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Abstract

We formulate a model of social interactions and misinferences by agents who neglect
assortativity in their society, mistakenly believing that they interact with a representative
sample of the population. A key component of our approach is the interplay between
this bias and agents’ strategic incentives. We highlight a mechanism through which as-
sortativity neglect, combined with strategic complementarities in agents’ behavior, drives
up action dispersion in society (e.g., socioeconomic disparities in education investment).
We also show how the combination of assortativity neglect and strategic incentives may
help to explain empirically documented misperceptions of income inequality and political
attitude polarization.
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1 Introduction

A central channel through which people learn about their societies is by interacting with and
observing the behavior among their peers (e.g., neighbors, coworkers, online acquaintances).
Peers’ behavior (e.g., their consumption choices or political activities) may provide information
about behavior in society as a whole, as well as about key population characteristics (e.g.,
income or political attitude distributions). However, many social interactions are assortative,
in the sense that people interact more with others with similar characteristics: Richer people
are more likely than poorer people to have rich friends, and conservatives are more likely than
liberals to know other conservatives; indeed, evidence suggests that societies may be growing
increasingly assortative.1 As a result, the behavior that individuals observe among their peers
need not be representative of society. At the same time, there is ample evidence from psychology
and behavioral economics that people are prone to misinferences from non-representative data
(see Section 3.1).

In this paper, we formulate a model of social interactions and misinferences by agents who
suffer from assortativity neglect, i.e., mistakenly believe that they interact with a represen-
tative (or more representative than actual) sample of the population. A key component of
our approach is the interplay between this bias and agents’ strategic incentives. In particular,
we highlight a mechanism through which assortativity neglect, combined with strategic com-
plementarities in agents’ behavior, drives up action dispersion in society (e.g., socioeconomic
disparities in education investment). We also show how the combination of assortativity ne-
glect and strategic incentives may help to explain some central empirical findings about people’s
misperceptions of the income and political attitude distributions in their societies.

Our main contributions are twofold. First, we introduce an equilibrium concept that allows
us to analyze the interplay between agents’ strategic behavior and the misinferences they draw
from their peers’ behavior under assortativity neglect. We consider population games, where
agents with ordered types are matched in an assortative manner, and each agent’s optimal
action may depend on her type, the global action distribution in society as a whole, as well as
the local action distribution among her matches. In an assortativity neglect equilibrium (ANE),
each agent correctly observes her local action distribution, but misperceives this to coincide
with the global action distribution and best-responds based on this misperception. Our main
results focus on linear-best response games with strategic complementarities. Here, we show
that ANE amplifies action dispersion relative to Nash equilibrium, by generating a gap between
high and low types’ perceptions of global behavior. This both increases the difference between
high and low types’ actions in any fixed society, and exacerbates the effect of social changes,

1E.g., Jargowsky (1996); Reardon and Bischoff (2011) find increased residential segregation by income, and
Bishop (2009); Brown and Enos (2021) document growing segregation by political attitudes in the US.
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such as increased assortativity.
Second, we provide a theory of how agents form misperceptions about the type distribution

in society. Specifically, suppose that agents seek to explain their observed local action distribu-
tions in a coherent manner, that is, by assuming that their peers are best-responding to their
incentives in the population game. Then we show that assortativity neglect leads agents to
systematically misperceive the type distribution, and we characterize how the nature of social
interactions shapes these misperceptions. Importantly, in our model, agents draw inferences
from their peers’ behavior, which is subject to strategic motivations; this gives rise to different
predictions than if agents directly observed peers’ types and made the purely statistical error
of projecting these onto society. For example, in the latter case, one would expect agents to
underestimate type dispersion, as peers are on average less diverse than the overall popula-
tion. In contrast, we show that our model additionally generates an attribution error in agents’
reasoning about their peers’ incentives; under strategic complementarities, this pushes in the
opposite direction of the statistical error and can lead to overestimation of type dispersion.

Misperceptions of income and political attitude distributions have received much attention
in recent empirical work, in part due to their potential to affect voters’ choices on important
policy issues, such as redistribution. As we discuss, the interplay between the statistical and
attribution errors that we identify might help shed light on some key findings in this literature,
in particular, the fact that both under- and overestimation of income inequality are common
and evidence of widespread overestimation of political attitude polarization (Section 4.4).

The paper proceeds as follows. To illustrate the model and some of our main findings,
Section 1.1 presents a simple parametric example in the context of education investment and
income-based residential sorting. Section 2 introduces general assortative societies and popula-
tion games. Sections 3 and 4 consider, respectively, agents’ equilibrium behavior and formation
of coherent perceptions under assortativity neglect. Beyond the Gaussian societies in Sec-
tion 1.1, ANE strategies and perceptions need not admit closed-form solutions. Instead, a
key observation facilitating our analysis is that every assortative society can be recast as a
monotone Markov process over its space of types. In linear best-response games with strategic
complementarities, this allows us to analyze ANE behavior and perceptions in arbitrary soci-
eties by considering the higher-order expectations of this process. Section 5 extends our analysis
to weaker forms of assortativity neglect and more general best-response functions (including
strategic substitutes) and discusses related literature. Section 6 is a conclusion.

1.1 Illustrative Example

Consider a continuum population of agents, each of whom is identified with an income level
θ ∈ R. The income distribution F in the population is Gaussian, with mean µ and variance
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σ2 > 0. Each agent knows her own income, but does not directly observe other agents’ incomes.
Due to neighborhood sorting by income, the richer an agent the more likely she is to interact
with other high-income agents. Specifically, pairwise interaction probabilities between any
agents θ and θ′ are summarized by a symmetric bivariate Gaussian distribution P with marginal
distribution F and correlation coefficient ρ ∈ (0, 1),

(θ, θ′) ∼P N

((
µ

µ

)
,

(
σ2 ρσ2

ρσ2 σ2

))
.

The higher ρ the greater the degree of assortativity.
Each agent θ chooses a level s(θ) ∈ R of education investment.2 Assume that θ’s best-

response against strategy profile s takes the form

BRθ(s) = θ + β EF [s(θ′)]︸ ︷︷ ︸
:=
´
s(θ′) dF (θ′)

+γ EP [s(θ′)|θ]︸ ︷︷ ︸
:=
´
s(θ′) dP (θ′|θ)

,

with β, γ ≥ 0, β + γ < 1. Thus, richer agents have an intrinsic tendency to invest more
in education; additionally, θ’s optimal education investment is increasing in global average
investment EF [s(θ′)] in society as a whole (e.g., due to anticipated competition for college
admissions/jobs), and in local average investment EP [s(θ′)|θ] among the agents she interacts
with (e.g., due to peer effects in learning).3 In the unique Nash equillibrium, sNE(θ) = θ−µ

1−γρ +
µ

1−β−γ for each θ.
Nash equilibrium assumes that agents best-respond to correct perceptions of behavior in

society. In contrast, we assume that each agent correctly observes the local distribution of
education investments among the agents she interacts with; however, she mistakenly believes
this to coincide with the global distribution of education investments in society (which she does
not directly observe), because she neglects that society is assortative. We formalize this using
the concept of assortativity neglect equilibrium (ANE), where

sAN(θ) = θ + (β + γ)EP [sAN(θ′)|θ],

i.e., each agent θ’s action is a best-response to the correct local average investment EP [sAN(θ′)|θ]
but the misperception that this is the same as global average investment. Equilibrium actions
are uniquely given by sAN(θ) = θ−µ

1−(β+γ)ρ
+ µ

1−β−γ for each θ (see Example 1 for details).

2We consider education investment to include decisions such as expenditures on educational materials or
tutors or the amount of effort exerted at school, but assume school choice (and other decisions that might
endogenously affect sorting) to be exogenous (e.g., because everyone enrolls in their neighborhood school).

3Bénabou (1993, 1996a,b); Fernández and Rogerson (1996, 2001); Durlauf (1996) consider related models
(without misperception) of education investment with sorting and global and/or local complementarities.
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Increased action dispersion. Our first main finding is that, under strategic complemen-
tarities, assortativity neglect increases action dispersion relative to Nash, through two channels.
First, in any given society, ANE leads to greater socioeconomic differences in education invest-
ment than Nash: Average education investment in society is the same under ANE and Nash,
but the variance is higher under assortativity neglect,

VarF
[
sAN(θ)

]
=

(
1

1− (β + γ)ρ

)2

σ2 ≥ VarF
[
sNE(θ)

]
=

(
1

1− γρ

)2

σ2. (1)

The intuition is simple and reflects a mutually reinforcing interplay between agents’ misper-
ceptions and behavior: Since richer agents are more likely than poorer ones to interact with
other rich agents, they tend to observe higher education investment among their peers. Under
assortativity neglect, this gives rise to a “false consensus effect:” Perceptions of global average
education investment in society, and hence of returns to education, are increasing in agents’
income and thus in their own investment. Relative to correct perceptions, this increases edu-
cation investment differences between the rich and poor, which in turn, through observation of
their peers’ investment, feeds into the false consensus effect.

Second, assortativity neglect acts as a multiplier of social changes that increase action
dispersion. For instance, the effect of an increase in the degree ρ of neighborhood sorting is

∂

∂ρ
VarF

[
sAN(θ)

]
≥ ∂

∂ρ
VarF

[
sNE(θ)

]
≥ 0.

Thus, socioeconomic education differences rise under Nash, but even more so under ANE. In-
tuitively, greater sorting has a direct effect on the education gap under Nash, by increasing
differences in local peer effects between richer and poorer agents. However, under ANE, this
additionally magnifies the false consensus effect, because both richer and poorer agents mistak-
enly attribute these new local education investment levels to a global trend in society, further
polarizing their responses. An increase in income inequality σ2 has an analogous effect.

Coherent perceptions under assortativity neglect. Next, we ask whether and how
agents can “make sense” of their observed local action distributions through the lens of assor-
tativity neglect. That is, when an agent θ suffers from assortativity neglect, can she explain
the distribution of education investments she observes among her peers by assuming that they
are behaving optimally? Our second main finding is that the answer is yes, but that to explain
her observations, θ must misperceive the income distribution in society in a particular way.

Specifically, under ANE, the local distribution of education investments that θ observes has
mean EP [sAN(θ′)|θ] =: aθ and variance VarP [sAN(θ′) | θ]. Since θ neglects assortativity, she
believes that this local distribution is representative of the investment distributions in all other
neighborhoods and in society as a whole. Thus, from θ’s perspective, each agent θ′’s optimal
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σ̂2
θ > σ2

σ̂2
θ < σ2

β + γ

ρ

Figure 1: Under-/overestimation of income inequality. (Perceptions are correct if ρ = 0 or ρ = 2(β+γ)
1+(β+γ)2 ).

education investment choice is θ′ + (β + γ)aθ. As Example 2 verifies, the only way that θ can
explain her observed local investment mean and variance as arising from such optimal choices
is if θ perceives the income mean and variance among her peers, and hence in society, to be

µ̂θ = (1− β − γ)aθ, σ̂2
θ = VarP [sAN(θ′) | θ] =

σ2(1− ρ2)

(1− (β + γ)ρ)2 . (2)

Misperceptions of income inequality. Based on this, we can examine how agents’ mis-
perceptions of the income distribution are influenced by the nature of their social interactions.
For example, consider θ’s perceived income inequality σ̂2

θ in (2). This is increasing in β+γ, and
exceeds the true income inequality σ2 if and only if 2(β+γ)

1+(β+γ)2
> ρ. Thus, as Figure 1 shows, θ

underestimates (resp. overestimates) income inequality when complementarities β+γ are small
(resp. large) relative to the degree of assortativity ρ.

This finding reflects two opposing errors in θ’s reasoning under assortativity neglect. On
the one hand, a purely statistical error : Income inequality σ2(1− ρ2) among θ’s peers is lower
than in the overall population. Thus, viewing her peers as representative of society pushes θ to
underestimate income inequality. On the other hand, an attribution error : Rather than directly
observing her peers’ incomes, θ must infer these from their observed investment decisions.
However, due to her assortativity neglect, θ fails to take into account that the rich and poor are
subject to different peer effects, because she mistakenly believes that everyone faces the same
local average investment aθ. As a result, she misattributes all observed investment differences
to variation in income. This creates a force for overestimating income inequality. Under larger
complementarities, the second channel is stronger and can dominate the first one.

2 Setting

There is a continuum of agents with mass normalized to 1. Each agent is endowed with a type
θ ∈ R. An agent’s type is her private information. Agents interact according to a random
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matching technology. A society P specifies the probability with which any pair of types θ and
θ′ are matched:4

Definition 1. A society is a joint cdf P over R× R that is:

1. symmetric: P (θ, θ′) = P (θ′, θ) for all θ, θ′

2. assortative: P (·|θ) first-order stochastically dominates P (·|θ′) if θ ≥ θ′.

Symmetry is a consistency condition required to describe a randommatching in a population.
Assortativity captures the idea that higher types are (weakly) more likely than lower types
to interact with other high types. Note that a society P jointly summarizes an underlying
type distribution , described by the marginal distribution F := margΘ P , and a matching
technology , which for every type θ specifies the conditional distribution P (·|θ) of θ’s matches.
We assume that the type distribution F is absolutely continuous with

´
|θ|dF (θ) <∞ and has

a connected support, denoted by Θ. Let F denote the set of all cdfs with these properties. We
call society P non-assortative if P = F × F is the independent product of its marginals, so
that each type θ’s match distribution P (·|θ) = F coincides with the type distribution in society
as a whole. In the Gaussian parametrization in Section 1.1, P is non-assortative if and only if
the correlation coefficient ρ = 0.

Society P is engaged in the following population game. Agents have a common action set,
given by a measurable A ⊆ R. A strategy profile is a measurable function s : Θ → A that
specifies an action s(θ) for each type θ and satisfies

´
|s(θ)|dF (θ) < ∞. Each strategy profile

s induces a global action distribution Gs,P , i.e., the cdf over actions when types are drawn
according to F and behave according to s:

Gs,P (a) :=

ˆ
Θ

1{s(θ′)≤a} dF (θ′) for all a ∈ A.

For each type θ, s also induces a local action distribution Ls,Pθ . This is the distribution of
actions among θ’s matches, i.e., the cdf over actions when types are drawn according to P (·|θ):

Ls,Pθ (a) :=

ˆ
Θ

1{s(θ′)≤a} dP (θ′|θ) for all a ∈ A.

Note that when P = F×F is non-assortative, each type’s local action distribution Ls,Pθ coincides
with the global action distribution Gs,P for all s. However, Ls,Pθ generally differs from Gs,P when
P is assortative. Finally, for each type θ, the game specifies a best-response correspondence
BRθ : ∆(A) × ∆(A) → A. For any strategy profile s, the set of optimal actions for θ is

4Throughout, we treat society P as exogenous. See Pin and Rogers (2016) for a survey of potential sources
of assortativity, including institutional constraints or socio-psychological factors.
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given by BRθ(G
s,P , Ls,Pθ ), which depends on s only through the induced global and local action

distributions Gs,P and Ls,Pθ .

The next section defines an equilibrium concept that applies to any population game of the
above form. However, our main results will focus on linear best-response functions with
strategic complementarities (Section 5.2 discusses how to extend the analysis beyond this
case, including to settings with strategic substitutes): Here, A = R and there exist coefficients
β, γ ≥ 0 with β + γ < 1 such that each type θ’s best-response against strategy profile s is the
unique action given by

BRθ(G
s,P , Ls,Pθ ) := θ + β

ˆ
a dGs,P (a) + γ

ˆ
a dLs,Pθ (a) = θ + βEF [s(θ′)] + γEP [s(θ′)|θ]. (3)

The first term captures that higher types have an intrinsic tendency to take higher actions.
The second term captures society-wide strategic complementarities, whereby each type θ’s
best-response is increasing in the global average action. Finally, by the third term, θ’s best-
response is also increasing in the average behavior among her matches, reflecting local strategic
complementarities.5

While stylized, best-response functions of this form are widely used in the literature on
network games (for a survey, see Jackson and Zenou, 2013) and can capture a rich class of eco-
nomic applications. In addition to education investment (Section 1.1), other examples include
many consumption decisions that depend on income positively, but may also exhibit both direct
peer-to-peer consumption complementarities and material or socio-psychological global payoff
complementarities (e.g., economy-wide technological spillovers or a desire to adhere to a social
norm). Likewise, types might represent political attitudes on a left-right spectrum and actions
the extent to which agents manifest support for particular positions, where related local and
global complementarity/conformity motives may be at play.

3 Behavior under Assortativity Neglect

3.1 Assortativity Neglect Equilibrium

The standard solution concept of Nash equilibrium assumes that all agents best-respond to
correct perceptions about others’ behavior. That is, in our population game, strategy profile s
is a Nash equilibrium if each type θ’s action s(θ) ∈ BRθ(G

s,P , Ls,Pθ ) is a best-response to the
true global and local action distributions under s.

