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POINT OPTIMAL TESTING WITH ROOTS THAT ARE
FUNCTIONALLY LOCAL TO UNITY

ANNA BYKHOVSKAYA AND PETER C. B. PHILLIPS

Abstract. Limit theory for regressions involving local to unit roots (LURs) is now

used extensively in time series econometric work, establishing power properties for

unit root and cointegration tests, assisting the construction of uniform confidence

intervals for autoregressive coefficients, and enabling the development of methods

robust to departures from unit roots. The present paper shows how to generalize

LUR asymptotics to cases where the localized departure from unity is a time varying

function rather than a constant. Such a functional local unit root (FLUR) model has

much greater generality and encompasses many cases of additional interest, includ-

ing structural break formulations that admit subperiods of unit root, local stationary

and local explosive behavior within a given sample. Point optimal FLUR tests are

constructed in the paper to accommodate such cases. It is shown that against FLUR

alternatives, conventional constant point optimal tests can have extremely low power,

particularly when the departure from unity occurs early in the sample period. Simu-

lation results are reported and some implications for empirical practice are examined.

Key words and phrases: Functional local unit root; Local to unity; Uniform

confidence interval, Unit root model.

JEL Classifications: C22, C65

1. Introduction and Motivation

Local to unit root (LUR) limit theory has played a significant role in the develop-

ment of econometric methods for nonstationary time series. The primary need for this

development came from the desire to assess the effect of local departures on the func-

tional limit theory for unit root processes and its many applications to regression and

unit root testing (Chan and Wei (1987), Phillips (1987), Phillips (1988)). The method-

ology assisted asymptotic power analysis and the construction of point optimal unit

root tests (Elliott et al. (1996) and for a recent overview King and Sriananthakumar

(2016)). Most recently, the methods have been used to study the uniform properties
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of various methods of confidence interval construction for autoregressive coefficients

(Mikusheva (2007), Mikusheva (2012), Phillips (2014)). In all these implementations,

local departures from unity have been measured in terms of constant localized coeffi-

cient departures from unity of the form θn = ec/n ∼ 1 + c
n

in terms of the sample size

n. This type of constant coefficient LUR specification is extremely convenient because

of its parsimony and its standard Pitman form, given the O (n) rate of convergence of

an autoregressive estimate of a unit autoregressive coefficient.

In spite of their mathematical convenience, there is nothing particularly relevant in

such constant LUR formulations for modeling economic time series in which departures

from unity may be expected to take a variety of different forms, including periods of in-

creasing or decreasing persistence, transitions to and from unity, and break points that

shift from a unit root to stationary or even explosive roots. Complex departures from

unity of this type require greater flexibility in formulation than a constant coefficient.

They may be captured using a time varying coefficient function in which the autore-

gressive coefficient is time varying of the form θtn = θn
(
t
n

)
= ec(

t
n)/n ∼ 1 + c

(
t
n

)
/n.

We call such a formulation a functional local unit root (FLUR). Models with FLUR

coefficients have already been used in empirical work on modeling bubble contagion

(Phillips and Yu (2011), Greenaway-McGrevy and Phillips (2016)) and in some related

recent theoretical developments dealing with stochastic unit root models (Lieberman

and Phillips (2014), Lieberman and Phillips (2016)) and random coefficient autore-

gressions (Banerjee et al. (2015)).

The primary purpose of the present paper is to analyze such models and generalize

LUR asymptotics to cases where the localized departure from unity is a general time

varying function rather than a constant. FLUR models of this type provide a new

mechanism for assessing the power properties of UR tests against more complex alter-

natives. A second contribution of the paper is to develop functional point optimal UR

tests constructed to achieve point optimality against a specific functional alternative.

With FLUR alternatives, conventional constant point optimal tests can have extremely

low power, particularly when departures from unity occur early in the sample period.

A third contribution of the paper is to reveal conditions under which such weaknesses

typically arise. In the light of this analysis, it is apparent that point optimal tests

based on a constant alternative are by no means a universally satisfactory solution to

improving power in unit root testing. Indeed, the power envelope itself can be very

different under a functional alternative to that which is obtained under the strict con-

dition of a constant local alternative. Simulation results on the proximity of the power

function of point optimal tests to a power envelope constructed for constant Pitman-

type alternatives can therefore be a misleading indicator of discriminatory power of

such tests against more general cases.
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More specifically, the paper provides new limit theory for autoregressive models

with time varying coefficients that are close to unity. This limit theory enables the

development of functional point optimal tests of a unit root, which extend earlier

work on constant point optimal tests analysis (Elliott et al. (1996)). The limit theory

provides analytic power comparisons between FLUR and standard point optimal tests,

showing how the latter tests can have power that is well below the power envelope

under certain conditions. The findings are confirmed in simulations that explore the

power differences in particular cases, concentrating on empirically relevant situations

where time varying coefficients induce structural breaks in the generating mechanism

between unit root and local unit root behavior in the data.

The paper is organized as follows. Section 2 describes the general setup, FLUR

asymptotics, and the implications of these asymptotics for unit root testing, including

analytic power comparisons. This Section also provides numerical simulations that

compare the power of standard point-optimal tests based on constant local departures

from the null with the actual power envelope under a functional local alternative.

Section 3 develops limit theory approximations that explain the power differences.

Special focus is given to cases where local power is low and divergence is largest,

notably on departures from a unit root that occur briefly early in the sample. Section

4 concludes and proofs are given in the Appendix.

2. Model, Testing, and Asymptotics

2.1. Setup and first asymptotic results. We consider a time series generated by

the following model

(1) Xt = θtnXt−1 + ut, t = 1, . . . , n, X0 = u0
1

where ut ∼ i.i.d. N(0, σ2) and

(2) θtn = exp

(
c(t/n)

n

)
≈ 1 +

c(t/n)

n
.

The coefficient θtn in the autoregression varies with time and can be arbitrarily close to

unity as the function c(·) moves towards zero. It is convenient and involves no loss of

generality to ignore in the notation Xt the array nature implied by θtn. This framework

allows for unit root testing against local unit roots that include functional alternatives

(2). Such alternatives accommodate structural breaks and smooth transitions in the

process, as well as the usual Pitman drift formulations where c(·) is a constant function.

1X0 = u0 can be viewed as starting from X−1 = 0.
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Our goal is to examine the performance characteristics of tests of a unit root, where

c ≡ 0, against functional local unit root alternatives such as (2).

Many results in the paper remain valid, including the asymptotic behavior of Xt, if

X0 = Op(1) is replaced by X0 = op(
√
n). However, specific details of the asymptotic

results given in Theorems 1 - 3 in Section 3 will change and the results given here are

for the simpler case. Additionally, one may weaken the independence and normality

conditions to suitable weak dependence and moment conditions with some further

adjustments to the limit theory.

Define Xn(r) = 1√
nσ
Sbnrc, where St = u1 + · · · + ut. Our first result details the

asymptotic behavior of the scaled process n−
1
2Xbnrc, which is given by

(3) n−
1
2Xbnrc −−−→

n→∞
σKc(r) = σ

∫ r

0

e
∫ r
s c(k)dkdW (s).

where the process Kc(r) satisfies the stochastic differential equation dKc(r) =

c(r)Kc(r)dr + dW (r), as shown in Lemma 8 in the Appendix.

A primary focus of the paper is testing the null function c(·) = 0, under which Xt

is a standard unit root process. The alternative hypothesis involves function space

possibilities as any non-zero function c(·) represents a local departure from the null.

Composite alternatives inevitably complicate hypothesis testing but are more subtle

in the present case because the alternative is a function that may induce subperiods

in which the null of a unit root actually holds. An obvious simplifying procedure

when faced with such composite functionally-infinite space of alternatives is to assume

some fixed function c(r) as a proxy for the alternative hypothesis. Doing so enables

application of the the Neyman-Pearson lemma to deliver the best (point-optimal under

functional alternatives) test. We proceed to implement that approach in testing the

hypothesis of a unit root. The analysis provides a basis of comparison with point

optimal tests of a unit root that are based on a constant local alternative.

We need to compare likelihood functions under the null and alternative hypoth-

esis. The sequence Xt involves interdependent random variables. To construct the

likelihood, we transform Xt so that the likelihood is a simple product of independent

densities. To do this, consider

dct :=
1√
nσ

(
Xt − ec(t/n)/nXt−1

)
=

1√
nσ

ut,(4)

where the functions dct are independent for different values of t. Moreover, under

Gaussianity dct ∼ N(0, 1/n), so that we are left with normal densities 1√
2π/n

e−
d2

2/n .
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Thus, we can construct a likelihood ratio test of the form

Reject if e
−

∑
t

(d0t)
2

2/n
/e
−

∑
t

(dct )
2

2/n ≤ η,

where d0 corresponds to the value of function d(·) under null hypothesis of unit root, so

that d0
t = 1√

nσ
(Xt −Xt−1), and dc stands for the value under alternative of hypothesis

of some function c(·), so that dct = 1√
nσ

(
Xt − ec(t/n)/nXt−1

)
. Equivalently,

(5) S :=
1

2σ2

(∑
t

(Xt −Xt−1)2 −
∑
t

(
Xt − ec(

t
n)/nXt−1

)2
)
≥ α.

To properly choose the value for α we need to calculate the values of S under H0

and H1.

Lemma 1. The test statistic S has the following limit behavior under H0 and H1

S
H0−−−→
n→∞

∫ 1

0

c(s)W (s)dW (s)− 1

2

1∫
0

c2(s)W 2(s)ds,

S
H1−−−→
n→∞

∫ 1

0

c(s)Kc(s)dW (s) +
1

2

1∫
0

c2(s)K2
c (s)ds.

Since the test statistic S in Eq. (5) depends on the proxy alternative function,

it may happen that the true function governing the behavior of the process Xt is a

different function. In such a case the asymptotic behavior of the test S is described by

the next Lemma. To clarify notation, in what follows the proxy (pseudo) alternative

function c(·) (used in the definition of the point-optimal test statistic S) is denoted

c∗(·). The true value of the function c(·) under H1 is denoted c̄(·). To examine such

misspecifications, we refer to the test in such a case as a pseudo-point-optimal test.

Lemma 2. Under H1 : c(·) = c̄(·), the pseudo-point-optimal test S based on c(·) = c∗(·)
has the following limit behavior

S
n→∞−→

∫ 1

0

Kc̄(s)c
∗(s)dW (s) +

∫ 1

0

K2
c̄ (s)c̄(s)c∗(s)ds− 1

2

∫ 1

0

Kc̄(s)c
∗2(s)ds.

