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Abstract

We analyze the long-term workforce composition when the quality

of mentoring available to majority and minority juniors depends on

their representation in the workforce. A workforce with ≥ 50% ma-

jority workers invariably converges to one where the majority is over-

represented relative to the population. To maximize welfare, persis-

tent interventions, such as group-specific fellowships, are often needed,

and the optimal workforce may include minority workers of lower in-

nate talent than the marginal majority worker. We discuss the role of

mentorship determinants, talent dispersion, the scope of short-term in-

terventions, various policy instruments and contrast our results to the

classic fairness narrative.
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1 Introduction

Mentor relationships arise more readily between members of the same race,

gender or other socioeconomic group. This can discourage young adults from

selecting professions with few same-group mentors. As today’s graduates turn

into tomorrow’s mentors, this effect persists and may exacerbate over time.

The resulting labor force participation is suboptimal because young adults do

not internalize the social benefit they create by becoming a future mentor.

Affirmative action policies may reduce inefficiency, but what does the optimal

workforce look like and how persistent does the policy need to be?

Motivated by this question, we provide a dynamic labor market framework

to study inter-generational mentoring and its impact on labor force composi-

tion and total welfare. Our model builds on the following empirical findings:

First, mentoring relationships are stronger between members of the same de-

mographic group. Dreher and Cox Jr. (1996) find that female MBA students

and MBA students of color are less likely to form mentoring partnerships with

white men, and Ibarra (1992) finds differential patterns of network connectivity

across genders. Second, the lack of similar role models affects the academic

performance and labor market outcomes of minority students in ways that

cannot be explained by differences in innate ability. This is why same-group

teachers lead to a boost in student performance and graduation rates (Bet-

tinger and Long, 2005; Dee, 2004, 2007; Fairlie et al., 2014). Third, these

achievement differences arise early on and manifest themselves through dif-

ferent education choices. For instance, the undergraduate student body for

economics has roughly the same composition as the academic workforce, indi-

cating that the selection stems from education choices rather than differential

attrition patterns (Bayer and Rouse, 2016).

We study labor force evolution when it is governed by workers’ education

decisions. The cost of education is dictated by idiosyncratic talent and the

availability of mentors of the same group. However, juniors only account

for the mentoring they receive, not the mentoring they provide for the next

generation. Wages do not restore dynamic efficiency, because competition
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and free entry prevents firms from internalizing the effect of today’s hires on

tomorrow’s candidate pool. As a result, the long-run labor force composition

can be inefficient.

With the following example, we highlight some driving forces in our general

model and illustrate two of our key results: First, we show that the share of

minority workers in the welfare-maximizing labor force can be higher than in

the overall population. Second, we argue that the optimal intervention in such

a situation is persistent.

Motivating example. A population is comprised of overlapping genera-

tions. Each generation consists of 80% majority group members (i = 1) and

20% minority group members (i = 2). One fourth of each group are of high

talent (H), the remainder are of low talent (L). Each individual lives for two

periods. In the first period, each individual (junior) may invest into costly edu-

cation. In the second period, educated individuals (seniors) produce a surplus

of one, which they receive as a wage. From the senior workforce, ten leaders

are drawn at random and serve as mentors to currently enrolled juniors.

Low-talent individuals incur a private cost of c for education, high-talent

individuals incur no cost. Each student also receives a mentoring payoff of 1 if

at least one leader is from his own group.1 However, the education decision is

made before the identity of the mentors is revealed. As a result, a low-talent

individual invests if and only if the expected mentoring boost of 1− (1−φi)10

is large enough, or equivalently, when his own group makes up a large enough

fraction φi of the senior labor force. We set the cost of education to c =

2− 0.6510 ≈ 1.987, so that in an unregulated market, juniors invest whenever

their group makes up at least 35% of the senior workforce. High talent workers

always invest in education, and indeed this is socially optimal.

We are interested in steady state workforce compositions where the pool

of educated seniors equals the pool of students who invest. Table 1 reports

the composition of four candidate workforces. Without intervention, compo-

1For simplicity, we assume that the mentoring benefit is realized even if the cost of
education is zero.
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Composition (i) (ii) (iii) (iv)

H L H L H L H L
Majority participation • • • • • •
Minority participation • • • • • •

% majority workers 94% 80% 80% 50%
Total surplus 1.92 1.98 1.95 2.01

Table 1: Motivating Example. The table reports the share of majority workers
and the resulting surplus if the population segments indicated by •
participate in the workforce.

sition (i) describes the only steady state where all investment decisions are

individually rational. This composition excludes low-talent minority workers

from the workforce. One could argue this is not a fair market since individual

career outcomes favor the majority, even though there are no ex-ante talent

differences across groups. Equity concerns may thus justify a policy interven-

tion to reach a ‘fair’ composition such as (ii) or (iii). By either raising tuition

for group 1 or lowering tuition for group 2, the policy maker can make these

compositions individually rational. Perhaps surprisingly, welfare maximization

motivates even starker interventions. Total welfare accounts for the mentoring

externalities that workers exert on both low- and high-talent juniors; it is com-

puted as the sum of aggregate output (or wage) plus any mentoring benefits

net of education costs.2 In this example, welfare is maximized in composition

(iv), where the minority is over-represented in the workforce, resulting in a

50-50 split of the workforce at any point in time. To achieve this composition,

the policy maker needs to modify the participation incentives of the majority

through targeted interventions. �

Our general model also considers populations comprised of two groups and

the cost of education as a function of innate talent and mentoring quality.

However, we assume a continuous talent distribution and allow for other men-

2 If there are Hi high- and Li low-talent group-i workers, total welfare is given by aggre-
gate output

∑2
i=1Hi +Li plus mentoring benefits

∑2
i=1(Hi +Li)(1− (1− Hi+Li

H1+H2+L1+L2
)10)

net of education costs (L1 + L2)c.
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torship functions that can be micro-founded in various ways.

The key parameters in our model are talent dispersion, mentor capacity

and majority share. Talent dispersion measures the concentration of talent

in the population. If all individuals have equal talent, the dispersion is zero.

High-skill sectors (doctors, lawyers, professors) have high talent dispersion.

We assume no ex-ante differences in talent distribution across the two groups.

Mentor capacity captures the average number of mentees reached by a single

mentor or, as in our initial example, the likelihood that a given senior becomes

a mentor. This parameter is determined in practice by the type of mentor

interaction: Capacity is high for classroom instruction but low for one-on-

one coaching or when only a small fraction of seniors serve as role models or

mentors. Finally, majority share refers to the percentage of majority group

members in the overall population. The share is roughly 0.5 in the case of

gender and larger in the case of race in the United States, where around

76.5% of the population is white.3

Investment in education is generally inefficient. A temporary intervention

can move the economy from one steady state towards a more efficient one, as

long as it is strong enough to affect convergence. However, if the magnitude

of the intervention is too small, then the impact of a temporary intervention

can be short-lived. For example, Bettinger and Long (2005) found that the

positive effect of female instructors disappeared in some male-dominated fields.

Similarly, Casas-Arce and Saiz (2015) show that political parties that were

least affected by a gender-employment quota in Spain did not benefit in the

long run. In order to identify the best temporary intervention, we thus compare

total welfare generated at different steady states. We find that for sufficiently

high mentor capacity or talent dispersion, the optimal stable steady state

is such that top talent from both groups participate in the workforce. In

sectors with high talent dispersion, the economy naturally converges toward

this composition; but temporary affirmative action is warranted in sectors with

low talent dispersion where mentor capacity is high and the initial workforce

3See U.S. Census Bureau QuickFacts, as retrieved from https://www.census.gov/

quickfacts/fact/table/US/RHI125216 on 09/04/2019.

5

https://www.census.gov/quickfacts/fact/table/US/RHI125216
https://www.census.gov/quickfacts/fact/table/US/RHI125216


composition is nearly homogeneous. Undergraduate college education is such

an example where classroom instruction allows for a high ratio of mentees per

mentor, and learning relies on a broad set of skills. Thus, it may not be a

coincidence that university admissions belong to the most visible Affirmative

Action policies.

Yet, even the best steady state achieves less than maximal total welfare.

We show that the optimal workforce over-represents the minority when the two

population pools are of uneven size and mentor capacity is large. Consequently,

a patient planner should persistently intervene in favor of the minority in many

cases.

These policy implications are qualitatively different from those motivated

by fairness, whose objective is ‘equal opportunity for equal talent’ regardless

of group membership. This distinction is important because fairness was the

main driver behind the initial affirmative action movement, and its vocabulary

has since been adopted by the movement’s opponents (Leonhardt, 2012). If

fairness is the objective, affirmative action is primarily a remedy to histori-

cal injustice, and should render itself obsolete in a short time. Echoing this

view, past discrimination takes center stage in the debate surrounding recent

Supreme Court decisions on university admissions (Kahlenberg et al., 2014).

Persistent minority overrepresentation is not a ‘fair’ outcome: A minority

student is in fact ‘over-compensated’ for his lack of suitable mentors relative

to a majority student of equal talent. The crucial point of departure is that

the equality of the two students is fictional under mentoring externalities: The

minority student possesses mentoring skills that do more for future talent re-

cruitment than those of his majority twin. A welfare-maximizing intervention

remunerates him for that valuable skill. In particular, we show that the major-

ity share in the population matters: Gender-based policies eventually become

obsolete even under welfare maximization, but not necessarily those based on

race or other minority characteristics.

Finally, we look at concrete policy instruments. We consider educational

subsidies (scholarships), workplace hiring quotas, and mentor training. In our

framework, the optimal educational subsidies are budget neutral in the long
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run. Hiring quotas are equally effective only if the competitive environment

allows for group-specific wages. However, when wage disparities are restricted

due to cultural norms or firm-internal politics, hiring quotas cause significant

crowding out of majority workers in the middle of the talent distribution. Be-

cause wages remain high, some majority workers keep investing in ex-post

worth-less education and remain unemployed. This can result in strong op-

position to hiring quotas among educated majority workers who are excluded

from the labor market. To minimize this job insecurity, our model suggests

that efficient wages under a hiring quota are higher for minority than for ma-

jority workers. Wage gaps that favor men are thus particularly harmful if

they persist under hiring quotas, as is the case in Norway (Bertrand et al.,

2014). Finally, we show that a nearly fair labor market emerges both as a

stable steady state and as a close to optimal composition for large mentor

capacity or when mentorship frictions disappear. Thus, the need for market

intervention disappears if mentorship itself can be improved.

Our analysis is meant to be understood within a growing theoretical liter-

ature on workforce under-representation. The main takeaway from this litera-

ture is that different root causes of the observed hiring imbalance reach oppos-

ing verdicts on affirmative action: Under taste-based discrimination (Becker,

1957), affirmative action is essentially a zero-sum game where the benefit to

the minority is offset by a direct utility loss of the majority, as documented by

Besley et al. (2017) for political party leaders. Under statistical discrimina-

tion, employment quotas may actually reinforce negative stereotypes against

certain groups (Coate and Loury, 1993; Fang and Moro, 2011; Fryer Jr, 2007).

Indeed, when minority employment is mandated by law, firms may have to

hire minority members even if they are unskilled. This in turn may actually

reduce the minority’s returns to education and thereby further lower equilib-

rium skill investment. Also, stereotypes are in many cases based on biased

beliefs (Bohren et al., 2018; Bordalo et al., 2019). In the model of Bordalo

et al. (2016), the bias stems from the representativeness heuristic (Kahneman

and Tversky, 1972). If state-mandated diversity hires increase differences in

the observed skill distribution between minority and majority workers, these
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hires may exacerbate negative stereotypes. Finally, quotas are completely in-

effective in altering beliefs when agents infer their personal success probability

from their own group’s employment history as in Chung (2000). We comple-

ment this discussion by showing that the benefit of affirmative action policies

are understated and confounded if we ignore tangible mentoring complemen-

tarities.

Structurally, our analysis is in line with Ben-Porath (1967) who views hu-

man capital as being produced using innate talent and other inputs (which

could be mentoring). Our paper builds on and extends the analysis of Athey

et al. (2000), who study optimal promotion decisions in long-lived firms. We

both assume that seniors offer an additive mentorship boost to juniors of vary-

ing talent, and that the size of this boost is increasing in the availability of

same-group mentors. The crucial difference is that we do not assume that

the two population pools are of equal size. This is crucial to obtain policy

recommendations that go substantially beyond fairness concerns, and that re-

quire persistent intervention. Furthermore, unequal pools are arguably more

suitable to capture demographic differences such as race or a “glass ceiling ef-

fect” in multilevel organizations, which affects optimal promotions (see p.25).

