult — d)(W')L
Using (3.37) and (3.38), we can reduce this to

L¥d) = trace Q7'(S, — 5,0
—1
=trace Q7' Y WW)m

m—t1-d

(347
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On ihe other hand, if the observation is incompiete but the information is
undelayed, then the loss is

(3.48) L{0) = trace Q™ '[Var u(t} — Var g(1)].

We shall show that the general expression for the loss, L{d), can be represented
as a sum of two parts: a first part equal to the loss due to delayed complete informa-
tion, and a sccond part similar to the loss duc to undelayed incomplete information.
[In the special case in which W is scalar, this second part is exacily equal to w**
times the foss due to incompleteness, as in (3.33).] To see this, let 8(s) = ps) — fifs)
as in (3.31). Then (3.45} can be rewritten

(3.49) Ld) = [V} — VD] + [VFd) — Vi),
where '
(3.50) Vid) = trace ¢~ 'W* Var ult — (W'Y

is the value of delayed complete observation. The first term in brackets in (3.49) is
therefare just equal to (3.46).
The second term in brackets in (3.49} equals, by (3.43), (3.50), and (3.32),
(3.51)  trace Q7 '[W¥ Varp(t — DWW — W*Var it — d)y(Wy)
' = trace QW7 Var §{t — dj(W')".
This last is to be compared with (3.48), which by (3.32} can be rewritten

(3.52) trace Q' Var &(1),

In particular, if W = wl, where w is 2 scalar and [ is the identity maltrix, then
(3.51) reduces to

(3.53) wirace ¢ ' Var it - d),

which is equal to wL,_ 40). Indeed, setting W = wi, we obtain ali the results of the
main part of the text in this section.

4. PROPER TéaM, AUTOREGRESSIVE ENVIRONMENT,
DELAYED INFORMATION

INTRODUCTION

In this section, we extend our analysis of the previous section to deal
with delayed information in a proper team, that is to say, delayed informa-
tion such that different decisions made at the same time are based upon
different information. Prccisely, we shall analyze information structures
of the type,

(4.1) g =dlpt - dl=zt—d)  i=1,....n
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As we shall show, under the assumptions that we have been making
about the u-process, the best decision functions for delayed team informa-
tion are proportional to the best decision functions for undelayed team
information, the constant of proportionality depending on the dclay.
Also, as in the case of a single person, the loss due to delayed incomplete
information can be decomposed into a loss due to the delay and a loss
due to the team structure (incompleteness) of the information.

In particular, in the special Brownian motion case the loss due to the
team structure of the information increases linearly with time. This leads
us to consider in Section 5 the periodic recovery of delayed compiete
observation.

BEST DECISION FUNCTIONS, VALUE, AND LOSS

Let &(r) denote the best team decision functions at date ¢ for the
information structure (4.1), and let &(t) denote the best team decision
functions at date ¢ for the special case in which the delay is zero (d = 0).
We shall show that

a2 8t) = wiaft —d) j=1,....n

Also let V{d) be the value of the information structure {4.1); we shall
show that

(4.3) Vid} = w*V,_,0).

Let P,(d) denote the value of the information structure in which each
team member at time ¢ receives a complete description of ut — d), that is,
z{t) = uft — d) for each i (delayed complete observation). In particular,
P(0) is the value of complete information for the team at ttme t. The loss
at time f due to using the team information structure (4.1), compared
with using complete information, is

(44) Lid) = P0) - V()

We shall now decompose this loss into the loss due to delay and the
loss due to the team structure of the information. Applying (4.3) to the
case in which z,(f) = u(1 — o), we get

(4.5) Pid) = wHP,_ (0),
and the corresponding loss is

(4.6) Lid)y = P0) — Pgd) = V{0) — w?*P,_40).
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We can now write the loss L{d) as
L(d) = V(0) - P(d)
(P40) — PUd)) + [Vi{d) — V(]
= L{d) + [w2¥,_ (0) — wHV,_ (0]
(4.7) L(d) = ;,(d) + wiL,_ (0}

Note that L, _ ,(0) is the loss due to using the undeluyed team information
structure gt — d) = At — d) as compared with complete information,

I

It

To characterize the best decision functions, we apply the person-by-person satis-
factoriness condition in the jorm that it takes for the guadratic case in Chapter 5,
Theorem 4. This gives us the equations

@48) ¥ quElSlzft — )1zt — )} = Efplzie — )} i=1,...n

From (3.40) of the last section,

(4.9) E[ptlzdr — ] = wiilt — d),
where
(4.10) B0 = Elpdnlz{n].

Hence (4.8) can be rewritten
(4.11) Zq,-J-E{(“L#)&I[zJ(z — dy, Izt — d)]} =at—dy i=1,...m
j

Setting d == 0 in (4.11), we obtain the equations that determine the decision functions
&f1):

(@.12) Y0, Bz, Az} = A0 i=1on
¥

Hence the equations that determine the &t — d} are
413)  YgElElzpt—dyt—dlzt —dt =gt -) i=1,....n

J
A comparison of {(4.11) and (4.13) shows that
4.14) Glzft —dht —d) = (w%,)a‘tj[z,{t -dyi]l  j=1....8
since the solution of the system is unique (sce Theorem 4, Chapter 5), thus proving

(4.2)
From (3.4) of Chapter 6, we have

{4.15) Vid) = E 3 &lnur)
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By (4.2),
4.16) E&(Dpdn = w'Ex{t — dyulr).

Since {1 — d) is a function of z{t — d), and p{t — d) is as fine as z,(t — d), it follows
that &{r — d) is constant for any given value of p(t — d), so that

@17 Bzl — dy(oiedi — ] = &t — DB — d)]
= &t — dwinft — d)

[use (3.8)]. Taking the expected value of both sides of (4.17) and applying the theorem
on iterated expectations [(6.7) of Chapter 2], we get

4.18) Ez(t — dydt)y = w'Edft — dyult — d).
Hence, combining (4.15), {4.16), and (4.18),

4.19) Vidy = wE Y d(t — duft — d\
In particular, ford = 0,

4.20) W)= E Z afnplr).
Now (4.3) fc‘>llows immediately from (4.19) and (4.20).

THE STATIONARY CASE

In the stationary case, the value of the team information structure is
constant in lime, and depends only on the delay and the structure of the
information function #. Thus (4.3) becomes

(4.21) V{d) = w*V(0).

The value is the product of two terms: one depending on the delay alone
{(w?%) and one on the information function # alone [¥(0)].
Correspondingly, the loss can be written

(4.22) L{d) = P{0) - ¥(d)
= (1 — w¥P(0) + w¥[P(0) — V(0))
= (1 — W)V (0) + w2L(0).

The loss (per unit time) is a weighted average of the value of complete
undelayed information [F(0)] and the loss that would be caused by having
the undelayed team information function ij. The greater the delay, the
greater the weight attached to the first term.
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THE BROWNIAN MOTION CASE

Again the results are similar to those for the single person, The loss
depends on ¢t if the team information function 7 is not complete, If the
“shocks™ e(7) are normally distributed and the information functions #,
arc Jincar (the special Brownian motion case) then again the value and
loss are linear in t and d,

{4.23) Vid) = (t — V()
(4.24) L{d) = V{0) — V{d)
= 17(0) — (¢ — d)V,(0).

This last one can be written in two ways. One way is

Lid) = dV,(0) + (t — {V1(0) ~ V1(0)}
4.25) = dV,(0) + (t — d)L,(0).
Here ¥,(0) is the value of complete information at time 1, and L,(0) is
the loss at time | due to having undelayed team information # rather

than (undelayed) complete information.
Alternatively,

(4.26) Li{d) = dV,{(0) + t[P{0) — V,(0)]

= dV,{0) + tL,(0).
Here V,(0) is the value at time | of the undelayed team information #.
5. PERIODIC RECOVERY OF DELAYED COMPLETE INFORMATION

The analysis in the last two sections of a team in an autoregressive
environment brought out a contrast between two special cases: the
stable case and the Brownian motion case. In the stable case, the value
of a given information structure per unit time as a function of time, t,
approaches a finite limit as ¢ increases, and so does the loss (as compared
with having complete information). The limiting value and loss are, of
course, those of the corresponding stationary case.

On the other hand, in the special Brownian motion case, both the value
per unit time of a given information structure (as compared with no
information) and the loss per unit time (as compared with complete
information) increase linearly with time. Recall (4.23) and (4.26),

{5.1) V) = (t - AV, (0).
(5.2) Lid) = dV,(0) + ¢L,(0).
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However, the loss due to having delayed complete information® as
compared with undelayed complete information depends only on the
delay, not on the time:

(5.3) Ld( = dP,(0)

[since applying (5.2), L,(0) = 0].

Hence, in the special Brownian motion case, whatever be the cost of
complete information, even delayed complete information, there is some
time t such that it is worth having. This remarkable feature of the special
Brownian motion case derives essentially from the assumption of a
quadratic payoff function, together with the fact that the variance of the
special Brownian motion process increases linearly with time. Recall that,
in the casc of a quadratic payofl function, the expected loss due to incom-
plete information is a linear function of the variances and covariances
of the errors in the actions of the team members (Chapter 6, Section 5).
In the special Brownian motion case, the variances and covariances of
these errors increase linearly in time for a given (linear) structure of
information.

We suspect that this feature of the special Brownian motion case to
which we have called attention is also characteristic of a much broader
class of cases in which the payoff function is unbounded and the environ-
ment is nonstationary and, in some sense, also unbounded.

Suppose now (in the special Brownian case) that cach team member
receives complete information on u(ty). This has the cffect of using ¢, as
a new origin for the measurement of time and u(t,) as a new origin for
the measurement of the u-process. This is suggested by (3.6) and (3.8),
with w = 1, since

Efu(ty — pltollu(te)) =0 1214
(5.4)
Var[u(t) — ulzollpito)] = (t — to)o t2tg.

Indeed, it is easy to go farther and show that the conditional joint
distribution of

(5.5) plty + 1) — plto), plto + 2} — plto), ..

given any sequence of observations on the u-process up to and including
time to, say plty), iy - 1)y .-, plty), pleo) with by < ty_y < ... <1y < g,

5. According to the terminology of Chapter 6, delayed information cannot, strictiy
speaking, be complete. We shall, however, use the term delayed complete information to
denote the case in which action at time ¢ is based on knowledge, by all team members, of
pit — d).
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is the same as the joint conditional distribution of the variables (5.3)
given u(f,) alone, and that this conditional joint distribution is the same
as the joint distribution of p(1), 22}, ... given () = Q.

It follows from this that, if the team has complete information about
plto), and at time t >ty + d cach team member i learns #{x, 1 — d),
then the loss as compared with having complete undelayed information at
time { will be the same as the loss that would be incurred at time (¢t — 1)
due to having the information #(x, t — ty — d), as compared with having
complete undelayed information at time (z — o).

More precisely, consider the information structure

(5°6) ni(xs I) = [“(IO)’ ﬁi(xv [ — d)] g <1 — d$’ = 1» sl
It follows from the above remarks that the loss at time 1 is equal to
(5.7) L L) = dVy0) + (1 — to)14(0),

where L(d} and V,(0) are defined for the information structure (4.1).
Suppose that, at time 1, the team had the opportunity to obtain complete
information about u(t,), where t, < 1. By how much would this additional
information reduce the team’s loss at time ¢? Subtracting (5.7) from (5.2),
we find this reduction to be equal to t,L,(0). (Recall that L,(0) is the
loss that would be incurred at time 1 due to having undelayed information
fi rather than complete information.) Hence i complete information, even
if delayed, can be made available to all team members ar some given cost, it
will eventually be worthwhile to do so, no matter what the given cost is.
This suggests that we examine the effects of a policy in which the team
periodically recovers complete, though possibly delayed, information.
We consider a policy according to which the team receives information
with structure § every period, but with a delay of d, time units, and receives

complete information every b periods, with delay d,. To be precise, define
0 0t<b+4d,

(58 Gl = ' .
kb kb +dy 2t <(k+ Db+dy, k=1 (kintegral),

Suppose that the information structure n is defined by
(59) ndx o) = (WG Alue — da))  i=1,....n

where 7, , .. ., 7, are fixed information functions. We assume thatd, < d,.
Foranyeyclekb + d; £t < (k + )b + 4, (and k = 1), the loss at time
tis, from (5.7),

(5.10) L, = d,;Vy(0} + { — kb — d,)L (0},
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.

FIGURE 7.1. Periodic recovery of delayed complete information. Loss as
a function of time.

t

This loss as a function of time fluctuates between fixed limits, as is shown
in Figure 7.1,
From (5.10)), the average loss per unit time in any cycle (k = 1)is

(5.11) L(d,d,) = d,V,(0) +

b-1
5 + dl)L,(O).

If the team must pay a fixed cost ¢ every time it obtains new complete
information, we may ask, ““What is the optimal cycle length »#?” The net
loss per umit of time over a cycle (after adding the cost of the delayed
complete information) is

(5.12) Ld,.d,) + 15)

It is straightforward to determine from (5.11) and (5.12) that the optimal
value of b is

. 2c V2 i Loy}?
. b= — = 1 .
G13) [Ll(O)jI b [ 2 ]
Thus the optimal frequency of recovery of delayed complete information
is proportional to the square root of the difference in value between

complete and incomplete information, and inversely proportional to the
square root of the cost.

6. SUBSTITUTION OF TIMELINESS FOR COMPLETENESS

We now explore the situation in which the information structure 7
can be improved only at the expense of increasing the delay with which
the team receives the information # We consider a family of information
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functions #,, indexed by some parameter g, with the convention that the
larger the valuc of g the betler is 7, that is, the larger the expected payoff
when #, is used without delay. On the other hand, we supposc that the
delay with which #, is available to the team also depends on g, for example,
d = D{g), in such a way that D(g) is an increasing function of g.

In such a situation, there will typically be a point beyond which it
does not pay to improve the information function #, (increase g) because
the gain so obtained is more than offset by the loss due to increased delay.

The optimal balance between timeliness and completeness will depend
on the particular family of information functions #,, and on the dclay
function D{g), as well as on the other characteristics of the team. We
can at most illustrate the problem, and we have chosen for the illustration
the family of information functions generated by partitioning the team
members into groups of equal size, with complete communication within
groups and no communication between groups. (We have already studied
this simple type of information structure in Chapter 6, Section 7.) For
this family of information structures, we can take the parameter g to be
the group size in the partition.

Again we contrast the special case of stalionary and Brownian motion
environments, In addition to deriving a few more general results, we show
that, in the stationary case, the optimal group size is independent of the
size of the team, whatever be the delay function D. On the other hand, in
the special Brownian motion case, the optimal group size does depend
upon the size of the team; the form of this dependence is determined by
the delay function D. For example, if the elasticity of delay with respect to
group size is constant, say h, then as the number, n, of team members
increases, the ratio of the optimal group size to the size of the team is

asymptotically
1 Lith+ 1}
i

Here the optimal group size incrcases without limit as the team size
increases, but at a slower rate, so-that the ratio of optimal group size
to team size approaches zero.

THE STATIONARY CASE

Consider a family of information functions #,, indexed by a parameter g.
Assume that g varies from 0 to g > 0, and make the convention that
g = 0 corresponds to no information, and that g = g corresponds to
complete information. We make the further convention that the larger g,
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the better is #,, when used without delay. Thus, using the notation of
Section 4, we assume that

(6.1) V{0) = Blg)V(0),

where P(0) is the value per unit time of undelayed complete information,
V{(0} is the value of the information #j, without delay, and £ is a function
of g such that

6.2)  B(0)=0, flg=1, f# is monotone increasing,

On the other hand, we suppose that, to get a better information function
¥, one must accept a longer delay, that is,

(6.3) d = D(g),
where
(6.4) D(0) = 0, D(E) =d, D is monotone increasing,

In addition to deriving conditions for an optimal value of g, we shall
show below that '

1. Tt always pays 1o have some information (and some delay); that is,
the optimal value of g is positive (provided w > 0); and

2. If D is convex and f§ is concave, then the optimal value of g is less
than or equat o g, according as the autoregression coefficient w is less
than or greater than some critical value (in absolute value). In other
words, if w is sufficiently small in absolute value, then the optimal balance
between timeliness and completencss of information is such that informa-
tion is less than complete and delay is less than the maximum. On the
other hand, il w is sufficiently large in absolute value, then it is best to have
complete information (with, by necessity, the maximum delay, d).

it will be shown below that, if the optimal value of g is strictly less
than g, then it is the solution of

B _

5 =
6.3) Blg)

b,
log(;i)D (g)

Consider the family of information structures generated by equal
partitions of the team members (Chapter 6, Section 7). In the special case
of identical interaction (g; = 1, q;; = g for i # j} and uncorrelated u{t)
with equal variances, (5.23) and (7.10) of Chapter 6 give

14 @—2g¢ 1+~ 1)g

GO T T Tr e 2




7+ The Team in a Dynamic Environmment. § 6 263

where g is the number of persons in each set of the partition. A routine
calculation yields®

R L+~ 1)
©7) e = [L+ (g~ 1)r1}2(| +{n — 2)61)’

so that #f is concave.

It seems reasonable to assume that D(g) is increasing and convex.
In order for each member i of a given group to learn the numerical value
of y; for each j in his group, some process of observation and communica-
tion is required, which might be expected to take more time the larger
the group. Furthermore, D(g) is the delay from the observation u{t — d}
to the time ¢ at which the actions based on the information about p(t — d}
are actually taken. Thus this delay also includes the time to compute the
action, and this time, too, would be expected to be longer the larger the
group.

From (6.6) and {6.7) , we get

Blg) q

6. _ T .
(68) B~ 0+t~ lalli ¥ @ = 2]

Notice that, in this example, #'(g)/f{(g) is independent of the number, n,
~of team members. Hence, applying condition (4.35), the optimal group
size g is independent of the number of team members.

From (4.3} and (6.1). and recalling that in the stationary case the value V() is
independent of ¢, it follows thal the value of the information fly, with delay d = Dig), is

{6.9) flg) = W fig)F(0).
We nole that, if w > 0, then f(0} = 0 and f(g) > 0 for g > 0; hence conclusion (1)
above that it always pays to have some information (with the corresponding delay)

ifw > 0.
The derivative of f with respect to g is

17 .
(6.10) Slgy= [B'(g) — flg)D'(g)log ;‘;2] POpw? e,
I3 is strictly concave and D is strictly convex, then f8' is decreasing and D' isincreasing,

Also, § is increasing, so that the term in the brackets on the right-hand side of (6.10),
namely,

!
611 F(z) — Ple)D{g)log .

