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Abstract

This paper introduces identification-robust subvector tests and confidence sets (CS’s) that have
asymptotic size equal to their nominal size and are asymptotically efficient under strong identifi-
cation. Hence, inference is as good asymptotically as standard methods under standard regularity
conditions, but also is identification robust. The results do not require special structure on the
models under consideration, or strong identification of the nuisance parameters, as many existing
methods do.

We provide general results under high-level conditions that can be applied to moment condition,
likelihood, and minimum distance models, among others. We verify these conditions under primitive
conditions for moment condition models. In another paper, we do so for likelihood models.

The results build on the approach of Chaudhuri and Zivot (2011), who introduce a C(«)-type
Lagrange multiplier test and employ it in a Bonferroni subvector test. Here we consider two-step
tests and CS’s that employ a C(«)-type test in the second step. The two-step tests are closely related
to Bonferroni tests, but are not asymptotically conservative and achieve asymptotic efficiency under

strong identification.
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1 Introduction

Existing identification-robust subvector tests and confidence sets (CS’s) have one or more of the
following drawbacks: (i) they are asymptotically conservative, such as projection and Bonferroni
methods; (ii) they are not asymptotically efficient under strong identification; (iii) they only apply if
nuisance parameters are strongly identified; (iv) they only apply to models with special structure,
such as knowledge of the source of potential non-identification; (v) they only apply to specific
models, such as the homoskedastic linear instrumental variables (IV) model; and/or (vi) they have
not been shown to have correct asymptotic size under primitive conditions. In particular, there
is no general identification-robust subvector method in the literature that is asymptotically non-
conservative, is asymptotically efficient under strong identification, and has been shown to have
correct asymptotic size. (Further discussion of the literature is given below.)

This paper aims to fill this gap in the literature. Under a set of high-level conditions, we pro-
vide a two-step Bonferroni-like method that is asymptotically non-conservative and asymptotically
efficient under strong identification. The method applies to what we call systems of equations (SE)
models, which include moment condition, likelihood, and minimum distance models, and versions

of these models that rely on preliminary n'/2

-consistent estimators. In this paper, we verify the
high-level conditions in moment condition models with independent identically distributed (i.i.d.)
and time series observations. In Andrews (2017), we do likewise for likelihood models.

For a parameter 6 = (6},60,) € RP, we consider nominal level « tests of Hy : 05 = fg9 versus
Hy : 05 # 099, where 601 is a nuisance parameter. A two-step test relies on a first-step identification-
robust CS, CSy,,, for 07 of level 1 —ay for a7 < «, such as vy = .005 and a = .05, as in a Bonferroni
test. This CS is augmented by an estimator set, (:)m, of 61 values that is designed to be such that
some element of C'S] = C Sy, U O1,, is necessarily close (within 0,(n~1/2)) to the true value of 6;
under locally strongly-identified sequences of distributions. This property is needed to obtain the
correct asymptotic level of the two-step testH

The two-step test employs a C(a)-type identification-robust second-step test that takes as given
a value of the nuisance parameter #;. Chaudhuri and Zivot (2011) introduce a Lagrange multiplier
(LM) test of this type for moment condition models. It is based on the (non-identification-robust)
C(a) test of Neyman (1959) for likelihood models. I. Andrews (2017) also considers C(a)-type
tests. In the moment condition model, we consider C(a)-type identification-robust Anderson-

Rubin (AR), LM, and conditional quasi-likelihood ratio (QLR) second-step tests. The C(a)-type

'For example, in the moment condition model, if C'Sy, is the (null-restricted) AR CS, then CSy,, is empty with
probability bounded away from 0 as n — oo when the number of moments k exceeds the dimension of 61, which it
typically does, and hence, one cannot take ©1,, = @.



conditional QLR test considered here, which we refer to as C(«)-QLR1, is a C(«) version of a test
of Kleibergen (2005) and employs a rank statistic of the form in Robin and Smith (2000).

The second-step test uses a data-dependent significance level, ag,(071), that lies between agy :=
a—ag and a, such as ag = .045 and o = .05, and depends on the given value of 8;. This significance
level is designed to equal as under weak identification and transition to « under sufficiently strong
identification. It is based on an identification-category-selection statistic.

The two-step test rejects Hy if the second-step test given 67, with significance level aa,(61),
rejects the null hypothesis for all #; € CSfrn. The two-step CS for 0, is obtained by inverting
the two-step tests. Computation of the two-step test or CS is essentially the same as that of a
Bonferroni test or CS. Thus, in some scenarios, it can be easy to compute, but in other scenarios,
it can be difficult to compute.

Different first-step CS’s can be employed. For moment condition models, the Hy : 63 = 099 null-
restricted AR CS is a good choice for power purposes because under the alternative, Hy : 65 # 629,
this CS often is small and has low coverage probability (since it is based on the incorrect null
value fyg). For moment condition models, the estimator set (:)M can be the set of solutions to
the generalized method of moments (GMM) criterion function first-order conditions (FOC’s) that
minimize, or nearly minimize, the GMM criterion function.

The second-step C(«) tests are based on the sample SE vector, such as the sample moment
vector, that has been orthogonalized with respect to (wrt) the sample Jacobian of the SE vector
wrt 01, which in turn has been transformed to be asymptotically independent of the sample SE
vector. Chaudhuri and Zivot (2011) recognize that a C(«)-type test is a good choice for the second-
step test in a Bonferroni procedure because it makes the test statistic less sensitive to 67 and closer
to being asymptotically similar, which is better for power against 65 # 659. For the same reason,
C(a)-type tests are good for power in the two-step tests considered here. In fact, the C(«) nature
of the second-step tests is needed for the two-step tests to achieve an asymptotic oracle property
and asymptotic efficiency under strong identification.

The two-step subvector test does have some potential drawbacks. These include: (i) its asymp-
totic null rejection probabilities (NRP’s) may be less than o under weak identification, (ii) it does
not have any asymptotic efficiency properties under weak identification, (iii) it is invariant to scale
reparameterizations of 6, but not all reparameterizations, (iv) it requires some tuning parameters,
(v) in some scenarios it may be difficult to compute, and (vi) it takes considerable effort to verify
the high-level conditions using primitive conditions.

Now we provide a heuristic explanation of the asymptotic properties of the two-step test. First,

for locally-strongly-identified sequences of distributions, the two-step test obtains asymptotic NRP’s



of a or less by exploiting properties of CSfrn and the second-step C(«) test. The true #; value is
within Op(n_1/2) of CS; and the two-step test rejects Hy only if it rejects for all §; € C'S; . Thus,
the test does not reject more often than the level o second-step C(«) test at some point that is
O,(n~"/2) from the true 6; value. By the properties of the second-step C(«) test, such a test has
asymptotic NRP « or less.

Second, for sequences of distributions that are not locally-strongly-identified, the two-step test
obtains asymptotic NRP’s that are a or less by a Bonferroni argument. Specifically, the augmented
first step CS C’Sfrn (2 CSyy) has confidence level at least 1 — ay. By design, the second-step test
has significance level ag,(01) = as wp—1 under such sequences when 6; is the true value. So, the
standard Bonferroni argument gives the asymptotic NRP to be a; + as = « or less. To make the
transition between sequences of different types seamless, there are some sequences for which one
can obtain NRP’s of a or less using either the first or the second argument.

Given the asymptotic NRP results for certain sequences, we show that the asymptotic size of the
two-step test is less than or equal to « using the subsequence-type argument in Andrews, Cheng,
and Guggenberger (2011).

Next, we discuss why the asymptotic size of the two-step test is «, rather than less than «,
and why it is asymptotically efficient under strong identification. For globally-strongly-identified
sequences, there exists a unique solution to the population system of equations. For such sequences,
the true 0 value is within O,(n~'/2) of C'S] and all points in C'S; are within O,(n"1/2) of the
true 0y value. That is, the Hausdorff distance between the singleton set containing the true value
A1 and C’Sfrn is Op(nfl/ 2). For such sequences, by design, the data-dependent significance level
Qon(01) satisfies Qg (01) = a for all §; within O,(n~1/2) of the true 0; value wp—1. In this case,
by exploiting the properties of the second-step C(«) test, one gets an oracle asymptotic equivalence
property. Specifically, the two-step test is asymptotically equivalent to the nominal « oracle second-
step test that employs the true value of #;. This yields the asymptotic size of the two-step test to be
«, not less than «a. It also yields asymptotic efficiency of the two-step test under these sequences,
if the oracle second-step test is asymptotically efficient. For example, in the moment condition
model, this holds for the second-step C(a)-LM and C(«a)-QLR1 tests, but not the C(a)-AR test.

This paper considers subvector null hypotheses Hy : 82 = 659 and CS’s that concern #-. But, the
results apply to some linear and nonlinear functions of an unknown parameter. Suppose one has a
model indexed by v € I' € RP and the null hypothesis of interest is Hy : r(y) = ro for some known
function r(-) and vector ry of dimension 1 < d, < p. If there exists a transformation g(y) € RP~%
such that v — t(v) := (¢(v)’, (7)) is a one-to-one function from I" to © := {6 : § = t(y) for some
v € T'}, then the results of the present paper can be applied with 6 = (67,65) = (¢(v)’,r()’")" and



the null hypothesis Hy : 0 = 099, where 699 = r9. For example, if 7(y) = Rg7y for some full rank
d, X p matrix Rg, then one can take t(y) = [R] : Rb)'vy for any (p — d,) X p matrix R; for which
[R} : R} € RP*P is nonsingular. This transformation method is employed below in a nonlinear IV
model that is used in some of the finite-sample simulation results.

A second example, with a nonlinear transformation, arises with a stationary ARMA(1,1) model
Y, = Yi_1v, + € — v9€i—1, where the null hypothesis of interest concerns the impulse response
at horizon T: Hp : 1y = 70, where 1y = v1 1(y; — 7). In this case, 0 := t(v) := (y; —
Yo, 7?71(71 — 7)) is a one-to-one transformation that yields the transformed hypothesis of interest
to be Hy : 02 = 09 for 629 = r¢. In this model, lack of identification occurs when v; = v,.

The paper provides some finite-sample simulation results in two models. The first model is a het-
eroskedastic linear IV model with two right-hand side endogenous variables and s is the coefficient
on one of them. The second model is a nonlinear (quadratic) IV model that is parametrized such
that 05 is the value of the structural function at a point of interest, or reparametrized such that 65
is the function’s derivative at the point of interest. For both models, we consider the two-step tests
based on the first-step AR CS and the second-step C(«)-AR, C(a)-LM, and C(«)-QLR1 tests, which
we denote by AR/AR, AR/LM, and AR/QLR1, respectively. We compare the power of these tests
with that of the (infeasible) oracle C(a)-QLR1 test, which takes the true value of 6; to be known,
and the projection (non-C(a)) QLR1 test, which is an existing identification-robust subvector test
in the literature. In strong identification scenarios, we also consider the (non-identification-robust)
standard 2SLS t test.

In both models, under strong identification, the AR/QLR1, AR/LM, and Oracle C(«)-QLR1
tests have essentially the same power. The 2SLS t test has equal power in the linear IV model to
these tests and somewhat higher power in the nonlinear IV model. The AR/AR and Proj-QLR1
tests have noticeably lower power. These results are broadly consistent with the asymptotic theory.

In both models, under weak identification, the AR/QLR1 subvector test performs best in terms
of power among the feasible tests, not uniformly, but in an overall sense. It noticeably out-performs
the Proj-QLR1 test. The AR/LM test exhibits some quirky power behavior in some scenarios. Not
surprisingly, the Oracle C(a)-QLR1 test out-performs the feasible tests in scenarios where 6; is
weakly identified. However, in the linear IV model with strongly identified 6; and weakly identified
02, the AR/QLR1 test has equal power to the Oracle C(«a)-QLR1 test.

Overall, the AR/QLRI1 test is found easily to be the best two-step test in terms of power
in the over-identified models considered here and its power is noticeably higher than that of the
Proj-QLRI1 test. Given this, the remainder of the simulation results focus on the AR/QLRI1 test.

The finite-sample NRP’s of the AR/QLR1 test are simulated for a range of parameter configu-



rations and sample sizes. In the linear IV model, the maximum NRP’s (over the 25 identification
scenarios considered) of the AR/QLRI1 test are in [.049,.064] for (n, k) = (100,4), (250,4), (500,4),
(100, 8), (250, 8), where k is the number of IV’s. In the nonlinear IV model, they are in [.040,.050]
for the structural function and [.039,.052] for its derivative for the same (n,k) values (with the
maximum NRP’s being over nine identification scenarios).

We carry out extensive simulations to determine the sensitivity of the AR/QLR1 test to tun-
ing parameters. For some tuning parameters, there are theoretical reasons to expect little or no
sensitivity and this is borne out in the simulations. For «y, we find no sensitivity of the NRP’s in
both models (and both hypotheses in the nonlinear IV model) and some sensitivity of power. For a
constant, K, that appears in the rank statistic in the C(a)-QLR1 statistic, we find no sensitivity
of the NRP’s except some sensitivity in a couple of cases in the linear IV model. For power, we find
some sensitivity to K, in both models, but not a lot. Overall, the base case values of ay = .005
and K, = 1 (which are used for the power comparisons and the NRP calculations in both models
and both hypotheses in the nonlinear model) perform well. These base case values also are used in
the simulations for likelihood models in Andrews (2017) and perform well there.

The remainder of the paper is organized as follows. Section [2| discusses subvector methods in
the literature. Section [3| introduces SE models, including the moment condition model. Section
introduces the two-step tests and CS’s for SE models. Section [5| provides asymptotic size and
strong-identification asymptotic efficiency results under high-level assumptions. Section [6] proves
the asymptotic results in Section

The rest of the paper focuses on the moment condition model. Section [7| introduces the two-
step AR/AR, AR/LM, and AR/QLRI tests and CS’s for the moment condition model. Section
provides primitive conditions under which these tests have correct asymptotic size and the latter
two are asymptotically efficient in a GMM sense under strong identification. The proofs of these
results utilize results in Andrews and Guggenberger (2017). Section |§| provides the finite-sample
simulation results. The Supplemental Material (SM) to this paper generalizes the results in Section
from i.i.d. observations to strictly stationary strong mixing time series observations, proves the
results in Section [8] and provides some additional simulation results.

All limits are as n — oo unless stated otherwise.

