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Abstract

We consider estimation and inference on average treatment effects under uncon-

foundedness conditional on the realizations of the treatment variable and covariates.

Given nonparametric smoothness and/or shape restrictions on the conditional mean

of the outcome variable, we derive estimators and confidence intervals (CIs) that are

optimal in finite samples when the regression errors are normal with known variance.

In contrast to conventional CIs, our CIs use a larger critical value that explicitly takes

into account the potential bias of the estimator. When the error distribution is un-

known, feasible versions of our CIs are valid asymptotically, even when
√
n-inference is

not possible due to lack of overlap, or low smoothness of the conditional mean. We also

derive the minimum smoothness conditions on the conditional mean that are necessary

for
√
n-inference. When the conditional mean is restricted to be Lipschitz with a large

enough bound on the Lipschitz constant, the optimal estimator reduces to a matching

estimator with the number of matches set to one. We illustrate our methods in an

application to the National Supported Work Demonstration.
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1 Introduction

To estimate the average treatment effect (ATE) of a binary treatment in observational stud-

ies, it is typically assumed that the treatment is unconfounded given a set of pretreatment

covariates. This assumption implies that systematic differences in outcomes between treated

and control units with the same values of the covariates are attributable to the treatment.

When the covariates are continuously distributed, it is not possible to perfectly match the

treated and control units based on their covariate values, and estimation of the ATE requires

nonparametric regularization methods such as kernel, series or sieve estimators, or matching

estimators that allow for imperfect matches.

The standard approach to comparing estimators and constructing confidence intervals

(CIs) in this setting is based on the theory of semiparametric efficiency bounds. If, in addition

to unconfoundedness, one also assumes overlap of the covariate distributions of treated and

untreated subpopulations, as well as enough smoothness of either the propensity score or the

conditional mean of the outcome given the treatment and covariates, many regularization

methods lead to estimators that are
√
n-consistent, asymptotically unbiased and normally

distributed, with variance that achieves the semiparametric efficiency bound (see, among

others, Hahn, 1998; Heckman et al., 1998; Hirano et al., 2003; Chen et al., 2008). One can

then construct CIs based on any such estimator by adding and subtracting its standard

deviation times the conventional 1.96 critical value (for nominal 95% CIs).

However, in many applications, the overlap is limited, which can have drastic effects on

finite-sample performance (Busso et al., 2014; Rothe, 2017) and leads to an infinite semi-

parametric efficiency bound (Khan and Tamer, 2010).1 Furthermore, even under perfect

overlap, the standard approach requires a large amount of smoothness: one typically as-

sumes continuous differentiability of the order p/2 at minimum (e.g. Chen et al., 2008), and

often of the order p + 1 or higher (e.g. Hahn, 1998; Heckman et al., 1998; Hirano et al.,

2003), where p is the dimension of the covariates. Unless p is very small, such assumptions

are hard to evaluate, and may be much stronger than the researcher is willing to impose.

Finally, as argued in, for instance, Robins and Ritov (1997), the standard approach may not

provide a good description of finite-sample behavior of estimators and CIs: in finite samples,

regularization leads to bias, and different estimators have different finite-sample biases even

1To prevent these issues, one can redefine the object of interest as a treatment effect for a subset of the
population for which overlap holds. While this restores the possibility of conventional

√
n-asymptotics, it

changes the estimand to one that is typically less relevant to the policy question at hand. For examples
of this approach, see Heckman et al. (1997), Galiani et al. (2005), Bailey and Goodman-Bacon (2015) or
Crump et al. (2009).
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if they are asymptotically equivalent. The bias may in turn lead to undercoverage of the CIs

due to incorrect centering.

In this paper, we instead treat the smoothness and/or shape restrictions on the condi-

tional mean of the outcome given the treatment and covariates as given and determined by

the researcher. We make no overlap assumptions: we do not require that the semiparametric

efficiency bound be finite, or even that the average treatment effect be point identified. We

view the treatment and covariates as fixed, which allows us to explicitly calculate and account

for the potential finite-sample biases of estimators. In this setting, we derive estimators and

CIs that are optimal or near-optimal (depending on the criterion) in finite samples when the

regression errors are assumed to be normal with known variance. We show that when this

assumption is dropped, feasible versions of these CIs are valid asymptotically, uniformly in

the underlying distribution (i.e. they are honest in the sense of Li, 1989). Importantly, our

results cover both the regular case (in which
√
n-inference is possible) and the irregular case

(in which
√
n-inference may not be possible, due to lack of perfect overlap, or due to low

regularity of the regression function relative to the dimension of covariates).2 In the latter

case, conventional CIs, which assume
√
n-convergence and do not account for bias, will have

coverage converging to zero asymptotically.

We show that optimal estimators are linear in the outcomes yi: they take the form∑n
i=1 kiyi, where {ki}ni=1 are weights that depend on the covariates and treatments. The

optimal weights ki solve a finite-sample bias-variance tradeoff problem, and we give a general

characterization of them as the solution to a convex programming problem. Furthermore,

optimal CIs are based on the same class of estimators. Importantly, however, in order to

account for the possible bias of the estimator, the CI uses a larger critical value than the

conventional 1.96 critical value. This critical value depends on the worst-case bias of the

estimator, which for the optimally chosen estimator has a simple form.3 We show that the

same approach can be used to form CIs based on any estimator that is linear in the outcomes,

such as kernel, series, or matching estimators. The resulting CI can then be compared to the

conventional CI as a form of sensitivity analysis: if the bias-adjusted critical value is much

larger than the conventional 1.96 critical value, this indicates that the finite-sample bias of

2Khan and Tamer (2010) use the term “irregular identification” to refer to settings in which
√
n-inference

is impossible due to the semiparametric efficiency bound being infinite. Here, we use the term “irregular”
to refer to any setting in which

√
n-inference is impossible.

3The worst-case bias, in turn, depends on the a priori smoothness restrictions on the conditional mean
imposed by the researcher, including any smoothness constants. Our efficiency results in Section 2.5 imply
that a priori specification of the smoothness constants is unavoidable, and we therefore recommend reporting
CIs for a range of smoothness constants as a form of sensitivity analysis.
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the estimator may not be negligible.

To make further progress on characterizing the weights, we focus on the case where the

regression function is assumed to satisfy a Lipschitz constraint. We develop an algorithm

that traces out the optimal weights as a function of the Lipschitz constant, analogous to the

least angle regression algorithm for computing the LASSO solution path (Efron et al., 2004).

In our empirical application, the algorithm computes the optimal estimators and CIs in a

few minutes or less on a laptop computer. It follows from the form of this algorithm that

the optimal estimator can be interpreted as a matching or kernel estimator with the number

of matches varying between individuals and optimizing a bias-variance tradeoff. For a given

sample size, when the Lipschitz constant is large enough, it becomes optimal to use a single

match for each individual, and the optimal estimator reduces to a matching estimator with

a single match.

The reason for asymptotic validity of our CIs is simple: because they are based on a

linear estimator and account for its finite-sample bias, the CIs will be asymptotically valid—

even in irregular and possibly set-identified cases—so long as the estimator is asymptotically

normal, which in turn holds if the weights ki satisfy a Lindeberg condition for the central limit

theorem. However, since the weights ki solve a bias-variance tradeoff, no single observation

can have too much weight—otherwise, in large samples, a large decrease in variance could

be achieved at a small cost to bias. On the other hand, asymptotic normality may fail

under limited overlap for other estimators, and we show by example that this is the case for

matching estimators.4

To formally show that conventional
√
n-asymptotics cannot be used when the dimension

of the covariates is large relative to the smoothness of the regression function, we show

that for
√
n-inference to be possible, one needs to bound the derivative of the conditional

mean of order at least p/2. If one only bounds derivatives of lower order, the bias will

asymptotically dominate the variance—in contrast to some nonparametric settings such as

estimation of a conditional mean at a point, it is not possible to “undersmooth”, and valid

CIs need to take the bias into account. The smoothness condition is essentially the same

as when one does not condition on treatment and covariates (Robins et al., 2009), and

when no smoothness is imposed on the propensity score. Intuitively, by conditioning on

the treatment and covariates, we take away any role that the propensity score may play in

increasing precision of inference. We then consider the asymptotic efficiency of competing

4These results have implications for the whether finite-sample corrections to the critical value under
limited overlap, such as those proposed by Rothe (2017), are needed for asymptotic coverage in our setting.
See Section 4.3.
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estimators and CIs in this irregular setting, and we show that matching with a single match

is asymptotically optimal under Lipschitz smoothness, so long as there is sufficient overlap

between treated and untreated observations. On the other hand, we show that matching

estimators may fail to be asymptotically efficient under insufficient overlap.

We illustrate the results in an application to the National Supported Work (NSW)

Demonstration. We find that finite-sample optimal CIs are substantially different from

those based on conventional
√
n-asymptotic theory, with bias determining a substantial

portion of the CI width. Furthermore, our finite-sample approach allows us to investigate

several questions that are moot under
√
n-asymptotic theory, due to the asymptotic equiva-

lence of different estimators that achieve the semiparametric efficiency bound. For example,

we examine how optimal estimators under the mean squared error (MSE) criterion differ

from estimators used for optimal CIs, and we find that, in our application, the optimal CI

oversmooths slightly relative to the MSE optimal estimator. We also examine alternative es-

timators and find that, under Lipschitz smoothness, matching estimators perform relatively

well.

An important practical advantage of our finite-sample approach is that it deals automat-

ically with issues that normally arise with translating asymptotic results into practice. One

need not worry about whether the model is point identified, irregularly identified (due to

partial overlap as in Khan and Tamer 2010, or due to smoothness conditions being too weak

to achieve
√
n-convergence, as in Robins et al. 2009) or set identified (due to complete lack

of overlap). If the overlap in the data combined with the smoothness conditions imposed by

the researcher lead to non-negligible bias, this will be incorporated into the CI. If the model

is set identified due to lack of overlap, this bias term will prevent the CI from shrinking to

a point, and the CI will converge to the identified set. Nor does one have to worry about

whether covariates should be logically treated as having a continuous or discrete distribution.

If it is optimal to do so, our estimator will regularize when covariates are discrete, and the

CI will automatically incorporate the resulting finite sample bias. Thus, we avoid decisions

about whether, for example, to allow for imperfect matches with a discrete covariate when

an “asymptotic promise” says that, when the sample size is large enough, we will not.

Our results rely on the key insight that, once one conditions on treatment assignments

and pretreatment variables, the ATE is a linear functional of a regression function. This

puts the problem in the general framework of Donoho (1994) and Cai and Low (2004) and

allows us to apply sharp efficiency bounds in Armstrong and Kolesár (2018a). The form of

the optimal estimator CIs follows by applying the general framework. The rest of our finite-
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sample results, as well as all asymptotic results, are novel and require substantial further

analysis. In particular, solving for the optimal weights ki in general requires solving an

optimization problem over the space of functions in p variables. Whereas simple strategies,

such as gridding, are infeasible unless the dimension of covariates p is very small, we show

that, for Lipschitz smoothness, the problem can be reduced to convex optimization in a

finite number of variables and constraints, which depend only on the sample size and not

on p.5 Furthermore, our solution path algorithm uses insights from Rosset and Zhu (2007)

on computation of penalized regression estimators to further speed up computation. In

independent and contemporaneous work, Kallus (2017) computes optimal linear weights

using a different characterization of the optimization problem.

In contrast, if one does not condition on treatment assignments and pretreatment vari-

ables, the ATE is a nonlinear functional of two regression functions (the propensity score,

and the conditional mean of the outcome variable given pretreatment variables). This makes

the problem much more difficult: while upper and lower bounds have been developed that

bound the optimal rate (Robins et al., 2009), computing efficiency bounds that are sharp

in finite samples (or even bounds on the asymptotic constant in non-regular cases) remains

elusive. Limited overlap brings an additional layer of difficulty, and tail conditions on the dis-

tribution of the outcome variable (or the outcome variable divided by the propensity score)

play a role in rates of convergence (see Khan and Tamer, 2010; Chaudhuri and Hill, 2016;

Sasaki and Ura, 2017; Ma and Wang, 2018). Whether one should condition on treatment

assignments and pretreatment covariates when evaluating estimators and CIs is itself an

interesting question (see Abadie et al., 2014a,b, for a recent discussion in related settings).

An argument in favor of conditioning is that it takes into account the realized imbalance, or

overlap, of covariates across treatment groups. For example, even if the treatment is assigned

randomly and independently of an individual’s level of education, it may happen that the

realized treatments are such that the treated individuals are highly educated relative to those

randomized out of treatment. Conditioning takes into account this ex-post imbalance when

evaluating estimators and CIs. On the other hand, by conditioning on realized treatment

assignments, one loses the ability to use knowledge of the propensity score or its smoothness

to gain efficiency. We do not intend to make a blanket argument for or against the practice

of conditioning on realized treatment. Rather, our view is that this choice depends on the

particular empirical context, and that it is worth studying optimal estimation and inference

5While restricting attention to small p (say ≤ 2) in would be severely limiting in our setting, it is not
restrictive in some other problems, such as regression discontinuity. For computation of optimal weights in
other settings with small p, see Heckman (1988) and Imbens and Wager (2017).
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in both settings, and instructive to compare the procedures. We provide such a comparison

in the context of our empirical application in Section 6.4. Note also that, since our CIs are

valid unconditionally, they can be used in either setting.6

The remainder of this paper is organized as follows. Section 2 presents the model and

gives the main finite-sample results. Section 3 considers practical implementation issues.

Section 4 presents asymptotic results. Section 5 discusses some possible extensions of our

results. Section 6 discusses an application to the NSW data. Additional results, proofs

and details of results given in the main text are given in appendices and the supplemental

materials.

2 Setup and finite-sample results

This section sets up the model, and shows how to construct finite-sample optimal estimators

and well as finite-sample valid and optimal CIs under general smoothness restrictions on the

conditional mean of the outcome. We then specialize the results to the case with Lipschitz

smoothness. Proofs and additional details are given in Appendix A.

2.1 Setup

We have a random sample of size n. Let di ∈ {0, 1} denote the treatment indicator, and

let yi(0) and yi(1) denote the potential outcomes under no treatment and under treatment,

respectively, for each unit i in the sample, i = 1 . . . , n. For each unit i, we observe its

treatment status di, yi = yi(1)di + yi(0)(1 − di), as well as a vector of pretreatment vari-

ables xi ∈ Rp. We condition on the realized values of the treatment status and covariates,

{xi, di}ni=1, throughout the paper: all probability statements are taken to be with respect

to the conditional distribution of {yi(0), yi(1)}ni=1 conditional on {xi, di}ni=1 unless stated

otherwise. This leads to a fixed design regression model

yi = f(xi, di) + ui, ui are independent with E(ui) = 0. (1)

6While we define the treatment effect of interest to be one that conditions on realized covariates in the
sample, our approach can be extended to construct valid CIs for the population ATE; see Section 5.1
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Under the assumption of unconfoundedness, the conditional average treatment effect (CATE)

is given by

Lf =
1

n

n∑
i=1

[f(xi, 1)− f(xi, 0)].

In order to obtain finite-sample results, we make the further assumption that ui is normal

ui ∼ N(0, σ2(xi, di)), (2)

with the (conditional on xi and di) variance σ2(xi, di) treated as known.7

We assume that f lies in a known function class F , which we assume throughout the

paper to be convex. We also assume that F is centrosymmetric in the sense that f ∈ F
implies −f ∈ F . The function class F formalizes the “regularity” or “smoothness” that we

are willing to impose. While the convexity assumption is essential for most of our results,

the centrosymmetry assumption can be relaxed—see Appendix A. As a leading example, we

consider classes that place Lipschitz constraints on f(·, 0) and f(·, 1):

FLip(C) = {f : |f(x, d)− f(x̃, d)| ≤ C‖x− x̃‖X , d ∈ {0, 1}},

where ‖·‖X is a norm on x, and C denotes the Lipschitz constant, which for simplicity we

take to be the same for both f(·, 1) and f(·, 0).

Our goal is to construct estimators and confidence sets for the CATE parameter Lf . We

call a set C a 100 · (1− α)% confidence set for Lf if it satisfies

inf
f∈F

Pf (Lf ∈ C) ≥ 1− α, (3)

where Pf denotes probability computed under f .