6. We ignore the facl that, strictly speaking, g must be an integer here.
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is decreasing. Since
POm0® = 0

{we assume w > 0), it follows that the equation /() = 0 has at the most one solution
on the interval {0, #), and that any such solution is also determined by setting (6.11)
equal to zero. We already know that f(0) > 0 for w = 0. Inspection of {6.11} shows
that, for w sufficiently small, f'(g) = 0 has a solution on (0,2}, that this solution is
an increasing function of w, that for some critical value of w less than one the solution
reaches g, and finally that for values of w greater than this critical value f(g) is
positive on (0,2]. Hence the optimal g is positive, it increases with w up to g; it
reaches 7 for some value of w less than one; and for larger w is equals g. We have
thus proved conclusion (2). Setting (6.11) equal to zero yields (6.3).

THE SPECIAL BROWNIAN MOTION CASE WITH
PERIODIC RECOVERY OF COMPLETE INFORMATION

Let us pursue the problem of optimum balance between timeliness and
completeness, for the special Brownian motion case, with periodic
recovery of complete information (as in Section 5). Consider again a
family of information structurcs #, and a delay function D{g), with all
the properties assumed above, and suppose that, for the information
structure #,, the value of this information, undelayed, at time | is

(6.12) V1(0) = B(@)V,(0),

where V,(0) is the value of undelayed complete information at time 1,
and f# has the same properties (6.2) as before.
Recall that the average loss per unit time in any cycle is [see 5.9)]:

{6.13) Lid,, d;) = 4,V {0) +

b—1
5 + di)Ll(O)n

where b is the length of time between receipt of complete information,
d, is the delay of the complete information when it is received, and d,
is the delay of the information jj, (which is received every period).

Since d, is the delay associated with the information 7, we assume

(6.14) d, = D(g),

where D has the same properties (6.4) as before. The average loss per unit
time over a cycle can therefore be expressed as

619 L 00 = | 25w |00 - g + Dl
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It is again easy to show that the optimal value of g is positive. The
optimal value of g may be the maximum, but il it is less than the maximum,
then it ts the solution of '

D) _ F@[d + - 12
(6.16). Dig) ~ B(g)[ Dig) 1]’

provided D is convex and ff is concave.

As an example, consider again the problem of optimal group size for
equal partitions. The function f is the same, and therefore so is §'(g)/f(g),
which is independent of the team size, n. However, a difference arises
in that the delay d; (needed to produce complete information) enters
{6.16), and presumably d, would depend upon the size of the team.
Indeed, d, = Di{n). How the optimal group sizec # varies with the team
size n depends upon the form of the function D. -

For example, suppose delay is proportional to group size, that is,

(6.17) D(g) = cg.
Then, as we shall show, as the size of the team increases, the optimal
group sizc increases, too, but only as fast as the square root of the team

size. More generally, if the elasticity of delay with respect to group size
is constant, say equal to & = 1, that is,

(6.18) Dig) = cg" hz1,

then, as we shall show,

3 1 1/h+1)
(6.19) . [ﬁ] .

! ih

so that optimal group size increases with the size of the team, but not
as fast.

We may write the condition (6.16) for an interior solution § as follows, using the
form {6.8) that §'/f§ takes for partitions and the form (6.18) for the delay function,

recalling that the delay of complete information depends on the team size, that is,
dy = Dfn):

h_ 7 [cn" tb—12 1]
g [1+(g— gl +te — 2q] cg” ’

or

2.2 " _
(6.20) h g7q [n +(b=~1)2 1]_

“U+e-Dall +g-2g)| ¢ g
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We can rewrite (6.20) as

2 b1
6.21 che' ™t = q [cn" + - "].
©20) 8 {4 (g = et ¥ G2 = 2] 3T
If for an unbounded sequence n,, n,,. ... the corresponding sequence of §'s were

bounded, then for that sequence the lefi-hand side of (6.21) would be bounded but
the right-hand side would be unbounded, a contradiction. Hence g must increase
without bound as n does. From this and (6.20), it easily follows that

h
622) lim é% =h
or
8 l Ljth+ 1)
. Nk

Hence, although g grows without bound as r increases, the “relative group size”
#/n approaches zero. Notice that the asymptotic behavior of # is independent of
gand c.

For example,

~

AR
ifth=2 g~ (5) n*3,

= |0

1 13
2

|
(Y

(6.24)

= e

! 174
ifh=3 g~ (5) n,



CHAPTER 8§

The Team Problem as a Problem of Optimal Networks

Lintroduction 2.Networks 3.Some networks for a team with two final action
variables 4.Processing and pooling of information

l. INTRODUCTION

In the foregoing chapters we have confined our discussion of a team’s
behavior to those aspects that can be described by the information function
and the decision function. These two together determine the team action
in response to any given state of nature. This relation between state of
nature and action can be described by a single function, the response
Sunction p, defined by

(1.1) ptx) = ofn(x))

The response function p is the composition of the information function #
and the decision function a. Inversely, (1.1) displays a decomposition of
p into y and o

This decomposition of the response function into information and
decision functions has been useful in exploring certain aspects of the
problem of organization. The concepts of information and decision
functions seemed particularly suitable for the study of the gross expected
utility. As will be recalled, we have found it convenient, though sometimes
artificial, to regard the net value of a response function as a difference
between the gross expected utility derived from that function and the
cost of the organization used to realize, or implement, the function.

On the other hand, when we turn to the discussion of the means by
which a particular response function is to be realized, and the associated
costs, then the decomposition into information and decision functions
may not be so helpful. (See also Chapter 4, Section 11.) Rather, it seems
more helplul to think of the realization of any response functions as
being brought about by combining the observation of events outside the
organization with communication and computation within the organiza-
tion.

The word computation is used here in the sense of a function or trans-
Jormation;, thus a man who responds to a complex stimulus with a

267
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simple response is in effect performing a computation, although he is
not conscious of any explicit arithmetical or logical operations. Com-
putation typically enters into the determination of an information variable
as well as of a decision variable. For example, if the information consists
of the arithmetic mean of several observations, then the computation
of averaging must be performed to determine the message.

Communication may be involved when information variables are
transmitted. Communication is also involved when actions are computed
at one point 1n the organization but implemented at another.

In the next two chapters, we propose to give some attention to the
guestion of organization costs, and for this purpose we find it useful 1o
describe a team in lerms of what we shall call a network. Although a
precise definition of a network (in our sense) follows soon, it may be good
to give here a rough description of what we have in mind. By an element
of a network we shall mean something that transforms incoming messages
into outgoing messages in a well-defined, though possibly stochastic,
way. Messages coming in from nature are to be interpreted as observations,
whereas messages going out to nature are what we have up to now called
actions. Communication involves messages from one element to another.
Compuiation may be performed in the transformation of incoming into
outgoing messages. Errors of observation, communication, and com-
putation are reflected in the stochastic nature of the elements. The network
itsell consists of elements connected to nature and to each other in a
logically consistent way so as to result in a responsc function.

We have just described an abstract network, which is to be distinguished
from the implemented network, consisting of the instruments, or physical
objects (men, machines, etc.), that perform the functions indicated by the
abstract network. There need be no one-to-one correspondence between
the elements of the absiract network and the instruments of the imple-
mented network. A single man may perform several functions of observa-
tion, computation, and communication, and be represented by several
elements in the abstract network. Further, it will be seen below that, in a
dynamic problem, it is natural to represent a single instrument in several
time periods by several elements, just as in Chapter 7 a single individual
in several time periods was represented by several team members. On the
other hand, a whole department or office made up of many men and
machines might for some purposes be represented by a single element of
the abstract network used to describe the organization.

Thus a network realizes a response function, which in turn results in a
certain gross expected utility. From the latter must be subtracted the
cost of the network, the difference being the net expected utility. At this
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level, then, the problem of the organizer is to choose a network with
maximum net expected utility,

In the above formulation, we do not vet take account of the costs that
the organizer himself incurs in his effort to solve the problem of organiza-
tion, nor do we discuss the means by which the organizer may organize
the work of organizing the team; these problems are deferred to Chapter 9.
It is generaliy recognized that a substantial part of the effort of some
members of an organization is typically devoted to the job of organizing,
so that in a sense the problem posed in this chapter is still too special
In another scnse, however, the problem s too general. That is, it is too
general for us to be able to say a great deal systematically about it.

In Seciion 2, we give a precise definition of our concept of a network,
and in Section 3 we illustrate this concept with some simple examples.
In Section 4, we give conditions under which the additional processing of
messages al a point in a network cannot increase the gross payoff, and
pooling of information cannot decrease it.

2. NETWORKS
NETWORK ELEMENTS

In the introductory section of this chapter we outlined the idea that a
response function of a team is generated by a network, the elements of
which transform incoming messages into outgoing messages. These
messages are from or to nature, or from or to other elements. We wish
now to make this idea more precise, and we first take up the concept of a
network element,

The class of real-world objects that we wish to formalize in the abstract
concept of a petwork element is a2 broad one. The reader may keep i
mind the following representative examples:

Person

Computing machine
Department (of an organization)
Communications relay station
Thermostat.

In any particular context, the elements will be the building blocks
from which the various alternative networks being considered are 1o be
built, and the appropriate inlerpretation of the concept of element will
depend upon the details in which the alternative networks differ.

In particular, in problems in which time plays a role, it will usually be
useful to treat the same ‘“‘person” or “‘machine’ at two different times as
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two different clements. This imporiant point is of course related to the
treatment of time in Chapter 7, and will be discussed more fully below.

To every network element corresponds both an input variable and an
output variable. The input variable is thought of as having two components,
the first being a message from nature, and the second a (combined)
message from other elements. The element determines the output message
as a function of the two components of the input message.

The formalism just introduced would at first appear to be capable of
describing only deterministic elements, i.e., elements in which there is a
deterministic relation between inputs and outputs. Two ways of represent-
ing stochastic relations suggest themselves.

First, the stochastic character of the output variable may be ‘traced
back to the stochastic character of nature if the concept of nature is given
a sufficiently broad interpretation. In particular, the message from nature
may be described as having two stochastic components, say 2 and e,
where z' represents the message from the outside world and e represents
the stochastic nature of the element. The variable e is sometimes called
noise (in the channel) by communication engineers, while z would
correspond to source. The distinction between z' and e is that z' enters
the payoff function (is relevant to the decision problem), whereas e does
not. Thus a payoff adequate partition of the set of states of nature would
reflect the variable 2’ but possibly not e.

Formally, then, an element can be described in terms of a functional
relationship

(2.1) b= p(z', e b),

where b denotes the output message, and & denotes the combined input
message from the other elements.! Further, if x denotes the complete
description of nature, then we may denote the determination of z' and e by

(2.2) z = {"(x) e = g(x).

This last takes note of the fact that typically an element is exposed to
only some aspect of nature. We shall say that e represents noise if the
conditional distribution of e given z' and b is independent of z'.

For example, an element that simply transmits a numerical observation
Z', with an additive error e, would be represented by the transformation

(2.3) b=17 +e

1. Note that the symbol § here has a completely different meaning than that used in
Chapters 5to 7.
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Another way of describing the stochastic nature of an element is
provided by the joint probability distribution of the combined message #
from the other elements, the message z’ from the outside world, and the
ouiput message b.

It should be borne in mind, however, that the noise variables of different
elements may be statistically dependent, so that the several joint distribu- .
tions of &, 2/, and b may not suffice to describe the stochastic nature of
the scveral elements of the network taken togeiher. For example, the
noise variables in a number of elements of a radio communication
network .may be correlated because of widespread electrical storms,
One can, of course, describe such statistical dependence by the single
- joint distribution of all of the inputs and outputs of all of the elements in
the network.?

NETWORKS

Having described what we mean by a network element, we are now in a
position to define our concept of a network. Roughly speaking, a network
is a collection of elements, together with a specification of the connections
among them and between them and nature. This specification must be
such as to generate a well-defined response function, that is, such that
cach state of the world results in a (unique) team action.

We suppose then that there are m elements; for each element / one has

Z; = the set of possibic alternative messages z,

5 from the outside world, and
4
¢4y E; = the set of possible alternative values of

the noise variable g,

The connections among the elements are to be described as follows.
For eachiand j, let B;; denote the set of possible alternative messages that
can be sent directly from element i to element j. Typically, some of the
sets By; will be empty. '

The possible messages from nature to an ciement i have already been
described in the sets Z; and E;. The messages to nature from the network
are what we have up to now called the team action variable denoted by
an n-tuple, @ = (a,,...,a,), of component action variables, We shall

2. A mathematically equivalent approach is suggesied by D. Blackwell’s (1953) concept
of stochastic iransformation and is used in Marschak 1971. Each element of the network
is associated with a conditional probability distribution of its outputs, given its inputs.
The joint distribution of all the inputs and outpuis of all the elements of the network is then
determined, given the distribution of the messages from nature.
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think of the n action variables a; as being assigned 1o the several elements,
so that some, but not necessarily all, of the elements will have one or
more action variables assigned to them. In our interpretation of these
abstract concepts, there would typically be many elements without
action variables in any but the simplest of organizations.

We denote by B,y the sct of possible alternative messages from element i
to nature; that is, the set B, will either be empty or it will be the Cartesian
product of some sets A;, where foreachj = 1,..., n, A, is the set of alter-
native values that can be taken on by the action variable a;. For the sake
of symmetry, we may denote by By, the set of possible alternative messages
from nature to element i, that is, the Cartesian product of Z; and E,.

In terms of the notation already used to describe a single element,
the set B; of possible alternative output messages of clement i is given by

(2.5) B, = [] B,.
i=0

On the other hand, the set B; of combined messages from other elements?
is given by

{2.6) B-t' = l_[ Bkl"
k=0

Finally, for each element i, there is a function f; = (B,4,.. ., [, that
transforms input messages into output messages. We shall call §; the
task function of element i. For the sake of symmetry, we may denote the
pair of functions ({;, &), corresponding to (2.2), by ;.

The whole system {By;, §,;}, (i, = 0,...,m) is to determine a response
function according to the equalions

by = Bifbos....by)  i=1,...,mj=0,...,m
b0j= ,80_,-()() j= ],...,m.

In order to insure that the system of equations (2.7) does indeed
determine a well-defined response function, we make the important
assumption of recursiveness: There exists a numbering [ = 1,...,m of
the elements of the network such that, forevery i = 0,...,m,

2.7

() if1 £ < i, then B;; is empty;
(2.8) J i ply
(b} By is empty.

3. Formally, B, and B, as defined in (2.5) include messages from an clement to itsell, but
this is ruled out by {2.8a) below, which requires B, to be empty.
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Condition (2.8a) says that, if the sets B;;, i, j = 1,...,m, are arranged in
a square array with B;; in the ith row and jth column, then all the sets
that are on or below the diagonal arc empty.

Two features of the formulation just proposed call for comments and
clarification. First, note that (after suitable renumbering of the elements)
the output of element i can depend at most on the state of nature, including
noise, and on the outputs of elements with indices less than i. This recursive
property of the network helps insure ils consistency and is in accord
with our intuitive notion of cause and effect.* In particular, il the same
instrument {person or machine) operating at two distinct points of time is
included in the system, then that instrument would be represented by
two distinct elements with no messages going backwards in time.

Second, one may ask why any distinction at all is being made between
the output messages b, of the elements of the network and the action
variables a;. Are not the outputs b; also actions? The distinction we have
in mind is related to the distinction thal is somctimes made between
final and intermediate goods. Some of the activities in an organization
enter directly as arguments of the payoff function, whereas others are
intermediate in a chain or activities that finally result in actions that
enter directly as arguments of the payoff function. We may call these
two types of action variables final and intermediate, respectively. For
example, in an insurance company the calculation of premiums is an intet-
mediate activity, whereas the coliection of premiums is a final activity. The
classification of a particular activity in a particular organization as final
or intermediate is, to some extent, a matter of convention and a question
of research strategy for the person studying the organization. The relevance
of the distinction for the present discussion is that, in this chapter, we
shall assume that the space of final actions is given and consider the
problem of choosing the best network, which includes the problem of
choosing the best set of intermediate action variables.

Two devices are useful in visualizing the connections among the
elements, and between the elements and the environment. The first is
diagrammatic, as in Figures 8.1a, 8.1b. The elements i = 1,...,m, are
represented by points. A single arrow from a point i to a point j indicates
that i sends messages directly to j; in other words, that B;; is not empty.
A double arrow into i indicates that i does receive messages from
nature; a double arrow out of i indicates that i controls a final action

4. Thus we agree with the point of view that any cause and effect system that is described
in sufficient detail will have this recursive feature (see Strotz and Wold 1960 and the references
ndicated there). Nevertheless, nonrecursive formulations have played an important role
in the description of systems, parts of which are in some kind of equifibrium.
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FIGURE 8.1a FIGURE 8.1b

variable. A consequence of the recursiveness assumption is that there are
no loops of single arrows.

A second device, which has already been mentioned, is to arrange the
sels B;; in a squarc array, with the set B;; placed in row i and column j.
If the set B;; is empty, then we place the symbol ¢ in the corresponding
position. Thus the array corresponding to Figure 8.1a is shown in Table 8.1,

TanLE 8.1
0 1 2 3 4 5
Cjd Byy By, o b ¢
r=—7
1 ¢ | ¢ | ¢ By ¢ ¢
b
20 ¢ 16 ¢ 1By ¢ o
I L__"I
3 ¢ f ¢ ¢ @ I Byy B
4 Bdol I ¢ ¢ ¢ Id’
\ |
51 Bsg) ¢ 1] ¢ ¢ ¢

Figure 8.2a shows a network representing a single individual who
makes observations and decisions at three successive dates. The arrows
from “1” to *2” and from “2” to 3" indicatc memory. Figure 8.2b
shows a neiwork representing two individuals at four successive dates.
The first person is represented by elements 1, 3, and 5; the second person
by elements 2, 4, and 6. At the first and third dates, the first person makes
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FIGURE 8.2a FIGURE 8.2b

an observation, communicates to the second person, and stores something
in his memory. At the second and fourth dates, person 2 operates similarly;
in addition, he takes a final action at date four.

It is useful to distinguish certain classes of network optimization
problems. First, suppose that:

1. The message sets B;; are given for 1,/ = 0,...,m.
2. The task functions f;; are givenfori = 0,... ,mandj = 1,...,m.
3. Foreachi = 1,...,m, there is given a set, say #4,,, of feasible task

functions ;.

In this case, the functions determining the messages from nature to the
network elements, and among the network elements, are given, but there
remains a choice of the functions that determine the final actions
(messages to nature). It is easy to see that for such a class of networks,
say .4, there is for each element a uniguely determined information structure,
n the sense that for each i = 1,...,m there is a function #; such that

(2.9) bi = ni(x).

(Recall that b, is the combined incoming message to i from nature and
all other elements.) For any given element i, the function #; is the same
for all networks in the class .47. We say, in this case, that the class A
of networks determines the (unigue) information structure n = (#,,...,1,)-
The problem of choosing a best network from the class 4" is equivalent
to choosing a best team decision function o = («y,...,a,,) for the given
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information structure # = (1, ..., 1) subject to the constraints
(2.10) o in Big i=1,...,m

(In particular, %, may be the set of all functions from B, to By.) This
is the type of problem discussed in Chapters 4 to 6.

