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1 Introduction

The airline industry is well known for employing complex intertemporal pricing

strategies that in principle could be welfare-improving or welfare-reducing. Fare

adjustments may arise in part because aggregate demand shocks change the op-

portunity cost of selling a seat. Airlines raise fares to avoid selling out flights

in advance, or fares may fall from one day to the next, after a sequence of low

demand realizations. These price adjustments are welfare-improving as they in-

crease capacity utilization. However, fare adjustments may also reflect changes in

the aggregate demand elasticity. If late shoppers are business travelers, airlines will

raise prices over time to capture these consumers’ high willingness to pay through

intertemporal price discrimination. This allows airlines to extract more surplus,

but it could also lower welfare if seats remain empty more frequently. Existing

theoretical frameworks on the welfare effects of price discrimination, including

Aguirre, Cowan, and Vickers (2010) and Bergemann, Brooks, and Morris (2015),

do not consider sequential markets with limited capacity. However, these works

establish that the welfare predictions are ambiguous—depending on demand elas-

ticities and information structure—in the static setting, therefore, it is likely also

true when considering dynamic prices. This suggests it is an empirical question

whether dynamic airline pricing is on net welfare increasing.

In this paper, I estimate the welfare effects of dynamic pricing in the airline

industry, and in doing so, examine the sources of price adjustments over time. I

develop a dynamic pricing model that combines features of stochastic demand and

revenue management models from operations research with estimation techniques

widely used in empirical economics research. I estimate this model using data that

track daily prices and seat availabilities for over 12,000 flights in US monopoly

markets. I find that if intertemporal price adjustments were not possible, dynamic

allocation efficiency is reduced because prices do not respond to demand shocks.
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Allowing fares to respond to both the changing composition of demand and de-

mand shock realizations expands output and results in a significant reallocation of

capacity across time. Leisure consumers benefit, and business consumers are made

significantly worse off.

I begin by describing airline pricing practices (Section 2) and documenting styl-

ized facts (Section 3) to motivate my empirical approach. I show that fare patterns

are consistent with both standard dynamic pricing models with aggregate demand

uncertainty and models of intertemporal price discrimination. I document that

these pricing patterns also occur in competitive markets and when considering

tickets of different qualities (the pricing of economy versus basic economy, and

economy versus first class). This indicates that the forces and trade-offs explored

in this paper are relevant for these important extensions. The frequency of price

adjustments as well as the presence and depth of advance purchase discount op-

portunities vary across markets. This motivates an empirical design that includes

route-specific parameters.

In Section 4, I develop a structural model that combines features of dynamic pric-

ing and stochastic demand models commonly used in operations research, includ-

ing Gallego and Van Ryzin (1994), Zhao and Zheng (2000), Talluri and Van Ryzin

(2004) and Su (2007), with elements of the discrete, unobserved-heterogeneity util-

ity specification of Berry, Carnall, and Spiller (2006). Discrete heterogeneity de-

mand models are commonly used in airline studies—for example, in Berry and Jia

(2010), where demand is comprised of "business" and "leisure" travelers. Although

I tailor the model to reflect institutional features of airline markets, the methodology

can be useful for analyzing any perishable goods market with a deadline.

The model contains three key ingredients: (i) a monopolist has fixed capacity

and finite time to sell; (ii) the firm faces a stochastic arrival of consumers; and

(iii) the mix of consumers is allowed to change over time. The model timing is

discrete. Each day before departure, the number of business and leisure arrivals
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is distributed according to independent Poisson distributions with time- and day-

of-week-dependent arrival rates. Consumers know their preferences and solve

static utility maximization problems. On the supply side, the monopolist solves

a finite-horizon, stochastic dynamic programming problem. Within a period, the

firm chooses a price, consumer demand is realized, and the capacity constraint is

updated. The process repeats until the perishability date or until the plane is full.

This paper proposes explicitly modeling the pricing decision of the firm to ad-

dress the well-known issue of missing "no purchase" data, or the number of arrivals

who opted not to purchase (Vulcano, van Ryzin, and Chaar, 2010). The identifica-

tion assumption is that preferences for flights evolve in the same predictable way,

but demand shocks can vary (Section 5). This results in variation in seats sold to-

ward the deadline, and the firm’s response to these shocks informs the magnitude

of stochastic demand. The route-specific estimates establish that a significant shift

in the composition of arriving customers occurs over time and that demand shocks

are a meaningful driver of the variation in sales (Section 6). Variation in demand

across days of the week matches travel patterns documented with data provided

by the Transportation Security Administration (TSA).

I use the model estimates to quantify the welfare effects of dynamic airline pric-

ing and to examine the drivers of dynamic price adjustments (Section 7). I show that

relative to uniform pricing, dynamic pricing expands output (by 2.7 percent), pri-

marily through lower fares offered to leisure travelers. Dynamic pricing allows for

increased price targeting such that late-arriving business travelers face significantly

higher fares. The reduction in business consumer surplus is sufficiently strong that

total consumer welfare is 6.3 percent lower under dynamic pricing compared to

uniform pricing. Increased revenues more than offset this decline, and I estimate

total welfare to be one percent higher under dynamic pricing compared to uniform

pricing.

Dynamic pricing increases welfare in most—but not all—of the monopoly mar-
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kets studied. I show that the direction of the overall welfare effect depends on which

sources of price adjustments drive revenues. Welfare declines under dynamic pric-

ing when price changes are mainly in response to changes in willingness to pay

and not in response to demand shocks. Intertemporal price discrimination explains

the strong upward trajectory in prices and accounts for two thirds of the revenue

gains of dynamic pricing over uniform pricing. The remaining one third comes

from responses to demand shocks that occur greater than 21 days before departure,

when aggregate price responsiveness is stable but overall demand uncertainty is

at its highest. If airlines did not react to demand shocks, price adjustments would

occur one third as frequently in the markets studied.

1.1 Related Literature

This paper contributes to growing literatures in economics, marketing, and op-

erations research that study intertemporal pricing dynamics. Intertemporal price

discrimination can be found in many markets, including video games (Nair, 2007),

Broadway theater (Leslie, 2004), storable goods (Hendel and Nevo, 2006, 2013),

and concerts (Courty and Pagliero, 2012).1 Importantly, this paper focuses on third

degree intertemporal price discrimination resulting from time-varying arrivals of

different consumer types, instead of second degree intertemporal price discrimi-

nation as a result of screening (Stokey, 1979; Bulow, 1982; Conlisk, Gerstner, and

Sobel, 1984; Sobel, 1991; Su, 2007; Board and Skrzypacz, 2016; Öry, 2016; Gershkov,

Moldovanu, and Strack, 2018; Dilmé and Li, 2019). This large theoretical literature

focuses on forward-looking buyer behavior, but abstracts from a changing compo-

sition of arriving customers over time. McAfee and Te Velde (2006) argue that a

change in the elasticity of demand is required to rationalize airfare pricing patterns.

This paper advances consumer demand models that have been extensively used

1Lambrecht et. al. (2012) provide an overview of empirical work on price discrimination more
broadly.
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in operations research (Gallego and Van Ryzin, 1994; Zhao and Zheng, 2000; Tal-

luri and Van Ryzin, 2004; McAfee and Te Velde, 2006).2 I extend baseline Poisson

demand models to include discrete random coefficients with time-varying arrivals

and empirically estimate both arrivals and preferences. I impose assumptions on

demand that can affect welfare estimates, via estimates of willingness to pay (Hen-

del and Nevo, 2006) or from sorting and the timing of market participation (Sweet-

ing, 2012). For example, Nair (2007) shows that abstracting from forward-looking

consumers can lead to profit losses when demand becomes more elastic over time.

However, the incentive to wait to purchase decreases if demand becomes more

inleastic over time and/or if capacity is constrained.3 Gale and Holmes (1993) and

Dana (1998) consider capacity-constrained environments and establish why firms

may offer advance purchase discounts (prices increase over time). Dana (1998)

emphasizes that aggregate uncertainty increases can increase capacity costs over

time and hence, prices, which further decreases the incentive to wait to purchase.

This paper also complements recent airline studies, including Escobari (2012),

Alderighi, Nicolini, and Piga (2015), and Puller, Sengupta, and Wiggins (2015). In

closely related work, Lazarev (2013) estimates the welfare effects of intertemporal

price discrimination in airline markets by modeling how changes in willingness to

pay over time affect the firm’s choice of the distribution of fares to offer, prior to

the realization of demand shocks. In this project, I investigate the firm’s responses

to demand shocks over time (the "revenue management" problem), however, I

abstract away from the set of fares chosen (see Section 2). Chen (2018) extends the

methodology presented here to investigate competitive dynamics. Aryal, Murry,

and Williams (2018) utilize survey data to examine dynamic pricing in international

airline markets where seats have different qualities.

2Elmaghraby and Keskinocak (2003) and Talluri and Van Ryzin (2005) provide an overview of
revenue management work in operations.

3See Soysal and Krishnamurthi (2012) for an example where capacity is constrained. Aguir-
regabiria (1999) also considers a model with markdowns and studies how pricing varies with
remaining inventory.
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Finally, concurrent works provide new insights on the effects of dynamic pricing

in other industries. D’Haultfœuille et. al. (2018) quantify the welfare effects of

revenue management in the French railway system. Cho et. al. (2018) extends

the framework presented here to allow for cancellations and quantify the welfare

effects of dynamic pricing in the hotel industry. Pan (2019) extends this framework

to costly price adjustments.

2 Industry Setting and Pricing Practices

In this section, I provide a short overview on airline pricing practices to motivate

my empirical approach. Additional details on industry practices can be found in

McGill and Van Ryzin (1999) and Gallego and Topaloglu (2019).

Flight prices depend on (1) plane capacity, (2) filed fares, and (3) revenue man-

agement decisions. Filed fares (input 2) are the pre-set price levels at which the

airline is willing to sell tickets for a flight, and inventory allocation (input 3) is the

number of tickets allocated to each fare level. Each of these decisions is made by

separate departments, holding the other departments’ choices fixed. This paper

focuses on modeling dynamic prices arising from (3).

A carrier’s network-planning department determines which markets are served,

assigns capacity, and flight frequencies. These decisions typically occur well in ad-

vance of the departure date. Although I do observe aircraft substitutions in the

collected data, I find that they are not correlated with flight loads.4 It is more likely

that these gauge adjustments occur for operational reasons. This motivates my

assumption that initial capacity is exogenous.

The pricing department determines filed fares, or prices and associated ticket

4I observe that 3.0% of flights experience a change in aircraft in the sixty days before departure.
79% of occurrences happen within the last two days before departure. These changes do not seem to
be associated with flight loads. I cannot reject the null hypothesis that flights which see an upgauge
(increase in capacity) have flight loads higher than the average load factor for that route and vice
versa. In the former case, p = 0.999; in the latter case, p = 0.197. Flights which see an upgauge
actually have lower load factors than the route average.
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restrictions, that consumers may face. A fare class (or booking class) is a single-

or double-letter code to denote broad ticket characteristics—for example, deeply

discounted economy versus full-fare economy. When the additional ticket restric-

tions are incorporated, this results in what is called a fare basis code (the fare class,

price, and restrictions). A common ticket restriction is an advance-purchase (AP)

requirement, or a restriction that requires consumers to purchase by a deadline.

These are commonly observed at three, seven, ten, 14, 31, and 30 days before de-

parture. I incorporate this feature in the empirical model by having firms choose

among a discrete set of time-varying fares.

Finally, the revenue management department dynamically determines fare

availability, among the fare classes set by the pricing department. This process

involves setting the number of seats available for purchase for each fare class over

time. Allocations are determined using techniques developed in operations re-

search, including the well-known ESMR-b heuristic, in order to make them tractable

(Belobaba, 1987, 1989, 1992; Belobaba and Weatherford, 1996). Phillips (2005) pro-

vides an overview of these approaches. Importantly, the allocation decision takes

fares and forecasts as inputs, which are also the inputs I consider in my model.

Although I do not model inventory allocations explicitly, I note that the average

number of seats booked per day is less than one. This means customers are unlikely

to face intra-day price dispersion due to fare classes closing.5

3 Data

For this study, I collect data from travel management companies, travel meta-search

engines, and airline websites.6 I merge daily one-way fares, censored fare class

5Many RM systems are designed such that several fares are available at any given point in time,
which is called nesting (Phillips, 2005). I assume that consumers purchase the lowest available
economy class fare.

6The data come from Alaska Airlines, BCD Travel, ExpertFlyer, Fare Compare, JetBlue Airways,
United Airlines, and Yapta. The airline websites provide seat availabilities, seat maps and fares;
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allocations, and recovered bookings information by comparing airline seat maps

across consecutive days.7 I show in Online Appendix C that the measurement error

in using seat maps to proxy bookings may be small.

In the following subsections, I discuss route selection (Section 3.1) and document

a set of new descriptive facts on dynamic pricing in the airline industry (Section 3.2).

3.1 Route Selection

I use the publicly available the Department of Transportation DB1B tables to select

nonstop markets to study. The DB1B tables contain a 10-percent sample of domestic

US ticket purchases and are at the quarterly level. I define a market in the DB1B as

an origin-destination (OD), quarter, year and filter based on the following criteria:

(i) there is only one carrier operating nonstop;

(ii) there is no nearby alternative airport serving the same destination;

(iii) total quarterly traffic is greater than 600 passengers;

(iv) total quarterly traffic is less than 45,000 passengers;

(v) at least 35 percent of traffic is nonstop;

(vi) at least 35 percent of traffic is not connecting.