5While our analysis takes best-response functions as its primitive, one possible utility function that induces
(3) is U(a, θ,G, Lθ) = −

´ ´ (
a − θ − βa′ − γa′′

)2
dG(a′) dLθ(a

′′); that is, θ faces a quadratic miscoordination
cost that reflects the gap between her action a and a weighted sum of her type and the realized actions a′ in
society and a′′ among her matches.
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In this paper, we introduce an alternative solution concept, assortativity neglect equilibrium.
Here, each agent θ correctly perceives her local action distribution Ls,Pθ , but mistakenly perceives
the global action distribution to coincide with this local action distribution, and best-responds
based on this misperception:

Definition 2. A strategy profile s is an assortativity neglect equilibrium (ANE) if s(θ) ∈
BRθ(L

s,P
θ , Ls,Pθ ) for each θ.

One interpretation of ANE is as the steady state of a hypothetical dynamic setting, where
successive generations of agents choose actions based on (i) only observing the behavior in their
local neighborhoods and (ii) the misperception that society is non-assortative, which we refer
to as assortativity neglect . Concretely, suppose that before a t-th generation agent θ chooses
her action st(θ), the only information available to her is the local action distribution L

st−1,P
θ

among the previous generation’s types from her match distribution P (·|θ). She does not observe
the global action distribution Gst−1,P (nor her matches’ types or payoffs). However, since she
suffers from assortativity neglect, she mistakenly believes Gst−1,P to coincide with her observed
local action distribution, because she perceives her matches to be a representative sample of
society. Given this, she best-responds by choosing st(θ) ∈ BRθ(L

st−1,P
θ , L

st−1,P
θ ). Steady states

of this setting correspond to the fixed-point condition in Definition 2.6

Agents’ misperception that their observed local action distributions match behavior in soci-
ety can be viewed as a manifestation of the idea in cognitive psychology that people are “naive
intuitive statisticians” (Fiedler and Juslin, 2006; Juslin, Winman, and Hansson, 2007), who
take for granted that their observed samples are representative. More broadly, this relates to
the “What You See Is All There Is” bias (Kahneman, 2011) and the experimental literature
on “selection neglect” (Esponda and Vespa, 2014, 2018; Barron, Huck, and Jehiel, 2019; Enke,
2020), which documents various learning settings where subjects fail to recognize that the in-
formation they see is subject to selection effects. Misperceiving society to be non-assortative
also gives rise to a form of “projection bias,” where each agent projects her own local action
observations onto everyone else in society.7

Finally, a basic idea motivating ANE is that agents are better able to observe their local
action distributions than the global action distribution. This seems natural in many applica-
tions, such as the setting in Section 1.1: Education investment levels among one’s peers are
readily observable based on day-to-day interactions, but learning about education investment
levels in society as a whole might require one to research other sources or to draw inferences

6Analogous learning motivations, but under different forms of misinference from observed feedback, underlie
solution concepts such as analogy-based expectation and cursed equilibrium; see Section 5.3.

7Related projections of local observations are documented by the literature on “network cognition” (for a
survey, see Brands, 2013): E.g., Dessi, Gallo, and Goyal (2016) elicit subjects’ assessments of degree distributions
on a network and find that subjects project their own number of neighbors onto others in the network.
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from peers’ payoffs (e.g., labor market outcomes) that may not yet be known at the time of
choosing one’s own education investment.8 At the same time, the assumption underlying ANE
that agents have no information about the global action distribution and view their local action
distributions as fully representative of it is, of course, extreme. In Section 5.1, we consider less
extreme formulations, where some fraction of agents know the true global action distribution
or agents only partially project their local action distributions onto the global distribution.

Remark 1. ANE clearly coincides with Nash equilibrium in non-assortative societies P or
in population games where best-responses BRθ(G

s,P , Ls,Pθ ) = BRθ(L
s,P
θ ) depend only on local

action distributions. Beyond these special cases, the two solution concepts generally differ, even
in the widely studied setting where best-responses BRθ(G

s,P , Ls,Pθ ) = BRθ(G
s,P ) depend only

on global action distributions (i.e., γ = 0 in the case of linear best-responses). In the latter
environment, local action distributions are not directly relevant for incentives and hence play no
role under Nash, but they nevertheless affect ANE through agents’ misinference that their local
action distributions match the global action distribution. We allow best-responses to depend
on both global and local action distributions as this is natural in many economic applications,
but our main insights will apply even under purely global strategic externalities. N

3.2 Action Dispersion under Assortativity Neglect

To analyze and contrast behavior under Nash and ANE in detail, we focus on the linear best-
response functions with strategic complementarities given by (3).

A key observation facilitating our analysis is the following. Even though our model is static,
we can think of any society P as inducing a discrete-time Markov process over its space of types
Θ: The initial distribution is given by the type distribution F = margΘ P and the transition
kernel is the matching technology (P (·|θ))θ∈Θ. That is, this process first draws an initial type
θ0 ∈ Θ according to F , then draws type θ0’s match θ1 according to P (·|θ0), type θ1’s match
θ2 according to P (·|θ1), and so on. We refer to this Markov process as the process of t-step
ahead matches in society and also denote it by P . Assortativity of P corresponds precisely to
this process being monotone (Daley, 1968); this feature will play an essential role throughout
our analysis.

The process of t-step ahead matches yields a simple description of the Nash equilibrium of
our game. By the best-response condition (3), s is a Nash equilibrium if and only if, for all θ,

s(θ) = BRθ(G
s,P , Ls,Pθ ) = θ + βEF [s(θ′)] + γEP [s(θ′)|θ]. (4)

By iterating this fixed-point condition under the Markov process P and exploiting the linearity
8Indeed, Section 3.4 discusses empirical evidence on misperceptions of returns to education.
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of the best-response function, we obtain that, for all θ and τ ∈ N,

s(θ) = θ + βEF [s(θ′)] + γEP [s(θ1) | θ0 = θ]

= θ + βEF [s(θ′)] + γ
(
EP [θ1 | θ0 = θ] + βEF [s(θ′)] + γEP [s(θ2) | θ0 = θ]

)
= . . .

=
τ∑
t=0

γt
(
EP [θt | θ0 = θ] + βEF [s(θ′)]

)
+ γτ+1EP [s(θτ+1) | θ0 = θ],

where each step applies the law of iterated expectations. In Appendix B.1, we verify that the
higher-order term γτ+1EP [s(θτ+1)|θ0 = θ] vanishes as τ →∞ and obtain the following result:

Lemma 1 (Nash equilibrium). For any (P, β, γ), there exists a unique Nash equilibrium. Nash
strategies are strictly increasing in types, with

sNE(θ) =
∞∑
t=0

γtEP [θt|θ0 = θ] +
βEF [θ′]

(1− γ)(1− β − γ)
for all θ. (5)

Thus, θ’s Nash equilibrium action is a weighted average of a γ-discounted sum of her ex-
pected t-step ahead matches and a constant that depends only on β, γ, and the type mean
EF [θ′] in society. Her behavior is increasing in her type for two reasons: First, higher types
prefer higher actions. Second, due to local complementarities, θ’s behavior is increasing in her
matches’ behavior, which in turn is increasing in their matches’ behavior, etc., and higher types
are more likely to meet other high types. This is reflected by the fact that θ’s action depends
on all the t-step ahead expectations EP [θt|θ0 = θ], which are (weakly) increasing in θ due to
the monotonicity of the Markov process P .

By contrast, any ANE s must satisfy the fixed-point condition

s(θ) = BRθ(L
s,P
θ , Ls,Pθ ) = θ + (β + γ)EP [s(θ′)|θ]. (6)

Analogous to the derivation of Nash equilibrium, iterating (6) implies that the ANE is
uniquely given by

sAN(θ) =
∞∑
t=0

(β + γ)tEP [θt|θ0 = θ] for all θ. (7)

That is, θ’s action is a (β + γ)-discounted sum of her expected t-step ahead matches under P .9

An important implication is that, under global complementarities, assortativity neglect
increases action dispersion relative to Nash equilibrium. Formally, comparing (5) and (7), the

9In line with the learning motivation of ANE in Section 3.1, (7) can be seen as stable steady state of the
following adjustment process: Starting with any monotone strategy profile s0, if successive generations of agents
best-respond to previous period behavior according to st(θ) ∈ BRθ(L

st−1,P
θ , L

st−1,P
θ ), play converges to (7).
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fact that t-step ahead expectations EP [θt|θ0 = θ] are increasing in θ and that β ≥ 0 implies

sAN(θ)− sAN(θ′) ≥ sNE(θ)− sNE(θ′) for all θ > θ′.

Equivalently, the global action distribution GAN under ANE is more dispersive than the Nash
global action distribution GNE; that is, GAN−1

(x)−GAN−1
(y) ≥ GNE−1

(x)−GNE−1
(y) for all

0 < y ≤ x < 1. Since the average actions under (5) and (7) are the same (namely, EF [θ]
1−β−γ ), this

implies that GAN is a mean-preserving spread of GNE.10

Proposition 1 (Assortativity neglect equilibrium). For any (P, β, γ), the unique ANE sAN is
given by (7). The global action distribution GAN under ANE is more dispersive than the Nash
action distribution GNE.

As illustrated in Section 1.1, Proposition 1 reflects the following intuition: Under any mono-
tonic strategy profile, higher types face higher local action distributions, which under assortativ-
ity neglect, they view as representative of the global action distribution. This is reminiscent of
the widely documented “false consensus effect” in social psychology (Ross, Greene, and House,
1977; Marks and Miller, 1987), whereby people’s perceptions of others’ behaviors (or attributes)
tend to be positively correlated with their own behaviors and attributes. Proposition 1 high-
lights that, when combined with global strategic complementarities, this effect drives up the
gap between higher and lower types’ best-responses, further reinforcing the differences in their
local action distributions and hence in their perceived global action distributions.11

Example 1. In the Gaussian parametrization from Section 1.1, each type θ’s match distribution
P (·|θ) is also normal with mean EP [θ1|θ0 = θ] = (1−ρ)µ+ρθ; inductively, EP [θt|θ0 = θ] = (1−
ρt)µ+ρtθ for all t. Thus, applying (5) and (7) yields the strategy profiles sNE(θ) = θ−µ

1−γρ+ µ
1−β−γ

and sAN(θ) = θ−µ
1−(β+γ)ρ

+ µ
1−β−γ from Section 1.1. As noted in (1), ANE features a higher action

variance than Nash, in line with Proposition 1. N

3.3 Multiplier Effect of Assortativity Neglect

Proposition 1 shows that, under strategic complementarities, assortativity neglect increases
action dispersion relative to Nash in any fixed environment. Continuing to focus on linear best-
response games with strategic complementarities, we now highlight a second channel through

10Recall that cdf G1 is a mean-preserving spread of G2 if
´
φ(a) dG1(a) ≥

´
φ(a) dG2(a) for any convex

function φ : R→ R for which the integrals are well-defined. For cdfs that share the same mean, the dispersive
order is stronger than the mean-preserving spread order (e.g., Shaked and Shanthikumar, 2007).

11The welfare implications of Proposition 1 depend on whether ANE payoffs are interpreted objectively or
subjectively (i.e., based on the true global action distribution GAN or agents’ perceived global action distribu-
tions Ls

AN ,P
θ ). E.g., under the quadratic miscoordination utilities in footnote 5, objective ANE welfare is always

Pareto-worse than Nash due to the higher action dispersion, but subjective ANE welfare can be lower or higher
than Nash depending on parameters (see Appendix E.3 of the previous version, Frick, Iijima, and Ishii, 2019).

12



which assortativity neglect can lead to more dispersed behavior: by amplifying the effect of
several key social changes.

We first consider increases in assortativity or type heterogeneity. To disentangle these two
changes, we use an equivalent representation of societies that re-expresses who interacts with
whom in terms of type quantiles x ∈ [0, 1]. For any society P , let C(x, y) be the probability
that two types with quantiles below x and y are matched:

C(x, y) := P
(
F−1(x), F−1(y)

)
for all x, y ∈ (0, 1), (8)

and C(x, 0) = C(0, x) = 0, C(x, 1) = C(1, x) = x for all x. Note that C is a copula (i.e., a
cdf over [0, 1]2 with uniform marginals) and inherits symmetry and assortativity from P . We
refer to symmetric and assortative copulas as interaction structures . Any society induces
an interaction structure via (8). Conversely, any interaction structure C and type distribution
F yield a society by setting P (θ, θ′) := C(F (θ), F (θ′)). Under this decomposition of societies
into pairs (F,C), one can vary each component freely while holding the other fixed.

We call interaction structure C1 more assortative than C2 if C1(x, y) ≥ C2(x, y) for any
x, y ∈ (0, 1); that is, C1 assigns higher probability than C2 to “low-low” matches between agents
with quantiles below any cutoffs x and y.12 The least assortative interaction structure is given
by CI(x, y) = xy for all x, y; for any F , this induces the non-assortative society (F,CI) = F×F .
The most assortative C matches each quantile only with types of the same quantile. In Gaussian
societies, the interaction structure depends only on the correlation coefficient ρ, where higher
ρ corresponds to more assortativity. For simplicity, we henceforth focus on the class C of
interaction structures that admit positive and absolutely continuous densities on (0, 1)2.

To consider the effect of increased assortativity, we compare Nash and ANE global action
distributions and strategies GNE

i , sNEi , GAN
i , sANi across environments (F,Ci, β, γ) that differ

only in their interaction structures Ci:

Proposition 2 (Effect of assortativity). For any C1, C2 ∈ C, the following are equivalent:

1. C1 is more assortative than C2.

2. GNE
1 is a mean-preserving spread of GNE

2 for all (F, β, γ).

3. GAN
1 is a mean-preserving spread of GAN

2 for all (F, β, γ).

4. For all θ∗ ∈ Θ and (F, β, γ),

EF [sAN1 (θ)− sAN2 (θ) | θ ≥ θ∗] ≥ EF [sNE1 (θ)− sNE2 (θ) | θ ≥ θ∗] ≥ 0.

12Equivalently, C1 assigns higher probability to “high-high” matches between quantiles above any two cutoffs.
This corresponds to the PQD order over bivariate cdfs used in statistics (e.g., Shaked and Shanthikumar, 2007).
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Proposition 2 captures a tight connection between increased assortativity and action disper-
sion under strategic complementarities: Not only does more assortativity lead to greater action
dispersion (by “1 ⇒ 2, 3”), but greater action dispersion is indeed a defining feature of more
assortative societies (by “2, 3 ⇒ 1”). However, while this is true under both Nash and ANE,
part 4 highlights that any given rise in assortativity has a stronger effect on action dispersion
under assortativity neglect: High types’ actions increase more on average (equivalently, low
types’ actions decrease more) than under Nash.13 Indeed, under purely global complementari-
ties (γ = 0, β > 0), a rise in assortativity has no effect on Nash action dispersion, which always
equals type dispersion; however, it still increases ANE action dispersion.

Section 1.1 discussed the intuition for the forward direction: A rise in assortativity increases
differences in local complementarity incentives across types (under Nash and ANE), but under
ANE it additionally increases differences in perceived global complementarity incentives by
magnifying the false consensus effect. To prove the formal equivalence, we exploit the Markov
process representations of Nash and ANE in (5) and (7), which reduces the problem to a
comparison of expected t-step ahead matches across different societies. A key step is to establish
an equivalence between the more-assortative order over interaction structures Ci and the mean-
preserving spread order over the distributions of all t-step ahead expectations of the Markov
processes Pi = (F,Ci); this relies crucially on the monotonicity of these processes.

We obtain an analogous result by comparing GNE
i and GAN

i across environments (Fi, C, β, γ)

that differ only in their type distributions: Increased type dispersion corresponds to increased
action dispersion under both Nash and ANE, but the effect is stronger under ANE.

Proposition 3 (Effect of type dispersion). For any F1, F2 ∈ F , the following are equivalent:

1. F1 is more dispersive than F2.

2. GNE
1 is more dispersive than GNE

2 for all (C, β, γ).

3. GAN
1 is more dispersive than GAN

2 for all (C, β, γ).

4. For all (C, β, γ) and x, y ∈ (0, 1) with x > y,

∆x,yG
AN
1 −∆x,yG

AN
2 ≥ ∆x,yG

NE
1 −∆x,yG

NE
2 ≥ 0,

where ∆x,yG := G−1(x)−G−1(y) for any cdf G.

Finally, we show that changes in complementarity motives can have qualitatively distinct
effects under Nash and ANE:

13For • ∈ {NE,AN}, G•1 is a mean-preserving spread of G•2 iff EF [s•1(θ)− s•2(θ) | θ ≥ θ∗] ≥ 0 for all θ∗. Thus,
part 4 captures that the mean-preserving spread increase from G•2 to G•1 is greater under ANE than Nash.
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Proposition 4 (Effect of complementarity motives). Consider GNE
i and GAN

i in environments
(F,C, βi, γi) (i = 1, 2). We have:

1. γ1 ≥ γ2 ⇐⇒ GNE
1 is more dispersive than GNE

2 for all (F,C) and all β1, β2.

2. β1 + γ1 ≥ β2 + γ2 ⇐⇒ GAN
1 is more dispersive than GAN

2 for all (F,C).