Second, suppose that the class A" of networks is the union of a number
of classes .4, each of which determines 2 unique information structure .
The choice of a best network is equivalent to the choice of a best informa-
tion structure, together with the corresponding best team decision
function.

Third, and more generally, suppose that:

1. The message sets B;; are given for i,j = 0,...,m.

2. For each i = 0,...,m, there is a set of feasible task functions §;
from B, to B,. (In particular, this includes the possibility of choice
of the functtons that determine the messages from nature—observa-
tion, noise.)

This third case includes the first two. But it also covers cases in which,
roughly speaking, it is not possible to vary the decision function of an
clement (f;,) without simultaneously varying some other efement’s
information structure. For example, a given team member may be
constrained to report his (final) action to another team member; thus
i’s choice of task function may be subject to the constraint
Bifb) = Biolb),

for some particular j # 0.(Examples C to E in Section 3 below come under
this third case.}

Finally, and most generally, not even the message sets By need be
given, and there may be constraints that relate the feasible message sets
to the feasible task functions. For example, just the final action variables
may be given (the sets B,g), together with a set of instruments with certain
cost and capability characteristics; the job of organizing would consist
in constructing a best network with the available instruments, taking as
given the gross payoff function w(x, a), and possibly the network costs.
We shall discuss some aspects of this general network optimization
problem in Chapter 9.

3. SoME NETWORKS FOR A TEAM WITH
Two FINAL ACTION VARIABLES

In this section, we analyze some simple examples of the problem of
choosing a best network. The purpose of these primitive examples is to
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illustrate and clarify the formal relationships that have been described
in general terms in the preceding sections. In each example, a class of
networks is specified, and the network with the highest expected Bross
payofl is determined. Implicit in such a procedure is the assumption
that all of the networks in any one class have the same cost.

All of the examples, with one exception, deal with the following case.
There are two final action variables, denoted by a, and a,, respectively,
such that each variable can take on only the vaiues — 1 or + 1. The payoif
function is assumed Lo be:

(3.1) wix,a} = u(x)ay + pyx)a, — gqma, g =0,

where u, and y, are random variables, as is indicated by showing them
dependent upon x, the state of nature.® Finally, to keep complications
lo & minimum, we assume that g, and p, are statistically independent,
each having a continuous distribution that is symmetric around zero.

While considering these examples, it is useful to have in mind the
maximum expected payoff that can be achieved with the action variables
fixed, that is, with the routine information structure (see Chapter 6,
Section 5). Such an information structure might be thought of as being
generated by the degenerate network pictured in Figure 8.3.

®=Z> ady
@: dy
FiGurE 8.3. Routine.

It 15 easily seen that there are two optimal pairs of actions {a,, a,) in
this case: (1, —1) and (—1,1), each giving the expected payoff g. This
follows from taking the expected value of the payoff function (3.1) with
fixed a, and a,:

Ew(x,a) = a\Ep, + a,Eu; — qa,a,
= —qalaz-.

(Recall that each y; is assumed to have a distribution that is symmetric
around 0, and hence Ey; = 0.) The network that produces the routine
information structure is presumably the cheapest among all of those that
are considered in this section.

5. The reader can easily verify that, if the payofl function is quadratic as in Chapter 5,
(3.1}, with the coefficients v;; constant but with a; restricted to the values -+ I, the payoff

function can be written in the form just given, plus a constant term. See also Table 4.2 of
the “shipyard™ example of Chapter 4, where however g, is equal to | or 0, not | or —1.
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EXAMPLE BA. TWO ELEMENTS IN PARALLEL

Consider the class of networks with two clements, say 1 and 2, such
that element i has the variable y; as input, and the variable a; as output.
We may say that element i observes g, and takes the final action «;.
This is a simple-enough organization; it corresponds morcover to the
information structure labeled ‘‘complete infermational decentralization™
in Chapter 6, Section 6. Any one of the networks in this class may be
represented by the diagram of Figure 8.4.

My a

u;ﬂ@:“ 2
=2 )=

FIGURE 8.4 Two eiemems in parallel.
In terms of the notation introduced in Section 2,
Byy, By are each the set of real numbers,
(3.2) By, Ba, each consist of the set {—~1, +1},
B, and B, are empty. ’

Corresponding to this class of networks is the class of response functions
(see (1.1)]:

(3.3) plx} = o), ap(pez)],

where a, can be any function of g, that takes only the values + 1. This
corresponds exactly to the information structure

(34) N, = H; i = 1, 2.

Of course, one cannot in general characterize a class of networks by a
single information structure.

Choosing the best network from the given class is in this case equivalent
to choosing the best flunctions «; and «, . We shall show that, for sufficiently
small g, the best choice is®

-1 <

(3.5) adw) = according as ;

I
=

+1 >

6. In the case of the intermediate equality, 4, = 0, in (3.5), it does not matter whether
a(p;} = +1 or — 1. In any case, this occurs with probability 0.
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and that the corresponding (maximumy) expected gross payoff is
(3.6) Q = Eluy| + Elg,l.

For example, if y; is normally distributed with mean 0 and variance
572, then Elu| = s./2/n. 11 p; is rectangularly distributed on the interval
[—R;, R, then Ejut| = R,/2.

On the other hand, for values of g that arc large compared to the
dispersions of u; and y;, the solution is given approximately by

{3.5a) oylps) = 1, otaly) = — 1 [or ay(pp) = —ay(p,) = 1],
(3.6a) Q=gq;

in other words, the solution is approximately the same as that of the best
routine network.

It is intuitively clear that two opposing factors are at work in deter-
mining the solution. The terms g {x)a; in the payoff function (3.1) make it
desirable for a; to have the same sign as ;. On the other hand, the inter-
action term {—ga,a,) makes it desirable for «, and a, to have opposite
signs. But inasmuch as p, and u, are uncorrelated (and with distributions
symmetric around zero), these two requirements are incompatible, so
that one or the other will dominate according to the magnitude of ¢
relative to the dispersions of u, and g,.

It will be seen that, whatever the magnitude of g, the optimal functions
®, and &, have the following property: There are constants ¢, and c,
such that

-1 <
3.7 afi) = { according as ,u,{ }c,. i=1,2.
+1 >

Proof of Results. To prove (3.7}, we use the person-by-person satisfactoriness
condition (Chapter 5, Section 2}. Given o, the function «; must be chosen so that
for each value of s, the corresponding value of a; maximizes the conditionai
expected payoff

(3.8) ey + Elpora(uallpy ] — gay Elnalus) i)
= a(gty — gE[aol, D) + Elpaatylp, ).

Hence

—1 <
(39) oy, = { according as (i, — gE[o,lu,]) { }0.
+1 >
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Recall that ¢, and u, are independent; therefore
E[azlﬁh] = Ea,),

and (3.9) can be rewritten in the form of (3.7), where ¢, = gqE(a,). By symmetry, we
have the analogous result for o, with ¢, = gE(o,).

It remains to determine the best values of the numbers ¢, and ¢,. At this point
(3.9) and a corresponding equation for «,{u,) may be substituted in the payofl
function (3.1} to choose the values of ¢, and ¢, that maximize the expected payoff,
or we may pursue the implications of person-by-person satisfactoriness. Thus, from
(3.9) and the corresponding equation for oy, ), we have

(3.10) Eo; = 1 — 2F{c)

where F; is the cumulative distribution function of p;. Hence,
¢y = g1 — 2F,lc,)]
ey = q{1 — 2F ¢, )}

Since u, and p; have distributions that are symmetric around zero, a solution of
(3.1} is

(3.12) ¢ == 0.

(3.11)

Tt can be shown that, if ¢ is sufficientiy smali, then (3.12) is the only solution of
(3.11), in which case {3.5) and (3.6} lollow immediately. On the other hand, if g is
outside the ranges of g, and ., then a solution of (3.11) is

{3.13) € = —C3 =4,
and another is
(3.14) €3 = —~C, =g,

and both of these are optimal. That is to say, in this case, the optimal procedure is
for a, and a; to be fixed in advance, independently of the observed values of u,
and u, and with opposite signs {recalt g = 0). If g is very large, but not outside the
ranges of y; and y, (e.g, il 4; and u, have infinite ranges), then (3. 13} and {3.14) will
be approximate solutions.

In general, there may be many solutions to (3.11). By examining the second-order
conditions for a maximum, one can show that a sufficient condition for ¢, = ¢, = 0
to be a local optimum is that

(3.15) [i0) >0, £,(0)>0

1
= 0,07

2

where f; is the probability density function of ;.
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EXAMPLE 83, TWO ELEMENTS IN SERIES

Consider the class of networks with two elements, say 1 and 2, such
that element | has the pair g = (it,, yt,) as inpult, element 2 has the pair
a = (ay,a;) of final action variables as oulput, and a message, v(u) =
[y1{p), v2fee}), is the output of 1 and the input of 2, with the constraint that
a; = yi{y). This corresponds to the infermation structure labeled complete

information in Chapter 6, Section 5, and could be represented by the
diagram of Figure 8.5.

“1; ik i 2
Hy

a,
FiGURE 8.5. FTwo elements in series.

In terms of the notation introduced in Section 2,

By, is the space of pairs of real numbers,
BIZ = {(11 1)5(71! l)!{l’ _])5(_]3 _1)}1
By = B,,,

By, and By, are empty.

(3.16)

Corresponding to this class of networks is the class of response functions,

(3.17) p(x) = [y 72(00],

where y; can be any function of u that takes on the values +1.
One might interpret this class of networks by saying that | observes
u, and yu,, computes the actions a, and a,, and then sends a correspondmg
*command” to 2, who simply follows orders.
Inspection of the payoff function (3.1) shows that the optimal pair
(y1,7¥2) 1 given by

(3.18) (1 fh+ oy — g
(=11} ) Tt
) = according as is the largest.
(1, -1 fy— 42+ g
(-1, ~1) —Hy —Hy — 4

Condition (3.18) determines four regions in the (¢, , u,) plane, which are
shown in Figure 8.6, numbered | to 4 in the same order as in (3.18) (the
boundaries are heavy solid lines}
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!

i

|

|
SR S LY.

Hy

F1Gure 8.6. Optimal actions for regions of (u,, u;) plane.

A straightforward calculation leads to the following rather messy
formula {or the maximum expecled {gross) payoff:

@ q q
Q= 2f uy dF () + 2 j j s dF 1 (20) dF 33e2)
q

K2T —qY U T H2

o0 q 1
(3.19 + 2'[ ta dF3(ps) + 2'[ f 2 dF (1) dF ((p,)
7

Bi= 74 ¥pa=y
—q4F (—q)F (—q) - 1]

For example, if g is rectangularly distributed on [ —R;, R;], with ¢ <
R, (i = 1,2), then (3.19) reduces to

R+ R\ 4% 1 g 1
3.20 Q = bl LT . I
(3.20) (2 )+2RL+R2 3R, R,

On the other hand, if R, = R, = R, and ¢ = R, then the maximum ex-
pected payofl is

321 Q=""+g

Figure 8.7 shows a graph of €} as a function of g for thecase R, = R, = R.
The slope of the curve isO at ¢ = 0, and 1 for g = R.

Since the maximum expected payoff under the routine information
structlure is g, the value of complele information in this case (R, = R, = R)
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Figugre 8.7. Maximum expected payoff.
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FiGURE §.8. Value of information.

is obtained by subtracting 4 from (3.20) or (3.21), as the case may be,

e ’l- g <[5 -5 wase

2R

(3.22) V=
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Figure 8.8 shows a graph of V as this function of ¢. It is interesting that,
in this example, the value of information decreases as the magnitude of
the interaction term increases [compare this with (5.23) of Chapter 6,
Section 5.

EXAMPLE 8C. TWO ELEMENTS IN SERIES,
WITH NOISY COMMUNICATION

Consider now a class of networks gencrated by introducing noise into
the message from 1 to 2 in the series network of Example 8B. With such
noise, the class of networks will no longer generate complete information ;
in fact this class will not correspond to any single information structure.
As in Example 8B, we assume that the message received is accepted as
determining the values of the final action variables without further
adjustment. In this sense, the message can be interpreted as a “complete
command.”

More precisely, suppose that there are three elements, that element 1
receives (t,#,) as input and sends [y,(u),y,(z)] as output, where y,
and y, are functions to be determined. The message {y,(u), y2(u)] goes
through a noisy communication channel, element 2, whose output is
ley (), eva(ud), where ¢ is a random variable with values + 1. This last
output is an input (message received) for element 3, which takes the final
actions determined by a; = y(u). An error in communication corresponds
o e= —1 Let p= Proble = —1); we need only consider 0 £ p < 1/2.
We assume that ¢ is independent of y, and u,.

In terms of the notation of Section 2,

By, is the space of pairs of real numbers,
BIZ = {(]9 l)| (—la l)s (11 _l]l(_la _I)}a

By, = {1, =11,
(3.23) 02 = i

Bza = Blz;

B3p = B,

all other B;; are empty.

The networks in this class may be represented by the diagram of Figure 8.9,
The corresponding response function is

(324 plx) = [ey(x), &;(x)].
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Hy ay = ey (W)
: (i) ey (1)

Ha . 8, = e1(w)

FiGuURE 8.9, Series with noisy communication.

We shall show that the optimal functious y, and y, are determined by
condition (3.18) with ¢ replaced by

' _ 4
(3.25) ¢=7z o

Thus Figure 8.6 shows the regions in the (u;, 1,) plane corresponding to
the four alternative messages sent by 1 if one replaces ¢ in that figure by c.

Similarly, let C be the expression obtained by replacing ¢ by ¢ in
{3.19); then, as will be shown, the maximum expected payoff for this class
of networks is

(3.26) Q= (1l - 2p)C.

For example, if ; is rectangularly distributed on [— R, R}, and ¢ =
R; (i = 1, 2), then )

R, + R, 1 1 q* 1 q*
=|—77"H1 -2 —_— 4 - .
2 7 | -2 (R1 * R2]2(1 T2p) ~ VBRRJ = 200
(3.27)
In particular, if R; = R, = R, and ¢ £ R, then
q* q°

(3.28) Q= R(E=2) + 2 = Spa o

On the other hand, if R, = R, = R, and ¢ = R, then
2R
{3.29) Q= 3 (1-2p) +aq

The graph of Q as a function of ¢, as given by (3.28) and (3.29), is obtained
from Figure 8.7 by replacing R with R(1 — 2p). Similarly, (£} — g)decreases
from R(1 — 2p), when g = 0, to (2/3}R(1 — 2p), when g 2 R(1 — 2p).

As one would suspect, the maximum expected payoff, Q, decreases
as p, the probability of error in communication, increases. Nevertheless,
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because we have assumed that the errors in the two coordinates of the
message are perfectly correlated (i.e., that the sign of one coordinate is
reversed il and only if the sign of the other is reversed), it is still possible
to comtrol the interaction term, —qaa,, without error. Thus one can
always fall back on a network that is no worse than the routine informa-
tion structure from the point of view of gross expected payoff.

In the next subsection, by way of contrast, we study a class of networks
in which the errors in the two coordinates are independent, and in this
case one can no longer guarantee a network with expected payoff at
least as large as g.

PROOF OF RESULTS

To prove the results described above, substitute ¢; = £y ) into the payofl func-
tion (3.1), and take the expected value:

(330 Ew = Efey{phit, + ep{pdy — qedy (udy(u)].

Since ¢ is independent of y, and #* = 1, one can rewrite the above as (suppressing
the argument g of the functions ;)

{3.31) Ew = E[(En)y gty + (Eclraps — av172]
= E[(1 — 2phy . + (1 — 2pJyapts — gqy:ivs]
= {1 ~ 2p)E[yu + Yatiz ~ C¥172)s

where ¢ = g/{l — 2p). Comparison of (3.31) with the expected payoff for the networks
of Example 8B yields (3.26) and the corresponding optimal functions y, and y,.

EXAMPLE 8D. SERIES-PARALLEL

Suppose that, in the networks discussed in the last subsection, each
final action variable is assigned to a separate element instead of to the

€1

o— ap = e ypln)

Hy

Hy

1
.._. 23, = €37, (#)

FIGURE 8.10. Series-parallel.

€32
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same element, with a separate communication channel to each from
element 1 and with noise variables in each that are independent. The
results in this case are similar to those of the last subsection, except that
here it is possible to get a maximum expected payoff that is smaller than
that for routine.

The networks to be studied are diagrammed in Figure 8.10.

Element I receives (i1, 1,) as input, sends y, (1) to element 2, and sends
72(t) to element 4. Element 2, which is a communication channel from 1
to 3, also receives as input the noise variable &, (= +1); its output to 3
is £,y,(). Element 3 takes the final action a; = ¢;9,(x). A similar chain
runs from | to 5 through 4, resulting in the final action a, = &,v,(u).
We assume that &,, &,, u, , y, are statistically independent and that

Prob(s;, = - 1) =p i=12;

that is the probability of error is the same for both channels.

The interpretation of two separate channels, and separate elements
for the two final action variables, is not cssential here. One might imagine
a single channel as in Example 8B but with independent errors in the two
coordinates. (More generally, one could study a single or double channel
with an arbitrary joint distribution of y,, u,,¢,, and ¢,.)

The response function generated by this class of networks is

(3.32) p(x) = fe,y(u), 27 (u)).

Using the method of Example 8C, the reader can easily verify that the
solution in the present case is obtained [rom that of Example 8C by
using the value g(1 — 2p) for the constant ¢ {instead of the value g/(1 — 2p)].

In particular, for the case of a rectangular distribution with R, = R, =
R, we have for the maximum expected payoff,

(3.33) (1 - 2p)°q*> (1 = 2p)*g°
R(1 — 2p} + R IR?

if g(} — 2p) = R;

2R(1 — 2p)

3 + (1 = 2p)y if g(1 —2p) 2 R.

Again,  is an increasing function of ¢ and a decreasing function of p.
However, in this case Q falls to zero as p approaches 1/2, so that for
sufficiently small p the maximum expected payoffl is less than for the
routine information structure (unless g = 0},

This last result should be compared with that of Chapter 6, Section 9,
concerning the information structure labeled error in instruction. In
that example, a central agent computed what would be the best values of
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the action variables under complete information, but these values were
transmitted through noisy channels to agents who “adjusted” the received
instructions before taking the final actions. By contrast, in the present
example, the elements assigned the task of taking the final actions are not
allowed to make any adjustments (*‘theirs not to reason why; theirs but
to do or die”). Rather, it is the central agent (element 1) that adjusts his
messages to lake account of the distortion that will take place in the chan-
nels.

All of which suggests the study of a modification of the present class
of networks to allow the elements 3 and 5 to take final actions that are
not equal to the messages received, in other words, that would allow them
to perform computation. Such modification, on the other hand, would
presumably increase the network costs. We do not, however, follow
through this exercise here.