Additionally, our results can be related to group identity norms as in Carvalho

and Pradelski (2018). Contrary to Becker and Tomes (1979), Restuccia and

Urrutia (2004) and Herskovic and Ramos (2017), we abstract away from in-

come differences and focus instead on cultural and gender differences. Their

analysis suggests that affirmative action is most effective if targeted towards

the lower end of the income distribution.

The remainder of the paper is structured as follows: In Section 2 we set up

our model of labor force participation and mentoring, and discuss a range of

parametrizations that demonstrate the versatility of our framework. In Sec-

tion 3, we analyze the steady states of an unregulated market and compare

the labor force composition between temporary and persistent policy interven-

tions. In Section 4, we contrast specific policy instruments and in Section 5,

we discuss the robustness of our findings. Section 6 concludes by relating our

analysis to the public discourse surrounding affirmative action.
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2 Model

2.1 General model

We study an overlapping generations model with a unit mass of heterogeneous

agents arriving in each period t ∈ N. Each agent is indexed by a talent x ∈ R
that is continuously distributed according to a cumulative distribution function

F . Each agent belongs to either the majority group i = 1 with probability

b ≥ 0.5 or the minority group i = 2 with probability 1− b. Group membership

is independent of talent, and we refer to b as the majority share. Hence, the

mass of newly arriving agents with talent greater than x is equal to b(1−F (x))

for the majority group and (1− b)(1− F (x)) for the minority group.

Participation in the labor force is voluntary. Upon birth, each agent has the

opportunity to elect an outside option with payoff zero. If an agent participates

in the labor force, he lives for two periods and is called a junior in the first,

and a senior in the second. As a junior, the agent pursues costly education.

As a senior, the agent seeks employment and acts as a mentor for new juniors.

Juniors incur a cost of education, which consists of a fixed cost c > 0

that is reduced both by the junior’s individual talent x and the group-specific

strength of mentoring µi. In a period with mass Li of group-i seniors and `i

of group-i juniors, the mentorship boost µi for group-i juniors is determined

by the mentorship function µ̃(Li, L¬i, `i, `¬i) ∈ [0, 1]. We introduce generic

structural assumptions in Section 2.2 and demonstrate the versatility of our

framework with parametric examples in Section 2.3.

Seniors seek jobs in a competitive and unsaturated labor market. Earnings

are determined through market forces: We assume that each unit mass of

seniors contribute π units to a firm’s profit flow. Assuming free entry of firms,

the wage in an unregulated labor market is then equal to wi = π for both

groups.

Individual rationality implies that a junior invests in education if and only

if her expected lifetime earnings outweigh the cost of education. For a group-i

junior with talent x who arrives in a period with L = (L1, L2) seniors of group

1 and 2, respectively, and ` = (`1, `2) participating juniors of group 1 and 2,
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respectively, education is individually rational if and only if

c− x− µ̃ (Li, L¬i, `i, `¬i) ≤ wi. (IR)

As in Athey et al. (2000), we assume that there are no complementarities

between talent and mentorship boost, and discuss the implications in Section 5.

Given a senior workforce L, the junior workforce ` corresponds to the mass

of new arrivals for whom (IR) holds, i.e. the solution to{
`1 = b (1− F (c− µ̃(L1, L2, `1, `2)− w1))

`2 = (1− b) (1− F (c− µ̃(L2, L1, `2, `1)− w2))
(1)

for w1 = w2 = π. In a regulated economy, wages are determined endogenously

(see Section 4). As juniors turn into seniors, the dynamic system of labor force

participation is characterized by Lt+1 = `t.

We are primarily interested in the group representation of a constant labor

force, where Lt ≡ (φL, (1 − φ)L), and refer to φ ∈ [0, 1] as the labor market

composition and L ∈ [0, 1] as its total size. Without intervention, the labor

force is constant only at a steady state where `t = Lt = L̂ := (φ̂L̂, (1 − φ̂)L̂)

solves Equation (1). The steady state is (Lyapunov) stable if for all ε > 0,

there exists a δ > 0 such that if ‖L0− L̂‖ < δ, then ‖Lt− L̂‖ < ε for all t > 0.

We assume that scaling the entire population has no impact on mentorship

quality, which implies that µ̃ is homogeneous of degree zero,

µ̃(Li, L¬i, `i, `¬i) ≡ µ̃(kLi, kL¬i, k`i, k`¬i) ∀k > 0. (M1)

To simplify notation, we then mostly use the one-dimensional restriction µ :

[0, 1]→ [0, 1],

µ(φi) := µ̃(φi, 1− φi, φi, 1− φi), (2)

to describe the mentorship boost in any constant labor force with an own-group

share φi = Li
Li+L¬i

∈ {φ, 1− φ}, irrespective of total size L = L1 + L2.

A social planner can, in principle, induce any workforce composition and

size, even if it is not a steady state. To determine the socially optimal work-
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force composition, we maximize total surplus in a constant labor force. This

welfare metric is relevant for a patient social planner who cannot adjust his

diversity targets over time. Total surplus is measured per generation as to-

tal productivity net educational investments. A group-i worker of talent x

generates an individual surplus of π − c + x + µi by participating, and zero

otherwise. Integrating over all agents, the total surplus for a constant labor

force of composition φ and size L yields

S(φ, L) = b

∫
x≥x̂1

(
π − c+ x+ µ(φ)

)
dF (x) (3)

+ (1− b)
∫

x≥x̂2

(
π − c+ x+ µ(1− φ)

)
dF (x)

where x̂1 = F−1
(
1− φ

b
L
)

and x̂2 = F−1
(
1− 1−φ

1−bL
)

denote the marginal talent

of group 1 and 2 workers, respectively. Perfect competition in the hiring

market ensures that this surplus is entirely captured by educated juniors; their

expected lifetime earnings outweigh their cost of education.

To position our findings within the policy debate around affirmative action,

we formally define a fair labor market of constant workforce (φL, (1−φ)L) as

one where no individual could be made better off by being born into the other

group, i.e. w1 + µ(φ) = w2 + µ(1 − φ). The labor market is biased towards

the majority (minority) if being born into this group is welfare enhancing,

i.e. w1 + µ(φ) > (<)w2 + µ(1 − φ). We believe that this is how “fairness”

is commonly understood in the public discourse. Finally, we say that a labor

force is dominated by the majority (minority) if more than half of the labor

force belongs to that group, φ > (<) 0.5, and over-represents the majority

(minority when the share of workers belonging to that group is larger than

the corresponding population share, φ > (<) b. Note that whenever b > 0.5,

a labor force can be dominated by the majority yet still over-represent the

minority.
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2.2 Mentorship and talent distribution

We now describe the general structural assumptions that we impose on the

mentorship function and the talent distribution. We illustrate the versatility

of the framework with two concrete parametric examples in Section 2.3.

Mentorship. The mentorship function µ̃ : [0, 1]4 → [0, 1] describes the util-

ity boost µ̃(Li, L¬i, `i, `¬i) experienced by a group-i junior in a period with

Li (L¬i) own-group (opposite-group) seniors and `i (`¬i) own-group (opposite-

group) juniors. We assume that µ̃ is continuously differentiable, and that in

any mixed labor force, an increase in the junior workforce weakly lowers the

quality of mentorship, while an increase in own-group seniors strictly improves

the quality of mentorship,

∂µ̃

∂`i
≤ 0,

∂µ̃

∂`¬i
≤ 0,

∂µ̃

∂Li
> 0 over (0, 1]4. (M2)

The sign of ∂µ̃/∂L¬i can be positive, as would be expected when cross-group

mentorship is effective. However, it could also be negative, when search fric-

tions make it harder to find an own-group mentor in a senior workforce that is

dominated by the opposite group. We only require that adding an own-group

senior is weakly more beneficial than adding an opposite-group senior,

∂µ̃

∂Li
≥ ∂µ̃

∂L¬i
, (M3)

and that adding an own-group junior lowers mentoring weakly more than an

opposite-group junior,
∂µ̃

∂`i
≤ ∂µ̃

∂`¬i
. (M4)

To determine how specific features of the mentorship function affect the la-

bor force composition, it is useful to consider a family of mentorship functions

{µ̃q} identified by a single parameter q > 0 which we call the mentor capacity.

The mentor capacity affects both the total and the marginal strength of men-

torship. Letting µq denote the one-dimensional restriction of µ̃q according to
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Equation (2), we assume that the mentorship boost µq(φ) in any mixed labor

force φ ∈ (0, 1) is pointwise increasing in q and satisfies the limits

lim
q→0

µq(φ) = 0, lim
q→∞

µq(φ) = 1, and lim
q→∞

µ′q(φ) = 0. (M5)

In other words, high mentor capacity ensures a near-maximal mentoring boost

at all representations φ ∈ (0, 1). Letting

Mq(φ) := φµq(φ) + (1− φ)µq(1− φ) (4)

denote the total surplus generated by mentorship, we assume that for any

φ > 0.5, there exists Qφ ∈ R such that

M ′
q(φ) < 0 ∀q ≥ Qφ. (M6)

This assumption plays a key role in resolving the tension between talent and

mentoring. It ensures that talent is the deciding factor for large enough mentor

capacity, and skews the composition that maximizes mentorship surplus Mq(φ)

towards 0.5. We leave it to the parametric examples in the next section to

convince the reader that the condition holds under a wide range of mentorship

mechanisms.

Finally, to discuss stability, we need a technical condition that for all men-

tor capacities q the partial derivatives converge at comparable rates. Formally,

we assume that for any δ > 0, there exists a bound Kδ > 0 such that

‖∇µ̃q(φ, 1− φ, φ, 1− φ)‖∞ < Kδµ
′
q(φ) ∀φ ∈ (δ, 1− δ), ∀q > 0. (M7)

This allows us to derive our main results by considering only the one-dimensional

restriction µ rather than the full mentorship function µ̃.

Talent. The cumulative talent distribution function F is continuously differ-

entiable in x with full support over (xF , x̄F ), for some xF , x̄F ∈ R∪{±∞}. For
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realism and tractability, we assume that the range of talent is large enough,

xF > c− π − µq(0.5) and xF < c− π − M̄, (F1)

where M̄ = max
{

1, supφ∈[0,1]Mq(φ) + (1− φ)M ′
q(φ)

}
< ∞ is determined by

the mentorship function. The first condition ensures that the most talented

juniors have positive individual surplus in a constant labor force with an equal

mass of either group. This is necessary for positive labor supply in any mixed

steady state. The second condition ensures that the least talented workers

have negative individual surplus under any mentoring boost (since µ(φ) ≤ 1

always) and their participation also lowers social surplus. This simplifies some

of the proofs because we do not have to worry about corner solutions, while

no substantive insights are lost.

To determine the role of talent on the labor force composition, it is useful

to consider a family of talent distributions {Fλ} identified by a single param-

eter λ > 0 which we call the talent dispersion. Talent dispersion measures

the spread of talent in the population, and we assume that the support of

Fλ weakly increases in the set-inclusion sense, with limλ→∞ x̄Fλ =∞. Conse-

quently, whenever Property (F1) holds for some λ and q, it also holds for all

larger λ′ ≥ λ or q′ ≥ q, by monotonicity of ~xFλ and µq(0.5). Further, for any

x that is (eventually) inside the support of Fλ, we assume that the hazard rate

converges to zero pointwise,

lim
λ→∞

F ′λ(x)

1− Fλ(x)
= 0. (F2)

Loosely speaking, this ensures that the upper tail grows fast relative to the

mass of agents with talent near x.

2.3 Parametric examples

There are various sensible assumptions regarding the mechanisms that deter-

mine the strength of mentoring, or regarding the talent distribution in the

population. In this section, we present a range of parametric examples that
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fit our general framework:

Mentorship. Our first example considers matching frictions, that are made

explicit in a discrete matching market.4 We consider random bipartite net-

work between n(L1 + L2) seniors and n(`1 + `2) juniors. Links are drawn

independently, and represent successful mentoring relationships. Members of

the same group i are linked with probability pii, members of opposite groups

with a lower probability pij < pii. Specifically, each mentor is assigned to q

mentees on average. Parameter q is high for industries where the relevant skills

are imparted through classroom instruction, and low where mentoring requires

individual coaching.5 Out of all mentees, a fraction s ∈ [0, 1) is drawn from

the pool of same-group juniors while the remainder is drawn from the entire

junior population (partial assortativity). A within-group mentor assignment

is always successful, while an across-group mentor assignment only with prob-

ability δ ∈ [0, 1) (homophily). Putting these together, the total probability6

for a link between a group-i senior and a group-j junior is equal to

pij =


sq
n`i

+ (1−s)q
n(`1+`2)

if i = j

δ (1−s)q
n(`1+`2)

otherwise.