Combining Lemmas 1 and 2, we can write the asymptotic size and power of the

tests, constructed based on true and on misspecified alternatives, in terms of a prob-

ability involving certain limiting stochastic integrals. For simplicity in the following

discussion, we focus on 5% asymptotic critical values but all results remain valid under

an arbitrary critical value α. We determine the 5% asymptotic critical values A and

Ac through the equations

P
(∫ 1

0

c̄(t)W (t)dW (t)− 1

2

∫ 1

0

c̄2(t)W 2(t)dt > A

)
= 0.05,
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P
(∫ 1

0

c∗(t)W (t)dW (t)− 1

2

∫ 1

0

c∗2(t)W 2(t)dt > Ac
)

= 0.05.

Then the maximal power (corresponding to the correctly specified alternative c = c̄,

rather than the proxy alternative) is

(6) Pmax = P
(∫ 1

0

c̄(t)Kc̄(t)dW (t) +
1

2

∫ 1

0

c̄2(t)K2
c̄ (t)dt > A

)
,

and the power corresponding to a possibly misspecified proxy alternative c = c∗ is

(7)

P c∗ = P
(∫ 1

0

Kc̄(t)c
∗(t)dW (t) +

∫ 1

0

K2
c̄ (t)c̄(t)c∗(t)dt− 1

2

∫ 1

0

Kc̄(t)c
∗2(t)dt > Ac

)
.

Formulae such as (6) and (7) are typically intractable analytically even in the sim-

plest case where c∗(·) = c∗ = const. As shown later, some useful asymptotic expansions

of these power functions can be obtained in certain important cases. To analyze the

behavior of these power functions directly we first provide some numerical simulations.

We focus on the case where c∗ is selected to be constant, while c̄ is some function repre-

senting plausible time changes or evolution in the AR coefficient over a sample period.

Low power in testing against a fixed alternative in such cases indicates the importance

of taking into account the possibility of a functional alternative. The power envelope

in such cases is itself a space of functions, rather than a simple function as it is in the

case where only constant c alternatives are considered.

2.2. Simulations. The following subsections provide numerical simulations to illus-

trate power performance from point-optimal tests that are based on some (possibly mis-

specified) proxy alternative against maximal attainable power. In the first subsection

we investigate the performance of a conventional constant alternative c∗(x) = const

test when the data generating process corresponds to non-constant function c̄(x). As

will be seen, the power of such misspecified point optimal tests can be far below max-

imal power. Asymptotic theory to explain this phenomenon is given in Section 3.

The next subsection compares power performance that is based on misspecified

triangular proxy functions of differing heights when the true function is piecewise

constant. The true localizing function c̄(x) is assumed to be zero for x ≤ 0.25 and

x ≥ 0.75 and to take some negative value −λ when 0.25 < x < 0.75. We find the

optimal height of the proxy triangular alternative, i.e. the function that minimizes the

area between misspecified power and maximal power as a function of λ.

Finally, we compare the power of the standard Dickey-Fuller (DF) t test with the

maximal power and with the power achieved by using constant proxy alternatives in

the construction of pseudo-point optimal tests. We find that the DF test also performs

poorly compared to maximal power; and DF power is approximately the same as the
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power of a pseudo-point-optimal test constructed with c∗ = const when the constant

is chosen optimally for this class of constant alternatives.

2.2.1. Point-optimal text based on the constant proxy alternative. We consider diver-

gence from a unit root over subsamples of data corresponding to simple structural

breaks. Specifically, we assume that the true function c̄(·) is piece-wise constant and

equals to zero on the intervals [0, r1) and (r2, 1] (this corresponds to two unit root

subperiods in the model) and to some number C̄ on the interval [r1, r2]. We allow

r1 = 0 or r2 = 1, so that instead of three segments there may only be two. Numerical

simulations are given for six specific examples which differ from each other either by

the sign of the constant or by the left/right/middle location of the non-zero segment,

which is determined by the value of a parameter λ. The functions are as follows:

• c̄λ(x) = −10× 1 {x < λ};
• c̄λ(x) = 10× 1 {x < λ};
• c̄λ(x) = −10× 1 {x > 1− λ};
• c̄λ(x) = 10× 1 {x > 1− λ};
• c̄λ(x) = −10× 1 {|x− 0.5| < λ};
• c̄λ(x) = 10× 1 {|x− 0.5| < λ}.

Assuming σ = 1, maximal power (when the alternative FLUR hypothesis is specified

correctly) and power under the misspecified LUR alternative c∗ = const under 5%

significance level are shown in Figures 1 - 6. Green lines represent maximal power

and blue lines represent power under a misspecified constant alternative, for which we

assume c∗ = 1 in near-explosive cases and c∗ = −5 in near-stationary cases. These

values were selected for the constant proxy alternative because in the simulations they

turned out to deliver the best power. To compare powers under different alternatives,

see Figures 7 and 8, which are drawn for the first two cases: c̄λ(x) = −10× 1 {x < λ}
and c̄λ(x) = 10× 1 {x < λ}.

Evidently from Figures 1 - 6, we see that in all six examples the power of the

test constructed by a misspecified alternative function with c∗ = const is lower, and

often substantially lower, than the maximal power. In particular, it is apparent that

for small values of λ, i.e., when the time series model has only a minor difference

from a unit root model, the green (maximal power test) and blue (test based on the

misspecified alternative) curves have different slopes. In all examples, the slope around

zero is smaller for the blue curve. In Section 3, we explain this pattern of the power

curves by calculating analytically a power function expansion that allows for such small

departures from unity.

2.2.2. Comparison of different proxy functions. In this section we consider a double-

break point data generating function in which the localizing function has the form
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Figure 1. Power envelopes for c̄λ(x) = −10× 1 {x < λ} .
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Figure 2. Power envelopes for c̄λ(x) = 10× 1 {x < λ} .

c̄λ(x) = −λ1 {0.25 < x < 0.75}. This function gives a period of unit root behavior

followed by a (near) stationary period which switches back to unit root behavior in

the final period. As a proxy function we take a triangular function of the form c∗l(x) =

−2l (x1{x <= 0.5}+ (1− x)1{x > 0.5}), in which the stationary wedge has height l,

and the end points of the interval [0, 1] are the intitiating and terminating points of

the wedge. As such, the proxy function does not use any information about the break

points but is structured in a way that acknowledges the possible presence of stationary

behavior within the sample.

We seek to discover how different values of the height l of the wedge function af-

fect the power of this proxy-function point-optimal test based on c∗l(x), when the

true localizing coefficient function is the double break point function c̄λ(x). We are

also interested in the ‘optimal’ choice of l, l∗, that minimizes the distance (measured

in some sense) between maximal power and power based on the proxy c∗l function.

This exercise might be regarded as a functional point-optimal extended version of the

‘optimal’ selection of the constant in conventional point-optimal testing (Elliott et al.
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Figure 3. Power envelopes for c̄λ(x) = −10× 1 {x > 1− λ} .
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Figure 4. Power envelopes for c̄λ(x) = 10× 1 {x > 1− λ} .

(1996)) with the proviso that in the FLUR case the function itself may, as here, be

chosen incorrectly. Figure 9 shows the power of the point-optimal test based on the

proxy alternatives for different values of l as a function of λ against optimal power

for the same value of λ. Evidently, when actual λ is itself large (representing a large

functional departure from a unit root) then the pseudo-point optimal test with l = 20

(the pink curve) has power closest to maximal power (the green curve). However, the

choice l = 12.5 minimizes the area between the power curve under the proxy alterna-

tive and the maximal power curve. This calculation is based on computations of the

difference in the area over a grid of possible choices for l, which showed that when

λ is bounded by 40, then the choice l∗ = 12.5 provides the closest fit to the power

envelope over λ (as traced out by the green curve in Figure 9). This choice of l is

shown by the blue curve. Apparently, when λ is not too large the blue curve is the

closest to the power envelope over λ in the range [0, 40]. However, as is apparent from

the behavior of the pink curve for λ ≥ 30, if much larger values of λ are countenanced,

then correspondingly larger values of l perform better relative to the power envelope.
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Figure 5. Power envelopes for c̄λ(x) = −10× 1 {|x− 0.5| < λ} .
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2.2.3. Comparison with the Dickey–Fuller test. To calibrate against a standard unit

root test, we also show the power performance of the Dickey–Fuller (DF) t test. We
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Figure 9. Power comparison for

c̄λ(x) = −λ1 {0.25 < x < 0.75} , c∗l(x) = −2l (x1{x <= 0.5}+ (1− x)1{x > 0.5}).
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Figure 10. DF for c̄λ(x) =

−10× 1 {x < λ} .
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Figure 11. DF for c̄λ(x) =

−10× 1 {x > 1− λ} .

examine the stationary case, where left side testing is the predominant application in

practice. Figures 10 and 11 show the power of the Dickey–Fuller test along with the

maximal power and power of the pseudo-point-optimal test constructed with c∗(·) =

−5. The DF test is represented by the pink line, which evidently closely matches the

blue line and thereby the power of the pseudo-point-optimal test. So, the DF test

does not increase power. In contrast to the pseudo-point-optimal test, the Dickey–

Fuller test does not specify an alternate value of the autoregressive coefficient θ < 1,

which might appear prima facie to be an advantage when the actual alternative is

more complex, as in the present case. But this flexibility does not appear to be useful
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even when testing against an alternative that differs from a fixed alternative. Thus,

the additional flexibility of the DF test does not raise power even in this misspecified

case.

3. Failure of Point Optimal Testing under a Constant Alternative

The above numerical examples show that assuming a constant alternative c∗ pro-

duces very poor power when the true data-generating process corresponds to a func-

tional LUR of the form c̄(x) = C̄1 {|x− `| ≤ λ} for ` ∈ [0, 1] and λ is small. To

provide some theoretical foundation for this finding we focus on the following explicit

process:

c̄(x) = C̄ × 1

{
x ≤ 1

n

}
, θtn = 1 +

c̄(t/n)

n
, ut ∼iid N(0, σ2),

X−1 = 0, X0 = θ0nX−1 + u0 = u0, X1 = θ1nX0 + u1 =

(
1 +

C̄

n

)
u0 + u1,

Xt = θtnXt−1 + ut = Xt−1 + ut =

(
1 +

C̄

n

)
u0 + u1 + · · ·+ ut, t > 1.(8)

In this example ` = 0 and the process differs from a simple unit root model only

at the first observation t = 1. We show that in such a case the maximal power is

0.05 + C̄
n
× const + o(n−1), where const > 0. In contrast, if we construct a test based

on a misspecified constant alternative with c∗(x) = C∗, we get significantly smaller

power: power in this case is bounded from above by 0.05 + constε n
− 3

2
+ε for arbitrary

ε > 0. Here and in what follows the notation ‘constε’ signifies a positive constant that

depends on ε and may change from line to line.

Similar results hold if instead we assume c̄(x) = C̄ × 1 {x = α}, so that divergence

from a unit root process occurs in the middle of the sample, at the point t = bαnc.
Note that for α = 1 a difference occurs at the last observation. Then maximal power

is 0.05 + constn−0.5 + o(n−0.5), whereas power of a test based on c∗(x) = C∗ is at most

0.05 + constεn
−1+ε, where ε > 0 is arbitrary.