2 Subvector Methods in the Literature

In this section, we discuss existing subvector methods in the literature. Widely used general

methods are the Bonferroni and Scheffé projection methods, e.g., see Loh (1985), Berger and Boos



(1994), Cavanagh, Elliott, and Stock (1995), Campbell and Yogo (2006), Chaudhuri, Richardson,
Robins, and Zivot (2010), and Chaudhuri and Zivot (2011) for Bonferroni’s method, and Dufour
(1989) and Dufour and Jasiak (2001) for the projection method. These methods are asymptotically
conservative, i.e., their asymptotic size is less than their nominal level. The degree of conserva-
tiveness typically is larger for the projection method. It depends on the dimension of the nuisance
parameter and the shape of the power function of the joint test that is employed. A refinement
of Bonferroni’s method that is not conservative, but is much more intensive computationally, is
provided by Cavanagh, Elliott, and Stock (1995). McCloskey (2011) also introduces a refinement
of Bonferroni’s method.

When the nuisance parameters that appear under the null hypothesis are known to be strongly
identified, one can obtain identification-robust subvector tests by concentrating out these para-
meters or replacing them by n'/2-consistent asymptotically normal estimators. This method is
employed in Stock and Wright (2000), Kleibergen (2004, 2005), Guggenberger and Smith (2005),
Otsu (2006), Montiel Olea (2012), Guggenberger, Ramalho, and Smith (2013), I. Andrews and
Mikusheva (2015), and Andrews and Guggenberger (2015). This method yields non-conservative
inference asymptotically and is asymptotically efficient under strong identification of all of the para-
meters (for suitable tests). The drawback of this method, however, is that the nuisance parameters
cannot be weakly identified.

Andrews and Cheng (2012, 2013a,b), Cheng (2015), Cox (2016), and Han and McCloskey (2016)
provide subvector tests with correct asymptotic size based on the asymptotic distributions of stan-
dard test statistics under the full range of possible identification scenarios. These subvector methods
are not asymptotically conservative and are asymptotically efficient under strong identification of
all of the parameters (for suitable tests). However, they require one to have knowledge of the source
of the potential lack of identification (e.g., which subvectors play the roles of 5, 7, and ¢ in the
Andrews and Cheng (2012) notation) and require special structure of the model considered, such as
having a known correspondence between strongly-identified reduced-form parameters and subsets
of the structural parameters of interest in the case of Cox (2016).

Elliott, Miiller, and Watson (2015) develop nearly optimal subvector tests when a nuisance
parameter is present under the null hypothesis, which includes models with weak identification, as
exemplified by their example of tests concerning the location of a change point when the magnitude
of the change point is moderate. Their tests are nearly optimal in the sense of nearly achieving
weighted average power for a given weight function.

Chen, Christensen, O’Hara, and Tamer (2016) provide subvector CS’s for the identified set in

partially identified models using Monte Carlo Markov chain methods in models where the parame-



ters of interest are functions of strongly-identified reduced-form parameters.

For minimum distance models, I. Andrews and Mikusheva (2016a) provide subvector inference
using a geometric approach. This method has asymptotic size equal to its asymptotic nominal level
and may or may not be asymptotically efficient under strong identification depending upon the
model. For example, in the homoskedastic linear IV model, it does not yield asymptotic efficiency
under strong identification, but in other models it does.

I. Andrews (2017) constructs a two-step confidence set for a parameter subvector in a GMM sce-
nario based on identification-robust and standard (non-identifcation-robust) CS’s and an identifica-
tion-category selection method. The two-step CS yields the standard 1 — o CS with probability
that goes to one under strong identification and the identification-robust 1 — o — v CS otherwise.
The asymptotic theory for the method is based on high-level assumptions.

Chaudhuri (2016) extends the subvector Bonferroni test in Chaudhuri and Zivot (2011) to the
case of linear restrictions and provides a form of the C(a))-LM test that has some computational
advantages.

Two recent papers develop methods for subvector inference in moment inequality and/or equal-
ity models with partial identification, see Bugni, Canay, and Shi (2016) and Kaido, Molinari, and
Stoye (2016). These methods focus on the special difficulties associated with moment inequalities,
but can be applied to the moment equality-type models considered in this paper. The proposed
methods are non-conservative asymptotically, but do not yield asymptotic efficiency under strong
identification

In the linear IV regression model with homoskedastic errors, subvector inference in which nui-
sance parameters are profiled out and the y? degrees of freedom are reduced accordingly is possible
using the Anderson-Rubin (AR) test, see Guggenberger, Kleibergen, Mavroeidis, and Chen (2012).
This method yields asymptotic efficiency under strong identification if the model is exactly identi-
fied, but not if the model is over identified. For related results, see Lee (2014). Kleibergen (2015)

also provides subvector methods for this model based on the likelihood ratio (LR) test.

3 System of Equations Model

Let {W; € R™ :i =1,...,n} denote the observations with distribution F' and let § € © C RP
be an unknown parameter. The observations may be independent or temporally dependent. We

partition 6 as 6 = (0',05) for 6, € RPi for j = 1,2, where p; + p2 = p. This paper is concerned

2For models with only moment equalities, the BCS test statistic reduces to the AR statistic or an AR-like statistic
based on a diagonal weight matrix. The KMS approach treats each moment equality as two inequalities and employs
inf and sup statistics over the different inequalities.



with identification-robust tests of the subvector null hypothesis
HQ : 92 = 920 versus H1 : 02 7& 920. (31)

Under Hg and Hi, 64 is a nuisance parameter. The paper also considers CS’s for the subvector 65.
We consider a general class of models that we call SE models. These models depend on a sample

vector g,,(0) € RF for 6, whose population analogue, gr(6), satisfies
gr(0) = 0F (3.2)

when 6 is the true parameter value, where 0% := (0, ...,0)’ € R*. The function gr(f) may or may not
equal 0F for other values of # depending on whether @ is identified or not. SE models also depend
on a consistent estimator ,,(6) of the asymptotic variance of g, (6) (after suitable normalization).

Examples of SE models include moment condition models with g, () being a sample moment

vector:
n

gn(0) =171 gi(0), where gi(0) := g(W;,0). (3:3)
=1

In moment condition models, gr(0) := Erg(W;,0) = 0% when 6 is the true value and Erg(W;,6)
may or may not equal 0¥ otherwise, depending on whether  is identified.

Likelihood-based models, which we refer to as ML models, are SE models. For ML models, one
has a log-likelihood function (divided by n), m, (), and g,(0) is the score function:

M (0) ;=01 m;(0) and G,(6) = gemn(a) =n"") " gi(6), where g;(6) = gemi(e)), (3.4)
=1 =1

m;(0) is the log-likelihood function for the ith observation W; (conditional on previous observa-
tions in time series settings), or m;(6) is the conditional log-likelihood function for Y; given some
covariates X; when W; := (Y/, X!)". In i.i.d. scenarios, ¢;(0) := g(W;,0) for some function g(-,).
In ML models, gr(0) := Er(0/00)m;(6) and k = p. Other models fit into the “sample average” SE
framework of when m;(#) is a function, such as a least squares or quasi-log-likelihood function,
that differs from a log-likelihood function.

Minimum distance models are SE models with g, () taking the form
§n(9) =T — 9(9) (3'5)

for some estimator 7,, of a parameter 7 and some (known) k-vector of restrictions, g(#), on 7. The



restrictions on the true values 7p and 6 under F' are mp = ¢(f). In minimum distance models,
gr(0) :=mp — g(0).
In addition, moment condition, ML, and minimum distance models for which g,,(¢) depends on a
preliminary n'/2-consistent estimator, say 7,,, also are SE models. In these cases, §n(0) := Gn(0,7,,)-
In the moment condition and ML models, for the case of i.i.d. observations, the estimator ﬁn(G)
of the asymptotic variance of g,(0) is given by

~

0 (6) == 07" (9i(8) — Ga(0))(9i(8) — Gu(6))" € R*¥. (3.6)
i=1

With time series observations, ﬁn(ﬁ) typically needs to be defined differently to account for temporal
dependence. For minimum distance models, ﬁn(ﬁ) is a consistent estimator of the asymptotic
variance of 7, (after suitable normalization) and does not depend on 6. In models with preliminary
estimators 7, ﬁn(ﬁ) needs to be defined to take into account the effect of 7, on the asymptotic
variance of g, (0).

The parameter space for 6 is © C RP. Let ©1 denote the null nuisance parameter space:
@1 = {01 10 = ( /1, 120)1 S @} (37)

The null parameter space for the pairs (01, F') is denoted by Fgy, where SV denotes subvector.
When the null hypothesis is true, i.e., f3 = 09, all such pairs satisfy gr(61,6020) = 0% and have
01 € O5.

When considering CS’s for 6, the parameter space for (6, F') is denoted by Fg sv. In this case,
we make the dependence of Fgy on the null hypothesis value 099 explicit: Fsy = Fgy(02). Let
O, denote the set of possible true f; parameter values. We assume that ©q, C Oy := {03 : 30,
such that (07,65) € ©}. By definition,

Fosv :={(0,F):0= (01,05 € © such that (01, F) € Fsy(f2) and 02 € O, }. (3.8)
In SE models, the sample Jacobian is

Gn(0) := [G1(6) : G2 ()] € R¥*P, where

Gin(6) = a(;gn(e) € RMP) for j = 1,2, (3.9)
J

Let {04, : n > 1} be the sequence of true values of 6. We write 0., = (01,,,05,), where

O14n € RP' and 02, € RP2.



For notational simplicity, when considering a test of Hy : #2 = 690, we write any function of
0 that is evaluated at 03 = 029 as a function of #; only. For example, g;(01) denotes g;(61,62).
When considering a CS for 2, uniform asymptotic results require that we consider true values of
0> that may depend on n, i.e., 03 = 09,,,. In this case, we write any function of 8 that is evaluated
at 0o = 0o, as a function of 6, only.

The high-level results given in Section [5| below apply to the class of SE models. In this paper,
we verify the high-level conditions for three two-step subvector tests for moment condition models.

In Andrews (2017), we verify them for two two-step subvector tests for ML models.

4 Two-Step Subvector Tests and Confidence Sets

This section provides a general definition of two-step tests of Hy : 82 = 699 with nominal level
a € (0,1) for SE models. Two-step CS’s for f5 are obtained by inverting the tests. Section [7| below
provides detailed descriptions of three two-step tests and CS’s in the moment condition model.

The first-step CS C'Sy,,, estimator set (:)m, and second-step data-dependent significance level

Qon(01) are as described in the Introduction. We define
CSf, = CS1, UBn,. (4.1)

We denote the second-step nominal level 7 identification-robust C(«)-test for given 61 by ¢s,,(01,7),
where the test rejects Hy : 03 = 629 when ¢, (01,7) > 0. That is, ¢, (01,n) is the difference between
a test statistic and its (possibly data-dependent) critical value. We suppress the dependence of

¢9,(01,m) and o, (01) on Oa.

The two-step subvector test with nominal level « is denoted by ¢35V . Tt rejects Hy : 09 = g if
G (01, a2 (01)) rejects Hy for all 61 € C’an and it rejects Hy if C’Sit1 = @. That is, the subvector
test rejects Hy : 02 = Oy if

o = nf ¢y, (01,824(61)) >0, (4.2)
01€CSY,

where the inf over 67 € @ is defined to equal co.

The nominal level « oracle subvector test of Hy : 05 = 09 is

¢2n(01*n7 a)7 (43)

where 61, is the true value of 67. This test is infeasible. Nevertheless, we show that the two-step test

10



is asymptotically equivalent to the oracle subvector test under most strongly-identified sequences
of distributions—both null sequences and sequences that are contiguous to the null. Hence, the
two-step test inherits the same asymptotic local power properties as the oracle subvector test for
such sequences.

The subvector test described above is similar to the test of Chaudhuri and Zivot (2011), but
differs in three ways. First, it employs an estimator set @m that guarantees that there is an element
of C’ng1 that is close to the true nuisance parameter 61, wp—1 under strongly-identified sequences.
Second, it employs a data-dependent second-step significance level asg,(01) that guarantees that the
nominal level of the second-step test ¢, (01, @2,(01)) equals @ wp—1 under 6;-strongly identified
sequences. Third, it may differ in its choice of first-step CS and/or second-step test.

To define the two-step CS for 05, we make the dependence of the components of the two-step test
on the null value 099 explicit and write: C'S1,,(6020), (:)m(ﬁgo), CSfrn(ng), aion(01,020), ¢9,(01,020,7),
and @5V (629) for the quantities defined above. The two-step CS for 0y is

CS5V :={fy € Oy : 5V (62) < 0}, where Oy := {#y : 361 such that (6},65)" € O}. (4.4)

5 Asymptotic Results under High-Level Conditions

The results in this section are based on high-level assumptions that are designed to apply to a
broad set of SE models. The results can be applied to a variety of first-step CS’s C'S1,, estimator
sets @m, second-step tests ¢, (61,7), and second-step data-dependent significance levels aay,(01).

For 0, € ©1, let B(A1,r) denote a closed ball in ©1 centered at 6; with radius » > 0. For
01 € RP* and Ay C RP!, let

d(01, A1) :=inf{||0, — 01]| : 0, € A1} and dg (01, A1) :=sup{||0, — 01]| : 0, € A1} (5.1)

when Ay # &, and d(01, A1) := dg(01,A1) := oo when Ay = &. Note that dg (01, A1) is the
Hausdorff distance between {61} and A;.

Let F), denote the true distribution ¥ when the sample size is n. Let «, a1, and a9 be defined as
above. That is, a € (0,1), a1, g > 0, and a3 + ag = . Let df abbreviate “distribution function.”

When testing Hy : 02 = 09, let a null sequence be denoted by
S = {(H*nyFn) : (91*7},,Fn> S fSV,@Q*n = 020,7’& Z 1}’ (52)

where Fgy is the null parameter space for (61, F'). Let {m,} denote a subsequence of {n}. Let
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Sm denote the subsequence of S determined by {my}, i.e., Sy = {(Osm,, Fm,.) : (Orsmns Fm,) €
Fsv,02em, = 020,m > 1}. An alternative sequence S* := {(82, F2) : n > 1} is a sequence for

*n
which 62, = (07Y .65 ) € ©, 4., # 629, and holds with (6, F) = (62, F2), ¥n > 1.