Thus, Nash action dispersion is increasing in local complementarity motives γ, but is un-
affected by changes in global complementarity motives β. In contrast, ANE action dispersion
additionally increases with β, as this amplifies the role of the false consensus effect. In par-
ticular, if γ1 > γ2, but β1 + γ1 < β2 + γ2, then Nash action dispersion is greater in the first
environment than the second, but ANE action dispersion is greater in the second than the first.

3.4 Discussion

We briefly interpret the preceding analysis in the context of the education investment example
from Section 1.1. A large literature studies the effect of income-based residential sorting on
socioeconomic education inequality (for a survey, see Fernández, 2003). Much theoretical and
empirical work highlights the role of local complementarities, such as peer effects or local
provision of educational facilities. Under Nash, we saw that such local complementarities are
the only channel through which sorting affects the socioeconomic education gap in our setting.

In contrast, the ANE analysis captures an additional inferential channel that is absent under
Nash: If marginal returns to education are increasing in global education investment (e.g., due
to labor market competition) and if people project their peers’ education choices onto society,
then sorting also affects education inequality by leading to a socioeconomic perception gap about
the returns to education. In line with this channel, more recent empirical work documents the
role of perceived returns to education in shaping individuals’ education investment and finds
that disadvantaged individuals often substantially underestimate these returns.1415

Taking into account this inferential channel may be important for two reasons. First, as
formalized by the multiplier effect in Proposition 2, this further strengthens the rationale for
programs, such as “Moving to Opportunity,” that aim to reduce income-based residential segre-
gation. Second, the inferential channel suggests that additional reductions in education inequal-

14E.g., Jensen (2010) finds that predominantly poor students in the Dominican Republic underestimate the
returns of secondary vs. primary school (resp. college vs. secondary school) by on average 78% (resp. 70%),
with underestimation strongest among the poorest students; moreover, perceived returns significantly predict
subsequent actual years of schooling. See also Nguyen (2008) and Attanasio and Kaufmann (2014).

15Streufert (2000) proposes a different model of misperceptions about returns to education: For each education
level s, there is an exogenous true earnings distribution Fs, but poor agents observe a truncation Fαs that omits
earnings above an exogenous cap α (e.g., because successful agents leave poor neighborhoods). He assumes that
poor agents misperceive Fαs to represent true earnings, but highlights that this has an ambiguous effect: their
perceived marginal returns E[Fαs ]−E[Fαs−1] to education may under- or overstate the true returns E[Fs]−E[Fs−1].
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ity might be achieved through informational interventions aimed at correcting misperceptions.
Recent empirical work has begun to study such interventions and has found significant effects.16

4 Perceptions under Assortativity Neglect

4.1 Coherent Perceptions

So far, we have focused on agents’ behavior under assortativity neglect, by defining a solution
concept, ANE, where agents only observe their local action distributions and best-respond based
on the misperception that these local action distributions match the global action distribution.

In this section, we take the perspective that agents not only use their local action observa-
tions to decide on a best-response. Rather, as emphasized, for instance, by the social psychology
literature, we assume that agents also seek to build “coherent stories” that can explain this ob-
served behavior within its social context.17 Through these stories, agents’ assortativity neglect
not only shapes their equilibrium behavior, but also their perceptions of the type distribution
in society and of other types’ behavior.

Specifically, in any population game, we introduce the following simple formalization of how
agents form coherent perceptions under assortativity neglect:

Definition 3. Given any society P and ANE sAN , a coherent assortativity neglect per-
ception for type θ consists of a perceived non-assortative society P̂θ = F̂θ× F̂θ and a perceived
strategy profile ŝθ such that:

1. Observational consistency: Ls
AN ,P
θ = Lŝθ,P̂θθ .

2. Perceived best-response: for each θ′, ŝθ(θ′) ∈ BRθ′(G
ŝθ,P̂θ , Lŝθ,P̂θθ′ ).

That is, given an ANE sAN , we continue to assume that the only information that agent θ
observes is her local action distribution Ls

AN ,P
θ . Based on this, she forms a perception F̂θ of the

type distribution (which, since she neglects assortativity, means that her perceived society is
P̂θ = F̂θ × F̂θ) and a perception ŝθ of the strategy profile in society. These perceptions satisfy
two requirements:

First, they are consistent with θ’s observed local action distribution. That is, θ’s perceived
local action distribution Lŝθ,P̂θθ matches her true local action distribution Ls

AN ,P
θ .

16The aforementioned Jensen (2010) finds that providing one-time information about true returns to education
generates lasting increases in students’ perceived returns and increases completed schooling by 0.2-0.35 years
over 4 years. In Nguyen (2008), similar interventions raise students’ test scores by 0.2-0.37 standard deviations.

17The idea that people are “naive psychologists” who do not simply take note of the behavior of those around
them, but try to explain this behavior based on a combination of internal and environmental causes underlies
the field of attribution theory in social psychology (e.g., Heider, 1958; Kelley and Michela, 1980). Kahneman
(2011) (p. 85) also emphasizes “the coherency of the story it manages to create” as a central measure of success
of any heuristic (e.g., “What You See is All There Is”) that the “intuitive” System 1 employs.
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Second, they allow θ to explain her observed local action distribution within its social
context, by assuming that other agents behave optimally in the population game. That is, the
action ŝθ(θ′) that θ attributes to any other type θ′ is a best-response for θ′ to the global and
local action distributions Gŝθ,P̂θ and Lŝθ,P̂θθ′ that θ perceives θ′ to face.

To interpret the second requirement, note that, since θ perceives society to be non-assortative,
she believes that her own local action distribution coincides with the global action distribution
and all other agents’ local action distributions. Thus, combined with the first assumption that
θ is correct about her local action distribution, the second requirement simplifies to

ŝθ(θ
′) ∈ BRθ′(L

sAN ,P
θ , Ls

AN ,P
θ ). (9)

This way of reasoning about others’ behavior is a natural continuation of the projection bias
underlying assortativity neglect: θ’s own action sAN(θ) is a best-response to the perception
that the global and local action distributions throughout society are Ls

AN ,P
θ , and she naively

believes that the same is true of other agents’ actions.

Remark 2. For parsimony, Definition 3 does not explicitly model θ’s perceptions about other
agents’ perceptions, but the perceived best-response condition implicitly suggests a self-centered
view: θ perceives other agents to best-respond based on her own perceptions P̂θ and ŝθ. While
such naively self-centered perceptions can again be viewed as a natural continuation of the
projection bias underlying assortativity neglect,18 they might seem restrictive. However, we
note that they are not essential for our analysis.

Indeed, Appendix C.1 extends Definition 3 to allow θ to perceive that other agents’ per-
ceived societies and strategy profiles disagree with her own perceptions. We show that θ’s own
perceived society and strategy profile P̂θ and ŝθ remain unchanged relative to Definition 3,
as long as θ perceives that (i) other agents also perceive society to be non-assortative, (ii)
other agents behave optimally given their perceptions, and (iii) other agents’ perceptions are
consistent with their observed local action distributions. As we discuss, this can be seen as a
misspecified version of Esponda’s (2013) (level-1) rationalizable conjectural equilibrium. N

4.2 Existence and Uniqueness of Coherent Perceptions

To analyze agents’ perceptions, we return to linear best-response games with strategic comple-
mentarities. Our first result is that agents are always able to form coherent assortativity neglect
perceptions. Thus, no matter how assortative the actual society P is, agents who suffer from
assortativity neglect are still able to explain the behavior they observe in a coherent manner.19

18Indeed, this reasoning is reminiscent of “information projection,” where agents mistakenly believe that others
have similar beliefs (Madarász, 2012).

19This might capture a sense in which assortativity neglect can be an especially “persistent” misperception.
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Moreover, for any (P, β, γ), each agent’s coherent perceptions are unique:

Proposition 5 (Coherent perceptions). Fix any (P, β, γ) with corresponding ANE sAN . For
each type θ, there exist unique coherent assortativity neglect perceptions P̂θ = F̂θ × F̂θ and ŝθ.

To see the idea, recall that in forming coherent perceptions, θ believes other agents to play
best-responses. Thus, any difference in the actions that θ attributes to two agents θ1 and θ2

might in principle be due to two channels—the difference in their types and the difference in
their local complementarity motives, which reflects their differing local action distributions:

ŝθ(θ1)− ŝθ(θ2)︸ ︷︷ ︸
∆(perceived actions)

= θ1 − θ2︸ ︷︷ ︸
∆(types)

+ γ

(ˆ
a dLŝθ,P̂θθ1

(a)−
ˆ
a dLŝθ,P̂θθ2

(a)

)
︸ ︷︷ ︸

∆(perceived local complementarity motives)

.

However, the fact that θ’s perceived society P̂θ = F̂θ × F̂θ is non-assortative has the following
key implication: θ does not perceive any difference in θ1 and θ2’s complementarity motives,
as she believes all agents to face the same local action distribution. Thus, in explaining her
observed local action distribution, θ attributes all action dispersion to the type dispersion
among her matches. In other words, assortativity neglect leads to a form of misattribution that
is reminiscent of the “fundamental attribution error” documented in social psychology (Ross,
1977): θ attributes any variation in others’ behavior entirely to their intrinsic characteristics
(types), neglecting that external factors (e.g., differences in peer effects) might also be at play.20

Since, under assortativity neglect, θ’s perceived match distribution P̂θ(·|θ) coincides with
her perceived type distribution F̂θ in the overall population, the fact that she misattributes all
local action dispersion to type dispersion among her matches implies that(

Ls
AN ,P
θ

)−1

(x)−
(
Ls

AN ,P
θ

)−1

(y) = F̂−1
θ (x)− F̂−1

θ (y), for all x, y ∈ (0, 1). (10)

In Appendix B.6, we show that there is a unique F̂θ that achieves (10) while also ensuring that
θ is correct about the local action mean. The perceived strategy profile ŝθ is uniquely pinned
down by the perceived best-response condition.

Example 2. In Gaussian societies (Section 1.1), each agent θ’s perceived type distribution
F̂θ is also normal. In particular, (10) implies that θ’s perceived type variance equals her local
action variance: σ̂2

θ = VarP [sAN(θ′)|θ] = σ2(1−ρ2)

(1−(β+γ)ρ)2
. Letting aθ := EP [sAN(θ′)|θ], the perceived

best-response condition (9) implies that ŝθ(θ′) = θ′+(β+γ)aθ for all θ′. Finally, in order for θ’s
perceived local action mean EF̂θ [ŝθ(θ

′)] to match the true local action mean aθ, θ must perceive
the type mean to be µ̂θ = (1− β − γ)aθ = µ+ (1−β−γ)ρ(θ−µ)

1−(β+γ)ρ
. N

20Another source of the difference in θ1 and θ2’s actual ANE actions is the false consensus effect (i.e., their
different perceived global complementarity motives). This effect is also neglected by θ, who perceives everyone
to best-respond to the same global action distribution. Hence, an attribution error arises even if γ = 0.
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4.3 Misperceptions about Type Distributions

Since Proposition 5 uniquely pins down each agent’s perceived type distribution, it provides a
lens through which to study how, under assortativity neglect, agents’ misperceptions of pop-
ulation characteristics are shaped by the nature of their social interactions. In particular, we
highlight the importance of strategic considerations: In our model, agents form perceptions
based on their matches’ behavior, which is subject to strategic motivations; as we show, this
leads to different predictions than under purely statistical misinference, where agents directly
observe their matches’ types and project them onto society.

In the following, for any environment (P, β, γ), we refer to agent θ’s coherent assortativity
neglect perception F̂θ simply as θ’s perceived type distribution.

Perceived type dispersion. We first analyze agents’ perceptions of type dispersion in so-
ciety (e.g., income inequality, political attitude polarization). The following result shows that
strategic complementarities drive up perceived type dispersion:

Proposition 6 (Perceived type dispersion). Fix any society P and type θ. If β1 +γ1 ≥ β2 +γ2,
then θ’s perceived type distribution F̂ 1

θ under (P, β1, γ1) is more dispersive than θ’s perceived
type distribution F̂ 2

θ under (P, β2, γ2).

Moreover, depending on the strength of β + γ, agents may under- or overestimate type
dispersion, as illustrated by the Gaussian example in Section 1.1. To see the idea, note that
our model generates two opposing errors in agents’ reasoning about type dispersion:

• First, a purely statistical error : Agents’ matches are on average less diverse than the
overall population.21 However, under assortativity neglect, agents believe their matches
to be representative of the overall population. This error pushes agents to underestimate
type dispersion.

• Second, an attribution error : Agents do not directly observe their matches’ types; in-
stead, they draw inferences about the type distribution from their local action distribu-
tions. However, as discussed following Proposition 5, assortativity neglect leads agents to
misattribute all observed action dispersion to type dispersion, ignoring the fact that dif-
ferent types are also subject to different (local and/or perceived global) complementarity
motives. This pushes agents to overestimate type dispersion.

Without strategic complementarities (i.e., if β = γ = 0), only the statistical error channel is
relevant: In this case, agents’ actions sAN(θ) = θ match their types, so this setting is equivalent
to one where agents directly observe their local type distributions and project them onto society.

21Indeed, by the law of total variance, any society P satisfies EF [VarP [θ′|θ]] ≤ VarF [θ′]. More strongly, for
many parametric classes of societies (e.g., Gaussian), VarP [θ′|θ] ≤ VarF [θ′] holds for all θ.
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However, the stronger strategic complementarities, the more important is the attribution
error channel: By Proposition 4, an increase in β + γ increases ANE action dispersion (due
to stronger local complementarities and/or a stronger false consensus effect). Because of the
attribution error, this leads agents to perceive more type dispersion. When strategic comple-
mentarities are strong enough (relative to other parameters, such as the extent of assortativity),
then the attribution error channel can dominate, as illustrated by the Gaussian example.

Perceived type means. Second, we consider agents’ perceptions µ̂θ := EF̂θ [θ
′] of the type

mean. The following result first notes that higher types θ perceive higher type means µ̂θ. That
is, the false consensus effect we observed for perceived behavior following Proposition 1 extends
to agents’ perceptions of the type mean. However, strategic complementarities counteract this
effect, by reducing the sensitivity of µ̂θ to θ: The population distribution of perceived type
means µ̂θ (i.e., when θ is distributed according to F ) is less dispersed the greater β + γ.

Proposition 7 (Perceived type means). For any (P, β, γ), agents’ perceived type means µ̂θ are
increasing in their types θ. If β1 +γ1 ≥ β2 +γ2, then the population distribution M2 of perceived
type means under (P, β2, γ2) is a mean-preserving spread of the distributionM1 of perceived type
means under (P, β1, γ1).

The false consensus effect reflects the statistical error underlying assortativity neglect: If
agents directly observe their local match distributions and project them onto society, the effect
is immediate, as µ̂θ coincides with θ’s expected match EP [θ1|θ0 = θ], which is increasing in θ.

To see why strategic complementarities counteract this effect, recall that θ’s perceived type
mean satisfies µ̂θ = (1−β−γ)EP [sAN(θ′)|θ] (see Example 2). Thus, combined with the Markov
process representation of sAN in (7), we have

µ̂θ = (1− β − γ)
∞∑
t=0

(β + γ)tEP [θt+1|θ0 = θ]. (11)

That is, when θ draws inferences about the type distribution from her matches’ strategic be-
havior, then her perceived type mean µ̂θ depends not only on her immediate expected match
EP [θ1|θ0 = θ], but also on her more distant t-step ahead expected matches, as the latter af-
fect her immediate matches’ incentives. Moreover, the greater strategic complementarities, the
stronger is this dependence: increasing β + γ increases the weight on more distant expected
matches in (11). Importantly, as we show, θ’s more distant matches are less sensitive to her own
type than her immediate matches. Thus, stronger strategic complementarities lead perceived
type means µ̂θ to differ less across different agents θ.
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4.4 Discussion

Misperceptions of income distributions. Several papers in economics and psychology have
put forward the aforementioned statistical error channel—individuals observe the incomes of
their social contacts and naively project these onto society—as a potential source of underesti-
mation of income inequality (e.g., Cruces, Perez-Truglia, and Tetaz, 2013; Windsteiger, 2018;
Dawtry, Sutton, and Sibley, 2019).

However, underestimation of income inequality is not a universal empirical finding. Indeed,
the survey by Hauser and Norton (2017) notes: “Overall, the bulk of evidence suggests that
people around the world hold incorrect perceptions of inequality in their country—but with
variation. In the U.S. and United Kingdom, for example, underestimation of inequality is
relatively common, while overestimation occurs in other countries, such as France and Germany.
Moreover, there are a few exceptions of high accuracy: respondents in Norway, for instance,
were relatively accurate in estimating their country’s income inequality.”22

The preceding analysis points to a novel channel that might contribute to such more mixed
findings: Rather than directly observing their social contacts’ incomes, individuals may need to
partly infer these from their consumption choices (e.g., education investment, or homes, cars,
and attire), which are subject to well-documented peer effects. If individuals neglect assortativ-
ity, we saw that this additionally generates an attribution error that counteracts the statistical
error. Depending on the relative strength of these errors, one may find underestimation, fairly
accurate perceptions, or overestimation of income inequality.23

Importantly, people’s misperceptions of income distributions can havematerial consequences,
by influencing demand for redistribution: For instance, both empirical and theoretical work sug-
gests that agents demand more redistribution if they perceive greater income inequality or a
lower own position θ−µ̂θ relative to the mean.24 Thus, by showing how these misperceptions are
shaped by agents’ social interactions, our findings in this section can also shed light on ways in

22For example, Niehues (2014) compares perceived income distributions across 23 European countries and
the US and finds overestimation in most of continental Europe, relatively more accurate perceptions in several
Scandinavian countries, and underestimation in the US (e.g., her imputed subjective vs. actual Gini coefficients
include: Germany (0.35 vs. 0.29), France (0.36 vs. 0.3), Hungary (0.43 vs. 0.24), Czech Republic (0.38 vs. 0.25);
Norway (0.26 vs. 0.23); US (0.34 vs. 0.42)). Bavetta, Li Donni, and Marino (2019) similarly find overestimation
in Germany, France, Italy, Sweden, Finland, and South Korea, but underestimation in the US and UK.