Moreover, the above results on single-point structural changes in the generating

mechanism can be generalized to small infinity regions of originating or terminating

data. In such cases the true data-generating process differs from a UR specification

not only at a single point but over an interval of L points, where the parameter L is

allowed to pass to infinity but at a slower rate than n. This extension is considered

later.

The next series of lemmas and theorems show that, in a model based on the above

structural break specification, maximal power under a functional point-optimal test

is asymptotically higher than power of tests based on a misspecified constant local
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alternative with H1 : c(x) = C∗. These results make use of the following lemma,

which is proved in the Appendix.

Lemma 3. Suppose A ∈ R, k ∈ R+, (Y, Z) are two random variables with finite

moment generating function, and the density of Z is locally bounded at A. Then

P
{
Z +

1

nk
Y > A

}
≤ P {Z > A}+O

(
1

nk
log n

)
≤ P {Z > A}+ constεn

−k+ε,

where ε > 0 is arbitrary.

3.1. Unit Root Break at t = 1.

Lemma 4. Under H0 : c(x) ≡ 0, the test statistic for the point-optimal test with

maximal power takes the form

S|H0 =
1

2σ2

C̄

n
u0

(
2u1 −

C̄

n
u0

)
.

Under H1 : c(x) ≡ c̄(x), the test statistic for the point-optimal test with maximal power

has the form

S|H1 =
1

2σ2

C̄

n
u0

(
2u1 +

C̄

n
u0

)
.

Theorem 1. In the setting of model (8), the maximal power for detecting a unit root

break at t = 1 is Pm = 0.05 + C̄
n
· const + o(n−1), const > 0.

Lemma 5. Under H0 : c(x) ≡ 0, the test statistic for the pseudo-point-optimal test

based on the function c∗(x) ≡ C∗ has the form

S|H0 =
1

2σ2

n∑
t=0

C∗

n

t−1∑
τ=0

uτ

(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
.

Under H1 : c(x) ≡ c̄(x), the test statistic for the pseudo-point-optimal test based on

the constant function c∗(x) ≡ C∗ has the form

S|H1 =
1

2σ2

n∑
t=1

C∗

n

t−1∑
τ=0

uτ

(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
+
C∗C̄

σ2n2
u2

0

+
C∗C̄

2σ2n2
u0

n∑
t=2

(
2ut −

C∗C̄

n2
u0

)
− C∗2C̄

σ2n3
u0

n∑
t=2

t−1∑
τ=0

uτ .

Theorem 2. In the setting of model (8), the pseudo-point-optimal test based on the

constant function c∗(x) ≡ C∗ for detection of a unit root break at t = 1 has power

P c ≤ 0.05 + constε n
− 3

2
+ε for arbitrary ε > 0.

Remark. The above specification assumes C∗ to be a constant. An alternative spec-

ification is a decreasing sequence so that as n goes to infinity the proxy alternative
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becomes less distinguishable from a unit root model. In such a case, when the pseudo-

point-optimal test is based on a decreasing sequence C∗n instead of C∗, the above results

still hold. To see this, note that the maximal power does not depend on C∗n, so we only

need to consider an appropriately modified version of the result, as is done in Theorem

3 below.

Theorem 3. In the setting (8), the pseudo-point-optimal test based on the function

c∗(x) ≡ C∗n, where C∗n is a positive decreasing sequence of n, has the power P c ≤
0.05 + constε n

− 3
2

+ε.

3.2. Unit root break at t = bαnc. This subsection focuses on the special case where

the constant alternative is c∗(x) ≡ C∗ and the true function c̄(x) differs from zero only

at a single fractional point α > 0 in the sample. That is, c̄(x) = C̄1 {x = α} so that

θtn = 1 + C̄
n
1 {t = bαnc}.

Lemma 6. Under H0 : c(x) ≡ 0, the point-optimal test with maximal power has the

form

S|H0 =
1

2σ2

C̄

n

bαnc−1∑
t=0

ut

2ubαnc −
C̄

n

bαnc−1∑
t=0

ut

 .

Under H1 : c(x) ≡ c̄(x), the point-optimal test with maximal power has the form

S|H1 =
1

2σ2

C̄

n

bαnc−1∑
t=0

ut

2ubαnc +
C̄

n

bαnc−1∑
t=0

ut

 .

Theorem 4. Maximal power for detection of a unit root break at t = bαnc is Pm =

0.05 + 1√
n
× const + o(n−0.5), for some const > 0.

Lemma 7. Under H0 : c(x) ≡ 0, the pseudo-point-optimal test based on the function

c∗(x) ≡ C∗ has the form

S|H0 =
1

2σ2

n∑
t=0

C∗

n

t−1∑
τ=0

uτ

(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
.

Under H1 : c(x) ≡ c̄(x), the pseudo-point-optimal test based on the function c∗(x) ≡ C∗

has the form

S|H1 =
1

2σ2

[
n∑
t=0

C∗

n

t−1∑
τ=0

uτ

(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
+ 2

C̄C∗

n2

bαnc−1∑
t=0

ut

2

+ 2
C̄C∗

n2

bαnc−1∑
t=0

ut

 ∑
t>bαnc

ut − 2
C̄C∗2

n3

bαnc−1∑
t=0

ut

 ∑
t>bαnc

t−1∑
τ=0

uτ

− C̄2C∗2

n4

bαnc−1∑
t=0

ut

2

(n− bαnc)
]
.
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Theorem 5. The pseudo-point-optimal test based on the function c∗(x) ≡ C∗ for

detection of a unit root break at t = bαnc has power P c ≤ 0.05 + constε n
−1+ε, for

arbitrary ε > 0.

The differences in power magnitude between early and later shifts in the generating

mechanism may be explained as follows. The generating mechanism changes according

to the presence or absence of the term c
n
Xt−1. For an early shift with α = 0 and t = 1,

we have c
n
Xt−1 = op(n

−1/2) when X0 = op(n
1/2), whereas for a later shift with α > 0,

we have c
n
Xt−1 = Op(n

−1/2). Hence, the differential in the generating mechanism has

a greater order of magnitude for a later shift, thereby enhancing discriminatory power

in both the point optimal and pseudo-point optimal tests when α > 0. The difference

is greater also when X0 = Op(1). So the order of magnitude of the initial condition

impacts discriminatory power in the presence of an early shift in the generating mech-

anism. This explanation is relevant to earlier studies on unit root testing where the

effects of initial conditions have been observed in simulation outcomes.

3.3. Extension to Small Infinity Regions of originating data. To extend The-

orems 1 and 2, we consider a structural break FLUR model where the LUR coefficient

1+ C̄
n
, holds for {t = 1, ..., L} and shifts to a UR coefficient for {t = L+ 1, ..., n}, where

L satisfies 1
L

+ L2

n
→ 0 as n→∞. That is, we work with the model

(9) Xt =

(
1 +

C̄

n
1 {t ≤ L}

)
Xt−1 + ut, ut ∼iid N(0, σ2),

so that Xt = θtnXt−1 + ut with θtn = 1 + C̄
n
1 {t ≤ L} for t = 0, ..., n, with originating

data

X−1 = 0, X0 = θ0nX−1 + u0 = u0, Xt =

(
1 +

C̄

n

)
Xt−1 + ut, t = 1, ..., L.

In this FLUR model, the effects of departures from a UR are confined to a small

infinity (L→∞) of the originating data.

We proceed to examine the behavior of the functional point optimal test based on

this specification and a pseudo-point optimal test based on the use of a constant LUR

specification θtn =
(
1 + C∗

n

)
for all t = 0, ..., n.

Conjecture 1. Suppose that L, n → ∞ with L2

n
→ 0 as n → ∞. In the setting of

model (9), maximal power is bounded from below by 0.05 + constε(
L
n

)1+ε and power of

the pseudo-point-optimal test based on the function c∗(x) ≡ C∗ is bounded from above

by 0.05 + constε
(
L
n

)3/2−ε
, where ε > 0 is arbitrary and constε is a positive constant

depending on ε.
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The Appendix presents an outline proof of this conjecture that is supported by

numerical simulations in the unproven part of the argument where a required bound

has not been obtained analytically. The authors have not yet been able to obtain a

fully rigorous proof. So the result is stated as a conjecture.

4. Conclusion and Further Research

While there is substantial empirical evidence for the presence of unit root autore-

gressive roots in many economic and financial time series, insistence on a strict unit

root model specification is known to be restrictive. In relaxing this specification,

more realistic formulations will often allow for shifts and transitions in the generating

mechanism for which there may be empirical or institutional evidence. In such cases,

functional specifications of local to unity behavior in the autoregressive coefficient

allow greater flexibility than constant departures of the Pitman drift form. As this

paper shows, functional specifications have three main effects: (i) the limit form of the

standardized time series now embodies nonlinearities that reflect the functional depar-

tures from unity leading to a nonlinear diffusion limit process; (ii) the discriminatory

power of standard unit root tests and point optimal tests is diminished, in many cases

considerably; and (iii) the power envelope is defined by a space of functions and is no

longer given by a simple single curve derived from point optimal tests against constant

local to unity departures.

The present contribution has focused on studying these effects. Obvious extensions

to models with drifts are possible in which there will be corresponding changes to

the so-called GLS detrending procedures. These procedures actually rely on quasi-

differencing the data rather than full GLS transforms. In a FLUR model with drift,

it is necessary to take account of functional departures from unity, which in turn

implies more complex quasi-differencing methods to achieve more efficient detrending.

These may be investigated along the lines of the present study. Further extensions of

function space alternatives to mildly integrated and mildly explosive processes (Phillips

and Magdalinos (2007)) are possible and accommodate subperiod departures of this

type from unit root models that accord with recent empirical investigations of bubble

phenomena (Phillips et al. (2015)). A major additional area of interest in inference

concerns the construction of confidence intervals. The validity of such intervals and

the possibility of uniform inference about autoregressive behavior in the presence of

more complex departures from unity is clearly of importance in practical work. These

matters are currently under investigation and will be reported in later work.

References



POINT OPTIMAL TESTING WITH ROOTS THAT ARE FUNCTIONALLY LOCAL TO UNITY 17

Banerjee, A., Chevillon G., and M. Kratz, “Detecting and Forecasting Bubbles in

a Near-Explosive Random Coefficient Model,” Working Paper, Durham University,

2015.

Chan, N.H. and C.Z. Wei, “Asymptotic inference for nearly nonstationary AR(1)

processes,” The Annals of Statistics, 1987, 15 (3), 1050–1063.

Elliott, G., T.J. Rothenberg, and J. Stock, “Efficient tests for an autoregressive

unit root,” Econometrica, 1996, 64 (4), 813–836.