Criteria (i) and (ii) narrow the focus to monopoly markets in terms of nonstop

flight options. Criteria (iii) and (iv) remove infrequently-served markets, and the

upper limit on traffic keeps data collection manageable. When I implement these

criteria, the resulting number make up roughly 14 percent of OD traffic in the

United States. In addition, quarterly revenues for these markets are roughly $2.3

billion. Criterion (v) addresses the potential for alternative flight options, including

connecting flights for each OD. Criterion (vi) addresses how fares are assigned to

ExpertFlyer reports filed fares, seat availabilities, and seat maps; BCD Travel reports seat availabili-
ties; Fare Compare reports filed fares, and Yapta tracks daily fares. Data were collected in 2012 and
again in 2019.

7For example, G5 means the active G-class fare has five available seats, however, airlines censor
these data at seven or none, depending on the carrier.
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observed changes in remaining capacity. Criteria (v) and (vi) filter markets to select

homogeneous itineraries, primarily comprised of non-connecting, nonstop trips.

The collected data feature markets where these statistics average above 75 percent.

Note that Criteria (v) and (vi) are negatively correlated because ODs with very high

nonstop traffic percentages tend to be short distance flights to hubs with passengers

connecting to other destinations.

I collect data on fifty nonstop OD pairs which satisfy the selection criteria above.

In addition, to compare the descriptive evidence, I select six duopoly markets

with nonstop service.8 In Online Appendix B, I present additional route selection

information, market-level statistics, and comparisons with the entire DB1B sample.

All of the routes studied either originate or end at Boston, MA; Portland, OR; or

Seattle, WA. Most of the sample covers markets served by Alaska Air Lines (JetBlue

and Delta are the other carriers studied).

JetBlue does not oversell flights.9 I use this feature of the data to simplify

the pricing problem presented in the next section. Because many of the markets

studied feature coach-only flights, I am able to capture all sales and control for one

aspect of versioning (first class versus economy class). Finally, the sample focuses

on airlines that allow consumers to select seats before departure. Many carriers

now charge fees to choose seats when traveling on restrictive coach tickets.10

In contrast with Jetblue, Alaska and Delta offer first class in several of the

markets studied—first class appears in 58 percent of the sample, with the average

cabin size being twelve seats of the plane. I provide some descriptive analysis of

8Two markets, (Boston, MA - Kansas City, MO) and (Boston, MA - Seattle, WA) were both
monopoly and duopoly markets. The former market originally had nonstop service offered by
Delta and Frontier. Frontier exited early on in the sample and Delta became the only carrier flying
nonstop. The latter market was very briefly served by just Alaska, prior to the entry of JetBlue.

9In the legal section of the JetBlue website, under "Passenger Service Plan": "JetBlue does not
overbook flights. However some situations, such as flight cancellations and reaccommodation,
might create a similar situation."

10The JetBlue data were collected before the introduction of Blue Basic seats, which feature a fee
to select seats. This is also true for Delta. Alaska’s restrictive coach tickets are called Saver fares.
These fares do allow for limited seat selection in the coach cabin. I observe availability of these
seats in 98 percent of seat maps.
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first-class pricing (see Online Appendix A), but I do not pursue versioning in the

model. Although Alaska does allow for overselling, the carrier has an average

denied-boarding rate (overselling) among the major airlines.11

3.2 Descriptive Evidence

3.2.1 Summary Statistics

The sample contains over 12,000 flights, each tracked for the last sixty days before

departure. The sample contains 738,625 observations, as well as over five million

connecting fares. Data collection occurred over two six-month periods (March

2012-August 2012, March 2019-August 2019).

Table 1: Summary Statistics for the Data Sample

Variable Mean Std. Dev. Median 5th Pctile. 95th Pctile.

Oneway Fare ($) 232.60 139.33 190.18 89.00 504.00
Load Factor 88.76 13.52 93.42 59.21 100.00
Daily Booking Rate 0.68 1.94 0.00 0.00 4.00
Daily Fare Change ($) 3.43 31.25 0.00 0.00 46.00
Unique Fares (per itin.) 6.97 2.16 7.00 4.00 11.00

Note: Summary statistics for 12,119 flights tracked between 3/2/2012-8/24/2012 and
3/21/2019-8/31/2019. Each flight is tracked for sixty days before departure. The total
number of observations is 738,625. Load Factor is reported between zero and 100 the day
of departure. The daily booking rate and daily fare change compares consecutive days.

I present summary statistics in Table 1. The average one-way fare in the sample

is $233. Load factor is the number of occupied seats divided by capacity on the

day of departure. Average load factor is 89 percent, ranging from 70 percent to

98 percent, by market. I observe that 15.7 percent of flights sell out. There is

considerable variation in load factor within a market. The coefficient of variation

(CV) of within-market load factors ranges between 0.04 and 0.27. CVs are higher

well in advance of the departure date; the reduction over time is consistent with
11Source: Air Travel Consumer Report, accessed February 2020.
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price adjustments to fill unsold seats. The R2 of a regression of load factor on origin-

destination-flight number and departure date fixed effects is 0.56, which suggests

the presence of flight-level demand shocks. I estimate the average booking rate

to be 0.68, with the 5th and 95th percentiles of zero and four seats per flight,

respectively. 61% seat maps do not change across consecutive days. On average,

each itinerary reaches seven unique fares and experiences 10.4 fare changes. This

implies that fares fluctuate up and down, usually a few times, and that the number

of realized prices is relatively small. For the markets studied, the median number

of daily departures is one, and the mean is two. Finally, I examine individual seat

map changes and estimate the number of passengers per booking to be 1.37. This

motivates the unit demand assumption in the model.12

There are a few differences across collected samples. Relative to the data col-

lected in 2012, the 2019 data contain substantially lower fares (-$170); the booking

rate and daily price increase are slightly lower (-0.2; -$0.3); slightly fewer fares are

offered per flight (-0.5); and load factors are lower (-7%). These differences cannot

be attributed to a single factor, as the carriers and markets differ across the samples.

In Section 7, I highlight how the welfare estimates vary across markets.

3.2.2 Dynamic Prices

In Figure 1-(a), I plot mean fares and load factors by day before departure. The

overall trend in prices is strongly positive, with fares nearly doubling in sixty days.

The noticeable jumps occur when crossing advance purchase (AP) restrictions. The

booking curve for flights in the sample is smooth over time and starts to level off

around 80 percent a few days before departure. There is a spike in load factor,

12Each row in the data has at most six seats, and I assume whenever more than two seats in
row become occupied, this is a party traveling together. This occurs in less than eight percent of
bookings. For rows in which two seats become occupied, I check if the seats are adjacent. Seats with
passengers or space in-between are assumed to be two single-passenger bookings. This removes
18 percent of the two-passenger bookings. Thus, as a potential lower bound, I find that 55 percent
of passengers, or 75 percent of bookings, are single passenger bookings.
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of around 5 percent, the day of departure. Although this spike could be due

to measurement error (consumers who were not assigned seats in advance are

assigned seats at check-in), I also find that there a sharp decline in economy seat

availability at this time. This suggests that last-minute bookings do occur (see

Online Appendix A for more details).

Figure 1: Average Fares, Load Factors, and Fare Response to Sales

(a) Mean LF and Fares over Time
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(b) Fare Response to Sales
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(c) Fare Changes over Time
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(d) Fare Change Magnitudes over Time
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Note: (a) Average fare and load factor by day before departure. The vertical lines correspond to advance-purchase discount
periods (fare fences). (b) Average fare changes as a response to sales by day before departure. The vertical lines correspond
to advance-purchase discount periods (fare fences). The horizontal line indicates no fare response. The top panel shows the
percentage of itineraries that see fares increase or decrease by day before departure. The lower panel plots the magnitude of
the fare declines and increases by day before departure. The vertical lines correspond to advance-purchase discount periods
(fare fences).

In Figure 1-(b), I establish an important link between bookings and price adjust-

ments. The graph separates out two scenarios: (1) a flight experiences positive sales

in the previous period; and (2) there are no sales in the previous period. Fares re-

spond to demand shocks as predicted by standard dynamic pricing models: When

bookings occur, prices tend to rise; when bookings do not occur, prices stay the

12



same, or fall. However, close to the departure date and regardless of bookings,

prices increase. This suggests late-arriving consumers are less price-sensitive and

airlines engage in intertemporal price discrimination.

In Figure 1-(c), I plot the frequency of fare increases and decreases over time.

The number of fare hikes and fare declines are roughly even, except when advance

purchase (AP) discounts expire. The use of AP discounts is not universal—for

example, less than 60 percent of flights experience a price increase at the 7-day AP

requirement. Figure 1-(d) shows that fare changes magnitude increases over time.

The pricing patterns documented here also occur in competitive markets and

when considering tickets of different qualities, i.e., first class and basic economy).

I highlight two findings here—additional analysis appears in Online Appendix

A. First, the magnitude of systematic fare increases is lower, and the number of

systematic fare decreases is higher, in competitive markets This may suggest the

role of intertemporal price discrimination is reduced in competitive markets.13

Second, all ticket qualities respond to AP restrictions; the gap between economy

and basic economy grows over time, and the availability of basic economy fares

decreases. Therefore, economy cabin fares rise over time for two reasons: economy

fares become more expensive and restrictive economy tickets are no longer offered.

I also note that there is considerable variation in pricing patterns across markets.

In Figure 7 and Figure 8 in Online Appendix A, I plot average fares and the average

percentage change in fares over time for each route separately. Price levels, the

timing of AP restrictions, and the depth of AP discounts vary by route. This

motivates allowing for route-specific parameters in the model.

13This finding complements the work of Siegert and Ulbricht (2020), who use fare data to show
that competition is correlated with a flattening of prices over time. Dana and Williams (2021)
show in a theoretical model that strong competitive effects work to equalize prices across periods
and that inventory controls can facilitate intertemporal price discrimination in oligopoly. If the
role of intertemporal price discrimination is reduced in competitive markets, this may suggest the
efficiency aspect of dynamic pricing may be higher compared to the markets studied in this paper.
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4 An Empirical Model of Dynamic Airline Pricing

4.1 Model Overview

A monopolist airline offers a flight for sale in a series of sequential markets. More

precisely, I will define the markets for a flight on a particular departure date,

and I will abstract away from potential correlations in demands across departure

dates and other flight options, including connecting flights and other nonstop

itineraries. The sales process for every market evolves over a finite and discrete

time horizon t ∈ {0, . . . ,T}. Period 0 corresponds to the first sales period, and

period T corresponds to the flight departure date. Initial capacity for the flight is

exogenous, and the firm is not allowed to oversell. Unsold capacity on the day

of the flight (t = T) is scraped with zero value. The only costs modeled are the

opportunity costs of remaining capacity, and all other costs are normalized to zero.

Each period t, the airline first offers a single price for the flight, and then

consumers arrive according to a stochastic process specified in the next subsection.

Each arriving consumer is either a business traveler or a leisure traveler; business

travelers are less price sensitive than leisure travelers, and the proportion of each

type is allowed to change over time. Note that the terms "business" and "leisure"

are used simply to describe a consumer type; they do not identify consumers

based on a travel need. Upon entering the market, all uncertainty about travel

preferences is resolved.14 Arriving consumers either purchase a ticket or exit the

market. If demand exceeds remaining capacity, tickets are randomly rationed.

Consumers who are not selected receive the outside option. This ensures that the

capacity constraint is not violated. Consumers do not cancel bookings so remaining

14This approach differs from earlier theoretical work such as Gale and Holmes (1993), as well
as some empirical work such as Lazarev (2013), in which existing consumer uncertainty can be
resolved by delaying purchase. This assumption is motivated by the fact that I do not find significant
bunching in bookings before the expiration of AP fares (see Online Appendix D).
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capacity is monotonically decreasing.15 This process repeats each sales period. The

firm is forward looking and solves the dynamic program.

4.2 Demand

Each day before the flight leaves, t = 0, 1, ...,T, a stochastic process brings a discrete

number of new consumers to the market. M̃t denotes the arrival draw. The demand

model is based on the two-consumer type discrete choice model of Berry, Carnall,

and Spiller (2006), which is frequently applied to airline data. Consumer i is a

business traveler with probability γt or a leisure traveler with probability 1 − γt.

Consumer i has preferences (βi, αi) over product characteristics (x jt ∈ RK) and price

(p jt > 0), respectively.

I assume utility is linear in product characteristics and price. If consumer i

purchases a ticket on flight j, she receives utility ui jt = x jtβi − αip jt + εi jt. If she does

not fly, she receives normalized utility ui0t = εi0t. Each arriving consumer solves

a straightforward maximization problem: consumer i selects flight j if and only if

ui jt ≥ ui0t.

Define yt =
(
αi, βi, εi jt, εi0t

)
i∈1,..,M̃t

to be the vector of consumer preferences. Sup-

pressing the notation on product characteristics for the rest of this section, demand

for flight j at t is defined as Q jt(p, yt) :=
∑M̃t

i=0 1
[
ui jt ≥ ui0t

]
∈ {0, ..., M̃t}, where 1(·)

denotes the indicator function. Demand is integer valued; however, it may be the

case that there are more consumers who want to travel than there are seats remain-

ing. That is, Q jt(p, y) > c jt, where c jt is the number of seats remaining at t. Since the

firm is not allowed to oversell, in these instances, I assume that remaining capacity

is rationed by random selection. Specifically, consumers arrive and choose to fly

or not. The capacity constraint is then checked. If demand exceeds remaining

capacity, c jt consumers are randomly selected from the set of consumers who chose

to travel, and the rest receive their outside options. Although this assumption may

15The average number of cancellations per flight in the data is less than two.
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appear restrictive, the daily booking rate is less than one.