EXAMPLE 8E. SERIES! PARTIAL COMMAND

In the networks of Example 8C, all the work of observation and com-
putation was performed by element 1, whereas element 3 simply trans-
lated his orders into final actions (element 2 was the communication
channel). In this example, we study the effects of having element | delegate
some of the work of observation and communication to element 3. If
this has the effect of distributing more evenly the work of observation and
communication, it also has the effect that the decision about «, is based on
less information. On the other hand, no noise will now intervene between
the observation u, and the action a,.

More precisely, we study the class of networks diagrammed in Figure
8.11.

a = ey (e))

8y =1y [1y, ey (1))
FiGure 8.11. Partial command.
We shall also compare this class with the class obtained by inter-

changing the variables u; and p,, and the variables a, and a,.
The response function is

(3.34) plx) = [eyy(aa) yalpa, ey [ 1D]s

where e = + I, and is statistically independent of g, and y,. The response
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function {3.34) may be rewritten:
gy =&
(335) 1 i)
ay = yi(puy,ay)

The problem is to choose the best functions y, and 7.

The interpretation is that element 1 observes g, and sends an order,
y1{ty), to element 3 through a noisy channel 2, fixing the nominal value of
a,. Element 3 receives the order as &y,{u,) and uses this as the actual
value of a,; in addition, clement 3 observes u,, and on the basis of the
values of a4, and p,, determines the value of a,.

This interpretation of the message from elements 1 to 3 as an “order” is
certainly not the only possible one. Figure 8.11 may simply represent the
sequential nature of two decisions. The question of what makes a message
an order or command is one that we defer to a later point.

We shall show that, for this class of networks, the best choice of v, and
¥, 18

<
TUMES { according as ,ul{ }0
+1 >

(3.36)

<
Yaltls, a,) = { according as p, { }a;q‘
+1 >

The maximum expected payoff is
(3.37) Q= (1 — 2p)Eluy| + Ely, — 4l,

where, as before, p = Prob{e = — 1) = Prob(error in communication).
The expected payolf ), is clearly decreasing as p increases from O to
1/2; 1t is increasing as a function of g, since

&, OE, — 4l

. — =———=2Rg-120
(3.38) %4 74 2(4) =
On the other hand, (€, — g} is decreasing as a function of g, since
g .
{3.39) GE{Q' —q) =2 -1=20

Nevertheless, il can be shown that

(3.40) Q, = q

even if p = 1/2 {with strict inequality if g is not outside the range of u,).
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This last point is plausible, since element 3 can control the sign of a,a,,
and therefore the sign of the interaction term.

It is of interest to compare this class of networks with that defined by
interchanging p; and u,, and a, and a,, in Figure 8.11. Putting it more
concretely. suppose that person 4 can cheaply observe p, and person B
can cheaply observe p,, but they are alike in other respects. Which one
should be the “boss” in a network of the type under discussion?

It will be shown that, roughly speaking, in the case of nomsy com-
munication (p > 0), the person who observes the variable with the
larger dispersion should be the boss {ie., should take the position of
clement 1), provided that the dispersions of both variables are not too large.
On the other hand, if one or both variables have sufficiently large dis-
persions, then the person observing the variable with the smaller dispersion
should be the boss. The larger the probability of error, the smaller the
critical value of the dispersion that separates the two cases.

In the case of noiseless communication (p = 0), the person observing
the variable with the larger dispersion should be the boss, regardiess of
the sizes of the dispersions.

To put it another way, if there is not too much garbling in the trans-
misston of commands, the man with the knowledge of the variable about
which there is the most uncertainty should be the boss; but too much
garbling of commands not only destroys that man's effectiveness in
the “boss™ position, but makes the grealer uncertainty aboul his variable
more dangerous.

Let , denote the maximum expected payoff for the second class of
networks {in which u, is observed by element 1, etc.). By symmetry,

(3.41) Q, = (1 — 2p)Elu,yl + Elp, — gl
Hence '
(3.42) Q — Q, = (Elu, — ¢l — (1 — 2p)Elp,l)
— (Elgy = gl = (1 — 2p)Elu,l)
= Cz - Cl 5
where
(3.43) Ci = Elg; — gl = (1 = 2p)Elp,.

More definite resuits can be obtained by making special assumptions
about the distributions of 4, and u,. as [ollows.
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CASE OF RECTANGULAR DISTRIBUTION

Suppose that g, is rectangularly distributed on [—R;, R;). Then, as
will be shown,

, R; )

(f!"j") + PR; ifR; < g
(3.44) Ci=+4,

q .

— + PR, iR, 2 q.

2R,

The quantity C; is first decreasing with R;, and then increasing, reaching a
maximum when R; = q/\/Zp = R,. Hence

(i) f R, R, £ Ry, then €}y > Q, is equivalent

to R, > R,; whereas
(3.45)

(i) if Ry, R, = Rg, then £, > 0, is equivalent
to Ry < R,.

CASE OF NORMAL DISTRIBUTION

Suppose that y; is normally distributed with mean zero and variance
;2. Then

1
(3.46) C = ‘I[‘D(sﬂ) - E] + Si@(g) — (1 - 2p)s;p(0),

where ¢ is the standard normal density and @ is the standard normal
cumulative distribution function. As s, increases, (€2, — £),) first increases
and then decreases, reaching a maximum in s, when
2 q2 B _ z
= A T = g7
— log(l — 2p)

Sl

Furthermore,

(i) ifs,,8, 50, thenQ > Q, is equivalent

to 5, > 5,; whereas
(347

(ii) il's5,, 55 2 5p, then Q, > €, is equivalent
t0 5 < 53.

Thus the resuits for the normal case parallel those for the rectangular
case, with s; playing the role of R;.
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DISTRIBUTION OF g4; AND g, DIFFERING BY A
SCALE PARAMETER

Both the normal and rectangular examples above are cases in which
the distributions of u, and u, differ by a scale parameter. Let v be a random
variable with a probability density function f that is symmetric around
zcro, and with vanance 1. For i = 1,2, suppose that u, has the same
distribution as s;v, where s; is some posilive number; that is to say, the
probability density of y; is

(3.48) fiu) = (1) f‘(ﬂ).

s s

The variable y; will of course have mean zero and variance s,°,
We shall show that, if p > 0, then there is a critical number s,, depend-
ing on p, such that

(1) 1fs;,5; = 50, then Q, > £, if and only if

5y > 55; whereas
(3.49)
(i1) 1fsl, 5; = 5g,then Q) > £, if and on]y if

Furthermore, if 5, is fixed at any value, then Q, < Q, for sufficiently
large s, .

On the other hand, if p = 0, then for all 5, and s,, Q, > Q, if and only if
§1 > 5;3.

PROOF OF RESULTS

Substituting the second haif of the response function (3.35) into the payoff function
(3.1) and taking the expected value, we find that

(3.50) Ew = E[pya; + pava(pta, a1) — gayyalpy, a,)),

where it is understood that a; = #y,(y,). Hence, given the function y, , it follows that

the function y; must be chosen so that y,{u,, #,) maximizes the conditional expecta-
tion

Elpyay + pavalpts, @) — 9a,v5(p1, a3 )itz a,]
= aE[tibpg, ay) + valpa, a ey — qay).
Hence

-1 <
(3.51) valpa, a0} = { according as y, — g4, { }0.

+1 >
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Using this y,, and the given y,, one obtains the expected payolff

(3.52) Eo = Ela gy + |z — qa,l]

= Eley (uouy + iz — qen iG]
= E{pyn,(u B + E, s — geyi(u )},

where E, ,, denotes expectation with respect to ¢ and p; (recall that g, pr, . and p, are
independent). Hence v,(it,) equals (— 1) or (+ 1), according as

=3

(3.53) — i Ele) + Eluy + qsl{ };tlE(ﬂ) + Elu, — g,

<

or according as

1
(3.54) ;a,{i} [—Z—E(;)][Emz + qel — Elu, — gel}

]
B [2(1 - 2;;)}“’(3”1: —ql — Elpy + )
+ (1 = pMElu; + ol — Elp, — 4l))
1
= E[Ehlz + gl — Eliy — 4¢l]
=1

{Recall that the distribution of y, is symmetric around 0.) Thus (3.36) has been
verified.

From (3.52) we have
(3.55) 0, = max Ew
1 1
= (Elp,1){(Ee) + iElﬂz — gl + EELM + gl
1
= (1 = 2p)Elul + 5pElk; — gl + Elpz + gl

|
+ 500 - PMElu; + gl + Elu, — gl).

But Elu, + gl = Elu; — gl, so that
(3.56) Q, = (1 — 2p)Eig,] + Eluy — 4l,

which proves (3.37).
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Note that, for any random variable v with density function f that is symmetric
around 0,

q L4
(3.57) Elv— ¢l = 2qj Jinde + 2f tf (2 d,
o q
as can easily be verified. Hence Eiv — ¢ = g, and
6 q
{3.58) —Elv - ¢ = 2f Sldde = 2F(g) — 1,
aq o
where F is the cumulative distribution function of v. This proves (3.38) to (3.40).
To prove the results on the comparison of Q, and Q;, we discuss first the case of
distributions differing by a scale parameter. If a random variable = has the distribu-

tion of sv, where s > 0 [i.e., if the density function of 7 is (1/5) f(t/s)], then analogous
to (3.57) we have

o

59 . qly
(3:59) Elrfqlthf f(t)dt+25f ) dt.
[i] g/s
From this we easily calculate

(3.60 —a-Elr —gl= 2JW (D) dr,
aS afs

which is nonnegative, and nonincreasing as a function of s In particuiar, setting
iq =0,

(3.61) Eld = 2¢ Ju tf () de = sEW,
4]
é . -
(3.62) S Eldl =2 L fiyde = Ebl.
Define C(s) by
{3.63) C{s) = Elt — ¢l — (1 — 2p)Ell;

then from {3.42) and {3.43),
(3.64) Q, — Q, = C(s;} — Cisy).
From (3.59) to (3.62), we have

d L /s
(3.65) aC(s) = 2[2p L () dt — L tf(t) dt},

so that C{s) is a convex function of s that decreases for s = sg, say, and increases for

8 Z $o. The remaining results now follow easily, including those for the rectangular
and normal cases,
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EXAMPLE 8F. SERIES: SEQUENTIAL ACTION

In the class of networks examined in Example 8E, the message from
element 1 to 3 (through channel 2} had a dual function. First, it deter-
mined the value of the final action variable a,; and second, it provided
mformation about a part of nature, variable y,. The message from element
1 to 3 was interpreted as a “command.”

We can imagine a closely related situation in which two decisions are
to be taken in sequence, with the person making the first decision inform-
ing the other person which decision he has made, as in Figure 8.12.

o a =a2(“1, ea][}i;”

ay =y (py)

FiGure 8.12. Sequential action, message about action taken.

Or, as an alternative, the message could be about the value of u,
observed, rather than about the decision made. This would be more
informative but it could also be expected to be more expensive, since
the action g, is only a zero-one variable, whereas the variable u, can
take on a continuum of possibie values. The greater expense could be
both in the transmission of the message, and in the subsequent computa-
tion by element 3. One would also expect the noise to take a difierent
form, for example, additive. The resulting class of networks is diagrammed
in Figure 8.13.

Hy

€
My By teE .
0 N O O SR

a = ley)
FIGURE 8.13. Sequential action, message about observation,
We shall analyze such a class of networks, but for mathematical
convenience we take a problem that differs slightly from the one we have

been considering in the examples of this section. Suppose that a, and
a, are real-valued and that the payoff function is quadratic, as lollows:

(3.66) olx.a;,8;) = Ja, + 2ppa, — ‘?11‘712 - ‘322‘122 — 29,,a,a,,
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where g; > 0, gy39,2 — 412> > 0. Suppose further that p,, yt;, and the
noisc variable ¢ are independent and normally distributed with means
zero and variances 5,2, 5,2, and 2, respectively. The response function
implied by Figure 8.13 is

a; = ory(y)
a; = oxlpy, py + £,

where the decision funclions «, and «, are to be determined.
The class of networks thus defined corresponds to a single information
structure:

(3.67)

=
'?2 = (#2:#! + E)-

Applying Theorem 5 of Chapter 5, one easily finds that the best decision
functions o, and «, are the linear functions

(3.68)

g
(i) = (&T"%;{q—z)(m +2)
(3.69) Ix 22 1912 ,
oafHa, g + &) = (_)#z ( 12 2)(!11 + &)
422 q11d22 — Ki4rz

where
(3.70) k. = s

' YT os Y

The corresponding maximum expected payoff is
2 2
s s
3.71) V= —— 222
di1922 — k1912 g2
Note that k, = | when there is no noise in the channe! (eclement 2), and
that k, tends towards 0 as the noise gets more important relative to the
message, that is, as £ — o with s,? fixed. The quantity

by slz
] - kl I]
is the signal-to-noise ratio. The parameter k, may be interpreted as the
reliability of the channel.
We may again pose the question, “Given that one wants to use a network

of the ‘sequential’ type being discussed, which decision should come
first in the sequence?” To answer this, interchange the variables a, and a,
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and the variabies g, and y, in the problem just discussed; this gives an
expected payofl

2 2
q118; 5
: Guidzz — kagis® gy
where
2
(3.73) ky = 22

To compare the two different cases requircs some assumption about
the variances of the noise variabies in the two cases. One plausible assump-
tion is that k; = k, = k, that is, that the signal-to-noise ratio is the same
in each case. With this we find that

2 2 2
5y 52 k(g12°/911423) ]
3.74 V, -V, = | — — = j| —212 202 |
( ) ' ’ (‘11: C!zz)[] — k(q,12%/811922)

Here the decision about a, or about &, should come first, according as
(s12/41,) of (s;7/qs2) is the larger. This ordering is independent of the
magnitude of the communication reliability parameter k, except for the
limiting case k = 0, in which the ordering does not matter.

One can interpret the significance of the quantity (s;%/g;) as follows.
The larger s is, the greater the uncertainty about the variable p;, and
therefore the more valuable it is for the team that { communicate that
value to the other person. On the other hand, the larger ¢, is, the more
sensitive is the payoff to departures of a; from its best value (under com-
plete information) and, thercfore, the more valuable it is that a; be deter-
mined on the basis of information about both u, and u,, rather than on
the basis of y; alone.

The quantity (q,,%/4,,4,) is 2 measure of the interaction between the
two action variables in the payoff function (a measure that is invariant
under changes of scale in the units used to measure the action variables).
Equation 3.74 shows that the importance of choosing the best sequence of
decisions increases with the interaction.

4. PROCESSING AND POOLING OF INFORMATION

In a network with given task functions, consider a dyadic segment,
(i, k), in which the set B; of outputs of the element i is identical with the
sel B, of inputs of the element k (sec Figure 8.14).

The examples given in this and earlier chapters illustrate two important
propositions, which in this section will be presented explicitly and proved:
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under certain conditions, (A) information-processing never increases the
aross expected payoff; (B) information-pooling never decreases the gross

expected payoff.

FiGgurE 8.14. Dyadic segment (i, k).

(A) GROSS PAYOFF LOSS THROUGH
INFORMATION PROCESSING

Leaving the rest of the network unchanged, we change the segment
thus: introduce a new element j between [ and k as in Figure 8,15, Thus
a message b;; received by j from i is processed into a (generally different)
message b, from j to k, on which k will base his decision. For example,

FiGURE 8.15. Introduction of noisy processing element j between
elements i and k.

b;; may be a report about the observations made by i, and b; may be
a command given by j to k. Note that (as in Figure 89 with i = 1, j = 2,
and k = 3) the message b, may be affected by noise, “garbled” in a
sense defined in Chapter 2, Section 7. We shall show that the introduction
of a processing element j will decrease, or at least never increase, the gross
expected payoff, regardless of the payoff function and of the probabilities
of the states of the world.

(B) GROSS PAYOFF GAIN THROUGH
INFORMATION POOLING

Change the dyadic segment as follows: while preserving the input set
B;, introduce another element j and let the input of k consist of messages
from both i and j (see Figure 8.16).

Thus message b, is pooled with message b, to provide a basis for
k’s decisions. Again, each message may include previously introduced
noise but the pooled message is not to include any further noise. We
shall show that the pooling of messages will increasc, or at least never
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FiGure 8.16. Pooling messages from 7 and j to k.

decrease, the gross expected payoff for any payofl function and any
probability distribution of the states of the world.

However, if the pooled message is itself subject to further noise, then
the pooling of the messages may well decrease the payoff.

PROCESSING

First consider the case in which the entire network consists at most of
the elements i, j, and k of Figure 8.15. The decision (action) of k& will there-
fore be a final one (see Section 2), that is, it will impinge directly on nature.
This decision will be based on the message received by k. On the other
hand, the message received by i will be an observation, that is, it will come
from nature, say by; = fodx).

In the case of no processing (F:gure 8.14), the message sent by i and
received by k is, say,

by = fulboy)
= BulBoix)]
= #{x).
The function n, then, describes how k’s incoming messages depend in-
directly on the state of nature, x.
In the case of processing (Figure 8.15), the message received by j is
| b;; = n(x),
whereas the message received by & from j is
bjk = ﬂjk(bij,ej)
= 7'(x).

The function f; describes how the message b;; is processed, with the
possible introduction of noise, before being sent to k. The function ¥’
" describes how, in the case of precessing, k's incoming messages depend
indirectly on the state of nature.
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By our definition of noise (see above, Section 2), the noise variable
; = ¢,(x) has the property that, if Z is a payoff-adequate partition of the

set X of states of nature into sets z, then the conditional distribution of
e; given by; and z is independent of z. It follows that the conditional
distribution of the pair (b,;, e;), and hence of f,(b;;, ), is independent of z.
Hence the message by = Bulbi;,e) is a garbling of the message b;,,
according to the definition in Chapter 2, Section 8 that is, the information
structure #' is a garbling of the information structure y, relative to Z.
[Recall that Y’ is a garbling of Yif, for every yin Y. ¥ in Y, and z in Z,
the conditional probability of y’ given z(1 y is independent of z.]

It follows from the corollary to the theorem of Chapter 2, Section 8,
that # is at least as valuable an information structure as #'. We have thus
shown that the introduction of processing cannot increase the expected
payofl.

To extend the proposition to an entire network, we cannot apply the
“‘garbling corolary™ directly, but we can use a similar argument. Let k
be a given element in the network, let B, be its sct of alternative combined
input messages from other elements and from nature, let C, be its set of
alternative combined output messages Lo other elements, and let 4, be its
set of alternative primary actions {messages to nature).

Any task function for k can be described by a pair (y,, «,) where
@1 & = vidby) G in Gy

a, = o,(b,) a, in A,.

Suppose that the set of feasible functions y, is the set of all functions from
B, to C,, and that the set of feasible functions a, is the set of all functions
from B, to A,, whatever be the task functions of the rest of the elements in
the network.

Let K denote the set ol all elements in the network other than k, and
Iet ay be the combined final action variable of the elements in K. For a
given specification of the task functions of all elements except k, and of
the functions that determine the messages coming into the network from
nature, there exist functions #,, 5y, and a, and a set Yy, such that for
any choice of the function v,,

(4.2) ag = ax[]’k(gk)n yil

where

vk = nx(x) yx in ¥

(4.3) - s =
b = ni(x) b, in B,.
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As usual, we may associate with B, and », a partition, say Y, of X, and
indeed we shall identify B, with Y,. Similarly, we shall represent ¥, as a
partition of X.