Greenaway-McGrevy, R. and P.C.B. Phillips, “Hot property in New Zealand:

Empirical evidence of housing bubbles in the metropolitan centres,” New Zealand

Economic Papers, 2016, 50 (1), 88–113.

King, M. L. and S. Sriananthakumar, “Point optimal testing: A survey of the post

1987 literature,” Model Assisted Statistics and Algorithms, 2016, 10 (1), 179–196.

Lieberman, O. and P.C.B. Phillips, “Norming Rates and Limit Theory for Some

Time-Varying Coefficient Autoregressions,” Journal of Time Series Analysis, 2014,

35 (6), 592–623.

and , “”A Multivariate Stochastic Unit Root Model with an Appli-

cation to Derivative Pricing,” Working Paper, 2016.

Mikusheva, A., “Uniform inference in autoregressive models,” Econometrica, 2007,

75 (5), 1411–1452.

, “One-Dimensional Inference in Autoregressive Models With the Potential

Presence of a Unit Root,” Econometrica, 2012, 80 (1), 173–212.

Phillips, P.C.B., “Towards a unified asymptotic theory for autoregression,”

Biometrika, 1987, 74 (3), 535–547.

, “Regression theory for near-integrated time series,” Econometrica, 1988, 56

(5), 1021–1043.

, “On Confidence Intervals for Autoregressive Roots and Predictive Regres-

sion,” Econometrica, 2014, 82 (3), 1177–1195.

and J. Yu, “Dating the timeline of financial bubbles during the subprime

crisis,” Quantitative Economics, 2011, 2 (3), 455–491.

and T. Magdalinos, “Limit theory for moderate deviations from a unit

root,” Journal of Econometrics, 2007, 136 (1), 115–130.

, S. Shi, and Yu J., “Testing for Multiple Bubbles: Historical Evidence of

Exuberance and Collapse in the S&P 500,” International Economic Review, 2015,

54 (4), 1043–1077.



18 ANNA BYKHOVSKAYA AND PETER C. B. PHILLIPS

5. Appendix

Lemma 8. For data Xt generated by model (1) and (2)

n−
1
2Xbnrc −−−→

n→∞
σKc(r) := σ

∫ r

0

e
∫ r
s c(k)dkdW (s),

where Kc(r) satisfies the stochastic differential equation:

dKc(r) = c(r)Kc(r)dr + dW (r).

Proof. First, note that

Xt = θtnXt−1 + ut = θtnθnt−1Xt−2 + θntut−1 + ut

=
t∑

j=1

uje
1
n

∑t−j
k=1 c(

t−k+1
n ) + e

1
n

∑t
j=1 c(

j
n)X0.

(10)

Then, as e
1
n

∑t
j=1 c(

j
n)X0 = Op(1) (or op(n

0.5) if X0 = op(n
0.5)), using (10) we get

n−
1
2Xbnrc = σ

bnrc∑
j=1

e
1
n

∑bnrc−j
k=1 c( bnrc−k+1

n )
∫ j

n

j−1
n

dXn(s) + op(1))

= σ

bnrc∑
j=1

∫ j
n

j−1
n

e
∫ r
s c(k)dkdXn(s) + op(1))

= σ

∫ r

0

e
∫ r
s c(k)dkdXn(s) + op(1)).

(11)

Using integration by parts∫ r

0

e
∫ r
s c(k)dkdXn(s) = Xn(r) +

∫ r

0

e
∫ r
s c(k)dkc(s)Xn(s)ds,

taking limits as n→∞ in (11), and using continuous mapping, we get

n−
1
2Xbnrc → σ

(
W (r) +

∫ r

0

e

r∫
s
c(k)dk

c(s)W (s)ds

)
= σ

∫ r

0

e
∫ r
s c(k)dkdW (s),

giving the required result. Finally, denoting Kc(r) =
∫ r

0
e
∫ r
s c(k)dkdW (s), we get

Kc(r) = W (r) +

∫ r

0

e

r∫
s
c(k)dk

c(s)W (s)ds,

and

dKc(r) = dW (r) + c(r)W (r)dr + c(r)

∫ r

0

e

r∫
s
c(k)dk

c(s)W (s)dsdr

= dW (r) + c(r)Kc(r)dr,

as required. �

Proof of Lemma 1.
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Proof. Define r = t−1
n

and ∆r = 1
n
. Under H0 we have that Kc(r) =

∫ r
0
dW (s) = W (r),

so by Eq. (3),

d0
t =

1√
nσ

(Xt −Xt−1) ≈ Kc(r + ∆r)−Kc(r) =

∫ r+∆r

r

dW (s)

= W (r + ∆r)−W (r),

dct =
1√
nσ

(
Xt − ec(t/n)/nXt−1

)
≈ Kc(r + ∆r)− ec(r)∆rKc(r)

= W (r + ∆r)− ec(r)∆rW (r),

so that

(dct)
2 ≈

(
W (r + ∆r)− ec(r)∆rW (r)

)2

=
(
W (r + ∆r)−W (r) +W (r)

(
1− ec(r)∆r

))2

=
(
d0
t

)2
+ 2d0

tW (r)
(
1− ec(r)∆r

)
+W 2(r)

(
1− ec(r)∆r

)2
.

(12)

Plugging the expression for (dct)
2 from Eq. (12) into Eq. (5), we get

∑
t

(
d0
t

)2 −
∑
t

(dct)
2 = −2

∑
d0
tW (r)

(
1− ec(r)∆r

)
−
∑

W 2(r)
(
1− ec(r)∆r

)2

≈ 2∆r
∑

c(r) (W (r + ∆r)−W (r))W (r)

− (∆r)2
∑

W 2(r)c2(r)

≈ 2∆r

∫ 1

0

c(s)W (s)dW (s)−∆r

∫ 1

0

c2(s)W 2(s)ds.

(13)

Using (13), we see that S
H0−→

∫ 1

0
c(s)W (s)dW (s) − 1

2

∫ 1

0
c2(s)W 2(s)ds. Similarly, we

can calculate the limit under H1. By Eq. (3)

d0
t =

1√
nσ

(Xt −Xt−1) ≈ Kc(r + ∆r)−Kc(r),

dct =
1√
nσ

(
Xt − ec(t/n)/nXt−1

)
≈ Kc(r + ∆r)− ec(r)∆rKc(r),
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so that∑
t

(
d0
t

)2 −
∑
t

(dct)
2 ≈

∑(
Kc(r + ∆r)− ec(r)∆rKc(r) +Kc(r)

(
ec(r)∆r − 1

))2

−
∑(

Kc(r + ∆r)− ec(r)∆rKc(r)
)2

= 2
∑(

Kc(r + ∆r)− ec(r)∆rKc(r)
)
Kc(r) (c(r)∆r) +

∑
K2
c (r)c2(r)(∆r)2

≈ ∆r

∫ 1

0

K2
c (s)c2(s)ds+ 2

∑
ec(r)∆r (W (r + ∆r)−W (r))Kc(r) (c(r)∆r)

≈ ∆r

∫ 1

0

K2
c (s)c2(s)ds+ 2∆r

∫ 1

0

Kc(s)c(s)dW (s).

Thus, S
H1−→
∫ 1

0
c(s)Kc(s)dW (s) + 1

2

∫ 1

0
c2(s)K2

c (s)ds. �

Proof of Lemma 2.

Proof. We decompose the test statistic into two summations:

∑
t

(
d0
t

)2 −
∑
t

(
dc
∗

t

)2
=

(∑
i

(
d0
i

)2 −
∑
t

(dc̄t)
2

)
+

(∑
t

(dc̄t)
2 −

∑
t

(
dc
∗

t

)2

)
.

From Lemma 1 we know that

(14)
1

2∆r

(∑
t

(
d0
t

)2 −
∑
t

(dc̄t)
2

)
H1−→
∫ 1

0

c̄(s)Kc̄(s)dW (s) +
1

2

∫ 1

0

c̄2(s)K2
c̄ (s)ds.

So we are left with the second term
∑
t

(dc̄t)
2 −∑

t

(
dc
∗
t

)2
. We will apply the same

technique as in Lemma 1 to approximate that term. In particular

∑
t

(dc̄t)
2 −

∑
t

(
dc
∗

t

)2 ≈
∑(

Kc̄(r + ∆r)− ec̄(r)∆rKc̄(r)
)2

−
∑(

Kc̄(r + ∆r)− ec̄(r)∆rKc̄(r) +Kc̄(r)
(
ec̄(r)∆r − ec∗(r)∆r

))2

= −2
∑(

Kc̄(r + ∆r)− ec̄(r)∆rKc̄(r)
)
Kc̄(r)

(
ec̄(r)∆r − ec∗(r)∆r

)
−
∑

K2
c̄ (r)

(
ec̄(r)∆r − ec∗(r)∆r

)2

≈ −2
∑

ec̄(r)∆r (W (r + ∆r)−W (r))Kc̄(r)∆r (c̄(r)− c∗(r))

−
∑

K2
c̄ (r)(∆r)2 (c̄(r)− c∗(r))2

≈ −2∆r

∫ 1

0

Kc̄(s)(c̄(s)− c∗(s))dW (s)−∆r

∫ 1

0

K2
c̄ (s)(c̄(s)− c∗(s))2ds.

(15)
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Combining Eq. 14 and 15 we get that

S =
1

2∆r

(∑
t

(
d0
t

)2 −
∑
t

(
dc
∗

t

)2

)
H1−→
∫ 1

0

c̄(s)Kc̄(s)dW (s) +
1

2

∫ 1

0

c̄2(s)K2
c̄ (s)

−
∫ 1

0

Kc̄(s)(c̄(s)− c∗(s))dW (s)− 1

2

∫ 1

0

K2
c̄ (s)(c̄(s)− c∗(s))2ds

=

∫ 1

0

Kc̄(s)c
∗(s)dW (s) +

∫ 1

0

K2
c̄ (s)c̄(s)c∗(s)ds− 1

2

∫ 1

0

Kc̄(s)c
∗2(s)ds.

�

Proof of Lemma 3.

Proof. Define the joint density of (Z, Y ) as f(Z, Y ) and the marginal densities as fZ(Z)

and fY (Y ). Then

P
{
Z +

1

nk
Y > A

}
=

∫
R

∫ ∞
nk(A−z)

f(z, y)dydz

=

(∫ A

−∞
+

∫ ∞
A

)∫ ∞
nk(A−z)

f(z, y)dydz

≤
(∫ A−ε

−∞
+

∫ A

A−ε

)∫ ∞
nk(A−z)

f(z, y)dydz +

∞∫
A

fZ(z)dz

=

(∫ A−ε

−∞
+

∫ A

A−ε

)∫ ∞
nk(A−z)

f(z, y)dydz + P {Z > A} ,

(16)

where ε is arbitrary positive number.

