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Abstract

We provide an introduction to the recent developments in dynamic mechanism design,

with a primary focus on the quasilinear case. First, we describe socially optimal (or effi cient)

dynamic mechanisms. These mechanisms extend the well-known Vickrey-Clark-Groves and

D’Aspremont-Gérard-Varet mechanisms to a dynamic environment. Second, we discuss rev-

enue optimal mechanisms. We cover models of sequential screening and revenue maximizing

auctions with dynamically changing bidder types. We also discuss models of information man-

agement where the mechanism designer can control (at least partially) the stochastic process

governing the agents’types. Third, we consider models with changing populations of agents

over time. After discussing related models with risk-averse agents and limited liability, we con-

clude with a number of open questions and challenges that remain for the theory of dynamic

mechanism design.
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1 Introduction

In the analysis of economic environments in which information is dispersed amongst agents, the

paradigm of mechanism design has been developed to analyze questions of optimal information

collection and resource allocation. The aim of these models is to come up with a framework that

is suffi ciently flexible to treat applications in various fields of economics yet precise enough to yield

concrete insights and predictions. Over the last decade, the mechanism design approach has been

applied to a variety of dynamic settings. In this survey, we review the basic questions and modeling

issues that arise when trying to extend the static paradigm to dynamic settings. We do not aim

at maximal generality of the results that we present but we try to bring out the main ideas in the

most natural settings where they arise.

By far the best-understood setting for mechanism design is the one with independent private

values and quasilinear payoffs. Applications of this model include negotiations, auctions, regulation

of public utilities, public goods provision, nonlinear pricing, and labor market contracting, to name

just a few. In this survey, we concentrate for the most part on this simplest setting.

It is well-known that in dynamic principal-agent models, private information held by the agent

requires the optimal contract to a long-term arrangement, one that cannot be replicated by a

sequence of short-term contracts, this is due the "ratchet effect". We follow the literature on static

mechanism design by allowing the principal to commit at the beginning of the game to a contract

that covers the entire length of the relationship.

The leading example for this survey is the problem of selling a number of goods—possibly limited—

over time as the demand for the goods evolves. The dynamics that arise in such problems pertain

both to the evolution of the willingness-to-pay as well as to the set of feasible allocations over

time—through a variety of natural channels:

(i) The sales problem may be non-stationary because the goods have either a fixed supply or an

expiry date like airline tickets for a particular flight date and time. The key feature here is that

the opportunity cost of selling a unit of the good today is determined by the opportunities for

future sales. Markets where such concerns are important, such as for airline tickets, have recently

witnessed a number of new pricing practises: frequently changing prices and options for buyers

to reserve a certain price for a given period of time. A vast literature under the heading revenue

management in operations research tackles applied problems of this sort.

(ii) Realized sales today help predict future sales if there is uncertainty about the rate at which

buyers enter the market. Professional and college sports teams base their prices for remaining tick-
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ets on the sales to date. This form of dynamic pricing is used for concert tickets, hotel booking and

transportation services, such as the surge pricing of Uber.

(iii) The valuations of the buyers may evolve over time as they learn more about the product by

using it or by observing others. Cheap trial periods for online services are a particular form of

intertemporal price discrimination in this setting.

(iv) The cost of serving the market may change over time due to exogenous improvement in tech-

nology or through learning by doing.

The general model that we consider will encompass all of these different trading environments.

We cover the optimal timing of a single sale as well as repeated sales over the time horizon. In all of

the above applications, the types of some agents and/or the set of allocations available change in a

non-trivial manner across periods. For us, this is the distinguishing feature of dynamic mechanism

design.

The techniques of dynamic mechanism design have witnessed a rapid increase in use in many

market places over the past decade, often under the term "dynamic pricing”. The essence of

dynamic pricing is to frequently adjust the price of the object over time in response to changes in

the estimated demand. The optimal price is commonly adjusted through an algorithm that responds

to temporal supply and demand conditions, time, competing prices and customer attributes and

behavior. The adoption of dynamic pricing strategies (particularly in e-commerce, e.g. Amazon)

is facilitated by the rapid increase in real-time data on market conditions and customer behavior,

which are used to condition the price and allocation policies.

Beyond the dynamic pricing of individual items, sophisticated dynamic contracts appear to

be increasing in use as well. Airlines now frequently offer option contracts to allow customers to

secure a certain fare for a fixed time period before they purchase the product, a "fare lock". Many

subscriptions services offer a trial period with a low price before the price resets at a higher level.

A different class of applications of dynamic mechanism design arises in such common situations

as the pricing of memberships, such as fitness clubs, or long-term contracts, such as mobile phone

contracts or equipment service contracts. At any given point in time, the potential buyer knows

how much she values the service, but is uncertain about how future valuations for the service

may evolve. From the point of view of the service provider, the question is then how to attract

(and sort) the buyers with different current and future valuations for his services. The menu of

possible contracts presumably has to allow the buyers to express their private current willingness-to-
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pay as well as their expectations over future willingness-to-pay. A variety of dynamic contracts are

empirically documented, for example in gym memberships and mobile phone contracts, as described

in DellaVigna and Malmendier (2006) and Grubb and Osborne (2015), respectively. These include

(i) flat rates, in which the buyer only pays a fixed fee regardless of her consumption; (ii) two-

part-tariffs in which the buyer selects from a menu of fixed fees and variable price per unit of

consumption; and (iii) leasing contracts where the length of the lease term is the object of choice

for the consumer. We will highlight in Section 5 how these and other features of observed contract

varieties may arise as solutions to dynamic mechanism design problems.