Without the ability to oversell and incorporating the rationing rule, expected

sales are formed by integrating over the distribution of yt,

Qe
jt(p; c) =

∫
yt

min
(
Q jt(p, yt), c

)
dFt(yt).

I incorporate a number of parametric assumptions. First, following McFadden

(1973), I assume that the idiosyncratic preferences of consumers are independently

and identically distributed according to a Type-1 Extreme Value (T1EV) distribu-

tion. This assumption implies that the individual choice probabilities are equal

to

πi
jt

(
p jt

)
=

exp(x jtβi − αip jt)
1 + exp(x jtβi − αip jt)

.

Let B denote the business type and L denote the leisure type. Recall that the

probability of a consumer being type B is γt. Then, γtπB
jt defines the purchase

probability that a consumer is of the business type and wants to purchase a ticket;

(1 − γt)πL
jt is similarly defined. Hence, integrating over consumer types, product

shares is equal toπ jt

(
p jt

)
= γtπB

jt

(
p jt

)
+(1−γt)πL

jt

(
p jt

)
.Next, I assume that consumers

arrive according to a Poisson distribution, M̃t ∼ Poissont(µt). The arrival rates, µt,

are also allowed to change over time. Hence, daily demands will depend on

both the arrival process as well as preferences of consumers entering the market.

Conditional on price, it follows that demand is also Poisson, Q jt ∼ Poissont(µtπ jt).

The probability that q seats are demanded on flight j at time t are equal to

Prt

(
Q jt = q ; p jt

)
=

(
µtπ jt

)q
exp

(
−µtπ jt

)
q!

.

With these probabilities defined and noting that demand is censored at remain-
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ing capacity, expected sales is equal to16

Qe
jt(p jt; c jt) =

c jt−1∑
q=0

Prt

(
Q jt = q ; p jt

)
q +

∞∑
q=c jt

Prt

(
Q jt = q jt ; p jt

)
c jt.

=

c jt−1∑
q=0

(
µtπ jt

)q
exp

(
−µtπ jt

)
q!

q +

∞∑
q=c jt

(
µtπ jt

)q
exp

(
−µtπ jt

)
q!

c jt.

4.3 Monopoly Pricing Problem

The monopolist maximizes expected revenues of flight j (subscript suppressed)

over a series of sequential markets. Each day before departure, the firm chooses to

offer a single price before the arrival of customers. Using the institutional features

discussed in Section 2, I assume the firm chooses a price from a discrete set, denoted

A(t). The set may change over time due to advance purchase restrictions.17

The pricing decision is based on the states of the flight: seats remaining; time left

to sell; flight characteristics; and idiosyncratic shocksωt ∈ RA(t), which are assumed

to be independently and identically distributed following a Type-1 Extreme Value

(T1EV) distribution, with scale parameter σ > 0. These shocks are assumed to be

additively separable to the remainder of the per-period payoff function, which are

expected revenues, Re
t(pt; ct) = pt ·Qe

t(pt; ct).

The firm’s problem can be written as a dynamic discrete choice model. Let

16This is can be equivalently written as

Qe
jt(pt; c jt) =

c jt−1∑
q=0

(
µtπ jt

)q
exp

(
−µtπ jt

)
q!

q +

1 −
c jt−1∑
q=0

(
µtπ jt

)q
exp

(
−µtπ jt

)
q!

 c jt.

17In principle, the model can be extended to an environment where the monopolist offers multiple
flights (J). Two assumptions that can be used so that the model closely follows the exposition
here are: (1) consumers do not know remaining capacities when solving the utility maximization
problem, (2) when capacity is rationed, consumers not selected receive the outside option. It follows
that conditional on price, Q jt is independent of Q j′t for j′ , j and that Q jt ∼ Poissont(µtπ jt). The
complexity of the dynamic program increases by dim[A(·)](J−1) relative to the complexity of the
single-flight problem.
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Vt(ct, ωt) be the value function given the state (t, ct, ωt). Denoting δ as the discount

factor, the dynamic program (DP) of the firm is

Vt(ct, ωt) = max
p∈A(t)

(
Re

t(p; ct) + ωtp + δ

∫
ωt+1,ct+1 |ωt,p,ct,

Vt+1(ct+1, ωt+1)dHt(ωt+1, ct+1 |ωt, p, ct)
)
.

Because the firm cannot oversell, capacity transitions as ct+1 = ct − min
{
Qt, ct

}
,

where Qt is the realized demand draw. The firm faces two boundary conditions.

The first is that once the airline hits the capacity constraint, it can no longer sell

seats for that flight. The second is that unsold seats are scrapped with zero value.

I follow Rust (1987) and assume that conditional independence is satisfied.

This means that the transition probabilities are equal to ht(ωt+1, ct+1 |ωt, pt, ct) =

g(ωt+1) ft(ct+1 | pt, ct). The capacity transitions ft(·) can be derived from the probability

distribution of sales described in the previous section. I return to this momentarily.

By assuming the unobservable is distributed T1EV, along with conditional in-

dependence, the conditional value function is equal to

EVt(pt, ct) =

∫
ct+1

σ ln

 ∑
pt+1∈A(t+1)

exp
(

Re
t+1(ct+1, pt+1) + EVt+1(pt+1, ct+1)

σ

)
 ft(ct+1|ct, pt)+σφ,

where φ is Euler’s constant. The conditional choice probabilities also have a closed

form and are computed as

CCPt(pt ; ct) =
exp

{(
Re

t(pt, ct) + EVt(pt, ct)
)
/σ

}
∑

p′t∈A(t) exp
{(

Re
t(p
′

t, ct) + EVt(p′t, ct)
)
/σ

} .
Before continuing, I discuss the connection between the notation Prt

(
Q jt = q ; p jt

)
and ft(ct+1 | ct, pt). Consider a two-period model with a single seat. In the first

period, expected revenues are simply Pr1
(
Q1 ≥ 1 ; p1

)
· 1 · p1 because at most

one seat can be sold. The demand probabilities exactly inform the capacity

transition probabilities under conditional independence, that is, f1(c2 | 1, p1) =

18



[Pr1
(
Q1 ≥ 1 ; p1

)
, Pr1

(
Q1 = 0 ; p1

)
]. With probability Pr1

(
Q1 ≥ 1 ; p1

)
, the seat sells

today and nothing is available for sale tomorrow, and with probability Pr1
(
Q1 = 0 ; p1

)
,

the seat is not sold today and is available for purchase tomorrow. The optimal price

that affects these probabilities depends on the arrival process and product shares.

Time is a deterministic state. Note, in the general model, any transition probability

where ct+1 > ct is equal to zero because capacity is monotonically decreasing.

I utilize a dynamic discrete choice model because fares are chosen from a pre-

determined set—as discussed in Section 2, fares are assigned by the pricing depart-

ment. The supply model can be interpreted as modeling the decisions of revenue

management, conditional on the choices made by other airline departments. In

particular, the model takes the initial capacity and observed fares as given. Given

the set of fares, identification assumes that the pricing choice is optimal. This is

perhaps not unreasonable given the sophisticated pricing models used by airlines

(McGill and Van Ryzin, 1999). However, airlines operate complex networks and

the pricing decision for a single flight may be impacted by forces not accounted for

in the model—for example, a persistent, unobserved shock to the network could

overstate the role of capacity in the model.

Another potential limitation of the model is that consumers are assumed to

make a one-shot decision upon entering the market, and market participation is

exogenous. This can impact estimated demand elasticities (Hendel and Nevo,

2006). If increasing prices are also used to shape consumer expectations, my

estimates may overstate the proportion of business travelers and understate their

price sensitivity. In addition, if consumers learn about their preferences toward the

deadline, this will cause opportunity costs to rise over time (Dana, 1998), which

may act to reinforce this potential overstatement.
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5 Estimation

I assign the discount factor to be one. Arrival rates, µd
t , vary by day before departure

(t) and departure date (d) in the following way. Over the booking horizon, I let

arrival rates vary corresponding to observed advance-purchase discount intervals,

which are then scaled according to the day of the week of the departure date,

µd
t =


µdow

· µ1, Greater than twenty-one days before departure (21+);

µdow
· µ2, Fourteen to twenty-one days before departure (20-14);

µdow
· µ3, Seven to fourteen days before departure (13-7); and

µdow
· µ4, Within seven days before departure (6-0).

Here, µdow is a day-of-the-week shifter for each departure date. Mondays are

normalized to one, and parameters are estimated for Tuesday through Sunday. In

total, there are ten arrival rate parameters per route.

I introduce flexibility in the composition of consumer types by assuming

Prt(Business) = γt =
exp

(
γ0 + γ1t + γ2t2)

1 + exp
(
γ0 + γ1t + γ2t2

) ,∀t = 0, ...,T.

This parametric specification allows for non-monotonicity in consumer types over

time, while keeping the function bounded between zero and one. Each route has

three consumer-type parameters.

Finally, I assume consumer utility is of the form

ui jt = βdow j − αip jt + εi jt,

where βdow j is a day-of-the-week preference for the departure date. There are nine

preference parameters per route.

To reduce computational burden, I construct a single pricing menu for each

route by reducing the dimensionality of observed prices. The average number
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of unique fares observed per flight is less than seven, however, I observe price

differences across departure dates within a route, sometimes by a single dollar. To

avoid constructing likelihoods for each flight individually, I first cluster all observed

prices for a given route using k-means with a minimum in-sample fit threshold of

99 percent. This results in pricing choice sets that range in size from five to eleven.

I then map each observed fare to its clustered fare, creating pricing menus that only

vary by route and day before departure. Because lower-priced fares are typically

not offered close to the departure date, this procedure preserves advance-purchase

discounts, albeit with clustered fares.

Given a set of flights (F) each tracked for (T) periods, the log-likelihood for the

data is given by

max
(β,α,γt,µt,σ)

∑
F

∑
T

log
(
CCPt(pt ; ct)

)
+ log

(
ft(ct+1|ct, pt)

)
.

I maximize this objective separately for each route. To increase sample sizes,

I group together the directional traffic of the city pairs, which means demand

does not vary by direction. In Online Appendix B, I show that directional prices

are similar. For any candidate parameter vector, I calculate the censored-Poisson

demand functions, expected revenues, and transition probabilities. I then solve

for the value functions using the recursive structure of the firm’s problem, which

defines the conditional choice probabilities (CCP).18

5.1 Identification

The key identification challenge of the paper is to separately identify the demand

parameters from the arrival process. This challenge is pointed out in Talluri and

18Estimation uses analytical gradients computed via the module JAX using GPUs (set to 64-bit)
and the solver Knitro. I select the Sequential Quadratic Programming (SQP) algorithm. I first use
parallel multi-start, selecting 200 random initial starting values, using relaxed parameter bounds. I
verify the obtained solutions using a second estimation script with tighter bounds centered around
the first solution.
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Van Ryzin (2004), for example. The issue arises because without proprietary search

data to pin down the arrival process, an increase in arrivals could instead be inferred

as inelastic demand. For example, the sale of two seats could have occurred because

two consumers arrived and both purchased, or because twenty consumers arrived

and a tenth purchased. This is sometimes called the lack of "no purchase" data.

This paper proposes incorporating the supply-side model in order to separately

identify the demand parameters and the arrival process. In particular, I assume

that the firm optimally prices given seats remaining, time left to sell, and the

unobservables. Preferences are assumed to evolve in the same predictable way,

but demand shocks can vary for each flight toward the deadline. This results in

variation in seats sold over time, and the firm’s response to these shocks informs the

magnitude of stochastic demand. That is, by solving the firm’s problem, I recover

the opportunity cost of capacity, and along with the pricing decision, I back out

the overall demand elasticity. By tracing out price adjustments from variation in

seats remaining given time to sell and variation over time given a constant capacity

constraint, I separate the incentives to adjust prices in response to demand shocks

versus the overall demand elasticity.

In Figure 1-(b), I provide graphical evidence of the identification argument.

Given stochastic demand, we would expect prices to rise when demand exceeds

expectations and fall after a sequence of low demand realizations. This is shown

in the figure as the solid (blue) line is above the zero, and the dashed (orange) line

is at or below zero. However, Figure 1-(b) shows that prices sharply rise close to

the departure date and regardless of bookings. This sharp rise in prices, regardless

of the scarcity of seats, suggests a change in demand elasticity. That is, consumers

who shop late are less price sensitive than those who shop early.
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6 Empirical Results

I present complete parameter estimates in Table 4−Table 6 in the appendix.19 Each

table reports results for a set of markets and has three sections. The first section,

“Logit Demand,” reports day-of-the-week preferences, price sensitivities, and the

parameters governing the probability on consumer types over time (γt). The second

section, “Poisson Rates”, reports mean arrival rates for each of the specified time

intervals for Monday departures. The rows labeled “DoW Effect” contain the

multiplicative factor for Tuesday through Sunday departures. Finally, the last row,

“Firm Shock”, reports estimates of the scaling parameter. I summarize the demand

estimates in Table 2 below.