Note that∫ A−ε

−∞

∫ ∞
nk(A−z)

f(z, y)dydz ≤
∫ A−ε

−∞

∫ ∞
εnk

f(z, y)dydz ≤
∫ ∞
εnk

fY (y)dy

= P
{
Y ≥ εnk

}
≤ P

{
|Y | ≥ nkε

}
= P

{
eαk|Y | ≥ eαkn

kε
}
≤ E

(
eαk|Y |

)
enkαkε

;

(17)

∫ A

A−ε

∫ ∞
nk(A−z)

f(z, y)dydz ≤
∫ A

A−ε
fZ(z)dz ≤ Bε(18)

where B is the upper bound of density of Z, f(z), around point z = A.

Let ε = logn
nk

, so that ε −−−→
n→∞

0. Then plugging Eq. 17 and 18 into Eq. (16), we get

P
{
Z +

1

nk
Y > A

}
≤ P {Z > A}+Bε+

E
(
eαk|Y |

)
enkkαε

= P {Z > A}+Bn−k log n+
E
(
eαk|Y |

)
eαk logn

= P {Z > A}+O

(
1

nkα
+ n−k log n

)
,
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so that

P
{
Z +

1

nk
Y > A

}
≤ P {Z > A}+O

(
n−k log n

)
≤ P {Z > A}+ constεn

−k+ε,

where ε > 0 is arbitrary. �

Proof of Lemma 4.

Proof. Under H0, Xt = Xt−1 + ut =
t∑

τ=0

uτ .

(19)
1

2σ2

n∑
t=0

(Xt −Xt−1)2 H0=
1

2σ2

n∑
t=0

u2
t .

1

2σ2

n∑
t=0

(
Xt −

(
1 +

c̄(t/n)

n

)
Xt−1

)2
H0=

1

2σ2
u2

0 +
1

2σ2

(
u1 −

C̄

n
u0

)2

+
1

2σ2

n∑
t=2

u2
t

=
1

2σ2

(
n∑
t=0

u2
t +

C̄

n
u0

(
C̄

n
u0 − 2u1

))
.

(20)

Combining 19 and 20, we get

S
H0=

1

2σ2

n∑
t=0

(Xt −Xt−1)2 − 1

2σ2

n∑
t=0

(
Xt −

(
1 +

c̄(t/n)

n

)
Xt−1

)2

=
1

2σ2

C̄

n
u0

(
2u1 −

C̄

n
u0

)
.

(21)

Under H1, Xt =
(

1 + c̄(t/n)
n

)
Xt−1 + ut.

1

2σ2

n∑
t=0

(Xt −Xt−1)2 H1=
1

2σ2
u2

0 +
1

2σ2

(
u1 +

C̄

n
u0

)2

+
1

2σ2

n∑
t=2

u2
t

=
1

2σ2

(
n∑
t=0

u2
t +

C̄

n
u0

(
C̄

n
u0 + 2u1

))
.

(22)

(23)
1

2σ2

n∑
t=0

(
Xt −

(
1 +

c̄(t/n)

n

)
Xt−1

)2
H1=

1

2σ2

n∑
t=0

u2
t .

Combining 22 and 23 we get

S
H1=

1

2σ2

n∑
t=0

(Xt −Xt−1)2 − 1

2σ2

n∑
t=0

(
Xt −

(
1 +

c̄(t/n)

n

)
Xt−1

)2

=
1

2σ2

C̄

n
u0

(
2u1 +

C̄

n
u0

)
.

(24)

�

Proof of Theorem 1.
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Proof. We reject the null hypothesis at the 5% significance level when the test statistic

is greater than the 5% critical value cv. Using the formula for S|H0 from Lemma 4,

the constant cv is determined by

P
(

1

2σ2

C̄

n
u0

(
2u1 −

C̄

n
u0

)
> cv

)
= 0.05.

Note also that 1
2σ2 C̄u0

(
2u1 − C̄

n
u0

)
≈ 1

σ2 C̄u0u1 when n is large, so that Am := n · cv
is approximately constant.

Plugging in S|H1 from Lemma 4, we get the following expression for maximal power,

Pm:

Pm = P
(

1

2σ2

C̄

n
u0

(
2u1 +

C̄

n
u0

)
> cv

)
= P

(
1

2σ2

C̄

n
u0

(
2u1 −

C̄

n
u0

)
+

1

σ2

(
C̄

n
u0

)2

> cv

)

= 0.05 + P
(

1

2σ2

C̄

n
u0

(
2u1 −

C̄

n
u0

)
≤ cv,

1

2σ2

C̄

n
u0

(
2u1 +

C̄

n
u0

)
> cv

)
= 0.05 + P

(
u0 > 0, u1 ∈

(
σ2cv
C̄
n
u0

− C̄

2n
u0,

σ2cv
C̄
n
u0

+
C̄

2n
u0

])

+ P

(
u0 < 0, u1 ∈

(
σ2cv
C̄
n
u0

+
C̄

2n
u0,

σ2cv
C̄
n
u0

− C̄

2n
u0

])

= 0.05 + P
(
u0 > 0, u1 ∈

(
σ2Am

C̄u0

− C̄

2n
u0,

σ2Am

C̄u0

+
C̄

2n
u0

])
+ P

(
u0 < 0, u1 ∈

(
σ2Am

C̄u0

+
C̄

2n
u0,

σ2Am

C̄u0

− C̄

2n
u0

])
= 0.05 +

1

2πσ2

∫ ∞
−∞

e−u
2/2σ2 C̄

n
ue−ũ(u)2/2σ2

du

= 0.05 +
C̄

n

1

2πσ2

∫ ∞
−∞

e−u
2/2σ2

u

(
e−

σ2(Am)2

2C̄2u2 + o(1)

)
du

= 0.05 +
C̄

n
· const + o(n−1),

where ũ(u) lies in the neighbourhood of
σ2Am

C̄u

(25)

To justify the last expression, we use the following truncation argument. We split

the domain of u0 into the two regions
{
|u0| ≤ nδ

}
and

{
|u0| > nδ

}
for some δ ∈ (0, 1) .
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Then, we have

P
(
u0 > 0, u1 ∈

(
σ2Am

C̄u0

− C̄

2n
u0,

σ2Am

C̄u0

+
C̄

2n
u0

])

=
1

2πσ2

∫ ∞
0

e−
1
2
u2

0/σ
2

∫ σ2Am

C̄u0
+ C̄

2n
u0

σ2Am

C̄u0
− C̄

2n
u0

e−
1
2
u2

1/σ
2

du1du0

=
1

2πσ2

(∫ nδ

0

+

∫ ∞
nδ

)
e−

1
2
u2

0/σ
2

∫ σ2Am

C̄u0
+ C̄

2n
u0

σ2Am

C̄u0
− C̄

2n
u0

e−
1
2
u2

1/σ
2

du1du0.

First

1

2πσ2

∫ nδ

0

e−
1
2
u2

0/σ
2

∫ σ2Am

C̄u0
+ C̄

2n
u0

σ2Am

C̄u0
− C̄

2n
u0

e−
1
2
u2

1/σ
2

du1du0

=
1

2πσ2

∫ nδ

0

e−
1
2
u2

0/σ
2 C̄

n
u0e
− 1

2
ũ1(u0)2/σ2

du0,

with ũ1 (u0) ∈
(
σ2Am

C̄u0

− C̄

2n
u0,

σ2Am

C̄u0

+
C̄

2n
u0

)
=

C̄

n2πσ2

∫ ∞
0

e−
1
2
u2

0/σ
2

u0e
− 1

2
ũ1(u0)2/σ2

du0

=
C̄

n
× const,

(26)

by integrability of u0e
− 1

2
u2

0/σ
2

and boundedness of e−
1
2
ũ1(u0)2/σ2

since u0

n
= o (1) through-

out
{
|u0| ≤ nδ

}
, which makes

(
σ2Am

C̄u0
− C̄

2n
u0,

σ2Am

C̄u0
+ C̄

2n
u0

)
a shrinking interval of

σ2Am

C̄u0
, justifying (26). Second,∣∣∣∣∣ 1

2πσ2

∫ ∞
nδ

e−
1
2
u2

0/σ
2

∫ σ2Am

C̄u0
+ C̄

2n
u0

σ2Am

C̄u0
− C̄

2n
u0

e−
1
2
u2

1/σ
2

du1du0

∣∣∣∣∣
≤ 1√

2πσ

∫ ∞
nδ

e−
1
2
u2

0/σ
2

du0 = O
(
n−δe−

1
2σ2 n

2δ
)
, by Mills ratio,

which gives

P
(
u0 > 0, u1 ∈

(
σ2Am

C̄u0

− C̄

2n
u0,

σ2Am

C̄u0

+
C̄

2n
u0

])
=
C̄

n
× const. + o

(
n−1
)
.

A similar argument shows that

P
(
u0 < 0, u1 ∈

(
σ2Am

C̄u0

+
C̄

2n
u0,

σ2Am

C̄u0

− C̄

2n
u0

])
=
C̄

n
× const. + o

(
n−1
)

giving the required result (25). �

Proof of Lemma 5.
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Proof. Under H0, Xt = Xt−1 + ut =
t∑

τ=0

uτ .

(27)
1

2σ2

n∑
t=0

(Xt −Xt−1)2 H0=
1

2σ2

n∑
t=0

u2
t .

1

2σ2

n∑
t=0

(
Xt −

(
1 +

C∗

n

)
Xt−1

)2
H0=

1

2σ2

n∑
t=0

(
ut −

C∗

n
Xt−1

)2

=
1

2σ2

n∑
t=0

(
ut −

C∗

n

t−1∑
τ=0

uτ

)2

=
1

2σ2

[
n∑
t=0

(
u2
t +

C∗

n

t−1∑
τ=0

uτ

(
C∗

n

t−1∑
τ=0

uτ − 2ut

))]
.

(28)

Combining 27 and 28 we get

S
H0=

1

2σ2

n∑
t=0

(Xt −Xt−1)2 − 1

2σ2

n∑
t=0

(
Xt −

(
1 +

C∗

n

)
Xt−1

)2

=
1

2σ2

n∑
t=0

C∗

n

t−1∑
τ=0

uτ

(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
.

(29)

Under H1, Xt =
(

1 + c̄(t/n)
n

)
Xt−1 + ut = C̄

n
u0 +

t∑
τ=0

uτ , t ≥ 1, X0 = u0.

1

2σ2

n∑
t=0

(Xt −Xt−1)2 H1=
1

2σ2
u2

0 +
1

2σ2

(
u1 +

C̄

n
u0

)2

+
1

2σ2

n∑
t=2

u2
t

=
1

2σ2

(
n∑
t=0

u2
t +

C̄

n
u0

(
C̄

n
u0 + 2u1

))
.