4There is a vast empirical literature on the strong positive effects of same-group role
models and mentors. Notably, the performance gap between white and underrepresented
minority students drops by 20-50 percent in courses taught by a minority instructor (Fairlie
et al., 2014), and one year with an own-race instructor increases math and reading scores by
2 to 4 percentile points (Dee, 2004). These performance boosts are especially pronounced
for minority students of the highest ability levels (Carrell et al., 2010; Ellison and Swanson,
2009). The literature also documents a bias where faculty fails to identify talented minor-
ity students (Card and Giuliano, 2016), bases track recommendation on gender stereotypes
(Carlana, 2019) or perceives other-race students as inattentive (Dee, 2005). Similar pos-
itive effects arise when schools are segregated by gender (Jackson, 2016), suggesting that
peer effects may amplify such patterns. Fully assortative matching would solve this prob-
lem but is rarely feasible, particularly in professions with high degrees of specialization or
geographic fragmentation, where mentor assignment is primarily dictated by expertise or
location. Moreover, if mentoring occurs in groups, assortativity reduces benefits of peer
group diversity and can raise segregation concerns.

5Decreasing trends in the time invested in mentoring (DeLong et al., 2008) will also affect
market dynamics through this channel.

6For n large enough, the link probabilities are non-degenerate.
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A junior enjoys a mentorship boost of 1 if and only if he or she is in at least

one successful mentoring relationship. In a very stark fashion, this captures

the idea that there are decreasing returns to scale from mentorship for an

individual junior.

By the Law of Rare Events, the number of mentors per junior can be

approximated by the Poisson distribution as n grows. The success probability

of finding a mentor, and hence the expected mentorship boost for a junior of

group i, converges to

µ̃(Li, L¬i, `i, `¬i) = 1− e−sq
Li
`i
−(1−s)q

Li+δLj
`1+`2 . (5)

Figure 1a shows how increasing mentor capacity (q ↑), improving across-group

mentoring (δ ↑), or increasing assortativity (s ↑) impacts the shape of the men-

torship function µ̃. Note that (M4) is satisfied since assortativity is imperfect

(s < 1), and (M3) is satisfied since group-match matters (δ < 1).

Our second example expands upon the example in the introduction, and

views mentors primarily as role models.7 Formally, we assume that in every

generation q leaders are randomly appointed, and serve as role models for

juniors. The number of group-i role models is thus distributed according to

a Binomial distribution with success probability Li/(L1 + L2). A junior with

k ∈ N0 same-group role models enjoys a mentorship boost of 1 − δk for some

δ ∈ [0, 1). This incorporates a more subtle version of decreasing returns from

mentoring, and approaches the binary version from above when δ → 0. The

expected mentorship boost to a group-i junior is then equal to

µ̃(Li, L¬i, li, l¬i) = 1−
(
δLi + L¬i
Li + L¬i

)q
. (6)

Figure 1b shows how increasing the number of leaders (q ↑) or weakening the

decreasing returns (δ ↑) impacts the shape of the mentorship function µ̃. Note

7Role models are important as documented for example in Kofoed et al. (2019) who find
that cadets are more likely to pick their officer’s branch if they have the same gender or race.
Similarly, Porter and Serra (2019) find that female economics students who are exposed to
female role models are more likely to choose economics as their major.
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(a) random assignment of mentors
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(b) random appointment of role models

Figure 1: Parametric mentorship functions. Solid lines indicate mentor func-
tions for q = 2 (yellow), q = 5 (blue) and q = 20 (pink) with
δ = s = 0. Increasing δ or s lowers the slope and curvature of the
mentoring function as indicated by the dashed lines.

that (M3) is satisfied because returns from additional mentors are decreasing

(δ < 1).

We share the term ‘role models’ with Chung (2000), but we reach different

conclusions because of different assumptions on the benefits that juniors reap.

In Chung (2000)’s model, the only information learned from a role model is

whether “someone like me” can succeed in a world that is static. In temporarily

lowering the hurdles for one group, affirmative action makes their success less

meaningful to post-policy juniors. As also acknowledged by the author, we

believe this is a narrow view of what role models do. They teach us not only

if, but also how “someone like me” can succeed. There is actual, group-specific

knowledge created when people from one’s own group get to participate in the

labor force. Second, the value of role models goes beyond mere information.

Role models are also trail blazers, who transform the working culture into one

that is more welcoming for successors like them.

Talent. In terms of the talent distribution, our results are driven by the

talent dispersion λ. High talent dispersion means that a small elite possesses

abundant talent, low dispersion reduces this heterogeneity. In applications, λ

is particularly large for specialized education that requires rare skills, such as
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for doctors, lawyers or actors.

Formally, we only require the conditions discussed in Section 2.2. Prac-

tically, we are mainly interested in families of distribution where the mean

talent is constant while the variance increases with λ. Good candidates are

the normal distribution with any fixed mean and variance λ, the gamma dis-

tribution with fixed mean and scale parameter λ or the uniform distribution

over (−λ, λ). However, the results also apply when dispersion increases along

with the mean. For instance, talent could be determined by the sum of k

different skills, each exponentially distributed with mean λ, which would then

yield a Gamma distribution with rate parameter k and shape λ.

The most striking difference between these families lies in the range of

possible talent. In the normal distribution, talent is unbounded both above

and below. The Gamma distribution imposes a lower bound on talent, and as

λ increases, the likelihood of near-zero talent increases. Finally, the uniform

distribution imposes both an upper and lower bound on talent, but the range

is increasing in λ.

3 Optimal Labor Force Composition

In this section, we determine the labor force composition that emerges in an

unregulated steady state, and then show that the composition is generally sub-

optimal. Intuitively, mentoring complementarities generate a tension between

talent recruitment and mentoring efficiency: Only a homogeneous labor force

(φ ∈ {0, 1}) ensures perfect within-group mentor assignments, but a mixed

labor force (0 < φ < 1) harnesses the top talent from both groups.

3.1 Steady States of an unregulated economy

In an unregulated economy, each worker earns his marginal product, w1 =

w2 = π. The break-even talent in a steady state of composition φ̂ is given by

x̂1(φ) := c− π − µ(φ) and x̂2(φ) := c− π − µ(1− φ)
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for each group i. Property (F1) ensures that both x̂1(φ) and x̂2(φ) are strictly

above xF , and at least one of them is strictly below x̄F in a steady state.

This avoids corner solutions where all members of one group participate, or

where no one from either group participates. The assumptions do not rule out

homogeneous steady states where only one group participates, i.e. φ̂ = 0 with

x̂1(0) > x̄F or φ̂ = 1 with x̂2(1) > x̄F .

Our first result identifies necessary and sufficient conditions for each type

of steady state, and shows that mixed stable steady state are generally biased

towards the majority. We say that the steady states of an economy tend

toward a finite subset Φ ⊂ [0, 1] as a parameter tends to infinity if and only if

for every δ > 0, all steady states (φ̂, L̂) satisfy min
φ′∈Φ
|φ̂− φ′| < δ for sufficiently

large parameter values.

Proposition 1 (Steady States). Consider an economy that satisfies Prop-

erty (F1).

(a) The economy admits two homogeneous steady states φ̂ ∈ {0, 1} if and only

if the most able individuals require some mentorship boost to participate,

c− x̄F − µ(0) ≥ π. (hSS)

The homogeneous steady states are stable whenever the inequality is strict.

(b) The economy always admits a mixed steady state φ̂ ∈ (0, 1).

(c) If b > 0.5, any majority-dominant workforce converges to a steady state

that is biased towards the majority.

(d) As mentor capacity q →∞, the economy admits a stable steady state near

b. The steady states of the economy tend towards {0, b, 1}.

(e) As talent dispersion λ→∞, the economy admits a stable steady state near

b. The steady states of the economy tend towards {b}.

Proof. See Appendix A.2.1.
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We find that when mentoring is required for investment of even the most

educated individuals (hSS), a stable homogeneous steady state exists (claim a).

This is precisely because group-i investment ceases once the group is severely

underrepresented in the workforce.

Every economy also admits at least one mixed steady state, though it

may be unstable (claim b). An economy may admit multiple stable steady

states, including some where the workforce is dominated by the population

minority, φ̂ < 0.5. South Africa is an example that readily comes to mind,

where 80% of the economically active population is Black African, yet they

still hold only 14.3% of top management jobs even over 20 years after the

end of apartheid (BBC News, 2019). Our analysis suggests that mentorship

disparities can sustain such a bias towards the minority indefinitely. Achieving

a fairer market may require active government intervention.

Whenever the majority initially dominates the workforce, however, men-

torship frictions invariably push the economy towards a bias in favor of the

majority (claim c). First, we show that a majority-dominant senior workforce

always attracts more juniors of the majority than of the minority. Still, that in

itself does not constitute a bias. Recall that a labor market is fair if the break-

even talent for each group is identical. Because talent is equally distributed,

a fair steady-state labor market with x̂1(φ) = x̂2(φ) would therefore mirror

the composition of the population, φ̂ = b. A bias towards the majority means

not just that the majority will always dominate the workforce (φ̂ > 0.5), but

that it will eventually be over-represented (φ̂ > b). We show this by ruling out

any steady states with composition φ̂ ∈ (0.5, b]. To relate this to the example

above, it means that minority dominance never emerges spontaneously, but

is always the result of active interventions that institute minority rule either

by forcing an initial composition φ < 0.5 or artificially skewing the payoffs in

favor of the minority group.

Finally, if either mentor capacity or talent concentration is large, labor

supply hardly responds to differences in mentor availability. If q is large, this

is because even a small representation yields a near-maximal mentorship boost;

if λ is large, this is because there are very few juniors in the middle of the talent
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distribution who could be swayed to participate with mentorship. Thus, for

any interior φ, the ratio of group-1 to group-2 individuals with talent above

x̂i(φ) converges to b : 1− b, ruling out any other steady states.

3.2 Welfare-maximizing steady state

In a first step, we provide policy recommendations for interventions that are

limited in time. A patient social planner would then redirect the economy

towards the steady state that maximizes surplus. We denote this composition

by φ∗SS.

Proposition 2 (Optimal Steady State). For sufficiently large mentor capacity

q or high talent dispersion λ, the surplus-maximizing (stable) steady state is

nearly fair, φ∗SS ≈ b.

Proof. See Appendix A.2.2.

As mentor capacity increases, even a handful of minority mentors can pro-

vide a near-perfect boost to minority juniors. As a result, the efficiency ten-

sion resolves in favor of talent recruitment, and surplus is maximized at a

nearly fair steady state. Highly concentrated talent makes all other workforce

compositions unsteady, and so that part of the result follows directly from

Proposition 1(e). In other words, temporary market intervention is warranted

when minority participation threatens to vanish in an industry where men-

toring is sufficiently broad and differences in talent are not very pronounced.

This makes sectors with low specialization and mentoring through classroom

instruction (for example undergraduate education) prime candidates for tem-

porary course correction in favor of the underrepresented group.

Still, temporary intervention does not achieve a workforce that accurately

reflects the diversity in the population. Although the mixed steady states tend

towards fairness, the minority remains underrepresented at the mixed steady

state in the sense that φ̂ > b for any finite q or λ by Proposition 1(c). This

is because minority mentors are harder to come by, making it impossible to

sustain proportional participation without ongoing intervention.
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Figure 2: Social surplus as a function of labor force composition φ.
Figures are obtained using mentorship function (6), uniform talent distribution
U(−1, 1), and parameter values b = 0.7, c = 2.2, π = 1, δ = 0 and q = 5.

3.3 Optimal long-run intervention

Perhaps surprisingly, we now show that an optimal long-term policy often

over-represents the minority. In doing so, we are agnostic about the exact

implementation of the policy goal. We simply assume that the planner can

dictate each individual participation decision, which is equivalent to choosing

the marginal talent of participants in either group. In Section 4, we show that

the optimal policy can be implemented through educational scholarships or

hiring quotas.