Given a null sequence S, we define two alternative conditions on the components of the two-step
test, i.e., on C'S1,, O1n, ®an(01,1), and Qg (61). For null sequences S for which Assumption B holds,
we bound the asymptotic NRP’s of the subvector test by a using a Bonferroni (B) argument. For

sequences for which Assumption C holds, we bound the asymptotic NRP’s of the subvector test by

a using a Neyman C(«)-based (C) argument.

Assumption B. For the null sequence S,
(i) C'Sy, has asymptotic coverage probability 1 — ay or greater,
(ii) @9y, (014n, a2) has asymptotic NRP aw or less, and
(iii) Qon(f14n) = ap wp— 1]

Assumption C. For the null sequence S,

(i) d(O14n, CST,) = Op(n1/2),

(ii) @9y, (014n, ) has asymptotic NRP equal to a,

(iii) ¢y, (014n, o) has an asymptotic distribution whose df is continuous at 0,

(iv) ¢9,(01,m) is nondecreasing in 1 on [ag, o] VO; € ©1, and

(v) SUDG, € B(01.n K /n1/2) | o (01, ) — Doy (O14n, )| = Op(l) VK € (0,00).

For a null subsequence S,,, we define Assumptions B and C analogously with m,, in place of n
throughout.

Depending on the second-step test ¢,,,(61,7), Assumption C is employed in scenarios in which 6
is (locally) strongly identified given 0y (e.g., with the second-step C(a)-AR test), or in scenarios in
which 6 is (locally) strongly identified (e.g., with the second-step C(«)-LM and C(a)-QLR1 tests).
Assumption B is employed in other scenarios and in some scenarios in which Assumption C is
employed.

Assumption B(i) requires that C'St,, is an identification-robust CS for 61 given the true value 6q.
Assumptions B(ii) and C(ii) require that ¢q, (014, 1) is an identification-robust test of Hy : 03 = 029
given the true value 01,, for n = as and «. Assumption B(iii) requires that the data-dependent
significance level aay, (014, ) is small (i.e., equal to ae) wp—1 in the scenarios for which Assumption
B is applied.

Assumption C(i) requires that the true value 01, is close to C'S{, in strongly-identified scenar-

ios. Given the definition of d(01, A1), Assumption C(i) requires that C Si; is not empty wp—1. Note

3More precisely, Assumptions B(i) and B(ii) mean that (i) liminf, o Ps,.,.,F, (014n € CS1n) > 1 — a1 and (ii)
imsup,, oo Po.y.Fp (025, (014m, 2) > 0) < a.
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that d(014n, éln) = 0,(n~/?) is sufficient for Assumption C(i) and showing this is how Assump-
tion C(i) is verified when CSy, is the AR CS. Assumptions C(iii) and C(iv) are mild conditions.
Assumption C(v) typically holds for a test statistic ¢, (01,7) only if it has been orthogonalized
wrt to 67 in the Neyman C(«)-type fashion.

The following assumption uses Assumptions B and C. Under this assumption the nominal level
a two-step subvector test specified above has correct asymptotic level (CAL), i.e., its asymptotic

size equals « or less.

Assumption CAL. For any null sequence S and any subsequence {w,} of {n}, there exists a

subsubsequence {m,} such that S, satisfies Assumption B or C.

Verifying Assumptions B and C for a selected subsequence {my}, as is required by Assump-
tion CAL, is much easier than verifying it for an arbitrary sequence because one can choose the
subsequence to be one for which the limits of various population quantities of interest exist.

The sequential process of specifying CSy,, @m, 0o, (01,1), and @9, (01) such that Assump-
tion CAL holds for selected subsequences {m,} is as follows: (i) one selects C'Sy,, and ¢, (01,7),
(ii) given CSy,, one specifies O1,, such that Assumption C(i) holds for a broad set of selected
subsequences, (iii) given CSy,, (:)m, and ¢, (01,7), one determines as large a set of selected subse-
quences such that Assumption C holds, and (iv) one applies Assumption B to all of the remaining
selected subsequences and one specifies @, (61) such that Assumption B(iii) holds for each of these

subsequences. In step (i), the choice of C'Sy,, does not depend on ¢, (01,7) and vice versa.

Under the next assumption, for a given null subsequence S,,,, the subvector test is asymptotically
equivalent to the oracle subvector test and has asymptotic NRP equal to a. In consequence, the

test has asymptotic size a (not less than «) and is not asymptotically conservative.

Assumption OE. For some null sequence S that satisfies Assumption C,
(i) dg(014n, CST,) = Op(n~=1/2) and
(ii) Q2n(0:1) = a VO, € B(014n, K/n'/?) wp—1, VK € (0, 00)
or, for some null subsequence S, that satisfies Assumption C, the subsequence versions of OE(i)

and (ii) hold.

Note that OE abbreviates “oracle equivalence.” Assumption OE(i) guarantees that the first-
step CS for 0 shrinks to 61., as n — oo and Assumption OE(ii) guarantees that the critical value
embodied in the gogTY test is «, not less than o, wp—1, for subsequences S,, that satisfy Assumption
OE. Whether Assumption OE(i) holds depends on the strength of identification of 61, but not 6.
Assumption OE(i) holds if it holds both with C'Sy,, in place of C'S], and with O1, in place of CS} .
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Assumptions B(iii) and OE(ii) are incompatible. Hence, sequences S or subsequences Sy, that
satisfy one cannot satisfy the other.

Let AsySz denote the asymptotic size of the subvector test go*g?y . That is,

AsySz:=limsup sup Py, 0,0.7(@57 > 0). (5.3)
n—o0  (01,F)eFsy
Let AsyN RP denote the asymptotic NRP of the subvector test gpgr‘l/ under a sequence S or subse-

quence S;,. That is, for a sequence S,
AsyNRP := lim Py, 05,7, (5, > 0), (5.4)

where (014, F),) € Fsy, provided this limit exists.

When considering a CS for the subvector 65, we define sequences S and subsequences S, as in
(5.2)), but with #y replaced by some 0., € O, for n > 1. Given these definitions, Assumptions
B, C, CAL, and OE are defined for CS’s just as they are defined for tests. For a CS obtained by

inverting a subvector test 5" = ¢35V (29) (of Hp : 62 = 029), asymptotic size is defined by

AsySz:=1— limsup sup sup Py, 0,7 (95 (02) > 0). (5.5)
n—00 (2€0O2 (91,F)€.7:5\/(92)

The asymptotic coverage probability of a CS under a sequence S, denoted by AsyC P, is
AsyCP =1~ lim Py, 0., 7, (¢35 (02en) > 0), (5.6)

where (014, F)) € Fsy(024n) and o, € Oo, for n > 1, provided this limit exists.

The main result of the paper based on high-level conditions is the following.

Theorem 5.1 For the parameter space Fsy, the nominal level o two-step subvector test cpgx sat-
1sfies

(a) AsySz < a under Assumption CAL,

(b) AsySz = a under Assumptions CAL and OE,

(c) AsyNRP = « for all null sequences S for which Assumption OE holds,

(d) for any null sequence S for which Assumption OE holds,

Py = Pop(O1en, @) + 0p(1) and lim Py, 1, (95, > 0) = lim Py, r, (2, (014n, ) > 0),

(e) for any alternative sequence S that satisfies Assumption C(iil) and is contiguous to a null
sequence S that satisfies Assumption OE, ¢35V = ¢g, (014n, @) + 0,(1) and lim Poa pa (p5V >0) =
lim Pya pa (P9, (014n, ) > 0), and
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(f) for the parameter space Fo sv, the nominal level 1 — o two-step subvector CS 5Y () satisfies
(i) AsySz > 1 — a under Assumption CAL, (ii) AsySz = 1 — a under Assumptions CAL and OE,
(iii) AsyCP = 1—a« for all sequences S for which Assumption OE holds, (iv) for any sequence S for
which Assumption OF holds, ¢35V (02:n) = o5 (014n, O24n, @) + 0p(1) and lim Py, g, (¢5Y (024n) >
0) = lim Py, £, (¢2n (0140, O24n, @) > 0), and (v) for any alternative sequence S* that satisfies
Assumption C(iii) and is contiguous to a null sequence S that satisfies Assumption OE, 05V (09.n) =

Pon(O14n, O24n, @) + 0p(1) and lim Pya pa (©5Y (024n) > 0) = lim Poa pa(don(01en, O2:m, ) > 0).

Comments: (i). In words, Theorem (a) states that the nominal level a subvector test 5" has
correct asymptotic level a (i.e., its asymptotic size is a or less). Theorem [5.1(b) states that it has
asymptotic size equal to its nominal level ce. Theorem c) states that cpgr‘{ has AsyN RP equal to
its nominal level « for certain sequences S. Theorem (d) and (e) state that (3" is asymptotically
equivalent to the oracle subvector test ¢q,, (014, ) under certain null and contiguous alternative
sequences, S and S4. Theorem [5.1(f) provides analogous results for two-step CS’s for 6.

(ii). Theorem [5.1(d) and (e) provide an asymptotic efficiency result for the subvector test
3052/ if the oracle test ¢y, (014n, @) is asymptotically equivalent to an asymptotically efficient test
under the contiguous alternative sequence S“4. More specifically, if 65 is strongly identified given
0= Hﬁn under S4, then the standard LM and Wald tests are asymptotically efficient in a GMM
or ML sense (depending on the type of model considered), see Newey and West (1987) for GMM
models. Hence, if the oracle test ¢q,, (014, @) is asymptotically equivalent to these tests under SA,
then it inherits their asymptotic efficiency properties.

(iii). Theorem [5.1|(a) is established by showing that the two-step test has asymptotic NRP’s
equal to « or less for suitable sequences S (and subsequences S,,,). To show this for a given sequence
S, one uses Assumption B or C depending on the strength of identification local to (01.n,620)-
Depending on the second-step test being considered, the “strength of identification” may refer to
the strength of identification of 6; (given 62) or 6.

On the other hand, to verify Assumption OE(i) for some sequence S (or subsequence Sy,)
one needs global strong identification of 6; over ©;. By the latter, we mean a global separation
between the value of a suitable population criterion function at 614, and its value at 01 # 014
(when 63 = 020). Hence, the results of Theorem [5.1(b) and (c) only hold if one has global strong
identification of 61 over O in this sense for some sequence S (or subsequence Sp,).

(iv). The results of Theorem (c)f(e) also apply to subsequences S, and SA.

(v). The proof of Theorem [5.1[f) is a minor variant of the proof of Theorem [5.1fa)—(e). The

only difference is that o is replaced by 624,, which can depend on n.
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6 Proof of Theorem [5.1]

Proof of Theorem We prove part (a) first. We show below that for any null sequence S
and any subsequence {w,} of {n}, there exists a subsubsequence {my} such that, under S, :=

{(Osm,,s Fn,)) : (O15m,,, Fin,,) € Fsv,02em, = 020,n > 1}, go*g%n satisfies

limsup Py, 5. (93, > 0) < o, (6.1)

n—oo

_ / ! !
where 0., = ( 11, ) 20)"-

To show AsySz < a, let S be a null sequence such that limsup,,_, Ps,. 5, (05 > 0) =
WM Sup,, o0 SUP(g, 7)eFoy Fo1020. 7 (05 > 0) (:= AsySz), where O = (01, 0%)". Such a sequence
always exists. Let {w, : n > 1} be a subsequence of {n} such that lim Py_, g, (@5 > 0) exists
and equals AsySz. Such a sequence always exists. By the result stated in the previous paragraph,

there exists a subsubsequence {m,} of {w,} such that (6.1)) holds. Thus, we have

AsySz=1m Py, r,. (¢om > 0) = limsup Py, Fon, (9051‘7{” >0) <a, (6.2)

n—o0

where the second equality holds because the limit of any subsequence of a convergent sequence is
the same as the limit of the original sequence.

Now we establish . By Assumption CAL, for any null sequence S and any subsequence
{wy,} of {n}, there exists a subsubsequence {m,,} such that S, satisfies Assumption B or C. First,

suppose Assumption B holds. With n in place of m,, for notational simplicity, we have

Py, 5, (50 >0)

= Dy, F, ( inf ¢y, (01, a2n(01)) > 0>

6,€CSt

0,€CS;

S Pe*n,Fn (¢2n(01*7’h a?n(el*n)) > 0) + a1 + 0(1)
= Pg*n,Fn (¢2n(01*n7 Oég) > 0) + a1 + 0(1)
<ag+a;+ 0(1)

= a+o(1), (6.3)

S Pg*n,Fn ( lnf ¢2n(917a2n(91)) > 07 el*n G CS].H) + Pe*n,Fn (91*71 ¢ CS]_n)

where the second inequality holds using Assumption B(i) and the fact that C'Sy, C CS; by defin-
ition, the second last equality holds by Assumption B(iii), the last inequality holds by Assumption
B(ii), and the last equality holds by the definition of a; and awg. The inequalities in (6.3]) are just
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the standard inequalities in the Bonferroni argument. With m,, in place of n, (6.3)) establishes (6.1

under Assumption B.
Second, suppose Assumption C holds. That is, for any null sequence S and any subsequence

{wy} of {n}, consider a subsubsequence {my} such that Assumption C holds under S,,. Let glmn

be an element of C'SY, that satisfies ||§1mn —O01em, || = Op(mﬁlﬂ). Such a value 51mn exists wp—1

by Assumption C(i). With n in place of m,, for notational simplicity, we have

Py, (03, >0):= Py, p, ( inf  ¢,,,(01, Q2n(01)) > 0)
91€CSY,,

91€CSY,,

< Pg*an ( inf ¢2n(01,a) > 0)

< Py p, (%(éln, Q) > o) +o(1), (6.4)

where the first inequality holds by Assumption C(iv) and the second inequality holds because
Em € C’Sl+n wp—1.