7Formally, suppose that {(X ′i, Di, yi(0), yi(1))}ni=1 are i.i.d. and that the unconfoundedness assumption
yi(1), yi(0) ⊥⊥ Di | Xi holds. Then

1
n

∑n
i=1E

[
yi(1)− yi(0)

∣∣ D1, . . . , Dn, X1, . . . , Xn

]
= 1

n

∑n
i=1(f(Xi, 1)− f(Xi, 0)),

where f(x, 1) = E(yi(1) | Xi = x) = E(yi(1) | Di = 1, Xi = x) = E(yi | Di = 1, Xi = x) and similarly for
f(x, 0). Furthermore, {yi}ni=1 follows (1) conditional on {(X ′i, Di) = (x′i, di)}ni=1. The assumption that ui is
(conditionally) normal then follows from the assumption that each of yi(0) and yi(1) are normal (but not
necessarily joint normal) conditional on {(X ′i, Di)}ni=1.
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2.2 Linear estimators

Consider an estimator that is linear in the outcomes yi,

L̂k =
n∑
i=1

k(xi, di)yi. (4)

This covers many estimators that are popular in practice, such as series of kernel estimators,

or various matching estimators. For example, the matching estimator with M matches that

matches (with replacement) on covariates constructs estimates f̂(xi, di) = yi, and f̂(xi, 1 −
di) = ŷi,M , where ŷi,M is the average outcome of the M observations closest to i (using the

norm ‖·‖X ), with the CATE estimate given by Lf̂ . The form of k(·) for this estimator is

given by

kmatch,M(xi, di) =
1

n
(2di − 1)

(
1 +

KM(i)

M

)
, (5)

where KM(i) is the number of times the ith observation is matched. We begin by restricting

attention to estimators that take the form (4), and to CIs based on such estimators. We

then show, in Section 2.5 and Appendix A, that, provided the weights k(·) are optimally

chosen, these estimators and CIs are optimal or near optimal (depending on the criterion

and type of CI being constructed) among all procedures, including nonlinear ones.

Since L̂k is linear in {yi}ni=1, it is normally distributed with maximum bias

biasF(L̂k) = sup
f∈F

Ef (L̂k − Lf) = sup
f∈F

[
n∑
i=1

k(xi, di)f(xi, di)− Lf

]
. (6)

and variance sd(L̂k)
2 =

∑n
i=1 k(xi, di)

2σ2(xi, di). By centrosymmetry of F , inff∈F Ef (L̂k −
Lf) = − biasF(L̂k), and if the minimum bias obtains at f ∗, then the maximum bias (6)

obtains at −f ∗.
To form a one-sided confidence interval (CI) based on L̂k, we must take into account its

potential bias by subtracting biasF(L̂k) in addition to subtracting the usual normal quantile

times its standard deviation—otherwise the CI will undercover for some f ∈ F . A 100 · (1−
α)% one-sided CI is therefore given by [ĉ,∞), where

ĉ = L̂k − biasF(L̂k)− sd(L̂k)z1−α,

and z1−α denotes the 1− α quantile of a standard normal distribution.

One could form a two-sided CI centered around L̂k by adding and subtracting biasF(L̂k)+
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z1−α/2 sd(L̂k). However, this is conservative since the bias cannot be equal to biasF(L̂k) and to

− biasF(L̂k) at once. Instead, observe that under any f ∈ F , the z-statistic (L̂k−Lf)/ sd(L̂k)

is distributed N(t, 1) where t = Ef (L̂k−Lf)/ sd(L̂k), and that t is bounded in absolute value

by |t| ≤ b, where b = biasF(L̂k)/ sd(L̂k) denotes the ratio of the worst-case bias to standard

deviation. Thus, if we denote the 1−α quantile of the absolute value of a N(b, 1) distribution

by cvα(b), a two-sided CI can be formed as{
L̂k ± cvα(biasF(L̂k)/ sd(L̂k)) · sd(L̂k)

}
. (7)

Note that cvα(0) = z1−α/2, so that if L̂k is unbiased, the critical value reduces to the usual

critical value based on standard normal quantiles. For positive values of the worst-case bias-

standard deviation ratio, it will be larger: for b ≥ 1.5 and α ≤ 0.2, cvα(b) ≈ b + z1−α up

to three decimal places.8 For large values of b, the CI is therefore approximately given by

adding and subtracting biasF(L̂k) + z1−α sd(L̂k) from L̂k.

Following Donoho (1994), we refer to the CI (7) as a fixed-length confidence interval

(FLCI), since it takes the form L̂k±χ where χ is fixed in the sense that does not depend on

the outcomes yi—it only depends on the known variance function σ2(·, ·) and the realized

treatment and covariate values {xi, di}ni=1 (in practice, the length of the feasible version of

this CI will depend on the data through an estimate of the standard deviation).

2.3 Optimal estimators and CIs

To compare different linear estimators, we consider their maximum root mean squared error

(RMSE), given by

RRMSE,F(L̂k) =
(

supf∈F Ef (L̂k − Lf)2
)1/2

=
(

biasF(L̂k)
2 + sd(L̂k)

2
)1/2

.

The linear estimator that achieves the lowest RMSE is thus minimax optimal in the class

of linear estimators (4). It turns out (see Theorem A.2 in Appendix A.1) that the linear

minimax estimator is also highly efficient among all estimators: its efficiency is at least√
80% = 89.4%, (in the sense that one cannot reduce the RMSE by more than 10.6%

by considering non-linear estimators) and, in particular applications, its efficiency can be

shown to be even higher. There is thus little loss of efficiency in restricting attention to

8The critical value cv1−α(b) be computed in statistical software as the square root of the 1− α quantile
of a non-central χ2 distribution with 1 degree of freedom and non-centrality parameter b2
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linear estimators.

One-sided CIs can be compared using the maximum β-quantile of excess length, for

a given β (see Appendix A). In Theorem A.1 in Appendix A.1, we show that under this

optimality criterion, when the weights k are optimally chosen, a one-sided CI based on L̂k

is minimax among all one-sided CIs, so that, for the purposes of constructing one-sided CIs,

there is no efficiency loss in focusing on linear estimators.

Fixed-length CIs are easy to compare—given two FLCIs that satisfy (3), one simply

prefers the shorter one. To construct the shortest possible FLCI (in the class of FLCIs based

on linear estimators), one therefore needs to choose the weight function k that minimizes

the CI length

2 cvα(biasF(L̂k)/ sd(L̂k)) · sd(L̂k).

Since the length of the CI is fixed—it doesn’t depend on the data {yi}ni=1, choosing a weight-

ing function to minimize the length does not affect the coverage properties of the resulting

CI. We discuss the efficiency of the shortest FLCI among all CIs in Section 2.5.

While in general, the optimal weight function for minimizing the length of FLCI will be

different from the one that minimizes RMSE, both performance criteria depend on the weight

function k only through biasF(L̂k), and sd(L̂k), and they are increasing in both quantities

(this is also true for one-sided CIs under the maximum β-quantile of excess length criterion;

see Appendix A). Therefore, to find the optimal weights, it suffices to first find weights that

minimize the worst-case bias biasF(L̂k) subject to a bound on variance. We can then vary

the bound to find the optimal bias-variance tradeoff for a given performance criterion (FLCI

or RMSE). It follows from Donoho (1994) and Low (1995) that this bias-variance frontier

can be traced out by solving a certain convex optimization problem indexed by δ, where δ

indexes the relative weight on variance, and then vary δ.

For a simple statement of the Donoho-Low result, assume that the parameter space F ,

in addition to being convex and centrosymmetric, does not restrict the value of CATE in the

sense that the function ια(x, d) = αd lies in F for all α ∈ R (see Appendix A for a general

statement)9. Intuitively since Lια = α, the set of functions {ια}α∈R is the smoothest set of

functions that span the potential values of the CATE parameter Lf , so that this assumption

will typically hold unless F places constraints on the possible values of the CATE parameter.

9We also assume the regularity condition that if λf + ια ∈ F for all 0 ≤ λ < 1, then f + ια ∈ F .
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For a given δ > 0, let f ∗δ solve

max
f∈F

2Lf s.t.
n∑
i=1

f(xi, di)
2

σ2(xi, di)
≤ δ2

4
, (8)

and, with a slight abuse of notation, define

L̂δ = L̂k∗δ , k∗δ (xi, di) =
f ∗δ (xi, di)/σ

2(xi, di)∑n
j=1 djf

∗
δ (xj, dj)/σ2(xj, dj)

. (9)

Then the maximum bias of L̂δ occurs at −f ∗δ , and the minimum bias occurs at f ∗δ , so that

biasF(L̂δ) =
1

n

n∑
i=1

[f ∗δ (xi, 1)− f ∗δ (xi, 0)]−
n∑
i=1

k∗δ (xi, di)f
∗
δ (xi, di),

and L̂δ minimizes the worst-case bias among all linear estimators with variance bounded by

sd(L̂δ)
2 =

δ2

(2
∑n

j=1 djf
∗
δ (xj, dj)/σ2(xj, dj))2

.

Thus, the class of estimators {L̂δ}δ>0 traces out the optimal bias-variance frontier. The

variance sd(L̂δ)
2 can be shown to be decreasing in δ, so that δ can be thought of as indexing

the relative weight on variance.

The weights leading to the shortest possible FLCI are thus given by k∗δχ , where δχ min-

imizes cvα(biasF(L̂δ)/ sd(L̂δ)) · sd(L̂δ) over δ. Similarly, the optimal weights for estimation

are given by k∗δρ , where δρ minimizes biasF(L̂δ)
2 + sd(L̂δ)

2.

2.4 Estimators and CIs under Lipschitz smoothness

Computing a fixed-length CI based on a linear estimator L̂k requires computing the worst-

case bias (6). Computing the RMSE-optimal estimator, and the optimal FLCI requires

solving the optimization problem (8), and then varying δ to find the optimal bias-variance

tradeoff. Both of these optimization problems require optimizing over the set F , which,

in nonparametric settings, is infinite-dimensional. We now focus on the Lipschitz class

F = FLip(C), and show that in this case, the solution to the first optimization problem

can be found by solving a finite-dimensional linear program. The optimization problem (8)

can be cast as a finite-dimensional convex program. Furthermore, if the program is put
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into a Lagrangian form, then the solution is piecewise linear a function of the Lagrange

multiplier, and one can trace the entire solution path {L̂δ}δ>0 using an algorithm similar to

the LASSO/LAR algorithm of Efron et al. (2004).

First, observe that in both optimization problems (6) and (8), the objective and con-

straints depend on f only through its value at the points {(xi, 0), (xi, 1)}ni=1; the value of

f at other points does not matter. Furthermore, it follows from Beliakov (2006, Theo-

rem 4) that if the Lipschitz constraints hold at these points, then it is always possible

to find a function f ∈ FLip(C) that interpolates these points (see Lemma A.1). Conse-

quently, in solving the optimization problems (6) and (8), we identify f with the vector

(f(x1, 0), . . . , f(xn, 0), f(x1, 1), . . . , f(xn, 1))′ ∈ R2n, and replace the functional constraint

f ∈ F = FLip(C) with 2n(n− 1) linear inequality constraints

f(xi, d)− f(xj, d) ≤ C‖xi − xj‖X d ∈ {0, 1}, i, j ∈ {1, . . . , n}. (10)

This leads to the following result:

Theorem 2.1. Consider a linear estimator L̂k =
∑n

i=1 k(xi, di)yi, where k satisfies

n∑
i=1

dik(xi, di) = 1 and
n∑
i=1

(1− di)k(xi, di) = −1. (11)

The worst-case bias of this estimator, biasFLip(C)(L̂k), is given by the value of

max
f∈R2n

{
n∑
i=1

k(xi, di)f(xi, di)−
1

n

n∑
i=1

[f(xi, 1)− f(xi, 0)]

}
, (12)

where the maximum is taken subject to (10) and

n∑
i=1

f(xi, 1) =
n∑
i=1

f(xi, 0) = 0. (13)

Furthermore, if k(xi, di) ≥ 1/n if di = 1 and k(xi, di) ≤ −1/n if di = 0, it suffices to impose

the following subset of the constraints in (10):

f(xi, 1) ≤ f(xj, 1) + C‖xi − xj‖X , all i, j with di = 1, dj = 0 and k(xi, 1) > 1/n, (14)

f(xi, 0) ≤ f(xj, 0) + C‖xi − xj‖X , all i, j with di = 1, dj = 0 and k(xj, 1) < −1/n. (15)
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The assumption that L̂k satisfies (11) is necessary to prevent the bias from becoming

arbitrarily large at multiples of f(x, d) = d and f(x, d) = 1 − d. If (11) holds, then the

set of possible biases over f ∈ FLip(C) is the same as the set of possible biases over the

restricted set of functions with the additional constraint (13), since any function in the class

can be obtained by adding a function in the span of {(x, d) 7→ d, (x, d) 7→ (1 − d)} to such

a function without affecting the bias. In particular, Theorem 2.1 implies that the formulas

for one-sided CIs and two-sided FLCIs given in Section 2.2 hold with biasFLip(C)(L̂k) given

by (12).

The last part of the theorem follows by checking that the remaining constraints in (10)

are automatically satisfied at the optimum (see Lemma A.2). The conditions (14) and (15)

give at most 2n0n1 inequalities, where nd is the number of observations with di = d. The

condition on the weights k holds, for example, for the matching estimator given in (5). Since

for the matching estimator k(xi, di) = (2di − 1)/n if observation i is not used as a match,

the theorem says that one only needs to impose the constraint (10) for pairs of observations

with opposite treatment status, and for which one of the observations is used as a match.

Consequently, in settings with imperfect overlap, in which many observations are not used

as a match, the number of constraints will be much lower than 2n0n1.

For RMSE-optimal estimators and optimal FLCIs, we have the following result:

Theorem 2.2. Given δ > 0, the value of the maximizer f ∗δ of (8) at {xi, di}ni=1 is given by

the solution to the convex program

max
f∈R2n

2Lf s.t.
n∑
i=1

f(xi, di)
2

σ2(xi, di)
≤ δ2

4
and s.t. (10). (16)

Furthermore, if σ2(x, d) doesn’t depend on x, it suffices to impose the constraints (10) for

i, j ∈ {1, . . . , n} with di = 0 and dj = 1, and the solution path {f ∗δ }δ>0 can be computed by

the piecewise linear algorithm given in Appendix A.3.

Theorem 2.2 shows that the optimization problem (8) that involves optimization over an

infinite-dimensional function space can be replaced by an optimization problem in R2n with

2n(n− 1) linear constraints, one quadratic constraint and a linear objective function. If the

variance is homoscedastic for each treatment group, then the number of linear constraints

can be reduced to 2n0n1, and the entire solution path can be computed efficiently using the

piecewise linear algorithm given in Appendix A.3.

As we discuss in more detail in Appendix A.3, it follows from the algorithm that the opti-

mal estimator can be interpreted as matching (or kernel) estimator with a variable number of
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matches, where the number of matches for each observation i increases with δ, and depends

on the number of observations with opposite treatment status that are close to i according

to a matrix of “effective distances”. The “effective distance” between i and j increases in

the number of times an observation j has been used as a match. Thus, observations for

which there exist more good matches receive relatively more matches, since this decreases

the variance of the estimator at a little cost in terms of bias. Also, since the weight k(xj, dj)

on j is increasing in the number of times it has been used as a match, using it more often

as a match increases the variance of the estimator. Using the “effective distance” matrix

trades off this increase in the variance against an increase in the bias that results from using

a lower-quality match instead.

If the constant C is large enough, the increase in the bias from using more than a single

match for each i is greater than any reduction in the variance of the estimator, and the

optimal estimator takes the form of a matching estimator with a single match:

Theorem 2.3. Suppose that σ(xi, di) > 0 for each i, and suppose that each unit has a

single closest match, so that argminj : dj 6=di‖xi − xj‖X is a singleton for each i. There exists

a constant K depending on σ2(xi, di) and {xi, di}ni=1 such that, if C/δ > K, the optimal

estimator L̂δ is given by the matching estimator with M = 1.

In contemporaneous work, Kallus (2017) gives a similar result using a different method

of proof. In the other direction, as C/δ → 0, the optimal estimator L̂δ converges to the

difference-in-means estimator that takes the difference between the average outcome for the

treated and the average outcome for the untreated units.

For the optimality result in Theorem 2.3, it is important that the metric on x used to

define the matching estimator is the same as the one used to define the Lipschitz constraint.

Zhao (2004) has argued that conditions on the regression function should be considered when

defining the metric used for matching. Theorem 2.3 establishes a formal connection between

conditions on the regression function and the optimal metric for matching. We investigate

this issue further in the context of our empirical application by calculating the efficiency loss

from matching with the “wrong” metric (see Section 6.5).