I estimate that almost all preference parameters are statistically significant at

conventional levels.20 The parameter estimates suggest that, on average, leisure

consumers are over twice as price sensitive as business consumers, and business

consumers are willing to pay up to 125 percent more in order to secure a seat.21

I estimate meaningful differences in demand across departure dates due to day-

of–the-week effects. In Figure 2-(a), I plot the average willingness to pay for the

days of the week, relative to the minimum estimated day-of-the-week preference.

The histogram is over routes. I estimate that willingness to pay is highest for

flights departing on Sunday, Friday, Thursday, Monday (in that order; highest to

lowest). Saturday, Tuesday, and Wednesday are estimated to be the most off-peak

days. These values closely match day-of-the-week patterns found using security

checkpoint data from the Transportation Security Administration (TSA).22

19I do not estimate demand in competitive routes or routes with infrequent service. The excluded
routes are: Boston, MA - Seattle, WA; Boston, MA - Portland, OR; Portland, OR - Sacramento, CA;
Portland, OR - Lihue, HI; and Portland, OR - Palm Springs, CA. In addition, Omaha, NE - Seattle,
WA is excluded from the analysis due to numerical stability issues and resource constraints.

20The exception being Oklahoma City, OK - Seattle, WA. All random starts converge to the same
maximum; however, several parameters are estimated to be insignificant.

21The mean ratio of price sensitivity across markets is 3.34; the median is 2.25.
22In 2019, the busiest to least busy travel days in the United States were Friday (2.44

mil.), Sunday (2.38 mil.), Thursday (2.37 mil.), Monday (2.36 mil.), Wednesday (2.15 mil.),
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Table 2: Demand Results Summary Table

Parameter Mean Std. Dev. Median 25th Pctile. 75th Pctile.

DoW Preferences 5.77 4.67 4.72 3.27 6.99
Leisure Price Sensitivity -3.48 3.46 -2.37 -3.57 -1.71
Business Price Sensitivity -1.61 1.72 -1.24 -1.72 -0.74
Prob(Business) 0.26 0.28 0.15 0.03 0.38
DoW Arrival Rates 2.02 2.36 1.35 0.93 2.01

Note: Summary of demand estimates. See Table 4−Table 6 for all parameter estimates.
DoW preference statistics are computed using all βd

r parameters. Leisure and Business price
sensitivity statistics are computed using all αL,r and αB,r parameters. Probability of business
uses the predicted values of the Logit specification at the γt,r level. DoW Arrival Rates are
computed using all µd

t,d parameters.

Fitted values of the probability that a customer is of the business type (γt) are

shown in Figure 2-(b). The plots depict the average (across routes) business share

over time, as well as the interquartile range and the fifth and ninety-fifth percentiles

over routes. Most routes exhibit increasing γt processes over time. On average, 10

percent of early arrivals are the type labeled “business” and close to 80 percent of

late arrivals are the type labeled “business.” In early periods, prices are relatively

flat and I estimate the average γt to be flat. Starting at 21 days before departure,

I estimate a significant change in the business customer share. This corresponds

with the time at which fares start raising rapidly.

In Figure 12 in Online Appendix A, I show there is substantial heterogeneity in

the fitted values for γt across routes. The heterogeneity reflects the differences in

pricing dynamics across markets (see Figure 7 and Figure 8 in Online Appendix

A). In general, the shape of the curves correlates with the use of AP restrictions:

a larger price increase at the 21-day AP requirement generally creates a steeper

profile. The share of business arrivals well before the departure date is typically

between zero and twenty percent and increases to between sixty to eighty percent

Tuesday (2.06 mil.), and Saturday (2.01 mil.), respectively (daily average). Compiled from
https://www.tsa.gov/foia/readingroom.
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Figure 2: Day-of-week Preferences and Consumer Types over Time

(a) Day-of-Week WTP Differences
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(b) Prt(Business) over Time
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Note: (a) Average willingness to pay for the days of the week, relative to the minimum estimated day-of-week effect for
each market. The plot shows an average over markets. (b) Fitted values of the arrival process of business versus leisure
customers across the booking horizon. The y-axis is Pr(business), so 1 − Prt(Business) defines Prt(Leisure).

the day of departure.

The parametric assumption on consumer types is flexible, as it captures S-shape,

almost linear, and convex arrival paths. It can also be restrictive. One market is

estimated to shift from one Poisson demand distribution to another (leisure to

business) corresponding to the 21-day AP requirement.

All arrival rates are estimated to be statistically significant.23 There are three

levels of heterogeneity in these estimates. First, across markets, the average number

of arrivals ranges from around one to up to ten. Second, in some markets, the arrival

rates increase over time, whereas in most of the estimates, the rates remain low.

Finally, there is variation in which days of the week experience the largest market

sizes across routes. Monday and Sunday are estimated to have the largest market

sizes in forty percent of routes, followed by Thursday and Friday. I estimate that

24.6 percent of arrivals are business travelers. As a point of comparison, Lazarev

(2013) estimates twenty percent of consumers are business travelers.

Overall, the demand estimates establish that a meaningful shift occurs in will-

ingness to pay over time. Demand elasticities range from -9.38 to -1.46, depending

23The exception being Oklahoma City, OK - Seattle, WA, where both the DoW preferences and
blocked arrival rates are found to be insignificant.
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on the route and time until departure. I estimate the average price elasticity to be

-3.31.

6.1 Model Fit and Discussion

Figure 3: Model Fit and Optimal Pricing

(a) Model Fit over Time
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(b) Estimated Policy Functions
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Note: Comparison of mean data fares and mean model fares across the booking horizon. Two versions of model fares are
plotted. The solid black line defines per-period price choice sets using fare restrictions in the data. The dashed grey line
allows firms to choose from all prices each period.

The model fits the data well. In Figure 3-(a), I present within-sample model

fit by plotting data and model fares over time. Model fares are shown under

the choice set restrictions in the estimated model as well as with the restrictions

removed—the firm has access to the entire choice set in each period. The figure

depicts the mean values as well as the fifth and ninety-fifth percentiles. Model

fares closely follow observed fares, with an average difference of $7.50. Differences

do vary by day before departure—differences are less than $11 for the first half of

the sample but the gap increases around AP requirements. The reason is that the

model produces a smoother fare profile that results in fare hikes slightly before the

7-day and 14-day AP requirements. The fifth and ninety-fifth percentiles of fares

are also aligned, except for close to the departure date, where the top five percent of

data fares are higher than what the model assigns. The dashed line, corresponding

to model fares where the firm utilizes the entire choice set, also closely follows
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the data except close to the deadline, where the unrestricted model assigns lower

prices. One view on this finding is that the utilization of fare restrictions acts as a

reputation mechanism that allows firms to commit to high prices close to the date

of travel, even for flights with excess capacity.

Price adjustments occur because of the time-varying composition of customers

and in response to demand shocks. In Figure 3-(b), I highlight how remaining

capacity affects pricing within a period for a sample route. Plotted are the firm’s

policy functions. Each line corresponds to a different time period. With fewer

seats remaining (moving toward the origin on the x-axis), fares increase. The plot

also demonstrates that for a given amount of seats remaining, opportunity costs are

increasing in time left to sell. For example, the price of having forty seats remaining

sixty days out is higher than forty seats remaining thirty days out. However, close

to departure, fares are higher regardless of remaining capacity due to demand being

more inelastic. Also, consistent with Dana (1998), aggregate demand uncertainty

results in unused capacity that raises opportunity costs over time.

7 The Welfare Effects of Dynamic Airline Pricing

In this section, I estimate the welfare effects of dynamic pricing through a series of

counterfactual exercises. In Section 7.1, I study uniform pricing, where the firm is

not able to respond to demand shocks nor changes in the overall demand elasticity.

I also study intertemporal price discrimination (IPD), where the firm is not able

to respond to demand shocks, but prices may adjust over time. In Section 7.2, I

examine the sources of price adjustments and show how both forces explain airline

pricing patterns.

To set up all counterfactuals, I use the empirical distribution of remaining

capacity sixty days before departure as the initial capacity condition.24 All coun-

24Note that it may be profitable for firms to adjust capacity if the unmodeled fixed costs are such
that the counterfactual pricing systems support a different gauge of aircraft. This is explored further
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terfactuals utilize the important boundary conditions of the initial problem: (1)

the firm cannot oversell, and capacity transitions as ct+1 = ct −min{Qt(p, yt), ct}; (2)

unused capacity is scrapped with zero value. I simulate 100,000 flights per route

using the distribution of initial observed capacities. I then combine the results over

routes. Route-level heterogeneity is then explored.

For all counterfactual analysis, I make two changes to the estimated model.

First, I allow firms to use the unrestricted choice set, A(t) = ∪T
t=0A(t), in each period,

in order to streamline the counterfactuals, e.g., under uniform pricing, the firm

may wish to charge a low fare that is not available close to departure. Second, I

remove the firm shocks (ω) in order to single out the effects of the demand elasticity

and scarcity (rather than the role of unobservable errors) in determining the pricing

decision. For example, under uniform pricing, the firm would receive a single error

vector, whereas in the dynamic counterfactual, the firm receives per-period error

shocks.

7.1 Uniform Pricing and a Model of Intertemporal Price Discrimination

With uniform pricing, the firm sets a single price for each flight by integrating over

future demands in the initial period. The revenue maximization problem under

uniform pricing is

max
p
Ey

 T∑
t=0

p min
{
Qt(p, yt), ct

}
such that ct+1 = ct −min

{
Qt(p, yt), ct

}
, c0 given.

With a constant price, the firm cannot respond to both demand shocks and changes

in the overall willingness to pay of arriving consumers.

In the model of intertemporal price discrimination, I assume the firm sets a se-

in Online Appendix E, where I consider dynamic pricing under a large range of initial capacities. I
do not bound the fixed costs, but I do show that capacity would need to be significantly higher for
demand shocks to not affect airline prices.
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quence of prices before sales begin, at t = 0. Price changes over time reflect changes

in willingness to pay—intertemporal price discrimination as third degree price dis-

crimination (as opposed to screening with second degree price discrimination). The

revenue maximization problem is therefore

max
p0,...,pT

Ey

 T∑
t=0

pt min
{
Qt(pt, yt), ct

}
such that ct+1 = ct −min

{
Qt(pt, yt), ct

}
, c0 given.

Since prices cannot depend on the remaining capacity, they cannot react to changes

in the opportunity cost of a seat.25

The counterfactuals are nested such that as the pricing strategy becomes more

flexible, expected revenues are necessarily increasing. This is because under dy-

namic pricing, prices are defined by p∗(ct, t), whereas in the model of intertemporal

price discrimination, prices are time-dependent, p∗(t). Finally, under uniform pric-

ing, prices do not vary with both seats and time remaining, p∗. Therefore, expected

revenues are increasing in pricing flexibility, that is,

T∑
t=0

Re
t

(
p∗; ct

)
︸        ︷︷        ︸
Uniform Pricing

≤

T∑
t=0

Re
t

(
p∗(t); ct

)
︸            ︷︷            ︸

IPD

≤

T∑
t=0

Re
t

(
p∗(t, ct); ct

)
︸               ︷︷               ︸

Dynamic Pricing

.

Note that if capacity were sufficiently large, then the outcomes of the IPD and

dynamic pricing models would coincide. The extent to which they differ suggests

that responding to demand shocks is particularly important in the airline context.

Note that aggregate demand uncertainty affects prices in all scenarios, but in

distinct ways. With dynamic pricing, prices are state-dependent and the firm re-

acts directly to demand shock realizations. However, with uniform pricing and in

25Note that because demand becomes more inelastic over time, there is little to no role for Coasian
forces (consumer waiting for fare declines). In Online Appendix D, I provide a bound on the waiting
costs so that no consumer would choose to wait to buy under dynamic pricing.

29



the model of IPD, the pricing decision reflects the integral of all future demands

(for given prices) before any uncertainty is resolved. The magnitude of demand

uncertainty affects both the overall price level, but also the incentive to set different

prices over time, irrespective of changes in the demand elasticity. Therefore, in

order to completely separate the effects of demand uncertainty changes in willing-

ness to pay on intertemporal price adjustments, I consider an alternative model of

intertemporal price discrimination in Section 7.2.

The firm’s objective function the model of IPD is large dimensional problem—

an exhaustive search involves evaluating the objective over dim(A)T possible price

vectors. At a minimum, the problem contains approximately 8.6e41 possibilities.

To reduce the dimensionality of the problem, I add the restriction that the firm can

adjust fares when the advance purchase requirements typically expire (days 3, 7,

14, and 21). This results in five prices per flight.

Table 3: Welfare Effects of Dynamic Airline Pricing

Fare Load Factor Sell Outs Revenue CSL CSB CS Welfare
Dynamic 243.3 87.6 18.7 10.7 2.2 6.5 8.7 19.5
IPD 243.6 83.6 22.2 10.4 2.1 6.4 8.4 18.9
Uniform 219.9 84.9 29.4 9.9 2.0 7.4 9.3 19.2

Fare: mean fare for flight observations with positive seats remaining; Load factor (LF):
average at departure time; Sell Outs: percentage of flights with zero seats remaining in the
last period; Revenue: mean flight revenue; Consumer surplus (CSL,CSB): surplus per flight;
Welfare: daily mean revenues plus consumer surplus, excluding fixed costs. All dollar values
reported in thousands of dollars. Results come from simulating 100,000 flights per route given
the empirical distribution of remaining capacity sixty days before departure.