Next, we show

Gomn O1m, s @) = Doy, (O, @) + 0p(1). (6.5)

Again with n in place of m,, for notational simplicity, we have: for all ,0 > 0,

Py (1620010, @) = 62, (010, 0)| > €)
< By py (|¢2n(§1n,a) — G0 (O1am, )] > &, 12([01, = Orun]| < K)

IN

01€01:n1/2||01—01.n||I<K
— o(1) + 6, (6.6)

Pe*an ( Sup ‘¢2n(91, Ol) - d)Qn(el*na O£)| > 5) + J

where the second inequality holds for K (= Kj;) sufficiently large and n sufficiently large using
the definition of am and the equality holds by Assumption C(v). Since § > 0 is arbitrary, this

establishes (6.5]).
Equation 1} and Assumption C(iii) imply that ¢, (Elmn,a) has the same asymptotic dis-

tribution as ¢g,,, (f14m,, ) under S,,, which is absolutely continuous at 0. Hence,

hm PH*mn,an (¢2mn (/élmrwa) > 0) - hm Pe*mn;an (¢2mn (el*mn7 a) > 0) - Oé, (67)
where the last equality holds by Assumption C(ii). This result and (6.4 (with m,, in place of n)
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establish (6.1)) under Assumption C. This completes the proof of part (a) of Theorem
Now we prove part (b). Given the result of part (a), it suffices to show that there exists a
subsequence Sy, under which lim, .. Fy,,, F., (g02mn > 0) = a. We show below that for the

subsequence S,, specified in Assumption OE we have

O3 = G2m,, (O14m,,, @) + 0p(1). (6.8)

This and Assumptions C(ii) and C(iii) give

For part (b), it remains to show . For notational simplicity, we use n in place of m,
from here on. Define Zn := ' 2d g (014n, CS; ). We have En = O,(1) by Assumption OE(i). Also,
CS{ # @ wp—1 by Assumption OE(i). Given this, there is no loss in generality, and a gain in
simplicity of the expressions, in assuming CS ., 7 @ in the following calculations. By the definition
of dgr, 61 € CS; implies |01 — O1un|| < dpr(B14n, CSY) and n/2]|01 — O1un|| < §n. We use this in
the following: for all € > 0,

PQ*an(|(p§1¥ - ¢2n(91*n7 a)| > 5)

= Pe*nypn ( lnf ¢2TL(917 O[) - ¢2n(‘91*n7 a)
91€CSY,,

< Pe*nan Sup |¢2n 017 ) ¢2n(91*n7a)| > € (610)
Glecsln

< F Osn, I ( ‘¢2n(917 a) - ¢2n(01*m Ck)‘ > 5)
01€01: nl/QHGl 91*n‘|<£

S Osn,Fn sup ’¢2n(917 O[) - ¢2n(91*7h O[)‘ > g, Zn < K|+ Pe*n,Fn (gn > K)
91691 n1/2)|01—01.n || <K

<o

where the equality holds wp—1 because dg,,(61) = a V61 € CS{ wp—1 by Assumption OE(ii), the
second inequality holds because 61 € CS; implies n2(|01 — O1.n|| < Zn, and the last inequality
holds for K (= Kj) sufficiently large and n sufficiently large by Assumption C(v) and because
En = Op(1). Since § > 0 is arbitrary, implies , which completes the proof of part (b).

Next, we prove parts (¢) and (d). For any null sequence S that satisfies Assumption OE, (1)
the first result of part (d) holds by the proof of (6.8), and (2) part (c) and the second result of part
(d) hold by the same argument as for using Assumption C(iii).
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Now, we prove part (e). Let S4 be as in part (e). By the definition of contiguity, any sequence
of events whose probabilities converge to zero under S also converge to zero under S4. Hence,
Assumptions OE(i), OE(ii), and C(v) also hold under S4. (For Assumption OE(i), this uses the
fact that X,, = O,(1) if and only if P(|X,,| > K,,) — 0 for all sequences of finite constants K, — o00.)
Given this, the first result of part (e) holds by the proof of and the second result of part (e)
holds by the same argument as for .

The proof of part (f) is the same as the proof of parts (a)—(e) with some minor changes.
Throughout the proof, 0y is replaced by 0., € Oa,, the sequences S (and subsequences S,,)
considered are null sequences (and subsequences) for null hypotheses that may depend on n (i.e.,
Hy : 0 = 02y, the quantities Fsy, @57, do,(01,7), G2,(01), and CS}, are taken to be functions
of 024, rather than 6, and the expression limsup,, ., Sup, rerg, P9179207F(g0§7¥ > 0) in the
paragraph following , which is the asymptotic size of the test goiq;/ , see , is replaced by
lim sup,, o, SUPg,co,, SUP (g, F)eFsy (02) Py, 0,7 (¢5Y (62) > 0), which is one minus the asymptotic
size of the CS based on ¢35V (-), see . O

7 Two-Step Tests in the Moment Condition Model

In this section, we describe in detail three two-step tests for the moment condition model.
We consider a first-step AR CS for 61, an estimator set (:)m based on solutions to GMM FOC’s,
data-dependent significance levels @g, (1), and second step C(a)-AR, C(«)-LM, and C(a)-QLR1
tests.

Given the definition of two-step CS’s for 65 in , this section implicitly also provides detailed

descriptions of three two-step CS’s for the moment condition model.

7.1 Specification of the First-Step CS

For the first-step CS for 61, C'Sy,, we consider the (null-restricted) AR CS. Other CS’s could
be used, but the AR CS has power advantages, as noted in the Introduction.
The nominal 1 — 7 (null-restricted) AR CS for 0, is

C’SﬁR ={01 € ©1: AR, (01,02) < X%(l —n)}, where AR, (0) := n/g\n(ﬁ)'ﬁfbl(Q)ﬁn(@) (7.1)

and x2(1 —n) denotes the 1 — 7 quantile of the x? distribution for some n € (0,1).
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7.2 Specification of the Estimator Set

Let Qn(6) denote the GMM criterion function

~

Qu(9) = Gu(0) W1nGn(9), (7.2)

where /Wln is a symmetric, positive semi-definite, possibly data-dependent, k x k weight matrix
that does not depend on 6; (but may depend on the null value 03). When g, (6) is of the form
Gn(0) == n 1> | Ziui(0) for some k vector of instruments and some scalar u;(f), e.g., as in
Stock and Wright (2000), one can take Win = (n=1Y"" | Z;Z!)~1. This choice yields invariance to
nonsingular transformations of Z;. Or, one can take /Wln to be the usual first-step or second-step
GMM weight matrix used to compute the two-step GMM estimator. (The usual first-step GMM
weight matrix is just /V[71n = I.)

The leading choice for the estimator set C:)ln to be used in the moment condition model is
O1n := {01 € O1 : G1,,(01) WinGn(61) = 0P & Qn(6:) < it Qn(61) + cn} (7.3)
1 1

for some positive constants {c, : n > 1} for which ¢, — 0, where éln(ﬁl) is defined in 1) The
choice of the constants {c,} depends on the choice of the criterion function Q,(#). When Q,,(6) is
a GMM criterion function, we require nc, — oo, e.g., ¢, = log(n)/n.

We define @)m as in because we can show that, under suitable assumptions, there exists a

1/2_consistent solution to the FOC’s of the GMM criterion function that minimizes the criterion

n
function @n(Gl) up to ¢,. One could omit the minimization condition in 1} But, this condition
makes C:)m smaller, which is desirable for power purposes because it allows one to exclude local

minima, local and global maxima, and inflection points from éln.

7.3 Specification of the Second-Step Significance Level

For use with the second-step C(a)-AR test, we employ the following identification-category-
selection statistic (ICS):

~ ~

1CS1,(8) == A2 (Eﬁm(e)@m(e)’ﬁ;l(9)G1n(9)q>1n(0)) : (7.4)

min
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where G1,(0) is defined in (3.9), Q,,(0) is defined in (3.6), and

B, (0) := Dmg{oﬂn< )y ooes Gy (0)} € REPS,

7000 i= 171" (IGiu )~ [lln(®))”. (7.5)
=1

0 _
= 55;,%(0) € RF, 0; = (051, ..., 05p,)", and ||G]|jen(0) :=n 1Zy|cm
fors=1,...,p; and j =1, 2.

For use with the second-step C(«)-LM and C(«a)-QLR1 tests, we employ the following ICS

statistic:

10S:(0) := A2 (9 (A ()G (e)ﬁ 1(e)én(9)cf>n(9)), where
B,,(0) i= Diag{®:1,(0), Bon(0)} € R" (7.6)

and én(ﬁ) is defined in .

The matrices ®1,,(0) and @2, () that appear in the definitions of ICS1, () and IC S (6) ensure
that these statistics are invariant to rescaling of the parameters 0, for s =1,...,p; and j = 1,2.

The statistic IC'S1,,(0) is an estimator of the smallest singular value of Q;l/Q(O)EFGu(H)(I)lF(Q),
where ErpG1i(0) is the expected Jacobian of the moment functions wrt 61, Qr(6) denotes the
variance matrix of n'/2g, (), and ®,#(f) denotes the diagonal matrix containing the reciprocals
of the standard deviations of ||Gjsi(0)|| for s = 1,...,p; and j = 1,2. Analogously, the statistic
ICS;(0) is an estimator of the smallest singular value of 9;1/2 (0)ErG;i(0)®r(0), where EpG;(0) is
the expected Jacobian of the moment functions wrt § and ®(0) := Diag{®1r(0), P2r(0)} € RP*P.

We letfl]

108, (0) = ICS1p(01) for the 2nd-step C(a)-AR test (7.7)
ICS}(01) for the 2nd-step C(a)-LM and C(«a)-QLR1 tests.

The ICS,,(0) statistic is different from, but related to, the ICS statistic employed in Andrews
and Cheng (2012, 2013, 2014). The latter is a Wald statistic based on an estimator of a parameter
that determines the strength of identification. In the models considered in this paper, no such

parameter need exist.

!The second-step C(a)-AR test does not rely on Gan (1), whereas the second-step C(a)-LM and C(a)-QLR1 tests
do. In consequence, it turns out that for the latter tests local strong identification of the whole vector 6 is required for
sequences to satisfy Assumption C. For the second-step C(a)-AR test only local strong identification of ;1 given the
true value of 02 is required for sequences to satisfy Assumption C. These differences lead to the different definitions
of the IC'S,, () statistic in for the different second-step tests.
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Given ICS,,(61), we define the data-dependent significance level @y, (01) as follows:

as it 10S,(01) < K7,
agn(el) = s + s (%) oy if ICSn(Ql) S (KL, KU] (78)
a if 10Sa(61) > Ku,

where s(-) is a strictly increasing continuous function on [0,1] with s(0) = 0 and s(1) = 1 and
0 < K, < Ky < o0. For example, s(z) =21(0 <z < 1) + 1(x > 1).

In some scenarios it may be advantageous to use an ICS statistic that differs from the ones
defined in . For example, for models that fall into the framework considered in Andrews
and Cheng (2012, 2013, 2014), one could use the ICS statistics in those papers. One could also
consider the ICS statistic in I. Andrews (2017).

7.4 Specification of the Second-Step Test

Next, we specify three second-step C(«)-type tests for moment condition models. They follow
the form of Chaudhuri and Zivot’s (2011) C(«)-LM test. The latter extends, from likelihood models
to moment condition models, the C(«) tests of Neyman (1959), Moran (1970), and Bera and Bilias
(2001, eqn. (3.24)). For related results and extensions, see Smith (1987) and I. Andrews (2017).

Following Kleibergen (2005), let ﬁjn(ﬁ) be the sample Jacobian of the moment functions wrt 6,
adjusted to be asymptotically independent of the sample moments g, (6) for j = 1, 2. By definition,
for j =1,2,

ﬁjn((g) = [ﬁjln(‘g) Lo ]pjn( )]7 Where, for s = 1, -y Pjs

Djan(0) := Gjn(6) — Am(e)ﬁ 1(0)3.(0) € RF,

é’jsn(@) = agﬁn(e) c Rk, Hj = (9]'1, ...,ijj), c Rpj7 and
js

Fnl8) = 170 3 () = Gnl6)) i(0) € B (7.9)

Given a matrix A, let P4 and M4 denote the projection matrices onto the column space of A

and the space orthogonal to the column space of A, respectively.

7.4.1 C(a)-AR Test

The second-step C(a)-AR test is a quadratic form in the residuals from the projection of the
sample moments onto the space spanned by the random k x p; matrix ;, 1/2 (H)Dln(e). This yields

a statistic whose power is directed towards violations of Hy : 69 = 053. To obtain the desired Xi—pl
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asymptotic distribution of this statistic, we need Qn 1/2(9)D1n(¢9) to have full rank p; a.s. asymp-
totically. Andrews and Guggenberger (2017) (AG1) provides a fairly general, but complicated, set
of conditions under which this holds.

Here we take a different approach that yields a X%*pl asymptotic distribution under very
simple and general conditions. Rather than projecting onto €, 1 2(9)13171(9), we project onto
Q_1/2(9)D1n(9) + an~1/2¢,, where ¢ is a k x p; matrix of independent standard normal ran-
dom variables that are independent of all of the statistics considered, such as g, (6), Gn(6), and
ﬁn(e), and «a is a small positive constant. This small random perturbation an~1/2¢ | guarantees
that the space spanned by Q;, Y 2(Q)Dln(ﬁ) +an~1/2¢, has dimension p; a.s. asymptotically. Under
strong and semi-strong identification this perturbation has no effect asymptotically and very little
effect in finite samples for a small. Under weak identification it has a small, but non-negligible,
asymptotic effect. Note that all of the results given below still hold if one takes a = 0 provided one
restricts the parameter space for the distributions F' as in AG1 (see Fy in AG1).