2.5 Bounds to adaptation

The results in Section 2.3 and Theorem 2.2 show how to construct the shortest FLCI based

on a linear estimator. One may, however, worry that only considering fixed-length CIs based

on linear estimators is too restrictive: the length of a fixed-length CI is determined by the
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least-favorable function in F (that maximizes the potential bias), which may result in CIs

that are “too long” when f turns out to be smooth. Consequently, one may prefer a variable-

length CI that optimizes its expected length over a class of smoother functions G ⊂ F (while

maintaining coverage over the whole parameter space), especially if this leads to substantial

reduction in expected length when f ∈ G. When such a CI also simultaneously optimizes its

length over all of F , it is referred to as “adaptive”. A related concern is that implementing

our CIs in practice requires the user to explicitly specify the parameter space F , which

typically involves specification of smoothness constants such as the Lipschitz constant C

if F = FLip(C). This rules out data-driven procedures that try to implicitly or explicitly

estimate C from the data.

To address these concerns, in Theorem A.3 in Appendix A, we give a sharp bound on the

problem of constructing a confidence set that optimizes its expected length at a smooth func-

tion of the form g(x, d) = α0 + α1d, while maintaining coverage over the original parameter

space F . The sharp bound follows from general results in Armstrong and Kolesár (2018a),

and it gives a benchmark for the scope for improvement over the FLCI in Theorem 2.2.

Theorem A.3 also gives a universal lower bound for this sharp bound.

In particular, Theorem A.3 shows that the efficiency of the FLCI depends on the realized

values of {xi, di}ni=1 and the form of the variance function σ2(·, ·), and that the efficiency

can be lower-bounded by 71.7% when 1 − α = 0.95. In a particular application, one can

explicitly compute the sharp efficiency bound; typically it is much higher than the lower

bound. For example, in our empirical application in Section 6, we find that the efficiency

of the FLCI is over 97% at such smooth functions g, both in our baseline specification, and

for the experimental sample considered in Section 6.4. This implies that there is very little

scope for improvement over the FLCI: not only must the rate of convergence be the same

even if one optimizes length g, the constant is also very tight.

Consequently, data-driven or adaptive methods for constructing CIs must either fail to

meaningfully improve over the FLCI, or else undercover for some f ∈ F . It is thus not

possible to, say, estimate the Lipschitz constant C for the purposes of forming a tighter CI—

it must be specified ex ante by the researcher. Because of this, by way of sensitivity analysis,

we recommend reporting estimates and CIs for a range of choices of the Lipschitz constant

C when implementing the FLCI in practice to see how assumptions about the parameter

space affect the results. We adopt this approach in the empirical application in Section 6.

This also mirrors the common practice of reporting results for different specifications of the

regression function in parametric regression problems.
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The key assumption underlying these efficiency bounds is that the parameter space F be

convex and centrosymmetric. This holds for the function class FLip(C), and, more generally,

for parameter spaces that place bounds on derivatives of f . If additional restrictions such as

monotonicity are used that break either convexity or centrosymmetry, then some degree of

adaptation may be possible. While we leave the full exploration of this question for future

research, we note that the approach in Section 2.3 can still be used when the centrosymmetry

assumption is dropped. As an example, we show how optimal fixed-length CIs can be

computed when F imposes Lipschitz and monotonicity constraints in Appendix A.

3 Practical implementation

The estimators and CIs we have constructed require prior knowledge of the variance function

σ2(x, d). Furthermore, the theoretical justification for these CIs relies on normality of the

error distribution. This section discusses the implementation of our CIs in the more realistic

setting where σ2(x, d) is unknown. We also discuss other implementation issues. In Section 4,

we provide an asymptotic justification for our CIs if σ2(x, d) is unknown and the errors may

be non-normal.

To implement feasible versions of our CIs when σ2(x, d) is unknown, we propose the

following:10

1. Let σ̃2(x, d) be an initial (possibly incorrect) estimate or guess for σ2(x, d). As a default

choice, we recommend taking σ̃2(x, d) = σ̂2 where σ̂2 is an estimate of the variance

computed under the assumption of homoskedasticity.

2. Compute the optimal weights {k̃∗δ}δ>0 based on the piecewise linear solution path

{f̃ ∗δ }δ>0 in Appendix A.3, computed with σ̃2(x, d) in place of σ2(x, d). Let L̃δ =∑n
i=1 k̃

∗
δ (xi, di)yi denote the corresponding estimator, s̃d

2

δ =
∑n

i=1 k̃
∗
δ (xi, di)

2σ̃2(xi, di)

denote its variance computed using σ̃2(x, d) as the variance function, and let biasδ =

biasFLip(C)(L̃δ) denote its worst-case bias (which doesn’t depend on the variance spec-

ification).

3. Compute the minimizer δ̃ρ of bias
2

δ +s̃d
2

δ and the minimizer δ̃χ of cvα(biasδ /s̃dδ)s̃dδ.

10An R package implementing this procedure, including an implementation of the piecewise linear algo-
rithm is available at https://github.com/kolesarm/ATEHonest.
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Compute the standard error se(L̃δ̃χ) using the robust variance estimator

se(L̃δ)
2 =

n∑
i=1

k̃∗δ (xi, di)
2û2

i , (17)

where û2
i is an estimate of σ2(xi, di). Report the estimate L̃δ̃ρ , and the CI

{
L̃δ̃χ ± cvα(biasδ̃χ /se(L̃δ̃χ))se(L̃δ̃χ)

}
. (18)

The values δ̃χ and δ̃ρ depend on the initial variance estimate σ̃2(x, d), and the resulting

estimator and CI will not generally be optimal if this initial estimate is incorrect. However,

because the standard error estimator (17) does not use this initial estimate, the resulting CI

will be asymptotically valid even if σ̃2(x, d) is incorrect. As an estimator of the conditional

variance in (17), we can take û2
i = (yi − f̂(xi, di))

2, where f̂(x, d) is a consistent estimator

of f(x, d), or the nearest-neighbor variance estimator of Abadie and Imbens (2006) ûi =

J/(J + 1) · (yi − f̂(xi, di))
2, where f̂(xi, di) average outcome of J observations (excluding

i) with treatment status di that are closest to i according to some distance ‖·‖. Taking

the initial estimate σ̃2(x, d) to be constant as a default choice mirrors the practice in the

linear regression model of computing ordinary least squares estimates with heteroskedasticity

robust standard errors (see Section 3.3 for further discussion and Section 6 for the particular

implementation in our application).

3.1 Additional practical considerations

In forming our CI, we need to choose the function class F . While we have focused on Lipschitz

classes, we still need to complete the definition of F by choosing the constant C and the

norm on x used to define the Lipschitz condition. The results discussed in Section 2.5 imply

that it is not possible to make these choices automatically in a data-driven way. Thus, we

recommend that these choices be made using problem-specific knowledge wherever possible,

and that CIs be reported for a range of plausible values of C as a form of sensitivity analysis.

We consider these problems in more detail in the context of our application in Sections 6.1

and 6.5.

Another issue that arises in reporting the CIs and estimators in this paper is that differ-

ent criteria lead to different estimators, so that the RMSE optimal estimator will, in general,

differ from the estimator used to form the one- and two-sided CIs. In our empirical appli-
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cation, we find that this does not matter much: in all the specifications we consider, the

RMSE optimal estimator does not differ very much from the estimators used to construct

CIs. However, reporting multiple estimates for different criteria can be cumbersome. To

avoid recomputing estimates for different criteria, one can simply compute the CI (18) using

the choice δ̃ρ optimized for RMSE. The resulting CIs will then be based on the same esti-

mator reported as a point estimate. While there is some efficiency loss in doing this, in our

main specification in the empirical application in Section 6, we find that the resulting CI is

less than 2% longer than the one that reoptimizes δ for CI length.

3.2 CIs based on other estimators

To form a feasible CI based on a linear estimator L̂k =
∑n

i=1 k(xi, di)yi, one can simply

follow the same steps, using the weights k(xi, di) in Equation (17), and computing the worst-

case bias by solving the optimization problem in Theorem 2.1. If L̂k is an estimator that

achieves the semiparametric efficiency bound under standard asymptotics, one can compare

the resulting FLCI to the conventional CI that uses critical values based on normal quantiles

and ignores the potential bias as a form of sensitivity analysis: if the CIs are substantively

different, this indicates that conventional asymptotics may not work well for the sample at

hand unless one further restricts the parameter space for f .

If one applies this method to form a feasible CI based on matching estimators, one can

determine the number of matches M that leads to the shortest CI (or smallest RMSE) as in

Steps 2 and 3 of the procedure, with M playing the role of δ. In our application, we compare

the length of the resulting CIs to those of the optimal FLCIs. Although Theorem 2.3 implies

the matching estimator with a single match is suboptimal unless C is large enough, we find

that, in our application, the efficiency loss is modest.

3.3 Efficiency of feasible estimators and CIs

We motivated our estimators and CIs using efficiency and coverage results under the as-

sumption of normal errors and known variance. In what sense can the feasible versions of

these procedures in this section be considered efficient and valid? In Section 4.2, we consider

the asymptotic validity of the feasible versions of our CIs, when the errors may be non-

normal. We find that these CIs are asymptotically valid even in “irregular” settings when
√
n-inference is impossible, and in cases in which the ATE is not point identified (in which

case our CI has asymptotically valid coverage for points in the identified set).
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Regarding finite sample optimality, note that all the arguments in Section 2 regarding

bias-variance tradeoffs for linear estimators still go through so long as the variance function

is correctly specified, even if the errors are not normal. Thus, if one constructs a feasible

estimator using a choice of the variance function σ̃2(x, d) specified a priori and this guess

turns out to be correct, the resulting estimator will be optimal among linear estimators

even with non-normal errors. If one uses a guess σ̃2(x, d) that is correct up to scale (for

example, if one guesses correctly that errors are homoskedastic, but one uses the wrong

variance), the resulting estimate may put too much weight on bias or variance relative to the

given criterion, but it will still minimize variance among all estimators with the same worst-

case bias. Note also that the minimax optimality results among all estimators (including

nonlinear ones) discussed in Section 2 are valid if one fixes the variance function, even if

errors can be non-normal, so long as the set of possible error distributions includes normal

errors (since the minimax risk of linear estimators depends on the error distribution only

through its variance).

These results mirror the linear model, in which the ordinary least squares estimator is

optimal in finite samples under homoskedasticity if one assumes normal errors, or if one

restricts attention to linear estimators. One can then form CIs based on this estimator using

heteroskedasticity robust standard errors, which leads to CIs that are asymptotically valid for

heteroskedastic and non-normal errors. Similarly, our feasible procedure leads to estimators

that have finite-sample optimality properties under homoskedasticity (if one uses a constant

function σ̃2(x, d) in step 1), along with CIs that are valid under more general conditions.

Alternatively, one could use a more flexible estimate σ̃2(x, d), mirroring the suggestion of

Wooldridge (2010) and Romano and Wolf (2017) to report feasible generalized least squares

estimates in the linear model, along with heteroskedasticity robust standard errors.

4 Asymptotic results

This section considers the asymptotic validity of feasible CIs with unknown error distribu-

tion, as well as bounds on the rate of convergence of estimators and CIs. In Section 4.1, we

show formally that
√
n-inference is impossible in our setting when the number of continu-

ous covariates in xi is large enough relative to the order of smoothness imposed by F . In

Section 4.2, we show that our feasible CIs are asymptotically valid and centered at asymp-

totically normal estimators. Importantly, the conditions for this asymptotic validity result

allow for irregular cases where conventional CIs suffer from asymptotic undercoverage, due
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to imperfect overlap or high-dimensional covariates. Sections 4.3 and 4.4 give conditions for

asymptotic validity and optimality of CIs based on matching estimators.

4.1 Impossibility of
√
n-inference under low smoothness

Suppose that {(X ′i, Di, yi(0), yi(1))}ni=1 are drawn i.i.d., so that the Gaussian regression

model given by (1) and (2) obtains conditional on the realizations {(X ′i, Di) = (x′i, di)}ni=1,

if yi(0) and yi(1) are normal (but not necessarily joint normal) conditional on {(X ′i, Di)}ni=1.

Let e(x) = P (Di = 1 | Xi = x) denote the propensity score. If F imposes sufficient

smoothness, then it is possible to construct
√
n-consistent estimators with asymptotically

negligible bias. Furthermore, Hahn (1998) shows that no regular
√
n-consistent estimator

can have asymptotic variance lower than the linear estimator with the kernel kseb(xi, di) =

n−1[di/e(xi)−(1−di)/(1−e(xi))]. The asymptotic variance of this linear estimator is known

as the semiparametric efficiency bound.11

The semiparametric efficiency bound gives only a lower bound for the asymptotic vari-

ance: it cannot be achieved unless F imposes sufficient smoothness relative to the dimension

of xi. Let Σ(γ, C) denote the set of `-times differentiable functions f such that, for all

integers k1, k2, . . . , kp with
∑p

j=1 kj = `,

∣∣∣∣ d`

dx
k1
1 ···dx

kp
p

f(x)− d`

dx
k1
1 ···dx

kp
p

f(x′)

∣∣∣∣ ≤ C‖x − x′‖γ−`X ,

where ` is the greatest integer strictly less than γ and ‖·‖X denotes the Euclidean norm on

Rp. Note that f ∈ FLip(C) is equivalent to f(·, 1), f(·, 0) ∈ Σ(1, C). Robins et al. (2009)

consider minimax rates of testing and estimation when (Xi, Di) are not conditioned on, and

f(·, 0), f(·, 1) ∈ Σ(γf , C) and e ∈ Σ(γe, C). Their results imply that if one requires uncon-

ditional coverage of Lf (rather than conditional coverage conditional on the realizations of

covariates and treatment),
√
n-inference is impossible unless γe + γf ≥ p/2 where p is the

dimension of the (continuously distributed) covariates.

Since conditioning on the realizations {xi, di}ni=1 essentially takes away the role of smooth-

ness of e(·), this suggests that conditional
√
n-inference should be impossible unless γf ≥ p/2

(i.e. the conditions for impossibility of
√
n-inference in our setting with fixed xi and di should

correspond to the conditions derived by Robins et al. 2009 in the case where no smoothness

is imposed on e(·)). This intuition turns out to be essentially correct:

Theorem 4.1. Let f(·, 0), f(·, 1) ∈ Σ(γ, C), and let {Xi, Di} be i.i.d. with Xi ∈ Rp and

Di ∈ {0, 1}. Suppose that the Gaussian regression model (1) and (2) holds conditional on

11The results of Hahn (1998) apply to estimation of the ATE, rather than the CATE. Crump et al. (2009)
give a formulation for the CATE, although they do not give a formal statement.
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the realizations of the treatment and covariates. Suppose that the marginal probability that

Di = 1 is not equal to zero or one and that Xi has a bounded density conditional on Di. Let

[ĉn,∞) be a sequence of CIs with asymptotic coverage at least 1−α for the CATE conditional

on {Xi, Di}ni=1:

lim inf
n→∞

inf
f(·,0),f(·,1)∈Σ(C,γ)

Pf

(
1

n

n∑
i=1

[f(Xi, 1)− f(Xi, 0)] ∈ [ĉn,∞)

∣∣∣∣ {Xi, Di}ni=1

)
≥ 1− α

almost surely. Then, under the zero function f(x, d) = 0, ĉn cannot converge to the CATE

(which is 0 in this case) more quickly than n−γ/p: there exists η > 0 such that

lim inf
n

P0

(
ĉn ≤ −ηn−γ/p|{Xi, Di}ni=1

)
≥ 1− α

almost surely.

The theorem shows that the excess length of a CI with conditional coverage in the class

with f(·, 0), f(·, 1) ∈ Σ(γ, C) must be of order at least n−γ/p, even at the “smooth” function

f(x, d) = 0. The Lipschitz case we consider throughout most of this paper corresponds to

γ = 1, so that
√
n-inference is possible only when p ≤ 2.

On the other hand, when γ/p > 1/2, Chen et al. (2008) show that the semiparametric

efficiency bound can be achieved (for example, using series estimators) without smoothness

assumptions on the propensity score (while Chen et al. 2008 do not condition on treatments

and pretreatment variables, their arguments appear to extend to the conditional case).

4.2 Asymptotic validity of feasible optimal CIs

The following theorem gives sufficient conditions for the asymptotic validity of the feasible

CIs given in Section 3 based on the estimator L̃δ for the case where F is the Lipschitz

class FLip(C). To allow for the possibility that the researcher may want to choose a more

conservative parameter space when the sample size is large, we allow for the possibility that

C = Cn →∞ as the sample size n increases.