In Table 3, I present the welfare estimates for the baseline dynamic pricing

model and the two counterfactuals. All values are in levels, except for load factor

and sell outs, which are reported as percentages. I present a visual summary of the

intertemporal dynamics in Figure 4.

I find that average fares are over ten percent lower under uniform pricing

compared to the other pricing models. However, this does not lead to an increase
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in output—load factors are 2.7 percent higher under dynamic pricing. This occurs

because uniform pricing creates an incentive for the firm to save an inefficient

number of seats for later arrivals, and dynamic pricing allows the firm to materialize

the option value of being able to respond to demand shocks. I show in Figure 4-(a)

that uniform pricing results in average fares that are relatively high early on, but

that are on average relatively low close to the departure date. Depending on the

magnitude of demand shocks, the uniform price may be too high or too low. For

flights with low realized demand, prices remain too high under uniform pricing.

Figure 4: Counterfactual Results over Time

(a) Mean Fares over Time
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(b) Load Factors relative to DP over Time
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(c) Fraction of Flights Sold Out over Time
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(d) CS & Revenues Relative to DP over Time
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Notes: (a) Average fares over time for flights that have not sold out. (b) Average load factors over time, relative to dynamic
pricing. (c) The fraction of flights that are sold out over time. (d) Consumer surplus and revenues over time, relative to
dynamic pricing.

The primary driver of market expansion under dynamic pricing is that by being

able to respond to demand shocks, leisure consumers are offered lower fares. This

is shown in Figure 4-(b), which depicts load factors relative to dynamic pricing
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over time. Output remains highest under dynamic pricing. Although the relative

booking rate increases under both uniform pricing and in the model of IPD (the

lines move closer to 100%), both curves level off. Without the ability to respond

to demand shocks, flights with high demand shocks are more likely to sell out in

advance. Figure 4-(c) highlights this result, which shows the fraction of flights sold

out over time. Uniform pricing results in not only more sell outs, but sell outs

also occur much earlier because the firm does not adjust to changes in opportunity

costs. Sell outs are 3.5 percent higher under IPD and 10.7 percent higher under

uniform pricing.

Dynamic pricing leads to substantial changes in how capacity is allocated across

consumer types (and time). In general, leisure consumers benefit under more

flexible pricing systems because they result in lower relative prices early on. I

estimate leisure consumer surplus would decline by 12.4 percent under uniform

pricing due to higher relative prices. Dynamic pricing allows for increased price

targeting among business consumers. For flights with low demand realizations,

business consumers face higher prices due to intertemporal price discrimination.

For flights with high demand realizations, business consumers face even higher

fares, but may obtain seats with higher probabilities if leisure travelers do not

purchase under these high fares. Higher fares reduce business consumer surplus

by 13.3 percent under dynamic pricing compared to uniform pricing. Aggregating

over consumer types, I estimate that dynamic pricing results in 6.3 percent lower

total consumer surplus compared to uniform pricing. Thus, dynamic pricing

increases output but it does not lead to an increase in consumer surplus.

Dynamic pricing leads to substantially higher revenues than those under uni-

form pricing (7.6 percent higher). This primarily comes from the ability to extract

surplus from the changing composition of demand. In particular, there is a large

transfer of business consumer surplus to the firm. Output expands because the

firm can respond to demand shocks, but since the firm can also react to changing
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demand composition over time, the firm is able to extract more surplus. Because

the counterfactuals are nested, I calculate

Revenue under IPD − Revenue under Uniform Pricing
Revenue under Dynamic Pricing − Revenue under Uniform Pricing

(7.1)

to measure the importance of intertemporal price discrimination versus the impor-

tance of responding to demand shocks in explaining the revenue increase. Using

this decomposition, I find that 65.7 percent of the revenue gains associated with dy-

namic pricing over uniform pricing come from intertemporal price discrimination.

The remaining 34.3 percent comes from the ability to respond to demand shocks.

I estimate the overall welfare effect of dynamic pricing to be a one percent

increase in surplus compared to uniform pricing. That is, the increase in revenues

under dynamic pricing is greater than the aggregate consumer surplus decline.

There is a stark reallocation of capacity. Dynamic pricing leads to a 7.2 percent

increase in tickets purchased by leisure consumers and a 5.8 percent decrease in

the number of tickets purchased by business travelers.

Dynamic airline pricing increases welfare in aggregate, but not for each market

individually. Figure 5 graphically shows the welfare effects of dynamic pricing for

each market separately; each dot denotes the total welfare of dynamic pricing over

the welfare of uniform pricing on the vertical axis. On the horizontal axis, I plot

the calculation in Equation 7.1. I find that dynamic pricing lowers welfare in seven

of the markets studied and increases welfare in fifteen of the markets studied. As

Figure 5 shows, the direction of the overall welfare effect depends on which sources

of price adjustments drive revenues. Welfare declines under dynamic pricing when

price changes are mainly in response to changes in willingness to pay and not in

response to demand shocks. Examining route characteristics, I find that dynamic

pricing generally increases welfare when the variance in consumer arrivals is high,

consumer types are more similar, initial capacity is low, and variation in day of the

week preferences is high.
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Figure 5: Welfare Effects of Dynamic Pricing due to IPD
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Note: Each dot represents counterfactual results for a single market. The vertical axis is welfare under dynamic pricing over
the welfare under uniform pricing. The horizontal axis computes the percentage of revenue gains from uniform pricing to
dynamic pricing attributed to intertemporal price discrimination. Figure 13 in Online Appendix A presents an alternative
figure with market labels and reports the frequency of sell outs for each market.

7.2 The Sources of Price Adjustments in Airline Markets

In this section, I examine the importance of the two reasons for price adjustments

with dynamic pricing: changes in the willingness to pay and changes in the oppor-

tunity cost of a seat. I consider a model of static pricing where the cost of capacity

is (close to) zero.26 This implies that price adjustments occur only in response to

changes in demand. The revenue maximization problem in this counterfactual is

simply the baseline pricing model with the discount factor set equal to zero; that

is, maxpt Eyt

[
pt min

{
Qt(pt, yt), ct

}]
.

The static pricing model results in substantially lower fares because there is no

opportunity cost of capacity. Prices still rise significantly over time due to changes

in willingness to pay, conditional on the firm having seats remaining. Figure 6-

(a) shows that both models produce qualitatively similar patterns. Fares nearly

double in sixty days and the slopes are similar. There is a level shift because the

26Because the model is not in continuous time, more than a single seat may be demanded in
a single period. This would raise prices (opportunity costs are positive); however, the estimated
arrival rates are sufficiently low that this does not significantly impact the results. Results are very
similar to a model where the firm does not take into account its capacity constraint when pricing.
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Figure 6: Decomposition of the Source of Price Adjustments

(a) Price Levels over Time
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Note: (a) Average fares over time under dynamic pricing and static pricing. (b) The percentage of flights that experience
price changes from t to t + 1 under dynamic pricing and static pricing.

opportunity cost of capacity is close to zero under static pricing, lowering prices.

This establishes that the primary source for increasing prices in airline markets is

intertemporal price discrimination. Although average fares are nearly 30 percent

lower under static pricing, output increases by only 3.5 percent and the number of

seats sold to business travelers decreases by 41.9 percent (leisure sales increase by

17.8 percent).

In Figure 6-(b), I plot the percentage of flights that experience price adjustments

over time. Comparing the two lines provides insights on the sources of price

adjustments. Under static pricing, the first significant price hike occurs twenty-one

days before departure, or when there is a significant change in the composition

of arriving consumers according to the model estimates. These price adjustments

occur regardless of whether the firm internalizes scarcity. Under dynamic pricing,

there are substantially more price adjustments at all other times. This occurs

well in advance of departure date ( over five times more price adjustments), even

though preferences are not changing. There are also over three times as many price

adjustments close to the perishability date. Both of these findings are consistent

with the raw data and show that the early price adjustments are primarily in

response to demand shock realizations that allow the firm to better reoptimize
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remaining inventory for future (and increasingly price insensitive) arrivals.

8 Conclusion

This paper investigates two major determinants of airfare fluctuations, demand

shocks and intertemporal variation in willingness to pay. The main contribution

of this paper is to jointly study these pricing forces to quantify their welfare im-

plications. I do so by examining US monopoly markets using flight-level data. I

show that dynamic airline pricing expands output, increases revenues, and lowers

total consumer surplus relative to uniform pricing. Leisure consumers benefit from

dynamic pricing. Although business consumers are ensured seats, they are also tar-

geted with high prices. In aggregate, I find welfare is higher under dynamic pricing

than under uniform pricing. The results at the route level highlight that the wel-

fare effects of dynamic pricing are ambiguous. In markets where price adjustments

are primarily in response to changes in willingness to pay, the intertemporal price

discrimination force dominates, and welfare decreases under dynamic pricing.
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Table 4: Parameter Estimates

Variable AUSBOS BILSEA BOIPDX BOSJAX BOSMCI BOSSAN BZNPDX CHSSEA

Logit Demand
DoW Prefs β0 6.769 3.642 4.529 6.404 7.536 9.365 3.412 4.911

0.197∗∗∗ 0.300∗∗∗ 0.131∗∗∗ 0.170∗∗∗ 0.046∗∗∗ 0.349∗∗∗ 0.314∗∗∗ 0.193∗∗∗

β1 6.275 3.246 3.993 5.165 7.231 8.597 2.579 2.374
0.166∗∗∗ 0.285∗∗∗ 0.122∗∗∗ 0.173∗∗∗ 0.050∗∗∗ 0.286∗∗∗ 0.276∗∗∗ 0.318∗∗∗

β2 6.126 3.110 4.088 5.343 7.432 8.609 2.803 3.371
0.172∗∗∗ 0.286∗∗∗ 0.129∗∗∗ 0.169∗∗∗ 0.051∗∗∗ 0.317∗∗∗ 0.290∗∗∗ 0.237∗∗∗

β3 6.414 3.291 4.780 6.662 7.400 9.679 3.696 4.120
0.200∗∗∗ 0.299∗∗∗ 0.139∗∗∗ 0.164∗∗∗ 0.052∗∗∗ 0.359∗∗∗ 0.300∗∗∗ 0.230∗∗∗

β4 6.031 3.365 4.922 6.515 7.550 9.270 3.777 5.692
0.245∗∗∗ 0.308∗∗∗ 0.140∗∗∗ 0.193∗∗∗ 0.052∗∗∗ 0.339∗∗∗ 0.311∗∗∗ 0.191∗∗∗

β5 6.169 3.388 3.737 6.090 8.397 9.634 2.470 −10.958
0.181∗∗∗ 0.302∗∗∗ 0.120∗∗∗ 0.219∗∗∗ 0.050∗∗∗ 0.346∗∗∗ 0.291∗∗∗ 0.001∗∗∗

β6 6.367 3.874 4.928 7.033 7.906 10.141 4.219 6.996
0.255∗∗∗ 0.324∗∗∗ 0.143∗∗∗ 0.228∗∗∗ 0.048∗∗∗ 0.382∗∗∗ 0.294∗∗∗ 0.214∗∗∗

Leis. Price Sens. αL −4.087 −1.647 −3.268 −3.285 −3.994 −2.409 −2.056 −1.661
0.099∗∗∗ 0.094∗∗∗ 0.078∗∗∗ 0.067∗∗∗ 0.022∗∗∗ 0.103∗∗∗ 0.125∗∗∗ 0.054∗∗∗

Bus. Price Sens. αB −1.721 −0.722 −1.498 −2.157 −1.636 −1.707 −0.693 −0.968
0.044∗∗∗ 0.055∗∗∗ 0.044∗∗∗ 0.040∗∗∗ 0.011∗∗∗ 0.061∗∗∗ 0.062∗∗∗ 0.040∗∗∗

Pr(Bus.) Cons. γ0 −1.561 −4.194 −6.661 −3.369 −0.452 −0.705 −18.985 −5.982
0.152∗∗∗ 0.234∗∗∗ 0.152∗∗∗ 0.110∗∗∗ 0.004∗∗∗ 0.197∗∗∗ 2.263∗∗∗ 0.463∗∗∗

Pr(Bus.) Linear γ1 −0.020 0.005 0.119 0.103 −0.026 −0.018 0.614 0.061
0.003∗∗∗ 0.007 0.005∗∗∗ 0.007∗∗∗ 7.0E-04∗∗∗ 0.008∗∗ 0.093∗∗∗ 0.021∗∗∗

Pr(Bus.) Quad. γ2 0.001 0.002 3.5E-04 -3.7E-04 5.2E-04 0.002 −0.004 0.001
6.6E-05∗∗∗ 8.7E-05∗∗∗ 5.4E-05∗∗∗ 9.2E-05∗∗∗ 1.5E-05∗∗∗ 1.3E-04∗∗∗ 8.7E-04∗∗∗ 2.8E-04∗∗∗

Poisson Rates
> 21 Days µ1 3.531 1.451 0.804 1.338 1.344 1.178 1.193 2.094

0.463∗∗∗ 0.070∗∗∗ 0.010∗∗∗ 0.037∗∗∗ 0.008∗∗∗ 0.034∗∗∗ 0.062∗∗∗ 0.068∗∗∗

14 to 21 days µ2 2.948 1.661 1.349 1.028 1.484 0.939 0.831 1.580
0.292∗∗∗ 0.108∗∗∗ 0.023∗∗∗ 0.033∗∗∗ 0.012∗∗∗ 0.036∗∗∗ 0.056∗∗∗ 0.067∗∗∗