Before stating the proposition, it is useful to visualize the surplus function

defined in (3). Figure 2 depicts the maximal surplus across compositions. In

this example, the optimal labor composition is biased in favor of the minority

(φ∗ < b), but the steady state composition is biased in favor of the majority

(φ̂ > b). The surplus generated under the optimal composition φ∗ is 9%

higher than the steady-state surplus. The figure also illustrates that a fair

labor market (with composition b) achieves a near-optimal surplus, and may

be easier to implement for political reasons. The shape of the surplus function

in this example is typical. For small mentor capacity, the optimum is found

at the right boundary (φ∗ = 1). For large mentor capacity, the optimum is

majority dominant but biased in favor of the minority. The next proposition

formalizes these claims.
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Proposition 3 (Optimal Intervention). The optimal labor force composition

φ∗ depends on mentor capacity q as follows:

(a) If c − π > x̄F and q is sufficiently small, a homogeneous labor force is

optimal.

(b) If b > 0.5, the optimal labor force is always dominated by the majority,

φ∗ > 0.5. However, as long as mentor capacity is sufficiently large, q > Q,

the optimal labor force is biased in favor of the minority, φ∗ ∈ (0.5, b).

(c) The optimal composition converges to that of the population limq→∞ φ
∗=b.

For large enough talent dispersion λ, the surplus-maximizing economy is biased

towards the minority (majority) whenever M ′
q(b) < 0 (M ′

q(b) > 0).

Proof. See Appendix A.2.2.

Figure 3 illustrates the different regions described in the proposition by

plotting the optimal composition φ∗ as a function of the mentor capacity q. We

start by observing that whenever there is a population majority, the optimal

labor force is always dominated by that group (see claim b). In the South

Africa example mentioned above, this would motivate an intervention in favor

of the dominated majority.

When the maximal talent is not too high and mentor capacity is small,

we then show that the most efficient labor force excludes the minority (claim

a, region A in Figure 3). Including even just the most talented minority

members dilutes mentoring for the majority, and this effect can outweigh for

small mentor capacities. Note however, that a homogeneous labor force is

never optimal when the upper bound on talent, x̄F , is large enough.

Larger mentor capacities make the mentoring dilution less costly for the

majority. At some point, this implies that the optimal labor market is actually

biased in favor of the minority (claim b, region B in Figure 3), though the size

of the bias disappears in the limit (claim c). In such a market, the policy maker

recruits minority workers with talent below the marginal majority worker – not

just as a transitory course correction, but as an ongoing policy. The stark result
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A B

Figure 3: Optimal composition as a function of mentor capacity q (solid line).
Stable steady state compositions are indicated with dashed lines.
Figure is obtained using mentorship function (6), uniform talent distribution
U [−1, 1], and parameter values b = 0.7, c = 2.2, π = 1, and δ = 0.

has a simple intuition: Workers don’t internalize their own positive mentoring

externality on future generations. When mentors are efficient (q large), the

social returns warrant minority subsidies that exceed the inherent mentoring

advantage of the majority.

A critical expression that emerges in the proof is whether M ′
q(b) is negative

or positive. This expression can be rewritten as

µ(b) + bµ′(b) < µ(1− b) + (1− b)µ′(1− b), (7)

which compares the mentoring gain from marginal over-representation between

the two groups. An additional majority participant enjoys a mentorship boost

of µ(b) and improves the available mentoring for his entire group of mass b by

µ′(b). When the marginal returns from mentoring are sufficiently decreasing,

it is more beneficial to instead add an additional minority participant, since

µ′(1 − b) � µ′(b). As long as talent is sufficiently dispersed, this is sufficient

to ensure that a minority bias is optimal (claim d).

Since a composition φ ∈ (0.5, b] never emerges in a steady state, Propo-

sitions 1 and 3 jointly imply that a sufficiently patient planner intervenes

persistently in favor of the minority in industries where mentoring has suffi-

ciently decreasing returns-to-scale, and individual surplus is primarily driven

by talent rather than mentoring. In particular, there is no reason to assume
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that affirmative action policies render themselves obsolete by virtue of their

own success. This is contrary to the 2003 Supreme Court ruling which argued

that “race-conscious admissions policies must be limited in time” and expected

them to disappear within 25 years.8

Proposition 3 also points to differences between race- and gender-based

affirmative action. Since both genders are equally prominent in the population

(b ≈ 0.5), we expect gender-based policies to be necessary only in the short run,

but see grounds for ongoing race-based policies (since b� 0.5). In other words:

Extrapolating from a model with equal population pools (Athey et al., 2000)

might lead us to believe that course corrections are not necessary in industries

where skill recruitment dominates mentoring – when in fact these are the

precise situations where surplus maximization requires ongoing intervention.

It is also useful to contrast our results with Athey et al. (2000)’s conjecture

regarding the “glass ceiling effect,” referring to the well-known phenomenon

that group-imbalance increases in higher echelons of the career ladder.9 In

their model, senior management plays the role of a surplus-maximizing so-

cial planner. The authors observe that for b = 0.5, a marginal population

increase of one group shifts the optimal labor force composition towards that

new majority. From that, they conjecture that (a) a population increase for

one group shifts the optimal bias towards this group, and (b) representation

inequalities are exacerbated at each level in an organizational hierarchy (Athey

et al., 2000, p.778f). Our analysis warrants a more nuanced view: (a) While a

population increase shifts the optimal workforce representation towards that

group, the bias may actually be in favor of the other group, and (b) faced with

an uneven middle management, optimal promotion decisions at the top may

over-represent the dominated group.10 Thus, mentoring frictions alone do not

provide a persuasive rationale for increasing attrition across echelons of the

career ladder, at least not if promotion decisions are surplus maximizing.

8Grutter v. Bollinger, 539 U.S. 306 (2003), pages 309-310.
9Matsa and Miller (2011) report that women only make up 6% of corporate CEO’s and

top executives, despite representing 47% of the labor force.
10Moreover, if promotions represent the top end of the talent distribution, there is no

reason to assume any interactions between levels at all.
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4 Policy Instruments

We now turn our focus to the practical implementation of a policy that modifies

labor participation. While the previous section determined the socially optimal

workforce L∗ = (φ∗L∗, (1 − φ∗)L∗) assuming direct control over the talent

cutoffs x∗1 = F−1
(
1− φ∗

b
L∗
)

and x∗2 = F−1
(
1− 1−φ∗

1−b L
∗), here we ask how

the policy maker can implement cutoffs (x∗1, x
∗
2) using available policy tools.

We compare three methods that can be expressed within our simple model:

group-specific tuition, hiring quotas and mentor training.

Educational incentives. The most direct market intervention modifies the

cost-benefit analysis of prospective students through a combination of group-

specific fellowships and tuition hikes. Let ∆ ∈ R2 denote such a transfer

schedule where ∆i represents the net transfer to individuals in group i. These

transfers are assumed to be available to all interested minority students. It is

straightforward that ability-based fellowships only affect the extensive margin

if the available pool exceeds the unregulated student supply.11 Because the

labor market remains unrestricted, expected returns to education remain equal

to w = π. Equation (1) ensures that participation L∗ is individually rational,

given a status quo labor force (L1, L2), if and only if

∆i = c− π − µ̃(Li, L¬i, L
∗
i , L

∗
¬i)− x∗i ∀i = 1, 2.

After one period of intervention, the status quo labor force becomes L∗, but

the policy needs to stay in effect since L∗ is generally not a steady state.

We now show that once the surplus-maximizing mixed labor force is reached,

it can be maintained in a way that is budget-balanced. Since there are φ∗

transfers of ∆1 for every 1− φ∗ transfers of ∆2, budget balance at L∗ requires

that

0 = φ∗∆1 + (1− φ∗)∆2. (8)

11This may explain why studies such as Prenovitz et al. (2016) fail to observe additional
minority recruitment for competitive scholarship programs on a limited budget.
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Consider now a change in the constant labor force by a marginal increase in

total size. As long as the labor force composition is maintained, the individual

surplus of any participating workers is unaffected, but the increase adds φ∗dL

group-1 workers with individual surplus −∆1 and (1− φ∗)dL group-2 workers

with individual surplus −∆2. Since L∗ is chosen optimally, the total effect

must be zero, which implies Equation (8).

Labor Force Quotas. Alternatively, the policy maker can restrict the re-

cruitment decisions of firms by setting caps on the group composition of new

hires. Norway is a prime example of such an approach, since it was the first

country to mandate quotas for managerial boards in publicly listed compa-

nies – a sector with high skill concentration. Spain and Iceland have since

implemented similar policies (Egan, 2012). Politicians typically distinguish

between so-called hiring “goals” and more explicit “quotas,” but that distinc-

tion is largely semantic from an economic perspective (Fryer and Loury, 2005).

For that reason, we simply impose upper limits on the proportion of majority

group members among all educated new hires.12 We call a quota φ∗ binding

at L if it forces the firm to recruit more minority members than they would

otherwise. Formally, if ` denotes the solution to Equation (1) under wages

wi ≡ π, φ∗ is binding if and only if φ∗ < `1
`1+`2

.

With a quota, the policy maker controls only the composition of the mar-

ket, while market forces determine the size of the labor force. We study two

cases, depending on whether the market allows for wage differentials based on

minority membership. We need some new notation since regulation may jeop-

ardize employment security: We denote the mass of educated and employed

individuals by ` ≥ ` respectively. We assume that all educated group members

are equally likely to get hired since firms care only about productivity, so that

the expected earnings under wages wi are equal to `i/¯̀
i · wi.

When firms can choose wages freely, any oversupply of educated group-i

workers would drive wage wi to zero. As long as the mass of workers willing to

12Only quotas with restrictions on education can be effective. Otherwise, firms could
always costlessly meet any quota by hiring unqualified minority workers at a wage of zero.
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work at zero wage is small enough, this implies that all educated workers find

employment, ¯̀ = ` = (φ∗`, (1 − φ∗)`).13 Under a binding quota and given a

status quo labor force (L1, L2), the size of the cohort ` and the market wages

wi are then uniquely determined by the market clearing equations
φ∗` = b (1− F (c− µ̃(L1, L2, φ

∗`, (1− φ∗)`)− w1))

(1− φ∗)` = (1− b) (1− F (c− µ̃(L2, L1, (1− φ∗)`, φ∗`)− w2))

π = φ∗w1+ (1− φ∗)w2.

The first two expressions restate the individual rationality constraints (1).

The third equation is the zero-profit condition for firms with the required

share of minority workers. Note that it is equal to budget balance (8) when

wage bonuses are restated as subsidies ∆ = π − w. This implies that a

binding quota raises minority and depresses majority earnings relative to the

unconstrained market, w1 < π < w2. Our model does not distinguish between

monetary wages and other job perks; similar effects are obtained if firms offer

benefits that are geared towards the minority. It also implies that the social

planner and the myopic firms agree on the optimal labor size at the surplus-

maximizing composition. It may, however, take several generations until the

labor size approaches the optimal level, as illustrated by Figure 4a.

In some industries, social or legal pressure prohibits paying unequal wage

to employees in the same position, w1 = w2.14 The zero-profit condition forces

these market wages to π. However, a binding quota caps the demand for

group-1 workers at `1 = φ∗

1−φ∗ `2, while all educated minority workers are hired,

`2 = ¯̀
2. Workers factor this employment insecurity into their participation

13If there are many majority workers who obtain an education regardless of earnings,
market wages are an insufficient instrument to guide participation decisions. We omit the
formal conditions because we do not think that these offer additional insight into realistic
scenarios.

14This is the stated rationale behind the presidential memorandum ‘Advancing Pay Equal-
ity Through Compensation Data Collection’ (Presidential Memorandum, 79 Fed.Reg. 20751
(Nov.04, 2014), www.federalregister.gov/d/2014-08448). Firms also have internal incentives
to avoid group-specific wages, as pay gaps can have detrimental effects on worker morale
and firm output if the gaps are not easily accounted for by productivity differences (Breza
et al., 2017).
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Figure 4: Labor force evolution starting at the mixed steady state for t = 0,
under a quota that imposes the welfare-maximizing composition.
For each generation, the bars show the mass of minority (black), em-
ployed majority (gray) and unemployed majority participants (light
gray). Dotted lines indicate the welfare-maximizing workforce.
Figures are obtained using mentorship function (6), uniform talent distribution
U [−1, 1], and parameter values b = 0.7, c = 2.2, π = 1, δ = 0 and q = 5.

decision, transforming the individual rationality constraints (1) into{
¯̀
1 = b (1− F (c− µ̃(L1, L2, ¯̀

1, ¯̀
2)− φ∗

1−φ∗
¯̀
2

¯̀
1
π))

¯̀
2 = (1− b) (1− F (c− µ̃(L2, L1, ¯̀

2, ¯̀
1)− π)).