23Establishing a conclusive link between the attribution error channel and cross-country differences in per-
ceived inequality is beyond the scope of this paper, and various other factors (e.g., ideological differences) are
likely also at play. While cross-country data on complementarity motives is less readily available, we note that
socioeconomic segregation is documented to be higher in the US/UK than in continental Europe (e.g., Musterd,
2005; Quillian and Lagrange, 2016); thus, underestimation in the former and overestimation in the latter is
consistent with our finding in the Gaussian example that the statistical error dominates the attribution error
when assortativity is relatively strong (see Figure 1).

24Empirical evidence includes Cruces, Perez-Truglia, and Tetaz (2013); Gimpelson and Treisman (2018);
Hvidberg, Kreiner, and Stantcheva (2021). These findings are consistent with replacing actual with perceived
income distributions in classic theoretical models of demand for redistribution.
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which the nature of social interactions (e.g., complementarity motives and assortativity) might
affect a society’s demand for redistribution.25

Misperceptions of political attitude distributions. Several recent studies document sig-
nificant overestimation of political attitude polarization in the US: When asked to estimate
others’ (privately elicited) attitudes on various political issues, respondents perceive greater
than actual attitude dispersion on most issues, because they exaggerate the prevalence of ex-
treme attitudes on both sides of the political spectrum.26

Again, the attribution error channel that our analysis highlights might be relevant in this
setting: Others’ privately held attitudes are not directly observable, so people might partly
infer these from the public manifestations of support they observe (e.g., social media posts,
yard signs, or bumper stickers). However, differences in such public manifestations may ex-
ceed differences in private attitudes, as they may also be driven by catering to different peer
groups. Neglecting this can contribute to overestimating political attitude polarization, even
when people’s observed samples are more politically homogenous than the overall population.

5 Extensions and Related Literature

5.1 Weaker Forms of Assortativity Neglect

Hybrid model. Under ANE, all agents suffer from assortativity neglect. More realistically,
some agents might be less prone to misperception than others, for example, due to having
access to information about global (rather than just local) action distributions. To capture
this, consider a simple hybrid model: For each type θ, only fraction α ∈ [0, 1] of agents suffer
from assortativity neglect; the remaining share of agents best-respond to the correct local and
global action distributions. An α-assortativity neglect equilibrium (α-ANE) consists of
strategy profiles sa for assortativity neglect agents and sc for correct agents such that, for all θ,

sa(θ) ∈ BRθ

(
αLsa,Pθ + (1− α)Lsc,Pθ , αLsa,Pθ + (1− α)Lsc,Pθ

)
,

sc(θ) ∈ BRθ

(
αGsa,P + (1− α)Gsc,P , αLsa,Pθ + (1− α)Lsc,Pθ

)
.

(12)

Appendix C.2 applies α-ANE to linear best-response games with strategic complementar-
25A previous version of this paper (Frick, Iijima, and Ishii, 2019, Appendix E.2) illustrated this in the context

of Meltzer and Richard’s (1981) model of voting for redistribution.
26E.g., the American National Election Survey elicits both citizens’ own attitudes and political affiliation and

their estimates of average attitudes among typical Democrats and Republicans on a wide range of issues. On
average, the actual difference between Democrats and Republicans is 1 point (on a 7 point scale), but perceived
differences are almost twice as large; perceptions vary with own political affiliation, but most respondents
exaggerate the extremeness of attitudes on both sides (cf. Bordalo, Tabellini, and Yang, 2021; Bordalo, Coffman,
Gennaioli, and Shleifer, 2016). See also Ahler (2014); Westfall, Van Boven, Chambers, and Judd (2015).
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ities. We show that the equilibrium strategy profiles of both groups of agents again admit
Markov process representations that generalize those for ANE and Nash. Moreover, coherent
perceptions for assortativity neglect agents can be defined analogously to Definition 3. Based
on this, all our results extend.

Notably, behavior among assortativity neglect agents is more dispersed than among correct
agents, but action dispersion among both groups is exacerbated the greater the share α of
assortativity neglect agents (Proposition C.1). This captures a sense in which assortativity
neglect agents can exert a negative externality on society, as they drive up miscoordination
among all agents.27

Partial assortativity neglect. Alternatively, one can relax the assumption that agents fully
neglect assortativity, i.e., perceive the global action distribution to exactly coincide with their
local action distributions. Appendix C.3 considers a reduced-form extension of Definition 2
that can capture various forms of partial assortativity neglect: A strategy profile s is a partial
assortativity neglect equilibrium (PANE) if for each θ, there exists a perceived global
action distribution Ĝθ ∈ ∆(A) such that (i) s(θ) ∈ BRθ(Ĝθ, L

s,P
θ ) for each θ and (ii) Ĝθ is

FOSD-increasing in θ. That is, each agent θ best-responds to a correct perception of her
local action distribution, but misperceives the global action distribution to be Ĝθ, where (ii)
represents the false consensus effect that higher types perceive higher global action distributions.
One simple parametrization of PANE is when agents’ perceived global action distributions are
a convex combination of the true local and global action distributions; that is, s is monotonic
such that for some ε ∈ [0, 1],

Ĝθ = εLs,Pθ + (1− ε)Gs,P , for all θ. (13)

This captures a form of “partial projection” of local action distributions onto the global action
distribution that nests both ANE (ε = 1) and Nash (ε = 0).28 Generalizing Proposition 1,
in linear best-response games with strategic complementarities, any PANE is more dispersive
than Nash (Proposition C.2). Moreover, for the parametrization in (13), it is straightforward
to generalize the Markov process representation of equilibrium strategies;29 based on this, all
results in Section 3 extend, with action dispersion intermediate between Nash and ANE.

Appendix C.3 also extends the definition of coherent perceptions to PANE. In Gaussian
societies P = (µ, σ2, ρ), we show that for each ρ̂ ∈ [0, ρ], there is a PANE in which agents
coherently underestimate assortativity to be ρ̂. The corresponding perceived type distributions

27This observation contrasts with Jehiel’s (2018) model of investment under selection neglect, where the effect
of misperception is weakened the greater the share of agents who suffer from selection neglect.

28This parametrization of partial assortativity neglect is reminiscent of Eyster and Rabin’s (2005) parametriza-
tion of partial cursedness.

29For any (P, γ, β), the unique PANE satisfying (13) is sε(θ) =
∑∞
t=0(γ+εβ)tEP [θt|θ0 = θ]+ (1−ε)βEF [θ′]

(1−γ−εβ)(1−β−γ) .
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are in between those under full assortativity neglect (ρ̂ = 0) and correct perceptions (ρ̂ = ρ),
and satisfy the same qualitative predictions as in Section 4.

5.2 More General Best-Responses

Strategic substitutes. Our results have focused on linear best-response games with strategic
complementarities. However, the analysis can be extended to the case with global and/or local
strategic substitutes (i.e., β < 0 and/or γ < 0). The Markov process representations (5) and (7)
of Nash and ANE strategies are unchanged, as is the derivation of coherent ANE perceptions.
However, the directions of some effects change depending on the sign of β, γ, and β + γ. The
following example illustrates this for Gaussian societies; Appendix C.4 presents general results.

Example 3. Consider global substitutes, β < 0. Nash and ANE strategies in a Gaussian society
P = (µ, σ2, ρ) take the same form as in Example 1. In particular, global action variances are still

Var(GNE) =
(

1
1−γρ

)2

σ2 and Var(GAN) =
(

1
1−(β+γ)ρ

)2

σ2. Note that Var(GAN) ≤ Var(GNE).
Thus, in contrast with Proposition 1, assortativity neglect now decreases action dispersion.
This is because, under global substitutes, the false consensus effect of perceiving the global
action average to coincide with one’s local action average leads higher (lower) types to play
lower (higher) actions than under Nash.

The effect of increased assortativity depends additionally on the local complementarity
parameter γ. If γ < 0, the multiplier effect in Proposition 2 holds with a flipped sign: Both
Var(GNE) and Var(GAN) are decreasing in ρ, but the derivative is more negative under ANE.
In contrast, if γ > 0, then increasing ρ can have opposite effects on Nash and ANE: Nash action
dispersion always increases, but ANE action dispersion decreases if β + γ < 0.

Finally, as in Example 2, agents’ (coherent) perception of type variance is σ̂2
θ = σ2(1−ρ2)

(1−(β+γ)ρ)2
,

which under-/overestimates the true variance σ2 when β + γ is small/large relative to ρ. If
β+γ < 0, only underestimation is possible, as the statistical and attribution errors in Section 4.3
now push in the same direction. N

Non-linear best-responses. ANE and the associated coherent perceptions can also be an-
alyzed in any other population game of the form in Section 2. Appendix C.5 shows that
several of our main insights hold more generally. First, the same attribution error logic un-
derlying Proposition 5 ensures the existence and uniqueness of coherent assortativity neglect
perceptions in general population games (Proposition C.5). Second, the finding that ANE
increases action dispersion relative to Nash extends straightforwardly to additively separable
best-response functions with global complementarities (Proposition C.6).

At the same time, a full generalization of the preceding results is beyond the scope of this
paper. One challenge is that our representation of Nash and ANE in terms of iterated expec-
tations of the Markov process P relied on the linearity of best-responses. This representation
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played a central role for our comparative statics analysis in Sections 3.3 and 4.3; in contrast, to
the best of our knowledge, existing comparative statics results for general games with strategic
complementarities do not apply to our setting.30

5.3 Related Literature

This paper contributes to a growing literature in behavioral game theory that studies the steady-
state behavior of players who draw misinferences from the observational feedback generated by
their game. While in our setting agents neglect selection effects arising from the assortativity
of social interactions, a number of papers consider agents who neglect selection due to missing
feedback about non-implemented projects/transactions, e.g., in settings of adverse selection
(Esponda, 2008), voting (Esponda and Pouzo, 2017), or investment (Jehiel, 2018).31 A related
inferential bias, correlation neglect, underlies cursed equilibrium (Eyster and Rabin, 2005) and
analogy-based expectation equilibrium (Jehiel, 2005; Jehiel and Koessler, 2008): Here, agents
are correct about the marginal distributions of opponents’ actions and types, but misperceive
the correlation between these two;32 these solution concepts reduce to Nash equilibrium in the
static private-value environment of this paper. Chauvin (2018) studies an equilibrium model of
discrimination: Agents belong to observable groups whose outcome distributions depend jointly
on members’ individual traits and on population beliefs about the group, but others’ beliefs
about each group are based on the misinference that observed outcomes are purely due to
members’ traits. This misinference is similar in spirit to the fundamental attribution error that
we derive from agents’ assortativity neglect in Section 4.2.33 ANE (and most aforementioned)
settings can be seen as instances of Berk-Nash equilibrium (Esponda and Pouzo, 2016), which
captures the steady-state behavior of players with general misspecified models of the feedback
structure of their game.

Different from the aforementioned papers, Section 4 also considers how players can “ra-
tionalize” their observed action distributions as resulting from optimal behavior, by forming

30A large literature conducts comparisons of equilibrium action distributions in terms of first-order stochastic
dominance (for a survey, see Vives, 2005), but comparative statics results in terms of dispersion (e.g., mean-
preserving spread, second-order stochastic dominance) are more limited: Jensen (2018) analyzes the effect of
type dispersion on action dispersion; his approach relies on players’ types being independently distributed (while
our setting displays correlation). Mekonnen and Leal Vizcaíno (2021) consider a different setting, where players
observe signals about an uncertain fundamental, and analyze the effect of signal precision on action dispersion.

31Like these papers, we consider agents whose samples are biased but infinite. In Osborne and Rubinstein
(1998, 2003); Salant and Cherry (2020); Gonçalves (2020), agents observe unbiased but finite samples.

32Relatedly, Spiegler (2016, 2017) considers an agent who infers an incorrect joint distribution over multiple
observed economic variables by misperceiving causal relations. The implications of selection/correlation neglect
have also been explored in settings without equilibrium feedback (e.g., Streufert, 2000; Glaeser and Sunstein,
2009; Ortoleva and Snowberg, 2015; Levy and Razin, 2015; Ellis and Piccione, 2017).

33See Kaneko and Matsui (1999) for a related model of discrimination based on inductive game theory.
Ettinger and Jehiel (2010) formalize a form of fundamental attribution error in a bargaining setting.
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coherent misperceptions about the type distribution and strategy profile. This exercise re-
lates to the literature on rationalizable conjectural equilibrium (e.g., Rubinstein and Wolinsky,
1994; Esponda, 2013; Fudenberg and Kamada, 2015; Lipnowski and Sadler, 2019). This re-
fines self-confirming equilibrium (Fudenberg and Levine, 1993; Battigalli, 1987) by requiring
that agents’ beliefs about opponents’ behavior are not only consistent with their observational
feedback, but are also consistent with opponents best-responding to beliefs that are themselves
observationally consistent (and similarly for higher-order beliefs). Whereas these papers con-
sider standard agents who do not ex-ante rule out the correct observational feedback structure,
we consider misspecified agents who reason based on the dogmatic misperception that society
is non-assortative (see also Remark 2 and Appendix C.1).

While we analyze the equilibrium implications of assortativity neglect for population games
in fixed societies, other recent papers consider the effect of related selection biases on endogenous
sorting. Levy and Razin (2017) study the coevolution of sorting into different school types
and beliefs about school quality: agents’ beliefs are shaped by communicating with school
peers while ignoring selection into schools. They characterize when polarized beliefs about
school quality are sustained in the long run. Windsteiger (2018) considers steady-state sorting
into social classes when agents directly observe their peers’ incomes but underestimate income
differences across classes; she shows that this misperception reduces demand for redistribution.

As noted, assortativity neglect can be seen as a form of projection bias. Other work has
studied strategic interactions under different forms of projection bias, for example, when agents
project their tastes onto others (e.g., Breitmoser, 2019; Gagnon-Bartsch, Pagnozzi, and Rosato,
2021; Gagnon-Bartsch, 2017; Bohren and Hauser, 2021, in the context of auctions and social
learning) or when agents overestimate the similarity of others’ signals (Madarász, 2012, 2016).

Linear best-response games are also widely studied in the literature on network games. Two
recent papers relate to our focus on agents’ misperceptions of interaction patterns: Battigalli,
Panebianco, and Pin (2020) study self-confirming equilibrium in network games, with a fo-
cus on learning dynamics and perceived centrality. Jackson (2019) studies implications of the
“friendship paradox,” i.e., the fact that people’s neighbors on average have higher degrees than
themselves. He shows that, because of this, if agents naively behave as in the local interaction
case even though utilities depend on uniform global interactions, then, under strategic com-
plementarities, this leads to higher average behavior than Nash. Our setting does not feature
degree heterogeneity, so centrality/the friendship paradox play no role; instead, we focus on
misperceptions of assortativity based on type heterogeneity. Our analysis of agents’ coherent
misperceptions also has no counterpart in these papers.

Finally, in incomplete-information games, Samet (1998) introduced the use of Markov pro-
cesses to represent players’ higher-order beliefs about the uncertain fundamental. Golub and
Morris (2018) study incomplete-information games on networks, in which case the corresponding
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Markov process depends on both the signal structure and network; with linear best-responses,
Bayes-Nash equilibria can then be written as discounted sums of the higher-order expecta-
tions of this process.34 While we consider population games without aggregate uncertainty, our
Markov process over t-step ahead matches can be seen as an analog of the Markov processes
over higher-order beliefs in those papers. The key novelty is that, due to the assortativity
of P , our Markov process is monotone. Monotonicity plays a central role for our analysis of
action dispersion (and perceived type distributions), by allowing us to translate comparisons of
interaction structures/type distributions into comparisons of the distributions of t-step ahead
expected matches. Beyond games with assortative interactions, our proof methods may also
be useful in incomplete-information linear best-response games (e.g., beauty contests) where
the signal structure displays appropriate positive correlation to ensure monotonicity of the
corresponding Markov process.