Since we insist on full commitment power throughout this survey, we bypass the vast literature

on Coasian bargaining that has the lack of commitment at its heart. Similarly, we do not consider

contract dynamics resulting from renegotiation. Since both the seller and the buyer commit to the

mechanism, we also restrict the type of participation constraints that we allow. In particular, we

do not try to give full analysis of models where the buyer’s outside option changes over time as

in Harris and Holmstrom (1982). Dynamic games where the players engage in interactions while

their payoff relevant types are subject to stochastic changes are closely related to the material in

this survey.1 Since the analysis of such games requires sequential rationality on part of all players,

our focus on the optimal commitment solutions for the designer rules them out of the scope of this

survey. This survey will also not include a comprehensive review of the recent work on dynamic

taxation and dynamic public finance, a line of research that has a strong focus on strictly concave

rather than quasilinear payoffs. However in Section 7, we shall provide connections between theses

two classes of payoff environments and comment on the similarities and differences in the analysis

and the results.

Our aim in writing this survey is twofold. We want to give an overview of the tools and techniques

used in dynamic mechanism design problems in order to give the reader an understanding of the

scope of applications that can be tackled within this framework. We give a number of examples

where the optimal solution can be fully characterized. For many interesting dynamic contracting

problems, finding optimal incentive compatible mechanisms is beyond the scope of the currently

available techniques. In such cases, one must look for partial solutions or approximate solutions.

Second, we want to present and discuss the recent literature in this area.

We begin with mechanisms that achieve a socially effi cient allocation. A dynamic version of

1In repeated and dynamic games, the vector of continuation payoffs plays the role of monetary transfers in

mechanism design problems.
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the pivot mechanism gives each agent a private payoff equal to her marginal contribution to the

utilitarian social surplus. A mechanism that has this property is attractive since it gives each

agent the societally optimal incentives to make private investments. In a dynamic context, such

investments could generate more accurate valuations or reduce future costs. We give a simple

formula for the periodic payments that support the effi cient allocation rule. In contrast to optimal or

revenue maximizing mechanisms, the dynamic pivot mechanism does not rely on strong assumptions

about commitment or constant outside options.

For the case of revenue maximizing mechanisms, the central trade-off in the static case is between

social surplus and information rent going to the agent. We investigate how far the well-known results

from the static model extend. In particular, we try to stay as close as possible to the best-understood

model where a principal offers a contract to a privately informed agent with a single-dimensional

type and with supermodular preferences over allocations and types. We see conditions where the

usual results of no distortions for the highest type agent and downward distortions for all other

agents hold. But sometimes the direction of the distortions may be reversed due to the type

dynamics.

On the more dynamic implications, one might guess that the part of private information held

by the bidders at the moment of contracting is the only source of information rent. The rest of the

stochastic type process is uncertain to both the seller and the buyer, and after the initial report

the two parties share a common probability distribution on future types. We discuss a way of

formalizing this line of thought and we will see the extent to which this result holds.

One of the key implications for the revenue maximizing allocation stems from this intuition.

For most stochastic processes (e.g. ergodic and strongly mixing processes), knowing the value of

the process in period t tells us little about the value of the process in period t + k for k large.

Hence one might conjecture that the private information θ0 held by the agent at the moment of

signing the contract provides little private information about the valuation θt for large t. As a

result, distortions from the effi cient allocation path should vanish as t becomes large. This property

of the optimal allocation path is in fact quite robust. Whereas most of the analysis that we present

relies on arguments based on the envelope theorem (i.e. arguments depending on local optimality

of truthful reporting in the mechanism), the property of vanishing distortions holds also for a much

wider class of models where the so called first-order approach fails.

The third part considers models with changing populations of agents over time. Obviously

this part has no counterpart on the static side. It allows us to ask new questions relating to the
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properties of the payment rules. For example, with changing populations, it makes sense to require

that agents receive or make transfers only in the periods when they are alive. These restrictions lead

to interesting new findings about the settings where effi cient outcomes can be achieved. Another

novel finding in this literature is that having forward-looking buyers may sometimes be good for

the revenue maximization. This is very much in contrast with the typical Coasian reasoning and

also represents a novel finding relative to the literature on revenue management.

In the last substantive section of this survey, we briefly consider related models from public

finance and financial economics. The key departure in these models is the lack of quasi-linearity.

The models in dynamic public finance are primarily concerned with consumption smoothing over

risky outcomes. Hence the models feature agents with strictly concave utilities in consumption and

leisure. In addition to the possibility of having risk-averse decision makers, the models in financial

economics often feature a limited liability constraint on the transfer rules: owners can pay the

managers but managers cannot be asked to make (arbitrarily large) payments to the owners. We

discuss the similarities in the analysis and contrast the results of these models with the models

under quasilinear utility. Finally, we make some connections to the rapidly growing computer

science literature on mechanism design. Rather than concentrating on the properties of the optimal

mechanism for a fixed stochastic model, this literature seeks mechanisms that guarantee a good

payoff across a variety of different stochastic models.

The interested reader will find complementary material and more technical detail in the recent

textbooks by Börgers (2015) and Gershkov and Moldovanu (2014). We have also included a few

more technical observations in the Appendix. The earlier survey by Bergemann and Said (2011)

focuses on dynamic auctions, and the more recent survey by Pavan (2017) focuses on issues of

robustness and endogenous types. Bergemann and Pavan (2015) provide an introduction to recent

research in dynamic mechanism design collected in a symposium issue of the Journal of Economic

Theory. The textbook by Talluri and van Ryzin (2004) is a classic introduction into revenue

management from the operations research perspective.

2 The Dynamic Allocation Problem

2.1 Allocations, Preferences and Types

In this section, we present a dynamic and stochastic payoff environment that is general enough to

cover all the later sections. We consider a discounted discrete-time model with a finite or infinite
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ending date T . Each agent i ∈ {1, 2, ..., I} receives in each period t ≤ T a payoff that depends on

the current physical allocation xt ∈ Xt, the current monetary payment (or transfer) pi,t ∈ R, and
the private information

θt = (θi,t, θ−i,t) ∈ ×Ii=1Θi = Θ ⊂ RI .

Throughout this survey, we assume private values and quasilinear utilities. As a result, the Bernoulli

utility function ui of agent i takes the form:

ui (xt, pt, θt) , vi (xt, θi,t)− pi,t.

We assume that the type θi,t of agent i follows a controlled Markov process on the state space Θi.