Job insecurity for the majority is the only driver for the change in participation

rates, and so this must occur in equilibrium, as illustrated in Figure 4b. In

practice, this means that majority workers waste their own resources on an

ex-post worthless education and dilute mentoring efficiency for everybody else.

Of course, such a feature greatly reduces the appeal of workplace quotas in

situations where wage is sticky or subject to social scrutiny.

Mentor training. For large mentor capacity q, the tension between talent

recruitment and mentorship efficiency disappears. A nearly fair labor market

emerges both as a stable steady state (Proposition 1), and this composition is

close to optimal (Proposition 3). Thus, the need for market intervention dis-
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appears if mentorship itself can be improved through cross-group exposure,15

mentor training, and networking support for minority youth.16 Our model can

be helpful in highlighting the benefits of increased mentor capacity, but esti-

mating the cost and feasibility of such improvements is mainly an empirical

question.

5 Robustness

Determinants of productivity. We currently assume that productivity

is binary and affected only by schooling. One natural extension is to also

allow for innate talent and mentoring to affect productivity directly, so that

education brings productivity of a worker with talent x and mentorship boost

µ by π1x+π2µ+π3. If firms can observe talent and vary wages by worker, then

their perfect competition ensures that workers still reap their entire individual

surplus. A change of parameters c̃ = 1
1+π2

c, π̃ = 1
1+π2

π3 and x̃ = 1+π1

1+π2
x

can then map this situation into our existing model. Indeed, the mapping

transforms individual surplus

π1x+ π2µ+ π3︸ ︷︷ ︸
productivity

− (c− x− µ)︸ ︷︷ ︸
cost

= (1 + π2)(π̃ − (c̃− x̃− µ))

into a constant multiple of the individual surplus in our standard model with

the new parameters. Since unregulated dynamics and social surplus are both

governed by the sign and relative size of individual surplus, the qualitative

results of our paper carry over unchanged.

15Dobbin and Kalev (2016) show that programs that increase contact among groups (in
particular formal mentorship programs or voluntary task forces) are most effective in af-
fecting the minority representation among managers. Similarly, Beaman et al. (2009) show
that increased exposure to female leaders (through a quota system) reduces biases.

16One of the main goals of the presidential initiative “My Brother’s Keeper” is to connect
young men of color to mentoring and support networks (Obama, Barack. “Remarks by the
President on ‘My Brother’s Keeper’ Initiative.” The White House, Office of the Press Secre-
tary, 27 Feb 2014, https://obamawhitehouse.archives.gov/the-press-office/2014/

02/27/remarks-president-my-brothers-keeper-initiative).
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Non-additive surplus. One limitation of our approach is the assumption

that talent and mentoring affect surplus additively. One can imagine scenarios

where the effectiveness of a given mentoring relationship depends not only on

the mentor’s group membership or education, but is affected (positively or

negatively) by mentor or mentee talent, and the mentor’s experience as both

a mentor and a mentee.

We share this assumption with Athey et al. (2000), but it is difficult to

relax. Mathematically, the main difficulty is the history-dependence in men-

toring and talent, which complicates the steady state analysis. It is, however,

possible to qualitatively anticipate the impact of non-additive surplus under

interventions that maintain a constant labor force. In these interventions, both

the distribution of educated talent and mentor experience are fixed in the long

term. When the minority is over-represented 0.5 < φ < b, the conditional

talent distribution among educated majority workers is left-censored, relative

to that of minority workers, and a typical majority student experiences bet-

ter mentoring. As such, over-representation is reinforced if low-talent students

have greater returns from mentorship, if there is a negative correlation between

individual talent and mentoring skill, or if poorly mentored students turn into

more “attuned” mentors later in life. The opposite is true if high-talent stu-

dents are more receptive mentees or if high-talent/well-mentored workers are

more resourceful mentors.

Uneven talent distribution. While we firmly believe that only a model

with equal talent distribution across groups can inform optimal policy, some

situations call for a “conditionally optimal” policy, given the planner’s con-

straints. For instance, a university may not be able to address systemic dif-

ferences in access to primary education and may be confronted with sizeable

test gaps across applicants from two groups. Our analysis also has relevance

for the optimal admission policy in these settings. In particular, assume that

the talent distribution F1 of the majority first order stochastically dominates

that of the minority, F2. Whenever L1 ≥ L2, the majority has an advan-

tage both mentoring-wise and talent-wise. In an unregulated economy, this

31



would inevitably lead to a bias in favor of the majority analogous to our result

from Proposition 1(c). Yet, letting φ = b(1−F1(x̂))
b(1−F1(x̂))+(1−b)(1−F2(x̂))

≥ b denote the

share of majority workers that arise from a fair labor force with x̂1 = x̂2 = x̂,

note that Property (M6) implies that for large enough mentor capacity q, the

marginal benefits from an additional minority mentor outweighs those from

an additional majority mentor. In turn, this implies that a bias in favor of the

minority is optimal, which requires persistent intervention. Thus, while the

minority may not be over-represented in the conditionally optimal workforce,

the bias would still be in favor of the minority, and achieving this bias would

still require ongoing intervention.

6 Conclusion

We do not want this paper to be read in isolation. Affirmative action has

many important consequences and we focus primarily on its interaction with

mentoring and its impact on workforce composition. However, we believe

that awareness of the surplus consequences of mentoring complementarities

is crucial for the public discussion. On the most basic level, the insights of

our model are these: People differ in their ability to recruit and mentor top

talent from different socio-demographic backgrounds. Often, mentors are most

effective within their own social group. Like any other skill set, it makes sense

to remunerate group-specific mentoring ability according to the shortness of

its supply and its impact on future surplus. However, such remuneration

does not arise in an unregulated economy due to firm competition because

minority workers do not account for their future positive externalities in their

education decisions. Affirmative action policies, in the form of scholarships

or hiring quotas, can act as a correcting force. To guide the design of the

optimal policy, a keen understanding of wage determination is necessary to

avoid unintended consequences.

Our main contribution is to show that the scale of these externalities can

be far larger than previous models suggest, to the point where they warrant

an on-going subsidy towards the minority that goes beyond a correction of
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historical under-representation. The optimal remuneration often generates a

target workforce that is more diverse than the population, where the net cost

of education is lower for the minority than for the majority. More specifically,

this arises in sectors that require rare skills, and when the marginal mentor-

ship gains from increased representation are larger for the minority than for

the majority. We consider concrete policy instruments to achieve the optimal

workforce composition. We argue in favor of widely available minority schol-

arships over hiring quotas, and encourage strategies that improve mentorship

and connectivity for minority workers.

A Additional Proofs

A.1 Mathematical Lemmata

This first lemma serves to simplify notation in subsequent proofs.

Lemma 1. Let m(φ) := 1
µ′(φ)
∇µ̃(φ, 1−φ, φ, 1−φ). Assumptions (M1) to (M4)

imply that the following hold for all φ ∈ (0, 1) and L > 0:

∇µ̃(φL, (1− φ)L, φL, (1− φ)L) =
µ′(φ)

L
m(φ) (9)

m1(φ) +m3(φ) = 1− φ (10)

m2(φ) +m4(φ) = −φ, (11)

m1(φ) > 0 ≥ m4(φ) ≥ m3(φ) (12)

m1(φ)m3(1− φ) ≤ m2(φ)m4(1− φ) (13)

m1(φ)m1(1− φ) ≥ m2(φ)m2(1− φ). (14)

Lastly, for any δ > 0, there exists Kδ ∈ R such that ‖m(φ)‖∞ < Kδ for all q

and all φ ∈ (δ, 1− δ).

Proof. The first conditions follows by homogeneity of degree zero (M1):

∇µ̃(φL, (1− φ)L, φL, (1− φ)L)
(M1)
=

1

L
∇µ̃(φ, 1− φ, φ, 1− φ) =

µ′(φ)

L
m(φ).
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The next two properties follow by homogeneity of degree zero (M1) and the

fact that µ is continuously differentiable:

m1(φ) +m3(φ) = lim
∆→0

µ̃(φ+ ∆, 1− φ, φ+ ∆, 1− φ)− µ(φ)

∆ · µ′(φ)

(M1)
= lim

∆→0

µ
(
φ+∆
1+∆

)
− µ(φ)

∆ · µ′(φ)
= lim

∆→0

φ+∆
1+∆
− φ

∆
= 1− φ,

m2(φ) +m4(φ) = lim
∆→0

µ̃(φ, 1− φ+ ∆, φ, 1− φ+ ∆)− µ(φ)

∆ · µ′(φ)

(M1)
= lim

∆→0

µ
(

φ
1+∆

)
− µ(φ)

∆ · µ′(φ)
= lim

∆→0

φ
1+∆
− φ

∆
= −φ.

The sign conditions Property (M2) imply that m1 is positive and m3,m4 are

negative, and Property (M4) imposes m3 ≤ m4.

To show Equation (13), note first that the left side is always weakly nega-

tive. Thus, the inequality is automatically satisfied whenever m2(φ) ≤ 0. Oth-

erwise, the result follows from multiplying the two inequalities (M3) and (M4).

Next, Property (M3) imposes m1 ≥ m2 which – as long as both m2(φ)

and m2(1−φ) are positive – directly implies condition (14). When m2(φ) and

m2(1 − φ) have opposite signs, inequality (14) holds simply because the left

side is positive and the right side is negative. Finally, when both m2(φ) and

m2(1−φ) are negative, their product is maximal when they both achieve their

lower bound

m2(φ)
(11)
= −φ−m4(φ)

(12)

≥ −φ and m2(1−φ)
(11)
= −(1−φ)−m4(1−φ)

(12)

≥ −(1−φ),

implying m2(φ)m2(1 − φ) ≤ φ(1 − φ). Since m1 > 0, the left side is minimal

at the lower bound

m1(φ)
(10)
= 1−φ−m3(φ)

(12)

≥ 1−φ and m1(1−φ)
(10)
= φ−m3(1−φ)

(12)

≥ φ,

hence m1(φ)m1(1− φ) ≥ φ(1− φ) ≥ m2(φ)m2(1− φ).

Lastly, the boundedness of m stems directly from the boundedness as-

sumption in Property (M7).
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Lemma 2. For any x, y ∈ (limλ→∞ xFλ ,∞), the talent distribution satisfies

lim
λ→∞

1− Fλ(x)

1− Fλ(y)
= 1 (15)

lim
λ→∞

∫ x̄Fλ

y

1− Fλ(x)

1− Fλ(y)
dx =∞. (16)

Proof. To show Equation (15), note first that it is without loss of generality

to assume that x ≥ y. By Property (F2), we can then write

1 ≥ 1− Fλ(x)

1− Fλ(y)
= 1− Fλ(x)− Fλ(y)

1− Fλ(y)
= 1−

∫ x

y

F ′λ(t)

1− Fλ(y)
dt

≥ 1−
∫ x

y

F ′λ(t)

1− Fλ(t)
dt

λ→∞−−−→ 1 + 0.

Furthermore, consider any M > 0. Since x̄Fλ →∞, there exists Λ1 such that

x̃ := x̄FΛ1
> 2M + y. Furthermore, there exists Λ2 such that 1−Fλ(x̃)

1−Fλ(y)
> 1/2 for

all λ > Λ2. Hence,∫ x̄Fλ

y

1− Fλ(x)

1− Fλ(y)
dx ≥ (x̃− y)

1

2
> M ∀λ > max {Λ1,Λ2} ,

which implies Equation (16).