6 Conclusion

We propose a model of social interactions and misperceptions under assortativity neglect. To
analyze the interplay between assortativity neglect and agents’ strategic incentives, we define
an equilibrium notion where agents best-respond to the misperception that the local action
distributions among their peers are representative of behavior in society. We also model how
agents form misperceptions about the type distribution from their local action observations, by
reasoning about their peers’ incentives through the lens of their assortativity neglect. Based
on this, we show how, when combined with strategic complementarities, assortativity neglect
increases action dispersion in society. We also find that assortativity neglect generates two
countervailing mistakes in agents’ inferences about the type distribution—a statistical and an
attribution error. Depending on the nature of social interactions, this may lead agents to
either under- or overestimate type dispersion. We discuss the relevance of our results in the
context of socioeconomic disparities in education investment, as well as empirically documented
misperceptions of income inequality and political attitude polarization.

Beyond the class of population games considered in this paper, future work might explore the
implications of assortativity neglect for behavior and misperceptions in games with aggregate
uncertainty (e.g., financial markets) or in dynamic settings (e.g., social learning; see Section 7.1
of Frick, Iijima, and Ishii, 2020).

34A discounted-sum expression of equilibrium actions also appears in Morris and Shin (2002), although their
analysis is focused on Gaussian information structures and does not make a connection with Markov processes.
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Appendix
Proofs for Appendix A and C are in Online Appendix D.1 and D.2, respectively.

A Preliminaries

A.1 Operator TC induced by interaction structure C

Many of our proofs will make use of a particular operator TC over the the space of inverse cdfs
that is induced by any interaction structure C. Let L1 be the space of all measurable functions
f : (0, 1) → R such that

´ 1

0
|f(x)|dx < ∞, endowed with the L1 norm. Let I ⊆ L1 denote

the subset consisting of weakly increasing and absolutely continuous functions.35 For each cdf
F ∈ F , we have that F−1 is strictly increasing, absolutely continuous and that

´ 1

0
|F−1(x)|dx =´

|θ|dF (θ) <∞, so F−1 ∈ I. Conversely, for any strictly increasing f ∈ I, we have f−1 ∈ F .
Given any interaction structure C, define the operator TC over L1 by

TCf(x) =

1ˆ

0

f(y) dC(y|x)

for all f ∈ L1. If C ∈ C with density c, then TCf(x) =
´ 1

0
c(y, x)f(y)dy for all f ∈ L1. The

following lemma records basic properties of TC that we invoke without reference from now on:

Lemma A.1. Fix any C ∈ C. Then TC is a continuous operator from L1 to L1 with the
following properties:

1. ‖TCf‖ ≤ ‖f‖ for each f ∈ L1.

2. TCf ∈ I for any f ∈ I.

3. For any γ ∈ (−1, 1) and f ∈ L1,

lim
τ→∞

τ∑
t=0

γt(TC)tf =
∞∑
t=0

γt(TC)tf ∈ L1,

where (TC)t is defined by (TC)0(f) := f and (TC)t+1(f) := (TC)t(TCf) for all f and t.

A.2 Mean-preserving spread and dispersiveness orders over I

Define a binary relation %m over I by setting f %m g if and only if
´ 1

0
φ(f(x))dx ≥

´ 1

0
φ(g(x))dx

for all convex functions φ such that φ ◦ f, φ ◦ g ∈ L1. Note that for F , G ∈ F , F is a mean-
35That is, for any x, x′ ∈ (0, 1), there is an integrable function f ′ such that f(x) = f(x′) +

´ x
x′
f ′(y)dy.
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preserving spread of G if and only if F−1 %m G−1. The following characterization of %m is
standard (for the proof, see Section 3.A.1 in Shaked and Shanthikumar, 2007):

Lemma A.2. Let f, g ∈ I. Then f %m g, if and only if,
´ 1

y
f(x)dx ≥

´ 1

y
g(x)dx holds for all

y ∈ (0, 1) and holds with equality when y = 0.

Define binary relation %d over I by f %d g if and only if f(x)− f(x′) ≥ g(x)− g(x′) for all
x, x′ ∈ (0, 1) with x ≥ x′. For F,G ∈ F , F is more dispersive than G if and only if F−1 %d G

−1.
We say that a preorder (i.e., reflexive and transitive binary relation) % over I is linear if for

any f, g, h ∈ I and α1, α2 > 0, we have f % g if and only if α1f+α2h % α1g+α2h; continuous
if for any fn → f ∈ I, gn → g ∈ I with fn % gn for each n, we have f % g; and isotone if
f % g implies TCf % TCg for any C ∈ C. Orders %m and %d satisfies these properties:

Lemma A.3. %m and %d are preorders over I that are linear, continuous, and isotone.

Finally, we show that (TC)tf is %m-decreasing in t:

Lemma A.4. (TC)tf %m (TC)t+1f for all t ≥ 0, C ∈ C and f ∈ I.

B Main Proofs

B.1 Proof of Lemma 1

Write P = (F,C) and µ := EF [θ]. Since F ∈ F , F−1 ∈ I with F−1 strictly increasing. Define

h(x) :=
∑
t≥0

γt(TC)tF−1(x) +
βµ

(1− γ)(1− β − γ)

for each x ∈ (0, 1). Note that, by construction, h = F−1 + βTCIh + γTCh, where CI(x, y) =

xy denotes the non-assortative interaction structure. Moreover, h is strictly increasing, since
(TC)tF−1 is weakly increasing for each t ≥ 0 and strictly increasing for t = 0. Note also that for
each t, (TC)tF−1 ∈ I and hence there exists (T tCF

−1)′ : (0, 1) → R+ such that (TC)tF−1(x) −
(TC)tF−1(x′) =

´ x
x′

(T tCF
−1)′(y)dy for all x > x′. Thus, h is absolutely continuous as

h(x)− h(x′) = limτ→∞
∑τ

t=0

´ x
x′
γt(T tCF

−1)′(y)dy

= limτ→∞
´ x
x′

∑τ
t=0 γ

t(T tCF
−1)′(y)dy =

´ x
x′

∑
t≥0 γ

t(T tCF
−1)′(y)dy,

where the last equality holds by the monotone convergence theorem.
Let s(θ) := h(F (θ)) for each θ ∈ Θ. Since h ∈ L1, we have

´
|s(θ)|dF (θ) =

´
|h(x)|dx <∞.

Moreover, s inherits strict monotonicity and absolute continuity (by the change of variable
theorem) from h and F . Finally, s is a Nash equilibrium because for each type θ and x = F (θ),
we have s(θ) = h(x) = F−1(x) + βTCIh(x) + γTCh(x) = θ + βEF [s(θ′)] + γEP [s(θ′) | θ].
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To show uniqueness of equilibrium, consider any Nash equilibrium ŝ. Define ĥ(x) :=

ŝ(F−1(x)) for each x. By the best-response condition for ŝ, we have

ĥ = F−1 + βTCI ĥ+ γTC ĥ. (14)

Iterating (14) yields

ĥ = F−1 + βTCI ĥ+ γTC

(
F−1 + βTCI ĥ

)
+ γ2(TC)2ĥ = . . .

=
τ∑
t=0

γt(TC)t
(
F−1 + βTCI ĥ

)
+ γτ+1(TC)τ+1ĥ

for all τ ∈ N. The analogous iteration holds for h. Thus,

‖ĥ− h‖ ≤ ‖
τ∑
t=0

γt(TC)t
(
F−1 − βTCI ĥ− F−1 + βTCIh

)
‖+ γτ+1‖(TC)τ+1(ĥ− h)‖

≤ ‖
τ∑
t=0

γt(TC)t
(
βTCI (h− ĥ)

)
‖+ γτ+1‖ĥ− h‖,

which converges to ‖
∑∞

t=0 γ
t(TC)t

(
βTCI (h− ĥ)

)
‖ as τ → ∞. But integrating both sides of

(14) with respect to x, we obtain
´ 1

0
ĥ(x)dx = TCI ĥ(y) = µ

1−β−γ for each y, and analogously
TCIh(y) = µ

1−β−γ from the best-response condition for h. Thus, ‖ĥ−h‖ = 0, whence ŝ = s.

B.2 Proof of Proposition 1

Fix any (P, β, γ). By the best-response condition (6), any ANE sAN is the Nash equilibrium at
(P, β′, γ′), where β′ = 0, γ′ = β + γ. Thus, by Lemma 1, sAN is uniquely given by (7).

To show that the ANE global action distribution GAN is more dispersive than the Nash
distribution GNE, it suffices to show that sAN(θ) − sAN(θ′) ≥ sNE(θ) − sNE(θ′) for all θ > θ′.
To show this, note that for all τ ,

0 ≤
τ∑
t=0

((γ + β)t − γt) (EP [θt|θ0 = θ]− EP [θt|θ0 = θ′]) ,

as the monotonicity of process P implies EP [θt|θ0 = θ] ≥ EP [θt|θ0 = θ′] for all t. By (5) and
(7), the RHS converges to (sAN(θ)− sAN(θ′))− (sNE(θ)− sNE(θ′)) as τ →∞.

B.3 Proof of Proposition 2

Let %MA denote the more-assortative order over C. We first show that %MA is the “dual order”
of the mean-preserving spread order %m:
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Lemma B.1. Fix any C1, C2 ∈ C. Then C1 %MA C2 if and only if TC1F
−1 %m TC2F

−1 for all
F ∈ F .

Proof. First, observe that C1 %MA C2 if and only if C1(·|x ≥ y) first-order stochastically
dominates C2(· | x ≥ y) for any y ∈ (0, 1). This is because

C1 %MA C2 ⇐⇒
ˆ z

0

ˆ y

0

c1(x′, x)dxdx′ ≥
ˆ z

0

ˆ y

0

c2(x′, x)dxdx′ ∀y, z ∈ (0, 1)

⇐⇒
ˆ z

0

ˆ 1

y

c1(x′, x)dxdx′ ≤
ˆ z

0

ˆ 1

y

c2(x′, x)dxdx′ ∀y, z ∈ (0, 1)

⇐⇒ C1(z | x ≥ y) ≤ C2(z | x ≥ y) ∀y, z ∈ (0, 1),

where the second line uses
´ z

0

´ 1

0
ci(x

′, x)dxdx′ =
´ 1

0

´ z
0
ci(x

′, x)dx′dx = z for each i = 1, 2.
Next, note that for any F ∈ F , we have TC1F

−1 %m TC2F
−1 if and only if

´ 1

y
TC1f(x)dx ≥´ 1

y
TC2f(x)dx for all y ∈ (0, 1) with equality if y = 0. But

´ 1

y
TC1f(x)dx ≥

´ 1

y
TC2f(x)dx, ∀y ∈ (0, 1)

⇐⇒
´ 1

y

´ 1

0
c1(x′, x)f(x′)dx′dx ≥

´ 1

y

´ 1

0
c2(x′, x)f(x′)dx′dx, ∀y ∈ (0, 1)

⇐⇒
´ 1

0

´ 1

y
1

1−yc1(x′, x)dxf(x′)dx′ ≥
´ 1

0

´ 1

y
1

1−yc2(x′, x)dxf(x′)dx′, ∀y ∈ (0, 1).

Since the set of all F−1 with F ∈ F consists of all L1, strictly increasing and absolutely
continuous functions on (0, 1), this implies that TC1F

−1 %m TC2F
−1 holds for all F ∈ F if and

only if C1(· | x ≥ y) first-order stochastically dominates C2(· | x ≥ y) for any y ∈ (0, 1). By the
first paragraph, this is equivalent to C1 %MA C2.

Proof of Proposition 2. (1.) ⇒ (2.): Suppose that C1 %MA C2 and consider any F, β, γ.
Let f := F−1, which is in I since F ∈ F . We first show by induction that (TC1)

tf %m (TC2)
tf

for all t. For t = 1, this is true by Lemma B.1. Suppose the claim holds for some t ≥ 1. Then

(TC1)
t+1 f = TC1 (TC1)

t f %m TC1 (TC2)
t f %m TC2 (TC2)

t f = (TC2)
t+1f,

where the first comparison follows from the inductive hypothesis by isotonicity of %m, and the
second one holds by Lemma B.1. Thus, by transitivity of %m, we have (TC1)

t+1 f %m (TC2)
t+1 f .

Next, note that linearity of %m and C1 %MA C2 implies

τ∑
t=0

γt(TC1)
tF−1 %m

(
γτ (TC2)

τ +
τ−1∑
t=0

γt(TC1)
t

)
F−1

%m

(
τ∑

t=τ−1

γt(TC2)
t +

τ−2∑
t=0

γt(TC1)
t

)
F−1 %m · · · %m

τ∑
t=0

γt(TC2)
tF−1
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for any τ ∈ N. Moreover, by Lemma A.1, as τ →∞, we have

τ∑
t=0

γt(TC1)
tF−1 →

∞∑
t=0

γt(TC1)
tF−1,

τ∑
t=0

γt(TC2)
tF−1 →

∞∑
t=0

γt(TC2)
tF−1.

Thus, by continuity and linearity of %m, we have

∞∑
t=0

γt(TC1)
tF−1 +

βµ

(1− γ)(1− β − γ)
%m

∞∑
t=0

γt(TC2)
tF−1 +

βµ

(1− γ)(1− β − γ)
,

where µ = EF [θ]. Thus, GNE
1 is a mean-preserving spread of GNE

2 at (F, β, γ).
(2.) ⇒ (3.): Immediate from the fact that GAN at (P, β, γ) coincides with GNE at (P, 0, β+γ).
(3.) ⇒ (1.): Let gF,Ci,β,γ denote the inverse of the ANE global action distribution at (F,Ci, β, γ).
Suppose gF,C1,β,γ %m gF,C2,β,γ for all (F, β, γ). Setting f := F−1 and δ := β + γ, we have∑

t≥0

δt(TC1)
tf = gF,C1,β,γ %m gF,C2,β,γ =

∑
t≥0

δt(TC2)
tf.

By linearity of %m and since (TCi)
0(f) = f for i = 1, 2, this implies

TC1f +
∑
t≥2

δt−1(TC1)
tf %m TC2f +

∑
t≥2

δt−1(TC2)
tf. (15)

Note that for each i = 1, 2,

‖TCif +
∑
t≥2

δt−1(TCi)
tf − TCif‖ ≤

∑
t≥2

δt−1‖(TCi)tf‖ ≤
∑
t≥2

δt−1‖f‖.

Hence, as δ → 0, TCif +
∑

t≥2 δ
t−1(TCi)

tf → TCif . Thus, by continuity of %m, (15) yields
TC1f % TC2f . As this is true for all f = F−1, we have C1 %MA C2 by Lemma B.1.
(1.) ⇔ (4.): We first show that (1.) implies (4.). By the proof of “(1.) ⇒ (2.),” we have
(TC1)

tF−1 %m (TC2)
tF−1 for all t. Thus,(

(β + γ)t(TC1)
t + γt(TC2)

t
)
F−1 %m

(
γt(TC1)

t + (β + γ)t(TC2)
t
)
F−1,

as (β + γ)t ≥ γt ≥ 0 and by linearity of %m. Then linearity and continuity of %m also imply

∑∞
t=0 ((β + γ)t(TC1)

t + γt(TC2)
t)F−1 + βEF [θ]

(1−γ)(1−β−γ)

%m

∑∞
t=0 (γt(TC1)

t + (β + γ)t(TC2)
t)F−1 + βEF [θ]

(1−γ)(1−β−γ)
.

32



By monotonicity of equilibrium strategies, this yields for all θ∗ that

EF [sAN1 (θ) + sNE2 (θ)|θ ≥ θ∗] ≥ EF [sNE1 (θ) + sAN2 (θ)|θ ≥ θ∗],

which is equivalent to the first inequality in part (4.). The second inequality follows from part
(2.), which is implied by part (1.) as we showed above. Finally, to see that (4.) implies (1.), note
that the second inequality in (4.) implies (2.). Thus, (1.) follows from the above proofs.

B.4 Proof of Proposition 3

(1.) ⇒ (2.): Take any F1, F2 ∈ F such that F1 is more dispersive than F2. Then F−1
1 %d F

−1
2 .

First, we inductively show that for each t, (TC)tF−1
1 %d (TC)tF−1

2 . Indeed, supposing that the
claim is true at t, isotonicity of %d implies

(TC)t+1F−1
1 = TC(TC)tF−1

1 %d TC(TC)tF−1
2 = (TC)t+1F−1

2 ,

as required. Next, since %d is linear, we have
∑τ

t=0 γ
t(TC)tF−1

1 %d

∑τ
t=0 γ

t(TC)tF−1
2 for all

τ ∈ N. Since limτ→∞
∑τ

t=0 γ
t(TC)tF−1

i =
∑∞

t=0 γ
t(TC)tF−1

i for each i = 1, 2 and any γ ∈ [0, 1),
continuity and linearity of %d then yields

(GNE
1 )−1 =

∑
t≥0

γt(TC)tF−1
1 +

βEF1 [θ]

(1− γ)(1− β − γ)
%d

∑
t≥0

γt(TC)tF−1
2 +

βEF2 [θ]

(1− γ)(1− β − γ)
= (GNE

2 )−1,

whence GNE
1 is more dispersive than GNE

2 .
(2.) ⇒ (3.): Immediate from the fact that GAN at (P, β, γ) coincides with GNE at (P, 0, β+γ).
(3.) ⇒ (1.): Immediate from the fact that GAN at (P, 0, 0) coincides with F .
(1.) ⇔ (4.): To see that (1.) implies (4.), note that, for any x > x′,(

(GAN
1 )−1(x)− (GAN

1 )−1(x′)
)
−
(
(GNE

1 )−1(x)− (GNE
1 )−1(x′)

)
=

∑
t≥0

(
(γ + β)t − γt

) (
(TC)tF−1

1 (x)− (TC)tF−1
1 (x′)

)
≥

∑
t≥0

(
(γ + β)t − γt

) (
(TC)tF−1

2 (x)− (TC)tF−1
2 (x′)

)
=

(
(GAN

2 )−1(x)− (GAN
2 )−1(x′)

)
−
(
(GNE

2 )−1(x)− (GNE
2 )−1(x′)

)
.