The flow payoffs of the social planner are defined by:

u0 (xt, pt, θt) , v0 (xt) +
I∑
i=1

pi,t.

The set Xt of feasible allocations in period t may depend on the vector of past allocations

xt−1 , (x0, ..., xt−1) ∈ X t−1.

For example, the seller may only have K units of the object for sale, and a sale today diminishes the

number of available objects tomorrow. The dependence of the set of feasible allocations tomorrow

on the current feasible set and current allocation is denoted by a transition function g:

Xt+1 , g (Xt, xt) .

There is a common prior c.d.f. Fi,0 (θi,0) regarding the initial type θi,0 of each agent i. The

current type θi,t and the current action xt determine the distribution of the type θi,t+1 in the next

period. We assume that this distribution can be represented by a Markovian transition function

(or stochastic kernel)

Fi (θi,t+1 |θi,t, xt ) .

The utility functions ui and the transition functions Fi are all common knowledge at t = 0. At

the beginning of each period t, each agent i observes θi,t privately. At the end of each period, an

allocation xt ∈ Xt is chosen by the principal and payoffs for period t are realized. The asymmetric

information is therefore generated by the private observation of θi,t in each period t. To ensure that

all the expectations in the model are well defined and finite, we assume that

|vi (x, θi)| < K,

for some K <∞ for all i, x and θi.
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2.2 Possible Interpretations of Types

Up to now, we have been very general about the interpretation of θi,t. There are at least three

separate cases that deserve mention here. In the first, all agents are present in all periods of the

game, and their types evolve according to an exogenous stochastic process on Θi. In the second, all

agents are present in all periods, but their future types depend endogenously on current allocations.

In the third case, not all agents are present in all periods.

The first case seems appropriate for procuring goods over time from firms whose privately known

costs follow a stochastic process F (θi,t |θi,t−1 ). For example, we could take θi,t ∈ R, with

θi,t+1 = γθi,t + εi,t+1,

where the εi,t are i.i.d. shocks.

For an example of the second class of models, consider an employer i who learns privately about

the (firm-specific) productivity ωi of a given worker which is constant over time. In this case, a risk

neutral employer would compute the posterior distribution on i’s productivity:

θi,t , E [ωi |hi,t ] ,

where hi,t is the information set of firm i at time t. It makes sense to assume now that θi,t+1 depends

on θi,t and the allocation xt, in particular whether the worker was employed by firm i in period t

or not. Hence the type evolution is endogenous to the allocation problem.

At the cost of some notational inconvenience, we could have allowed the payoffs and the transi-

tions to depend on the full history of allocations: xt = (x0, ..., xt). It will become clear that none of

the results would change as a result of this more general formulation. Hence we can accommodate

other endogenous models such as learning by doing where the production cost of a firm decreases

stochastically in its past cumulative production, or habit formation and preference for variability

over time.

The case where not all agents are present at all times requires a bit more discussion. An agent

may for example decide to wait in order to get a better deal on a purchase. If all agents are present

from the start, this case is covered by the previous two specifications. If agents arrive stochastically

over time, they can enter contracts only after arrival. We may then assume that the arrivals are

either private information to the agent or publicly observed. For the first case, we assume that each

agent i can have a particular type, the null type, 0 ∈ Θi for all i that we interpret as indicating

that the agent is not present. We assume that vi (xt, 0) = 0 for all i, xt, and that agents with type
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0 cannot make or receive any transfers. The interpretation is that i is born at the first time t = τ

where θi,t 6= 0 and hence his arrival time τ is private information to the agent. Alternatively, we

can assume each agent’s arrival time τ is publicly observable. In Section 6, we analyze and contrast

such models.

2.3 Dynamic Direct Mechanisms

In a dynamic direct mechanism every agent i is asked to report her type θi,t in every period t. We

say that the dynamic direct mechanism is truthful if the reported type ri,t ∈ Θi coincides with

the true type for all i, t after all histories of realized and reported types. The dynamic revelation

principle as first stated in Myerson (1986), and recently extended by Sugaya and Wolitzky (2017),

argued that there is no loss of generality in restricting attention to dynamic direct mechanisms

where the agents report their information truthfully.

The mechanism designer chooses how much of the information in the reports and allocations to

disclose to the players. In this survey, we assume that the physical allocation xt ∈ Xt is publicly

observed.2 It is clear that restricting the information available to agent i makes it easier to satisfy

the incentive compatibility constraints for that player. Hence it might be easier to achieve incentive

compatibility when other agents’past reports are kept secret. In all of the applications covered in

this survey, we can find an optimal mechanism where all past reports and all past allocations are

made public. In what follows we consider dynamic direct mechanisms that have this feature.

Let ri,t ∈ Θi denote the report of agent i in period t and let rt = (ri,t, r−i,t) be the vector of

reported types in period t. We denote the public history (xs, rs)s<t at period t by ht ∈ Ht. When

agent i chooses her report in period t, she knows her own type θi,t, and all her past realized types.

In the Markovian setting, the only payoff relevant private information is her current type and hence

we let the private history of agent i be hi,t = (θi,t, ht) ∈ Hi,t. A reporting strategy ri = (ri,t)
T
t=1 for

agent i is given by

ri,t : Θi ×Ht → Θi.

A dynamic direct mechanism (x,p) = (xt, pt)
T
t=1 assigns physical allocations and transfer pay-

2In some cases such as allocating a fixed capacity over time, each player is only informed of her own allocation

and the number of remaining units may be kept secret.
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ments to the agents as a function of their current reports and the public history:

xt : Θ×Ht → Xt,

pt : Θ×Ht → RI .

Notice that the reporting strategy r and the allocation process x induce a stochastic process for the

sequence of types through the transition probability F (θt+1 |θt, xt (rt (θt))) .We shall be particularly

interested in truthful reporting strategies. For this purpose, let r̂ denote the reporting strategy profile

where

ri,t (hi,t) = θi,t.

for all i, t, hi,t.