(30)

1

2σ2

n∑
t=0

(
Xt −

(
1 +

C∗

n

)
Xt−1

)2

H1=
1

2σ2

(
u2

0 +

(
u1 + u0

(
C̄

n
− C∗

n

))2

+
n∑
t=2

(
ut −

C∗

n
Xt−1

)2
)

=
1

2σ2

(
n∑
t=0

u2
t + u0

C̄ − C∗
n

(
2u1 + u0

C̄ − C∗
n

)
+

n∑
t=2

C∗

n
Xt−1

(
C∗

n
Xt−1 − 2ut

))

=
1

2σ2

[
n∑
t=0

u2
t + u0

C̄ − C∗
n

(
2u1 + u0

C̄ − C∗
n

)

+
n∑
t=2

C∗

n

(
C̄

n
u0 +

t−1∑
τ=0

uτ

)(
C∗

n

(
C̄

n
u0 +

t−1∑
τ=0

uτ

)
− 2ut

)]
.

(31)
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Combining 30 and 31 we get

S
H1=

1

2σ2

n∑
t=0

(Xt −Xt−1)2 − 1

2σ2

n∑
t=0

(
Xt −

(
1 +

C∗

n

)
Xt−1

)2

=
1

2σ2

[
C̄C∗

n2
u2

0 +
C∗

n
u0

(
2u1 +

C̄ − C∗
n

u0

)

−
n∑
t=2

C∗

n

(
C̄

n
u0 +

t−1∑
τ=0

uτ

)(
C∗

n

(
C̄

n
u0 +

t−1∑
τ=0

uτ

)
− 2ut

)]

=
C∗C̄

σ2n2
u2

0 +
1

2σ2

n∑
t=1

C∗

n

t−1∑
τ=0

uτ

(
2ut −

C∗

n

t−1∑
τ=0

uτ

)

+
1

2σ2

n∑
t=2

C∗

n

t−1∑
τ=0

uτ

(
−C

∗C̄

n2
u0

)
+

C∗C̄

2σ2n2
u0

n∑
t=2

(
2ut −

C∗

n

(
C̄

n
u0 +

t−1∑
τ=0

uτ

))

=
1

2σ2

n∑
t=1

C∗

n

t−1∑
τ=0

uτ

(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
+
C∗C̄

σ2n2
u2

0

+
C∗C̄

2σ2n2
u0

n∑
t=2

(
2ut −

C∗C̄

n2
u0

)
− C∗2C̄

σ2n3
u0

n∑
t=2

t−1∑
τ=0

uτ .

(32)

�

Proof of Theorem 2.

Proof. The proof is similar to that of Theorem 1. Using the formula for S|H0 from

Lemma 5, the 5% critical value cv is determined by

P

(
1

2σ2

n∑
t=0

C∗

n

t−1∑
τ=0

uτ

(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
> cv

)
= 0.05.

Note that

2

n

n∑
t=0

ut

t−1∑
τ=0

uτ =
1

n

(
(u0 + · · ·+ un)2 −

n∑
0

u2
t

)

=

(
u0 + · · ·+ un√

n

)2

− 1

n

n∑
0

u2
t = σ2χ2

1 − σ2 + o(1).

Moreover,

1

n2

n∑
t=0

(
t−1∑
τ=0

uτ

)(
t−1∑
τ=0

uτ

)
=

1

n

n∑
0

(
u0 + · · ·+ ut−1√

n

)2

=
1

n

n∑
0

σ2W 2

(
t− 1

n

)
= σ2

∫ 1

0

W 2(s)ds+ o(1),
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so that

(33)
1

2σ2

n∑
t=0

C∗

n

t−1∑
τ=0

uτ

(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
= ξ + o(1),

and cv is approximately constant with respect to n.

Thus, plugging in S|H1 from Lemma 5, P c becomes

P c = P

(
1

2σ2

n∑
t=1

C∗

n

t−1∑
τ=0

uτ

(
2ut −

C∗

n

t−1∑
τ=0

uτ

)

+
C∗C̄

σ2n2
u2

0 +
C∗C̄

2σ2n2
u0

n∑
t=2

(
2ut −

C∗C̄

n2
u0

)
− C∗2C̄

σ2n3
u0

n∑
t=2

t−1∑
τ=0

uτ > cv

)
.

Note that

C∗C̄

σ2n2
u2

0 = O(n−2),

1

n2
u0

n∑
t=2

(
2ut −

C∗C̄

n2
u0

)
= n−3/2u0

u2 + · · ·+ un√
n

− C∗C̄

n3
u2

0

= n−3/2u0 · (N(0, σ2) + o(1)) +O(n−3) = O(n−3/2).

Finally,

1

σ2n3

n∑
t=2

t−1∑
τ=0

uτ = σ−2n−5/2

(
u0 + u1√

n
+ · · ·+ u0 + u1 + · · ·+ un−1√

n

)
= n−5/2 (W (1/n) +W (2/n) + · · ·+W (1))

= n−3/2

(∫ 1

0

W (s)ds+ o(1)

)
= O(n−3/2),

so that we have

P c = P
(
ξ + n−3/2η > cv

)
= P(ξ +O(n−3/2) > cv)

≤ P(ξ > cv) + constε n
− 3

2
+ε = 0.05 + constε n

− 3
2

+ε,

where the inequality follows from Lemma 3, ξ was defined in Eq. (33), and n−3/2η =

C∗C̄
σ2n2u

2
0 + C∗C̄

2σ2n2u0

n∑
t=2

(
2ut − C∗C̄

n2 u0

)
− C∗2C̄

σ2n3 u0

n∑
t=2

t−1∑
τ=0

uτ . �

Proof of Theorem 3.

Proof. We can use formulae for the test statistics from Theorem 2 replacing C∗ by C∗n.

Only asymptotic behavior may change. The critical value cv is such that

P

(
1

2σ2

n∑
t=0

C∗n
n

t−1∑
τ=0

uτ

(
2ut −

C∗n
n

t−1∑
τ=0

uτ

)
> cv

)
= 0.05.
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As before, we are interested in behavior as n goes to infinity. We can write:

2

n

n∑
t=0

ut

t−1∑
τ=0

uτ =
1

n

(
(u0 + · · ·+ un)2 −

n∑
0

u2
t

)

=

(
u0 + · · ·+ un√

n

)2

− 1

n

n∑
0

u2
t = σ2χ2

1 − σ2 + o(1).

Moreover,

1

n2

n∑
t=0

(
t−1∑
τ=0

uτ

)(
t−1∑
τ=0

uτ

)
=

1

n

n∑
0

(
u0 + · · ·+ ut−1√

n

)2

=
1

n

n∑
0

σ2W 2

(
t− 1

n

)
= σ2

∫ 1

0

W 2(s)ds+ o(1),

so that

1

2σ2

n∑
t=0

1

n

t−1∑
τ=0

uτ

(
2ut −

C∗n
n

t−1∑
τ=0

uτ

)
=

1

2

(
χ2

1 + 1
)

+
lim
n→∞

C∗n

2

1∫
0

W 2(s)ds+ o(1),

and cv
C∗n

is also approximately constant with respect to n.

Similarly,

C̄

σ2n2
u2

0 = O(n−2),

1

n2
u0

n∑
t=2

(
2ut −

C∗nC̄

n2
u0

)
= n−3/2u0

u2 + · · ·+ un√
n

− C∗nC̄

n3
u2

0

= n−3/2u0 · (N(0, σ2) + o(1)) +O(n−3) = O(n−3/2),

and

C∗n
σ2n3

n∑
t=2

t−1∑
τ=0

uτ = C∗nσ
−2n−5/2

(
u0 + u1√

n
+ · · ·+ u0 + u1 + · · ·+ un−1√

n

)
= C∗nn

−5/2 (W (1/n) +W (2/n) + · · ·+W (1))

= C∗nn
−3/2

(∫ 1

0

W (s)ds+ o(1)

)
= C∗nO(n−3/2).
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Thus, we can rewrite power as

P c = P

[
1

2σ2

n∑
t=1

1

n

t−1∑
τ=0

uτ

(
2ut −

C∗n
n

t−1∑
τ=0

uτ

)

+
C̄

σ2n2
u2

0 +
C̄

2σ2n2
u0

n∑
t=2

(
2ut −

C∗nC̄

n2
u0

)
− C∗nC̄

σ2n3
u0

n∑
t=2

t−1∑
τ=0

uτ >
cv

C∗n

]

= P

[
1

2

(
χ2

1 + 1
)

+
lim
n→∞

C∗n

2

1∫
0

W 2(s)ds+O(n−3/2) >
cv

C∗n

]

≤ P

[
1

2σ2

n∑
t=0

C∗n
n

t−1∑
τ=0

uτ

(
2ut −

C∗n
n

t−1∑
τ=0

uτ

)
> cv

]
+ constε n

− 3
2

+ε

= 0.05 + constε n
− 3

2
+ε,

giving the required result. �

Proof of Lemma 6.

Proof. Under H0, Xt = Xt−1 + ut =
t∑

τ=0

uτ , so

(34)
n∑
t=0

(Xt −Xt−1)2 =
n∑
t=0

u2
t ;

n∑
t=0

(
Xt −

(
1 +

C̄

n
1 {t = bαnc}

)
Xt−1

)2

=
∑
t6=bαnc

u2
t +

ubαnc − C̄

n

bαnc−1∑
τ=0

uτ

2

=
n∑
t=0

u2
t +

C̄

n

bαnc−1∑
t=0

ut

C̄
n

bαnc−1∑
t=0

ut − 2ubαnc

 .

(35)

Combining equations (34) and (35), we get

S|H0 :=
1

2σ2

C̄

n

bαnc−1∑
t=0

ut

2ubαnc −
C̄

n

bαnc−1∑
t=0

ut

 .

Under H1,

Xt =



Xt−1 + ut =
t∑

τ=0

uτ , t < bαnc;(
1 + C̄

n

)
Xt−1 + ut =

t∑
τ=0

uτ + C̄
n

t−1∑
τ=0

uτ , t = bαnc;

Xt−1 + ut =
t∑

τ=0

uτ + C̄
n

bαnc−1∑
τ=0

uτ , t > bαnc.
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So, we have

n∑
t=0

(Xt −Xt−1)2 =
n∑

t6=bαnc

u2
t +

ubαnc +
C̄

n

bαnc−1∑
τ=0

uτ

2

=
n∑
t=0

u2
t +

C̄

n

bαnc−1∑
t=0

ut

2ubαnc +
C̄

n

bαnc−1∑
t=0

ut

 ,

(36)

and

(37)
n∑
t=0

(
Xt −

(
1 +

C̄

n
1 {t = bαnc}

)
Xt−1

)2

=
n∑
t=0

u2
t .

Combining equations (36) and (37) gives

S|H0 :=
1

2σ2

C̄

n

bαnc−1∑
t=0

ut

2ubαnc +
C̄

n

bαnc−1∑
t=0

ut

 .

�

Proof of Theorem 4.