Here the inequality holds since by the proof of “(1.) ⇒ (2.),” we have (TC)tF−1
1 %d (TC)tF−1

2 .
This establishes the first inequality in (4.). The second inequality in (4.) holds by the fact that
(1.) implies (2.), as shown above. Finally, to see that (4.) implies (1.), note that the second
inequality in (4.) implies (2.). Thus, (1.) follows from the above proofs.
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B.5 Proof of Proposition 4

We only consider ANE; the proof for Nash is analogous. Suppose β1 + γ1 ≥ β2 + γ2. For any
(F,C), consider the inverse cdf gi of GAN

i at (F,C, βi, γi). Then gi =
∑

t≥0(βi + γi)
t(TC)tf ,

where f = F−1. Observe that (β1 + γ1)t(TC)tf %d (β2 + γ2)t(TC)tf for all t. Thus,
∑τ

t≥0(β1 +

γ1)t(TC)tf %d

∑τ
t≥0(β2 +γ2)t(TC)tf for all τ ≥ 0 by linearity of %d. Then by continuity of %d, it

follows that g1 %d g2, whence GAN
1 is more dispersive than GAN

2 . Conversely, if β1+γ1 < β2+γ2,
the same argument implies g2 �d g1 for any (F,C) with C 6= CI .

B.6 Proof of Proposition 5

We first verify that Ls
AN ,P
θ ∈ F for each θ. By Proposition 1, (sAN)−1 is strictly increasing

and absolutely continuous. By monotonicity of sAN , Ls
AN ,P
θ (a) = P ((sAN)−1(a)|θ) for each a ∈

sAN(Θ). Since P (θ′|θ) is absolutely continuous and strictly increasing in θ′ on Θ, Ls
AN ,P
θ (a) is

absolutely continuous (by the change of variable theorem) and strictly increasing in a ∈ sAN(Θ).
Moreover, since sAN is L1 with respect to F ,

´ ´
|sAN(θ′)|dP (θ′|θ)dF (θ) =

´
|sAN(θ)|dF (θ) <

∞. Thus, there exists Θ∗ ⊆ Θ such that Θ\Θ∗ has Lebesgue measure zero and for every θ ∈ Θ∗,´
|sAN(θ′)|dP (θ′|θ) <∞. Hence, Ls

AN ,P
θ is L1 for all θ ∈ Θ∗. As Ls

AN ,P
θ is FOSD-monotonic in

θ, this implies that Ls
AN ,P
θ is L1 for every θ ∈ Θ.36

Define a type distribution F̂θ by

F̂−1
θ (x) = (Ls

AN ,P
θ )−1(x)− (β + γ)

ˆ
(Ls

AN ,P
θ )−1(z)dz (16)

for each x. Since Ls
AN ,P
θ ∈ F , it follows that F̂−1

θ is L1, strictly increasing, and absolutely
continuous, so F̂θ ∈ F . Let P̂θ := F̂θ × F̂θ and let ŝθ be the Nash equilibrium at (P̂θ, β, γ).
Then ŝθ(θ′) = BRθ′(G

ŝθ,P̂θ , Lŝθ,P̂θθ′ ) for each θ′ ∈ suppF̂θ, so the perceived best-response condition
holds. Moreover, for each x,

(Lŝθ,P̂θθ )−1(x) = F̂−1
θ (x) + (β + γ)

ˆ
(Lŝθ,P̂θθ )−1(z)dz

= (Ls
AN ,P
θ )−1(x) + (β + γ)

ˆ (
(Lŝθ,P̂θθ )−1(z)− (Ls

AN ,P
θ )−1(z)

)
dz,

where the first equality uses the perceived best-response condition and P̂θ = F̂θ × F̂θ, and the
second equality uses (16). Integrating both sides with respect to x yields Lŝθ,P̂θθ = Ls

AN ,P
θ , ver-

ifying observational consistency. Thus, (P̂θ, ŝθ) are coherent assortativity neglect perceptions.

36Indeed, take any θ ∈ Θ\Θ∗. If θ ∈ (inf Θ, sup Θ), pick θ′, θ′′ ∈ Θ∗ with θ′ < θ < θ′′. Then
´
|a|dLs

AN ,P
θ (a) =

−
´ 0
−∞ adLs

AN ,P
θ (a) +

´∞
0
adLs

AN ,P
θ (a) ≤ −

´ 0
−∞ adLs

AN ,P
θ′ (a) +

´∞
0
adLs

AN ,P
θ′′ (a) < ∞. If θ = sup Θ (the case

θ = inf Θ is analogous), then suppLs
AN ,P
θ is bounded above. Thus,

´
|a|dLs

AN ,P
θ (a) = −

´ 0
−∞ adLs

AN ,P
θ (a) +´∞

0
adLs

AN ,P
θ (a) ≤ −

´ 0
−∞ adLs

AN ,P
θ′ (a) +

´∞
0
adLs

AN ,P
θ (a) <∞ for any θ′ ∈ Θ∗.
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Conversely, for any coherent assortativity neglect perceptions (P̂θ = F̂θ × F̂θ, ŝθ), observational
consistency and perceived best-response imply (16), ensuring the uniqueness of F̂θ. Moreover,
by the perceived best-response condition, ŝθ is the unique Nash equilibrium at (P̂θ, β, γ).

B.7 Proof of Proposition 6

Write P = (F,C). Let si and (P̂ i
θ = F̂ i

θ × F̂ i
θ , ŝ

i
θ) denote the ANE strategy profile and θ’s

coherent assortativity neglect perceptions at (P, βi, γi) for i = 1, 2. Suppose β1 + γ1 ≥ β2 + γ2.
For any x, y ∈ (0, 1) with x > y, we have

(F̂ i
θ)
−1(x)− (F̂ i

θ)
−1(y) = (L

ŝiθ,P̂
i
θ

θ )−1(x)− (L
ŝiθ,P̂

i
θ

θ )−1(y)

= (Ls
i,P
θ )−1(x)− (Ls

i,P
θ )−1(y) =

∑
t≥0(βi + γi)

t ((TC)tF−1(x′)− (TC)tF−1(y′)) ,

where x′, y′ ∈ (0, 1) with x′ > y′ are defined by C(x′ | F−1(θ)) = x and C(y′ | F−1(θ)) = y.
Indeed, the first equality holds by the perceived best-response condition, the second equality by
observational consistency, and the final one by construction of ANE strategies. Since (β1+γ1)t ≥
(β2 +γ2)t and (TC)tF−1(x′)− (TC)tF−1(y′) ≥ 0 for all t, it follows that (F̂ 1

θ )−1(x)− (F̂ 1
θ )−1(y) ≥

(F̂ 2
θ )−1(x)− (F̂ 2

θ )−1(y). Thus, F̂ 1
θ is more dispersive than F̂ 2

θ .

B.8 Proof of Proposition 7

Write P = (F,C). Let f := F−1 and ηi := βi+γi for each i = 1, 2. Since the local action average
observed by each type quantile x under the ANE at (P, βi, γi) is given by

∑
t≥0 η

t
i(TC)t+1f(x),

we have (M i)−1 = (1− ηi)
∑

t≥0 η
t
i(TC)t+1f . For each τ ≥ 0, we show

1∑τ
t=0 η

t
2

τ∑
t=0

ηt2(TC)t+1f %m
1∑τ
t=0 η

t
1

τ∑
t=0

ηt1(TC)t+1f. (17)

For τ = 0, there is nothing to prove. Supposing the claim holds for some τ ≥ 0, we have

1∑τ+1
t=0 η

t
2

τ+1∑
t=0

ηt2(TC)t+1f =

∑τ
t=0 η

t
2∑τ+1

t=0 η
t
2

(
1∑τ
t=0 η

t
2

τ∑
t=0

ηt2(TC)t+1f

)
+

ητ+1
2∑τ+1
t=0 η

t
2

(TC)τ+2f

%m

∑τ
t=0 η

t
2∑τ+1

t=0 η
t
2

(
1∑τ
t=0 η

t
1

τ∑
t=0

ηt1(TC)t+1f

)
+

ητ+1
2∑τ+1
t=0 η

t
2

(TC)τ+2f

%m

∑τ
t=0 η

t
1∑τ+1

t=0 η
t
1

(
1∑τ
t=0 η

t
1

τ∑
t=0

ηt1(TC)t+1f

)
+

ητ+1
1∑τ+1
t=0 η

t
1

(TC)τ+2f =
1∑τ+1
t=0 η

t
1

τ+1∑
t=0

ηt1(TC)t+1f,

as required. Here the first dominance holds by inductive hypothesis and the second dominance
follows from linearity of %m along with the fact that η1 ≥ η2 (so that

∑τ
t=0 η

t
1∑τ+1

t=0 η
t
1

≤
∑τ
t=0 η

t
2∑τ+1

t=0 η
t
2

and
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ητ+1
1∑τ+1
t=0 η

t
1

≥ ητ+1
2∑τ+1
t=0 η

t
2

) and that (TC)t+1f %m (TC)τ+2f for all t ≤ τ + 1 (by Lemma A.4).
Taking τ → ∞ in (17), continuity of %m then yields (1 − η2)

∑
t≥0 η

t
2(TC)t+1f %m (1 −

η1)
∑

t≥0 η
t
1(TC)t+1f , i.e., (M2)−1 %m (M1)−1, as claimed.

C Extensions

C.1 Generalization of coherent assortativity neglect perceptions

Definition 3 assumes that θ perceives all other agents θ′ to share her perceptions P̂θ and ŝθ. Ex-
panding on Remark 2, we show that this assumption is not essential for our results. Specifically,
suppose that we enrich type θ’s coherent assortativity neglect perceptions to consist of:

• Own perceptions: θ’s own perception of a non-assortative society P̂θ = F̂θ × F̂θ and
perceived strategy profile ŝθ;

• Perceptions about others’ perceptions: for each type θ′, θ’s perception of θ′’s perceived
non-assortative society P̂θ,θ′ = F̂θ,θ′ × F̂θ,θ′ and θ’s perception of θ′’s perceived strategy
profile ŝθ,θ′ ;

subject to three requirements:

1. Observational consistency: Ls
AN ,P
θ = Lŝθ,P̂θθ ;

2. Perceived best-response: for each θ′, ŝθ(θ′) ∈ BRθ′(G
ŝθ,θ′ ,P̂θ,θ′ , L

ŝθ,θ′ ,P̂θ,θ′

θ′ );

3. Perceived observational consistency: for each θ′, Lŝθ,P̂θθ′ = L
ŝθ,θ′ ,P̂θ,θ′

θ′ .

The first condition is the same observational consistency requirement as in Definition 3. The
second condition still says that θ perceives θ′ to play a best-response; however, in rationalizing
θ′’s behavior, θ now allows that θ′’s perceived society and strategy profile might be different from
her own. Finally, the third condition requires the perceptions P̂θ,θ′ and ŝθ,θ′ that θ attributes
to θ′ to be consistent with the local action distribution Lŝθ,P̂θθ′ that she perceives θ′ to observe.
Definition 3 corresponds to the special case where θ perceives all other agents to share her
perceptions (i.e., P̂θ,θ′ = P̂θ and ŝθ,θ′ = ŝθ).

While this generalization allows θ to perceive others to disagree with her perceptions P̂θ and
ŝθ, we note that P̂θ and ŝθ themselves are unchanged relative to Definition 3: Indeed, we have

Gŝθ,θ′ ,P̂θ,θ′ = L
ŝθ,θ′ ,P̂θ,θ′

θ′ = Lŝθ,P̂θθ′ = Lŝθ,P̂θθ = Ls
AN ,P
θ .

The first equality holds because P̂θ,θ′ is non-assortative, the second by perceived observational
consistency, the third because P̂θ is non-assortative, and the fourth by observational consistency.
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Thus, just as under Definition 3, the perceived best-response condition reduces to (9), i.e.,

ŝθ(θ
′) ∈ BRθ′(L

sAN ,P
θ , Ls

AN ,P
θ ).

Based on this and observational consistency, the derivation of θ’s perceived type distribution F̂θ
and strategy profile ŝθ is unchanged, so all results in Section 4 remain valid. At the same time,
θ’s perceptions about θ′’s perceptions F̂θ,θ′ and ŝθ,θ′ are flexible; for example, the definition is
consistent with θ being aware that coherent assortativity neglect perceptions vary across types.

The above definition can be viewed as a misspecified version of a belief system in Esponda’s
(2013) level-1 rationalizable conjectural equilibrium (i.e., with first-order belief in rationality
and observational consistency): We assume that agents dogmatically believe that society is non-
assortative and that others share this perception (and for simplicity we do not model agents’
kth-order beliefs beyond k = 2). Note that modeling agents’ entire hierarchy of perceptions
and imposing rationality and observational consistency up to higher orders would put more
discipline on θ’s perceptions about others’ perceptions; however, as any such belief system is a
special case of the above definition, θ’s first-order perceptions P̂θ and ŝθ remain unchanged.

C.2 α-ANE

We apply the equilibrium concept of α-ANE defined in Section 5.1 to linear best-response
games with strategic complementarities. Just as in Section 3.2, we can iterate the best-response
conditions (12) under the Markov process P . This yields the following α-ANE strategy profiles
sαa and sαc for assortativity neglect and correct agents:

sαa (θ) = θ + (β + γ)
∞∑
t=1

(γ + αβ)t−1EP [θt | θ0 = θ] +
(β + γ)(1− α)βEF [θ′]

(1− γ − αβ)(1− β − γ)
(18)

sαc (θ) = θ + γ

∞∑
t=1

(γ + αβ)t−1EP [θt | θ0 = θ] +
(1− α(β + γ)) βEF [θ′]

(1− γ − αβ)(1− β − γ)
. (19)

Thus, the higher-order expectation terms take a “quasi-hyperbolic” form, with geometric dis-
count factor γ + αβ increasing in the share α of assortativity neglect agents. Note that when
α = 0 (resp. α = 1), sαc (resp. sαa ) reduces to the expression for Nash (resp. ANE) in Section 3.2.

LetGα
a andGα

c denote the global action distributions among assortativity neglect and correct
agents. The following result compares action dispersion across both groups of agents, as well
as across different values of α:

Proposition C.1. Fix any (P, β, γ). For any α ∈ [0, 1], there is a unique α-ANE, whose
strategy profiles are given by (18) and (19). Moreover, (i) Gα

a is more dispersive than Gα
c , and

(ii) both Gα
a and Gα

c are more dispersive the greater α.
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Thus, behavior among correct agents is less dispersed than among assortativity neglect
agents, but action dispersion among both groups is exacerbated the greater the share of assor-
tativity neglect agents.

Given (18)–(19), similar arguments as for the main analysis imply that both Gα
a and Gα

c

are subject to analogous comparative statics and multiplier effects as GAN in Propositions 2-
4. Moreover, coherent perceptions P̂θ = F̂θ × F̂θ and ŝθ for assortativity neglect agents can
be defined analogously to Definition 3.37 As in Proposition 5, each θ admits unique coherent
assortativity neglect perceptions, and the comparative statics in Propositions 6-7 extend.38

C.3 Partial assortativity neglect

Consider PANE as defined in Section 5.1. Extending Proposition 1, the following result shows
that, in linear best-response games with strategic complementarities, any PANE induces more
action dispersion than Nash (subject to a regularity condition that always holds under ANE):

Proposition C.2. Fix any (P, β, γ). For any PANE s in which perceived global action averages´
a dĜθ(a) are absolutely continuous in θ, the global action distribution Gs,P is more dispersive

than the Nash action distribution.

Given any society P and PANE s with perceived global action distributions (Ĝθ)θ, define a
coherent perception for type θ to consist of a perceived society P̂θ and a perceived strategy
profile ŝθ such that:

1. (a) Ls,Pθ = Lŝθ,P̂θθ ;

(b) Ĝθ = Gŝθ,P̂θ .