The physical allocation rule x, and any vector r−i of reporting strategies for agents other than

i induce a Markovian decision problem for agent i with the dynamic programming formulation:

Vi,t (θi,t, ht; r−i) = max
ri,t

E[vi

(
xt

(
ri,t, r−i,t

(
θ̃−i,t, ht

)
, ht

)
, θi,t

)
− pi,t

(
ri,t, r−i,t

(
θ̃−i,t, ht

)
, ht

)
+δVi,t+1

(
θ̃i,t+1, h̃t+1; r−i

)
|θi,t, ht ].

We designate a random variables, such as θ̃i,t by tilde. The expectation above is taken with respect

to the stochastic process {θ̃t} induced by the transition probability F, by the allocation rule x
and by the reporting strategy r. For the remainder of the paper we shall suppress the time index

when the conditioning variable implicitly defines the time index for the relevant function. Thus for

example, we will write Vi (θi,t, ht; r−i) rather than Vi,t (θi,t, ht; r−i), and x
(
ri,t, r−i,t

(
θ̃−i,t, ht

)
, ht

)
rather than xt

(
ri,t, r−i,t

(
θ̃−i,t, ht

)
, ht

)
.

We define

Vi (θi,t, ht) , Vi (θi,t, ht; r̂−i)

to be the value function of agent i under truthful reporting by the other agents. We say that (x,p)

is Bayes-Nash implementable if for all i, t, ht,

θi,t ∈ arg max
ri,t

E
[
vi

(
x
(
ri,t, θ̃−i,t, ht

)
, θi,t

)
− pi

(
ri,t, θ̃−i,t, ht

)
+ δVi

(
θ̃i,t+1, h̃t+1

)
|θi,t, ht

]
.

Thus, taking the expectation over the other agents’true type realization truth-telling in every period

and after every history is an optimal strategy for agent i.
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We will sometimes refer to a stronger notion of implementability, called periodic ex post imple-

mentability. To define this notion, we let

Vi (θt, ht) , max
ri,t

{
vi (x (ri,t, θ−i,t, ht) , θi,t)− pi (ri,t, θ−i,t, ht) + δE

[
Vi

(
θ̃t+1, h̃t+1

)
|θt, ht

]}
.

Observe that the value function is now defined on the entire set of type vectors, θt, and public histo-

ries, rather than just the individual type θi,t. A mechanism (x,p) is periodic ex post implementable

if for all i, t, θt, ht :

θi,t ∈ arg max
ri,t

{
vi (x (ri,t, θ−i,t, ht) , θi,t)− pi (ri,t, θ−i,t, ht) + δE

[
Vi

(
θ̃t+1, ht+1

)
|θt, ht

]}
.

Whenever (x,p) is periodic ex post implementable, no agent wants to change her report after

learning the contemporaneous reports of the other agents. This means that as in the static setting,

ex post implementation is a solution concept that is stronger than Bayes Nash implementation but

weaker than dominant strategy implementability.

3 Effi cient Dynamic Mechanisms

We begin the analysis by describing three dynamic mechanisms that attain the intertemporally

effi cient allocation in the presence of private information arriving over time: (i) the teammechanism,

(ii) the dynamic pivot mechanism and (iii) the dynamic AGV mechanism. We illustrate these

mechanisms by considering allocating a fixed number of objects over time.

3.1 The Team Mechanism

We start by constructing a simple mechanism that makes truthful reporting incentive compatible in

the sense of periodic ex post incentive compatibility. In this mechanism, called the team mechanism,

the agents will have the right incentives to report their types truthfully as their payoff is the entire

social surplus generated in the allocation problem. Hence the right place to start the construction

is the social planner’s optimal allocation problem with publicly observable types. The utilitarian

welfare maximization, including all agents and the principal, solves the following program:

W (θ0, X0) , max
{xt∈Xt}Tt=0

E

{
T∑
t=0

δt
I∑
i=0

vi (xt, θi,t)

}
,
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where the expectation is taken with respect to F (θt+1 |θt, xt ) and the feasibility condition xt ∈ Xt

for all t. Notice, that we allow the value function in period 0 (and in all future periods) to depend

explicitly on the set of feasible allocations. We define the social flow payoff as:

w (xt, θt) ,
I∑
i=0

vi (xt, θi,t) .

We can write this in terms of a dynamic program:

W (θt, Xt) = max
xt∈Xt

{w (xt, θt) + δEW (θt+1, Xt+1)} ,

subject to the transition function of the state

θt+1 ∼ F (· |θt, xt )

and the feasibility constraint:

Xt+1 = g (Xt, xt) .

Let x∗t (θt, Xt) denote an optimal policy for this program.

As in the static setting, periodic ex post incentive compatibility follows if we give each agent

the entire social surplus. By the one-shot deviation principle, it is suffi cient to set for all i and all

θt :

p∗i (ri,t, r−i,t) = −
∑
j 6=i

vj (x∗ (ri,t, r−i,t) , rj,t) , −w−i (rt) .

In other words, each agent is paid in each period the effi cient gross surplus that the other agents

receive at the effi cient allocation.

Up to now, we have allowed correlated types, and in fact, (x∗,p∗) is periodic ex post incentive

compatible for correlated as well as for independent types. Strengthening the notion of incentive

compatibility to dominant strategies is unfortunately not possible. The easiest way to see this is

to notice that opponents’ future reports depend on past allocations (and possibly also on other

agents’past reports). To ensure the implementability of effi cient allocations in all future periods, a

Vickrey-Clark-Groves (VCG) term w−i (rs) must be included in all future transfers.

We emphasize that we only ensure periodic ex post incentive compatibility, but not dominant

strategy incentive compatibility. We illustrate by means of an example in Section 3.3 that the

notion of dominant strategy incentive compatibility is typically too demanding in dynamic settings.

For periodic ex post incentive compatibility, we can also allow for interdependent types between

the players as long as the payoff consequences to i resulting from information of player j become
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observable at some later point in time.3 Unfortunately, the team mechanism results in a deficit of

size (I − 1)W0 (θ0, X0) . In the next two subsections, we consider effi cient mechanisms that reduce

and sometimes eliminate this deficit. We shall see that modified versions of the pivot mechanism

and the D’Aspremont-Gérard-Varet (AGV) mechanism in the static setting perform well within the

dynamic environment.