The effect of introducing into the network an element that processes
the information coming tnto & is to replace the partition Y, by a partition
Y,. In keeping with the concept of noise suggested in Section 2, we shall
assume that, if Z is a payoff-adequate partition of X, then for every y,
inY,pin Y, yein Y, and zin Z,

(44) P(J’U.‘r’ksi’x,z) = P(_‘V;c’}’k)'

Let (v, o;) be the task function for element k with the processed informa-
tion, that is with the partition ¥}, let the task functions of the other
clements, and hence oy and Yy, be fixed. The expected payoff Q(Y,;) is
equal to

(4.5) Y PN N yoolz, erly), exvilvi) vl = Q'

F1-r4
Yie¥i
ykeYx
From the properties of conditional probability, it follows that
Pz Ny Nyg) = X PP Ny N ydyd = 3 PPz O ye O )
Yic Yk

x Pz yilys).
Using the hypothesis (4.4),

{4.6) Pz Ny, N yg) = Y POIPlpIP(z N yelyd

Y

Applying (4.6) to the expression (4.5), we obtain
Q=3 Pyd X Pilyd 3 P20 yelydeolz, %), axlyilvids vl

(4 ) i Y z, YK
= Z P(y,) max Z Pz N yelydwlz, a, agle, y)h
¥i ac  .yx

{remembering that Z, P(yily, = 1). For each y, in ¥, let ofy) and
¥,(v,) be values of a and ¢, respectively, that maximize
Y. PizN yalydwlz, a, axle, yx):

VK

then (4.7} can be rewritten as

== Z Piy) Z Pz YK|}’x)CU[Zs (v 2yl yids yio]

P 1.¥K

= 2 PN y0 yoolz, 6 v ax(lyd, vidl,

L UTENY 4
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which is the expected payoff that results when element k uses the un-
processed information, Y,, and the task functions &, and y,. Hence the
network can always do no worse using the unprocessed information than
the processed information.

POOLING

The proposition that, under our assumptions, the pooling of messages
cannot decrease the gross payoff follows directly from the fact that the
pooied information is at least as finc as the unpooled information. In the
unpooled case, the incoming message is b, whereas in the pooled case
the incoming message is (b;..b;). Any (task) lunction of b, can be re-
produced by a (task) function of (by.b;) that is, independent of b,
thus:

Bilbi , bjk) = Pilbu).

Hence, if (1) the task function of element k can be varied independently
of the task functions of the other elements, and (2) the set of task functions
available (feasible) for element k is the set of all functions from B, to B,,
then the set of response functions that can be generated by the network
with the pooled information includes all the response functions that can
be generated by the network with the unpooled information. (This is
essentially the same argument that was used in Chapter 2, Section §, on
comparison of information structures.)

CONSTRAINTS ON TASK FUNCTIONS

In proving that processing cannot increase the gross payoff—and that
pooling cannot decrease it—we made two assumptions:

1. The task function of the element in question can be varied independ-
ently of the task functions in the rest of the network (including the
functions that determine the inputs from nature).

2. The set of task functions feasible for the element in question is the
set of all functions Irom its set of inputs to its set of outputs.

If these assumptions are satisfied for every element in the network, then
onc is in case 3 of the discussion at the end of Section 2, with the particular
assumption (2) above guarantecing a sufficiently rich set of feasible task
Junctions at each element.

On the other hand, if the set of feasible task functions for the element
in question, say k, is constrained in some manner so that (2) is not satisfied,
then the processing of messages coming into k may increase the gross
payofl, or pooling may decrease it
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To illustrate with an extreme case, suppose that & is the only element in
the network, that its input message 1s a pair of nonnegative numbers,
say x = (x,, x2), that its output is a final action, say a, and that for any
pair (x;, x,) the optimal action is ¢ = (x; + x;)/2, as would be the case,
for example, if the payoff function were

wfx, a) = — (a G S

Suppose, however, that the element k is extremely limited in its information
processing capability, and can in fact perform only one operation, namely,
select the maximum of two numbers. With such a constraint, it is obvious
that there is some processing of the input (x,, x;) that would increase the
gross payoll, for cxample, introduce an element j between nature and &
with the task function

X, +x
Bulx1,x;5) = (#2——2,0)-

Whether the introduction of such a new element j would increase the net
payoff or not would depend, of course, on its cost.

Similar considerations apply to the pooling of information. Indeed, it
is only if one can ignore the costs of, or constraints on, task functions that
one can guarantee that more information is better than (or at least no
worse than) less information. We return to a more exlended consideration
of this point in the next chapter.



CHAPTER 9

Task Allocation, Organizing, and Leading

}.Constraints 2.Costs 3.Specialization 4.Subordination, coordination, dele-
gation 5.Organizing as a decision problem 6.Uncertainty about the outcome
and cost of logical operations 7.Posiponing problem solving 8.“Earn while
you learn” 9.Reorganizing 10.Delegation of organizing activities 11.Resolving
inconsistencies 12.Leadership in teams

1. CONSTRAINTS

Not all networks are feasible. A network may be not feasible because the
outputs b;; of its elements {each element being associated with some time
period) cannot be produced during the stated period of time by any man
or machine within the reach of the organizer of the team. Even supposing
for a moment that financial resources are unlimited, one must recognize
that there are limitations imposed by the laws of physics and of human
physiology. In fact, one has to {ace the even narrower limitations due to
cultural conditions. The technology and training prevailing in a given
society seldom take advantage of all the possibilities offered by nature,
including the nature of man.

The feasibility restrictions imposed upon the choice of networks are
analogous to restrictions on methods of material production and trans-
portation. For example, a system of assembly lines constituting a plant
has the same formal structure as an organizational network, except that,
in the case of an assembly line, the output of each element is not a signal
but the result of some physical transformation or translocation. Each
position (a worker, a tool) on the assembly line would be represented by a
sequence of elements, one clement for each time period of stated length.
The output of each element is thus limited by the feasible maximum speed
of some physical or physiological processes.

The case of team networks is similar. Not more than a certain number of
symbols can be transmitted per unit of time, without error, or with errors
of a specified kind and probability, by a given communication channel,
human or inanimate. Not more than a certain number of computations
of a given kind can be performed per unit of time by a given man or machine
within a specified limit of errors, and the number of variables on which

304
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observations of a given degree of accuracy can be performed simul-
taneously is also limited.

The limitations of available men and machines explain why it pays to
process information. This was shown in Chapter 8, Section 4. It may not
be feasible to assign to the same man or machine the task of reading
original reports (that are relatively fine or relatively errorless), and also
the task of computing optimal decisions on the basis of such reports;
thus it may be necessary to insert intermediaries and, hence, coarsen or
garble the reports. Similarly, the constraints on available resources may
also make it impossible to take full advantage of information pooling.
A man (or machine) able to absorb messages from two sources and to
make optimal decisions on the basis of this information may not exist
for the type of messages and actions considered.

The loss in gross payoff due to delay of information or to garbling
(see Chapters 7 and 8) can be a reason against processing information. The
time needed to transmit messages from an element i to an element k
directly 15 presumably shorter than the combined time needed for the
transmission from { to an element j, the processing {computation) by j,
and the retransmission from j to k (compare Figures 8.14 and 8.15). The
insertion of j would thus diminish {or at least not increase) the gross
expected payoff, both because the information will be garbled (or, as a
special case, coarsened), and because it will be delayed. But again, such
delays may be necessary because of the limited capacities of the instruments
{men and machines) available for implementing the network.

Except in Chapter 6, we have treated the size of a team {the number
of persons constituting it} as fixed. In our present, more general, context,
such a restriction appears unnecessary. Neither the number of people,
nor the number of machines, nor the number of elements (men or machines
with a time subscript) need be restricted in advance; although, i particular
cases, these numbers may be bounded for some reason: for example,
the size of a small farm team may be limited by the size of the farmer’s
family. In general, those numbers are to be determined along with other
properties of an optimal networlk, as expressed by the matrices [B;;],
[B:;]. These properties will include the description of the nature of each
element: for example, whether it should be associated with a man of some
particular kind, or a machine of some particular kind. Hence, if by the
*size” of a tcam at a given time we mean the number of pcople assigned at
that time to the tasks of observing, communicating, or computing on
behalf of the team, then the team’s size, too, 1s reflected in the relevant parts
of the two matrices and will be determined as a result of maximizing the
net expected payoff.
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2. CosTs

It was stated in Chapter 2, Section 12 that it is, in general, not possible
to represent gross payofl as a sum of cost and net payofl, both measured
in utility units. To be sure, this decomposition and the resulting simplifica-
tion of analysis is possible in the important case in which (1) the results
of the team’s activities as well as the costs of installing and operating the
network are money amounts, and (2) the expected value of the difference
1s maximized {which is to say that utility is identified with money).

If neither of the two assumptions is {ulfilled, the optimal network
is defined as one that maximizes, over the set of feasible networks, the
expectation of the payoff; the latter being a function not only of the
events and the final team action (which is yielded by the network), but
also directly a function of the network itself.

An intermediate case is one in which it is possible 1o represent the
results of team actions and the network costs as separate money amounts,
but in which money is not identical with utility. In this case the maximand
1s not the expectation of the difference hetween the two amounts, but
rather the expectation of some (nonlinear) function of this difference. In
what follows, we shall make this intermediate assumptton, as it will permit
us to fix the ideas using ordinary principles of accounting. (A similar
assumption about the results of actions and the costs of information
structures was discussed in Chapter 2, Section 12, where it permitted us to
define in a simple way the concept of value of information.)

For any given network, there are costs of providing and operating its
elements. More precisely, we have in mind the costs of intermediate
activities only (observation, communication, computation). We have
called them the organizational costs. They are associated with men and
machines producing intra-tcam signals. On the other hand, the costs
associated with the final activities of the team-—those impinging upon
nature—have been already taken into account in computing the gross
payofl. Thus the wages and capital charges associated with material
production and transportation, and with communications sent to the
world outside the team, are not included in organizational costs. This
separation permits us to concentrate on the specific problems of organiza-
tion as such, though there are helpful formal analogies belween the
economics of intra-team signals and the usual economics of material
production.

It is useful to distinguish between fixed and variable costs. The variable
costs of a network depend on the kind and frequency of observations,
communications, and computations that actually take place. Thus, in our
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notation, variable costs depend on the actual signals b;; transmitted from
one clement to another. These signals depend, of course, on the signal-
transformation functions fi; defined in Chapter 8, but they also depend
on the state of the environment, the argument of the functions Bo;.
Consequently the variable costs are random. For example, in the case of
management by exception (Chapter 6, Sections 11 and 12), charges for those
observations, communications, and computations that are to be made
in emergency situations will arise if and only if certain events occur,
defined beforchand as emergency. Variable network costs are exemplified
by the wages of personnel hired for short periods or entitled to overtime
bonuses, and by those costs of using rented equipment (such as telephones
or computers) that are charged over and above a constant (*“*flat™) rental,

Fixed costs, on the other hand, depend on the functions {1, j = 0,...)
and hence on the sets B;; of possible signals, not on the actual signals
b;;. Fixed costs are therefore nonrandom, being independent of the events.
They are exemplified by sataries on long term contracts, by a part of
income of a manager-owner, by capital charges on purchased equipment,
and by long term rentals.

Because of its variable components, the 1otal cost of providing and
operating a network is, in general, a random vartable. The function K
that associates each network N with some amount K(N) of expected cost
may be called the organizational cost function. To discuss its properties,
we may ask what changes can result from varying the task function of the
ith element, that is, the set of functions B; = (fig, f1.- . .) that characterizes
its task (of observation, communication, computation). Such changes may,
of course, imply changes in the domain or range of the task function,
that is, in the sets B; or B, of the potential messages received or sent by
the element 7,

A network element is associated with some man or machine (an
instrument) and a given time period. Given the instrument, one task
(fi, say) will require more time than another (#;, say) in order to be
accomplished without errors. Possibly 8 will require infinite time, which
is another way of saying the instrument is altogether unable to accomplish
this task without error. More generally, given the instrument, one task
will require more time than another (possibly infinite time) to be achieved
with errors of various kinds, occurring with probabilities not exceeding
some fixed preassigned (“‘tolerance™) limits. We shall then say that the
former task 1s more difficulr than the latter, given the man or machine
considered, and given the tolerance limits. Substituting a more difficult
task for a less difficult one will then (by definition) require more hours of a
given man or machine, or delay some final action, or result in larger
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probabilities of more harmful errors. To some extent, these effects can be
substituted for each other. Thus the harm due to errors can be diminished
if the instrument s worked for a longer time, but this will increase the
delay; or additions may be made to personnel and machinery, thus
avoiding delays. In either case, additional rentals or wages are added to
the cost. Instead, one may introduce a new instrument, which is more
effective in the following sense: it will perform the same task with the same
errors in shorter time, or with smaller errors in the same time. Men and
machines that are more effective may be in relatively short supply, or can
be produced only by a relatively costly effort of training a man or building
a machine. In this case, under conditions of a market economy (perfect
or imperfect), those men and the lenders or sellers of those machines will
ask and receive higher salaries or rentals or prices. The economics of the
market in services of, and facilities for, computation, observation, and
communication is not fundamentally different from the economics of
any other market of human services, and of purchased or rented equipment.

This applies also to the case in which the change in the task can be
accomplished by substituting for the previously employed man or machine
one of equal cost but different specialization. This is a concept that was
touched upon in Chapter 4 in terms of information structures, and that we
shall take up again presently, in terms of (implemented) networks.

3. SPECIALIZATION

In Chapter 4, Section 6, we have related specialization to the costliness
of having very fine information handled by a single person. In Example 4B
given later, it was preferable that the personnel manager should not be
informed of details pertaining to finance (say).

Using the concept of implemented networks introduced in Chapter 8,
we can now treat specialization in a more general way. The net payoff to
the team depends on how certain kinds of activities are allocated among
the various instruments. It will be recalled that these activities consist of
receiving messages {from other instruments or, in the case of observations,
from pature), of processing them into other messages (by computing),
and of communicating these messapes (to other instruments or, in the case
of final actions, to nature).

For example, we may identily the two action-producing elements on
each of the network diagrams of Chapter 8, Section 3, with two instruments:
the personnel manager (and his staff} and the finance manager (and his
staff). It would be somewhat artificial to insist that a, and a, be real-
valued : for example, a, = the wage rate offered to the workers; a, = the
interest rate offered to the lenders. We can, more broadly, consider the
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set of all team actions as the Cartesian product of two sets, whose elements
are actions pertinent to personnel and to finance, respectively. Clearly,
there are many ways of factoring the set of team actions. For example,
instead of contrasting “‘personnel” and “finance” we might install one
manager for each of two geographic regions; or one manager for the cold,
the other (thc vacation substitute) for the warm season; or one manager
to handle ail affairs with outsiders whose name initials run from A through
L, and the other to handle all others. The reader will easily recall cases in
which each of such allocations of activitics is indeed applied and is
presumably close enough to optimal. In any given case, some of those
allocations are so manifestly bad as to be not worth considering. (See
Section 6, on the cost of organizing,) For others, it pays to compare the
net expected payoffs they would yield. Sometimes this can be done by
comparing separately the gross payofls (as was done in the examples of
Chapter 8) and the cost of each network. In any case, the results of com-
parison will reflect the gross payoff function, the probabilities of states of
Nature and thus, given the network, the joint probabilities of events and
messages (and thus of errors). But, in addition, the differences among the
net expected payoffs of alternative implemented networks will also depend
on the nature and cost of available instruments,

An instrument that is well adapted to messages of a certain class may
be altogether unable to handle messages of a different class, or it may
handle them with more harmful delays and errors. A man not proficient
in a foreign language or in some branch of chemical engineering is an
example.

In general, the cost of a machine thai can handle several classes of
operations (whether information-processing or not) contrasts with that of
several machines, each equally effective in a different specialty, as follows:
The ““all-purpose” machine will have to possess some additional device
to select each special operation as the need arises. But the cost of the
selection device may be offset by savings on some parts that are common
to ali ctasses of operations. Also, a specialized machine will stand idle
more frequently than an ail-purpose one.

In the case of information-processing machines, a class of operations
will usually be associated with messages having in common some property
that will call for a processing “routine” characteristic of its task function.
In a strongly specialized instrument, a unique routine is built in once and
for all; there is no need to specify the particular class of messages, since
no other messages will occur. In a more flexible instrument, several
routines can be applied, each activated by a different symbol. Repetitive
properties of messages can be exploited by economizing on symbols per
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unit of time, since the repeated part is reduced to a single symbol. But the
symbol representing each routine has to be stored in the instrument’s
memory, thus requiring additional capacity, and hence presumably
increasing the cost. Does this apply to humans? Psychologists tell us of
our tendency to group objects into patterns {(Gestalts); these are classes of
objects connected by some simple relation (of which similarity and
contiguity are important cases). Patterns help one to memorize and to
solve problems. A specialist responds quickly whenever he can identify
a certain pattern. This can be exploited by letting each man deal only
with messages that belong together in some easily recognizable manner.

We are so used to people’s specialization that we hardly notice its
economic consequences. We are seldom aware how inconvenient it would
be if people would have their tasks assigned and reassigned at random,
rather than in accordance with some principle of classification. Problems
of optimal assignment become visible when two or more principles appear,
at first sight, to be almost equally economical. Whether aid to foreign
agriculture should be the job of the Secretary of State (together with
all other foreign affairs) or of the Secretary of Agriculture (with all other
agricultural matters) cannot be deduced from the dictionary definitions
of the words “foreign” and *‘agricultural” alone. To answer such questions
one has to compare the organizational cost of each kind of assignment,
usually simultaneously with the comparison of gross payoffs, since these
may also be affected by the choice.

Moreover, as in the case of inanimate data-processing instruments,
a man who has several specialties, that is, can apply several “‘routines”
(called “patterns” in this context), may or may not command a higher
fixed cost (his salary) than the several narrower specialists that he might
replace. Competent, versatile men are not in large supply, and may not
be easy Lo train or even discover. Given the available resources, a certain
compromise—the least costly specification of classes of messages—will be
optimal.

It will be recalled that, for formal convenience, we defined network
elements in such a way that a given person, or a given piece of equipment,
may be represented by two or more elements, one element for each time
period of stated Jength. Thus, when a person “memorizes,” we represent
this by a message sent from one element Lo another, both being associated
with the same physical person. But, instead of memorizing, the person
may transmit the message to another person, or a file or a machine,
frecing his memory capacity to store other information. Clearly, both
methods are encountered, and presumably each has its advantages.
Adding a physically distinct link adds to the fixed costs and increases
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delays and the chance of errors. But overloaded memory also leads to
errors and slows down operations.