2. For each θ′, ŝθ(θ′) ∈ BRθ′(G
ŝθ,P̂θ , Lŝθ,P̂θθ′ ).

Conditions 1(a) and 2 are the same as in Definition 3. Condition 1(b) requires that the perceived
global action distribution Ĝθ to which θ best-responds in the PANE s matches the global action
distribution under her perceived society P̂θ and strategy profile ŝθ. In the case of coherent ANE
perceptions, the latter condition is immediate from the assumption that P̂θ is non-assortative.39

Obtaining general analogs of Propositions 5–7 for coherent PANE perceptions is beyond the
scope of this paper. However, the following example considers the case of Gaussian societies:

37Specifically, let Lα,Pθ = αL
sαa ,P
θ + (1−α)L

sαc ,P
θ denote θ’s true local action distribution in the α-ANE. A co-

herent perception for an assortativity neglect agent θ consists of a perceived non-assortative society P̂θ = F̂θ×F̂θ
and perceived strategy profile ŝθ such that (i) Lα,Pθ = Lŝθ,P̂θθ ; and (ii) for each θ′, ŝθ(θ′) ∈ BRθ′(G

ŝθ,P̂θ , Lŝθ,P̂θθ′ ).
38More precisely, the comparative statics are now with respect to increasing β and γ separately (as β + γ is

no longer a sufficient statistic). The analog of Proposition 6 is that F̂θ is increasing in (β, γ) with respect to the
dilation order (defined in Appendix C.4). The false consensus effect and comparative statics of distributions of
perceived means with respect to (β, γ) are the same as in Proposition 7.

39The fact that P̂θ is non-assortative implies that Gŝθ,P̂θ = Lŝθ,P̂θθ , which is equal to Ls,Pθ by 1(a). Since under
ANE Ĝθ = Ls,Pθ , this implies 1(b).
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Example C.1. Fix a Gaussian society P = (µ, σ2, ρ) and consider linear best-response games
with strategic complementarities. For each ρ̂ ∈ [0, ρ], we can construct a PANE s∗ and asso-
ciated coherent perceptions (P̂θ, ŝθ)θ such that each type θ’s perceived society P̂θ is Gaussian
with correlation coefficient ρ̂: Specifically, for each θ,

1. θ’s action is s∗(θ) = θ−µ
1−γρ−β ρ−ρ̂

1−ρ̂
+ µ

1−β−γ ;

2. θ’s coherent perceived society is Gaussian with P̂θ = (µ̂θ, σ̂
2, ρ̂), where

µ̂θ = µ+ (θ − µ)
(1− β − γ)(ρ− ρ̂)(γ + β

1−ρ̂)

(β + γ(1− ρ̂))(1− γρ− β ρ−ρ̂
1−ρ̂)

, σ̂2 = σ2 (1− ρ2)

(1− ρ̂2)

(
1− γρ̂

1− γρ− β ρ−ρ̂
1−ρ̂

)2

;

3. θ’s coherent perceived strategy profile satisfies ŝθ(θ′) = θ−µ
1−γρ̂ + µ̂θ

1−β−γ for all θ′.

See Online Appendix D.2.3 for the derivation; in particular, the fact that agents underestimate
assortativity (i.e., ρ̂ ∈ [0, ρ]) is key in ensuring that perceived global action distributions Ĝθ =

Gŝθ,P̂θ are FOSD-increasing in θ, as required by PANE. Observe that the above expressions
generalize the ones under Nash (ρ̂ = ρ) and ANE (ρ̂ = 0) in Examples 1–2. Moreover, the
qualitative predictions for action dispersion and perceived type variances and means are the
same as under full assortativity neglect.

Finally, we note that one can show conversely that any linear PANE that admits Gaussian
coherent perceptions must take the form in conditions 1–3 for some ρ̂ ∈ [0, ρ]. N

C.4 Strategic substitutes

Consider linear best-response games with global and/or local strategic substitutes (i.e., β ≤ 0

and/or γ ≤ 0). The following result shows that Nash and ANE strategies admit the same
Markov process representations as in the complementarity case. Moreover, we provide a simple
condition (satisfied, e.g., by Gaussian societies) under which these strategies are monotone:

Proposition C.3. Fix any P and β, γ with |β + γ|, |γ| < 1. The unique Nash and ANE
strategies sNE and sAN are given by (5) and (7). Moreover, sNE and sAN are strictly increasing
if
∣∣EP [θ1 | θ0 = θ]− EP [θ1 | θ0 = θ′]

∣∣ ≤ |θ − θ′| for all θ, θ′.

Analyzing equilibrium behavior is more difficult than under complementarities, because
when γ < 0 (resp. β + γ < 0) the discounted terms in (5) (resp. (7)) alternate signs across odd
and even t. To extend our comparative statics results, we impose the condition on societies
from Proposition C.3 to ensure monotonicity of Nash and ANE. We also employ a weakening
of the more-dispersive order: G1 is a dilation of G2 (Shaked and Shanthikumar, 2007) if
there exists b ∈ R such that

´
φ(a)dG1(a) ≥

´
φ(a + b)dG2(a) for any convex function φ
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under which the integrals are well-defined; that is, G1 is a mean-preserving spread of G2 up to
normalizing means. Finally, we use the following strenghtening of the more-assortative order
from Section 3.3: C1 is strongly more assortative than C2, denoted C1 %SMA C2, if

C1(z|y)− C1(z|x) ≥ C2(z|y)− C2(z|x), for all x, y, z ∈ (0, 1) with x ≥ y.

To interpret, recall that assortativity of C requires the distribution of matches’ quantiles to be
first-order stochastically increasing in own quantile; C1 is strongly more assortative than C2 if
this effect is globally stronger under C1 than under C2.

Proposition C.4. Fix (Fi, Ci, βi, γi) with |γi+βi|, |γi| < 1 and
∣∣EPi [θ1 | θ0 = θ]−EPi [θ1 | θ0 =

θ′]
∣∣ ≤ |θ− θ′| for all θ, θ′, i = 1, 2. Let GAN

i and GNE
i denote the corresponding ANE and Nash

global action distributions.

1. Suppose F1 = F2, β1 = β2, γ1 = γ2, and C1 is strongly more assortative than C2. Then:

(a) GAN
2 is a dilation of GAN

1 if βi + γi < 0, and vice versa if βi + γi > 0.

(b) GNE
2 is a dilation of GNE

1 if γi < 0, and vice versa if γi > 0.

2. Suppose C1 = C2, β1 = β2, γ1 = γ2, and F1 is more dispersive than F2. Then GAN
1 is a

dilation of GAN
2 , and GNE

1 is a dilation of GNE
2 .

3. Suppose F1 = F2, C1 = C2. If β1 + γ1 ≥ β2 + γ2 (resp. γ1 ≥ γ2), then GAN
1 is a dilation

of GAN
2 (resp. GNE

1 is a dilation of GNE
2 ).

Relative to the complementarities case, the comparative statics with respect to assortativity
have flipped directions under substitutes. The first part also implies that, under local comple-
mentarities but stronger global substitutes (i.e., γ > 0, β + γ < 0), increases in assortativity
have the opposite effect on Nash and ANE action dispersion; this contrasts with the multiplier
effect in Proposition 2, where the difference between Nash and ANE was one of magnitude.
Finally, the third part implies that if β ≤ 0, then the Nash action distribution is a dilation of
the ANE distribution (assuming monotonicity), reversing the comparison in Proposition 1.

Each agent continues to admit unique coherent assortativity neglect perceptions (see Propo-
sition C.5 below). Proposition 6 (on comparative statics of perceived type dispersion) also
remains valid up to replacing the dispersiveness with the dilation order.

C.5 Non-linear best-response functions

Consider general population games as defined in Section 2. For simplicity, we drop the regularity
assumptions on strategy profiles and type distributions (L1, absolute continuity, connected
support). The following result shows that the existence and uniqueness of coherent assortativity
neglect perceptions (Proposition 5) remains valid under mild conditions on best-responses:
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Proposition C.5. Assume that BRθ(G,L) is single-valued, and increasing and surjective in θ
for all G,L ∈ ∆(A). Fix any P and ANE sAN .40 For each type θ, the corresponding coherent
assortativity neglect perceptions P̂θ = F̂θ × F̂θ and ŝθ exist and are unique.

We can also extend the comparison of action dispersion across ANE and Nash (Proposi-
tion 1) to additively separable best-responses with purely global complementarities. This case
allows one to sidestep difficulties associated with equilibrium multiplicity, as all Nash action
distributions are equally dispersive:

Proposition C.6. Assume that BRθ(G,L) = φ(θ)+ψ(G) for some increasing function φ : Θ→
A and FOSD-increasing function ψ : ∆(A) → A. Fix any P . The global action distribution
under any monotone ANE sAN is more dispersive than under any Nash equilibrium sNE.
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D Omitted Proofs

D.1 Proofs for Appendix A

D.1.1 Proof of Lemma A.1

For the first point, note that for any f ∈ L1,

‖TCf‖ =

1ˆ

0

|TCf(x)|dx ≤
1ˆ

0

1ˆ

0

c(x′, x)|f(x′)|dx′dx =

1ˆ

0

|f(x′)|dx′ = ‖f‖ <∞.

Thus, TC : L1 → L1. Moreover, since TC is clearly linear, the above ensures that it is also
continuous.

For the second point, consider f ∈ I. Since C is assortative, TCf(x) ≥ TCf(x′) for all
x ≥ x′, so that TCf is weakly increasing. To show that TCf is absolutely continuous, note that
for each x, x′ ∈ (0, 1),

TCf(x) =

ˆ 1

0

c(y, x)f(y)dy =

ˆ 1

0

(ˆ x

x′
c2(y, z)dz + c(y, x′)

)
f(y)dy

=

ˆ x

x′

ˆ 1

0

c2(y, z)f(y)dydz + TCf(x′),

where c2 denotes the partial derivative of c with respect to the second argument, which ex-
ists almost everywhere by the absolute continuity assumption on c. Thus TCf is absolutely
continuous with (TCf)′(z) =

´ 1

0
c2(y, z)f(y)dy for each z.

Finally, for the third point, fix any f ∈ L1 and γ ∈ (−1, 1). Then for any τ > τ ′,

‖
τ∑
t=0

γt(TC)tf −
τ ′∑
t=0

γt(TC)tf‖ ≤
τ∑

t=τ ′+1

|γ|t‖(TC)tf‖ ≤
τ∑

t=τ ′+1

|γ|t‖f‖ ≤ |γ|
τ ′+1

1− γ
‖f‖,

which vanishes as τ ′ →∞. Thus, the sequence is Cauchy. Since the space L1 is complete, this
yields the desired result.

D.1.2 Proof of Lemma A.3

%m-order: It is clear from the definition that %m is reflexive and transitive; moreover, by
Lemma A.2, %m is linear. To check that %m is continuous, take sequences fn → f, gn → g in
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I such that fn %m gn for each n. For any y ∈ (0, 1), we have

|
ˆ 1

y

f(x)dx−
ˆ 1

y

fn(x)dx| ≤
ˆ 1

y

|f(x)− fn(x)|dx ≤ ‖f − fn‖ → 0

and likewise |
´ 1

y
g(x)dx −

´ 1

y
gn(x)dx| → 0. Since

´ 1

y
fn(x)dx ≥

´ 1

y
gn(x)dx and

´ 1

0
fn(x)dx =´ 1

0
gn(x)dx for each n, this implies

´ 1

y
f(x)dx ≥

´ 1

y
g(x)dx and

´ 1

0
f(x)dx =

´ 1

0
g(x)dx. Thus,

f %m g by Lemma A.2.
To verify that %m is isotone, take any f, g ∈ I such that f %m g and set h := f − g. Note

that
´ 1

0
h(x)dx =

´ 1

0
TCh(x)dx = 0. It suffices to show that

´ 1

y
TCh(x)dx ≥ 0 for all y ∈ (0, 1).

To see this, note that
´ 1

y
TCh(x)dx is given by

ˆ 1

y

ˆ 1

0

h(z)c(z|x)dzdx =

ˆ 1

0

ˆ 1

y

c(z|x)dxh(z)dz =

ˆ 1

0

(1− C(y|z))h(z)dz

= −
ˆ 1

0

∂1− C(y|z)

∂z

ˆ z

0

h(z′)dz′dz +

[
(1− C(y|z))

ˆ z

0

h(z′)dz′
]1

0

=

ˆ 1

0

∂C(y|z)

∂z

ˆ z

0

h(z′)dz′dz ≥ 0,

where the second equality uses
´ 1

y
c(z|x)dx =

´ 1

y
c(x|z)dx = 1 − C(y|z), the third holds by

integration by parts (using absolute continuity of c), the fourth uses
´ 1

0
h(z)dz = 0, and the

final inequality uses
´ z

0
h(z′)dz′ ≤ 0 (by f %m g) and assortativity of C.

%d-order: It is clear from the definition that %d is reflexive, transitive, and linear. To check
that it is continuous, take sequences fn → f and gn → g in I such that fn %d gn for each n. By
standard results (e.g., Theorem 13.6 in Aliprantis and Border (2006)), we can find subsequences
(fnk)k∈N, (gnk)k∈N such that fnk(x) → f(x) and gnk(x) → g(x) for almost all x ∈ (0, 1). This
implies f(x) − f(x′) ≥ g(x) − g(x′) for almost all x ≥ x′, which ensures f %d g since f and g
are continuous.

To show that %d is isotone, first consider any bounded f, g ∈ I such that f %d g. Since f
and g are absolutely continuous, there exist integrable functions f ′, g′ : (0, 1) → R such that
f(x) = f(0) +

´ x
0
f ′(y) dy and g(x) = g(0) +

´ x
0
g′(y) dy for all x ∈ (0, 1). Then, for any x ≥ x′

and C ∈ C, integration by parts yields

TCf(x)− TCf(x′) =

ˆ 1

0

f(y)(c(y|x)− c(y|x′))dy

= −
ˆ 1

0

f ′(y)(C(y|x)− C(y|x′))dy + [f(y)(C(y|x)− C(y|x′))]10

= −
ˆ 1

0

f ′(y)(C(y|x)− C(y|x′))dy ≥ −
ˆ 1

0

g′(y)(C(y|x)− C(y|x′))dy

= −
ˆ 1

0

g′(y)(C(y|x)− C(y|x′))dy + [g(y)(C(y|x)− C(y|x′))]10

=

ˆ 1

0

g(y)(c(y|x)− c(y|x′))dy = TCg(x)− TCg(x′).
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Here, the inequality holds because the fact that f %d g and f, g ∈ I implies f ′(y) ≥ g′(y) ≥ 0
for almost all y ∈ (0, 1).

Next, consider arbitrary f, g ∈ I such that f %d g. By defining bounded functions

fn(x) =


f( 1

n
) if x ∈ (0, 1

n
)

f(x) if x ∈ [ 1
n
, n−1

n
]

f(n−1
n

) if x ∈ (n−1
n
, 1)

gn(x) =


g( 1

n
) if x ∈ (0, 1

n
)

g(x) if x ∈ [ 1
n
, n−1

n
]

g(n−1
n

) if x ∈ (n−1
n
, 1)

(20)

for each n ∈ N, we obtain fn %d gn for each n and fn → f, gn → g. For any C ∈ C, since
TC is a continuous operator, this implies TCfn → TCf and TCgn → TCg. Thus, TCf %d TCg
by continuity of %d, as we already know that TCfn %d TCgn from the previous part of the
proof.

D.1.3 Proof of Lemma A.4

The base case t = 0 holds because of the following result by Ryff (1963): Call a linear operator
T : L1 → L1 an S-operator if f %m Tf for all F ∈ I. The representation theorem in Ryff
(1963) implies that T is an S-operator if there exists some measurable function K : [0, 1]2 → R
such that Tf(x) = d

dx

´ 1

0
K(x, y)f(y)dy for all f ∈ L1 and almost every x and the following

conditions are met: (1) K(0, y) = 0 for all 0 ≤ y ≤ 1; (2) essupyV (K(·, y)) < ∞, where V (·)
denotes the total variation and essup the essential supremum; (3)

´ 1

0
K(x, y)f(y)dy is absolutely

continuous in x for all f ∈ L1; (4) x =
´ 1

0
K(x, y)dy; (5) x1 < x2 =⇒ K(x1, ·) ≤ K(x2, ·); and

(6) K(1, y) = 1 for all y ∈ [0, 1].
Since C ∈ C, it is easy to see that TC satisfies these conditions with K(x, y) := C(x | y) for

all x, y, so that TC is an S-operator. Thus, f %m TCf , proving the base case. The inductive
step then follows from isotonicity of %m (Lemma A.3).

D.2 Proofs for Appendix C

D.2.1 Proof of Proposition C.1

Let µ := EF [θ]. Consider strategy profiles gαa and gαc of assortativity neglect and correct agents
expressed as functions of quantiles. Write gα := αgαa + (1− α)gαc . In an α-ANE, we must have

gαa (x) = F−1(x) + (β + γ)TCg
α(x), gαc (x) = F−1(x) + γTCg

α(x) + β

ˆ 1

0

gα(y)dy

for each x ∈ (0, 1). Since gα = αgαa + (1− α)gαc , it follows that

gα(x) = F−1(x) + (γ + αβ)TCg
α(x) + (1− α)β

ˆ 1

0

gα(y)dy

3



for each x, which implies
´ 1

0
gα(y)dy = µ

1−β−γ by integrating both sides over x. Moreover,
iterating the above equation we obtain

gα(x) =
∑
t≥0

(γ + αβ)t(TC)tF−1(x) +
(1− α)βµ

(1− γ − αβ)(1− β − γ)
,

where the convergence of the RHS can be shown as in the proof of Lemma 1. Note that this
uniquely determines gα for any α. By the best-response conditions, we obtain

gαa (x) = F−1(x) + (β + γ)TCg
α(x)

= F−1(x) + (β + γ)
∑
t≥1

(γ + αβ)t−1(TC)tF−1(x) +
(β + γ)(1− α)βµ

(1− γ − αβ)(1− β − γ)
,

gαc (x) = F−1(x) + γTCg
α(x) + β

ˆ 1

0

gα(y)dy

= F−1(x) + γ
∑
t≥1

(γ + αβ)t−1(TC)tF−1(x) +
(1− α(β + γ)) βµ

(1− γ − αβ)(1− β − γ)

for each x, yielding (18)-(19). Then the claim gαa %d g
α
c and the comparative statics with respect

to α can be verified using linearity and continuity of %d.