Proof. We reject the null hypothesis at the 5% significance level when the test statistic

is greater than the 5% critical value cv. The constant acv is determined by

P

 1

2σ2

C̄

n

bαnc−1∑
t=0

ut

2ubαnc −
C̄

n

bαnc−1∑
t=0

ut

 > cv

 = 0.05,

where we use Lemma 6 for S|H0 .

Because C̄
n

bαnc−1∑
t=0

ut =
C̄
√
bαnc
n

1√
bαnc

bαnc−1∑
t=0

ut ∼
√

α
n
N(0, C̄2σ2) = Op(n

−0.5)2, we get

SH0 = Op(n
−0.5). Thus, we also have that cv = Op(n

−0.5) or
√
n · cv = Op(1).

2Here α > 0 matters, as otherwise we can not use CLT for the partial sum
bαnc−1∑
t=0

ut.
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Plugging S|H1 from Lemma 6, we obtain the following expression for maximal power

Pm = P

[
1

2σ2

C̄

n

bαnc−1∑
t=0

ut

2ubαnc +
C̄

n

bαnc−1∑
t=0

ut

 > cv

]

= P

[
1

2σ2

C̄
n

bαnc−1∑
t=0

ut

2ubαnc −
C̄

n

bαnc−1∑
t=0

ut

+ 2

C̄
n

bαnc−1∑
t=0

ut

2 > cv

]

= P

[
1

2σ2

C̄

n

bαnc−1∑
t=0

ut

2ubαnc −
C̄

n

bαnc−1∑
t=0

ut

 > cv

]

+P

[
1

2σ2

C̄

n

bαnc−1∑
t=0

ut

2ubαnc −
C̄

n

bαnc−1∑
t=0

ut

 ≤ cv,

1

2σ2

C̄

n

bαnc−1∑
t=0

ut

2ubαnc +
C̄

n

bαnc−1∑
t=0

ut

 > cv

]

= 0.05 + P

[
1

2σ2

C̄

n

bαnc−1∑
t=0

ut

2ubαnc −
C̄

n

bαnc−1∑
t=0

ut

 ≤ cv,

1

2σ2

C̄

n

bαnc−1∑
t=0

ut

2ubαnc +
C̄

n

bαnc−1∑
t=0

ut

 > cv

]
=: 0.05 +X.

(38)

Denote v = 1
σ

bαnc−1∑
t=0

ut ∼ N(0, bαnc), u = 1
σ
ubαnc ∼ N(0, 1). Then v ⊥ u and we are

left with calculating

X = P
(
C̄

n
uv − C̄2

2n2
v2 ≤ cv,

C̄

n
uv +

C̄2

2n2
v2 > cv

)
= P

(
u
v√
n
∈
(
cv
√
n

C̄
− C̄

2n3/2
v2,

cv
√
n

C̄
+

C̄

2n3/2
v2

])
=

∫ ∞
0

1√
2πC̄2(bαnc/n)

e
− y2

2C̄2(bαnc/n)

∫ √
ncv
y

+ y
2
√
n

√
ncv
y
− y

2
√
n

1√
2π
e−

x2

2 dxdy

+

∫ 0

−∞

1√
2πC̄2(bαnc/n)

e
− y2

2C̄2(bαnc/n)

∫ √
ncv
y
− y

2
√
n

√
ncv
y

+ y
2
√
n

1√
2π
e−

x2

2 dxdy

(39)
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=

∫ ∞
0

e
− y2

2C̄2(bαnc/n)√
2πC̄2(bαnc/n)

[
Φ

(√
n · cv
y

+
y

2
√
n

)
− Φ

(√
n · cv
y

− y

2
√
n

)]
dy

+

∫ 0

−∞

e
− y2

2C̄2(bαnc/n)√
2πC̄2(bαnc/n)

[
Φ

(√
n · cv
y

− y

2
√
n

)
− Φ

(√
n · cv
y

+
y

2
√
n

)]
dy

=
1√
n

∫ ∞
−∞

|y|e−
y2

2C̄2(bαnc/n)√
2πC̄2(bαnc/n)

φ

(√
n · cv
y

+ ε

)
dy + o

(
n−0.5

)
=

1√
n
× const + o(n−0.5),

where ε→ 0 as n→∞. Here we used the fact that density φ(·) of N(0, 1) is bounded,

so that the integral
∫∞
−∞

|y|e
− y2

2C̄2(bαnc/n)√
2πC̄2(bαnc/n)

φ
(√

n·cv
y

+ ε
)

is finite.

Therefore, plugging X from Eq. (39) into Eq. (38), we get Pm = 0.05+ 1√
n
×const+

o(n−0.5). �

Proof of Lemma 7.

Proof. Under H0, Xt = Xt−1 + ut =
t∑

τ=0

uτ , so

(40)
n∑
t=0

(Xt −Xt−1)2 =
n∑
t=0

u2
t ,

n∑
t=0

(
Xt −

(
1 +

C∗

n

)
Xt−1

)2

=
n∑
t=0

(
ut −

C∗

n

t−1∑
τ=0

uτ

)2

=
n∑
t=0

u2
t +

n∑
t=0

C∗

n

t−1∑
τ=0

uτ

(
C∗

n

t−1∑
τ=0

uτ − 2ut

)
.

(41)

Combining equations (40) and (41), we get

S|H0 :=
1

2σ2

n∑
t=0

C∗

n

t−1∑
τ=0

uτ

(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
.

Under H1,

Xt =



Xt−1 + ut =
t∑

τ=0

uτ , t < bαnc;(
1 + C̄

n

)
Xt−1 + ut =

t∑
τ=0

uτ + C̄
n

t−1∑
τ=0

uτ , t = bαnc;

Xt−1 + ut =
t∑

τ=0

uτ + C̄
n

bαnc−1∑
τ=0

uτ , t > bαnc.
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So we have:

n∑
t=0

(Xt −Xt−1)2 =
n∑

t6=bαnc

u2
t +

ubαnc +
C̄

n

bαnc−1∑
τ=0

uτ

2

=
n∑
t=0

u2
t +

C̄

n

bαnc−1∑
t=0

ut

2ubαnc +
C̄

n

bαnc−1∑
t=0

ut

 ;

(42)

n∑
t=0

(
Xt −

(
1 +

C∗

n

)
Xt−1

)2

=

bαnc−1∑
t=0

(
ut −

C∗

n

t−1∑
τ=0

uτ

)2

+

ubαnc +
C̄ − C∗

n

bαnc−1∑
t=0

ut

2

+
∑
t>bαnc

ut − C∗

n

t−1∑
τ=0

uτ −
C̄C∗

n2

bαnc−1∑
τ=0

uτ

2

=
n∑
t=0

u2
t +

C̄

n

bαnc−1∑
t=0

ut

2ubαnc +
C̄

n

bαnc−1∑
t=0

ut

− 2
C̄C∗

n2

bαnc−1∑
t=0

ut

2

+
n∑
t=0

C∗

n

t−1∑
τ=0

uτ

(
C∗

n

t−1∑
τ=0

uτ − 2ut

)
− 2

C̄C∗

n2

bαnc−1∑
t=0

ut

 ∑
t>bαnc

ut

+ 2
C̄C∗2

n3

bαnc−1∑
t=0

ut

 ∑
t>bαnc

t−1∑
τ=0

uτ +
C̄2C∗2

n4

bαnc−1∑
t=0

ut

2

(n− bαnc).

(43)

Combining equations (42) and (43), we get

S|H0 :=
1

2σ2

[
n∑
t=0

C∗

n

t−1∑
τ=0

uτ

(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
+ 2

C̄C∗

n2

bαnc−1∑
t=0

ut

2

+ 2
C̄C∗

n2

bαnc−1∑
t=0

ut

 ∑
t>bαnc

ut − 2
C̄C∗2

n3

bαnc−1∑
t=0

ut

 ∑
t>bαnc

t−1∑
τ=0

uτ

− C̄2C∗2

n4

bαnc−1∑
t=0

ut

2

(n− bαnc)
]
.

�

Proof of Theorem 5.

Proof. The 5% critical value cv is determined by

P

(
1

2σ2

n∑
t=0

C∗

n

t−1∑
τ=0

uτ

(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
> cv

)
= 0.05,
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and cv is bounded in probability as n→∞ because

1

σ2

n∑
t=0

C∗

n

t−1∑
τ=0

uτut = C∗
n∑
t=0

ut
σ
√
n

u0 + . . .+ ut−1

σ
√
n

∼ C∗
∫ 1

0

WtdWt = Op(1);

and

C∗2

2σ2

n∑
t=0

(
1

n

t−1∑
τ=0

uτ

)2

=
C∗2

2

n∑
t=0

(
u0 + . . .+ ut−1

σ
√
n

)2
1

n
∼
C∗2

2

∫ 1

0

W 2
t dt = Op(1).

Note from Lemma 7, that

S|H1 = S|H0 +
1

2σ2

[
2
C̄C∗

n2

bαnc−1∑
t=0

ut

2

+ 2
C̄C∗

n2

bαnc−1∑
t=0

ut

 ∑
t>bαnc

ut

− 2
C̄C∗2

n3

bαnc−1∑
t=0

ut

 ∑
t>bαnc

t−1∑
τ=0

uτ −
C̄2C∗2

n4

bαnc−1∑
t=0

ut

2

(n− bαnc)
]
.

(44)

We are going to show that S|H1 = S|H0 +Op (n−1) . To do this we calculate the order

of each term in Eq. (44):

1

σ2n2

bαnc−1∑
t=0

ut

2

∼
α

n
ν2, where ν ∼ N(0, 1);

1

σ2n2

bαnc−1∑
t=0

ut

 ∑
t>bαnc

ut ∼
√
α(1− α)

n
νχ, where χ ∼ N(0, 1), ν ⊥ χ;

1

σ2n3

bαnc−1∑
t=0

ut

 ∑
t>bαnc

t−1∑
τ=0

uτ ∼
√
α

n
ν

∫ 1

α

Wtdt;

1

σ2n4

bαnc−1∑
t=0

ut

2

(n− bαnc) ∼ α(1− α)

n2
ν2.

Thus, S|H1 = S|H0 + 1
n
Op(1). Therefore, the power of the test is

P c = P (S|H1 > cv) = P
(
S|H0 +

1

n
Op(1) > cv

)
≤ P (S|H0 > cv) + constεn

−1+ε = 0.05 + constεn
−1+ε,

where ε > 0 is arbitrary, and the inequality follows from Lemma 3. �

Analysis and Heuristic Proof of Conjecture 1.
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Proof. The statistic for functional point-optimal testing of H0 : θtn = 1, for all t, takes

the form

S =
1

2σ2

n∑
t=0

(Xt −Xt−1)2 − 1

2σ2

n∑
t=0

(Xt − θtnXt−1)2

=H0

1

2σ2

n∑
t=0

u2
t −

{
1

2σ2

L∑
t=0

(
ut −

C̄

n
Xt−1

)2

+
1

2σ2

n∑
t=L=1

u2
t

}

=
1

σ2

C̄

n

L∑
t=0

utXt−1 −
1

2σ2

(
C̄

n

)2 L∑
t=0

X2
t−1

=
1

σ2

C̄L

n

1

L

L∑
t=0

utXt−1 −
1

2σ2

(
C̄L

n

)2
1

L2

L∑
t=0

X2
t−1.