So far we have discussed cost economies that may result from choosing
the set B; (or the set B;) of messages received {or sent) by the element
as some “‘specialty,” that is, as a set of messages related to each other by
some common property or simple reiation, Economies also arise if there
is some simple relation between the elements of B; and those of B,. It so
happens that the man who issues commands to the Pacific Fleet can be
more easily informed about the situation in the Pacific than in the At-
lantic. |

In earlier chapters, B; was in effect replaced by the set of observations
of nature made by member i, and B; was replaced by the set A, of (final)
actions of that member. The above example of the Fleet commander
was particularly suitable to that simple case, named there cospecializa-
tion of action and observation; see in particular Chapter 4, Section 7.
Cost advantages of cospecialization influence the organizational cost
function. Interesting cases arise when networks without cospecialization
happen 1o be prohibitively costly; their cost is so large that, regardless of
the payoff function, they can never be optimal. When used in conjunction
with a particular payoff function, namely, a quadratic one, the cospecializa-
tion of action and observation admitted of a further interpretation: each
member of the team is informed of the first-order effect of his action {as in
{4.3) of Chapter 6.)

In the more general case, this latter implication need not apply. Nor
need we limit the sets of messages received and sent by the ith element to
those now denoted by B, (observations) and By, (final actions). For we
can look, more generally, to important cases in which a given set of
messages sent is most conveniently (i.e, most cheaply) combined with a
certain set of messages received,

4. SUBORDINATION, COORDINATION, DELEGATION

Pure networks such as those presented in Chapter § are implemented
if their elements, or groups of elements, are associated with instruments:
men, machines, or collections of men and/or machines. One can interpret
some properties of implemented networks in terms of the more conven-
tional language applied to human organizations. To be sure, having dealt
with teams only, we shall not be able to accommodate those aspects that
arise out of conflicts of interest among members. On the other hand, it is
obvious that a very great variety-of pure and implemented team networks
can be constructed. The resulting logical possibilities may prove much
richer than those aspects that the conventional language tries to capture.



312 Team Organization Problems

Any attempt to exactly match conventional terms with the logically pos-
sible relations would be artificial, if not mpossible. Nor would this be
very useful,

The “serial” and the “paralle]™ aspects of the pure networks illustrated
in Chapter 8 might seem to match, respectively, the aspects of ““subordina-
tion” and ‘“‘coordination.” We have, in fact, used .the term commands in
Examples 8B and 8C, when a simple arrangement in series was discussed.
The element associated with a commuander computes the action (assumed
two-dimensional for the sake of later discussion). Whether or not it is
economical to associaie the next element in the series, the one performing
the action, with a separate instrument called subordinate will clearly
depend on the nature and cost of available instruments, as we have just
explained in the preceding section on specialization.

It is easy to replace the (final) action (a,, @,), as in Examples 8B and 8C,
by messages that the subordinate sends to elements further along the line,
and similarly to replace the observation (u,, u,) of nature, by messages
received from other elements of the network. That is, we can make full
use of our general task concept and regard a scheme such as Figure 8.5
as a subnetwork. It will be understood that the optimal solution (for the
function y, in this case) would have to be obtained, ideally, for all sub-
networks simultancously; although, in practice, successive itcrations
part-by-part may be dictated by computational economy (see below,
Section 7). Again, the cost and availability of instruments will determine
how best to implement the subnetwork.

Note, however, that a serial arrangement may involve the transmission,
not of a command but of something usually called report: the first
clement in the series {or subseries) may transform his information by
merely condensing, translating, or manipulating it in some manner other
than transforming it into a task for another element to perform. Again,
the available instruments may or may not be such as to make the specializa-
tion of a reporter economically advantageous.

In Example 8E, the serial arrangement was enriched, in that command
was replaced by partial command or delegation. This may be implemented
in a network in which only some aspects of the subordinate’s action are
prescribed by the commander; he decides himself on other aspects in the
light of all his information—which includes the command as well as the
messages that he, but possibly not the commander, has received. The
Chief of Staff may determine a general direction of troop movements, but
the detail of individual routes is left for others to be determined subse-
quently. The delegation case {and its variants in Example 8F) is indeed
more realistic than that of complete command. The lowliest subordinate,



9 Task Allocation, Organizing, and Leading. § 5 313

even one’s horse or a simple automaton, is left a margin of decision to
exploil information that is more easily available 10 the subordinate than
to the boss, and to relieve the latter’s tasks from trivia. Again, such a
division of tasks is advantageous only given the nature and cost of available
instruments. ,

The arrangement of network elements in parallel may be called for by
advantages of specialization and simultaneous, rather than sequential,
performance of certain tasks. This arrangement may, in turn, call for
coordination. Thus in Example 8D, the action variables (or, more generally,
tasks) are allocated to two different elements, numbered 3 and 5; we may
associate them with two different tnstruments. The gross expected payoff
‘is improved, compared with the case of no coordinator (Example 8A).
This improvement may or may not be large enough to make coordination
worthwhile. .

Note, however, that, instead of having a coordinator, one might intro-
duce partial exchange of communications between the two action-
performing instruments suggested by those examples: for example,
communication only from time to time (standing conference), as the need
arises {ad hoc conferences), or only about some aspects of nature or of
performed action. Some of these arrangements were treated in Chapter 6.

Thus, we see again that the variety of logical possibilities, and their
actually observed counterparts, is richer-than that covered by a few con-
ventional terms such as “subordination,” “authority,” “responsibility,”
and “‘coordination.”

LIS

5. ORGANIZING AS A DEcCISION PROBLEM

In preceding chapters, an organizer was faced with the problem of
finding a network that would yield the highest net expected payoff—
net, that is, of the costs of observation, communication, and computation
incurred in the various parts (elements) of the network. No cost was charged
to the activities of the organizer himsell. He was a benevolent outsider.
Alternatively, we can say that his activities were assumed to be, in effect,
effortless, his problem-solving powers unlimited. In the present chapter,
we shall try to dispose of this fictitious figure, the godlike organizer. More
precisely, we shall retain the idea that the problem of optimal network is
to be solved by someone, a person or a group of persons. But none of these
will be assumed to have unlimited ability 1o solve problems as complex as
that of determining a network, optimal relative to the goals usually
associated with human organizations.

We retain our normative rather than descriptive approach, as stated
in Chapter 1. In subsequent chapters we studied, in particular, the decision
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functions that maximize the gross expected payofl, given the information
structure. We were thus able to compare the values of various information
structures. In doing so, we neglected the costs of the network, apart from
a few illustrative remarks on costs, made occasionally to keep the reader’s
perspective straight. Only in Sections 1 to 4 of the present chapter have we
introduced the network costs in 4 more systematic fashion, to extend our
normative study to the maximization of the net expected payoff of an
implemented network. At that point, we took into account the limitations
of its instruments (human beings, machines) in performing their activities,
and hence the costs of such activities, in a going network set up by an all-
wise organizer. We did not take into account the limitations of the or-
ganizer himself. In the present and subscquent sections, we do just this.

The organizer’s problem clearly belongs to a special class: it is the
problem of how best to solve a given problem. It also belongs to the class
of big, or complex, problems, These two properties of the task of organizing
can be discussed separately. Being a big problem, it may call for “delega-
tion™ and other devices discussed for big tasks in general. Being a problem
of how 10 solve a problem, the organizing task faces us with a peculiar
difficulty, which we shall discuss in the next section, and which we shall
label “uncertainty about the outcome and cost of logical operations.”
In Sections 7 to 11, we shall take up the devices designed to meel the
complexity of the organizing task. Section 12 and 13 relate this task to the
concept of leadership.

6. UNCERTAINTY ABOUT, THE QUTCOME AND
CosT OF LoGIcAL OPERATIONS

This difficulty is encountered even in single-person problems. A person
is given a task that he may perform more or less well, depending on the
effort spent. More precisely, he has to choose an action that will maximize
the expected utility of the outcome, account being taken of the cost of
effort. For contrast’s sake, suppose first the task is a physical one, and a
simple onc at that: chopping wood or carrying water. The conceptual
scheme of Chapiers 1 and 2 applies. A consislent person assigns 4 (net)
utility to each combination of effort and outcome, and assigns a subjective
probability to each of the possible effort-outcome pairs associated with a
given method of accomplishing the task. He chooses the method with the
highest (net) expected utility. In the special case in which net utility can be
represented as the difference between the utility of outcome (payofi)
and disutility of effort, or cost {Chapter 2, Section 12), the consistent
person weighs the expected (gross) utility of outcome against the expected
disutility of efforl. Here, as usual, subjective probabilitics will refiect the



9 Task Allocation, Organizing, and Leading. §6 315

persen’s past experience, combined with any beliefs he had before ac-
quiring experience (Chapter 1, Sections 9 to 10; Chapter 2, Sections
9 to 11).

But suppose the task is to compute the square root \/)—C of a positive
number x. At how many digits shall the person stop if he wants to avoid
the penalty of large errors and large excrtions, measured according to his
scale of utilities? In a case like this, it would first seem doubtful whether
subjective probabilities could be applied.

The rules of logic and mathematics together with the postulates of
consistent behavior imply that a consistent person acts as if he assigned
probabilities to states of nature. This implies assigning probabilities to the
outcomes of each action. But the same rules of logic and mathematics
imply that, if the action is a logico-mathematical operation, the outcome
Is unique. A consistent man is a perfect logician and mathematician! His
subjective probabilities are: 1, for the true outcome of a logico-mathemati-
cal operation; 0, for all its other outcomes. Thus he knows the error
incurred by stopping the computation of \/;c after a given number of
digits, even before he starts computations. Or, pushing this thought further:
a consistent man knows at once all the answers to logico-mathematical
problems. The problem of how best to solve a problem does not arise.

[t would seem, then, that the balancing of expected disutility of effort
against expected utility of outcome, before deciding upon an action,
does not apply when the task is logico-mathematical. If the decision-
maker is not consistent, he has no utilities and subjective probabilities,
and hence no expected utilities, te ‘begin with. If he is consistent, his sub-
Jective probabilities of outcomes of logico-mathematical operations are
Tor0

And yet It is true that mathematicians do adorn their writing with
phrases like “this conjecture is more probable than that one.” They seem
to imply willingness to take a bet, as if mathematical truth were a random
event. (See one of our examples m Chapter 1, Section 10.) Is there a
contradiction?

The question is of importance to us. The organizing problem as we
have formulated it is indeed, at least in part, of a logical or mathematical
nature. The organizer is to find whether 1t is worth his effort to make a
more or less exhausting and exact computation of the net payoffs of
various networks, on the basis of more complete or less complete informa-
tion. The usual answer is that he “uses judgment,” and this would be
easy to interpret in terms of subjective probabilities, except for the
difficulty that bars subjective probabilities from being applied to logico-
mathematical problems.



36 Team Organization Problems

Let us return to our simple example,’ of the person trying to approxi-
mate \/;c Let 0 < x < 1, and denote by a {action} the number of digits
to the right of the decimal point of the computed number. Let f(x, a) be the
computed number. Then the absolute value of the error is

W = fix, a)l = g(x, a),

say. For simplicity, assume the' disutility of error to be equal to its size,
and let the disutility of the effort (or time spent) in computing a digits
be x{a), an increasing function of a. Then the payoff (in utils) is the follow-
ing function of nature (represented by the number x) and action (repre-
sented by the positive integer a):

w(x, a) = —glx, a) — k{a).

We might make the problem more complicated by assuming x uncertain
and having its subjective probability distribution; we would have to find
an optimal decision rule &(x) instead of an optimal constant integer 4, say.
The rule & would minimize the expected disutility of any future computa-
tion of square roots. Our difficulty is present, however, gven when x is
known. We cannot find an optimal value 4 of a in advance of computing
Jix, a) for various values of 4.

For a given value of a, consider the particular function g defined above
as being drawn at random from the set of all functions sharing those
properties of g known to the problem-solver (for example, he knows that
g is nonnegative and continuous in x). We can represent the error as
glx, a, ), where 8 is a random index characterizing a particular clement of
that set of functions. In other words, we redefine nature by adding 6 to the
list of random variables outside of the decision-maker’s control. A state
of nature is now defined, not as x, but as the pair (x, 8. In our particalar
case, it is usual (perhaps most sparing of further effort) io assume that
glx,a,0), for x and a given, is uniformiy distributed over the interval
[0, 107%). Then the conditional expected utility is

Elw(x, a,Ol(x,a)] = —(1/2)- 1077 — x(a);

from this, the optimal value of a is computable. We have, in effect, ignored
some information about the function f(x, a). That information was accessible
to us {for any g, however large) only at a cost, x{a). Instead, we used in-
formation about the (subjective) distribution of states of nature, nature
being redefined to include the random parameter # of the function g. By
neglecting information (about the function f), the decision-maker about to

1. We are indebted to L. J. Savage for discussions of this subject.
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perform a logical operation puts himself in the position of someone acting.
in the physical, uncertain world.

In a more general case, the cost function x is not known; instead, a
subjective probability distribution over a set of such functions is used.

To the extent that the organizer’s problem is a logico-mathematical
ong, his “judgment” in cutting the organizing problem to a size that is
feasible and not too expensive is, we believe, similar to that of a person’s
deciding to limit his computations to a certain number of digits. Like
such a computer, the organizer is well advised to neglect his knowledge of
some of the characteristics of his problem and to treat them instead as if
they presented just another aspect (another dimension, or random vari-
able) of the uncertain physical world. This aspect is described by subjective
probabilities of payoffs and costs, which reflect his past experience, if
any, in dealing with somewhat similar problems.

It should be emphasized that the approach just outlined is like a “‘rule
of thumb,” and is not guaranteed to be free from logical difficulties and
inconsistencies. (Many of the remarks in this chapter are offered in the
same spirit.) We are not aware of any systematic development of a theory
of rational behavior under uncertainty about the outcome of logical
operations, comparabie to the theory of utility and subjective probability
presented in Chapter 1.

7. POSTPONING PROBLEM-SOLVING

Having extended the concept of nature (worid, environment) in a manner
that permits one to treat uncertainty about the outcome of logical opera-
tions on a par with uncertainty about physical nature, we can discuss the
common device of postponing the solution of the problem we called
“organizing,” or, for that matter, of any “problem of how to solve a
problem.” The man trying to compute \/;c approximately may find it
preferable not to determine the number of digits (his action, a) in advance,
Instead, he may decide that he wili add more and more digits until he is
satisfied that any further increase in the degree of approximation will not
pay the additional effort. That is, he decides in advance on a strategy to be
followed: on a succession of operations {each depending on previous
outcomes) and a rule when to stop the operations. This *“*stopping rule”
problem? is analogous to the decisions in the “dynamic case,” treated in
some detail in Chapter 7, where nature was not yet defined in the broader
sense we have now introduced. It may pay to postpone action until more
information is collected on some aspects of the environment, provided

2. See R. Radner 1964 for a discussion of stopping rule problems.
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that the advantage of added information is not offset by the disadvantage
due to the vanability of other aspects of the environment. The latter may
make the delayed action less than optimal (obsolcte}, although it would
have been optlmdl if taken earlier. These considerations can be extended
to the case in which some of the aspects of the environment are the un-
certain outcomes of logical operations.

In particular, our organizer's action is to propose a network. He is
uncertain about the costs of working out any such proposal. His judgment
~ about the probabilities of those costs may recommend to him a strategy:
start with some initial proposal, improve it step by step, each step de-
pending on the results of the previous one, until further improvement of
the network (the increment of its net value, not counting the cost of
organizing) is not worth the additional efiort.

““EARN WHILE YOou LEARN’

It may pay for the team to accept and put into effect the interim results
of the organizer’s activities, and to change the network later, following
his later results. This is not possible with recommendations involving
commitments of long duration, such as plant construction or long
term contracts. Bul in many cases, you can indeed “earn while you learn.”

Consider, for example, a complicated inventory problem, with many
stages of production or transportation, many warehouses, and a great
variety of storable items. There is uncertainty about the actual usage for
any item at any time (rature in the original physical scnse of Chapter 1).
But there is also uncertainty about how long it will take, and what qualified
personnel will be needed, to work out a tolerably good, or a very good,
or an almost perfect, inventory policy. An inventory pelicy is a response
ruie in the sense of Chapter 8 and will need a network to be implemented.
The subjcctive probabilities, to the organizer, may be such that, on the
average, it is best to start by putting into effect a merely tolerable policy,
the one worked out most quickly, yet giving some chances of profit. As
time goes on, not only will the sample of usages increase in size, Improving
the estimate of their probability distribution, but also the logical problem
dealing with the mathematical structure of the optimal policy will be
closer to its solution. For both reasons, the policy will be revised and thus
improved. But in the meantime some profits, though not maximal profits,
will be collected. (Simnilar considerations will also apply, for example, to a
portfolio policy, with mvestments earning while the response function is
being improved.)

The network elements themselves—for example, the various jobs needed
to implement a certain policy for a multibranch inventory—may have to be
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created, redefined, abolished, within the limits imposed by fixed plant,
equipment, and long term coniracts, in the process of a gradual solution
of the organizing problem. A solution that would be perfect if the or-
ganizing effort were costless need not be approached, but a solution taking
account of the organizing -effort may be closcly approached while the
team’s activities are going on,

This may have been the actual pattern of development of many efficient
organizations. They have changed in time not only because they respond
to a changing physical environment, but also because they had proceeded
with operations while their organizing problem was being solved step by
step, and an interim solution put into effect at each step. For in many
cases, not to do anything is not the best choice. While the organizer
postpones the complete solution of his problem (and may possibly never
get to it), he may recommend to the team to go ahead and act on the basis
of his incomplete solution, pending its improvement.

9. REORGANIZING

Typically, the organizer does not “start from scraich.” Rather, his
problem is one of modifying some existing network, or the existing plan
of a network, possibly a tradition. For, on the average, it may be costly
(require too much effort of this particular organizer) to look for a net-
work that is not, in some sense, proximate to a known one. The net-
work values achieved are, in this sense, local rather than global maxima.
An organizer who can, with moderate effort, consider the whole set of
networks that are available and achieve a breakthrough, away from
tradition and toward a more nearly global maximum, is a rare occur-
rence; hence, in a market economy, he is costly. (This is perhaps the
essence of the current economic theory of ¢ntrepreneurial profit.)

10. DELEGATION OF ORGANIZING ACTIVITIES

Earlier in this chapter, we discussed the costs associated with inter-
mediate actions: observations, computations, and communications. The
same results can be applied to the activity we consider now: that of
organizing. We shall presently see that, in fact, many of the intermediate
activities, especially those we described as computation, but some ob-
servations and communications as well, do characterize the organizing
effort.