3.2 Leading Example: Sequential Allocation of Fixed Capacity

Throughout this survey, we illustrate the results with the following sequential allocation problem.

There is a fixed supply of goods given at t = 0 and there is uncertainty about the demand which is

realized stochastically over time.

There is supply of K identical units of the good and I potential bidders, each with unit demand,

over two periods, t ∈ {1, 2}. For each i ∈ I , {1, ..., I}, we let xi,t = 1 denote the event that a

good is allocated to agent i in period t, otherwise xi,t = 0. The allocation is once and for all: after

one of the goods has been allocated to i, it cannot be taken away and allocated to another bidder.

By xt, we denote the vector of allocation decisions in period t. The capacity constraint states that

ΣtΣixit ≤ K.

At the beginning of period 1, each bidder observes his type θi,1 ∈ [0, 1]. The type θi,2 ∈ [0, 1] in

period t = 2 depends on the vector of realized types in period 1, θ1. In a dynamic direct mechanism,

the agents report their realized types in each period. The allocation rule depends on both of these

announcements. The payoff of agent i in the mechanism is Σtδ
t−1 (θi,txi,t − pi,t) .

We denote the number of unallocated goods in period t = 2 by K2 = K − Σixi1. Effi cient

allocation in t = 2 requires allocating the K2 units to those bidders that have the highest θi,2
amongst the ones with xi,1 = 0. Solving for the effi cient allocation in t = 1 is not trivial even in

this simple allocation problem. Let I1 denote the set of bidders that receive the good in period 1

and let K1 denote the number of goods allocated in t = 1. Let I2 = I\I1, and we can write the

value function for the effi cient period 2 allocation as:

W2 (θ2, I2, K2) = max
{xi,2}

Σi∈I2θi,2xi,2,

subject to Σixi,2 ≤ K2. Similarly, for the first period, we can write

W1 (θ1, I, K) = max
{xi,1}

E[Σi∈Iθi,1xi,1 + δW2 (I2, K −K1) |θ1 ],

3In this way, the team mechanism can be extended to cover the mechanisms first displayed in Mezzetti (2004).
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subject to Σixi,1 = K1

The first period decision fixed first the number K1 to be allocated in t = 1 and then asks how

to optimally choose the identities of the K1 agents to receive the goods in t = 1. The next step

optimizes over K1. The hard step is obviously in determining the set of agents to receive the goods

in the first period. Unless we specify the model further, little can be said in general about the

features of the optimal allocation decision. The first period decision incorporates a few dynamic

considerations. Bidder i may be present only in t = 1, in which case θi,2 = 0, or alternatively she

could only arrive in t = 2, in which case we could take θi,1 = 0. Bidder i’s true valuation may be

learned in t = 2, in which case, we could set θi,2 ∼ Fi (· |θi,1 ). Nevertheless, since the allocation

choices are finite in the above problem, an optimal allocation policy x∗ exists and it is easy to see

that by setting

p∗i,t (ri,t, r−i,t) , −w−i (rt) ,

the mechanism (x∗,p∗) is periodic ex post incentive compatible.

3.3 Impossibility of Dominant Strategy Implementation

We first illustrate the impossibility of implementing the effi cient allocation rule in dominant strate-

gies by specifying the above example even further.

We consider two bidders, thus I = 2, who compete for a single object, thus K = 1, in a two-

period model. We suppose further that bidder 1 draws a valuation θ1 uniformly from [0, 1] in period

1. Her valuation for the good remains unchanged (but is discounted) in period 2. Bidder 2 is active

only in period 2 in the sense that her valuation for allocation in t = 1 is 0 with probability 1. Her

valuation θ2 in period t = 2 is independent of the valuation of bidder 1 and also drawn from the

uniform distribution on [0, 1]. The allocation decision is non-trivial in t = 2 only if the good was not

allocated in t = 1, i.e. if K2 = 1. In this case, x∗1,2 (r) = 1 and x∗2,2 (r) = 0 if r1,1 ≥ r2,2, otherwise

x∗1,2 (r) = 0 and x∗2,2 (r) = 1.

The effi cient allocation in t = 1 gives:

x∗ (θ1) = 1⇔ θ1 ≥ δE
[
max{θ1, θ̃2}

]
,

which results in a threshold value θ∗ to allocate the object to the first bidder in the first period if :

θ1 > θ∗ =
1

δ
−
√

1

δ2 − 1.
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The threshold θ∗ is strictly increasing in the discount factor δ as the future realization of θ2 provides

a greater option value with a higher discount factor.

Green and Laffont (1977) and Holmstrom (1979) show that the transfer rules for effi cient mecha-

nisms are uniquely pinned down (up to a constant) when the type sets are path-connected. Combin-

ing this with the logic of VCG mechanisms allows us to conclude that in t = 1, the expected transfer

of bidder 1 depends on her reported type r1,1 only through its impact on the effi cient allocation:

E [p1 (r1,1, r2,2)] = −E[δr2,2x
∗
2,2 (r1,1, r2,2) + φ1 (r2,2)] (1)

where the (arbitrary) component function φ1 (r2,2) that enters the price p1 depends only on the

report of bidder 2.

The payment p1 of bidder 1 displays no interaction between his report and the report of bidder

2 beyond their joint effect on the payoff to bidder 2 in the effi cient allocation rule, the first term

on the rhs of (1). Now, in order to secure the effi cient decision in period t = 1, the transfer in

equation (1) must be calculated using the truthful reporting strategy for bidder 2 (and hence the

true distribution of θ2) in t = 2.

But now we can show that these transfers can’t possibly implement truthful reporting as a

dominant strategy for player 1. To see this, suppose that bidder 1 expects that bidder 2 does not

report truthfully, but rather reports r2,2 = 0 for all θ2, and thus

E[r2,2x
∗
2,2 (r1,1, r2,2)] = 0.