Theorem 4.2. Consider the model (1) with 1/K ≤ Eu2
i ≤ K and E|ui|2+1/K ≤ K for some

constant K. Suppose that

for all η > 0, min
1≤i≤n

#{j ∈ {1, . . . , n} : ‖xj − xi‖X ≤ η/Cn, di = dj} → ∞, (19)
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and that the variance function σ2(x, d) is uniformly continuous in x for d ∈ {0, 1}. Let C be

the CI in Equation (18) based on the feasible optimal estimator L̃δ with F = FLip(Cn), with

δ fixed and σ̃2(x, d) a nonrandom function bounded away from zero and infinity. Suppose

the estimator û2
i in (17) is the nearest-neighbor variance estimator based on a fixed number

of nearest neighbors J , or that û2
i = (yi − f̂(xi, di))

2, where f̂(xi, di) the Nadaraya-Watson

estimator with uniform kernel and a bandwidth sequence hn with hnCn converging to zero

slowly enough. Then lim infn→∞ inff∈FLip(Cn) Pf (Lf ∈ C) ≥ 1− α.

The conditions of Theorem 4.2 are fairly weak. In particular, if Cn = C does not change

with n, it suffices for xi do be drawn from a distribution with bounded support:

Lemma 4.1. Suppose that (xi, di) is drawn i.i.d. from a distribution where xi has bounded

support and 0 < P (di = 1) < 1, and that Cn = C is fixed. Then (19) holds almost surely.

In particular, feasible optimal CIs are asymptotically valid in irregular settings, including

high dimensional xi (as in Theorem 4.1) or imperfect overlap (as in Khan and Tamer, 2010)

including set identification due to complete lack of overlap. The “irregular” nature of the

setting only shows up in the critical value cvα, which will remain strictly larger than the

conventional z1−α/2 critical value even asymptotically, reflecting the fact that the worst-case

bias is asymptotically non-negligible.

4.3 Asymptotic validity of CIs based on matching estimators

We now consider asymptotic validity of feasible CIs based on matching estimators with a

fixed number of matches.

Theorem 4.3. Suppose that the conditions of Theorem 4.2 hold. Let X be a set with xi ∈ X
all i. Let G : R+ → R+ and G : R+ → R+ be functions with limt→0G(G−1(t))2/[t/ log t−1] =

0. Suppose that, for any sequence an with nG(an)/ log n→∞, we have

G(an) ≤ #{i : ‖xi − x‖X ≤ an, di = d}
n

≤ G(an) all x ∈ X , d ∈ {0, 1} (20)

for large enough n. Let C be the CIs in Section 3.2 based on the matching estimator with a

fixed number of matches M , and F = FLip(Cn). Then lim infn→∞ inff∈FLip(Cn) Pf (Lf ∈ C) ≥
1− α.

Theorem 4.3 is related to results of Abadie and Imbens (2006) on asymptotic properties

of matching estimators with a fixed number of matches. Abadie and Imbens (2006) note

23



that, when p is large enough, the bias term will dominate, so that conventional CIs based

on matching estimators will not be valid. In contrast, the CIs in Theorem 4.3 are widened

to take into account worst-case bias, and so they achieve coverage even when p is large.

Alternatively, one can attempt to restore asymptotic coverage by subtracting an estimate

of the bias based on higher-order smoothness assumptions. While this can lead to asymp-

totic validity when additional smoothness is available (Abadie and Imbens, 2011), it follows

from Theorem 4.1 that such an approach will lead to asymptotic undercoverage under some

sequence of regression functions in the Lipschitz class FLip.

Theorem 4.3 requires the additional condition (20). By Theorem 37 of Chapter 2 of

Pollard (1984), this condition will hold almost surely if (xi, di) are drawn i.i.d. from a distri-

bution where G(a) and G(a) are lower and upper bounds (up to constants) for P (‖xi−x‖X ≤
a, di = d) for x on the support of xi. The condition limt→0G(G−1(t))2/[t/ log t−1] = 0 can

then be interpreted as an overlap condition on the distribution of (xi, di). In particular, if

xi has a density bounded away from zero and infinity on a sufficiently regular support, then

a sufficient condition is for the propensity score e(x) to be bounded away from zero and one

on the support of xi.

On the other hand, if there is not sufficient overlap, then (20) will fail, and this can

lead to failure of asymptotic normality for the matching estimator. As an extreme example,

suppose that p = 1 and that xi < xj for all observations where di = 0 and dj = 1. Then each

observation with di = 0 will be matched to the observation with the smallest value of xj

among observations with dj = 1. Thus, the weight kmatch,M(xj, dj) for the observation with

the smallest value of xj among observations with dj = 1 will be bounded away from zero, so

that the matching estimator will not be asymptotically normal. In contrast, it follows from

Lemma 4.1 that the feasible estimator with optimal weights will be asymptotically normal

even when there is no overlap between the distribution of xi for treated and untreated

observations.

Rothe (2017) argues that, in settings with limited overlap, estimators of the CATE may

put a large amount of weight on a small number of observations. As a result, standard

approaches to inference that rely on normal asymptotic approximations to the distribution

of the t-statistic will be inaccurate in finite samples. Our results shed some light on when such

concerns are relevant. The above example shows that such concerns may indeed persist—

even in large samples—if one uses a matching estimator with a fixed number of matches.

However, it follows from Theorem 4.2 that this will generally not be the case for optimal

estimators and CIs, even in the case with limited overlap, at least in large samples if the
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Lipschitz constant C is fixed or doesn’t increase too quickly with n. In a given application,

one can check this directly by examining the weights ki. Furthermore, it follows from the

proof of Theorem 4.3 that when p > 2, bias will dominate variance asymptotically even

if one attempts to “undersmooth” by using a matching estimator with a single match. In

such settings, it is important to widen the CIs to take the bias into account, in addition

to accounting for the potential inaccuracy of the normal asymptotic approximation, using

methods such as those proposed in Rothe (2017).12

4.4 Asymptotic efficiency of matching estimator with one match

We have seen that the matching estimator with M = 1 is efficient in the Lipschitz class when

the constant C is large enough. Here, we give conditions for asymptotic optimality of this

estimator.

Theorem 4.4. Let {(Xi, Di)
n
i=1} be drawn such that the conditions of Theorem 4.1 hold, and

such that the Gaussian regression model (1) and (2) holds conditional on {(Xi, Di)
n
i=1}, with

σ2(x, d) bounded away from zero and infinity. Suppose that, for some functions G : R+ → R+

and G : R+ → R+ with limt→0G(G−1(t))2/[t/ log t−1]2/p+1 = 0,

G(a) ≤ P (‖Xi − x‖X ≤ a, Di = d) ≤ G(a).

Let R∗n,match,MSE denote the worst-case MSE of the matching estimator with M = 1, and let

R∗n,opt,MSE denote the minimax MSE among linear estimators, conditional on {(Xi, Di)}ni=1,

for the class FLip(C). Then R∗n,match,MSE/R
∗
n,opt,MSE → 1 almost surely. The same holds with

“MSE” replaced by “FLCI length” or “β quantile of excess length of a one-sided CI.”

IfXi has sufficiently regular support and the conditional density ofXi givenDi is bounded

away from zero on the support of Xi for both Di = 0 and Di = 1, then the conditions of

Theorem 4.4 will hold with G(a) and G(a) both given by constants times ap, so that G(G(a))

decreases like a as a → 0. Thus, the conditions of Theorem 4.4 will hold so long as p > 2,

which corresponds to the case in Theorem 4.1 in which
√
n-inference is impossible, even

with a finite semiparametric efficiency bound. On the other hand, matching with M = 1

is suboptimal when p = 1, since the semiparametric efficiency bound can be achieved and,

as noted by Abadie and Imbens (2006), matching with a fixed number of matches does not

12The CIs proposed by Rothe (2017) require perfect matches, which requires discretizing the covariates if
they are continuous. This will increase the worst-case bias relative to matching on the original covariates
with a single match, and so the same comment applies to the estimator based on discretized covariates.
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achieve the semiparametric efficiency bound. In addition, the conditions of Theorem 4.4 will

fail if there is insufficient overlap in the support of Xi when Di = 1 and when Di = 0, and

this may lead to asymptotic inefficiency.

5 Extensions

This section discusses some possible extensions of our framework.

5.1 Population average treatment effects

Our setup obtains if we condition on observations (xi, di) = (Xi, Di) where (Xi, Di) are

drawn independently from some large population, and we focus on the CATE for this sample.

However, we may be interested in the average treatment effect for entire population. The

population average treatment effect (PATE) is given by E[yi(1) − yi(0)] = E[E[yi(1) −
yi(0)|{(Xi, Di)}ni=1]] = E[Lf ] where Lf = CATE(f) is the CATE. This suggests that one

can use the same estimates for the PATE as for the CATE, with the caveat that one must

take into account the additional variation of the CATE around the PATE when computing

CIs and evaluating the performance of these estimates.

Our approach gives an estimate L̂ of the CATE and upper bounds biasF(L̂) on the bias of

this estimate conditional on {(Xi, Di)}ni=1, as well as a standard error se(L̂) for the conditional

standard deviation of L̂ given {(Xi, Di)}ni=1. To form a one-sided CI [ĉPATE,∞) for the PATE,

we need to subtract an upper bound on the bias of L̂ that holds unconditionally, as well as

an estimate of the unconditional standard deviation of L̂. Since E biasF(L̂) is an upper

bound on the unconditional bias, one can subtract biasF(L̂) as before, and simply modify

the CI by subtracting z1−α times an estimate of the unconditional standard deviation of L̂:

ĉPATE = L̂ − biasF(L̂) − z1−αsePATE(L̂) where sePATE(L̂)2 = se(L̂)2 + V̂2 is an estimate of

the unconditional variance of L̂, formed using an estimate V̂2 of the variance of the CATE.

Estimates V̂2 of the variance of the CATE have been proposed by Abadie and Imbens (2006),

who take this approach to forming standard errors for matching estimators. For two-sided

CIs, one can take a similar approach, although, without further analysis of the behavior of

the bias, one must take the slightly more conservative approach of adding and subtracting

biasF(L̂) + z1−α/2sePATE(L̂) rather than using the critical value cvα(bias /se), since bias is

now a random variable that depends on {(Xi, Di)}ni=1. We conjecture that this approach

will lead to valid CIs for the PATE, and that these CIs will be close to efficient when no
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additional information is given on the propensity score, and we leave the question of formally

verifying it for future research.

5.2 Treatment effects on subsamples and alternative populations

We have focused on the CATE, which averages the treatment effect τ(x) = f(x, 1)− f(x, 0)

conditional on xi = x over the sample. In our application, we focus on the conditional

average treatment effect on the treated (CATT). Both of these take the form of a weighted

average treatment effect
∑n

i=1wi[f(xi, 1)−f(xi, 0)] for some known weights wi, and we state

our results in Appendix A in this general framework. More generally, a mild extension of our

framework covers estimation of the average treatment effect LF =
∫

[f(x, 1)− f(x, 0)] dF (x)

weighted by any known distribution F . In particular, if we are interested in the effect of a

counterfactual policy in which we apply the treatment to a new population where xi ∼ F ,

then this gives the policy relevant effect for treating this counterfactual population.

A key advantage of our approach is that we can allow the counterfactual distribution F to

have completely different support from the distribution of xi observed in the sample. In such

settings, our approach uses the observed data to optimally extrapolate the treatment effect

to the support of F . The counterfactual effect will then be set identified, and our approach

gives confidence intervals that contain points in the identified set for the counterfactual

policy effect LF .

When a policy-relevant F requires such extrapolation, the resulting confidence interval

may be wide. Of course, this reflects the inherent uncertainty in the problem of extrapolating

a conditional expectation function outside of the support of the conditioning variable. One

can tighten the set by making further restrictions on the regression function f(x, d), and our

framework will still apply so long as these restrictions are convex. Alternatively, one can

settle for a less policy-relevant F that has greater overlap with the support of the observed

data, thereby leading to a tighter CI. In particular, one can consider average treatment

effects over a subset S contained in the support of xi conditional both on di = 0 and d0 = 1,

as discussed, for example, in Heckman et al. (1997) and Crump et al. (2009). One can also

extend our framework to find the weighting distribution F that minimizes estimation error

or CI width for LF , thereby solving the finite-sample version of a problem considered in

Crump et al. (2006); if we optimize over a convex set, then this leads to another convex

optimization problem.
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5.3 Generalizations of the regression model

We can generalize our setup to allow the treatment di and covariates xi to take values in

arbitrary sets, so long as we model the conditional mean of yi(d) given xi = x as a function

f(x, d) that we restrict to some convex set. In particular, we can allow for multivalued or even

continuously distributed treatments di, and consider treatment effects of moving between any

two values d and d′, or the average counterfactual policy outcome
∫ ∫

f(x, d) dF (x, d) under

some joint distribution F (x, d) of treatments and covariates, following Stock (1989). As

discussed above, a particular advantage of our approach in this setting is that it allows for

and automatically incorporates extrapolation of the treatment effect outside of the observed

support of (xi, di).

In such settings, particularly when di is continuously distributed, one will want to restrict

the variation of f(x, d) as a function of both x and d. In addition to smoothness assumptions,

one can impose separability and linearity in certain variables, as in the partly linear model

f(x, d) = d′β+ g(x). These restrictions also amount to restricting the regression function to

a convex set, and therefore fall into the framework used here.

We can also allow for non-Euclidean covariates xi. For example, xi may describe the

entire the social network of an individual i, as in Auerbach (2018). Indeed, the Lipschitz

assumption we use in our main analysis can be generalized directly to any metric space, and

the dimension of the optimization problem used to compute the optimal estimator scales with

the number of observations, rather than the dimension of xi. Thus, there is no additional

computational burden of applying our method under a Lipschitz assumption when xi is high

dimensional.

5.4 Experimental design

So far, we have taken the treatment assignments di as given, which is appropriate for ob-

servational data in which the researcher cannot choose treatment assignments. In the ex-

perimental design setting, a researcher observes covariates xi and can choose the treatment

assignments di in order to optimize the performance of estimators and CIs. If one evaluates

performance after conditioning on the realized values of di, as suggested by Kasy (2016),

this can be done by computing the minimax MSE or CI width under a given assignment

{xi, di}ni=1 using a guess for the variance function σ2(x, d), and optimizing over treatment

assignments d1, . . . , dn. While the first step can be done quickly using our methods, the

second step involves a non-convex optimization problem over a discrete choice set with 2n
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elements, and so solving this problem exactly will typically not be computationally feasi-

ble. Nonetheless, one can still use our methods to optimize over a smaller set of candidate

treatment assignments.

The resulting optimal treatment assignments d1, . . . , dn will be a deterministic function

of the covariates x1, . . . , xn. If one instead evaluates performance without conditioning on

the realized values of di, then the optimal treatment rule will typically involve randomized

treatment assignment (see Blackwell and Girshick, 1954, Section 8.7). The resulting CIs

will be tighter, at the cost of covering only unconditionally. While we do not take a stance

on whether conditional or unconditional coverage is appropriate (see Banerjee et al., 2017,

footnote 11 for a recent discussion), we note that our methods can be used to quantify the

cost in terms of CI length of requiring conditional coverage; we take up this question in our

application in Section 6.4.

6 Empirical Application

We now consider an application to the National Supported Work (NSW) demonstration. The

dataset that we use is the same as the one analyzed by Dehejia and Wahba (1999) and Abadie

and Imbens (2011).13 The sample with di = 1 corresponds to the experimental sample of 185

men who received job training in a randomized evaluation of the NSW program. The sample

with di = 0 is a non-experimental sample of 2490 men taken from the PSID. We are interested

in the conditional average treatment effect on the treated (assuming unconfoundedness):

CATT(f) =

∑n
i=1 [f(xi, 1)− f(xi, 0)] di∑n

i=1 di
.

The analysis in Section 2 goes through essentially unchanged, with Lf corresponding to

CATT(f) rather than the CATE (see Appendix A).

In this data, yi denotes earnings in 1978 (after the training program) in thousands of

dollars. The variable xi contains the following variables (in the same order): age, education,

indicators for Black and Hispanic, indicator for marriage, earnings in 1974, earnings in 1975

(before the training program), and employment indicators for 1974 and 1975.14

13Taken from Rajeev Dehejia’s website, http://users.nber.org/~rdehejia/nswdata2.html.
14Following Abadie and Imbens (2011), the no-degree indicator variable is dropped, and the employment

indicators are defined as an indicator for nonzero earnings (Abadie and Imbens, 2011, do not give details of
how they constructed the employment variables, but these definitions match their summary statistics).
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6.1 Choice of norm for Lipschitz class

The choice of the norm on Rp used in the definition of the Lipschitz class FLip(C) and in

determining matches is important both for minimax estimators and for matching estimators.