The costs of organizing may be such as to make it economical to split
the organizing task among several people. The situation is not different,
in principle, from that which calls for splitting any large task, whether
manual or mental, among people; this was discussed in Sections 3 and 4.
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The persons among whom the task of organizing is split constitute a
team, for their activities are directed toward the same goal. This goal is o
choose from the set of available networks one that will maximize the net
expected payoff of the team that is being organized, taking into account
the cost of organizing. We may, but need not, think of the organizing team
as physically distinct from the team that is being organized. For expository
purposes, we have, so far, represented them as distinct. Such a separation
is, in fact, almost realized when a firm is being set up or reorganized
following recommendations of a team of management consultants, or
in the case of a Constituent Assembly, or when the statuies of some future
government agency are being set up on paper. More usual is the case in
which the network is being determined by the efforts of some of the same
people who will participate in its current operations, once a network is
constructed or modified. As stated in Sections 7 and 8, such a nctwork
may be a provisional one, the complete solution of the organizing problem
having been postponed. Some organizing work is going on within the
team while current operations have already started, using a temporary
network that is being constantly changed. Thus some team members
constantly contribute to improving the solution of the network problem.

This applies to many, perhaps the majority, of team members. Simple
application of a prescribed rule, a task function, by each member is prob-
ably an exception rather than a rule, at least in our own culture (as distinct
from the more traditional ones). Some activities of a bank teller, a ticket
vendor, the worker on the assembly line, may be of such a nature. In the
earlier parts of the book, for purposes of simpler exposition, we regarded
such cases as typical. We now have to introduce the fact—which, very
likely, is justified economically—that the task functions, rather than being
prescribed by some outside organizer, are often determined by team
members themselves, especially by thosc more remote from the level of
final actions. Thus individual team members contribute to the solution of
the network problem for the team. How these contributions are fitted
together to yield the solution of the total problem, is an important ques-
tion. Some of the discussion, in the present and the preceding chapters,
of the case of a going network will apply, mutatis mutandis, to the case in
which the network itself is being set up or revised.

The postponement of organizing, as described in Section 7 of this
chapter, can be formally regarded as a case of delegation if we consider
the same person at successive points of time as a sequence of several
members of the organizing team, connected by one-way communication
lines, directed from the present to the future (see Chapter 7). We have seen
that postponement may make the organizing problem easier to solve, by



9. Task Allocation, Organizing, und Leading. § 11 321

reducing uncertainty about the outcome of logical operations. We can
now add another reason for postponement: if the capacity of a person (or
team) to solve a problem in one week is limited, or such quick achievement
is only possible at a higher rate of cffort, or at the price of larger errors,
it may pay (o extend the process of solution, by the same person (or team)
over several weeks, by delegating it to his future self,

11. RESOLVING INCONSISTENCIES

On the face of it, actions of any two members of a team can be mutually
inconsistent. Yet, strictly speaking. only organizing activities can -be
inconsistent; and we may be able to point 1o some modes of resolving such
inconsistencies. ’

Two of a firm’s truck drivers (i = I, 2) come to its warehouse from two
different departments of the firm, each driver being instructed to haul
away a certain amount, g;, of the same commodity. Suppose that

ay + d; > X,

where x is the stock available in the warchouse. The above inequality is
inconsistent with the physical limitation

0=a +a,2x

The apparent contradiction is resolved by distinguishing, as we do, be-
tween messages and final actions. Denote by b, the amount that the driver
i is told (by his department head) lo haul away, as distinct from a;, the
amount he dees haul away. Our situation is properly described, without
any contradictions, thus:

0§'01+a2§x<b1+b2,

which implies, of course, that a; < b, for at least one i. The decision rule
for truck driver i will not be: a; = b,. (In fact, such a rule might prove
physically nonfeasible even in the case of a single driver, when it should be:
a; = min(b;, x), to provide for the case that the order exceeds the availabie
stock.) In our case of two drivers, the rule may be

a; = min[b;, xb;f(b, + b,)];

so that the stock, if it falls short of the sum of two orders, is allocated in
proportion to each order. Such a decision rule implies, of course, that
the information sent to i is not: y;, = b; but is, for example,

{(b,-) i b, + by < x
Y Ubby)  otherwise,
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The same information structure can be combined with different
decision rules, for example “first come first served™; or “driver | always
has priority.”

But note that, to realize the information structure just described,
it may be convenient to insert a special third element into the network,
For example, a warehouse clerk may receive messages b,, b, from two
departments and transform them into messages v,, y, (as defined above)
to the two drivers. The rule that “nobody should obey two leaders™ (the
“hierarchical” principie) may have, among its various meanings, this
somewhat trivial one: inconsistencies between messages received by two
elements of a network can be avoided if a third element has the task of
resolving such inconsistencies, using some fixed rule.

A further device s a court of appeal. A certain network element is
designated to be the receiver of messages about any inconsistency of
messages. In response to this information, he produces a decision, a
ruling that, unlike the standing rules stated above, varies from case to
case. It resolves the inconsistency by determining what action {which
may itself consist in sending a message) should be taken by the original
receiver of the inconsistent messages. )

With the help of standing rules and of rulings, every team member can
find how to respond to any information, whether it does or does not
contain inconsistent messages. If it does, its receiver will apply a standing
rule of resolving such inconsistencies, or he will ask the court of appeal for
a ruling. His decision (task) function must include the possibility of making
such an appeal. .

Since physical laws cannot be violated, some such devices as standing
rules, rulings, hierarchy, even if not forescen on paper, must in fact be
used in any team. It is the job of the organizer—whether a single person
or an organizing team—to make them as efficient as possible (e.g., by
avoiding unnecessary costs or delays). The organizing team can also try
to apply the same devices in the accomplishment of its own task. Thus the
hierarchical principle, standing rules, and a court of appeal may be essen-
tial to any team in its capacity of the team organizing itself. Note, in
particular, that the device of postponing the problem solution can be
regarded as constituting a court of appeal in the shape of some organizing
team member in some future period.

12. LEADERSHIP IN TEAMS

It is convenient for our purposes and, we believe, agrees with ordinary
language, to think of a leader as one who sets the goal and induces others
to move toward it by loHowing a way determined by the leader. In the
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special case of teams as distinct from general organizations, the goal is

common 1o both leader and followers. It is the highest possible expected

utility, computed on the basis of utilities (tastes) and personal probabilities

(beliefs) common to the leader and all other members of the team. If

tastes and beliefs were not the same for all, the leader would have to look

for (optimal) incentives. These are conditions—promises of rewards and

threats of punishment--with the following property: if each member’
tries to maximize his expected utility subject to those conditions, then the

expected utility as viewed by the leader reaches as high a level as can be

achieved, given the tastes and belicfs of the membership. The question of

incentives did not arise in this book because we limited our purpose to the

study of teams. A unique goal was assumed as given. But the question of
ways, to be determined by the leader, remains. Every implemented

network, that is, every possible allocation of tasks among men and

machines, is one possible way to achieve the goal. Optimal task allocation

has been, in fact, the subject matter of the present Part Two of the book.

It has given rise to a rich variety of nontrivial problems, even though

all the complications that might be due to conflicting goals were avoided.

We feel that the proposed methods of stating and solving task allocation

problems in the simple case of tecams will retain their usefulness, or at
least provide insight, in the more general case. In our Epilogue, we shall

try to define optimal allocation of tasks as a subject matter of gencral

organization theory, with the optimality (or goal) concept appropriately

revised.

If the Yeader’s function in a team is to determine the allocation of tasks,
he is identical with the organizer, and all the preceding sections of this
chapter apply. In particular, the activity of organizing must be regarded,
in general, as a continuing one. To be sure, the device of routine may be
worth applying to some aspects (coordinates) of the members’ action
variables: it may be convenient to determine their values (e.g, the office
hours) once and for all. But, taken in its full meaning, as the complete
predetermination of the members’ actions, routine is of course a trivial
case: a limiting case that we have set up mainly for its propaedeutic value.
The routine solution, taken literally, almost never pays off, and is therefore
seldom used. In large and complex organizations, the same lends to hold
(as already emphasized in this chapter) for the somewhat more general
case in which the actions are permitted to vary in response to varying
information, but the decision rules (or, more generally, the task functions)
are predetermined in advance.

Moreover, its very complexity, compared with the capacities of avail-
able men, calls for splitting up and delegating leadership activities. And,
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as is true of specialization in general (Section 3 of this chapter), specializa-
tion of one or several persons on leadership tasks only, may or may not
increase the team’s net expected payofl. It may or may not be desirable
that the same person or persons fulfill the organizing tasks as well as other
tasks of observation, computation, and communication. This will depend
on the nature and costs of available men and machines.

In a different terminology, one might define Yeadership in teams, not
by the content of its tasks—viz., the organizing task—but by the formal
position in the network. But, a given position in a network (e.g., within
some arrangement ‘‘in series” or “in paraliel”) may not preclude the
task in question from being rather trivial, compared with the dignity and
difficulty associated, in most minds, with leadership. We agree with
people who have given serious thought to the matter® and who feel more
comfortable with a language in which leadership tasks are in some sense
creative. Such is the task of organizing, involving as it does the process of
solving complex problems, This task remains difficult and creative when,
in extending leadership from teams to general organizations, the problem
of determining ways is extended to that of inducing goals.

3. We refer to our discussions with Leo Hurwicz and Herbert A. Simon, in particular.
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CHAPTER 10

Epilogue: Optimality and Viability in a General
Model of Organization

LIntroduction 2.Formal structure of the several-person decision problem
3.0ptimality, equilibrium, viability

1. INTRODUCTION

Let us now take a last look at the several-person decision problem,
going beyond the special assumptions that characterize the team. As
compared with the single-person decision problem, the general several-
person problem has a number of new elements:

1. Individual members of the organization may differ with respect to
possibilities of action, with respect to their information, and with
respect to their preferences. Within the expected utility framework,
we may distinguish, with regard to preferences, differences in beliefs
about events from differences in preferences among (sure) con-
sequences.

2. The multi-person character introduces the possibility of uncertainty
about other members’ actions as well as about the state of nature.

3. Differences among individuals with respect to preferences lead to a
new problem of definition of optimality, both for the organization
as a whole and for members of the organization.

In this chapter, we sketch a formal model for the several-person decision
problem and discuss alternative concepts of optimality, It will be seen
that there is no generally accepted criterion of optimality, and likewise
no generally accepted way to characterize mutual uncertainty about
individual behavior. These two points are clearly related. The concept of
optimality will be replaced by a concept of viability, but it appears that,
in order to make such a concept quite precise in any given several-person
decision problem, it is necessary to have information about the particular
possibilities of communication among the decision-makers during the

process of organizing and about their anticipations regarding each other’s
behavior.

327
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2. FORMAL STRUCTURE OF THE SEVERAL-PERSON
DEcisioN PROBLEM

The description of the several-person decision problem that we give
here is based upon, and is an extension of, the network model of the
team given in Chapter 8. Let

X be the set of alternative states of the environment,

R be the set of alternative outcomes to the organization, and

A be the set of aiternative acts available to the organization; every act
a is a function from X to R.

Acts are generated by strategies. Let fi; be a strategy of individual i (i = 1,
..,n), and let 8 = (f,,...,[,) be a joint strategy for the organization.
In a way 1o be described below, every joint sirategy determines an act
for the organization; that is, il 4 is the set of available joint organization
strategies, then there is a function, say F, from # onto 4.
Every member i is assumed to have a preference ordering, say 5

on the set A of available orgamzal:on acts. It should be emphasized thal
the outcomes refer to the organization as a whole, so that an individual
might be interested only in some aspect of a given outcome (e.g, his own
consumption, as a component of an n-tuple of consumptions).

The generation of acts by stratcgies is assumed to take place by means
of a system of observation, communication, computation and decision.
Imapine that there is & sequence of elementary dates + =1,..., T at
which these activities take place, and let

By; = the set of alternative messages from i to f at date ¢,
By; = the set of alternative observations of the environment by j at
date t {messages from the environment to j);
By, = the set of alternative decisions by i at date ¢ (messages from ¢ to
the environment); )
B, = a function from

n n
'X Bl'.j,l -1 t0 k>-<0 th 3

= (Bj1+---»B;7), a strategy for j.

A message sent at date t is to be thought of as being received at date (t + 1).
Messages that take more than one elementary time unit from sending
to receipt may be thought of as passing through a sequence of “dummy”
organization members (stations on a communication link). A message
sent by an individual to himself is interpreted as remembering.
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For a given joint strategy, 8, every state x of the environment determines
an array ((b;q,)) of decisions, called a joint decision. Every joint decision,
together with a state of the environment, determines an outcome. Thus
every # determines, indirectly, an act. Denote this mapping of strategies
into acts by F.

The normal form of the n-person decision problem is determined by

B, A,
F: B4,
(<,....%)

-~ T oA

1 n

The extensive form includes, in addition to the above, the descriptions of
X, R, and the sets By, and the function that transforms (state-of-the-
environment, joint decision) pairs into outcomes {the outcome function
of Chapter 1).

If all of the preference orderings, =<, are identical, then we have the

]
special case of a team. In this case, there is no ambiguity about the ap-
propriate concept of optimality. Nevertheless, as we have seen, the rela-
tion between strategies and acts is in general more complicated than in
the single-person case, and we have to deal with the phenomena of
interaction, coordination, communication, and so forth.
The general situation is usually called a game.

In the theory of games, each mernber i is usually assumed 10 have preferences that
can be scaled in terms of utility and subjective probability (as in Chapter 1). In this

case, to each joint strategy f§ = (ff;, ..., f,) is associated a vector of expected utilities,
say

Q) = [LAB), ..., 2B,

where €,(ff) is the expected utility for member i of the distribution of outcomes
determined by F(f) and his own subjective probability distribution. The nermal
form can then be compactly characterized by the set # of joint strategies, and the
“payoff function™ €L

3. OPTIMALITY, EQUILIBRIUM, VIABILITY

If the n preference orderings, <, are not identical, then one cannot

s~

order acts from the point of view :)f the organization in a way that does
- not contradict at least one of the individual orderings. Further, one
cannot expect to find an act that is maximal for all individual orderings
simultaneously.
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From the point of view of any given {nonempty) subset I of the set N
of members of the organization, one can at least define a partial ordering
of acts, say <. that does not conflict with the preferences of any individual

I

in I, as follows:!

a -< a means that for every i in I, a’ -( a. (In particular, << is identical
[t]
to the complete ordering ‘<) We shal] also have occasion to usc the

following notation:
a ~ @ means that for everyiin I,a' ~ a;
]

a’ < a (or equivalently a >I— a’) means that a’ < a but not a’ T
1 T

Since every joint strategy in & determines an act, the several preference
orderings of acts induce corresponding orderings of strategies, which we
shall indicate by the same symbols <, =<, and so forth.

~9 ~s

Special interest attaches to <. If an act is maximal with respect to =<,

- N N

then no other act is strictly better from the point of view of some individual,
without at the same time being strictly worse from the point of view of
another individual (in other words, “a is maximal with respect 1o <

N
means that there is no a’ such that a’ i— a). Such a maximal act is often

called Pareto-optimal. There will, of course, typically be many Pareto-
optimal acts—if there are any at all—and two such acts will typically not
be equivalent from the point of view of any one individual.

In view of the difficulty of defining optimality for the organization as a
whole in terms of a single ordering of acts, attempts have been made to
substitute some concept of eguilibrium or viability. Roughly speaking, an
act is an equilibrivm if no one of some specified class of groups of indivi-
duals would have both the desire and the ability to change the act by
means of a change in their own joint choice of strategies.

When contemplating a change in its joint strategy, a group of individuals
should consider whether or not such a change would induce further
changes by others. Two different concepts of equilibrium or viability
have been studied, differing according to whether such further changes are,
or are not taken account of.

By a coalition is meant a nonempty set of individuals (a nonempty subset
of N). We shall say that a joint strategy f in 4 can be upset by a coalition |

L. Although this notation is not strictly unambiguous, it will always be clear from the
context whether < refers to an individual or a group.
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if, roughly speaking, the coalition can change § into a joint strategy that
it prefers by changing only strategies of its own members. Formally, for
any (joint) strategy f8 in & define 2'(f) to be the set of joint strategies that
can be obtained by changing the individual strategies of members of the
coalition 1, that is, Z'(f) is the set of all § in @ such that

B; = p;for jnotin L

A strategy 8 can be upset by a coalition I if there is a strategy § in 2'(§)
such that

(10.1) B> B

In particular, to say that ff cannot be upset by N is equivalent to saying
that 8 is Pareto-optimal. A joint strategy that cannot be upset by any
one-member coalition is called a Nash-equilibrium; one that cannot be
upset by any coalition is called a strong equilibrium (see Aumann 1967).

The definition of upsetting suggests, if only implicitly, the possibility
of some kind of agreement among the members of the coalition: otherwise
the achievement of a preferred coalition strategy would appear to be left
to chance. This, in turn, would seem to require the existence of some means
of communication among individuals, which are to be used in the process
of choosing a joint strategy but are not explicitly described already in the
specification of the message sets B, ;.

Suppose that, during this (hypothetical) process of choosing a joint
strategy, a particular strategy, say f, is under consideration, and suppose
further that f can be upset by a coalition I', by a change to a strategy ',
It may be that f' itself can be upset by a coalition I, by a change to a
third strategy, say f”, such that

BB

for one or more members i of I'. In this case, the process of upsetting could
lead to an actual worsening of the positions of one or more members of the
coalition I’ that started the process. Hence, if such further upsetting is
anticipated, the members of any coalition would be well advised to adopt
a more conservative attitude toward a proposed change of joint strategy.

One such conservative attitude is expressed by the concept of blocking.
We shall say that an act a can be blocked by a coalition I if the coalition [
can guarantee itsell something better, that is, if there is a joint strategy for
the coalition such that, whatever the strategies adopted by the other
members of the organization, the resulting act will be preferred to a by
the coalition I. Formally, a can be blocked by I if there are individual
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strategies f3;, i in I, such that any strategy f in # for which
_ Bi=P.iinl,

has the property,

(10.2) F(f) ? a.

Let .# be any collection of coalitions I. An act a will be called viable
with respect to J if there 18 no coalition in .# that can block a. Three
special cases invite particular attention:

Case 1. .#, = {N}. This is equivalent to the definition of Pareto-opti-
mality.

Case 2. #, = the collection of all one-member coahitions. This corres-
ponds, in the case of blocking, to the Nash-equilibrium in the case of
upsetting. :

Case 3. #; = the collection of all possible coalitions. The set of all
acts that are viable with respect to .#; is called the core.

From the point of view of overall organizational efficiency, Pareto-
optimality is a minimal requirement. On the other hand, no member of
the organization can be expected to accept an act that can be blocked by
him alone; hence viability with respect to %, would also appear to be a
minimal requirement. Unfortunately, these two requirements are not
always mutually consistent,

An act in the core has the strongest possible viability against blocking,
and in particular is Pareto-optimal. Hence the core, if it is not empty,
scems to offer a good solution to the problem of optimal organizational
decision.