Now truthful reporting does not constitute an optimal report in period t = 1. Under this candidate

reporting strategy of bidder 2 and given the payment rule, bidder 1 would optimally exaggerate her

type in period t = 1 and report r1,1 > θ∗ for all valuation θ1 > 0 since she would prefer an early

allocation of the object, or

θ1 > δθ1,

and given her expectation about the reporting strategy of bidder 2, she would not forego any

compensation she might have received if the object were to be allocated to bidder 2 in period 2.

Thus, dominant strategy implementation is impossible to guarantee even in this elementary two

period allocation problem.

Notice that a similar impossibility argument would emerge if bidder 1 would expect bidder 2 to

report r2,2 = 1 for all θ2. In this case, bidder 1 would not report truthfully but rather downward

misreport in order to obtain the compensatory payments due to the high report of bidder 2 since

now bidder 1 would expect to get E[r2,2x
∗
2,2 (r1,1, r2,2)] = 1.
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Thus, in dynamic mechanism design problems incentive compatibility in dominant strategies is

too demanding. This example also shows that implementing the effi cient allocation rule will typically

not be detail-free, and in particular will depend on the common prior regarding the distribution

of the types. In the current example, the effi cient allocation decisions in the initial period (the

computation of θ∗) depended on the distribution of future types, and as a result, the optimal

mechanism—in particular the transfer function—also reflects the informational details of the valuation

process.4

3.4 The Dynamic Pivot Mechanism

For the remainder of this section, we concentrate on two particular effi cient mechanisms that have

further desirable properties. We begin with the dynamic pivot mechanism, introduced in Bergemann

and Välimäki (2010), which ensures that each agent’s payoff in the mechanism corresponds to her

marginal contribution to the societal welfare after all histories. In the dynamic pivot mechanism, all

agents have the correct societal incentives to engage in private investments in e.g. increasing their

own payoffs through cost-reducing investments. In the next subsection, we consider the dynamic

counterpart of the AGV mechanism where the focus shifts towards budget balance. For dynamic

bargaining processes and dynamic problems of public goods provision, these considerations are of

obvious importance just as they are in the static case.

We now construct the dynamic pivot mechanism for the general model described in Section 2

under the assumption of independent private values. We give an example in the Appendix showing

that dynamic pivot mechanisms do not always exist if the values are correlated. We recall that in

the static pivot mechanism—introduced by Green and Laffont (1977)—the transfers are constructed

as follows:

pi (θ) = −
∑
j 6=i

vj (x∗ (θ) , θj) +
∑
j 6=i

vj
(
x∗−i (θ−i) , θj

)
, (2)

where x∗−i (θ−i) is the optimal allocation if agent i is not participating, thus

x∗−i (θ−i) ∈ arg max
xt∈Xt

∑
j 6=i

vj (xt, θj,t) .

4The failure of dominant strategy implementability in dynamic mechanism is hence comparable to the failure of

static AGV mechanism to be dominant strategy incentive compatible. In both instances, it is critical to use the

same expectations regarding the behavior of the other agents in the determination of the effi cient rule and in the

computation of expected payments for an individual agent.
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The idea behind the pivotal transfers is to equate each agent’s expected payoff to her expected

contribution to the social value. At state (θt, Xt) , we compute the (dynamic) marginal contribution

of agent i:

Mi (θt, Xt) , W (θt, Xt)−W−i (θt, Xt) ,

where W and W−i are the value functions of social surpluses with and without i in the society (in

all future periods), respectively.

In the dynamic pivot mechanism, we show that the marginal contribution will also be equal

to the equilibrium payoff that agent i can secure for herself along the socially effi cient allocation.

If agent i receives her marginal contribution in every continuation game of the mechanism, then

she should receive the flow marginal contribution mi (θt, Xt) in each period. The flow marginal

contribution accrues incrementally over time and is defined recursively:

Mi (θt, Xt) = mi (θt, Xt) + δEMi (θt+1, Xt+1) . (3)

A monetary transfer p∗i (θt, Xt) such that the resulting flow net utility matches the flow marginal

contribution leads agent i to internalize her social externalities:

p∗i,t (θt, Xt) , vi (x
∗
t , θi,t)−mi,t (θt, Xt) . (4)

We refer to p∗i (θt, Xt) as the transfer of the dynamic pivot mechanism. Notice that in contrast

to the static transfer payment, the reported type of agent i has also an indirect effect through

δEW−i (θt+1, Xt+1).5 This reflects the intertemporal internalization of future externalities that is

necessary for aligning the incentives with the planner’s dynamic optimum. Given that we started

our construction from the requirement that each agent receives her full marginal contribution

W (θt, Xt)−W−i (θt, Xt) , we are obviously in the realm of (dynamic) VCG mechanisms.

Theorem 1 (Dynamic Pivot Mechanism)

The dynamic pivot mechanism {x∗t , p∗t}
∞
t=0 is ex-post incentive compatible and individually rational.

It should be noted that as in any dynamic context, it is hard to pin down the exact timing

of payments. Making a payment of p in period t has the same payoff consequences as making a

payment of p/δ in t + 1. In Bergemann and Välimäki (2010), we give suffi cient conditions for the

uniqueness of the above payment rule. Similar to the static case (Moulin (1986)), these conditions

require a rich domain of possible preferences. In a dynamic context, this also requires an assumption

5Since W−i (θt, Xt) = maxxt∈Xt
{w−i (xt, θt) + δEW−i (θt+1, Xt+1)} .



18

that amounts to allowing the agents to leave the mechanism stochastically. By this we mean that

after leaving, no more transfers can be enacted.

The dynamic pivot mechanism has properties that other VCG schemes do not necessarily have.

All payments are online in the sense that once an agent is irrelevant for future allocations, she

is not asked to make any payments. Furthermore the property of equating equilibrium payoffs

with marginal contributions gives the individual agents the socially correct incentives to engage in

privately costly investments in θi. For a class of dynamic auctions, Mierendorff (2013) develops a

dynamic Vickrey auction that satisfies a strong ex post individual rationality requirement.