For a positive definite symmetric p× p matrix A, define the norm

‖x‖A,p =

(
n∑
i=1

∣∣(A1/2x
)
i

∣∣p)1/p

, (21)

where
(
A1/2x

)
i

denotes the ith element of Ax. Ideally, the parameter space FLip(C) should

reflect the a priori restrictions the researcher is willing to place on the conditional mean of the

outcome variable under treatment and control. If we take A to be a diagonal matrix, then,

when C = 1, the (j, j) element gives the a priori bound on the derivative of the regression

function with respect to xj.

We use A = Amain given in Table 1 in defining the distance in our main specification.

To make the distance more interpretable, we use p = 1 in defining the distance, so that the

Lipschitz condition places a bound on the cumulative effect of all the variables. We discuss

other choices of the weights A in Section 6.5. The elements of Amain are chosen to give

restrictions on f(x, d) that are plausible when C = 1, and we report results for a range of

choices of C as a form of sensitivity analysis. It is perhaps easiest to interpret the bounds

in terms of percentage increase in expected earnings. As a benchmark, consider deviations

from expected earnings when f(xi, di) = 10, that is $10,000. Since the average earnings

of for the di = 1 sample is 6.4 thousand dollars, with 78% of the treated sample reporting

income below 10 thousand dollars, the implied percentage bounds for most people in the

treated sample will be even more conservative. When C = 1, and A = Amain, the implied

bounds for the effect of age and education on expected earnings at 10 thousand dollars are

1.5% and 6%, respectively, which is in line with the 1980 census data. Similarly, the wage

gap implied by the black, Hispanic, and married indicators is bounded at 25%. The Amain

coefficients on 1974 and 1975 earnings imply that their cumulative effect on 1978 earnings

is at most a one-to-one increase. Including the employment indicators allows for a small

discontinuous jump in addition for people with zero previous years’ earnings.

6.2 Results

We compute the estimator L̃δ as described in Section 3 with the initial guess for the variance

function given by the constant function σ̃2(x, d) = σ̂2, where σ̂2 = 1
n

∑n
i=1 û

2
i and û2

i is the
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nearest-neighbor estimate with J = 3 neighbors, with the nearest neighbors defined using

Mahalanobis distance (using the metric ‖·‖Amain,1, as in the definition of the Lipschitz class

leads to very similar results).

The robust standard deviation estimate follows the formula in Section 4.2, while the non-

robust estimate is computed under the assumption that the variance is constant and equal

to σ̂2. For one-sided CIs, we calibrate δ so that the test is optimal for worst-case 0.8 quantile

with α = 0.05 (see Appendix A). Since the problem is translation invariant, the minimax

one-sided CI inverts minimax tests with size 0.05 and power 0.8 (see Armstrong and Kolesár,

2018a), which is a common benchmark in the literature on statistical power analysis (Cohen,

1988). For two-sided CIs, δ is calibrated to minimize the width of the resulting CI, and for

estimation, it is calibrated to minimize the worst-case RMSE.

Figure 1 plots the optimal one-sided CIs in both directions along with the optimal affine

FLCI and RMSE optimal affine estimator as a function of C. For very small values of C—

smaller than 0.1—the Lipschitz assumption implies that selection on pretreatment variables

does not lead to substantial bias, and the optimal estimator and CIs incorporates this by

tending toward the raw difference in means between treated and untreated individuals, which

in this data set is negative. For C ≥ 0.2, the point estimate is positive and remarkably stable

as a function of C, ranging between 0.94 and 1.15, which suggests that the estimator and

CIs are accounting for the possibility of selection bias by controlling for observables. The

two-sided CIs become wider as C increases, which, as can be seen from the figure, is due to

greater potential bias resulting from a less restrictive parameter space.

Figure 2 focuses on the case where C = 1 and plots the optimal estimator L̃δ along with

its standard deviation, worst-case bias, RMSE and CI length as a function of δ (recall that

δ determines the relative weight on variance in the bias-variance tradeoff). For this figure,

the standard deviation is computed under the assumption of homoskedasticity, so that the

standard deviation, RMSE and CI length are identical to those optimized by the estimator.

It can be seen from the figure that while the bias is increasing in δ and the variance is

decreasing, the optimal resolution of the bias-variance trade-off depends on the criterion.

Interestingly, the optimal δ is smallest for the RMSE criterion—it is cheaper, in terms of

CI length or excess length, to use an estimator with larger bias and smaller variance than

the RMSE-optimal estimator, and to take this bias into account by widening the CI. The

resolution of the bias-variance trade-off is also different between the one-sided and two-sided

CIs. The CIs are thus based on different estimators, which explains why for some values of

C in Figure 1, the lower one-sided CI is below the lower endpoint of the two-sided CI.
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Table 2 reports the point estimates that optimize each of the criteria plotted in Figure 2.

These are simply the estimates from Figure 2 taken at the value of δ that minimizes the given

criterion in the corresponding plot in the figure. In all cases, the bias is non-negligible relative

to variance: this is consistent with Theorem 4.1, which implies that given the Lipschitz

smoothness assumption and the dimension of the covariates, the semiparametric efficiency

bound cannot be achieved here, and it is not possible to construct asymptotically unbiased

estimators. Our CIs reflect this by explicitly taking the bias into account.

For comparison, Figure 3 plots the analog of Figure 2 for the matching estimator as a

function of M , the number of matches, using the linear programming problem described in

Section 2.4 to compute worst-case bias (the distance used to define matches is the same as

the one used for the Lipschitz condition). For the matching estimator, M plays the role of

a tuning parameter that trades off bias and variance, just as δ does for the class of optimal

estimators: larger values of M tend to lower the variance and increase the bias (although the

relationship is not always monotonic). Table 2 then reports the point estimates at M that

optimizes each of the criteria plotted in Figure 2. As was the case for the optimal estimator,

for the construction of one- and two-sided CIs, it is again optimal to oversmooth in that the

optimal number of matches is greater than the RMSE-optimal number of matches.

According to Theorem 2.3, matching with M = 1 is efficient when C is “large enough”.

In our application, for C ≥ 2.9, the efficiency of the matching estimator is at least 95% for

all performance criteria, and it’s at least 99.2% for RMSE.15 Matching with M = 1 leads to

a modest efficiency loss in our main specification, where C = 1: its efficiency is 89.8% for

RMSE, and 85.5% for the construction of two-sided CIs.

6.3 Comparison with experimental estimates

The present analysis follows LaLonde (1986), Dehejia and Wahba (1999), Smith and Todd

(2001), Smith and Todd (2005) and Abadie and Imbens (2011) (among others) in using a non-

experimental sample to estimate treatment effects of the NSW program. A major question

in this literature has been whether a non-experimental sample can be used to obtain the

same results (or, at least, results that are the same up to sampling error) as estimates based

on the original experimental sample of individuals who were randomized out of the NSW

program. In the experimental sample, the difference in means between the outcome for the

15In this application, matching with M = 1 is never 100% efficient even for large values of C since the
condition that each unit has a single closest match is violated: there are multiple observations in the dataset
that have the same covariate values. Consequently, limδ→0 L̃δ = 1.41 is slightly different from 1.42, the
matching estimate based on a single match.
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treated and untreated individuals is 1.794. Treating this estimator as an estimator of the

CATT, the (unconditional) robust standard error is 0.670 and non-robust standard error is

0.632.16

The estimates in Table 2 based on the optimal and the matching estimators are slightly

lower, although the distance between the estimate and the experimental estimate is much

smaller than the worst-case bias. Consequently, all of the difference between the estimates

can be explained by the bias alone. The large value of the worst-case bias also suggests that

the goal of recovering the experimental estimates from the NSW non-experimental data is too

ambitious, unless one imposes substantially stronger smoothness assumptions. Furthermore,

differences between the estimates reported here and the experimental estimate may also arise

from (1) failure of the selection on observables assumption; and (2) the sampling error in

the experimental and non-experimental estimates.

6.4 Optimal CIs after conditioning in experimental sample

As we argued in the introduction, the main cost of conditioning on the realized treatments

and covariates is that one cannot use the knowledge of the propensity score or its smoothness.

The experimental NSW sample allows us to quantify this cost in the most extreme setting,

since the experimental design guarantees that the propensity score is constant. How much

efficiency is lost by conditioning?

If one requires coverage conditional on realized treatments and pretreatment variables

and uses our main specification for the conditional expectation function (Lipschitz with

Amain, p = 1 and C = 1), the optimal FLCI for the CATT in the experimental sample is

centered at 1.623, with worst-case bias 1.235, non-robust standard error 0.681 and robust

standard error 0.715, leading to non-robust and robust CIs 1.623± 2.355 and 1.623± 2.411

respectively.

In contrast, if we do not condition on realized treatments when defining coverage, we can

use the difference-in-means estimates and standard errors reported in Section 6.3, which gives

the CIs 1.794±1.315 and 1.794±1.240, respectively. Focusing on the homoskedastic case, this

implies that if we do not condition when defining coverage, we can use the knowledge that

treatments were randomized to cut the CI length by 47%. On the other hand, if one requires

conditional coverage, it is not optimal to assign treatment randomly, and, as discussed in

Section 5.4, it is possible to reduce the cost of conditioning by optimizing the treatment

16If we treat the difference-in-means estimator as an estimator of the ATT (which also coincides with the
ATE), the robust and non-robust standard errors are 0.671 and 0.633, respectively.
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assignment. To bound the efficiency loss under optimal treatment assignment, we assign

the individuals in the sample into clusters using the k-means algorithm by clustering their

covariate values. Then, within each cluster, we randomly assigned a fraction π individuals

to the treatment group, where π is the proportion treated in the original data. We then

calculate the weights for the optimal estimator under this treatment assignment, and the

length of the resulting CI (which doesn’t require observing the outcome data). We then

optimize the number of clusters k in the k-means algorithm. We find that k = 210 yields

the shortest CI length, with the optimal estimator having worst-case bias 0.40 and standard

deviation 0.71. The resulting CI is 32% shorter than the CI obtained under the original

treatment assignment. This implies that the cost of conditioning can be reduced by at least

69% by optimizing the treatment assignment.

6.5 Other choices of distance

A disadvantage of the distance based on A = Amain is that it requires prior knowledge of the

relative importance of different pretreatment variables in explaining the outcome variable.

An alternative is to specify the distance using moments of the pretreatment variables in a way

that ensures invariance to scale transformations. For example, Abadie and Imbens (2011)

form matching estimators using p = 2 and A1/2 = A
1/2
ne ≡ diag(1/std(x1), . . . , 1/std(xp)),

where std denotes sample standard deviation. Table 1 shows the diagonal elements of Ane,

which are simply the inverses of the standard deviations of each control variable. From

this table, it can be seen that this distance is most likely not the best way of encoding

a researcher’s prior beliefs about Lipschitz constraints. For example, the bound on the

difference in average earnings between Blacks and non-Black non-Hispanics is substantially

smaller than the bound on the difference in average earnings between Hispanics and non-

Black non-Hispanics.

If the constant C is to be chosen conservatively, the derivative of f(x, d) with respect to

each of these variables must be bounded by C times the corresponding element in this table.

If one allows for somewhat persistent earnings, this would suggest that C should be chosen

in the range of 10 or above: to allow previous years’ earnings to have a one-to-one effect, we

would need to take C = 1/
√
.072 + .072 = 10.1. For this C, the optimal FLCI is given by

1.72± 7.63, which is much wider than the FLCIs reported in Table 2 for Amain and C = 1.

In Theorem 2.3, we showed that the matching estimator with a single match is optimal

for C large enough. For this result, it is important that the norm used to construct the

matches is the same as the norm defining the Lipschitz class. To illustrate this point,
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consider a matching estimator considered in Abadie and Imbens (2011), that uses p = 2

and A1/2 = A
1/2
ne . This yields the estimate 2.07, with homoskedastic standard error 2.20.

Its worst-case bias under our main specification (Amain, p = 1 and C = 1) is 1.89, which

implies that its efficiency is 77.5% for RMSE, and 74.6% for the construction of two-sided

CIs, which is 12% and 11% lower, respectively, than the efficiencies of the matching estimator

that matched on the norm defining the Lipschitz class reported in Section 6.2. Furthermore,

the efficiency is never higher than 80.1%, even for large values of C.

6.6 CATE, set identification, and lack of overlap

An advantage of our finite sample approach is that our CIs apply even when average treat-

ment effects are not identified, due to lack of overlap. In the NSW data, the covariates for

the treated sample can be plausibly argued to lie on the support of the covariates for the

untreated observations from the PSID, so that the ATT is point identified. However, the

reverse is likely not true, so that if we are interested in the CATE rather than the CATT, the

overlap conditions needed for point identification will fail. Thus, to illustrate how optimal

CIs perform under set identification, we can apply our method to form CIs for the CATE in

this setting.

Under our main specification (Lipschitz with Amain, p = 1 and C = 1), the optimal FLCI

for the CATE is centered at −9.74 and has worst-case bias 10.18, non-robust standard error

2.62 and robust standard error 4.18, which gives the CIs −9.74± 14.49, and −9.74± 17.06,

respectively. Thus, the point estimate for the CATE is negative, while the CIs allow for the

possibility of both large positive and large negative effect of the program on average wages.

The large worst-case bias and wide CIs reflect the inherent uncertainty in extrapolating

the treatment effect from the individuals targeted by this intervention (who tend to be

less educated and have lower pretreatment wages than the general population) to average

individuals in the PSID.

Appendix A Finite-sample results: proofs and addi-

tional details

This appendix contains proofs and derivations in Section 2, as well as additional results.

Appendix A.1 maps a generalization of the setup in Section 2.1 to the framework of Donoho

(1994) and Armstrong and Kolesár (2018a), and specializes their general efficiency bounds
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and optimal estimator and CI construction to the current setting. This gives the formulas

for optimal estimators and CIs given in Section 2.3, and the efficiency bounds discussed

in Section 2.5. Appendix A.2 specializes the setup to the case with Lipschitz constraints,

while allowing for possible additional monotonicity constraints, and proves Theorem 2.1.

Appendix A.3 proves Theorem 2.2. Appendix A.4 proves Theorem 2.3.

A.1 General setup and results

We consider a generalization of the setup in Section 2.1 by letting the parameter of interest

be a general weighted conditional average treatment effect of the form

Lf =
n∑
i=1

wi(f(xi, 1)− f(xi, 0)),

where {wi}ni=1 is a set of known weights that sum to one,
∑n

i=1 wi = 1. Setting wi = 1/n gives

the CATE, while setting wi = di/n1, gives the conditional average treatment effect on the

treated (CATT). Here nd =
∑n

j=1I{dj = d} gives the number of observations with treatment

status equal to d. We retain the assumption that F is convex, but drop the centrosymmetry

assumption. We also slightly generalize the class of estimators we consider by allowing for a

recentering by some constant a. This leads to affine estimators of the form

L̂k,a = a+
n∑
i=1

k(xi, di)yi,

with the notational convention L̂k = L̂k,0. Define maximum and minimum bias

biasF(L̂k,a) = sup
f∈F

Ef (L̂k,a − Lf), biasF(L̂k,a) = inf
f∈F

Ef (L̂k,a − Lf).

A fixed-length CI around L̂k,a can be formed as{
L̂k,a ± cvα(b/ sd(L̂k,a)) · sd(L̂k,a)

}
, where b = max

{
| biasF(L̂k,a)|, | biasF(L̂k,a)|

}
.

The RMSE of L̂k,a is given by

RRMSE,F(L̂k,a) =

√
b2 + sd(L̂k,a)2, where b = max

{
| biasF(L̂k,a)|, | biasF(L̂k,a)|

}
.
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For comparisons of one-sided CIs [ĉ,∞), we focus on quantiles of excess length. Given a

subset G ⊆ F , define the worst-case βth quantile of excess length over G:

qβ(ĉ,G) = sup
g∈G

qg,β(Lg − ĉ),

where qg,β(·) denotes the βth quantile under the function g, and Lg − ĉ is the excess length

of the CI [ĉ,∞). Taking G = F , a CI that optimizes qβ(ĉ,F) is minimax. Taking G to

correspond to a smaller set of smoother functions amounts to “directing power” at such

smooth functions. For a one-sided CI [ĉ,∞) with ĉ = L̂k,a − biasF(L̂k,a)− z1−α sd(L̂k,a), we

have

qβ(ĉ,G) = biasF(L̂k,a)− biasG(L̂k,a) + sd(L̂k,a)(z1−α + zβ).