In the definitions of upsetting and blocking given above, it might be
objected that not all members of I necessarily have a positive incentive
to adopt the preferred coalition strategy, since the definitions do not
exclude the possibilities that, for some i in [, in (10.1)

B~ B
orin (10.2)
F(B) ~ a.
Hence we might wish to consider the stricter group preference relation’
a' > a means that forevery iinli, a’ >a

(to be read “I strictly prefers a’ to a),
Correspondingly, we could define strictly upset and strictly blocked
by replacing >’- by > in (10.1) and (10.2).
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The definitions of upsetting and blocking implicitly express certain
assumptions about anticipations on the part of one coalition, concerning
whether or not further changes of joint sirategy are 10 be made by other
organization members. It has also been pointed out that the concept of
a coalition strategy implies the existence of some communication among
prospective coalition members. One can easily imagine that quite
complicated assumptions about anticipations, and about the possibilities
of cealition formation, might be appropriate for a given organizational
context. Pursuing this train of thought would lead us away from the
search for a simple and universal characterization of rationality in orga-
nizational behavior, and toward a proliferation of special theories with a
large clement of descriptive detail. At the present stage of development of
the formal theory of organization, we must perhaps be satisfied with our
more limited direction of research.?

2. For discussions of various solution concepts for n-person games see Nash [95I,
Shapley 1953, Aumann and Maschler 1964, Harsanyi 1963, and 1966, and Aumann 1967.
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Error, 209, 30708 ; in nstruction, 201-05,
287, in observation, 205-06; comparison
between these two Lypes, 224-29; in
communication, 226, 284-85, 289, addi-
tive, 270; disutility of, 316. See also
Communication; Estimate

Estimate, 61, 95; error of, 42, 116-17

Event: as subset of states, 15, 91; nufl, 21,
3t; ethically non-neutral, 22; disjoint,
mutually exclusive, 24-32 passim; more
probable, 22; equiprobable, 26, 37; bench-
mark, 30; measurable, 30-31, 35n; inter-
changeable, 32; repeatable, non-repeat-
able, 32, 33n; independent, 37. See also
Partition; Probability

Exception(s): management by, 187, 206-23,
307; reports of, 188, 206-17; marginal
value of frequency of, 210, 212; best set
of, 218, 222

Expectations, conditional, 58, 256. Sce also
Mcan

Experiment, 3, 48, 70. See also Sampling

Expert, 151. See also Specialization

Extension, 53n

Fatture. See Success

Faxen, K., vii

Feasibility, 3, 4. See also Action; Con-
straints} Decision function; Network

Feller, W., T3n, 335

Fineness, 53-59, 65, 87, 104, 109, 302. See
also Coarse, Information structure

—sequence of increasing, 58, 67-75 passim

Fishburn, P. C., 15, 16#, 335

Fisher, C., 180n, 335

Forecaster’s fee, 82-83

Forgetting, 124

Frequency, observed, 32,-78

Friedman, M., 41#, 335

Gambile, 39n

Games: theory, 4, 329, one-person, 9§;
nonzero sum, 125

Garbling, 64-67; due to delay, 236; of
command, 284-85; through processing,
298-300, 305
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Girshick, M. A_, 65, 66, 334

Goals, 3. See also Desirability

Good, . ], 83, 335

Goodnow, J. J., 11n, 334

Gravybill, F. A, 165, 337

Group size, (98, 225-26: and delay, 261-65.
See alse Partition of tecam

Groves, T. L., 125, 335

Halmos, P., 31, 195, 245, 335
Harsanmyi, I., viii, 333, 335

Herstein, 1. N., 39, 335

Hicks, J. R, 113n, 335

Hierarchy, 322, See alse Command
Hitch, C. 1, 42, 335

Hurwicz, L. viit, 177, 178n, 324n, 334

Incentives, 125, 323

Independence: of irrelevant alternatives,
10n; of tastes and beliefs, 16-24, 36-41
passim

—statistical: successive observations, 71,
74, 95, 287. observation functions in
team, 188, 193; successive states, 233;
errors, 287

Indifference, 10 IL, 1ln; among actions,
bets, 25, 32

Information, vii, 3, 5; variable, 47; noiseless,
noisy, 47, 59-64 passim; dissemination,
198. See also Signal

—structure (function), 5, 47-49, 56-57,
B7-88, 91, 267, best, 49; “more valuable
than,'” 53-37, 61, 64, 86 non-comparable,
55-57, 87; for team, 124, 127-28, 183;
shared, 142, v5. network, 154, 189, 257-78
passim, 283; vector-valued, 164-68. See
also  Centralization; Decentralization;
Fineness; Garbling

" —cost, 53, 82-86 passit, 91, 109, 118, 224,

258, 306

—compiete: vs. incomplete, 54, 69, 162,
lod4n, 167-68, 190-92, 248-50, 258-59,
281, vs. timely, 23R, 260

—no (null), 54, 85, 87,91, 163, 167, 184. See
afse Routine

-—amount, 57, 83, 106

—value, B6-89, 92, 35, 184,
passim, 246-47, 254-59, 306

—delayed, 24647, 253-60 passim. See also
Delay

191-231
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- —pooling, processing, 269, 297-303

—neglecting, 316

Instruction, 201-05, 287

Instruments: to implement network, 268,
cost of available, 276; market for, 308;
all-purpose, 309

Insurance, 32, 273

Interaction, 101, 113, 116-18, 283, 286, 299,
297. See alse Complementarity

—in teams, 126; identical, 188, 191-92,
197, 205, 208, identical vs. constant total,
22931

—over time, 233-34, 242

Interests, vii, 4, 9-10, 126. See also Tastes

—conflicting, 124, 311, 323

Interference, 113n, 148

Intersubjective agreement on preferences,
32-33, 62, 74. See also Convergence;
Indifference; Probability, objective

Inventory control, 98, 153, 318

Investment, 153, 318

Judgment, 315, 317

Karlin, 8., 42, 334
Knight, F. H., 33n, 336
Koopmans, T. C., 68a, 177, 180, 23451, 336

Lagrangian multiplier, 156, 177-80 passim

Large numbers, law of, 73

Leader, 6, 322

Learning, 69; while earning, 31819

Linear. See Decision function; Payoff;
Programming

Logic: of induction, 3;rules of, 5, 11, 15, 315

Logico-mathematical operations, 32s; un-
certainty about their outcomes, 314-18

Longevity. See Viability

Loss, expected, 101-03

—in statistics, 42

—due to delay. See Delay

Luce, R. D., 1in, 15, 336

McCarthy, 1., 83, 336

MacCrimmon, K., viii

McGuire, C. B., vii, viii, 124, 133n, 336

Management consuitant, 320

March, J. G., 5, 334, 336

Marginal product, 111, 11516 conditional
expected, 146

Index

Market: competitive, 12; research, 47, 102;
imperfect, 112n; for network instruments
and services, 308; for organizers, 319

Markov. See Process

Markowitz, H. M., 42, 336

Marschak, J., 1ln, 330, 39, 4in, 42, 610, 65,
125,132, 211, 336

Marschak, T. A., viii, 22, 236, 336

Maschler, M., 333, 334

Mean: of numerical outcome, 42

Memory, 233, 240, 274-75, 310, loss due to
lack of, 249

Messages: transformation of, 268-69; joint
probability of, 271; to and from nature,
272; feasible, 276; to oneself, 328. See
also Network

Milnor, J., 39, 335

Mixture of prospects, 40

Miyasawa, K., vii, 65, 336

Money: as (numerical) outcome, 10, 12, 2§,
23, 42; utility of, 41, 102-04, 306; units,
113. See alse Cost; Profit

Mood, A. M., 165, 337

Morgenstern, O., 4, 39, 145, 337

Nash equilibrium, 331-32

Nash, J. F, 333, 337

Nature, 12. actions and straegies of, 44,98 ;
messages to, from, 271, 328, redefined,
316, See also Environment ; States

Network, 5-6, 131, 151-54, 271, optimal,
267-303 passim; element, 268-70; re-
curstveness, 273 ; in series, in parallel, 278,
281-88 passim

—abstract vs. implemented, 268-70. See
also Instruments

—ost, 268, 276, 288 ; fixed vs. variable, 306-
07

—feasible, 304

—in general organizations, 328

Neyman, J., 4, 337

Noise, noisy, 270-71. See aiso Communica-
tion; Information

Norm, i1. See also Descriptive

Observation(s), 5, 187, direct, 70; repeated,
independent, 70, 74-75, 85, exceptional
vs. ordinary, (87, 207-09; as messages
from nature, 268. See also Cospecializa-
tion; Error; Sampling
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Obsolete. See Action; Delay

Optimal, vii, 3; organizations, 327, 331. See
also Decision lunction ; Infermaltion strue-
ture; Network )

Ordering, complete: of actions and out-
comes, by preferences, 12, 15; of events
by subjective probabilities, 24, 28. See
also Preferences; Probability

—partial: of information structures by fine-
ness. See Fineness

—partial: of acts by preferences, in general
organizations, 330

Orders. See Command

Organization: vs. team, vii, 9, 123-26, 329;
single-person, 90

—efficient, viable, actual, 4, 6, 126, 328-33,
See also Optimal

—cost, 130, 137, 267-68, 306

Organizational form, 49, 83, 91-92, 124

Organizing, vii, 6, 11, 125, 304, 313-17,
320-27 passim ; costs, 268-69, 319

Organizer. See Organizing

Cutcome(s), 12, 328 utility, 15; set of, 35,
91; probability of, 39; vector-valued, 92n

—good, bad, 42. See also Success

—numerical. See Money; Profit

—function, 12--13, 4344, net, gross, 83-85,
83-91

—of lopico-mathematical operations. See
Logic

Parallel, arrangement in, See Network

Parcto-optimal, 331-32

Partition: of set of states, 18, 27-28, 49, 53,
74; in sequence, 58; payoff-adequate, 59-
64, 70-71, 91, 30001 ; coarse, 61 ; infinite,
78. See also Event; Fineness

—of team into groups, 196, 214, 223-25,
236, 261

“‘Passing the buck,” 207

Payoff: gross vs. net, 6, 83-84, 89-92, 132,
153; to team, 126; marginal, [80

—function, 43-5¢ passim, 54, 59, 91, 273;
sensitive, 59, single-person, 70; non-
sinooth, 98; linear, 99, 172, 175; strictly
concave, 99, 100; (and differentiable,
155-57; polyhedral, 155, 169-77, 181):
additive, 1006, 126, 234, quadratic, 100,
Mi-12, 142, 159-60, 167-69, 182, 237,
277n, 295
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—expected, maximum expected, 43, 49-57
passim, 91-92, 183, 191, 199, 282, 287-90,
298, 305

—conditional expected, 51- 52, 62-63, 144—
45,157,277, 292

- -adequate, -relevant. See Partition

- -in general organizations (a vector), 329

Pearson, E. S, 4, 337

Periodic: delay, 235; recovery of delayed
information, 257, 264-66. See also Delay

Person-by-person satisfactory, See Decision
function

Plans, 240. See aiso Certainty-equivalent

Policy, 11. See also Decision function

Pooling. See Information

Postponing: of decision, 6; of problem-
solving, 317-22 passim

Pratt, 1. W, 4ln, 337

Precision, 128. See also Fineness

Preference(s), 3, 4; ordering of actions, out-
comes, prospects, 10, 12, 12-24 passim,
40-41; strict, 18; conditional, 18-19; de-
composable in time, 68n; in general
organizations, 327-30 passim

Prescriptive. See Descriptive

Price(s), 9, 12, 46, 50, 97, 104-16 passim,
161, 170; conditiona! expectation of, 116,
146-47; random shadow, 156, 177-80
passimn

Prize, 40

Probability: of events, 3, 43-46, 90-91;
mathematical theory of, 29; zero, 46n

-—subjective, as revealed by preferences be-
tween actions: numerical, 15, 21 -27, 35—
41; ordering of events by, 23-28 passim;
addition rule, 27; measure, 27-31, 44n,
79, 91; conditional, 30, 51, 58, 60, 77, 80;
of teams, 124-26; of logico-mathematical
ouicomes, 315; to the organizer, 318; in
general organizations, 329. See also Be-
liefs ; Convergence ; Stochastic

—obiective, 32. Sec also Intersubjective
agreement ; Frequency

—prior, posterior, 33, 52, 59, 63-64, 72-76,
93n

—density, 44, 49, 54-55, 59-60, 79-80, 91,
171

—distribution : continuous, 80-82, 277 uni-
form (rectangular), 95, 277-79, 288, 291;
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simple two-by-two, 97, 107-08, 116, 133,
162; joint normal, 107x, 108n, 116, 149,
163-68 passim, 186, 279, 291 sym-
metrical, 208, 277; joint, of messages,
271; scale parameter, 291

Problem solving. See Solving

Process: learning, 6% adjustment, 156;
Markov, 233, 237, 249; stochastic, 254

—autoregressive, 238 stable, 243, 245;
first-order linear, 244; stationary, 245;
explosive, 245. See also Brownian motion;
Dynamic

Processing. See Information; Communica-
tion; Computation

Production: method, 12; level, 46, 52

Profit. 50, 52, 85, 98, 102-17 passim. See
also Loss; Money; Payofl

—expected, 134-37; conditional, 135-36,
139-41; marginal, 180

Programming: dynamic, 98, 124, nonlinear,
99

—LMlinear, 99, 155, See also Uncertainty

Prospects, 16, 39-40, 41n

Psychology,-11

Punishment. See Reward

Quality control, 42
Queunes, 42

Radner, R, 41#, 159-60, 163n, 168-69, 180,
200, 317n, 337

Raiffa, H., 31, 337

Ramsey, F. P, 3, 11,22, 39, 337

Range(s): to gauge uncertainty, 94; in-
dependent, 173

Rationality, 333. See alse Consistent

Record keeping, cost of, 124

Regression, 96, 117, 149-51, 160, 249

Reorganizing, 319

Report, 305, 312. See aiso Exception

Reseacch, fees, 47, 102

Resource(s), 3, 180, 304-05

Response function, 267, 271, 278, 284, 292,
296; recursive, 272-74

Result. See Qutcome

Returns: diminishing, 99, 110; constant,
1686, increasing, 113; to information, 19,
to size of team, 192-94, 211, 220, 223, 230

Reward, 23

Index

Risk: ps. uncertainty, 33n; aversion re-
flecied in utility function, 40-42, 90

Robinson, E. A., 245, 337

Role, 45

Rosenberg, M. J,, 11a, 334

Routine, 114-15, 117, 132-34, 150, 277, 287,
323. See ulso Decision function, constant ;
Information, null

Rule, standing ps. a ruling, 322. See afso
Decision

Sales: -managcr, 132; -man, 170, 174, 231
Sampling, 3, 32, 48, 60, 70-71, 75, 78;
sequential, 83, 153; cost, 85; delay, 235
Savage, L. J., viig, 3, 13, 18#, 31, 330, 351, 39,
39n, 41n, 85, 316n, 337

Scarf, H., 42, 334

Schwarz, §., viii

Selien, R., viii, 229

Sequential, 53, 83, 295. See also Dynamic

Series, arrangement in. See Network

Shannon, C. E.. 57, 83, 106, 109, 337

Shapley, L., viii, 333, 337

Stgnal, 45-49 passim, 65, 76, 91, 183;
signal-to-noise ratio, 296-97. See also
Information

Simon, H. A., viil, 5, 237-38, 240, 324n,
336-37 '

Simon-Theil theorem, 237-38, 24042

Size. See Group, Team

Smith, W. L, 42, 334

Solving complex problems, 6. 313-14, 324.
See also  Organizing; Logico-mathe-
matical operations

Speciahzation, 6, 129, 143, 308-1}; in
leadership, 323. See also Cospecializa-
tion

Speculator, 104

States (of nature, environment, world), 5,
48-50, 114, 183, 267, 271, 328, effect on
outcome, 12-13; on survival, 125; as
sequence, 243, See also Environment

—set of, 13, 90; probability ordering,
measure, on, 16, 21-33 passim; infinite
vs. finite, 43, 44n, 46n, 15, 84, 867, 158-59,
[63n, 168, 171, 180x, 184. See also Event;
Partition ; Probability

Stationary. See Decision function; Process

Statistics. See Independence; Loss; Sam-
pling
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Stochastic: choice, 11; transformation of
messages, 26871

Stopping rule, 317

Strategy: pure vs. mixed, 98; jomnt, 328-29;
upsetting and blocking, 330-32. See also
Decision rule

Strotz, R., 273n, 337

Subnetwork, 312. Se¢ alsno Network

Subordination, 5, 312. See also Command

Subpartition, 53. See also Finencss

Subpayoff, 117, 126

Substitutability, 113, 1t3n, 189,

Substitution, of prospect for outcome, 40

Success: ps.
utility of, 34

Suppes, P., 1in, 15, 336

Sure-Thing theorems, 18-21, 25, 36 3%

Survival. See Viability

Symbols, 47, 309-10. See also Communica-
tion

Task : allocation, vii, 4-5, 307, 323-24

—function, 272, 275; feasible, 276, 302-05

Tastes, 5; affecting the payolfl function, 43;
of team, 123. See also Independence;
Interests ; Preference

Team, vii, 4, 9; vs. general organization, 3,
329; one-person ws. proper, 123, 128-30,
193, 237, 253; twe-person, 131-51, 160-
67; of organizers, 320

—size (scale), 192, 212, 305. See also Re-
turns

Technocrats, 42

Theil, H., 237-38, 240, 337

Time, 232-33, 269-70. See aiso Dynamic

Timeliness, 260

Tolerance limits, 307

Tornqvist, L., vii

Transformation, strictly increasing: linear
vs. general, 40

—stochastic, 271x

failure, 21-26; probability, -
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Transitivity, 30, 26, See also Ordering;
Preference '

Tritter, A, vii

Tversky, A, 1ln, 335

Uncertainty, 12, 14, 334, 45, 183, 200, 297;
linear programming under, 156, 169-72,
175; about outcomes of lopico-mathe-
matical operations, 314-18; about other
members' actions, 327

—as measured by : range, 94 ; variance, %4,
109; information amount, 106. See also

Variability

Upsetting. See Strategy

Utility, 5, 34-44 passim, 52, 91, 306 ex-
pected gross, net, 16, 267-68: in general
organizations, 329. See also Payoft; Pref-
erence; Transformation

——function, I5, 43, 91: of numerical out-
comes, concave, 40; linear, 84-86, 91-92,
102-04, 118, continuous, strictly increas-
ing, 85-86. See also Money: Risk

Uzawa, H,, 177, 178x, 334

Variability, 112. See alse Dispersion; Un-
certainty

Variance, 42, 94; conditional, 77; when
payofl' quadratic, 112, 1i5-18, 160, 166—
68 of ervor, noise, 202, 267; in dynamic
environment, 243, See afso Probability

Viahility, 4, 125, 327, 330 32

von Neumann, 1., 4, 39, 45, 337

Waiting, 42. See also Delay
Wald, A., 4, 42, 45, 85, 337
Waterman, D., vii—-viii
Weaver, W., 57, 106, 137
Winkler, R,, 31, 337
Wishful thinking, 14
Wold, H., 273n, 337