For given 01 € ©1, the nominal 7 second-step C(«)-AR test rejects Hy : 02 = 039 when

Af(%,n) := ARgpn(01,62) — X%,pl(l —n) > 0, where
AR (0) := 1Gn(0) M1, (0)3(0), Gn(6) := Q/2(6)5.(0),

My (9) := I — Py

057 1/2(0) Dy (0)+an—1/2¢, " (7.10)

X%_pl(l —n) denotes the 1 — 7 quantile of the Xz—m distribution for some n € (0,1), g,(0) and

O (0) are defined in and ., and Dln ) is defined in 1'

7.4.2 C(a)-LM Test

The definition of the C(«)-LM test in Chaudhuri and Zivot (2011) involves projection of g, (6)

onto Mg-1/2 (o ?(6) D2y (6). To obtain the desired X3, asymptotic null distribution of this

(0)ﬁln(‘9)

statistic when 60 equals the true value (6., 020), one needs this matrix to have full rank ps a.s. as-

ymptotically. This can be violated under weak identification. For example, if Da,, (= f)%(elm, 020))

has rank less than ps with positive probability for all n, then it is violated. Another example occurs

when lA)gn and lA)ln individually display strong identification, but jointly display weak identifica-
1/2

(6) B0 )Q (H)Dgn(Q) does not lead to the

desired X;Q,Q asymptotic distribution of the C(«)-LM statistic.

tion In cases like these, projection onto Mg_1/2

We introduce a modified C(a)-LM statistic that behaves like a C(a)-LM statistic under strong

SThat is, ﬁgn and ﬁln have asymptotic distributions (after suitable normalizations) with positive smallest singular
values a.s., but [Din : D2,] has an asymptotic distribution whose smallest singular value is zero.
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identification of 6, but has an asymptotic XIQ’Z null distribution regardless of the strength of iden-
tification of . First, we replace 651/2(9)132”(0) by 5\2;1/2(9)5%(9) + an~/2¢,, which has a small

random perturbation that guarantees that the k x ps matrix has full column rank po a.s. asymp-

totically. Second, we employ ]\/4\1n(«9) (defined in (7.10))), rather than Mg 1,2 which utilizes

(0)D1n (6)’
a small random perturbation to €y, 1/2 (0)D1,,(0). Third, under weak identification we project onto

0 /2(0) Dy (0) + an=1/2C,, rather than onto My, (8)(Qn/(0)Dan (0) + an=1/2¢,) because this cir-

~

cumvents the potential problem (described in the previous paragraph) that v 2(9)]_32”(9) and
Qn 1 2(9)]31”(9) might be collinear asymptotically. In particular, we use a data-dependent smoothed
indicator function, W1, (0), that equals one under weak identification and equals zero under strong
enough identification of §. We employ ]\/Zln(e) when W1, (0) =1 and I when W1,(6) = 0.

We define

(7.11)

Wh0) =1 s (FCEOE).

K — K,
where ICS}(0) and s(-) are defined in and (7.8), respectively, and K} and K7, are tuning
parameters that satisfy 0 < K7 < K; < K, < Ky < 0o. As defined, W1, (0) = 1if ICS;(0) < K}
and W1,(0) =0if ICS;(0) > K.

We project g,(0) onto the space spanned by

DI (8) := (My,(0) + W1,(8) Pr,(0))(Q,/2(8) D (6) + an~/2(,), where

Pinl0) i= Par2g) 5, o) san-trac, (: I — Mln(9)> . (7.12)
For given #; € ©1, the nominal level 7 second-step C(«)-LM test rejects Hy : 62 = 09 when

¢%M(91,17) := LM2,,(01,020) — X?)Q(l —n) > 0, where
LMQn(a) = ngn(e)IPDgn(g)gn(e)a (713)

(5 is a k X py matrix of independent standard normal random variables that are independent of all
statistics considered, such as g, (6), G (9), Qn (#), and (;, and a is a small positive constant.

The second-step C(a)-LM test reduces to the C(a)-LM test in Chaudhuri and Zivot (2011)
when WI,(0) := 0 and a = 0. We provide correct asymptotic size results both for the case where
WI,(0) is defined in and for the case where WI,(0) := 0. But, the latter case requires a
more restrictive parameter space, see below.
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7.4.3 C(a)-QLR1 Test

Next, we consider a C(«a) version of Kleibergen’s (2005, Sec. 5.1) nonlinear CLR test. This test
employs a rank statistic, rka, (), that is suitable for testing the hypothesis rank(ErpGa;) < ps — 1
against rank(EprpGe;) = pa, where rank(A) denotes the rank of a matrix A. For this we use the

rank statistic of Robin and Smith (2000). The second-step C(a)-QLR1 test statistic is

QLR15,(6) := % <AR£R(0) — 1kon(0) + \/ (AR (0) — ko (6))2 + 4L My, (0) -rkzn(9)> , where

AR, (0) = 1Gu(0)' (M1a(6) + W1(9)Pra(6)) 5u(6), (7.14)

L M5, (0) is the second-step C(a)-LM test statistic defined in , and Py, (6) is defined in .
Given the C(a) definition of LMy, (0), the C(a)-QLR1 statistic, QLR12,(0), is defined with the
modified C(a)-AR statistic, AR;H(H), rather than the ARy, (6) statistic defined in ([7.10)).

The Robin and Smith (2000)-type rank statistic that we consider is

~ ~

Tk (0) = Amin (K k@2, (0) Doy (0)/ Q21 (6) Doy (0) D2 (6)), (7.15)

where @%(9) is defined in and K,, > 0 is a constant. The matrix EISQn(H) that appears in
the definition of 7k, (0) ensures that rka,(0) is invariant to rescaling of the parameters a4 for
s = 1,...,p2. This is a useful feature because one does not want this statistic to vary when one
changes the unit of measurement of a parameter.

The C(a)-QLRI1 test uses a conditional critical value that depends on the rank statistic and
W,(). For fixed 0 < r < oo and w € {0,1}, let ¢?LRL(1 —p, r,w) denote the 1 —n quantile of the

distribution of

1
QLRI(r,w) := 5 <X§2 + Xiprwpy, — T+ \/(X;%2 F X prwpy, — T 4x§27’> , (7.16)

where X1272 and X%_p fwp; AT€ independent chi-square random variables with ps and & — p + wp;
degrees of freedom, respectively. For a nominal level i test, the C(a)-QLR1 critical value is

CERY L — 1 rko, (0), WIT(0)), where WIT(0) := 1(WI,(6) > 0). (7.17)

As defined, the critical value depends on a Xz—m distribution when W1, () > 0 (i.e., ICS}(0) <
K};) and a X%_p distribution when W1,(#) = 0. It can be shown that when rks, () —, oo (which
holds under strong identification of 62), cQERL(1 — 1, rke, (), WI(6)) —p X2,(1 —n) whether
Wi, (0) =0or 1 for any n > 1. Thus, the value of WI,TL(G) is asymptotically irrelevant in this case.
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Given 6; € ©1, the nominal level 1 second-step C(a)-QLR1 test rejects Hy : 03 = 029 when

LI 01, 1) == QLR12,(01,020) — PN — 1, 7k (61, 020), W I (61, 020)) > 0. (7.18)

8 Asymptotic Results under Primitive Conditions in the

Moment Condition Model

In this section, we provide asymptotic results under primitive conditions for three subvector tests
AR/AR, AR/LM, and AR/CQLR1 (and corresponding CS’s) for the moment condition model in
. All three tests use the first-step AR CS defined in and the estimator set @)m defined
in . The results are obtained by verifying the assumptions of Theorem Here we consider

the case where the observations {W; : ¢ =1,2,...} are i.i.d. under any distribution F.

8.1 Parameter Space Definitions
8.1.1 Notation

The moment functions g;(6) are defined on ©. The parameter space © is assumed to be an open
subset of RP. Given O, ©1 is defined in (3.7). The parameter space ©; is employed in the definitions
of C'Sy,, and (:)m- Given that © is open, ©7 is open. The true value of the nuisance parameter 64
is assumed to lie in a set O1, that satisfies ©1, is bounded and B(©1,,¢) C 05 for some ¢ > 0,
where B(0©1.,¢) denotes the union of closed balls in RP' with radius e centered at points in ©1,.
This implies that the true value of #; cannot be on the boundary of the optimization set 6)1@

When considering CS’s for 65, we assume that © is open and the true parameter 0 lies in a
set ©, that is bounded and satisfies B(O,,e) C © for some € > 0. In the CS case, we define
O1. := {67 : 305 such that (0, 605)" € O.} and Og, := {05 : 30; such that (0], 605)" € O,}.

The variance matrix of the moments is denoted by

Qr(0) := Er(g:(0) — Ergi(9))(g9:(0) — Ergi(0))". (8.1)

Let 05 = (651, ...,0jp,)" for j = 1,2. When the following derivatives exist, we define

82
. := max sup ||———gi(01,0 for j = 1,2 and
gjl S,ngj Glegl 89‘]569]ugl( 1 20) J
82
1= ———q;(601,0 . 8.2
Sig 1= _max Sup 891509%9’( 1,020) (8.2)

STf this condition is violated, the possible effect is small. Specifically, asymptotic NRP’s are still o + a1 or less
and, hence, the distortion is at most a1, such as a; = .005.
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We let 75, = 75, (0xn) for Oun = (0., 05)". Here, 72 (6) denotes the smallest singular value of

Q' 2(0)Er, Gin(0)@)r, (0), where
;7 (0) := Diag{Vary"*([|G;1i(0)]]). ... Vary > (1|Gjp,i(8)[)} (8.3)
and Gj;i(0) = (Gj1i(0), ..., Gjp,i(0)) € R¥Pi is defined in (7.5)) for j = 1,2. We let 75 = 7% (6sn),
P

»(0) denotes the smallest singular value of

where 7
Q;j”(e)EFnén(e)chn (0), and ®p(0) := Diag{®p(0), Pop(0)} € RP*P. (8.4)

Define
rip(0) = rank(Q"*(0) EpGp(0)) for j = 1,2. (8.5)

A compact singular value decomposition (SVD) of Q;l/z(H)EF@jn (0) is
Q3 2(0) EpGin(8) = Cujp(0)Tujr(6)Bujp(8) for j = 1,2, (8.6)

where C.jp(0) € RF*7ir0) Y, .p(0) € Rrir@xmir() | B, p(0) € RPi*7ir(®) the columns of Cyjr(6)
are orthonormal, the columns of B,;r(6) are orthonormal, and Y,;r(6) is the diagonal matrix with

the positive singular values of Q;l/ 2 (O E F@jn(Q) on its diagonal in non-increasing order Define
Cor(0) := [Co1p(0) : Chop(0)] € RF¥(rir@)+r2r(0)) (8.7)

8.1.2 AR/AR Subvector Test

For the AR/AR subvector test, we assume that g;(61) is twice continuously differentiable in 6

on O for all sample realizations. For this test, the null parameter space for the true (01, F) is

Farjar = {(01,F) : Ergi(61) = 0%, 6, € Oy, {W; :i > 1} are i.i.d. under F,
Ep|lgi(01)[1*77 < M, Ep|lvec(Gui(61))|*T7 < M, Ep&i; < M,
Amin(Q2r(01)) > 0, Varp(||Gisi(01)]]) > 6 Vs =1,...,p1} (8.8)

for some 7,6 > 0 and M < co.
The second last condition in Fyp/ar bounds Amin(Q2r(01)) away from zero. This is not restric-

tive in most moment condition models, but it is restrictive in likelihood scenarios because under

TA compact SVD can be obtained from any SVD by deleting the non-essential rows and columns of the matrices
in the SVD as in , e.g., see Demmel (2000).
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weak identification the Jacobian is close to being singular and this implies that the variance matrix
Qr(01) also is close to being singular (by the information matrix equality).

The last condition in Fgr/ar is not restrictive. For example, in the linear IV model with
multiple right-hand side (rhs) endogenous variables, G15; = Z; X14i, where Z; is an IV vector and
X1s; is the sth rhs endogenous variable whose coefficient is not specified by the null hypothesis. In
this case, this condition is quite mild.

If Wm = Ij., then some conditions that control the behavior of Wm typically need to be added
to the definition of F4p/4r in order to verify the condition on /Wln in Theorem below. For
example, if Wi, = (=YY", Z;Z!)71, then the following conditions are added to the definition of
Farjar: Amin(EpZiZ)) > 6 and Ep||Zi||*™7 < M.

For the AR/AR CS, the parameter space for the true (0, F) is

f@,AR/AR = {(G,F) 10 = ( ,1,9/2), € O such that (91,F) € fAR/AR(GQ) and 05 € @2*},
(8.9)

where Far /4 r(020) denotes Fup /AR With its dependence on the null value 029 made explicit.

8.1.3 AR/LM and AR/QLR1 Subvector Tests

For the AR/LM and AR/QLR1 subvector tests, we assume that g;(01) is twice continuously
differentiable in 01 on ©1, g;(61,02) is differentiable in 0 at 39 V01 € ©1, and (9/06%)gi(01,020) is
differentiable in 61 V61 € ©; for all sample realizations. A sufficient condition for these conditions
is g;(0) is twice continuously differentiable in 6 at (6], 65,)" V61 € ©; for all sample realizations.

For the AR/LM and AR/QLRI1 subvector tests, the null parameter space for the true (01, F') is

Farjpmqrr i= {(01,F) € Fapjar : Er||lvec(G2i(61))|7T7 < M, Epés; < M, Epég; < M,
Varp(||G25i(01)||) 2 5 VS = 1, ...,pg} (8.10)

for 7,6 > 0 and M < oo as in the definition of Fr/4g-
For the AR/LM and AR/QLR1 CS’s, the parameter space for the true (0, F) is

Fo.ar/imqLr1 := {(0,F) : 0 = (01,05)" € © such that (01, F) € Fap/ra,orri(f2) and 62 € O},
(8.11)

where Far/ra,qrri(f20) denotes Fag ra,grri with its dependence on the null value 5 made

explicit.
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Next, we define the null parameter space for the AR/LM and AR/QLR1 subvector tests if
one defines the LMa,,(6) and AR;n(H) statistics and C(a)-QLR1 critical value with WI,(0) := 0,
which yields pure C(a)-LM and C(a)-QLR1 tests. In this case, Far/ra,rr1 Needs to include the

additional condition

Amin (Cir (01)'Cip(01)) > 6 (8.12)

for 6 > 0 as above in Fup/ LM,QLRI-H This condition is used to guarantee that the asymptotic
distribution of the matrix in the projection in the LMa,(0) statistic (see (7.13)) has full column
rank py a.s. It allows the rank of 9;1/2(01)Epéjn(91) to take any value in {0, ...,p;} for j = 1,2.
But, it precludes the column spaces of 9;1/2(91)EF@171(01) and 9;1/2(01)EF6¥2”(91) from being
too similar, which is restrictive. The condition in is not redundantﬂ

8.2 Asymptotic Results
8.2.1 AR/AR Subvector Test

Next, we provide asymptotic size results for the two-step AR/AR subvector test, denoted by
go’;f / AR, and the corresponding two-step AR/AR CS. Here, null sequences S are defined as in ,
but with the generic parameter space Fsy replaced by Far g, defined in (8.8).

For null sequences S that satisfy the following strong identification (SI) assumption, the cp’;f /AR
test has asymptotic NRP equal to «. For other sequences, its asymptotic NRP’s may be less than

. The (smallest singular) value 7§, is defined in (8.3)) above.