7 to 14 days µ3 2.279 1.418 1.237 0.745 1.287 0.770 0.533 1.140
0.169∗∗∗ 0.103∗∗∗ 0.023∗∗∗ 0.025∗∗∗ 0.008∗∗∗ 0.038∗∗∗ 0.047∗∗∗ 0.053∗∗∗

< 7 days µ4 0.809 1.798 1.218 0.442 0.986 0.406 0.851 1.303
0.070∗∗∗ 0.143∗∗∗ 0.025∗∗∗ 0.019∗∗∗ 0.010∗∗∗ 0.029∗∗∗ 0.096∗∗∗ 0.056∗∗∗

DoW Effect µ1 1.089 0.977 0.901 1.347 1.141 0.995 1.062 2.559
0.033∗∗∗ 0.076∗∗∗ 0.030∗∗∗ 0.044∗∗∗ 0.008∗∗∗ 0.048∗∗∗ 0.068∗∗∗ 0.530∗∗∗

µ2 1.039 1.144 1.024 1.252 1.190 1.173 1.036 1.602
0.032∗∗∗ 0.060∗∗∗ 0.014∗∗∗ 0.035∗∗∗ 0.007∗∗∗ 0.044∗∗∗ 0.055∗∗∗ 0.101∗∗∗

µ3 1.181 1.207 0.997 1.032 1.209 1.124 0.822 1.205
0.035∗∗∗ 0.063∗∗∗ 0.012∗∗∗ 0.031∗∗∗ 0.007∗∗∗ 0.044∗∗∗ 0.038∗∗∗ 0.052∗∗∗

µ4 1.425 1.174 0.905 1.051 1.128 1.232 0.871 0.956
0.043∗∗∗ 0.066∗∗∗ 0.013∗∗∗ 0.045∗∗∗ 0.006∗∗∗ 0.043∗∗∗ 0.050∗∗∗ 0.043∗∗∗

µ5 1.024 0.936 0.801 0.981 0.451 0.824 0.891 8.493
0.029∗∗∗ 0.067∗∗∗ 0.029∗∗∗ 0.064∗∗∗ 0.003∗∗∗ 0.036∗∗∗ 0.045∗∗∗ 0.001∗∗∗

µ6 1.366 0.932 0.826 0.973 0.941 1.160 0.695 0.691
0.050∗∗∗ 0.048∗∗∗ 0.011∗∗∗ 0.050∗∗∗ 0.006∗∗∗ 0.060∗∗∗ 0.041∗∗∗ 0.048∗∗∗

Firm Shock
σ 0.670 0.370 0.118 0.499 0.311 0.862 0.182 1.068

0.030∗∗∗ 0.039∗∗∗ 0.005∗∗∗ 0.014∗∗∗ 0.001∗∗∗ 0.025∗∗∗ 0.012∗∗∗ 0.035∗∗∗

LogLike -47,557 -79,749 -266,052 -101,409 -60,597 -61,387 -53,669 -35,926
Number of Flights 238 423 1,626 478 304 317 333 173
Number of Dep. Dates 119 106 106 120 108 120 106 87
Number of Obs. 13,645 25,180 96,774 26,673 22,652 18,294 19,848 10,198

Note: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Prices are scaled to $100.
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Table 5: Parameter Estimates

Variable CMHSEA FATPDX GEGPDX GTFSEA HLNSEA ICTSEA MSOPDX

Logit Demand
DoW Prefs β0 3.715 3.270 21.913 12.182 6.107 1.386 5.627

0.343∗∗∗ 0.255∗∗∗ 0.604∗∗∗ 1.497∗∗∗ 0.327∗∗∗ 0.234∗∗∗ 0.446∗∗∗

β1 3.319 3.017 21.325 12.105 5.667 1.768 5.043
0.302∗∗∗ 0.216∗∗∗ 0.601∗∗∗ 1.491∗∗∗ 0.312∗∗∗ 0.215∗∗∗ 0.412∗∗∗

β2 3.406 2.761 21.605 12.132 5.517 2.057 4.971
0.305∗∗∗ 0.204∗∗∗ 0.603∗∗∗ 1.500∗∗∗ 0.304∗∗∗ 0.187∗∗∗ 0.409∗∗∗

β3 3.849 3.032 22.216 12.175 6.077 2.463 5.433
0.362∗∗∗ 0.239∗∗∗ 0.601∗∗∗ 1.496∗∗∗ 0.331∗∗∗ 0.209∗∗∗ 0.418∗∗∗

β4 3.780 3.212 22.152 12.247 6.350 1.845 5.166
0.349∗∗∗ 0.253∗∗∗ 0.605∗∗∗ 1.502∗∗∗ 0.359∗∗∗ 0.249∗∗∗ 0.410∗∗∗

β5 3.295 3.186 21.178 12.111 5.416 2.407 4.838
0.325∗∗∗ 0.238∗∗∗ 0.601∗∗∗ 1.491∗∗∗ 0.297∗∗∗ 0.295∗∗∗ 0.404∗∗∗

β6 3.951 3.323 22.225 12.261 6.593 0.837 5.430
0.389∗∗∗ 0.261∗∗∗ 0.604∗∗∗ 1.498∗∗∗ 0.362∗∗∗ 0.316∗∗∗ 0.445∗∗∗

Leis. Price Sens. αL −1.288 −2.215 −17.718 −6.131 −3.321 −1.146 −3.266
0.079∗∗∗ 0.097∗∗∗ 0.488∗∗∗ 0.729∗∗∗ 0.165∗∗∗ 0.043∗∗∗ 0.227∗∗∗

Bus. Price Sens. αB −0.552 −0.837 −8.825 −2.755 −1.691 −0.240 −1.538
0.047∗∗∗ 0.049∗∗∗ 0.235∗∗∗ 0.348∗∗∗ 0.087∗∗∗ 0.021∗∗∗ 0.151∗∗∗

Pr(Bus.) Cons. γ0 −6.175 −4.325 −2.734 −2.276 −12.088 −2.553 −1.742
0.378∗∗∗ 0.309∗∗∗ 0.089∗∗∗ 0.438∗∗∗ 2.080∗∗∗ 0.128∗∗∗ 0.162∗∗∗

Pr(Bus.) Linear γ1 0.115 0.022 −0.015 −0.360 −4.022 0.024 −0.029
0.015∗∗∗ 0.011∗∗ 0.007∗∗ 0.181∗∗ 2.406∗ 0.005∗∗∗ 0.006∗∗∗

Pr(Bus.) Quad. γ2 2.2E-04 0.001 0.002 0.010 0.107 7.2E-05 0.002
1.4E-04 1.2E-04∗∗∗ 1.4E-04∗∗∗ 0.005∗∗ 0.061∗ 4.8E-05 1.8E-04∗∗∗

Poisson Rates
> 21 Days µ1 2.712 1.624 1.019 0.833 0.930 3.128 0.930

0.143∗∗∗ 0.065∗∗∗ 0.015∗∗∗ 0.029∗∗∗ 0.020∗∗∗ 0.320∗∗∗ 0.025∗∗∗

14 to 21 days µ2 3.278 2.606 0.614 0.588 0.492 3.448 0.690
0.186∗∗∗ 0.165∗∗∗ 0.021∗∗∗ 0.064∗∗∗ 0.031∗∗∗ 0.372∗∗∗ 0.039∗∗∗

7 to 14 days µ3 1.831 2.513 0.482 0.572 0.376 3.821 0.535
0.189∗∗∗ 0.142∗∗∗ 0.021∗∗∗ 0.049∗∗∗ 0.021∗∗∗ 0.410∗∗∗ 0.037∗∗∗

< 7 days µ4 2.501 2.861 0.277 0.946 0.234 6.489 0.366
0.290∗∗∗ 0.158∗∗∗ 0.013∗∗∗ 0.089∗∗∗ 0.014∗∗∗ 0.727∗∗∗ 0.060∗∗∗

DoW Effect µ1 0.990 0.777 0.895 0.869 0.882 0.678 0.942
0.053∗∗∗ 0.039∗∗∗ 0.020∗∗∗ 0.059∗∗∗ 0.041∗∗∗ 0.071∗∗∗ 0.047∗∗∗

µ2 0.925 0.838 0.876 1.120 0.946 0.643 1.050
0.055∗∗∗ 0.038∗∗∗ 0.021∗∗∗ 0.038∗∗∗ 0.047∗∗∗ 0.052∗∗∗ 0.034∗∗∗

µ3 0.979 0.928 0.890 1.168 0.928 0.528 0.987
0.051∗∗∗ 0.024∗∗∗ 0.025∗∗∗ 0.037∗∗∗ 0.044∗∗∗ 0.040∗∗∗ 0.039∗∗∗

µ4 1.006 0.970 0.917 1.218 1.009 0.765 1.140
0.056∗∗∗ 0.024∗∗∗ 0.023∗∗∗ 0.047∗∗∗ 0.050∗∗∗ 0.096∗∗∗ 0.042∗∗∗

µ5 0.928 0.820 0.769 0.915 0.943 0.519 0.929
0.086∗∗∗ 0.021∗∗∗ 0.018∗∗∗ 0.052∗∗∗ 0.047∗∗∗ 0.131∗∗∗ 0.050∗∗∗

µ6 1.054 1.114 0.825 0.982 0.883 1.624 1.202
0.061∗∗∗ 0.024∗∗∗ 0.025∗∗∗ 0.082∗∗∗ 0.035∗∗∗ 0.188∗∗∗ 0.048∗∗∗

Firm Shock
σ 0.678 0.228 0.260 0.194 0.197 0.264 0.086

0.073∗∗∗ 0.020∗∗∗ 0.004∗∗∗ 0.018∗∗∗ 0.012∗∗∗ 0.016∗∗∗ 0.010∗∗∗

LogLike -40,301 -78,041 -304,409 -57,210 -29,791 -39,109 -26,969
Number of Flights 210 424 1,718 412 212 212 208
Number of Dep. Dates 106 106 106 106 106 106 106
Number of Obs. 12,398 25,248 102,292 24,532 12,644 12,606 12,390

Note: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Prices are scaled to $100.
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Table 6: Parameter Estimates

Variable OKCSEA PDXRNO PDXSBA PDXSTS SBASEA SEASTS SEASUN

Logit Demand
DoW Prefs β0

−0.834 6.991 3.173 4.479 3.698 4.591 9.845
0.501∗ 0.203∗∗∗ 0.370∗∗∗ 0.183∗∗∗ 0.436∗∗∗ 0.333∗∗∗ 1.071∗∗∗

β1
−0.590 6.045 2.463 2.917 2.799 3.099 9.279

0.429 0.204∗∗∗ 0.280∗∗∗ 0.235∗∗∗ 0.356∗∗∗ 0.354∗∗∗ 1.086∗∗∗

β2
−0.567 6.051 2.484 2.416 2.930 3.206 9.498

0.441 0.206∗∗∗ 0.276∗∗∗ 0.226∗∗∗ 0.364∗∗∗ 0.352∗∗∗ 1.101∗∗∗

β3
−0.403 6.888 2.942 4.313 3.638 4.421 8.822

0.463 0.195∗∗∗ 0.352∗∗∗ 0.184∗∗∗ 0.437∗∗∗ 0.326∗∗∗ 0.993∗∗∗

β4
−0.579 7.394 3.265 4.504 3.864 4.665 9.967

0.549 0.216∗∗∗ 0.378∗∗∗ 0.183∗∗∗ 0.455∗∗∗ 0.347∗∗∗ 1.064∗∗∗

β5
−0.449 6.256 2.647 3.359 3.458 2.772 8.767

0.458 0.195∗∗∗ 0.314∗∗∗ 0.228∗∗∗ 0.410∗∗∗ 0.411∗∗∗ 1.007∗∗∗

β6
−0.697 9.448 3.857 4.555 4.429 5.608 10.033

0.479 0.277∗∗∗ 0.444∗∗∗ 0.193∗∗∗ 0.553∗∗∗ 0.388∗∗∗ 0.995∗∗∗

Leis. Price Sens. αL −0.715 −3.658 −1.603 −2.333 −1.850 −1.873 −7.118
0.037∗∗∗ 0.102∗∗∗ 0.098∗∗∗ 0.077∗∗∗ 0.147∗∗∗ 0.096∗∗∗ 0.760∗∗∗

Bus. Price Sens. αB −0.029 −2.037 −0.741 −0.860 −0.747 −0.979 −2.551
0.029 0.065∗∗∗ 0.066∗∗∗ 0.050∗∗∗ 0.073∗∗∗ 0.067∗∗∗ 0.254∗∗∗

Pr(Bus.) Cons. γ0 −3.454 −3.739 −3.370 −6.307 −7.502 −7.091 −1.334
0.219∗∗∗ 0.441∗∗∗ 0.401∗∗∗ 0.473∗∗∗ 0.368∗∗∗ 0.833∗∗∗ 0.078∗∗∗

Pr(Bus.) Linear γ1 0.044 −0.114 0.008 0.058 0.160 0.020 −0.025
0.004∗∗∗ 0.019∗∗∗ 0.011 0.015∗∗∗ 0.017∗∗∗ 0.019 0.005∗∗∗

Pr(Bus.) Quad. γ2 -3.0E-04 0.004 0.001 0.001 -1.6E-04 0.002 6.0E-04
4.7E-05∗∗∗ 2.2E-04∗∗∗ 1.7E-04∗∗∗ 1.9E-04∗∗∗ 1.8E-04 3.9E-04∗∗∗ 1.1E-04∗∗∗