We illustrate how the payments in the dynamic pivot mechanism are computed for the leading

example of Section 3.2.

Example 1 (Dynamic Pivot Mechanism for Fixed Capacity Allocation)

We first compute the marginal contributions of the agents. If agent 1 is not present, then the expected

social surplus is the discounted expected value of the good to bidder 2, i.e. δ/2. The expected social

surplus at any moment in time when bidder 2 is not present is simply θ1. If the good has already been

allocated, then there is no social surplus for the continuation problem. Without loss of generality,

we can restrict attention to integer allocations, x ∈ {0, 1}. The marginal contribution of bidder 1

in period 1 and 2 are then:

M1 (θ1, 1) =

{
θ1 − δ/2, if x∗1,1 (θ1) = 1,

δEmax{θ1 − θ2, 0}, otherwise;

M1 (θ1, θ2, 1) = max{θ1 − θ2, 0};

and similarly for bidder 2 :

M2 (θ1, 1) =

{
0, if x∗1,1 (θ1) = 1,

δEmax{θ2 − θ1, 0}, otherwise;

and

M2 (θ1, θ2, 1) = max{θ2 − θ1, 0}.6

Using the implicit definition of the flow marginal contribution given by (3), we get

m1 (θ1, 1) =

{
θ1 − δ/2, if x∗1 (θ1) = 1,

0, otherwise.

By equating

p1 (θ1, 1) = v1

(
x∗i,t, θi,t

)
−mi,1 (θ1,1, 1) ,
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we get

p1 (θ1, 1) =

{
δ/2, if x∗1 (θ1) = 1,

0, otherwise.

Similarly,

p1 (θ1, θ2, 1) = θ2, if θ1 ≥ θ2, p1 (θ1, θ2, 1) = 0 otherwise;

p2 (θ1, θ2, 1) = θ1, if θ2 > θ1, p2 (θ1, θ2, 1) = 0 otherwise.

This suggests a simple indirect implementation of the effi cient two-period auction. Bidder 1 is given

the option of purchasing the good at the opportunity cost δ/2 of allocating the good in t = 1. If he

does not exercise the option, then the good is sold in a second price auction without reserve prices in

period 2. It should be noted that finding the right price for this indirect implementation is remarkable

easy in comparison to finding the effi cient threshold type θ∗.

More generally, it is quite easy to compute the direct version of the dynamic pivot mechanism

on the basis of the dynamic social surpluses using dynamic programming techniques. For example,

Bergemann and Välimäki (2003), (2006), use the construction of the dynamic marginal contribu-

tion to solve for the equilibrium of dynamic common agency problems and dynamic competition

problems, respectively. These earlier contributions considered symmetric but imperfect informa-

tion environment; Bergemann and Välimäki (2010) establish that the underlying principles extend

to asymmetric information environments as well, and then can solve priority queuing problems as

analyzed by Dolan (1978).

Since we have assumed independent types, additional assumptions on the connectedness of the

type spaces and payoff functions guarantee a dynamic payoff equivalence result via the envelope

theorem of Milgrom and Segal (2002). By imposing an individual rationality or participation

constraint for the agents, it is often possible to show that similar to the static setting, the dynamic

pivot mechanism maximizes the expected transfers from the agents among all effi cient mechanisms.

A negative surplus in the dynamic pivot mechanism then implies an impossibility result mirroring

the static Myerson-Satterthwaite theorem on budget balanced effi cient dynamic mechanisms that

satisfy incentive compatibility and individually rationality. Skrzypacz and Toikka (2015) consider a

model of repeated bilateral monopoly with varying degrees of persistence for the buyer’s valuations

and the seller’s costs. With perfectly persistent types, the Myerson-Satterthwaite theorem applies

and effi cient trade is impossible. With independent types, the expected gains from future trades can

be used to relax the participation constraint and effi cient trading may become possible. Different
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levels of persistence then determine different sets of effi cient budget balanced trading rules for the

problem.

3.5 Balancing the Budget

The static VCG mechanisms is defined by (x∗ (θ) , p (θ)) , and for all i and all θ, we have

pi (r) = −w−i (r) + φi (r−i) ,

where the second component of the transfer function, φi (r−i) of agent i is an arbitrary function

that only depends on the reports of the other agents, r−i. In other words, the transfer of agent i

depends on her own announcement only through its impact on the other players’payoffs via the

effi cient allocation rule. The static VCG mechanisms are dominant strategy incentive compatible,

i.e. they induce truthtelling as a best response against any reported type vector of other agents.

As a result, a modified mechanism where

pi (r) = −Eθ−i [w−i (ri, θ−i) + φi (θ−i)] ,

and the expectation is taken with respect the marginal distribution on the other agents’ types

(recall that we have assumed independence here) is incentive compatible as long as the other agents

announce their types truthfully. Budget balance is obtained by specifying (with the understanding

that I + 1 = 1):

φi+1

(
r−(i+1)

)
, Er−i [w−i (x

∗ (ri, r−i) , r−i)] .

Notice that we have to give up on dominant strategy incentive compatibility here. If the other

players lie about their type, the first term in the transfer does not equate the bidder’s payments to

the social surplus and hence it may well be that lying is optimal for i too. Observe the similarity of

this reasoning to the failure of dominant strategy incentive compatibility in the dynamic example

above.

For the dynamic mechanism, the transfer payments must be constructed in such a way that

similar problems do not arise due to the dynamic nature of the announcements. Supposing that

the incentive payments are made as above based on the expectations over other players’types, but

that the realizations of other players’types can be inferred from the allocations prior to one’s own

announcement, the simple AGV-mechanism is no longer incentive compatible. In order to secure

incentive compatibility, Athey and Segal (2013) modify the transfers to overcome this problem by
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aligning agent i’s incentive pay with the change in the expected externality on the other agents

resulting from i’s report.

The resulting balanced budget mechanisms can be quite complicated and it may not be easy

to find natural indirect mechanisms for their implementation. One instance where this can be

done is in the context of dynamically allocating the capacity shares in a joint project when private

information about future profits arrives over time. In a dynamic sharing problem, Kurikbo, Lewis,

Liu, and Song (2017) find a version of the dynamic mechanism with budget balance that can also

handle individual rationality constraints.