A.2 Relegated proofs

A.2.1 Steady States

We can rewrite Equation (1) as

0= G(Lt,Lt+1) :=

[
Lt+1

1 − b
(
1− F

(
c− 1− µ̃(Lt1, L

t
2, L

t+1
1 , Lt+1

2 )
))

Lt+1
2 − (1− b)

(
1− F

(
c− 1− µ̃(Lt2, L

t
1, L

t+1
2 , Lt+1

1 )
)) ] (17)

which fully describes the evolution of the dynamic system as long as Lt1, L
t
2 >

0. Recall that a steady state L̂ is Lyapunov stable if for all ε > 0, there

exists a δ > 0 such that if ‖L0 − L̂‖ < δ, then ‖Lt − L̂‖ < ε for all t > 0. To

determine whether a steady state L̂ is stable, we will consider the linearization
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of the system in order to derive a sufficient condition for a steady state to be

stable and a sufficient condition for a steady state not to be stable. To simplify

notation, we write the Jacobian as

X(L̂) :=
∂Lt+1

∂Lt

∣∣∣∣
L̂

= −
[
∂G

∂Lt+1

]−1 [
∂G

∂Lt

]∣∣∣∣∣
Lt=Lt+1=L̂

.

Lemma 3. Let (Γ1,Γ2) ∈ C2 denote the eigenvalues of X(L̂). If |Γi| < 1 for

both i, then L̂ is Lyapunov-stable. If |Γi| > 1 for one i = 1, 2, then L̂ is not

Lyapunov-stable.

Proof. Note that on R2 all norms are equivalent in terms of convergence. Here,

we use the Euclidean norm and denote it by ‖·‖. We first recall that the eigen-

values are equal to the roots of the characteristic (second-order) polynomial

Det(X(L̂) − ΓI). As such, either both roots are real, or they are complex

conjugates of each other. In the case of complex eigenvalues, there exists a co-

ordinate system in which X(L̂) acts as a rotation followed by a multiplication

with |Γ1| = |Γ2| (“real canonical form”).

We distinguish between two cases to show both statements.

(i) First assume that Γ1,Γ2 6= 0. In this case, the discrete version of the

Hartmann-Grobmann Theorem in Zgliczyński et al. (2017) shows that it

is sufficient to consider the linearization of the problem, i.e.

Lt+1 − L̂ = X(L̂)(Lt − L̂).

If |Γ1|, |Γ2| < 1, let δ = ε and note that

‖L0−L̂‖ < ε =⇒ ‖X(L̂)t (L0−L̂)‖ ≤ max{|Γ1|, |Γ2|}t‖L0−L̂‖ < ε

for all t > 0. Hence, L̂ is Lyapunov-stable.

Next, assume |Γ1| > 1. If Γ1 is real, let v1 be the corresponding unit

eigenvector. If it is complex, let v1 be an arbitrary vector of length one.

Assume that L̂ is Lyaponuv-stable for some ε and δ. Let L0 = L̂+ δ′v1
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for δ′ < δ, so that ||L0 − L̂|| < δ. Note that

‖X(L̂)t(L0 − L̂)‖ = ‖δ′Γt1v1‖ = δ′ · |Γ1|t‖v1‖ t→∞−−−→∞.

In other words, there exists a large enough t such that ‖X(L̂)t(L0−L̂)‖ >
ε, which contradicts the assumption of L̂ being Lyapunov-stable.

(ii) Next, assume that Γ2 = 0 and denote the corresponding eigenvector v2.

Then, Γ1 is real. Let the corresponding unit eigenvector be v1. Then,

we can write Lt− L̂ = at1v
1 + at2v

2 for any t and write the system in the

coordinates v1,v2 as follows:

Lt+1 − L̂ =

(
Γ1 0

0 0

)
(Lt − L̂) + o

(
‖Lt − L̂‖

)
.

First, consider the case |Γ1| < 1 and fix an ε > 0. Then, for any η ∈
(|Γ1|, 1) and for a sufficiently small δ < ε, whenever ‖L0 − L̂‖ < δ,

‖Lt+1 − L̂‖ ≤ ηt‖L0 − L̂‖ < δ < ε by induction over t. Hence, L̂ is

Lyapunov stable.

Next, assume |Γ1| > 1 and assume that L̂ is Lyapunov-stable. First,

note that for all η ∈ (1, |Γ1|), ‖Lt − L̂‖ < ε with ε > 0 sufficiently small

and coordinates with respect to the basis {v1,v2},

(Lt+1
1 − L̂1)2 − (Lt+1

2 + L̂2)2 = Γ2
1(Lt1 − L̂1)2 + o

(
‖Lt − L̂‖2

)
≥ η2

(
(Lt1 − L̂1)2 − (Lt2 − L̂2)2

)
.

(18)

Consider such an ε > 0, the δ > 0 from the definition of Lyapunov

stability, and any ‖L0−L̂‖ < min{δ, ε} with (L0
1− L̂1)2−(L0

2− L̂2)2 > 0.

Then, the estimate (18) holds for all t. Hence, lim
t→∞

(Lt1 − L̂1)2 − (Lt2 −

L̂2)2 =∞. This contradicts the assumption that ‖Lt − L̂‖ < ε for all t.

Thus, L̂ cannot be Lyapunov stable.

Next, we apply these findings to the dynamic system from Equation (1)

more concretely. To this end we introduce some more notation. At a steady

37



state with composition φ, the group-i labor force is given by the mass of

individuals with talent above x̂i(φ),

L̂1(φ) := b(1− F (x̂1(φ))) and L̂2(φ) := (1− b)(1− F (x̂2(φ))). (19)

Since the mentorship boost increases with representation, L̂′1(φ) ≥ 0 ≥ L̂′2(φ)

for all compositions φ ∈ (0, 1). We denote total size by L̂(φ) := L̂1(φ)+ L̂2(φ).

With a slight abuse of notation we use L̂i to denote both the functions (19)

which is defined for arbitrary compositions and the steady state labor force

participation. We recover the following stability conditions.

Lemma 4. A mixed steady state of composition φ̂ ∈ (0, 1) and size L̂(φ̂) is

stable if both of the following conditions hold:

0 > −L̂(φ̂) + (1− φ̂)L̂′1(φ̂)− φ̂L̂′2(φ̂) (20)

0 < 2L̂(φ̂)2 − L̂(φ̂)
(
(1− φ̂+m3(φ̂))L̂′1(φ̂)− (φ̂+m3(1− φ̂)L̂′2(φ̂)

)
(21)

+ L̂′1(φ̂)L̂′2(φ̂)
(
φ̂(m1(φ̂) +m2(1− φ̂)) + (1− φ̂)(m1(1− φ̂) +m2(φ̂))

)
.

If one of the inequalities is reversed, the steady state is unstable.

Proof. At the steady state labor force L̂t = L̂t+1 = (φ̂L̂(φ̂), (1 − φ̂)L̂(φ̂)), we

can write the matrix

X(φ̂L̂(φ̂), (1− φ̂)L̂(φ̂)) := −
[
∂G

∂Lt+1

]−1 [
∂G

∂Lt

] ∣∣
Lt=Lt+1=(φ̂L̂(φ̂),(1−φ̂)L̂(φ̂))

as

−

 1− L̂′1(φ̂)m3(φ̂)

L̂(φ̂)
−L̂′1(φ̂)m4(φ̂)

L̂(φ̂)

L̂′2(φ̂)m4(1−φ̂)

L̂(φ̂)
1 + L̂′2(φ̂)m3(1−φ̂)

L̂(φ̂)

−1  −L̂′1(φ̂)m1(φ̂)

L̂(φ̂)
−L̂′1(φ̂)m2(φ̂)

L̂(φ̂)

L̂′2(φ̂)m2(1−φ̂)

L̂(φ̂)
L̂′2(φ̂)m1(1−φ̂)

L̂(φ̂)

 .
Recall that the possibly complex eigenvalues Γ1,Γ2 are the roots of the char-

acteristic polynomial

Det(X(φ̂L̂(φ̂), (1− φ̂)L̂(φ̂))− ΓI) =
1

γ2

(γ0 + γ1Γ + γ2Γ2)
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with

γ0 = −L̂′1(φ̂)L̂′2(φ̂)
(
m1(φ̂)m1(1− φ̂)−m2(φ̂)m2(1− φ̂)

)
≥ 0

γ1 = −L̂(φ̂) (L̂′1(φ̂)m1(φ̂)− L̂′2(φ̂)m1(1− φ̂))

− L̂′1(φ̂)L̂′2(φ̂)
(
m1(φ̂)m3(1− φ̂) +m1(1− φ̂)m3(φ̂)

−m2(φ̂)m4(1− φ̂)−m2(1− φ̂)m4(φ̂)
)
≤ 0

γ2 = L̂(φ̂)2 − L
(
L̂′1(φ̂)m3(φ̂)− L̂′2(φ̂)m3(1− φ̂)

)
− L̂′1(φ̂)L̂′2(φ̂)(m3(φ̂)m3(1− φ̂)−m4(φ̂)m4(1− φ̂)

)
> 0

Since L̂′1(φ̂) ≥ 0 ≥ L̂′2(φ̂) and L̂(φ̂) = L̂1(φ̂) + L̂2(φ̂) > 0 in any steady state,

the signs on the parameters all follow by Lemma 1. Consequently, this is an

upward sloping parabola that is nonnegative and nonincreasing at Γ = 0. If

the function value at Γ = 1 is nonpositive, there exists a root (and hence an

eigenvalue) weakly greater than 1. Thus, a necessary condition for stability is

that

γ0 + γ1 + γ2 = L̂(φ̂)2 − L̂(φ̂) ((1− φ)L̂′1(φ)− φL̂′2(φ)) > 0,

which after multiplication with 1/L̂(φ̂) > 0 yields Equation (20). Further, if

the characteristic polynomial is nonincreasing and positive at Γ = 1, the vertex

of the parabola and any real roots are at least one 1. (The vertex corresponds

to the real part of any complex eigenvalues.) Thus, another necessary condition

is that the derivative at Γ = 1 is positive, γ1 + 2γ2 > 0, as in Equation (21).

If both conditions (20) and (21) hold, the vertex of the polynomial and

any real eigenvalues are strictly contained between 0 and 1. Any complex

eigenvalues Γ = a± bi with b > 0, solve{
γ0 + aγ1 + (a2 − b2)γ2 = 0

bγ1 + 2abγ2 = 0 ⇔ γ1 = −2γ2a

because the real and imaginary part of the quadratic function at those values

must be zero where |Γi| =
√
a2 + b2. Hence, |Γi| < 1 if and only if a2 + b2 =
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γ0

γ2
< 1 which is equivalent to γ2 − γ0 > 0. This follows from γ0 + γ1 + γ2 > 0

and γ1 + 2γ2 > 0, so it follows from Equation (20) and Equation (21). Hence,

these two conditions are necessary and sufficient for |Γi| < 1.

Taken together, we have shown that Equations (20) and (21) are both

necessary and jointly sufficient to ensure that |Γi| < 1 for both i = 1, 2; as a

result, the steady state is stable. It also follows that if either of the inequalities

Equation (20) or Equation (21) is strictly reversed, that there is an eigenvalue

with |Γi| > 1, which implies that the steady state is not stable.

For the proof of Proposition 1, it is useful to define the majority over-supply

as

Ψ(φ) := (1− φ)L̂1(φ)− φL̂2(φ), (22)

noting that (17) is satisfied at (L1, L2) = (φL, (1−φ)L) if and only if Ψ(φ) = 0.

Proof of Proposition 1. We prove each claim in turn.

(a) Let φ := min {φ ∈ [0, 1] | µ(φ) ≥ c− π − x̄F} denote the minimal own-

group share to ensure participation of most able individuals. In a homoge-

neous labor force φ ∈ {0, 1}, the dominant group is always willing to invest

because φ < 0.5 by Property (F1). A homogeneous workforce constitutes

a steady state whenever it is a best response for the dominated group not

to invest whenever φ ≥ 0, which is equivalent to Property (hSS). The

steady state is stable whenever φ > 0, since small enough perturbations

maintain the share of the underrepresented group below the threshold.

(b) Recall that we know from Section A.2.1 that the roots of the majority

over-supply function Ψ identify the steady states of the economy. The

function Ψ is continuous and

Ψ(b) = (1− b)b [F (c− 1− µ(1− b))− F (c− 1− µ(b))] ≥ 0 (23)

by monotonicity of µ. When Property (hSS) is satisfied, L̂1(φ) = 0 and

the change in sign Ψ(φ) < 0 ≤ Ψ(b) implies that Ψ admits a root over
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(φ̄, b]. When Property (hSS) is not satisfied, then Ψ(1) = −L̂2(1) < 0,

and the change in sign between Ψ(b) ≥ 0 > Ψ(1) ensures a root over [b, 1).