Poisson Rates
> 21 Days µ1 11.419 1.137 1.790 1.603 2.418 1.234 0.991

8.256 0.026∗∗∗ 0.133∗∗∗ 0.044∗∗∗ 0.126∗∗∗ 0.050∗∗∗ 0.032∗∗∗

14 to 21 days µ2 13.810 1.151 1.862 1.662 3.172 1.353 0.832
9.989 0.030∗∗∗ 0.173∗∗∗ 0.073∗∗∗ 0.245∗∗∗ 0.069∗∗∗ 0.047∗∗∗

7 to 14 days µ3 13.188 0.951 1.795 1.015 2.521 0.995 0.821
9.446 0.032∗∗∗ 0.179∗∗∗ 0.056∗∗∗ 0.217∗∗∗ 0.061∗∗∗ 0.050∗∗∗

< 7 days µ4 18.045 1.106 2.305 1.248 2.895 1.036 0.895
12.784 0.052∗∗∗ 0.241∗∗∗ 0.083∗∗∗ 0.346∗∗∗ 0.068∗∗∗ 0.157∗∗∗

DoW Effect µ1 0.763 0.879 0.944 0.881 0.905 1.353 1.100
0.159∗∗∗ 0.031∗∗∗ 0.052∗∗∗ 0.086∗∗∗ 0.054∗∗∗ 0.094∗∗∗ 0.047∗∗∗

µ2 0.730 0.907 0.918 1.075 0.972 1.348 1.009
0.156∗∗∗ 0.032∗∗∗ 0.061∗∗∗ 0.144∗∗∗ 0.062∗∗∗ 0.086∗∗∗ 0.047∗∗∗

µ3 0.687 0.918 0.994 0.852 1.039 1.051 1.149
0.163∗∗∗ 0.029∗∗∗ 0.042∗∗∗ 0.035∗∗∗ 0.036∗∗∗ 0.052∗∗∗ 0.046∗∗∗

µ4 0.860 0.940 0.953 0.917 0.976 1.101 1.011
0.207∗∗∗ 0.038∗∗∗ 0.036∗∗∗ 0.040∗∗∗ 0.038∗∗∗ 0.053∗∗∗ 0.044∗∗∗

µ5 0.640 0.835 0.868 0.730 0.867 1.437 0.847
0.147∗∗∗ 0.028∗∗∗ 0.046∗∗∗ 0.061∗∗∗ 0.042∗∗∗ 0.154∗∗∗ 0.063∗∗∗

µ6 0.932 0.645 0.867 1.137 0.884 0.999 0.722
0.205∗∗∗ 0.024∗∗∗ 0.053∗∗∗ 0.040∗∗∗ 0.104∗∗∗ 0.055∗∗∗ 0.132∗∗∗

Firm Shock
σ 0.262 0.430 0.309 0.395 0.464 0.623 0.194

0.013∗∗∗ 0.015∗∗∗ 0.036∗∗∗ 0.024∗∗∗ 0.065∗∗∗ 0.052∗∗∗ 0.015∗∗∗

LogLike -36,660 -143,894 -38,303 -66,833 -43,454 -58,125 -26,587
Number of Flights 212 721 212 384 212 306 168
Number of Dep. Dates 106 106 106 106 106 106 85
Number of Obs. 12,405 42,989 12,623 22,833 12,582 18,182 9,994

Note: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Prices are scaled to $100.
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A Additional Figures and Supporting Analysis

A.1 Pricing Heterogeneity Across Routes

Figure 7: Average Fares over Time by Route
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Note: Average fares over time for each route separately. This analysis combines origin-
destination and destination-origin fares. Both axes are common across all plots.
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Figure 8: Percentage Change in Fares over Time by Route
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Note: Percent change in average fares over time for each route separately. This analysis
combines origin-destination and destination-origin fares. Both axes are common across all
plots.
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A.2 Fare Dynamics in Competitive Markets

Figure 9: Fare Dynamics in Competitive Markets

(a) Fare Response to Sales
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(b) Fare Change over Time
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(c) Fare Change Magnitudes over Time
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Note: Recreation of Figure 1-(b) through Figure 1-(d) for markets with non-stop compe-
tition. (a) Fare response to own bookings (no bookings) over time. (b) Frequency of fare
increases and decreases over time. (c) Magnitude of fare increases and decreases over time.
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A.3 Price Discrimination Across Aircraft Cabins and over Time

Figure 10: Fare Category Pricing Dynamics

(a) Mean Fare Category Pricing over Time
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(b) Fare Response to First Class Sales over Time
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(c) Fare Category Availability over Time
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Note: (a) Mean fares of different fare categories over time. Full-fare (refundable) tickets
for both economy and first class are flat over time. Average fares for saver-economy,
economy, and first-class tickets rise over time. The gap in fares between saver-economy
and economy prices grows as the departure date approaches.

(b) Recreation of Figure 1-(b) for first class. Compared to economy class, the presence of
APDs is diminished in first class, and fare increases are more pronounced throughout the
booking horizon.

(c) Percentage of flights that offer observed fare categories over time. First-class denomi-
nator is the number of flights with first class, not the number of flights in the sample.Close
to departure, economy fare availability abruptly drops suggesting that the spike in load
factor shown in Figure 1-(a) captures last-minute bookings. Economy fares rise and saver
economy availability declines.
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A.4 Connecting Fare Response to Nonstop Bookings

Figure 11: Pricing Effects on Other Itineraries

(a) Connecting Fare Response to Direct Sales
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(b) Multiple Nonstop Prices and Load Factors
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Note: (a) Recreation of Figure 1-(b), but with connecting fares instead of direct fares.
The connecting fare is the average fare among connecting flight options for the same
carrier, departure date, and booking date. Evidence suggestions that connecting fares are
unaffected by nonstop bookings.

(b) Fourth order polynomial fit of a regression of the percent difference in fares on the
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A.5 Parameter Estimates and Counterfactual Results Across Routes

Figure 12: Fitted Values of γt over Time for Each Route
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Figure 13: Welfare Effects of Dynamic Pricing for Each Route
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B Route Selection Criteria and Analysis

Using the publicly available DB1B data, I select origin-destination pairs to study.

These data contain a 10 percent sample of bookings and are at the quarterly level.

The data contain neither the date of travel nor the date of purchase.

I first combine traffic from all airports in which there exists a nearby airport

within sixty miles. This combines, for example, Laguardia (LGA), John F. Kennedy

(JFK), and Newark (EWR).27 Next, I focus on ODs with a nonstop option; this

reduces the number of potential markets studied from 73,000 to 9,800. Over 40

percent of these markets have a single carrier providing nonstop service and this

subset makes up a total of 14 percent of OD traffic in the United States. I then

implement the following cleaning criteria: (1) total quarterly traffic, including

connecting traffic with up to four stops, exceeds 600 passengers;28 (2) a single

carrier operates nonstop on the OD leg. This reduces the number of potential

markets by over half, to roughly 3,900.

Next, I calculate the following statistics: (1) OD nonstop traffic; (2) OD total

traffic (including one-stop connections, all the way up to four-stop connections);

(3) passenger traffic connecting to OD or connecting from OD, which again is

allowed to have at most five legs. The fraction (1)/(2) calculates the percentage of

27This creates the following groupings: (DAB, MCO, SFB); (OGD, SLC); (EWN, OAJ); (KOA,
MUE); (SBP, SMX); (AZA, PHX); (BRO, HRL, MFE); (CMI, DEC); (PIE, SRQ, TPA); (MHT, PSM);
(BUR, LAX, LGB, ONT, SNA); (BTV, PBG); (BFM, MOB); (HHH, SAV); (DAL, DFW); (EVV, OWB);
(MSS, OGS); (BQN, MAZ); (PSG, WRG); (HOU, IAH); (ORF, PHF); (FAT, VIS); (ATW, GRB); (PAE,
SEA); (LNS, MDT); (CLT, USA); (OAK, SFO, SJC); (AOO, JST, LBE); (BLV, STL); (CPX, SPB, STT,
VQS); (LWS, PUW); (BGM, ELM, ITH); (BGR, BHB); (ACK, EWB, HYA, MVY, PVC, PVD, BOS);
(BWI, DCA, IAD); (CLD, SAN); (CHO, SHD); (ASE, EGE); (SCM, VAK); (GYY, MDW, ORD); (BUF,
IAG); (CMH, LCK); (PHL, TTN); (PGD, RSW); (FLL, MIA); (HNM, JHM, LNY, LUP, MKK, OGG);
(MCE, MOD, SCK); (LEB, RUT); (CKB, MGW); (GLV, WMO); (EWR, HPN, HVN, ISP, JFK, LGA,
SWF).

28This is calculated as half a fifty-seat plane, offering at least weekend service (eight monthly
flights), for the quarter, e.g. .5*50*8*3 = 600. This level of the criterion is not critical, but a minimum
passenger threshold of 10 (scaling 1 passenger up to 10, as it is a 10% sample) is important because
it removes erroneous entries in the DB1B. For example, in 2012, United Airlines did not operate
nonstop between Lehigh Valley International Airport (ABE) and Nashville (BNA). Another method
is to look at scheduled service in the T100 segment tables.
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traffic flying nonstop. The fraction (1)/[(1) + (3)] calculates the percentage of traffic

not connecting. Shown another way,

FracNonstop :=
Passengers OD Nonstop

(Passengers OD Nonstop) + (Passengers OD ≥ 1 Stops)

:=
(O→ D)

(O→ D) + (O→ C→ D)
,

where C denotes potential connections for passengers flying on OD. Using similar

notation,

FracNotConnecting :=
(O→ D)

(O→ D) + (C→ O→ D) + (O→ D→ C)
,

which is simply the fraction of passengers on planes flying OD that are not con-

necting on either end.

Single carrier markets have percent nonstop and percent non-connecting means

of 76 percent and 57 percent as compared with 83 percent and 61 percent for

competitive markets (medians of 82 percent, 56 percent, 88 percent, 62 percent,

respectively). I limit myself to markets with at most 15,000 monthly passengers.

This is to keep the data collection process manageable.

The two fractions are negatively correlated (ρ = −0.33), each is correlated with

distance. The correlation between percentage non-connecting and distance is 0.24;

ODs that are closer together have higher connecting traffic. The correlation between

percentage nonstop and distance is−0.52; ODs that are closer together have a higher

percentage of nonstop traffic.

Markets with high nonstop percentages and low connecting percentages are

ideal because changes in seat maps are likely to be attributed to the correct itinerary,

and hence, fare. One important caveat to this approach is that markets with a high

nonstop percentage are also closer together, which implies there may be alterna-

tive modes of transportation, e.g., a train, that is relevant for airline demand. For

10



example, in 2019, there exist 556 ODs with nonstop and non-connecting fractions

above the 95 percent threshold. Of those ODs, 523 are operated by low-cost carriers

Allegiant Air and Spirit Airlines. Unfortunately, both airlines charge for a seat as-

signment; thus, utilizing seat maps to determine bookings will likely be inaccurate.

The next two carriers that meet threshold criteria (for nonstop and non-connecting

traffic) are Alaska Airlines and JetBlue Airways.

I select fifty ODs and concentrate data collection on two carriers, JetBlue Air-

ways and Alaska Airlines, such that both seat map and airfare data could be

collected. The other carriers included in the data are Delta Air Lines and Frontier

Airlines. In addition, for a comparison in the descriptive analysis, I collect data on

six duopoly markets.29 In Figure 14, I map the markets and in Table 7, I provide

a dictionary for the airport codes. The data were collected in two phases: The

data on markets operated by Delta and JetBlue were collected in 2012, and the data

for Alaska Air Lines were collected in 2019. Prices for data collected in 2012 are

adjusted for inflation.

In Figure 15, I depict all OD pairs in the DB1B data that meet the thresholds

stated above. Each dot corresponds to an OD pair. The vertical axis reports

the percentage (0-100) of non-connecting traffic. The horizontal axis reports the

percentage of nonstop traffic. The left panel (a) includes all markets, and the right

panel (b) removes Allegiant and Spirit because of the fee charged to select seats.

These 556 ODs removed in (b) lie mostly along the top of the graph, corresponding

to markets with 100 percent non-connecting traffic. The red squares show the

markets selected for data collection and analysis. The dashed grey lines show the

mean of each statistic and the solid black line depicts the fit of a linear simple

regression.

The graphs show the negative correlation between the two statistics previously

mentioned, with a large cluster of ODs having close to 100 percent nonstop traffic

29The city pair Boston, MA - Kansas City, MO was a duopoly market, with nonstop offered by
both Delta Air Lines and Frontier Airlines in 2012. Frontier then exited the market.
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Figure 14: Markets of Study

Note: Map of the markets selected for study. All of the markets either start or end at Seattle, WI; Portland, OR; and Boston,
MA.

but also very high levels of connecting traffic. For this study, “ideal" markets

arguably lie in the upper right of the graph. These are markets in which most

consumers travel nonstop (versus one-stop) and do not connect to other flights.

Note that this region is less dense compared with other areas in the graph. The

graphs show that all but eight (panel a) or five (panel b) of the selected markets

appear above the regression line, and most lie in the upper-right region of the

graph.