D.2.2 Proof of Proposition C.2

Write P = (F,C). Consider any PANE s with
´
a dĜθ(a) absolutely continuous in θ. Then

s(θ) = θ+β
´
a dĜθ(a)+γEP [s(θ′)|θ] for each θ. Thus, s is the Nash equilibrium in environment

(F̃ , C, β̃, γ), where β̃ = 0 and F̃−1(x) = F−1(x) + β
´
a dĜF−1(x)(a) for each x (note that

F̃ ∈ F , as
´
adĜθ(a) is increasing and absolutely continuous in θ). Since F̃ is more dispersive

than F (and the global complementarity parameter does not affect Nash action dispersion by
Proposition 4), Proposition 3 implies that Gs,P is more dispersive than the Nash global action
distribution in environment (P, β, γ).

D.2.3 Details for Example C.1

Fix any ρ̂ ∈ [0, ρ]. We verify that, for the expressions in Example C.1, s∗ is a PANE and
(P̂θ, ŝθ) are associated coherent perceptions. Let x := 1

1−γρ−β ρ−ρ̂
1−ρ̂

and x̂ := 1
1−γρ̂ , so that s∗(θ) =

x(θ − µ) + µ
1−β−γ and ŝθ(θ

′) = x̂(θ′ − µ̂θ) + µ̂θ
1−β−γ for all θ, θ′. Since P (·|θ) is distributed

N (ρθ + (1 − ρ)µ, (1 − ρ2)σ2), θ’s true local action distribution Ls
∗,P
θ is distributed N (xρ(θ −

µ)+ µ
1−β−γ , x

2(1−ρ2)σ2). Since P̂θ(·|θ) is distributed N (ρ̂θ+(1− ρ̂)µ̂θ, (1− ρ̂2)σ̂2), θ’s perceived

local action distribution Lŝθ,P̂θθ is distributedN (x̂ρ̂(θ−µ̂θ)+ µ̂θ
1−β−γ , x̂

2(1−ρ̂2)σ̂2). Thus, condition
1(a) of coherency can be verified by observing that, by construction, the mean and variance of
Ls
∗,P
θ and Lŝθ,P̂θθ are equal.
To verify condition 2, note that, by construction, θ’s perceived strategy profile ŝθ is the

Nash equilibrium in society P̂θ = (µ̂θ, σ̂
2, ρ̂) (see Example 1).

Finally, we verify that s∗ is a PANE with perceived global action distributions Ĝθ = Ĝŝθ,P̂θ ,
as required by condition 1(b). Note first that, by construction, s∗(θ) = ŝθ(θ) for all θ. Thus,
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conditions 1(a) and 2 imply that s∗(θ) ∈ BRθ(Ĝ
ŝθ,P̂θ , Ls

∗,P
θ ). It remains to check that Ĝŝθ,P̂θ

is FOSD-increasing in θ. This holds because Ĝŝθ,P̂θ is distributed N ( µ̂θ
1−β−γ , x̂

2σ̂2) and because
ρ̂ ≤ ρ ensures that µ̂θ is increasing in θ.

D.2.4 Proof of Proposition C.3

We only consider Nash equilibrium, as ANE at (P, β, γ) corresponds to Nash equilibrium at
(P, 0, β + γ). Let µ := EF [θ] and, for each x ∈ (0, 1), define

h(x) :=
∑
t≥0

γt(TC)tF−1(x) +
βµ

(1− γ)(1− β − γ)
,

which is a well-defined function in L1 as |γ| < 1. Following the same argument as in the proof
of Lemma 1, the strategy profile defined by sNE(θ) = h(F−1(θ)) for each θ is the unique Nash
equilibrium and satisfies (5).

To show the “moreover” part, note that

h =
∑
t≥0

γ2tT 2t
C (F−1 + γTCF

−1) +
βµ

(1− γ)(1− β − γ)
.

Since γ > −1, the additional assumption on P implies that F−1 +γTCF
−1 is strictly increasing.

Therefore, h, and hence sNE, is strictly increasing.

D.2.5 Proof of Proposition C.4

We first show that, analogously to the relationship between %MA and %m (Lemma B.1), the
strongly more-assortative order %SMA is the “dual order” of the dispersiveness order %d:

Lemma D.1. Fix any C1, C2 ∈ C. Then C1 %SMA C2 if and only if TC1f %d TC2f for all
f ∈ I.

Proof. For the “only if” part, suppose that C1 %SMA C2. First consider any bounded f ∈ I.
Then there exists an integrable function f ′ : (0, 1)→ R that is nonnegative almost everywhere
such that f(x) = f(0) +

´ x
0
f ′(y)dy for all x ∈ (0, 1). Thus, for any x ≥ x′, integration by parts

yields

TC1f(x)− TC1f(x′) =

ˆ 1

0

f(y)(c1(y|x)− c1(y|x′))dy

= −
ˆ 1

0

f ′(y)(C1(y|x)− C1(y|x′))dy + [f(y)(C1(y|x)− C1(y|x′))]10

= −
ˆ 1

0

f ′(y)(C1(y|x)− C1(y|x′))dy ≥ −
ˆ 1

0

f ′(y)(C2(y|x)− C2(y|x′))dy

= −
ˆ 1

0

f ′(y)(C2(y|x)− C2(y|x′))dy + [f(y)(C2(y|x)− C2(y|x′))]10

=

ˆ 1

0

f(y)(c2(y|x)− c2(y|x′))dy = TC2f(x)− TC2f(x′),
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where the inequality holds because f ′(y) ≥ 0 for almost all y. Hence, TC1f %d TC2f .
Next take an arbitrary f ∈ I. Define the sequence of bounded functions (fn) as in (20),

so that fn → f . By the previous observation, we have TC1fn %d TC2fn for each n. Since
TC1fn → TC1f and TC2fn → TC2f by continuity of TC1 and TC2 , continuity of %d then yields
TC1f %d TC2f .

For the “if” part, we prove the contrapositive. Suppose that C1 is not strongly more assor-
tative than C2. That is, there exist y and x > x′ such that

C2(y|x)− C2(y|x′) < C1(y|x)− C1(y|x′) ≤ 0.

Since C1 and C2 admit densities, the above inequality holds throughout some interval (y1, y2) 3
y. Define f ∈ I by f(z) =

´ z
0
f ′(y′)dy′ for all z, where f ′ is an integrable function given by

f ′(y′) = 1 for y′ ∈ (y1, y2) and f ′(y′) = 0 for all y′ 6∈ (y1, y2). Using the same integration by
parts argument as above, we obtain

TC1f(x)− TC1f(x′) = −
ˆ
f ′(y)(C1(y|x)− C1(y|x′))dy

< −
ˆ
f ′(y)(C2(y|x)− C2(y|x′))dy = TC2f(x)− TC2f(x′).

Thus, TC1f %d TC2f fails.

Proof of Proposition C.4. Note that Nash and ANE strategies are monotone by the as-
sumption on Pi (Proposition C.3). We prove each part only for Nash, as the ANE at (P, β, γ)
is the Nash at (P, 0, β + γ). For each f, g ∈ I, write f %dil g iff f %m g + α for some constant
function α. This order inherits linearity, isotonicity, and continuity from %m. Note that for
F,G ∈ F , F is a dilation of G iff F−1 %dil G

−1; moreover, the %dil order is implied by the %d

order.
Second part: Let β := β1 = β2, γ := γ1 = γ2, C := C1 = C2. The proof of Proposition 3
carries over to the case γ ≥ 0, so we focus on the case γ < 0. Since β only shifts the action
mean without affecting the dilation order, we also assume β = 0 without loss.

For each i = 1, 2, define an operator Γi : I → I by Γif = F−1
i + γTCF

−1
i + γ2T 2

Cf for each
f ∈ I. Note that Γi(·) is increasing, as (1 + γTC)F−1

i is increasing by the assumption on Pi.
We make two preliminary observations:

1. For i = 1, 2, Γif %dil Γig whenever f %dil g.
This follows from isotonicity of %dil.

2. Γ1f %dil Γ2f for each f ∈ I.
To see this, note that F−1

1 %d F
−1
2 implies F−1

1 − F−1
2 ∈ I. Thus,

F−1
1 − F−1

2 %m TC(F−1
1 − F−1

2 ) %dil −γTC(F−1
1 − F−1

2 ),

where the first comparison uses Lemma A.4 and the second uses −1 < γ ≤ 0. Therefore,
F−1

1 + γTCF
−1
1 %dil F

−1
2 + γTCF

−1
2 , and thus Γ1f %dil Γ2f for each f ∈ I.

Now, fix any f ∈ I. Let
gi :=

∑
t≥0

γtT tCFi = lim
t→∞

Γti(f).
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This is the inverse cdf of GNE
i , as sNEi is increasing. By induction, we show that Γt1f %dil Γt2f for

all t. The base case t = 1 holds by the second observation above. Moreover, if Γt−1
1 f %dil Γt−1

2 f ,
then

Γt1f %dil Γ2Γt−1
1 f %dil Γt2f

holds by observations 1-2. Given this, g1 %dil g2 follows by continuity of %dil.
First part: Let F := F1 = F2, β := β1 = β2, γ := γ1 = γ2. The proof of Proposition 2 carries
over to the case γ ≤ 0, so we focus on the case γ < 0. Since β only shifts the action mean without
affecting the dilation order, we also assume β = 0 without loss. Let gi :=

∑
t≥0 γ

tT tCiF
−1; this

is the inverse cdf of GNE
i since sNEi is monotone.

For each i = 1, 2 and any f ∈ L1, the linearity of the operators T tCi implies

(1− γiTCi)
∑
t≥0

γtiT
t
Ci
f =

∑
t≥0

(γtiT
t
Ci

)(1− γiTCi)f = f, (21)

where 1 denotes the identity operator. Observe that

g2 =
∑
t≥0

γtT tC2
F−1 =

∑
t≥0

γtT tC2
(1− γTC1)g1,

where the second equality uses (21) with i = 1 and f = F−1. Likewise,

g1 =
∑
t≥0

γtT tC2
(1− γTC2)g1,

by the second equality in (21) with i = 2 and f = g1. This shows that g1 and g2 correspond to the
inverse cdfs of the Nash action distributions in two modified environments that share a common
interaction structure C2 and complementarity parameters (0, γ) and have type distributions F̃1

and F̃2 with inverse cdfs F̃−1
1 := (1 − γTC2)g1 and F̃−1

2 := (1 − γTC1)g1, respectively. Since
g1 ∈ I, γ < 0, and C1 %SMA C2, Lemma D.1 implies F̃−1

2 %d F̃
−1
1 .

Given this, the arguments in part 2 above imply that g2 %dil g1, provided we can show
that (1 + γTC2)F̃

−1
i is increasing for i = 1, 2 (which ensures that the corresponding operators

Γi(·) in the two modified societies are increasing). For i = 2, note that (1 + γTC2)F̃
−1
2 :=

(1 + γTC2)(1 − γTC1)g1 = (1 + γTC2)F
−1 by (21), which is increasing by the assumption on

P2 and since γ > −1. For i = 1, note that (i) (1 − γ2T 2
C1

)g1 = (1 + γTC1)F
−1 is increasing

(by the assumption on P1 and since γ > −1), and (ii) γ2T 2
C1
g1 %d γ

2T 2
C2
g1 since C1 %SMA C2

(Lemma D.1). Combining (i) and (ii) yields that (1+ γTC2)F̃
−1
1 := (1− γ2T 2

C2
)g1 is increasing,

as required.
Third part: Let F := F1 = F2, C := C1 = C2. The proof of Proposition 4 carries over to the
case γi ≥ 0 for i = 1, 2. Thus, by the transitivity of the dilation order, we can focus on the case
γi ≤ 0 for i = 1, 2. Since β only shifts the action mean without affecting the dilation order, we
also assume β1 = β2 = 0 without loss. Let gi :=

∑
t≥0 γ

t
iT

t
CF
−1; this is the inverse cdf of GNE

i

since sNEi is monotone. Observe that

g1 =
∑
t≥0

γt1T
t
CF
−1 =

∑
t≥0

γt1T
t
C(1− γ2TC)g2,
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where the second equality uses (21) with i = 1 and f = F−1. Likewise,

g2 =
∑
t≥0

γt1T
t
C(1− γ1TC)g2,

by the second equality in (21) with i = 1 and f = g2. This shows that g1 and g2 can be seen
as inverse cdfs of Nash action distributions in two modified environments that share a common
interaction structure C and complementarity parameters (0, γ1) and have type distributions F̃1

and F̃2 with inverse cdfs F̃−1
1 := (1 − γ2TC)g2 and F̃−1

2 := (1 − γ1TC)g2, respectively. Since
0 ≥ γ1 ≥ γ2, we have F̃−1

1 %d F̃
−1
2 .

Given this, the arguments in part 2 above imply that g1 %dil g2, provided we can show
that (1 + γ1TC)F̃−1

i is increasing for i = 1, 2 (which ensures that the corresponding operators
Γi(·) in the two modified societies are increasing). For i = 1, note that (1 + γ1TC)F̃−1

2 :=
(1 + γ1TC)(1 − γ2TC)g2 = (1 + γ1TC)F−1, which is increasing by the assumption on Pi and
γ1 > −1. For i = 2, note that (i) (1−γ2

2T
2
C)g2 = (1+γ2TC)F−1 is increasing (by the assumption

on Pi and since γ2 > −1), and (ii) γ2
2T

2
Cg2 %d γ

2
1T

2
Cg2 as 0 ≥ γ1 ≥ γ2. Combining (i) and (ii)

yields that (1 + γ1TC)F̃−1
1 := (1− γ2

1T
2
C)g2 is increasing, as required.

D.2.6 Proof of Proposition C.5

Fix any ANE sAN =: s and θ. For each θ′, set ŝθ(θ′) := BRθ′(L
s,P
θ , Ls,Pθ ) and F̂θ(θ

′) :=

Ls,Pθ (ŝθ(θ
′)), and let P̂θ := F̂θ × F̂θ. To verify observational consistency, note that Lŝθ,P̂θθ (a) =

F̂θ(ŝ
−1
θ (a)) = Ls,Pθ (a) for each a, where the first equality uses P̂θ = F̂θ×F̂θ and the inverse ŝ−1

θ is
well-defined and increasing by the surjectivity and monotonicity assumption on best-responses.
To verify the perceived best-response condition, note that, for each θ′,

ŝθ(θ
′) = BRθ′(L

s,P
θ , Ls,Pθ ) = BRθ′(L

ŝθ,P̂θ
θ , Lŝθ,P̂θθ ) = BRθ′(G

ŝθ,P̂θ , Lŝθ,P̂θθ′ ),

where the second equality uses observational consistency and the third uses non-assortativity
of P̂θ. Thus, (P̂θ, ŝθ) is a coherent assortativity neglect perception for type θ.

To show uniqueness, consider any coherent assortativity neglect perception (P̂θ = F̂θ ×
F̂θ, ŝθ) for θ. Then, for each θ′, the perceived best-response condition, non-assortativity of
P̂θ, and observational consistency imply ŝθ(θ′) = BRθ′(G

ŝθ,P̂θ , Lŝθ,P̂θθ′ ) = BRθ′(L
ŝθ,P̂θ
θ , Lŝθ,P̂θθ ) =

BRθ′(L
s,P
θ , Ls,Pθ ). Moreover, P̂θ = F̂θ × F̂θ and observational consistency imply F̂θ(ŝ−1

θ (a)) =

Lŝθ,P̂θθ (a) = Ls,Pθ (a) for each a, which yields F̂θ(θ′) = Ls,Pθ (ŝθ(θ
′)) for each θ′. Thus, (P̂θ, ŝθ)

coincides with the perceptions in the first paragraph.

D.2.7 Proof of Proposition C.6

Consider any monotone ANE sAN and any Nash equilibrium sNE. For any types θ > θ′, the
fact that ψ and φ are monotone yields

sAN(θ)−sAN(θ′) = φ(θ)−φ(θ′)+ψ(Ls
AN ,P
θ )−ψ(Ls

AN ,P
θ′ ) ≥ φ(θ)−φ(θ′) = sNE(θ)−sNE(θ′) > 0,

where the first inequality holds because Ls
AN ,P
θ FOSD-dominates Ls

AN ,P
θ′ (by monotonicity of

sAN and assortativity of P ). Thus, GsAN ,P is more dispersive than GsNE ,P .
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