Assumption SI. For the null sequence S and some r > 2, (i) liminf,, . infg, ¢ p(s,,,. ) | EF, 9i(61)]]
> 0 for all € > 0, (i) liminf, .o 75, > Ky (for Ky > 0 as in the definition of @, (01) in (7.8)),
(i) Tim sup, . Er, s1upp, o, lg:(00)I" < 00, (iv) limsup,, o, Er, supg,co, G101 < 50, (¥)

©; is convex and bounded, and (vi) liminf, . infg, co; Amin(2F, (61)) > 0.

Assumptions SI(i) and SI(ii) are global and local strong-identification assumptions, respectively,
on 61 at {014, : n > 1} given 9. Assumptions SI(iv) and (v) can be replaced by the Lipschitz
condition: ||gi(0a) —gi(0s)|| < Biil|0a —0bl| V04,0, € ©1 for some random variable By; that satisfies
limsup,,_,, FFr, B}; < oo for some r > 2 and O is bounded.

We use the following condition on W\ln, which appears in and .

Assumption W. For the null sequence S, (i) ﬁ/\ln is symmetric and positive semidefinite (psd)

and (ii) Wi, —) Wie for some nonrandom nonsingular k x k matrix Wie.

8This condition does not depend on the particular choice of matrix Cir(61) (which is not uniquely defined).
9For example, it is violated (in the unlikely case) when Gi,(01) = Gan(61) because Cuip(01) = Cior(01) and
)\min(C*F(el)/C*F(al)) =0.
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Theorem 8.1 Suppose g,(01) are the moment functions defined in , ﬁln(ﬂ) is defined in

, and ]\//.71n(01) is defined in with a > 0. Suppose CS1,, is the ﬁrst Step AR CS CS{if
$on(01,m) is the second-step C(a ) AR test $3E(01,7), and G2, (01) is defined in . Suppose
9i(0) is a function on © for all i > 1, © is an open subset of RP, g;(01) (:= gi(01,920)) is twice
continuously differentiable in 01 on ©1 for all sample realizations for ©1 defined in , O14 in
FAr/AR is bounded, B(©O1x,¢) C ©1 for some ¢ > 0, p1 < k, and the positive constants {c, : n > 1}
in satisfy ¢, — 0 and nc, — oo. Suppose for every subsequence {wy,} of {n} there exists a
subsubsequence {my} such that the null subsequence Sy, in Fagr/ar satisfies Assumption W. Then,
the two-step AR/AR subvector test, @AR/AR, satisfies

(a) AsySz < a for the null parameter space Far/ar;

(b) AsyNRP = a for all null sequences S in Far/ar that satisfy Assumption SI,
(c) AsySz = « provided some null sequence S in FAr/AR Satisfies Assumption SI,
(

d) for any null sequence S in Fr/ar that satisfies Assumption SI, cp‘;f'/AR = ¢ (O, ) +

. A .
0p(1) and lim Py, 1, (5, > 0) = lim Py, e, (630 @) > 0),
(e) for any alternative sequence S4 = {(62  F2) :n > 1} that satisfies Assumption C(iii) and

*n?
is contiguous to a null sequence S that satisfies Assumption OE, Lp‘;f/AR ¢‘247F(0*n,a) + op(1)

and lim Pya 1a (@ff/AR >0) =lim Py pa (632 (0,n, @) > 0), and

(f) under the assumptions stated in the Theorem before part (a), plus ©, is bounded and satisfies
B(O.,e) C O for some e > 0, the two-step AR/AR CS satisfies (1) AsySz > 1—a for the parameter
space Fo ar/ar, (i) AsyCP =1 —a for all sequences S in Fo ar/ar that satisfy Assumption SI,
(iii) AsySz = 1 — « provided some sequence S in Fo ar/ar satisfies Assumption SI, (iv) for
any sequence S in Fo ar/ar that satisfies Assumption SI, gpzAf/AR(Gg*n) = g5 (0., ) + op(1)
and limPg*mpn((p‘;f/AR(Gg*n) > 0) = lim Py, g, (55 (0un, ) > 0), and (v) for any alternative
sequence S4 that satisfies Assumption C(iil) and is contiguous to a null sequence S that satisfies
Assumptzon OE, @AR/AR(GQ*H) = 5 F(B.un, ) + 0,(1) and lim Pya FA(@?f/AR(HQ*n) > 0) = lim

Comments: (i). In Theorem [8.1fc), the existence of a null sequence S that satisfies Assumption
SI is not restrictive because the latter imposes standard strong-identification regularity conditions.

(ii). Theorem . and (e) show that, under global strong identification, goff AR i asymp-
totically equivalent to the oracle second-step C(a)-AR test ¢35 (01,4, @) under the null hypothesis
and contiguous local alternatives. When there are no over-identifying restrictions, i.e., k = p, the
latter test is asymptotically efficient in a GMM sense, e.g., as defined in Newey and West (1987),
under global strong identification. Hence, the two-step go?f /AR

(iii). The proof of Theorem in the SM employs Theorem In the proof, we show that

test is as well (when k = p).
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sequences S for which lim,, e 7"11)” < K7, (and some other conditions hold) satisfy Assumption B of
Section [5| We show that sequences S for which lim,,_,« 7§, > 0 (and some other conditions hold)
satisfy Assumption C of Section [5} In addition, we show that sequences S that satisfy Assumption
SI (and some other conditions) satisfy Assumption OE of Section

8.2.2 AR/LM and AR/QLR1 Subvector Tests

Next, we provide asymptotic size results for the two-step AR/LM and AR/QLR1 subvector

tests, denoted by @AR/ LM and o AR/QLRI

, respectively, with the parameter space Far/rn,QLR15
and the corresponding CS’s. For these two-step tests, asymptotic NRP’s that necessarily equal «,
not a or less, are achieved for sequences S for which liminf, .. 78 > K (as well as global strong
identification of 67 given fyg). This condition requires local strong identification of #, rather than
local strong identification of 6 given 029. It is needed because these tests rely on the projection of
Qn 1 2D2n onto the space orthogonal to Qn 1/2 Bln, which yields a matrix with full column rank po

wp—1 only if Qn 1/2 [Dln : Dgn] has full column rank p wp—1.

Assumption SI2. Assumption SI holds with 7% in place of 7$, in part (ii).

Theorem 8.2 Suppose the statistics and conditions are as in Theorem except that ¢q, (01,1)
is the second-step C(a)-LM test ¢ZM (61,7n) or C(a)-QLRI1 test gbg?nLRl(Gl,n) with W I,,(0) defined
as in , aion(01) is defined accordingly in 7, the parameter space Fag/ar 1s replaced
by the parameter space Far/LvQrris and the condition p1 < k is replaced by p2 > 1 for the
C(a)-LM test and by po > 1 and p < k for the C(a)-QLR1 test. In addition, suppose g;(61,02) is
differentiable in 02 at O29 V01 € O1 and (0/004)g;(01,020) is differentiable in 01 V01 € ©1 for all
sample realizations. Then, the two-step AR/LM and AR/QLR1 subvector tests satisfy
(a) AsySz < « for the null parameter space Far/ra,QLR1>

(c

(b) AsyNRP = « for all null sequences S in Far/rm,qrr1 that satisfy Assumption SI2,
) AsySz = a provided some null sequence S in FAR/LM,QLR1 Satisfies Assumption SI2,
)

(d) for any null sequence S in Far/pmqrri that satisfies Assumption SI2, goAR/LM
EM (On, ) + 0p(1), Tim Py,,, 5, (g5 ™M > 0) = Tim P, 5, (652 (02, 0) > 0), and analogous

results hold for wAR/QLRl and ¢§nLR1(91*n, a)

(e) for any alternative sequence S4 = {(02  F2) :n > 1} that satisfies Assumption C(iii) and
AR/LM LM

is contiguous to a null sequence S that satisfies Assumption OE, @5, = ¢35, (Osn, ) + 0p(1),
lim Pya o ((p;f/LM >0) =lim Pya pa (HEM (0, @) > 0) and analogous results hold for wAR/QLRl

and ngLRl(Gl*n, a), and

(f) under the assumptions stated before part (a) of the Theorem, plus O, is bounded and satisfies
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B(O,,e) C © for some € > 0, the two-step AR/LM and AR/QLR1 CS’s satisfy (i) AsySz>1—«
for the parameter space Fo ar/Lm,qrris (i) AsyCP = 1—a for all sequences S in Fg ar/ry,QLR1
that satisfy Assumption SI2, (iii) AsySz = 1 — a provided some sequence S in Fo Ar/LM,QLRI

satisfies Assumption S12, (iv) for any sequence S in Fo ar/Lm,qrr1 that satisfies Assumption SI2,

Con M (O2n) = 05 (Ouns @) + 0p(1), im P, 1, (03, (B2e) > 0) = lim P, p, (65 (O, @) >
0), and analogous results for @?f/QLRl(GQ*n) and qbg)nLRl(G*n,a), and (v) for any alternative se-

quence S4 that satisfies Assumption C(iii) and is contiguous to a null sequence S that satis-

fies Assumption OE, @ff/LM(Hg*n) = M (On, ) + 0,(1), limngmpfé(go?f/LM(ﬂg*n) > 0) =

lim Pya pa (PEM (04, ) > 0), and analogous results hold for go’;f/QLRl (024n) and ngnLRl(H*n, a).

Comments: (i). Theorem (d) and (e) show that, under global strong identification, 90‘24;2 /LM
and cpglf /QLRYL are asymptotically equivalent to the oracle second-step C(a)-LM test ¢ZM (01.,, @)

and the oracle second-step C(a)-QLRI1 test gi);‘?nLRl (014n, @), respectively, under the null hypothesis
and contiguous local alternatives. The latter tests are asymptotically efficient in a GMM sense,
e.g., as defined in Newey and West (1987), under global strong identification when k£ > p. Hence,
the two-step cpff /LM and goff /QLRY

(ii). The proof of Theorem in the SM employs Theorem In the proof, we show that

tests are as well.

sequences S for which lim,, s 7'%’ < K, (and some other conditions hold) satisfy Assumption B of
Section |5l We show that sequences S for which lim,, . 7& > K7; (and some other conditions hold)
satisfy Assumption C of Section [5, where K; < Ky, by assumption. We also show that sequences
S that satisfy Assumption SI2 (and some other conditions) satisfy Assumption OE of Section

(iii). The results of Theorem [8.2| also hold when W I,,(0) := 0, which yields pure C(«)-LM and
C(a)-QLRI1 tests, provided Far/rm,grr1 in is defined to include the condition in (8.12)).
(This result is proved in the SM.)

(iv) Time series versions of Theorems and are given in the SM.

9 Finite-Sample Simulations

9.1 Heteroskedastic Linear IV Model
9.1.1 Simulation Set-up

In this section, we consider a heteroskedastic linear IV model with two rhs endogenous vari-
ables. We consider tests concerning the coefficient on the second rhs endogenous variable Ys;. The

coefficient on the first rhs endogenous variable is a nuisance parameter. The model and sample
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moment vector are

Y; = Y101 + Yo,00 + U,
Yji = Z{(Wj/nl/z) +Vj; for j =1,2, and
9i(0) := (Y; — Y1,6h — Y2,02) Z;, (9.1)

where (U;, Vi, Vai)' = (([|Zll /K ®)evis (1Zall/KY)eni, (1Zill /6 )en)', (evir €1ir £21) ~ iid,
N(O*, V) for V€ R¥3 with Vj; = 1Vj <3, Vi; = 8 for j = 2,3, and Vo3 = .3, Z; ~ iid.
N(0%, I,) independent of (epi,e14,9:), m1 = ||m1||1¥/kY/? for some |||, w2 = ||m2||75/kY/? for
75 = (1%/%, —1%/2) and some ||mg||, and k is an even number. The coefficient vectors m;/n'/? on
Z; in the reduced-form equations are scaled by n~1/2. This is innocuous to the finite-sample results.
It is done only to facilitate the assessment of the effect of n on power. If the asymptotic results are
accurate, power should not be sensitive to n with this rescaling. Similarly, the 7; vectors are scaled
by k=12 to ensure that the expected concentration parameter ErlZ;iZimj/n = ||7j]|?/n does not
depend on k, which facilitates the assessment of the effect of k£ on power.

The hypotheses are Hy : 63 = 639 and Hy : 03 # 0. The NRP’s and power of the tests
considered are invariant wrt 61 and equivariant wrt #s. In consequence, without loss of generality,
we take 01 = 0 and 059 = 0.

The tests considered include the two-step AR/AR, AR/LM, and AR/QLR1 tests defined in
Section[7] We also consider (i) the Oracle C(a)-QLR1 test, which is the infeasible C(a)-QLR1 test

QQnLRl(Hl, «) (defined in ) evaluated at the true value of 01, and (ii) the projection (non-C(«))
conditional QLRI test, which is denoted by Proj—QLRlE The Oracle C(«)-QLR1 test is used to
assess the effect of not knowing #; on the power of the two-step AR/QLRI test. The (non-C(«))
Proj-QLR1 test is considered because it is the existing test in the literature that is closest to the
AR/QLR1 two-step test. We do not report results for the Oracle C(a)-AR, Oracle C(a)-LM, Proj-
AR, or Proj-LM tests because they have lower power than the corresponding QLRI tests. For
the case of strong identification, we also consider the two-stage least-squares (2SLS) testE The
nominal size of the tests is .05.

For NRP’s and power, we consider four identification cases: (i) ||m1|| = ||m2|| = 40 (strong

""The (non-C(a)) QLRI test statistic is QLR12,(0) (defined in (7.14)) with AR, () (defined in (7.1)) in place
of AR}, (), with LMa,(0) (defined in (7.13)) defined using the weight matrix Pﬁ’l/z(e)(ﬁl (0):Dan (8)) in place of

Ppi (), and with rk2n(0) (defined in ) defined with [f)ln(@) : f)gn(e)} and [thn(@) : <f>2n(9)] in place of Day(6)
2n

and ‘/15271(9), respectively. Its conditional critical value is given by the 1 — a quantile of QLR1(r,0) defined in )
with p in place of p2 and evaluated at r = rk2,(6). The (non-C(a)) Proj-QLR1 test rejects Ho only if it rejects Ho
when evaluated at @ = (0, 0%)" for all 6; € R.