This follows from the fact that the worst-case βth quantile of excess length over G is taken

at the function g ∈ G that achieves biasG(L̂k,a) (i.e. when the estimate is biased downward

as much as possible).

Note that if the performance criterion is RMSE or length of FLCI, it is optimal to

set the centering constant a such that biasF(L̂k,a) = − biasF(L̂k,a) (which yields a = 0 as

the optimal choice under centrosymmetry), while the centering constant does not matter

for constructing one-sided CIs. If the performance criterion is RMSE, length of FLCI, or

qβ(·,F), and the centering constant chosen in this way, then the weight function k matters

only through biasF(L̂k,a) and sd(L̂k,a), and the criterion is increasing in both quantities, as

stated in Section 2.3.

For constructing optimal estimators and CIs, observe that our setting is a fixed design

regression model with normal errors and known variance, with the parameter of interest

given by a linear functional of the regression function. Therefore, our setting falls into the

framework of Donoho (1994) and Armstrong and Kolesár (2018a), and we can specialize the

general efficiency bounds and the construction of optimal affine estimators and CIs in those

papers to the current setting.17 To state these results, define the (single-class) modulus of

continuity of L (see p. 244 in Donoho, 1994, and Section 3.2 in Armstrong and Kolesár,

2018a)

ω(δ) = sup
f,g∈F

{
Lg − Lf :

n∑
i=1

(f(xi, di)− g(xi, di))
2

σ2(xi, di)
≤ δ2

}
, (22)

17In particular, in the notation of Armstrong and Kolesár (2018a), Y = (y1/σ(x1, d1), . . . , yn/σ(xn, dn)),
Y = Rn, and Kf = (f(x1, d1)/σ(x1, d1), . . . , f(xn, dn)/σ(xn, dn)). Donoho (1994) denotes the outcome
vector Y by y, and uses x and X in place of f and F .
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and let f ∗δ and g∗δ a pair of functions that attain the supremum (assuming the supremum is

attained). When F is centrosymmetric, then f ∗δ = −g∗δ , and the modulus problem reduces

to the optimization problem (8) in the main text (in the main text, the notation f ∗δ is used

for the function denoted g∗δ in this appendix). Let ω′(δ) denote an (arbitrary) element of the

superdifferential at δ (the superdifferential is non-empty since the modulus can be shown to

be concave). Typically, ω(·) is differentiable, and ω′(δ) corresponds uniquely to the derivative

at δ. Define L̂δ = L̂k∗δ ,a∗δ , where

k∗δ (xi, di) =
ω′(δ)

δ

g∗(xi, di)− f ∗(xi, di)
σ2(xi, di)

,

and

a∗δ =
1

2

[
L(f ∗δ + g∗δ )−

n∑
i=1

k∗δ (xi, di)(f
∗
δ (xi, di) + g∗δ (xi, di))

]
.

If the class F is translation invariant in the sense that f ∈ F implies f + ια ∈ F18, then by

Lemma D.1 in Armstrong and Kolesár (2018a), the modulus is differentiable, with ω′(δ)/δ =

1/
∑n

i=1 di(g
∗
δ (xi, di)−f ∗δ (xi, di))/σ

2(xi, di). The formula for L̂δ in the main text follows from

this result combined with fact that, under centrosymmetry, f ∗δ = −g∗δ . By Lemma A.1 in

Armstrong and Kolesár (2018a), the maximum and minimum bias of L̂δ is attained at g∗δ
and f ∗δ , respectively, which yields

biasF(L̂δ) = − biasF(L̂δ) =
1

2
(ω(δ)− δω′(δ)).

Note that sd(L̂δ) = ω′(δ).

Corollary 3.1 in Armstrong and Kolesár (2018a), and the results in Donoho (1994) then

yield the following result:

Theorem A.1. Let F be convex, and fix α > 0. (i) Suppose that f ∗δ and g∗δ attain the

supremum in (22) with
∑n

i=1
(f(xi,di)−g(xi,di))2

σ2(xi,di)
= δ2, and let ĉ∗δ = L̂δ−biasF(L̂δ)−z1−α sd(L̂δ).

Then [ĉ∗δ ,∞) is a 1−α CI over F , and it minimaxes the βth quantile of excess length among

all 1 − α CIs for Lf , where β = Φ(δ − z1−α), and Φ denotes the standard normal cdf. (ii)

Let δχ be the minimizer of cvα (ω(δ)/2ω′(δ)− δ/2)ω′(δ) over δ, and suppose that f ∗δχ and

g∗δχ attain the supremum in (22) at δ = δχ. Then the shortest 1− α FLCI among all FLCIs

18In the main text, we assume that {ια}α∈R ⊂ F . By convexity, for any λ < 1, λf + (1 − λ)ια =
λf + ι(1−λ)α ∈ F , which implies that for all λ < 1 and α ∈ R, λf + ια ∈ F . This, under the assumption
in footnote 9, implies translation invariance.
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centered at affine estimators is given by{
L̂δχ ± cvα(biasδχ / sd(L̂δχ)) sd(L̂δχ)

}
.

(iii) Let δRMSE minimize 1
4
(ω(δ) − δω′(δ))2 + ω′(δ)2 over δ, and suppose that f ∗δχ and g∗δχ

attain the supremum in (22) at δ = δRMSE. Then the estimator L̂δRMSE
minimaxes RMSE

among all affine estimators.

The theorem shows that a one-sided CI based on L̂δ is minimax optimal for β-quantile

of excess length if δ = zβ + z1−α. Therefore, restricting attention to affine estimators does

not result in any loss of efficiency if the criterion is qβ(·,F).

If the criterion is RMSE Theorem A.1 only gives minimax optimality in the class of affine

estimators. However, Donoho (1994) shows that one cannot substantially reduce the max-

imum risk by considering non-linear estimators. To state the result, let ρA(τ) = τ/
√

1 + τ

denote the minimax RMSE among affine estimators of θ in the bounded normal mean model

in which we observe a single draw from the N(θ, 1) distribution, and θ ∈ [−τ, τ ], and let

ρN(τ) denote the minimax RMSE among all estimators (affine or non-linear). Donoho et al.

(1990) give bounds on ρN(τ), and show that supτ>0 ρA(τ)/ρN(τ) ≤
√

5/4, which is known

as the Ibragimov-Hasminskii constant.

Theorem A.2 (Donoho, 1994). Let F be convex. The minimax RMSE among affine estima-

tors risk equals R∗RMSE,A(F) = supδ>0
ω(δ)
δ
ρA(δ/2). The minimax RMSE among all estimators

is bounded below by supδ>0
ω(δ)
δ
ρN(δ/2) ≥

√
4/5 supδ>0

ω(δ)
δ
ρA(δ/2) =

√
4/5R∗RMSE,A(F).

The theorem shows that the minimax efficiency of L̂δRMSE
among all estimators is at least√

4/5 = 89.4%. In particular applications, the efficiency can be shown to be even higher

by lower bounding supδ>0
ω(δ)
δ
ρN(δ/2) directly, rather than using the Ibragimov-Hasminskii

constant. The arguments in Donoho (1994) also imply R∗RMSE,A(F) can be equivalently com-

puted as R∗RMSE,A(F) = infδ>0
1
2

√
(ω(δ)− δω′(δ))2 + ω′(δ)2 = infδ>0 supf∈F(E(L̂δ−Lf)2)1/2,

as implied by Theorem A.1.

The one-dimensional subfamily argument used in Donoho (1994) to derive Theorem A.2

could also be used to obtain the minimax efficiency of the fixed-length CI based on L̂δχ

among all CIs when the criterion is expected length. However, when the parameter space F
is centrosymmetric, we can obtain a stronger result that gives sharp bounds for the scope of

adaptation to smooth functions:
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Theorem A.3. Let F be convex and centrosymmetric, and fix g ∈ F such that f−g ∈ F for

all f ∈ F . (i) Suppose −f ∗δ and f ∗δ attain the supremum in (22) with
∑n

i=1
(f(xi,di)−g(xi,di))2

σ2(xi,di)
=

δ2, with δ = zβ + z1−α, and define ĉ∗δ as in Theorem A.1. Then the efficiency of ĉ∗δ under the

criterion qβ(·, {g}) is given by

inf{ĉ : [ĉ,∞) satisfies (3)} qβ(ĉ, {g})
qβ(ĉ∗δ , {g})

=
ω(2δ)

ω(δ) + δω′(δ)
≥ 1

2
.

(ii) Suppose the minimizer fL0 of
∑n

i=1
(f(xi,di)−g(xi,di))2

σ2(xi,di)
subject to Lf = L0 and f ∈ F exists

for all L0 ∈ R. Then the efficiency of the fixed-length CI around L̂δχ at g relative to all

confidence sets is

inf{C : C satisfies (3)}Egλ(C)

infδ>0 2 cvα

(
ω(δ)

2ω′(δ)
− δ

2

)
ω′(δ)

=
(1− α)E [ω(2(z1−α − Z)) | Z ≤ z1−α]

2 cvα

(
ω(δχ)

2ω′(δχ)
− δχ

2

)
· ω′(δχ)

≥ z1−α(1− α)− z̃αΦ(z̃α) + φ(z1−α)− φ(z̃α)

z1−α/2
, (23)

where λ(C) denotes the Lebesgue measure of a confidence set C, Z is a standard normal

random variable, Φ(z) and φ(z) denote the standard normal distribution and density, and

z̃α = z1−α − z1−α/2.

Proof. Both parts of the theorem, except for the lower bound in (23), follow from Corollary

3.2 and Corollary 3.3 in Armstrong and Kolesár (2018a). The lower bound follows from

Theorem C.7 in Armstrong and Kolesár (2018b).

The theorem gives sharp efficiency bounds for one-sided CIs as well as fixed-length CIs

relative to CIs that direct all power at a particular function g. The condition on g is satisfied

if g is smooth enough relative to F . For example, if F = FLip(C), it holds if g is piecewise

constant, g(x, d) = α0 + dα1 for some α0, α1 ∈ R. The theorem also gives lower bounds

for these efficiencies—for one-sided CIs, the theorem implies that the β-quantile excess of

length of the CI [ĉ∗δ ,∞) at g cannot be reduced by more than 50%. For 95% fixed-length

CIs, the efficiency lower bound in (23) evaluates to 71.7%. In a particular application, sharp

lower bounds can be computed directly by computing the modulus; typically this gives much

higher efficiencies—for example in the baseline specification in the empirical application in

Section 6, the efficiency of the shortest FLCI is over 97.0% at piecewise constant functions.
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A.2 Estimators and CIs under Lipschitz smoothness

We now specialize the results from Appendix A.1 to the case with Lipschitz smoothness,

F = FLip(C), as well as versions of these classes that impose monotonicity conditions.

To that end, let F̃Lip,n(C) denote the set of functions f : {x1, . . . , xn} × {0, 1} → R such

that |f(x, d)− f(x̃, d)| ≤ C‖x− x̃‖X for all x, x̃ ∈ {x1, . . . , xn} and each d ∈ {0, 1}. That is,

F̃Lip,n(C) denotes the class of functions with domain {x1, . . . , xn} × {0, 1} that satisfy the

Lipschitz condition on this domain. If we take the restriction of any function f ∈ FLip(C)

to the domain {x1, . . . , xn} × {0, 1}, then the resulting function will clearly be in F̃Lip,n(C).

The following result shows that, given a function in F̃Lip,n(C), one can always interpolate

the points x1, . . . , xn to obtain a function in FLip(C).

Lemma A.1. (Beliakov, 2006, Theorem 4) For any function f : {x1, . . . , xn} × {0, 1} → R,

we have f ∈ F̃Lip,n(C) if and only if there exists a function h ∈ FLip(C) such that f(x, d) =

h(x, d) for all (x, d) ∈ {x1, . . . , xn} × {0, 1}.

The first part of Theorem 2.1 follows directly from this result. The second part follows

from the following lemma and the observation that biasFLip(C)(L̂k) = C biasFLip(1)(L̂k).

Lemma A.2. Suppose that wi satisfies wi = w(di) for some w(0), w(1) ≥ 0. Suppose

also that the weights k(x, d) satisfy
∑n

i=1 dik(xi, di) = n0w(0) + n1w(1), and
∑n

i=1(1 −
di)k(xi, di) = −(n0w(0) + n1w(1)) with k(xi, 1) ≥ w(1) and k(xi, 0) ≤ w(0). Then there

exists a vector f ∗ = (f ∗(x1, 0), . . . , f ∗(xn, 0), f ∗(x1, 1), . . . , f ∗(xn, 1)) ∈ R2n that maximizes∑n
i=1 k(xi, di)f(xi, di)− Lf subject to

f(xi, 1) ≤ f(xj, 1) + ‖xi − xj‖X , all i, j with di = 1, dj = 0 and k(xi, 1) > w(1), (24)

f(xi, 0) ≤ f(xj, 0) + ‖xi − xj‖X , all i, j with di = 1, dj = 0 and k(xj, 1) < −w(0). (25)

such that f ∗(xi, d) ≤ f ∗(xj, d) + ‖xi − xj‖X for all i, j ∈ {1, . . . , n} and d ∈ {0, 1}.

The condition on the weights wi holds for the CATE (with w(1) = w(0) = 1/n), as well

as the CATT (with w(1) = 1/n1 and w(0) = 0). The proof is given in the supplemental ma-

terials. The implications of Lemma A.1 for the form of the optimal estimator are considered

in Appendix A.3.

We now consider imposing monotonicity restrictions in addition to the Lipschitz restric-

tion. Let S ⊆ {1, . . . , p} denote the subset of indices of xi for which monotonicity is imposed,

and normalize the variables so that the monotonicity condition states that f(·, d) is nonde-

creasing in each of these variables (by taking the negative of variables for which f(·, d) is
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non-increasing). Let FLip,S↑(C) ⊆ FLip(C) denote the subset of functions such that f(·, 0)

and f(·, 1) are monotone for the indices in S: for any x, x̃ with xj ≥ x̃j for j ∈ S and xj = x̃j

for j /∈ S, we have f(x, d) ≥ f(x̃, d) for each d ∈ {0, 1} (that is, increasing the elements in

S and holding others fixed weakly increases the function).

We use a result on necessary and sufficient conditions for interpolation by monotonic

Lipschitz functions given by Beliakov (2005). For a vector x ∈ Rp, let (x)S+ denote the

vector with jth element xj for j /∈ S and jth element max{xj, 0} for j ∈ S. Let F̃Lip,S↑,n(C)

denote the set of functions f : {x1, . . . , xn} × {0, 1} → R such that, for all i, j ∈ {1, . . . , n}
and d ∈ {0, 1}

f(xi, d)− f(xj, d) ≤ C‖(xi − xj)S+‖X .

Lemma A.3. (Beliakov, 2005, Proposition 4.1) For any function f : {x1, . . . , xn}×{0, 1} →
R, we have f ∈ F̃Lip,S↑,n(C) if and only if there exists a function h ∈ FLip,S↑(C) such that

f(x, d) = h(x, d) for all (x, d) ∈ {x1, . . . , xn} × {0, 1}.

Using this result, the problem of computing the maximum bias of an affine estimator L̂k,a

that satisfies (11) can again be phrased as a finite-dimensional linear program of maximizing

a +
∑n

i=1 k(xi, di)f(xi, di) − Lf subject to f ∈ F̃Lip,S↑,n(C). The optimal estimator can

be computed by solving (22) with F = F̃Lip,S↑,n(C), which is a finite-dimensional convex

optimization problem.