(c) Assume that the senior workforce is dominated by the majority, L1 > L2.

We first assume by contradiction that the opposite is true for the junior

workforce, `1 ≤ `2. In that case, majority juniors receive better mentoring

than minority juniors,

µ̃(L1, L2, `1, `2)
(M4)

≥ µ̃ (L1, L2, `2, `1)
(M3)

≥ µ̃ (L2, L1, `2, `1) .

Since b > 1 − b, Equation (1) then implies that the individually rational

participation is larger for the majority than for the minority, contradicting

the assumption that `1 ≤ `2. As a result, the junior workforce is also

dominated by the majority.

To show that the system eventually settles on a workforce that is not just

dominated by the majority, but biased in favor of the majority, we now

show that there are no steady states of composition (0.5, b]. To do so, note

that for φ > 0.5, we have x̂1(φ) < x̂2(φ). Hence, for φ ∈ (0.5, b] we have

Ψ(φ) = (1−φ)b(1−F (x̂1(φ))−φ(1−b)(1−F (x̂2(φ)) > (b−φ)(1−F (x̂2(φ)) > 0.

Since Ψ admits no root over that range, the system converges to a steady

state that is biased in favor of the majority.

(d) First, we show that for any δ > 0, there exists Q > 0 such that the

economy admits a stable steady state with composition φ ∈ [b, b + δ)

whenever q > Q. Indeed, let L̄ = 1 − F (c − π − 1) denote the size of

the labor force if everyone receives the maximal mentoring boost. Since

lim
q→∞

µq(b+ δ) = 1 by Property (M5), note that

lim
q→∞

L̂1(b+ δ) = bL̄ and lim
q→∞

L̂2(b+ δ) = (1− b)L̄ (24)
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and hence

lim
q→∞

Ψ(b+ δ) = (1− b− δ)bL̄− (b+ δ)(1− b)L̄ = −δL̄ < 0.

Since Ψ is continuous and Ψ(b) ≥ 0 by Equation (23), this implies a

downward crossing over [b, b+ δ) for q larger than some threshold Q1 (i.e.,

Ψ(φ−ε) > Ψ(φ) = 0 > Ψ(φ+ε) for a φ ∈ [b, b+δ) and all ε > 0 sufficiently

small). In addition, the downward slope Ψ′(φ) < 0 is equivalent to the

first stability condition in Lemma 4. In order to show the second stability

condition (21), note that the convergence of µ′q(φ) → 0 is uniform over

[b, b+ δ] by Dini’s Theorem17 and in turn implies uniform convergence of

L̂′i(φ)→ 0 for either group i. By Lemma 1, |mk(φ)| admit an upper bound

M that is independent of k, φ and q. As a consequence, the right side of

Equation (21) converges to 2L̄2 > 0, implying that there exists Q2 such

that the economy admits a stable steady state within [b, b + δ) whenever

q > max {Q1, Q2}.

Finally, we rule out any other steady states for q large enough. By Prop-

erty (M5), lim
q→∞

L̂1(δ) = bL̄ and lim
q→∞

L̂2(δ) = (1 − b)L̄. By the definition

of L̄, both sequences approach the limit from below. Hence, there exists

a Q3 so that for all q > Q3,

L̂1(δ) ∈
((

b− δ

b+ δ

)
L̄, bL̄

]
and L̂2(1−δ) ∈

((
1− b− δ

b+ δ

)
L̄, (1− b)L̄

]
.

Since µ is increasing, we have L̂1(φ) ∈ [L̂1(δ), bL̄] and L̂2(φ) ∈ [L̂2(1 −
δ), (1− b)L̄] for all φ ∈ [δ, 1− δ]. In turn, these bounds imply

Ψ(φ) ∈
(

(b− φ)L̄− (1− φ)
δ

b+ δ
L̄, (b− φ)L̄+ φ

δ

b+ δ
L̄

)
.

At any root of Ψ, this range must contain zero. Rewriting that condition

17Dini’s Theorem states that if a monotone sequence of continuous functions converges
pointwise on a compact space, and if the limit function is also continuous, then the conver-
gence is uniform.
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in terms of φ, we obtain the equivalent expression for any root φ:

φ ∈
(
b− δ + δ

2b− 1

b
, b+ δ

)
⊆ (b− δ, b+ δ).

In other words, for q > Q3, the only roots of Ψ are either almost homoge-

neous φ ∈ [0, δ) ∪ (1− δ, 1] or almost fair φ ∈ (b− δ, b+ δ).

(e) First, we show that there exists a Λ1 ≥ 0 so that for all λ > Λ1, there is a

steady state in [b, b+ δ). To this end, note that Lemma 2 implies that

lim
λ→∞

L̂1(φ)

L̂2(φ)
= lim

λ→∞

b(1− F (x̂1(φ)))

(1− b)(1− F (x̂2(φ)))
=

b

1− b
∀φ ∈ [0, 1] (25)

and hence

lim
λ→∞

Ψ(b+ δ)

L̂1(b+ δ) + L̂2(b+ δ)
= lim

λ→∞

(1− b− δ) L̂1(b+δ)

L̂2(b+δ)
− (b+ δ)

L̂1(b+δ)

L̂2(b+δ)
+ 1

= −δ < 0.

In other words, there exists Λ1 such that this ratio is negative for all

λ > Λ1. This in turn implies Ψ(b + δ) < 0
(23)

≤ Ψ(b), and thus Ψ has a

downward crossing root over [b, b+ δ) for all λ > Λ1, i.e. there is a steady

state which satisfies the first condition (20) of Lemma 4.

Next, we show that there exists a Λ2 ≥ 0 so that for λ > max{Λ1,Λ2}, all

such steady states in [b, b+ δ) are stable. Since it is a downward crossing,

we only need to show that the second condition Equation (21) of Lemma 4

is satisfied. The continuous functions µ′(φ) and mk(φ) are all bounded over

the compact interval [b, b+ δ]. Property (F2) then implies that

lim
λ→∞

L̂′1(φ)

L̂1(φ)
= lim

λ→∞

F ′(x̂1(φ))µ′(φ)

1− F (x̂1(φ))

(F2)
= 0

for all φ ∈ [b, b + δ], and the convergence is uniform by Dini’s Theorem.

Dividing Equation (21) by L2 > 0, note that the right side converges to 2 as

λ→∞. In other words, there exists Λ2 big enough such that the economy
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admits a stable steady state within [b, b+ δ) whenever λ > max {Λ1,Λ2}.

Furthermore, the convergence in Equation (25) is uniform by Dini’s The-

orem, implying that there exists Λ3 large enough such that

Ψ(φ)

L̂2(φ)
∈
(

(1− φ)

(
b

1− b
− ε
)
− φ, (1− φ)

(
b

1− b
+ ε

)
− φ
)

∀φ ∈ [0, 1]

At any root of Ψ, this range must contain zero. Letting ε = δ
(1−b)(1−b+δ) and

rewriting the condition in terms of φ, we obtain the equivalent expression

φ ∈
(
b− δ, b+

1− b
1− b+ 2δ

δ

)
⊆ (b− δ, b+ δ).

In other words, for λ > Λ3, the only roots of Ψ are almost fair with

composition φ ∈ (b− δ, b+ δ).

A.2.2 Optimal labor force composition

Let L∗ : [0, 1] ⇒ [0,∞) and S∗ : [0, 1]→ R be defined from Equation (3) as

L∗(φ) = arg max
L≥0

S(φ, L) and S∗(φ) = max
L≥0

S(φ, L).

We refer to the cutoffs under composition φ and labor force size L as x̂1 =

F−1
(
1 − φ

b
L
)

and x̂2 = F−1
(
1 − 1−φ

1−bL
)
. When L = L∗(φ) is optimal for

composition φ, we write the cutoffs as x∗1 and x∗2. The first result in Lemma 5

establishes uniqueness of the maximizer, and we abuse notation by referring

to its unique element as L∗(φ).

Lemma 5. The functions L∗ and S∗ satisfy the following properties:

(a) L∗(φ) is singleton-valued and strictly positive for all φ ∈ [0, 1].

(b) At the optimal composition φ∗ = arg maxφ S
∗(φ), a positive mass of each

group abstains from participation, x∗1, x
∗
2 > xF .
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(c) Whenever x∗1, x
∗
2 > xF , optimal surplus S∗ and its derivative S∗′ can be

written as

S∗(φ) = b

∫ x̄

x∗1

(1− F (x))dx+ (1− b)
∫ x̄

x∗2

(1− F (x))dx, (26)

S∗′(φ) = L∗(φ) (µ(φ)−µ(1−φ) + φµ′(φ)−(1−φ)µ′(1−φ)−x∗1−x∗2) (27)

where x∗1 and x∗2 solve

0 = π − c+ φµ(φ) + (1− φ)µ(1− φ) + φx∗1 + (1− φ)x∗2 (28)

L∗(φ) =
b

φ
(1− F (x∗1)) =

1− b
1− φ

(1− F (x∗2)). (29)

(d) S∗ has the following properties:

S∗(1) = b

x̄∫
c−π−µ(1)

(1− F (x))dx (30)

S∗(b) =

x̄∫
c−π−bµ(b)−(1−b)µ(1−b)

(1− F (x))dx (31)

S∗′(1) = b(1− F (c− π − µ(1)) (c− π − µ(0) + µ′(1)− x̄F ) (32)

S∗′(b) = L∗(b)(µ(b) + bµ′(b)− µ(1− b)− (1− b)µ′(1− b)) (33)

S∗′(0.5) = L∗(0.5)(x∗1(0.5)− x∗2(0.5)) ≥ 0, (34)

where x∗1(φ) = F−1(1− φ
b
L∗(φ)) and x∗2(φ) = F−1(1− 1−φ

1−bL
∗(φ)).

At any steady state (φ̂, L̂),

S(φ̂, L̂) = b

x̄∫
c−π−µ(φ̂)

(1− F (x))dx+ (1− b)
x̄∫
c−π−µ(1−φ̂)

(1− F (x))dx (35)

S∗′(φ̂) = L̂
(
φ̂µ′(φ̂)− (1− φ̂)µ′(1− φ̂)

)
. (36)

Proof. We prove each claim in turn:
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(a) First, note that we can write

S(φ, L) = b

∫ 1

1−φ
b
L

π − c+ F−1(y) + µ(φ)dy

+(1− b)
∫ 1

1− 1−φ
1−b L

π − c+ F−1(y) + µ(1− φ)dy.

Hence, we have

∂

∂L
S (φ, L) = π − c+M(φ) + φx̂1 + (1− φ)x̂2 (37)

∂

∂φ
S (φ, L) = L (M ′(φ) + x̂1 − x̂2) (38)

where M(φ) = φµ(φ) + (1 − φ)µ(1 − φ) is as defined in (4), but we omit

the subscript in this proof. Furthermore, surplus is strictly concave in L

for any φ,

∂2

∂L2
S(φ, L) = −φ

2

b

1

F ′(F−1(1− φ
b
L))
− (1− φ)2

1− b
1

F ′(F−1(1− 1−φ
1−bL))

< 0,

ensuring a unique solution.

(b) Positive size L is always optimal since

∂

∂L
S(φ, 0) = π − c+ x̄F +M(φ) ≥ π − c+ x̄F + µ(0.5) > 0

by Property (F1). When a compositions severely over-represents one group

i and talent dispersion is high, it may be optimal to set x∗i = xF , as this

allows for the participation of opposite-group members with high individ-

ual surplus. Note, however, that at the cutoffs (x∗1, x
∗
2) that are optimal
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under composition φ, Equations (37) and (38) jointly imply

∂

∂φ
S (φ, L)

∣∣
L=L∗(φ)

= L (M ′(φ) + x∗1 − x∗2)

=
L

1− φ

(
(1− φ)M ′(φ) +M(φ) + x∗1 + π − c︸ ︷︷ ︸

(T1)

− ∂

∂L
S (φ, L)

)
(39)

= −L
φ

(
φM ′(1− φ) +M(1− φ) + x∗2 + π − c︸ ︷︷ ︸

(T2)

− ∂

∂L
S (φ, L)

)
, (40)

where we used the fact that M(φ) = M(1 − φ). If the optimal labor size

L∗(φ) employs all members of group i, then ∂
∂L
S (φ, L)

∣∣
L=L∗(φ)

≥ 0 and

x∗i = xF . By assumption Property (F1) on the lower bound xF , the term

Ti in the expression above is strictly negative. When i = 1, Equation (39)

implies that ∂
∂φ
S (φ, L)

∣∣
L=L∗(φ)

< 0, and when i = 2, Equation (40) implies
∂
∂φ
S (φ, L)

∣∣
L=L∗(φ)

> 0. In either case, a marginal adjustment in composi-

tion strictly improves surplus. This ensures that all cutoffs are interior at

the optimal composition.