∼
1

σ2

C̄L

n

∫ 1

0

dB0B0 −
1

2σ2

(
C̄L

n

)2 ∫ 1

0

B2
0 =

C̄L

n

∫ 1

0

dW0W0 −
1

2

(
C̄L

n

)2 ∫ 1

0

W 2
0 ,

since 1√
L

bL·c∑
t=0

ut ⇒ B0 (·) where B0 = σW0 and W0 is standard Brownian motion

on [0, 1] . Note that B0 is independent of the Brownian motion B = σW , where

1√
n

bn·c∑
t=0

ut ⇒ B (·) , since L
n
→ 0. We may take a probability space in which the weak

convergence is replaced by a.s. convergence, so that

(45)

(
1

L

L∑
t=0

utXt−1,
1

L2

L∑
t=0

X2
t−1

)
→a.s.

(∫ 1

0

dB0B0,

∫ 1

0

B2
0

)
.

In this space we have the asymptotic representation

S =H0

{
C̄L

n

∫ 1

0

dW0W0 −
1

2

(
C̄L

n

)2 ∫ 1

0

W 2
0

}
{1 + oa.s. (1)}

Critical values cv for the statistic S, which satisfy P {Sn > cv} = 0.05, are therefore

asymptotically approximately delivered by

(46) P

{
C̄L

n

∫ 1

0

dW0W0 −
1

2

(
C̄L

n

)2 ∫ 1

0

W 2
0 > acv

}
= 0.05,

which we write as P {ξ0n > acv} = 0.05, where ξ0n := C̄L
n

∫ 1

0
dW0W0− 1

2

(
C̄L
n

)2 ∫ 1

0
W 2

0 .

Since
∫ 1

0
dW0W0,

∫ 1

0
W 2

0 = Op (1) , it follows that ξ0n = Op

(
L
n

)
and so, from (46), we

have acv = O
(
L
n

)
and then An := n

L
acv = O (1) and

n

L
ξ0n = C̄

∫ 1

0

dW0W0 −
C̄2

2

(
L

n

)∫ 1

0

W 2
0 = C̄

∫ 1

0

dW0W0 +Op

(
L

n

)
,

as n→∞.
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Under the specific functional alternative hypothesis H1 : θtn =
(

1 + C̄
n
1 {t ≤ L}

)
we have the test statistic

S =
1

2σ2

n∑
t=0

(Xt −Xt−1)2 − 1

2σ2

n∑
t=0

(Xt − θtnXt−1)2

=H1

1

2σ2

n∑
t=0

(ut +
C̄

n
1 {t ≤ L}Xt−1)2 − 1

2σ2

n∑
t=0

u2
t

=
1

2σ2

L∑
t=0

(ut +
C̄

n
Xt−1)2 − 1

2σ2

L∑
t=0

u2
t

=
1

σ2

C̄

n

L∑
t=0

utXt−1 +
1

2σ2

(
C̄

n

)2 L∑
t=0

X2
t−1

=
1

σ2

C̄L

n

1

L

L∑
t=0

utXt−1 +
1

2σ2

(
C̄L

n

)2
1

L2

L∑
t=0

X2
t−1

∼
1

σ2

C̄L

n

1∫
0

B0(t)dB0(t) +
1

σ2

(
C̄L

n

)2 ∫ 1

0

∫ t

0

(1− s)dB0(s)dB0(t)

+
1

2σ2

(
C̄L

n

)2 ∫ 1

0

B2
0(t)dt

=
C̄L

n

∫ 1

0

W0(t)dW0(t) +
1

2

(
C̄L

n

)2 ∫ 1

0

W 2
0 (t)dt

+

(
C̄L

n

)2 ∫ 1

0

∫ t

0

(1− s)dW0(s)dW0(t)

(47)

The approximation in the penultimate line holds because under H1 we have

θtn1 {t ≤ L} =
(

1 + C̄
n

)
1 {t ≤ L} and then

L−1/2XbL·c =
1√
L

bL·c∑
j=0

(
1 +

C̄

n

)j
ubL·c−j

=
1√
L

bL·c∑
j=0

(
ubL·c−j +

jC̄

n
ubL·c−j

)
+ o

(
L

n

)

= B0 (·) +
L

n
C̄

∫ ·
0

(1− s)dB0 + o

(
L

n

)
.

(48)

Using ξ0n = C̄L
n

∫ 1

0
dW0W0 − 1

2

(
C̄L
n

)2 ∫ 1

0
W 2

0 , it follows from (46) and (47) that

asymptotic power is given by
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Figure 12. log (P c − 0.05) as a function of log
(
n
L

)
.

P

{
C̄L

n

∫ 1

0

dW0W0 +
1

2

(
C̄L

n

)2 ∫ 1

0

W 2
0 +

(
C̄L

n

)2 ∫ 1

0

∫ t

0

(1− s)dW0dW0 > acv

}

= P

{
ξ0n +

(
C̄L

n

)2 ∫ 1

0

W 2
0 +

(
C̄L

n

)2 ∫ 1

0

∫ t

0

(1− s)dW0dW0 > acv

}

≥ P {ξ0n > acv}+ constε

(
L

n

)1+ε

= 0.05 + constε

(
L

n

)1+ε

.

The inequality in the penultimate line above is unproved, therefore leading to an

argument that is ‘heuristic’.

Although we do not provide an explicit proof of the last inequality, we provide

simulations, which confirm it. Figure 12 corresponds to C̄ = 1. The blue line repre-

sents log (P c − 0.05) as a function of log
(
n
L

)
. If the argument is correct, we expect

log (P c − 0.05) to be a linear function of log
(
n
L

)
with the slope= −1. The red line is

a 45−degree line. Evidently from the figure the blue line closely follows the red one,

corroborating our hypothesis that the implied relationship is correct.

Thus, we get the same result as when L was fixed and equal to one, i.e. the maximal

power is bounded from below by 0.05 + constε(
L
n

)1+ε.

Next consider the pseudo-point optimal test test based on the use of a constant LUR

specification θ′tn =
(
1 + C∗

n

)
for all t = 0, ..., n. The true underlying data generating

process has θtn =
(

1 + c̄(t/n)
n

)
, so whenever c̄(·) 6= C∗ the specification is incorrect.
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The test statistic for testing H0 : θtn = 1, for all t, takes the form

S ′ =
1

2σ2

n∑
t=0

(Xt −Xt−1)2 − 1

2σ2

n∑
t=0

(Xt − θ′tnXt−1)
2

and under the null hypothesis H0 we have

S ′ = H0

1

2σ2

n∑
t=0

u2
t −

1

2σ2

n∑
t=0

(
ut −

C∗

n
Xt−1

)2

=
1

σ2

C∗

n

n∑
t=0

utXt−1 −
1

2σ2

(
C∗

n

)2 n∑
t=0

X2
t−1

=
1

2σ2

n∑
t=0

(
C∗

n

t−1∑
τ=0

uτ

)(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
(49)

∼
1

σ2
C∗
∫ 1

0

dBB − 1

2σ2
C∗2

∫ 1

0

B2 = C∗
∫ 1

0

dWW − 1

2
C∗2

∫ 1

0

W 2.(50)

As before, we may assume that the probability space is suitably expanded so that

(50) holds a.s., and the null H0 is again rejected when S ′ is large. Critical values

cv for the statistic S ′, which satisfy P {S ′n > cv} = 0.05, are therefore asymptotically

approximately delivered by

(51) P
{
C∗
∫ 1

0

dWW − 1

2
C∗2

∫ 1

0

W 2 > acv

}
= 0.05,

which we write as P {ξ0 > acv} = 0.05, where ξ0 := C∗
∫ 1

0
dWW− 1

2
C∗2

∫ 1

0
W 2 = Op (1)

so that acv = O (1) .

Next, under the functional alternative hypothesis H1 : θtn =
(

1 + C̄
n
1 {t ≤ L}

)
, we

have

S =
1

2σ2

n∑
t=0

(Xt −Xt−1)2 − 1

2σ2

n∑
t=0

(Xt − θ′tnXt−1)
2

=
H1

1

2σ2

n∑
t=0

(
ut +

C̄

n
1 {t ≤ L}Xt−1

)2

− 1

2σ2

n∑
t=0

([
ut +

C̄

n
1 {t ≤ L}Xt−1

]
− C∗

n
Xt−1

)2

=
1

2σ2

L∑
t=0

C∗

n
Xt−1

(
2ut +

2C̄ − C∗
n

Xt−1

)
+

1

2σ2

n∑
t=L+1

C∗

n
Xt−1

(
2ut −

C∗

n
Xt−1

)
= S1 + S2.
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After simplifications, we can rewrite S1 as

2σ2S1 =
L∑
t=0

(
2ut +

2C̄ − C∗
n

(
ut−1 +

(
1 +

C̄

n

)
ut−2 + · · ·+

(
1 +

C̄

n

)t−1

u0

))

· C
∗

n

(
ut−1 +

(
1 +

C̄

n

)
ut−2 + · · ·+

(
1 +

C̄

n

)t−1

u0

)

=
L∑
t=0

(
C∗

n

t−1∑
τ=0

uτ

)(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
+O

((
L

n

)2
)
.

(52)

Similarly, we simplify and rewrite S2:

2σ2S2 =
n∑

t=L+1

C∗

n

((
1 +

C̄

n

)L
u0 + · · ·+

(
1 +

C̄

n

)
uL−1 + uL + · · ·+ ut−1

)

·
(

2ut −
C∗

n

((
1 +

C̄

n

)L
u0 + · · ·+

(
1 +

C̄

n

)
uL−1 + uL + · · ·+ ut−1

))

=
n∑

t=L+1

(
C∗

n

t−1∑
τ=0

uτ

)(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
+O

((
L

n

) 3
2

)
.

(53)

Finally, combining equations (52) and (53), we get

S =
n∑
t=0

(
C∗

n

t−1∑
τ=0

uτ

)(
2ut −

C∗

n

t−1∑
τ=0

uτ

)
+O

((
L

n

) 3
2

)
= S ′ +O

((
L

n

) 3
2

)
.

Thus, the power for this test is

(54) P {S > cv} = P

{
S ′ +O

((
L

n

) 3
2

)
> cv

}
≤ 0.05 + constε

(
L

n

)3/2−ε

,

where the inequality follows from Lemma 3, where instead of n we work with n/L. �

(Anna Bykhovskaya) Yale University

(Peter C. B. Phillips) Yale University, University of Auckland, Southampton Univer-

sity, Singapore Management University
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