In Table 8, I provide traffic and price statistics in the DB1B for each OD in the

sample. Note that OD fares are very similar to DO (the reverse) fares in the DB1B,

and I use this finding in order to aggregate observations in estimation. Finally, one-

stop fares are not necessarily cheaper than nonstop options. For example, nonstop

fares from Billings, MT to Seattle, WA are cheaper than one-stop connections.
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Figure 15: Nonstop and Non-Connecting Traffic in the DB1B

(a) Full Sample
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(b) Removing Allegiant & Spirit
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Note: (a) Percentage nonstop traffic and percentage non-connecting traffic for markets that meet selection criteria in the
DB1B data. (b) Repeat of (a), excluding markets operated by Allegiant and Spirit.

Table 7: Airport Code Lookup

Airport Code City Airport Code City

AUS Austin, TX JAX Jacksonville, FL
BIL Billings, MT LIH Lihue, HI
BOI Boise, ID MSO Missoula, MT
BOS Boston, MA OKC Oklahoma, OK
BZN Bozeman, MT OMA Omaha, NE
CHS Charleston, SC PDX Portland, OR
CMH Columbus, OH PSP Palm Springs, CA
FAT Fresno, CA RNO Reno, NV
GEG Spokane, WA SAN San Diego, CA
GTF Great Falls, MT SBA Santa Barbara, CA
HLN Helena, MT STS Santa Rosa, CA
ICT Wichita, KS SUN Sun Valley, ID
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C Inference and Accuracy of Seat Maps

Seat maps may not accurately represent flight loads if consumers do not select seats

at the time of booking. This measurement error would systematically understate

sales early on, but then overstate last-minute sales when consumers without seat

assignments are assigned seats. Ideally, the severity of measurement error can

be measured by matching changes in seat maps with bookings; however, this is

impossible with publicly available data.

I perform two analyses to gauge the magnitude of the measurement error in

using seat maps.

Figure 16: Estimated Seat Map Measurement Error at the Monthly Level
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Note: Measurement error estimated by comparing monthly enplanements, using the T100 Tables and aggregating seat maps
to the monthly level. The solid line reflects zero measurement error.

First, I match monthly enplanements using my seat maps aggregated on the the

day of departure with actual monthly enplanements reported in the T100 Segment

tables. These tables record the total number of monthly enplanements by airline

and route. I make two adjustments. First, because I do not observe first class

cabins in the 2012 sample, I assume first class goes out at 100% full and subtract

off this passenger number using the size of the first class cabin as recorded from

the plane types in the T100. Second, because the number of observed flights

can differ, e.g., due to cancellations, flight number changes cause data collection
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to end, or flights are not tracked for 60 days, I reconcile any differences in the

number of departures by adding or subtracting the average observed flight load

times the count difference. In Figure 16, I provide a scatter plot that compares the

two statistics. Most points closely follow the 45-degree line, and I find seat maps

overstate recorded enplanements, with the median difference being three percent.

Some of this difference could be driven by last-minute cancellations.

Second, I create a new data set that allows me to estimate seat-map measurement

error for each day before departure. The mobile version of United.com allowed

users to examine seat maps for upcoming flights. In addition, for premium cabins,

the airline reports the number of consumers booked into the cabin. I randomly

select flights, departure dates, and search dates in 2012. In total, I obtain 15,567

observations. With these data, I find that seat maps understate reported load factor

by 2.3 percent, or around one to two seats on average.

Figure 17: Estimated Seat Map Measurement Error by Day Before Departure
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Note: Measurement error estimated by comparing seat maps with reported load factor using the United Airlines mobile
website. The dots correspond to the daily mean, and the line corresponds to fitted values of an orthogonal polynomial
regression of the fourth degree. Total sample size is equal to 15,567, with an average load factor of 70.7 percent.

I plot the average measurement error by day before departure as well as a

polynomial smooth of the data in Figure 17. I find the difference ranges between

zero to five percent across days, or at most four seats. This suggests seat maps are

useful for recovering bookings as the departure date approaches.
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D Evidence of Dynamic Demand in Airline Markets

There are noticeable jumps in prices over time, however, the booking curve for

flights is smooth. If consumers are aware that fares tend to increase sharply around

APD requirements, and they can strategically enter into the market, we should

expect to see bunching in sales before APDs expire and few sales after expiration.

I investigate bunching (strategic purchasing timing) by modeling the booking

curve as a function of time and include dummy variables for the day-before-

departure (DFD) times immediately before AP fare expires. Table 9 reports regres-

sion results under three fixed effects specifications. I find insignificant bunching

at the fourteen-day AP expiration. I find negative bunching at the three-day and

twenty-one-day AP expiration, meaning sales are lower prior to the price increases.

Finally, I find a positive and significant coefficient for the seven-day AP require-

ment; that is, sales are higher before the usual seven-day fare increase. It may be

that at least some consumers anticipate price hikes and time their purchases ac-

cordingly. For example, Li, Granados, and Netessine (2014) estimate that between

5 and 20 percent of consumers dynamically substitute across days.

I also investigate the incentive to wait by changing the estimated model in the

following way: after consumers arrive, each consumer has the option to buy a

ticket, choose not to travel, or wait one additional day to decide. By choosing to

wait, each consumer retains her private valuations (the ε’s) for traveling but may

be offered a new price tomorrow. Consumers have rational expectations regarding

future prices. However, in order to wait, each consumer has to pay a transaction

cost φi. This cost reflects the disutility consumers incur when needing to return to

the market in the next period.

I derive a waiting cost φ such that if all consumers have a waiting cost at least

as high as φ, then no one will wait. I then calculate the transaction costs.

Dropping the i, t, s subscripts, the choice set of a consumer arriving at time t in
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Table 9: Consumer Bunching Regressions

(1) (2) (3)
APD3 -0.504∗∗ -0.502∗∗ -0.502∗∗

(0.144) (0.142) (0.142)

APD7 0.200∗ 0.202∗ 0.201∗
(0.0725) (0.0697) (0.0697)

APD14 -0.0717 -0.0720 -0.0719
(0.0459) (0.0414) (0.0413)

APD21 -0.131∗ -0.131∗ -0.130∗
(0.0412) (0.0397) (0.0397)

m(t) Yes Yes Yes

OD FE Yes Yes −

Month FE Yes Yes −

D.o.W. Search FE No Yes Yes

D.o.W. Departure FE No Yes −

Flight FE No No Yes
Observations 738,625 738,625 738,625
R2 0.609 0.618 0.748
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. m(t) is a sixth-order polynomial
in days before departure, D.o.W. stands for day-of-week indicators for the day
the flight leaves and the day of search. OD-Month clustered standard errors in
parentheses.

a model of waiting is

max
{
ε0, β − αp + ε1,EUwait

− φ
}
,

where EUwait is the expected value of waiting one more period. This expected

utility can be written as

EUwait = E
[

max{ε0, β − αpt+1 + ε1}
]
.
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To derive φ, I first investigate the decision to wait for the marginal consumer, or

the consumer such that ε0 = β − αp + ε1. This consumer has no incentive to wait

if the price tomorrow is at least as high as today. If the price drops, the gain from

waiting is

ut+1 − ut = (β − αpt+1 + ε1) − (β − αp + ε1)

= α(p − pt+1).

For this marginal consumer, the expected gains from waiting are

Pr
(
pt+1 < p

)
E
[
α(p − pt+1)

∣∣∣∣ pt+1 < p
]
.

Hence, an indifferent consumer will not wait if φi > φ = Pr
(
pt+1 < p

)
E
[
α(p −

pt+1) | pt+1 < p
]
. This leads to the following proposition.

Proposition: With φ = Pr
(
pt+1 < p

)
E
[
α(p − pt+1) | pt+1 < p

]
, then all consumers will

choose not to wait.

Proof: Take a consumer who wants to purchase today, i.e., ε0 < β − αp + ε1. Then

there exists a p > p such that ε0 = β − αp + ε1. The expected gain for this consumer

waiting comes from prices dropping below pt and from price increases up to the

indifference point. If prices increase past p, then ε0 is preferred and there is no gain.

Hence, the expected gains from waiting are

Pr
(
pt+1 < p

)
E
[
α(p − pt+1)

∣∣∣∣ pt+1 < p
]

+ Pr
(
p < pt−1 ≤ p

)
E
[
α(p − pt+1)

∣∣∣∣ p < pt+1 ≤ p
]
− φ.

The first term above is equal to φ, and the second term is less than or equal to zero.

Hence, waiting is not optimal for a consumer wishing to buy today.

Next, consider a consumer who prefers not to buy a ticket today, i.e., ε0 >

β − αp + ε1. Then there exists a p < p such that ε0 = β − αp + ε1. The gains from
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waiting come from price declines lower than the cutoff, and are equal to

Pr
(
pt+1 < p

)
E
[
β − αpt+1 + ε1 − ε0

∣∣∣∣ pt+1 < p
]
− φ.

Applying the definition of φ, this is equivalent to

Pr
(
pt+1 < p

)
E
[
β − αpt+1 + ε1 − ε0

∣∣∣∣ pt+1 < p
]
− Pr

(
pt+1 < p

)
E
[
α(p − pt+1) | pt+1 < p

]
.

Define EG to be the expression above. Since p ≤ p, we have

EG ≤ Pr
(
pt+1 < p

)(
E
[
β − αpt+1 + ε1 − ε0

∣∣∣∣ pt+1 < p
]
− E

[
α(p − pt+1)

∣∣∣∣ pt+1 < p
])

≤ Pr
(
pt+1 < p

)(
E
[
β − αpt+1 + ε1 − ε0

∣∣∣∣ pt+1 < p
]
− E

[
α(p − pt+1)

∣∣∣∣ pt+1 < p
])
.

Moving the expectation operator, the last line above equals

Pr
(
pt+1 < p

)
E
[
β − αpt+1 + ε1 − ε0 − α(p − pt+1)

∣∣∣∣ pt+1 < p
]
,

which can be simplified to Pr
(
pt+1 < p

)
Pr

(
pt+1 < p

)(
β − αp + ε1 − ε0

)
≤ 0, since

β − αp + ε1 − ε0 < 0 by assumption. Hence, waiting is not optimal for a consumer

wishing to not buy today. �

For consumers who would purchase today, the gains from waiting are equal

to φ, but there is an additional cost if prices rise. Hence, waiting is not optimal.

For consumers who would prefer not to buy, the expected gains of waiting are

negative.

In monetary terms, φ/α = Pr
(
pt+1 < p

)
E
[
(p−pt+1)

∣∣∣∣ pt+1 < p
]

defines a transaction

cost such that waiting is never optimal. For these costs to be calculated, the

information set of consumers needs to be defined. I assume consumers form

expectations given current prices and time, but they do not forecast the changes in

number of seats remaining across time. This seems reasonable given that remaining
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capacity is not reported to consumers. With these assumptions, I find the median

and mean transaction costs to be $5.85 and $5.75, respectively. These costs are based

on the most extreme case—the consumer who is indifferent between purchasing

today or delaying the decision.

E Additional Counterfactuals

E.1 Initial Capacity and Approaching Static Pricing

I compute optimal dynamic prices and simulate outcomes for a wide range of initial

capacity values in order to investigate how large initial capacity has to be in order

for static pricing to be a reasonable approximation of the environment.

Figure 18: Initial Capacity Counterfactual
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Note: The left panel shows the percentage change in quantity sold by increasing the initial capacity constraint by one (dotted
blue). Also show are expected revenues by initial capacity constraint (dashed grey). The black vertical line shows the
(weighted) average initial capacity observed in the data. The black dot shows expected revenues under this capacity. The
grey square shows expected revenues with six fewer seats. The blue triangle shows expected revenues in the first instance
when the percentage change in quantity sold is less than 0.5%. The right panel shows average prices over time for those
three scenarios (average less ten, average, and the limiting case).

I demonstrate the counterfactual exercise in Figure 18. In the left panel, the hor-

izontal axis is the initial capacity condition. The left vertical axis is the percentage

change in sales from increasing the initial capacity constraint by one. The right

vertical axis plots total expected revenues by initial capacity. The (grey) vertical

line depicts the average observed initial capacity. The (light orange) square denotes
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revenues with six fewer seats than the average (a row of a plane); the (orange) tri-

angle denotes the minimum initial capacity such that approximate a static pricing

model (revenues are within 0.5 percent).

The right panel plots average prices over time for the three initial capacities

just described. The dashed blue (triangle) line shows the limiting case, where

dynamic prices correspond to static prices. If the firm starts with fewer initial

seats, realizations of demand impact prices.

I repeat this exercise for all markets then compare initial observed capacities to

the calculated thresholds. I find that 31.9 percent of the observed flights can be

approximated by static pricing.

E.2 Frequent Price Adjustments

I explore the use dynamic pricing, with the restriction that prices must be main-

tained for k days. I conduct six counterfactuals, corresponding to k = 2, 3, 6, 10, 20, 30.

Figure 19: The Role of Frequent Price Adjustments
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Note: Revenue drop relative to dynamic (daily) pricing for all markets. For example, 3-Day corresponds to firms utilizing
dynamic pricing, but restricting the number of price updates to 3-day intervals.

In Figure 19, I plot the revenue loss compared to daily re-optimization. I esti-

mate that the ability to update prices just once reduces the revenue loss compared
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uniform pricing by more than half (30-day adjustments). An additional price ad-

justment yields another 1.3 percent gain. Re-optimization with time intervals less

than one week long result in similar revenues, meaning several demand shocks

can be observed before re-optimization is required.
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