1 The 2SLS test is not considered in the other cases, because it is not identification robust and, hence, over-rejects
in these cases.
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identification of ; and 62), (ii) ||m1|| = ||m2|| = 4 (weak identification of 6, and 69), (iii) ||m1|| =4
and ||ma|| = 40, and (iv) ||m1|| = 40 and ||72|| = 4. For each case, we consider power for 03 € [—B, B]
for B chosen suitably.

The results are for sample size n = 250 and k = 4 IV’s, except in Table III. For the two-step
tests, we use oy = .005 for first-step CS, K = Ky = .05 for second-step significance level, and
K, = 1 for the QLRI rank statistic. These are referred to as the base case values. A sensitivity
analysis of the results to these choices is provided in Table II. The data-dependent critical values
are taken from a look-up table that was simulated using 500,000 simulation repetitions. The
number of simulations employed for the rejection probabilities is 10,000, except in Table I, which
employs 25,000 repetitions for the NRP’s. The grid used for the first-step CI values of 0 is [—3, 3]
with a grid width of .1. In the tables, the base case values of n, k, and the tuning parameters is
indicated by bold face. In the figures, the power of the Oracle C(a)-QLR1 and 2SLS tests are
NRP-corrected because they over-reject somewhat in finite samples. The power for the other tests

are not NRP-corrected because they do not over-reject.

9.1.2 Simulation Results

Figures 1 and 2 provide finite-sample power curves for identification cases (i)—(iv). In Figure 1
with strong identification (top), the power curves for the AR/LM (yellow), AR/QLR1 (blue), and
Oracle C(a)-QLRI1 (red) tests are high and are on top of each other. The 2SLS power curve (circles)
is quite similar, but with somewhat lower power for negative 6 values and somewhat higher power
for positive 02 values. The Proj-QLR1 (black) and AR/AR (green) tests have noticeably lower
power than the other tests.

In Figure 1 with weak identification (bottom), the AR/AR and AR/QLRI1 tests have equal
power and have the highest power of the feasible tests. The AR/LM test has the lowest power of
all of the tests for negative 05 values, while the Proj-QLR1 has the lowest power for positive 04
values. The Oracle C(a)-QLR1 test has noticeably higher power than any of the feasible tests.
This is not surprising, because weak identification of 6; implies that knowledge of the true value
of 01 is quite valuable. Note that the scales of the 0 axes in the two graphs in Figure 1 are quite
different. This reflects the differing amounts of information available about 05 in these two cases.

In Figure 2 top, the AR/QLR1 and Oracle C(«a)-QLR1 tests have equal power—due to the
strong identification of §;. The AR/AR test has similar power, but its power is lower for negative
0y values where the power curves are steep. The AR/LM test has poor (quirky) power for negative
05 values, but the highest power of all of the tests for positive f2 values. The Proj-QLR1 test has
the lowest power of all of the tests except for the AR/LM test for some of the negative 6 values.
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In Figure 2 bottom, the Oracle C(a)-QLR1 test has the highest power by a substantial margin.
This is because 67 is weakly identified in this case. The ranking of the other tests’ power has
the interesting feature that it is reversed between 0 values where power is < .80 and > .80. In
the former case, the ranking from highest to lowest power is AR/LM, AR/QLR1, AR/AR, and
Proj-QLRI1. In the latter case, it is the reverse.

In conclusion, the two-step AR/QLR1 subvector test performs the best in terms of power
among the feasible tests in Figures 1 and 2. It noticeably out-performs the Proj-QLR1 test. We
now investigate its NRP’s and the sensitivity of its NRP’s and power to the tuning parameters.

Table I provides NRP’s for the nominal .05 AR/QLR1 test for n = 100,250 and ||71||, ||72|| €
{40,20,12,4,0}. The results show that the NRP’s vary between .000 and .052 over these cases. The
NRP’s are in [.043,.052] for ||m1]| > 12 and all ||73|| values. They are in [.000,.039] for ||71|| < 4
and all ||m2|| values. Hence, the finite-sample size of the AR/QLRI test is close to its nominal size

and it under-rejects the null noticeably only for ||| < 4.

TABLE I. NRP’s of the Nominal .05 AR/QLR1 Test for £ = 4, N = 100 and 250, and Base

Case Tuning Parameters in the Heteroskedastic Linear Instrumental Variables Model

n =100 n = 250
|mal|: 40 20 12 4 0 40 20 12 4 0
40 046 .045 .046 .048 052  .049 .049 .049 .047 .046
20 045 044 .044 .046 050  .049 .049 .049 .046 .045
|lma]| 12 044 043 .043 .044 049  .048 .048 .048 .044 .044
4 025 .025 .025 .029 .039  .033 .032 .030 .030 .037
0 000 .001 .001 .001 .001  .000 .000 .000 .001 .001

Table II investigates the sensitivity of the NRP and power of the nominal .05 AR/QLR1 test
to the tuning parameters o, K1, (= Ky), Ky, K, and a for identification cases (i)—(iv) and five
values of 2 including the null value zero, two negative values, and two positive values, which are
chosen (differently in different scenarios) to yield power around .80 and .50 (when the identification
strength is sufficient to yield such power).

In Table II, for changes in a; (where 1 — «; is the first-step CI nominal level), there is very little
sensitivity of the NRP’s. There is some sensitivity of power for some 0y values in cases (ii)—(iv)
with power decreasing as «; is increased from its base case value of .005 and power being relatively
insensitive to reductions of a1 from its base case value. The base case value works well in an overall
sense. For K, K7, and a, there is very little or no sensitivity of NRP’s or power. For K, in case

(i), there is no sensitivity of NRP’s or power; for case (ii), there is a little sensitivity of NRP’s, a
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noticeable drop in power for §2 = —1.05 as K, increased from its base case value to the largest
K, value, and little sensitivity in power for other 0y values. For Kk, in case (iii), there is no
sensitivity of NRP’s or power except for §2 = —.45, where power drops noticeably for the smallest
K, value; and in case (iv), there is no sensitivity of NRP’s, but sensitivity of power with power

generally increasing in K, and power at the base case K, value being in the middle of the range.

TABLE II. Sensitivity of NRP and Power of the Nominal .05 AR/QLR1 Test to the Tuning
Parameters o, Kp, Ky, K7, and a for (|||, ||m2]|) = (40,40), (4,4), (40,4), and (4,40) and for

Five Values of 65 in the Heteroskedastic Linear Instrumental Variables Model

Tuning ([l [lwa[[) = (40,40) (o]l [lmwall) = (4,4)
Parameter fy: .00 -.082 -.059 .064 .094 .00 -1.05 -575 2.00 3.75
.0010 .060 .804 510 .501 .799 031 .663 406 314 .417
.0025 .060 .804 510 .501 .799 031  .660 .402 .309 .410
o1 .0050 .060 .804 511 .501 .799 030 .654 398 .299 401
.0100 .060 .804 511 .502 .799 029  .638 385 .280 .380
.0150 .060 .805 .5b12 .502 .800 028 .619 372 258 .360
.01 .050 .804 511 .501 .799 032 .666 .409 317 .420
Ky, .05 .060 .804 511 .501 .799 030 .654 398 .299 401
.10 .060 .804 511 .501 .799 029 651 397 .299 401
.25 051 799 503 483 .780 039  .657 412 299 400
.50 .050 .805 510 498 .797 036  .659 405 .299 401
Kk 1.0 .050 .804 511 .501 .799 030 654 398 .299 401
2.0 .050 .803 .510 .500 .799 027 633 393 301 .403
4.0 .050 .803 .510 .501 .798 028  .893 397 305 .404
.001 .050 804 511 .501 .799 031 654 398 .299 401
K7 .005 .050 804 511 .501 .799 030 .654 398 299 401
.010 .050 804 511 .501 .799 030  .653 397 299 401
.00 .050 .804 511 .501 .799 030 .654 398 .299 401
a 106 .050 .804 511 .501 .799 030 .654 398 .299 401
.01 .050 .804 511 .501 .799 030 .652 .393 .300 .401
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TABLE II. (cont.)

Tuning (llmwa], [[a[[) = (40,4) (], [[2[[) = (4, 40)
Parameter f: .00 -59 -45 1.65 4.00 00 -250 -.085 .095 .290
.0010 .047 803 .504 412 .599 033 .804 497 493 .806
.0025 .047 803 .505 .408 .595 035 .802 .502 .500 .806
o1 .0050 047 803 .505 .403 .586 035 .800 .503 .502 .802
.0100 047 804 .505 .392 .567 034 791 494 489 .793
.0150 047 804 .505 .382 .547 033 781 481 476 .783
.01 .047 803 .505 .413 .602 037 811 517 .517 .814
Ky, .05 .047 803 .505 .403 .586 035 800 .503 .502 .802
.10 045 803 .504 .394 .586 034 799 500 .500 .802
.25 050 .769 458 401 .586 033 766 471 469 .T74
.50 047 794 489 402 .586 034 780 485 480 .784
Krg 1.0 .047 803 .505 .403 .586 035 800 .503 .502 .802
2.0 049 799 512 405 587 036 811 .528 .530 .818
4.0 048 793 510 .410 .588 038 815 .541 .5b43 .828
.001 047 .803 .505 .403 .586 035 .800 .503 .502 .802
K7 .005 047 803 .505 .403 .586 035 .800 .503 .502 .802
.010 047 .803 .505 .403 .586 035 .800 .503 .502 .802
0 047 803 .505 .403 .586 035 .800 .503 .502 .802
a 10-¢ 047 .803 .505 .403 .586 035 .800 .503 .502 .802
.01 047 .803 .505 .403 .586 035 798 502  .500 .801

Overall, the base case value of K, performs well.

Table IIT investigates the sensitivity of the NRP and power of the nominal .05 AR/QLRI test
to the sample size n € {50,100, 250,500, 1000} and the number of IV’s k € {4,8,12}. In Table III,
the NRP’s are insensitive to n for n > 100 and slightly lower for n = 50. The NRP’s are close
to .05 in cases (i) and (iii), which both have ||7;|| = 40, and less than .05 in the other two cases,
uniformly across n. In Table III, power increases from n = 50 to 100 and in some cases to 200 (even
with the n~1/2 scaling of the coefficients on Z;). Power is stable for larger values of n.

In Table III, the NRP’s vary with k, but there are no clear patterns. NRP’s increase with k in

37



case (iii), with some over-rejection, .059, for £ = 12, but the NRP’s decrease with k in case (iv). In
Table III, power is strongly decreasing in k in cases (ii)—(iv), but not in case (i).

In conclusion, the simulations show that the AR/QLRI test performs best in terms of power of
the feasible tests considered across all four identification scenarios. Its power is essentially equiva-
lent to that of the Oracle C(a)-QLR1 and 2SLS tests under strong identification. The NRP’s of the
AR/QLRI1 test are close to its nominal level for ||71|| > 12 and over-rejection of the null as large

as .059 is detected only in one case, when k = 12. The AR/QLRI test exhibits some sensitivity to

TABLE III. Sensitivity of NRP and Power of the Nominal .05 AR/QLR1 Test to the Sample
Size, n, and Number of Instruments, k, for (||71||, ||m2||) = (40,40), (4,4), (40,4), and (4, 40) and

for Five Values of 05 in the Heteroskedastic Linear Instrumental Variables Model

(Ilmull, lImall) = (40,40) (llmall, lmsll) = (4,4)

05: .00 -.082 -.059 .064 .094 .00 -1.05 -.575 2.00 3.75

50 042  .672 417 .399 .671 023 .578  .341 257 .353

n 100 .048 765 478 480 .772 032 .648 400 .292 .396

250 .050 .804 .511 .501 .799 .030 .654 .398 .299 401

500 .050 .804 .513 .514 812 028 .657 .388 .296 .404

1000 .052 811 .516 512 .807 .033 .657 .394 .292 .398

4 .050 .804 .511 .501 .799 .030 .654 .398 .299 401

k 8 .044 .846 .553 .36 .841 .036  .B89 .333 .226 .330

12 .045 .844 .549 527 .826 043 .524 .291 177 .269
(llmall, limall) = (40,4) (llmall, lImall) = (4,40)

0s: .00 =09 -45 1.65 4.00 .00 -.250 -.085 .095 .290

50 045 .676 .422 385 .546 019 743 .365 .362 .739

n 100 0561 773 489 423 589 025 784 456 .450 .774

250 .047 .803 .505 .403 .586 .035 .800 .503 .502 .802

500 .047 809 .514 .396 .595 037 .807 .521 .524 .809

1000 047 817 .521 .394 .596 .040 .810 .548 .538 .816

4 047 .803 .505 .403 .586 035 .800 .503 .502 .802

k 8 .053 .793 480  .341 522 017 744 429 432 .743

12 059 .730 412 .301 .468 012 .671 .363 .363 .667
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the choice of K, a little sensitivity to the choice of ay, but little or no sensitivity to the choices
of K1, K7, and a. Even for sample sizes as small as 50, the AR/QLR1 test has NRP’s less than its
nominal level. However, its power at this small a sample size is below what the asymptotic results
suggest. Overall, the AR/QLR1 test seems to perform quite well in this model for the parameter

scenarios considered.

9.2 Nonlinear IV Model
9.2.1 Simulation Set-up

Next, we consider an IV model with one rhs endogenous variable that enters nonlinearly:

Y = Yuy + Yy + Ui,
Yli = Z{Z(ﬂ'/nl/2) + V:L', (92)

where (U;, Vi) ~ iid. N(0,V) for V € R*? with V;; = 1 for j = 1,2 and Vi3 = .8, Z; =
(Zii,Zéi)/ € Rk, ZM' = (leia---azl(lc/Q)i)/ ~ i.i.d. N(Ok/2,fk/2) independent Of (Ui,Vi), Zgi =
(Z1212-,...,Z12(k/2)2.)’ € RF? and m = ||x||1%/k'/2. The errors are homoskedastic. The coefficient

1/2 on Z; in the reduced-form equation is scaled by n=1/2 and = is scaled by k~1/2 for

vector w/n
the same reasons as in Section [0.11

We consider hypotheses concerning the value and derivative of the quadratic structural function
Y171 + Y375 at the point y; = 2. For the function value, we set 61 := y1v; and 03 := y17, +y37, and
test Hp : 02 = 699. That is, we transform the parameters from (74, 79) to (61,02) and the structural
equation to Y; = Y501 + Y502+ U;, where Y := Y7, /y1 — Yﬁ-/y% and Y5 = Yfi/y%. For the function
derivative, we set 01 := 7, and €3 := 1 + 2y17y9, test Hg : 63 = 99, and the transformed structural

equation has Y7 := Yy; — Y2/(2y1) and Y5: := Y2/(2y1). In both cases, the moment vector is
9i(0) = (Yi = Y1301 — Y5;02) Z;, (9-3)

but with different definitions of (Y%, Y5:). The NRP’s and power of the tests considered are invariant
wrt 01 and equivariant wrt 02. In consequence, without loss of generality, we take the true value of
01 to be zero, the null value 659 to be zero, and test the hypotheses Hy : 02 = 0 versus Hy : 02 # OE

The same tests, base case tuning parameters, and simulation repetition numbers are used as for
the linear IV model. As above, a = .05. Figures 3 and 4 are for n = 500 and k = 4.