(c) For any interior maximum, we have 0 = ∂
∂L
S(φ, L)

∣∣
L=L∗(φ)

, which imposes

condition (28) on the optimal cutoffs x∗1 and x∗2. The second condition

(29) merely restates the definition in Equation (3).

(d) By Fubini’s Theorem, we can write∫ x̄

x∗i

(x−x∗i )F ′(x)dx =

∫ x̄

x∗i

∫ x

x∗1

F ′(x)dtdx =

∫ x̄

x∗i

∫ x̄

t

F ′(x)dxdt =

∫ x̄

x∗i

(1−F (x))dx
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and hence

S(φ, L) = L (π − c+ φµ(φ) + (1− φ)µ(1− φ))

+ bx∗1(1− F (x∗1)) + (1− b)x∗2(1− F (x∗2))

+ b

∫ x̄

x∗1

(x− x∗1)F ′(x)dx+ (1− b)
∫ x̄

x∗2

(x− x∗2)F ′(x)dx

= L (π − c+ φµ(φ) + (1− φ)µ(1− φ) + φx∗1 + (1− φ)x∗2)

+ b

∫ x̄

x∗1

(1− F (x))dx+ (1− b)
∫ x̄

x∗2

(1− F (x))dx.

This implies Equation (35) and, together with (28), we obtain Equa-

tion (26) By the Envelope Theorem, we obtain S∗′(φ) = ∂S
∂φ

(φ, L∗(φ))

and hence (27).

At composition φ = 1, we have x∗2 = x̄F . By Equation (28), x∗1 = c− π −
µ(1). By Equation (29), L∗(1) = b(1−F (c− π−µ(1)). Plugging this into

Equation (26) yields (30), and plugging it into Equation (27) yields (32).

At composition φ = b, we have x∗1 = x∗2 = F−1(1 − L∗(b))
(28)
= c − π −

φµ(b)− (1− b)µ(1− b). Plugging this into Equation (26) yields (31), and

plugging it into Equation (27) yields (33).

At any steady state (φ̂, L̂), Equation (28) holds since the participation

constraint (IR) is binding at x∗1 and x∗2, and thus L̂ = L∗(φ̂) and x∗1−x∗2 =

µ(1− φ̂)−µ(φ̂). Plugging this into Equation (26) yields (35), and plugging

it into Equation (27) yields (36).

Proof of Proposition 2. In Proposition 1, we establish the existence of a

stable steady state arbitrarily close to composition b for large enough q or λ.

The surplus of that steady state is given by Equation (35) in Lemma 5 and

converges to

lim
q→∞

b

∫ x̄

c−π−µ(b)

(1− F (x))dx+ (1− b)
∫ x̄

c−π−µ(1−b)
(1− F (x))dx =

∫ x̄

c−π−1

(1− F (x))dx > 0
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as q →∞. Conversely, the surplus of the best homogeneous steady state φ̂ = 1

converges to

lim
q→∞

b

∫ x̄

c−π−µ(1)

(1− F (x))dx = b

∫ x̄

c−π−1

(1− F (x))dx

by Equation (31). Since b < 1, the nearly fair mixed stable steady state

eventually yields a higher surplus than any homogeneous steady state.

As for λ → ∞, the results follows simply because there are no homoge-

neous steady states for λ large enough by Proposition 1(e).

Proof of Proposition 3. We prove each claim in turn:

(a) Property (F1) implies that µq(0.5) > c − π − x̄F for at least some q > 0.

Let us denote such a q by q̃. Since limq→0 µq(0.5) = 0 by Property (M5)

and 0 < c − π − x̄F , the Intermediate Value Theorem guarantees the

existence of q0.5 ∈ (0, q̃) such that µq0.5(0.5) = c − π − x̄F . Consider now

what happens when q < q0.5. Since µ is strictly increasing in φ and q,

any participating member of the minority group has negative individual

surplus, 0 > π− c+ x+ µq(1− φ). Excluding group 2 from the workforce

also improves the mentorship boost for the majority, and hence the optimal

labor force is homogeneous. Since µq0.5(1) > c − π − x̄F , there exists a

nonempty range of q < q0.5 where the most talented majority members

generate positive surplus under φ = 1, and thus ensure a strictly positive

size of the workforce.

(b) First, we establish that for b > 0.5, the optimal workforce is always weakly

dominated by the majority, φ∗ ≥ 0.5. Indeed, using a change of variables,

we can write the surplus from Equation (3) as

S(φ, L) = L(π − c+ x+ φµ(φ) + (1− φ)µ(1− φ))

+ L

∫ φ

0

F−1
(

1− y

b
L
)
dy + L

∫ 1−φ

0

F−1

(
1− y

1− b
L

)
dy.

Consider now any labor force (φL, (1 − φ)L) for some φ < 0.5, and com-
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pare its surplus to that of labor force ((1 − φ)L, φL). The two quanti-

ties differ only in the range of integration for the last two terms. Since

F−1
(
1− q

b
L
)
> F−1

(
1− q

1−bL
)

pointwise, surplus is strictly higher for

the labor force that is dominated by the majority.

Next, we show that the optimal labor force is biased in favor of the minority

for q large enough. We show this in two steps.

First, by the expressions for S∗(b) and S∗(1) in Lemma 5,

lim
q→∞

S∗(1)

S∗(b)
=
b
∫ x̄
c−π−1

(1− F (x))dx∫ x̄
c−π−1

(1− F (x))dx
= b < 1.

Consequently, there exists Q1 ∈ R such that the optimal workforce is

mixed for all q > Q1.

Next, we show that there exists a Q2 > 0 so that for q > max{Q1, Q2}, a

fair labor force generates higher surplus than one with a bias in favor of

the majority, S∗(b) > S∗(φ) for all φ > b. To that end, we define

ε :=

∫ x̄

c−π−1

(1− F (x))dx+

∫ c−π−1

x∗1
∞

(1− F (x∗1
∞))dx−

∫ x̄

x∗1
∞

(1− F (x))dx,

where (x∗1
∞, x∗2

∞) denotes the limiting cutoffs for q → ∞. Note that in

any mixed workforce of composition φ, x∗1
∞ and x∗2

∞ satisfy

0 = π − c+ 1 + φx∗1
∞ + (1− φ)x∗2

∞, (41)

b

φ
(1− F (x∗1

∞)) =
1− b
1− φ

(1− F (x∗2
∞)), (42)

due to constraints (28) and (29). Whenever φ > b, the limiting cutoff

is lower for the majority group, x∗1
∞ < x∗2

∞, by Equation (42) and by

Equation (41), it also follows that x∗1
∞ < c− π − 1 < x∗2

∞. Together with

monotonicity of F , this implies that ε is positive,

ε >

∫ x̄

c−π−1

(1− F (x))dx+

∫ c−π−1

x∗1
∞

(1− F (x))dx−
∫ x̄

x∗1
∞

(1− F (x))dx > 0.
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The same is true for δ := b ε
2
.

Moreover, since F is bounded and µ(φ)→ 1 pointwise, there exists Q2 ∈ R
such that for all q > Q2

max

{∣∣∣∣∣
∫ x∗i

∞

x∗i

(1− F (x))dx

∣∣∣∣∣ ,
∣∣∣∣∫ c−π−1

c−π−bµ(b)−(1−b)µ(1−b)
(1− F (x))dx

∣∣∣∣
}
i=1,2

< δ. (43)

We will use this to generate an upper bound for the surplus expression

(26) for any φ > b. Indeed, note that∫ x̄

x∗1

(1− F (x))dx < δ +

∫ x̄

c−π−1

(1− F (x))dx+

∫ c−π−1

x∗1
∞
(1− F (x∗1

∞))dx− ε (44)

and similarly,∫ x̄

x∗2

(1− F (x))dx < δ +

∫ x̄

c−1−π
(1− F (x))dx−

∫ x∗2
∞

c−1−π
(1− F (x))︸ ︷︷ ︸
>1−F (x∗2

∞)

dx

< δ +

∫ x̄

c−1−π
(1− F (x))dx−

∫ x∗2
∞

c−1−π
(1− F (x∗2

∞))dx. (45)

Note also that by Equations (41) and (42),

b

∫ c−π−1

x∗1
∞
(1− F (x∗1

∞))dx = b(1− F (x∗1
∞))

(41)
= (1−φ)(x∗2

∞−x∗1
∞)︷ ︸︸ ︷

(c− π − 1− x∗1
∞)

(42)
= (1− b)(1− F (x∗2

∞))φ(x∗2
∞ − x∗1

∞)︸ ︷︷ ︸
(41)
= x∗2

∞−(c−π−1)

= (1− b)
∫ x∗2

∞

c−π−1

(1− F (x∗2
∞))dx.
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We conclude that for all q > Q2 and φ > b,

S∗(φ) = b

∫ x̄

x∗1

(1− F (x))dx+ (1− b)
∫ x̄

x∗2

(1− F (x))dx by (26)

< δ − bε+

∫ x̄

c−π−1

(1− F (x))dx by (44) and (45)

< 2δ − bε+

∫ x̄

c−π−bµ(b)−(1−b)µ(1−b)
(1− F (x))dx by (43)

= S∗(b) by (31).

This shows that over-representation of the majority is suboptimal for any

q > max {Q1, Q2}. The optimal composition is thus contained in [0.5, b].

For b > 0.5, we can rule out the boundaries of this interval. Indeed,

Equation (33) implies that S∗′(b) has the same sign as

µq(b) + bµ′q(b)− µq(1− b)− (1− b)µ′q(1− b).

By Property (M6), this is negative for all q above a threshold Q3. Together

with the strict inequality in Equation (34), this implies that the optimal

composition is in (0.5, b) whenever q > max {Q1, Q2, Q3}.

(c) The optimal composition satisfies the first order condition S∗′(φ), which

by Equation (27) implies that

0 = µ(φ)− µ(1− φ) + φµ′(φ)− (1− φ)µ′(1− φ) + x∗1 − x∗2 (46)

Since all but the last two terms disappear as q → ∞, the only way both

this and the two conditions (41) and (42) can be satisfied is if x∗1
∞ =

x∗2
∞ = c− π − 1 and φ = b. By continuity of the derivatives, the optimal

composition therefore converges to b.

Finally, we consider the impact of high talent dispersion λ on the opti-

mal labor force composition. Our proof relies on three observations: First,

a homogeneous workforce is suboptimal for large enough λ. This can most
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easily be seen from Equation (32), which shows that S ′(1) is negative when-

ever x∗F > c − π − µ(0) + µ′(1). Second, any interior optimum has to solve

S∗′(φ) = 0, which together with Equations (28) and (29) identifies all local

extrema. Letting M(φ) := φµ(φ) + (1− φ)µ(1− φ), Equations (27) and (28)

imply that marginal talent is equal to

x∗1 = c− π −M(φ)− (1− φ)M ′(φ) and x∗2 = c− π −M(φ) + φM ′(φ)

at the optimal composition φ. Both expressions are independent of λ, and

in the support of the talent function for large enough λ by Property (F1).

Continuity of µ′ implies that whenever M ′(b) < 0, there exists δ > 0 such

that M ′(φ) < 0 for all φ ∈ [b, b + δ). The optimal composition has to satisfy

Equation (29), which yields

φ =

(
1 +

1− b
b

1− F (c− π −M(φ) + φM ′(φ))

1− F (c− π −M(φ)− (1− φ)M ′(φ))

)−1

.

When M ′(φ) < 0 the right side is strictly smaller than b, ruling out any

solutions over [b, b + δ). Moreover, Equation (15) implies that the right side

converges to b as λ→∞. The convergence is uniform by Dini’s Theorem. For

λ large enough, this rules out any solutions larger than φ ≥ b+ δ.

Conversely, whenever M ′(b) > 0, the same argument rules out solutions

over some interval (b− δ′, b] and then restricts crossings to a δ′-ball around b

for λ large enough. For high enough talent dispersion, Equation (7) therefore

identifies the threshold q that determines the bias of the optimal labor force.
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