A.3 Proof of Theorem 2.2

The first part follows directly from Lemma A.1. To show the second part and to give the

algorithm for computing the solution path, suppose, as in Lemma A.2, that wi = w(di) for

some w(0), w(1) ≥ 0, and that σ2(x, d) = σ2(d) for some σ2(0), σ2(1) > 0. The dual problem

to (16) is to minimize
∑n

i=1 f(xi, d
2
i )/σ

2(xi, di) subject to a lower bound on Lf/C. The

Lagrangian for this problem has the form

min
f∈F̃Lip,n(C)

1

2

n∑
i=1

f(xi, di)
2

σ2(xi, di)
− µLf/C = min

f∈F̃Lip,n(1)

C2

2

n∑
i=1

f(xi, di)
2

σ2(xi, di)
− µLf, (26)

where we use the observation that if f ∈ F̃Lip,n(C), then f/C ∈ F̃Lip,n(1). Let g∗µ denote the

solution to the minimization problem on the right-hand side of (26). Because for each δ > 0,

the program (16) is strictly feasible at f = 0, Slater’s condition holds, and the solution path

{f ∗δ }δ>0 can be identified with the solution path {Cg∗µ}µ>0.
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Suppose, without loss of generality, that the observations are ordered, so that dj = 0

for j = 1, . . . , n0, and di = 1 for i = n0 + 1, . . . , n. It will be convenient to state the

algorithm using the notation mi = (2di − 1)f(xi, di), and ri = (1 − 2di)f(xi, 1 − di). Then

Lf =
∑n

i=1wi(mi + ri), and the constraint f ∈ F̃Lip,n(1) is equivalent to the constraints

rj ≤ mi + ‖xi − xj‖, di 6= dj, (27)

rj ≤ rj′ + ‖xj − xj‖, dj = dj′ , (28)

mi ≤ mi′ + ‖xi − xi′‖ di = di′ . (29)

mi ≤ rj + ‖xi − xj‖, di 6= dj. (30)

Lemma A.4. Consider the problem of minimizing 1
2

∑n
i=1m

2
i /σ

2(xi, di)−µ
∑n

i=1wi(mi+ri)

subject to (27). Then there exists a solution m(µ) and r(µ) that satisfies Equations (28),

(29) and (30).

If we only impose the constraints in (27), the Lagrangian for the program (26) can be

written as

1

2

n0∑
j=1

m2
j

σ2(0)
+

1

2

n1∑
i=1

m2
i+n0

σ2(1)
− µ

(
n1∑
i=1

w(1)(mi+n0 + ri+n0) +

n0∑
j=1

w(0)(mj + rj)

)

+

n1∑
i=1

n0∑
j=1

[
Λ0
ij(ri+n0 −mj − ‖xi+n0 − xj‖X ) + Λ1

ij(rj −mi+n0 − ‖xi+n0 − xj‖X )
]
. (31)

The lemma shows that the resulting first-order conditions imply the constraints Equa-

tions (28), (29) and (30) must hold at the optimum. The second part of Theorem 2.2

follows directly from Lemma A.4, the proof of which is given in the supplemental materials.

To describe the algorithm, we need additional notation. Let m(µ), r(µ), Λ0(µ), and

Λ1(µ) denote the values of m, r, and of the Lagrange multipliers at the optimum of (31).

For d ∈ {0, 1}, let Nd(µ) ∈ Rn1×n0 denote a matrix with elements Nd
ij(µ) = 1 if the

constraint associated with Λd
ij(µ) is active, and Nd

ij(µ) = 0 otherwise. Let G0 ∈ Rn0×n0

and G1 ∈ Rn1×n1 denote matrices with elements G0
jj′ = I{

∑
iN

0
ij(µ)N0

ij′(µ) > 0}, and

G1
ii′ = I{

∑
j N

1
ij(µ)N1

i′j(µ) > 0}. Then G0 defines a graph (adjacency matrix) of a network

in which j and j′ are linked if the constrains associated with Λ0
ij and Λ0

ij′ are both active

for some i. Similarly, G1 defines a graph of a network in which i and i′ are linked if the

constraints associated with Λ1
i′j and Λ1

ij are both active for some j. Let {M0
1, . . . ,M0

K0
}

denote a partition of {1, . . . , n0} according to the connected components of G0, so that if
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j, j′ ∈ M0
k then there exists a path from j to j′. Let {R0

1, . . . ,R0
k} be a corresponding

partition of {1, . . . , n1}, defined by R0
k = {i ∈ {1, . . . , n1} : N0

ij(µ) = 1 for some j ∈M0
k}.

Similarly, let {M1
1, . . . ,M1

K1
} denote a partition of {1, . . . , n1} according to the connected

components of G1, and let R1
k = {j ∈ {1, . . . , n0} : N1

ij(µ) = 1 for some i ∈M1
k}.

In the supplemental materials, we show that the solution path for m(µ) is piecewise linear

in µ, with points of non-differentiability when either a new constraint becomes active, or else

the Lagrange multiplies Λd
ij(µ) associated with an active constraint decreases to zero. We

also derive the formulas for the slope of m(µ), r(µ), and Λd(µ) at points of differentiability.

This leads to the following algorithm that is similar to the LAR algorithm in Rosset and

Zhu (2007) and Efron et al. (2004) for computing the LASSO path.

1. Initialize µ = 0, m = 0, Λ0 = 0, and Λ1 = 0. Let D0, D1 ∈ Rn1×n0 be matrices

with elements Dd
ij = ‖xi+n0 − xj‖X , d ∈ {0, 1}. Let r be a vector with elements

rj = mini=1,...,n1{D1
ij}, j = 1, . . . , n0 and ri+n0 = minj=1,...,n0{D0

ij}, i = 1, . . . , n1. Let

N0, N1 ∈ Rn1×n0 be matrices with elements N0
ij = I{D0

ij = ri+n0} and N1
ij = I{D1

ij =

rj}.

2. While µ <∞:

(a) Calculate the partitions Md
k and Rd

k associated with Nd, d ∈ {0, 1}. Calcu-

late directions δ for m and a direction δr for r as δr,i+n0 = δj = σ2(0)(w(0) +

(#R0
k/#M0

k)w(1)) for i ∈ R0
k and j ∈ M0

k, and δr,j = δi+n0 = σ2(1)(w(1) +

(#R1
k/#M1

k)w(0)) for i ∈ R0
k and j ∈M0

k.

(b) Calculate directions ∆d for Λd by setting ∆d
ij = 0 if Nd

ij = 0, with the remain-

ing elements given by a solution to the systems of n equations (i)
∑n0

i=1 ∆1
ij =

δj/σ
2(0) − w(0), j = 1, . . . , n0 and

∑n0

j=1 ∆0
ij = w(1), i = 1, . . . , n1 and (ii)∑n0

j=1 ∆1
ij = δi+n0/σ

2(1)−w(1), i = 1, . . . , n1 and
∑n1

i=1 ∆0
ij = w(0), j = 1, . . . , n0.

(c) Calculate step size s as s = min{s0
1, s

0
2, s

1
1, s

1
2}, where

s0
1 = min{s ≥ 0: ri+n0 + δr,i+n0s = δjs+D0

ij some (i, j) s.t. N0
ij = 0, δj > δr,i+n0}

s1
1 = min{s ≥ 0: rj + δr,js = δi+n0s+D1

ij some (i, j) s.t. N1
ij = 0, δi+n0 > δrj}

sd2 = min{s ≥ 0: Λd
ij + s∆d

ij = 0 among (i, j) with Nd
ij = 1 and ∆d

ij < 0}

(d) Update µ 7→ µ + s, m 7→ m + sδ, r 7→ r + sδr Λd 7→ Λd + s∆d, D0
ij 7→ D0

ij + sδj,

D1
ij 7→ D1

ij + sδi+n0 If s = sd1, then update Nd
ij = 1, where (i, j) is the index

defining sd1. If s = sd2, update Nd
ij = 0, where (i, j) is the index defining sd2.

44



Given the solution path {m(µ)}µ>0, the optimal estimator L̂δ and its worst-case bias can

then be easily computed. For simplicity, we specialize to the ATE case, w(1) = w(0) = 1/n.

Let δ(µ) = 2C
√
m(µ)′m(µ). It then follows from the formulas in Appendix A.1 and the

first-order conditions associated with the Lagrangian (31) (see the supplemental materials)

that the optimal estimator takes the form

L̂δ(µ) =
1

n

n∑
i=1

(f̂µ(xi, 1)− f̂µ(xi, 0)),

where f̂µ(xj, 1) =
∑n1

i=1 nΛ1
ij(µ)/µYn0+i for j = 1, . . . , n0; f̂µ(xi, 1) = Yi for i = n0 + 1, . . . , n;

f̂µ(xj, 0) = Yj for j = 1, . . . , n0; and f̂µ(xi, 0) =
∑n0

j=1 nΛ0
i−n0,j

(µ)/µYi for i = n0 + 1, . . . , n.

The worst-case bias of the estimator is given by C(
∑n

i=1(mi(µ)+ri(µ))/n−
∑n

i=1 mi(µ)2/µ).

For the interpretation of L̂δ(µ) as a matching estimator with a variable number of matches,

observe that
∑n1

i=1 nΛ1
ij(µ)/µ =

∑n0

j=1 nΛ0
ij(µ)/µ = 1. Also, N0

ij(µ) = 0 and hence Λ0
ij(µ) = 0

unless D0
ij(µ) = min`D

0
i`(µ). Similarly, Λ1

ij(µ) = 0 unless D1
ij(µ) = min`D

1
`j(µ). Thus, the

counterfactual outcome for each observation i is given by a weighted average of outcomes for

observations with opposite treatment status that are closest to it in terms of the “effective

distance” matrices D0
ik(µ) (for i = n0+1, . . . , n) or D1

ki(µ) (for i = 1, . . . , n0). Since D0
ik(µ) =

mk(µ) + ‖xn0+i − xk‖X D1
ki(µ) = mn0+i(µ) + ‖xn0+i − xk‖X , and mk(µ) is increasing in the

number of times k has been used as a match, observations that have been used more often

as a match are considered to be further away according to these effective distance matrices.

A.4 Proof of Theorem 2.3

To prove Theorem 2.3, we first provide another characterization of the optimal weights given

in (9). Given {mi}ni=1, consider the optimization problem (16) with the additional constraint

that f(xi, di) = mi for di = 1 and f(xi, di) = −mi for di = 0. It follows from Beliakov

(2006) that there exists a function f ∈ FLip(C) satisfying these constraints if and only if

|mi −mj| ≤ C‖xi − xj‖X for all i, j with di = dj. Furthermore, when this condition holds,

f(x, 1) is maximized simultaneously for all x subject to the constraint that f(xi, di) = mi

for all i by taking f(x, 1) = mini:di=1(mi + C‖x − xi‖X ). Similarly, f(x, 0) is minimized

simultaneously for all x by taking f(x, 0) = −mini:di=0(mi + C‖x − xi‖X ) (see Beliakov,

2006, p. 25). Plugging this into (16), it follows that f ∗δ (xi, di) = (2di−1) ·m∗i where {m∗i }ni=1
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solves

max
m

2
∑
i

wi(mi + ω̃i(m)) s.t.

n∑
i=1

m2
i /σ

2(xi, di) ≤ δ2/4, (32)

|mi −mj| ≤ C‖xi − xj‖X for all i, j with di = dj, (33)

where

ω̃i(m) = min
j:dj 6=di

(mj + C‖xi − xj‖X ). (34)

This is a convex optimization problem and constraint qualification holds since m = 0 satisfies

Slater’s condition (see Boyd and Vandenberghe, 2004, p. 226). Thus, the solution (or set of

solutions) is the same as the solution to the Lagrangian.

To characterize the solution, let Ji(m) denote the set of indices that achieve the minimum

in (34). Note that Ji(0) is the set of the nearest neighbors to i (i.e. the set of indices j of

observations such that ‖xj − xi‖X is minimized). Furthermore, if ‖m‖ is smaller than some

constant that depends only on the design points, we will have

Ji(m) = {j ∈ Ji(0) : mj ≤ m` all ` ∈ Ji(0)}. (35)

The superdifferential ∂ω̃i(m) of ω̃i(m) is given by the convex hull of ∪j∈Ji(m){ej}. For

δ/C small enough, if the values of xi and xj for di = dj are distinct (which is implied

by the assumption that each observation has a unique closest match), the constraints (33)

implied by the constraint (32). Thus, specializing to the case with wi = 1/n, the first order

conditions are given by

ι− λnΣ−1m ∈ −
n∑
i=1

∂ω̃i(m)

=

{
n∑
i=1

n∑
j=1

bijej : bij = 0 all j /∈ Ji(m), bij ≥ 0, all i, j and
n∑
j=1

bij = 1 all i

}
.

where λ is the Lagrange multiplier on (32), ι is a vector of ones, and Σ is a diagonal matrix

with (i, i) element given by σ(xi, di)
2. Let ‖m‖ be small enough so that (35) holds, and

suppose that each observation has a unique closest match. Then Ji(m) = Ji(0) for small

enough m and Ji(0) is a singleton for each i, so that m∗j is proportional to σ2(xi, di)(1+#{i :
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j ∈ Ji(m)}) = σ2(xi, di)(1 +K1(i)), so that by (9), the optimal weights are given by

k∗δ (xi, di) =
(2di − 1)(1 +K1(i))∑
i di(2di − 1)(1 +K1(i))

=
(2di − 1)(1 +K1(i))

n
,

where the second equality follows from
∑

i

∑
i di(2di − 1)(1 + K1(i)) =

∑
i di(1 + K1(i)) =∑

i di +
∑

i(1− di) = n. It then follows from (5) that the optimal estimator coincides with

the matching estimator based on a single match.

Appendix B Proofs for asymptotic results

This appendix proves the results given in Section 4.

B.1 Proof of Theorem 4.1

The fact that Xi has a bounded density conditional on Di means that there exists some

a < b such that Xi has a density bounded away from zero and infinity on [a, b]p conditional

on Di = 1. Let Nd,n = {i : Di = d, i ∈ {1, . . . , n}} and let

In(h) = {i ∈ N1,n : Xi ∈ [a, b]p and for all j ∈ N0,n, ‖Xi −Xj‖X > 2h}.

Let E denote the σ-algebra generated by {Di}∞i=1 and {Xi : Di = 0, i ∈ N}. Note that,

conditional on E , the observations {Xi : i ∈ N1,n} are i.i.d. with density bounded away from

zero and infinity on [a, b]p.

Lemma B.1. There exists η > 0 such that, if lim supn hnn
1/p ≤ η, then almost surely,

lim infn #In(hn)/n ≥ η.

Proof. Let An = {x ∈ [a, b]p|there exists j such that Dj = 0 and ‖x − Xj‖X ≤ 2h}. Then

#In(h) =
∑

i∈N1,n
[I{Xi ∈ [a, b]p} − I{Xi ∈ An}]. Note that, conditional on E , the random

variables I{Xi ∈ An} with i ∈ N1,n are i.i.d. Bernoulli(νn) with νn = P (Xi ∈ An|E) =
∫
I{x ∈

An}fX|D(x|1) dx ≤ Kλ(An) where fX|D(x|1) is the conditional density of Xi given Di = 1,

λ is the Lebesgue measure and K is an upper bound on this density. Under the assumption

that lim supn hnn
1/p ≤ η, we have λ(An) ≤ (4hn)pn ≤ 8pηp where the last inequality holds

for large enough n. Thus, letting ν = 8pηpK, we can construct random variables Zi for each

i ∈ N1,n that are i.i.d. Bernoulli(ν) conditional on E such that I{Xi ∈ An} ≤ Zi. Applying
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the strong law of large numbers, it follows that

lim inf
n

#In(h)/n ≥ lim inf
n

#N1,n

n

1

#N1,n

∑
i∈N1,n

(I{Xi ∈ [a, b]p} − Zi)

≥ P (Di = 1)(P (Xi ∈ [a, b]p|Di = 1)− 8pηpK)

almost surely. This will be greater than η for η small enough.

Let X̃n(h, η) be the set of elements x̃ in the grid

{a+ jhη : j = (j1, . . . , jp) ∈ {1, . . . , bh−1c(b− a)}p}

such that there exists i ∈ In(h) with max1≤k≤p |x̃k − Xi,k| ≤ hη. Note that, for any x̃ ∈
X̃n(h, η), the closest element Xi with i ∈ In(h) satisfies ‖x̃−Xi‖X ≤ phη. Thus, for any Xj

with Dj = 0, we have

‖x̃−Xj‖X ≥ ‖Xj −Xi‖X − ‖x̃−Xi‖X ≥ 2h− pηh > h

for η small enough, where the first inequality follows from rearranging the triangle inequality.