For NRP’s and power, we consider two identification cases: (i) ||7|| = 50 (strong identification)

12The hypothesis Hp : 2 = 0 is obtained by replacing Y; by Y; — V55020 and 62 by 62 — 020.
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and (ii) ||7|| = 4 (weak identification). For each case, we consider power for 0 € [—B, B] for B

chosen suitably.

9.2.2 Simulation Results

Figures 3 and 4 provide finite-sample power curves for identification cases (i) and (ii) for the
hypotheses that concern the value and derivative of the structural function, respectively.

In Figure 3 for strong identification (top), the AR/LM, AR/QLR1, and 2SLS tests have equal
and highest power for negative 05 values. The power of the Oracle C(«a)-QLR1 test is similar, but
slightly lower for some negative 5 values. For positive 5 values, the 2SLS test clearly has the
highest power, while the AR/LM, AR/QLR1, and Oracle C(«)-QLR1 have equal, but lower power
than 2SLS. Note that the power curves of the tests are not symmetric about 63 = 0 (including 2SLS,
but to a lesser extent than the other tests). This indicates that the values of n and ||r|| are not
sufficiently large for the strong-identification normal approximation to be highly accurate (although
this does not cause over-rejection under Hy). The power curves of the AR/AR and Proj-QLR1 tests
are noticeably below those of the other tests, as is expected in this case.

In Figure 3 for weak identification (bottom), the Oracle C(a))-QLR1 test has the highest power
for all 65 values. The AR/QLRI test has equal power to it for negative #2 values, but noticeably
lower power for positive 05 values. The AR/LM test has quirky, low power for some negative 5
values, but relatively high power for positive #; values. The AR/AR test has somewhat lower power
than the AR/QLR1 test. The Proj-QLR1 has noticeably lower power than the AR/QLRI test for
all 69 values.

Figure 4 for the derivative of the structural function is quite similar to Figure 3. This is due to
the similarity of the transformed parameters 1 and 65 in these two cases.

Table IV provides NRP’s for the nominal .05 AR/QLRI test for a range of values of |||,
n, and k with homoskedastic errors, and in one case heteroskedastic errors (with the same form
of heteroskedasticity as in for the linear IV model). The table shows that the NRP’s vary
between .007 and .050 over these cases. The lowest NRP’s occur for ||7|| = 0. In the base case
scenario, n = 500 and k = 4, the NRP’s are in [.038,.042] for ||7|| > 4.

The SM provides tables that are analogous to Tables IT and ITI, which concern sensitivity of the
AR/QLRI test to the tuning parameters, as well as to n and k, but for the nonlinear IV model with
hypotheses concerning the structural function and its derivative. Broadly speaking, the results are
similar to those in Tables II and III.

Overall, the AR/QLR1 test performs well in terms of NRP’s and power in the nonlinear IV

model for the parameter scenarios considered.
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Figure 3. Nonlinear IV Model, Structural Function: Power for n=500, k=4,
||Td|=50 (top) and ||q|=4 (bottom)
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TABLE IV. NRP’s of the Nominal .05 AR/QLR1 Test for Base Case Tuning Parameters for

Inference on the Structural Function at y; = 2 in the Nonlinear Instrumental Variables Model

k. n Errors ||7||: 100 75 50 35 20 14 8 4 0

4 50 Homoskedastic 032 .031 .026 .021 .018 .019 .019 .018 .009
4 100 Homoskedastic .040 .039 .036 .033 .033 .033 .032 .027 .017
4 250 Homoskedastic .041 .041 .041 .040 .039 .039 .038 .035 .024
4 500 Homoskedastic 042 .043 .045 .044 .043 .042 .039 .038 .026
8 100 Homoskedastic 050 .050 .046 .043 .044 .043 .041 .035 .025
8 250 Homoskedastic 043 043 .044 .044 .045 .044 .042 .039 .035
4 250 Heteroskedastic .032 .030 .027 .025 .021 .018 .013 .009 .007

41



References

Andrews, D. W. K. (2017): “Identification-Robust Subvector Inference for Likelihood-Based Mod-

2

els,” manuscript in preparation, Cowles Foundation, Yale University.

Andrews, D. W. K., and X. Cheng (2012): “Estimation and Inference with Weak, Semi-strong, and
Strong Identification,” Fconometrica, 80, 2153-2211. Supplemental Material is available at
Econometrica Supplemental Material, 80, http://www.econometricsociety.org/ecta/Supmat

/9456 miscellaneous.pdf.

(2013): “Maximum Likelihood Estimation and Uniform Inference with Sporadic Identi-
fication Failure,” Journal of Econometrics, 173, 36-56. Supplemental Material is available

with Cowles Foundation Discussion Paper No. 1824R, 2011, Yale University.

(2014): “GMM Estimation and Uniform Subvector Inference with Possible Identification
Failure,” Econometric Theory, 30, 287-333.

Andrews, D. W. K., X. Cheng, and P. Guggenberger (2011): “Generic Results for Establishing
the Asymptotic Size of Confidence Sets and Tests,” Cowles Foundation Discussion Paper No.

1813, Yale University.

Andrews, D. W. K., and P. Guggenberger (2015): “Identification- and Singularity-Robust Infer-
ence for Moment Condition Models,” Cowles Foundation Discussion Paper No. 1978, Yale

University, revised 2017.

— (2017): “Asymptotic Size of Kleibergen’s LM and Conditional LR Tests for Moment
Condition Models,” Fconometric Theory, 33, forthcoming. Earlier version available as Cowles

Foundation Discussion Paper No. 1977, Yale University.

Andrews, I. (2017): “Valid Two-Step Identification-Robust Confidence Sets for GMM,” Review of

FEconomics and Statistics, forthcoming.

Andrews, I., and A. Mikusheva (2015): “Maximum Likelihood Inference in Weakly Identified
Dynamic Stochastic General Equilibrium Models,” Quantitative Economics, 6, 123-152.

(2016a): “A Geometric Approach to Nonlinear Econometric Models,” Econometrica, 84,

1249-1264.

(2016b): “Conditional Inference with a Functional Nuisance Parameter,” Econometrica,

84, 1571-1612.

42



Bera, A. K., and Y. Bilias (2001): “Rao’s Score, Neyman’s C(a) and Silvey’s LM Tests: An
Essay on Historical Developments and Some New Results,” Journal of Statistical Inference

and Planning, 97, 9—44.

Berger, R. L., and D. D. Boos (1994): “P Values Maximized over a Confidence Set for the Nuisance

Parameter,” Journal of the American Statistical Association, 89, 1012-1016.

Bugni, F. A., I. A. Canay, and X. Shi (2016): “Inference for Subvectors and Other Functions
of Partially Identified Parameters in Moment Inequality Models,” unpublished manuscript,

Department of Economics, University of Wisconsin, Madison.

Campbell, J. Y., and M. Yogo (2006): “Efficient Tests of Stock Return Predictability,” Journal of

Financial Economics, 81, 27-60.

Cavanagh, C. L., G. Elliott, and J. H. Stock (1995): “Inference in Models with Nearly Integrated
Regressors,” Econometric Theory, 11, 1131-1147.

Chaudhuri, S. (2016): “Improved Projection GMM-LM Tests for Linear Restrictions,” unpublished

manuscript, Department of Economics, University of Montreal.

Chaudhuri, S., T. Richardson, J. Robins, and E. Zivot (2010): “A New Projection-Type Split-
Sample Score Test in Linear Instrumental Variables Regression,” Econometric Theory, 26,

1820-1837.

Chaudhuri, S., and E. Zivot (2011): “A New Method of Projection-Based Inference in GMM with
Weakly Identified Nuisance Parameters,” Journal of Econometrics, 164, 239-251.

Chen, X., T. M. Christensen, K. O’Hara, and E. Tamer (2016): “Monte Carlo Markov Chain
Confidence Sets for Identified Sets,” Cowles Foundation Discussion Paper No. 2017R, Yale

University.

Cheng, X. (2015): “Robust Inference in Nonlinear Models with Mixed Identification Strength,”
Journal of Econometrics, 189, 207-228.

Cox, G. (2016): “Robust Inference in a Class of Generically Identified Models with an Application

to Factor Models,” unpublished manuscript, Department of Economics, Yale University.

Demmel, J. (1980): “Singular Value Decomposition,” in Z. Bai, J. Demmel, J. Dongarra, A. Ruhe,
and H. van der Vorst (eds.) Templates for the Solution of Algebraic Eigenvalue Problems: A
Practical Guide. Philadelphia: STAM.

43



Dufour, J.-M. (1989): “Nonlinear Hypotheses, Inequality Restrictions, and Non-Nested Hypothe-

ses: Exact Simultaneous Tests in Linear Regressions,” Fconometrica, 57, 335—355.

Dufour, J.-M., and J. Jasiak (2001): “Finite Sample Limited Information Inference Methods
for Structural Equations and Structural Models with Generated Regressors,” International

FEconomic Review, 42, 815-843.

Elliott, G., U. K. Miiller, and M. W. Watson (2015): “Nearly Optimal Tests When a Nuisance
Parameter Is Present under the Null Hypothesis,” Econometrica, 83, 771-811.

Guggenberger, P., F. Kleibergen, S. Mavroeidis, and L. Chen (2012): “On the Asymptotic Sizes
of Subset Anderson-Rubin and Lagrange Multiplier Tests in Linear Instrumental Variables

Regression,” Econometrica, 80, 2649-2666.

Guggenberger, P., J. J. S. Ramalho, and R. J. Smith (2012): “GEL Statistics Under Weak Iden-
tification,” Journal of Econometrics, 170, 331-349.

Guggenberger, P., and R. J. Smith (2005): “Generalized Empirical Likelihood Estimators and
Tests Under Partial, Weak and Strong Identification,” Fconometric Theory, 21, 667-709.

Han, S., and A. McCloskey (2016): “Estimation and Inference with a (Nearly) Singular Jacobian,”

unpublished manuscript, Department of Economics, University of Texas, Austin.

Kaido, H., F. Molinari, and J. Stoye (2016): “Confidence Intervals for Projections of Partially
Identified Parameters,” unpublished manuscript, Department of Economics, Boston Univer-

sity.

Kleibergen, F. (2004): “Testing Subsets of Structural Parameters in the Instrumental Variables
Regression Model,” Review of Economics and Statistics, 86, 418-423.

— (2005): “Testing Parameters in GMM Without Assuming That They Are Identified,”
Econometrica, 73, 1103-1123.

— (2015): “Efficient Size Correct Subset Inference in Linear Instrumental Variables Regres-

sion,” unpublished manuscript, Amsterdam School of Economics, University of Amsterdam.

Lee, J. (2014): “Asymptotic Sizes of Subset Anderson-Rubin Tests with Weakly Identified Nui-
sance Parameters and General Covariance Structure,” unpublished manuscript, Department

of Economics, M.I.T.

44



Loh, W.-Y. (1985): “A New Method for Testing Separate Families of Hypotheses,” Journal of the
American Statistical Association, 80, 362—-368.

McCloskey, A. (2011): “Bonferroni-Based Size-Correction for Nonstandard Testing Problems,”

unpublished manuscript, Department of Economics, Brown University.

Montiel Olea, J. L. (2012): “Efficient Conditionally Similar-on-the-Boundary Tests,” unpublished

manuscript, Department of Economics, New York University.

Moran, P. A. P. (1979): “On Asymptotically Optimal Tests of Composite Hypotheses,” Bio-
metrika, 57, 47-55.

Newey, W. K., and K. West (1987): “Hypothesis Testing with Efficient Method of Moments

Estimation,” International Economic Review, 28, 777—787.

Neyman, J. (1959): “Optimal Asymptotic Test of Composite Statistical Hypothesis,” in U.
Grenander (ed.) Probability and Statistics, The Harold Cramér Volume. Uppsala: Almqvist
and Wiksell, pp. 313-334.

Otsu, T. (2006): “Generalized Empirical Likelihood Inference for Nonlinear and Time Series

Models Under Weak Identification,” Econometric Theory, 22, 513-527.
Robin, J.-M., and R. J. Smith (2000): “Tests of Rank,” Econometric Theory, 16, 151-175.

Smith, R. J. (1987): “Alternative Asymptotically Optimal Tests and Their Application to Dy-

namic Specification,” Review of Economic Studies, 54, 665—680.

Stock, J. H., and J. H. Wright (2000): “GMM with Weak Identification,” Econometrica, 68,
1055-1096.

45



	Introduction
	Subvector Methods in the Literature
	System of Equations Model
	Two-Step Subvector Tests and Confidence Sets
	Asymptotic Results under High-Level Conditions
	Proof of Theorem ??
	Two-Step Tests in the Moment Condition Model
	Specification of the First-Step CS
	Specification of the Estimator Set
	Specification of the Second-Step Significance Level
	Specification of the Second-Step Test
	C(0=x"010B)-AR Test
	C(0=x"010B)-LM Test
	C(0=x"010B)-QLR1 Test


	Asymptotic Results under Primitive Conditions in theMoment Condition Model
	Parameter Space Definitions
	Notation
	AR/AR Subvector Test
	AR/LM and AR/QLR1 Subvector Tests

	Asymptotic Results
	AR/AR Subvector Test
	AR/LM and AR/QLR1 Subvector Tests


	Finite-Sample Simulations
	Heteroskedastic Linear IV Model
	Simulation Set-up
	Simulation Results

	Nonlinear IV Model
	Simulation Set-up
	Simulation Results