Let k ∈ Σ(1, γ) be a nonnegative function with support contained in {x : ‖x‖X ≤ 1}, with

k(x) ≥ k on {x : max1≤k≤p |xk| ≤ η} for some k > 0. By the above display, the function

fn(x, d) = fn,{Xi,Di}ni=1
(x, d) =

∑
x̃∈X̃n(h,η)

(1− d)k((x− x̃)/h)

is equal to zero for (x, d) = (Xi, Di) for all i = 1, . . . , n. Thus, it is observationally

equivalent to the zero function conditional on {Xi, Di}ni=1: Pfn,{Xi,Di}ni=1
(·|{Xi, Di}ni=1) =

P0(·|{Xi, Di}ni=1). Furthermore, we have

1

n

n∑
i=1

[fn,{Xi,Di}ni=1
(Xi, 1)− fn,{Xi,Di}ni=1

(Xi, 0)]

= − 1

n

n∑
i=1

∑
x̃∈X̃n(h,η)

k((Xi − x̃)/h) ≤ −k#In(h)

n
, (36)

where the last step follows since, for each i ∈ In(h), there is a x̃ ∈ X̃n(h, η) such that

max1≤k≤p |x̃k −Xi,k|/h ≤ η.

Now let us consider the Hölder condition on fn,{Xi,Di}ni=1
. Let ` be the greatest integer

48



strictly less than γ and let Dr denote the derivative with respect to the multi-index r =

r1, . . . , rp for some r with
∑p

i=1 ri = `. Let x, x′ ∈ Rp. Let A(x, x′) ⊆ X̃n(h, η) denote the set

of x̃ ∈ X̃n(h, η) such that max{k((x− x̃)/h), k((x′ − x̃)/h)} > 0. By the support conditions

on k, there exists a constant K depending only on p such that #A(x, x′) ≤ K/ηp. Thus,

∣∣Drfn,{Xi,Di}ni=1
(x, d)−Drfn,{Xi,Di}ni=1

(x′, d)
∣∣

≤ h−`(K/ηp) sup
x̃∈A(x,x′)

|Drk((x− x̃)/h)−Drk((x′ − x̃)/h)|

≤ h−`(K/ηp)‖(x− x′)/h‖γ−`X = h−γ(K/ηp)‖x− x′‖γX ,

which implies that f̃n,{Xi,Di}ni=1
∈ Σ(C, γ) where f̃n,{Xi,Di}ni=1

(x, d) = hγC
K/ηp

fn,{Xi,Di}ni=1
(x, d).

By (36), the CATE under f̃n,{Xi,Di}ni=1
is bounded from above by −k hγC

K/ηp
#In(h)

n
, which, by

Lemma B.1, is bounded from above by a constant times hγn for large enough n on a probability

one event for hn a small enough multiple of n−1/p. Thus, there exists ε > 0 such that

the CATE under f̃n,{Xi,Di}ni=1
is bounded from above by −εn−1/p for large enough n with

probability one. On this probability one event,

lim inf
n

P0

(
ĉn ≤ −εn−γ|{Xi, Di}ni=1

)
= lim inf

n
Pf̃n,{Xi,Di}ni=1

(
ĉn ≤ εn−γ|{Xi, Di}ni=1

)
≥ lim inf

n
inf

f(·,0),f(·,1)∈Σ(C,γ)
Pf

(
1

n

n∑
i=1

[f(Xi, 1)− f(Xi, 0)] ∈ [ĉn,∞)

∣∣∣∣{Xi, Di}ni=1

)
≥ 1− α,

which gives the result.

B.2 Proofs of Theorems 4.2 and 4.3

We first give a lemma that is used to prove consistency of the nearest-neighbor variance

estimator. The proof is based on the arguments in Abadie and Imbens (2008) and it is

deferred to the supplemental materials.

Lemma B.2. Consider the fixed design model (1). Suppose that 1/K ≤ Eu2
i ≤ K and

E|ui|2+1/K ≤ K for some constant K, and that σ2(x, d) is uniformly continuous in x for

d ∈ {0, 1}. Let `j(i) be the jth closest unit to i, with respect to some norm ‖·‖, among units

with the same value of the treatment. Let û2
i = J

J+1
(yi −

∑J
j=1 y`j(i)/J)2, and let ani ≥ 0 be

a non-random sequence such that maxi ani → 0, and that
∑n

i=1 ani is uniformly bounded. If

maxiCn‖x`J (i) − xi‖ → 0, then
∑

i ani(û
2
i − u2

i ) converges in probability to zero, uniformly

over FLip(Cn).
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Theorems 4.2 and 4.3 follow from verifying the high level conditions of Theorem F.1

in Armstrong and Kolesár (2018a). In particular, we need to show that the weights k

(k̃∗δ for Theorem 4.2 and kmatch,M for Theorem 4.3) are such that
∑n

i=1 k(xi, di)ui/ sdk con-

verges in distribution to N(0, 1) (condition (S13) in Armstrong and Kolesár, 2018a) and∑
i û

2
i k(xi, di)

2/ sd2
k converges in probability to 1, uniformly over f ∈ FLip(Cn) (S14), where

sd2
k =

∑n
i=1 σ

2(xi, di)k(xi, di). We claim that both (S13) and (S14) hold if the weights satisfy

max1≤i≤n k(xi, di)
2∑n

i=1 k(xi, di)2
→ 0. (37)

Under the moment bounds on ui, Equation (37) directly implies the Lindeberg condition

that is needed for condition (S13) to hold. To show that it also implies (S14), note that

(S14) is equivalent to the requirement that
∑n

i=1 û
2
i ani−

∑n
i=1 σ

2(xi, ni)ani converges to zero

uniformly over f ∈ FLip(Cn), where

ani = k(xi, di)
2/

n∑
j=1

[σ2(xj, dj)k(xj, dj)
2].

By an inequality of von Bahr and Esseen (1965),

E

∣∣∣∣∣
n∑
i=1

(u2
i − σ2(xi, di))ani

∣∣∣∣∣
1+1/(2K)

≤ 2
n∑
i=1

a
1+1/(2K)
ni E|u2

i − σ2(xi, di)|1+1/(2K)

≤ max
1≤i≤n

a
1/(2K)
ni E|u2

i − σ2(xi, di)|1+1/(2K) ·
n∑
i=1

ani.

Note that, by boundedness of σ(x, d) away from zero and infinity,
∑n

i=1 ani is uniformly

bounded. Furthermore, it follows from (37), that max1≤i≤n ani → 0. From this and the

moment bounds on ui, it follows that the above display converges to zero. It therefore

suffices to show that
∑n

i=1(û2
i − u2

i )ani converges to zero. For the nearest-neighbor variance

estimator, this follows from Lemma B.2. We therefore just need to show that this holds

for the Nadaraya-Watson estimator with uniform kernel and bandwidth hn. Denote this

estimator by û2
i = (yi−f̂(xi, di))

2 where f̂(xi, di) =
∑

j∈Ni yi/#Ni andNi = {j ∈ {1, . . . , n} :

‖xj − xi‖X ≤ hn, di = dj}. Write

n∑
i=1

(û2
i − u2

i )ani =
n∑
i=1

(2yi − f̂(xi, di)− f(xi, di))(f(xi, di)− f̂(xi, di))ani
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=
n∑
i=1

(2ui + f(xi, di)− f̂(xi, di))(f(xi, di)− f̂(xi, di))ani.

The expectation of the absolute value of this display is bounded by

n∑
i=1

Ef [(f(xi, di)− f̂(xi, di))
2]ani + 2

n∑
i=1

Ef [|ui||f(xi, di)− f̂(xi, di)|]ani,

which is in turn bounded by a constant times max1≤i≤nEf [(f(xi, di)− f̂(xi, di))
2]. Since

Ef [(f(xi, di)− f̂(xi, di))
2] =

1

#N 2
i

n∑
j∈Ni

E[u2
j ] +

1

#N 2
i

(
n∑

j∈Ni

(f(xj, di)− f(xi, di))

)2

≤ max
1≤j≤n

E[u2
j ]/#Ni + max

j∈Ni
(f(xj, di)− f(xi, di))

2,

it follows that

sup
f∈FLip(Cn)

max
1≤i≤n

Ef [(f(xi, di)− f̂(xi, di))
2] ≤ K/ min

i=1,...,n
Ni + (hnCn)2.

If condition (19) holds for all η > 0, then the same condition also holds with η replaced

by a sequence ηn converging to zero. It follows that, under this condition, there exists a

bandwidth sequence hn with hnCn → 0 such that min1≤i≤n #Ni → ∞, so that under this

bandwidth sequence, the above display converges to zero.

Proof of Theorem 4.2. We need to verify that (37) holds for the weights k̃∗δ . By boundedness

of σ̃(xi, di) away from zero and infinity, (37) is equivalent to showing that

max1≤i≤n f̃
∗
δ (xi, di)

2∑n
i=1 f̃

∗
δ (xi, di)2

→ 0,

where f̃ ∗δ is the solution to the optimization problem defined by (8) and (10) with σ̃(x, d)

in place of σ(x, d). Since the constraint on
∑n

i=1

f̃∗δ (xi,di)
2

σ̃2(xi,di)
in (8) binds, the denominator is

bounded from above and below by constants that depend only on δ and the upper and lower

bounds on σ̃2(xi, di). Thus, it suffices to show that

max
1≤i≤n

f̃ ∗δ (xi, di)
2 → 0.
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To get a contradiction, suppose that there exists η > 0 and a sequence i∗n such that

f̃ ∗δ (xi∗n , di∗n)2 > η2 infinitely often. Then, by the Lipschitz condition, |f̃ ∗δ (x, di∗n)| ≥ η −
Cn‖x− xi∗n‖ so that, for ‖x− xi∗n‖ ≤ η/(2Cn), we have |f̃ ∗δ (x, di∗n)| ≥ η/2. Thus, we have

n∑
i=1

f̃ ∗δ (xi, di)
2 ≥

∑
i:di=di∗n

f̃ ∗δ (xi, di)
2 ≥ (η/2)2#{i : ‖xi − xi∗n‖ ≤ η/(2Cn), di = di∗n}

infinitely often. This gives a contradiction so long as (19) holds. This completes the proof

of Theorem 4.2.

Proof of Theorem 4.3. We need to show that (37) holds for the weights kmatch,M(xi, di) =

(1 + KM(i))/n. For this, it is sufficient to show that max1≤i≤nKM(i)2/n→ 0. To this end,

let UM(x, d) = ‖xj − x‖X where xj is the Mth closest observation to x among observations

i with di = d, so that KM(i) = #{j : dj 6= di, ‖xj − xi‖X ≤ UM(xj, di)}. When (20) holds

and n is large enough so that nG(an) ≥ M , we will have UM(x, d) ≤ an for all x ∈ X . By

definition of KM(i), the upper bound in (20) then implies KM(i) ≤ nG(an). Thus, it suffices

to show that [nG(an)]2/n = nG(an)2 → 0.

Let cn = nG(an)/ log n and b(t) = G(G−1(t))2/[t/ log t−1] (so that limt→0 b(t) = 0 under

the conditions of Theorem 4.3). Then an = G−1(cn(log n)/n) so that

nG(an)2 = nG(G−1(cn(log n)/n))2 = b(cn(log n)/n)
cn log n

log n− log cn − log log n
.

This converges to zero so long as cn increases slowly enough (it suffices to take cn to be the

minimum of log n and 1/
√
b((log n)2/n)).

B.3 Proof of Lemma 4.1

To prove Lemma 4.1, it suffices to show that, for i.i.d. variables wi taking values in Euclidean

space with finite support W , we have infw∈W #{i ∈ {1, . . . , n} : ‖w − wi‖ ≤ ε} → ∞ with

probability one. To this end, for any w and r, let Br(w) = {w̃ : ‖w − w̃‖ < r} denote the

open ball centered at w with radius r. Given δ > 0, let W̃δ be a grid of meshwidth δ on W .

If δ is chosen to be small enough, then, for every w ∈ W , there exists w̃ ∈ W̃δ such that

Bδ(w̃) ⊆ Bε(w). Thus, if δ is chosen small enough, the quantity of interest is bounded from

below by

min
w∈W̃δ

#{i ∈ {1, . . . , n} : ‖w − wi‖ < δ},
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where we note that the infimum is now a minimum over a finite set. Since each w ∈ W̃δ is

contained in the support of wi, we have minw∈W̃δ
P (‖w − wi‖ < δ) > 0, so it follows from

the strong law of large numbers that the quantity in the above display converges to infinity

almost surely.

B.4 Proof of Theorem 4.4

Let sdδρ,n and biasδρ,n denote the standard deviation and worst-case bias of the minimax

linear estimator and let sdmatch,1 and biasmatch,1 denote the standard deviation and worst-case

bias of the estimator with a single match (conditional on {(Xi, Di)
n
i=1}). Since worst-case

bias is increasing in δ and variance is decreasing in δ, and since the matching estimator

with M = 1 solves the modulus problem for small enough δ by Theorem 2.3, we have

biasδρ,n ≥ biasmatch,1. Thus,

1 ≤
bias

2

match,1 + sd2
match,1

bias
2

δρ,n + sd2
δρ,n

≤
bias

2

δρ,n + sd2
match,1

bias
2

δρ,n + sd2
δρ,n

≤ 1 +
sd2

match,1

bias
2

δρ,n + sd2
δρ,n

.

By the arguments in the proof of Theorem 4.1, there exists ε > 0 such that biasδρ,n ≥ εn−2/p

almost surely. In addition, by Theorem 37 in Chapter 2 of Pollard (1984), the condi-

tions of Theorem 4.3 hold almost surely (with G(a) and G(a) multiplied by some posi-

tive constants). Arguing as in the proof of Theorem 4.3 then gives the bound sd2
match,1 ≤

[2 max1≤i≤nK1(i)]2/n ≤ [2nG(an)]2/n for any sequence an = G−1(cn(log n)/n) with cn =

nG(an)/ log n → ∞. Plugging these bounds into the above display gives a bound propor-

tional to

G(G−1(cn(log n)/n))2n2/p+1 = b(cn(log n)/n)

[
cn(log n)/n

log n− log cn − log log n

]2/p+1

n2/p+1,

where b(t) = G(G−1(t))2/[t/ log t−1]2/p+1. If limt→0 b(t) = 0, then this can be made to

converge to zero by choosing cn to increase slowly enough. Similar arguments apply to the

FLCI and one-sided CI criteria.
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Table 1: Diagonal elements of the weight matrix A1/2 in definition of the norm (21) for the

main specification, A
1/2
main, and alternative specification, A

1/2
ne .

Earnings Employed

Age Educ. Black Hispanic Married 1974 1975 1974 1975

A
1/2
main 0.15 0.60 2.50 2.50 2.50 0.50 0.50 0.10 0.10

A
1/2
ne 0.10 0.33 2.20 5.49 2.60 0.07 0.07 2.98 2.93

Table 2: Results for NSW data, p = 1, A = Amain, C = 1.
Std. error

Criterion δ M Estimate bias homosk. robust cv0.05

Optimal estimator

RMSE 1.86 0.94 1.64 1.53 1.04 3.22
FLCI 3.30 0.94 1.81 1.40 0.96 3.52
one-sided CI 2.49 0.98 1.71 1.47 1.00 3.36

Matching estimator

RMSE 1 1.39 1.48 2.01 1.11 2.98
FLCI 18 1.26 2.21 1.39 0.89 4.12
one-sided CI 17 1.32 2.16 1.42 0.89 4.09

Notes: The tuning parameters δ (for the optimal estimator) and M (the number of matches for the
matching estimator) are chosen to optimize a given optimality criterion. bias gives the worst-case
bias of the estimator, and cv0.05 is the critical value for a two-sided 95% CI that depends on the
ratio of the worst-case bias to standard error.
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Figure 1: Optimal estimator and CIs for CATT in NSW data as a function of the Lipschitz
constant C.
Notes: Dashed line corresponds to point estimate, shaded region denotes the estimate ± its worst-
case bias, dotted lines give one-sided 95% heteroskedasticity-robust confidence bands, and a two-
sided 95% confidence band is denoted by solid lines.

60



C
A

T
T

b
ias

S
td

.
d

ev
.

R
M

S
E

C
I

len
gth

E
L

,
β

=
0.8

0.0 2.5 5.0 7.5 10.0

1.0

1.1

1.2

1.3

1.4

1.50

1.75

2.00

2.25

2.50

2.75

1.25

1.50

1.75

2.00

2.4

2.6

2.8

8.5

9.0

9.5

7.25

7.50

7.75

8.00

δ

Figure 2: Performance of the optimal estimator as a function of the parameter δ.

Notes: CATT gives the value of the point estimate, bias gives the worst-case bias, and “EL, β = 0.8”
corresponds to the 0.8 quantile of excess length of one-sided CI.
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Figure 3: Performance of the matching estimator as a function of the number of matches M .

Notes: CATT gives the value of the point estimate, bias gives the worst-case bias, and “EL, β = 0.8”
corresponds to the 0.8 quantile of excess length of one-sided CI.
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