3.6 Interdependent Values and Correlation

In a dynamic setting, it is possible to use the intertemporal correlation of the reports of the agents

and this allows for new types of implementations of the effi cient allocation path. To see this, consider

the following simple version of the famous lemons problem with common values.

Example 2 (Common Values vs Correlated Private Values)

Two agents decide the allocation of an indivisible object in a two-period model. The allocation

xt ∈ {1, 2} for t ∈ {1, 2} records who gets the object in period t. Agent 1 is privately informed of

the quality of the object, i.e. θ1 ∈ [0, 2], and her value from consuming the good in t = 1 is given

by her private type θ1. If the good is allocated to agent 2 in t = 1, then agent 2 receives her gross

utility θ2 = 2θ1− 1 after consuming the good in period t = 1. In t = 2, agent 2 just reports her type

θ2 and transfers are made.

If all transactions and transfers take place in t = 1, the effi cient allocation rule where agent 1

consumes the good if and only if θ1 ≤ 1 is not monotone and hence not incentive compatible in the

static mechanism. By allowing agent 2 to learn her value after consuming the good, the common

values lemons model becomes a dynamic private values model since conditional on knowing θ2, player

2 does not care about θ1. As a result, we can compute the effi cient team mechanism to support trade

here. The reported θ1 determines the allocation: there is trade if and only if θ1 ≥ 1 and the reported

θ2 determines the payment t1 = θ2 that agent 1 receives in t = 1.

The idea that incentive constraints can be relaxed by using future realizations of correlated

signals is elaborated further in Mezzetti (2004), (2007) and Deb and Mishra (2014). For many

applications, experienced utilities after trade are natural signals of this type. It should also be

noted that there are often quite natural implementations of the effi cient mechanisms. Contracts
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with money back clauses can be used to facilitate trade that would otherwise be limited by the

lemons problem.

Dynamic VCG mechanisms have been generalized to cover the case of correlated and interde-

pendent values in Liu (2013). Correlation across agents allows for the use of dynamic versions of

mechanisms in the style of Cremer and McLean (1985), (1988). Liu (2013) also covers the case of

interdependent values but independently distributed signals and develops a dynamic version of the

generalized VCG mechanism along the lines of the static version of Dasgupta and Maskin (2000).

4 Optimal Dynamic Mechanisms

We now shift our attention from socially effi cient mechanism to revenue-maximizing, or (revenue)

optimal mechanisms. In static environments, the key economic insight is the resulting trade-off

between effi ciency and information rent left to the agents. In socially effi cient mechanisms, this

trade-off is absent since with quasi-linear preferences. After all, the utilitarian solution does not

preclude information rents. By contrast, if a seller tries to maximize her sales revenue or if a regulator

does weigh profits higher (or lower) than the consumer surplus in her objective function, then this

trade-off emerges. Deviations from the surplus-maximizing allocations are generally optimal since

the reductions in information rent to the privately informed parties more than compensate for the

losses in the social surplus. For dynamic models of mechanism design, the key issue is then how

information rent accrues to privately informed agents over the contracting horizon.

Consider a model where a privately informed agent contracts with an uninformed principal at

the beginning of a dynamic allocation problem. If the agent knows all her future information types,

the model is a multi-dimensional mechanism design problem and as it is well-known, it is very hard

to characterize the optimal contract in such environments. Fortunately, it is often quite reasonable

that the agent does not know her future types. Of course, her current type allows her to predict her

future types more accurately than the principal (except in the less interesting case of i.i.d. types).

The main analytical challenge in optimal dynamic contracting problems is to characterize how the

initial private information affects the future information rents and how the optimal allocation trades

off these effects relative to the social surplus maximizing allocation.

Optimal dynamic contracting in an environment where the agent’s private information may

change over time appears first in Baron and Besanko (1984). They consider a two-period model of

a regulator facing a monopolist with a privately known marginal cost in the first period and where
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the second-period marginal cost is unknown to both parties (but may depend stochastically on the

first period cost). Within a similar model, Riordan and Sappington (1987) analyze the optimal task

assignment between the agent and the principal across the two periods. Besanko (1985) covers a

finite-horizon with a general cost function, where the unknown cost parameter is either i.i.d. over

time or follows a first-order autoregressive process.

In the past decade, the literature has developed considerably beyond these early contributions.

Much of the early literature was focused on the case where the allocation problem itself is assumed

to be time-invariant in the sense that the set of feasible choices in t is independent of allocation

decisions for s < t. These papers also assumed that the distribution of future types is independent

of current allocation decisions. The first assumption is violated in any dynamic problem of capacity

allocation and also in models with a fixed decision date but a dynamic flow of private information

prior to the decision. The second assumption is violated in models with endogenous learning about

the payoffs from a fixed set of alternatives. Examples of this type include dynamic assignment of

workers to tasks or dynamic sales of experience goods.

The first analysis of the revenue-maximizing dynamic sales problem with a fixed selling date

appears in Courty and Li (2000) under the name of sequential screening. Board (2007) extended

the analysis to the case where the sales date itself is also endogenously chosen. Battaglini (2005)

considers a nonlinear pricing model (with variable quantity or quality) in which the buyer’s valuation

changes over time according to a commonly known Markov process with two states. In contrast to

the earlier work, he explicitly considers an infinite time horizon and shows that the distortion due

to the initial private information vanishes over time.

Pavan, Segal, and Toikka (2014) present a general infinite-horizon model that allows for general

allocation problems and endogenous type processes. Their model encompasses the earlier literature

with continuous type spaces and emphasizes the connections to static allocation problems of the

Myersonian type. They obtain necessary conditions for incentive compatibility and present a variety

of suffi cient conditions for revenue-maximizing contracts for specific classes of environments.

Our goal here is to use the tools from static mechanism design as much as possible to understand

the basic analytics of the dynamic problem. Hence we start with a brief review of the main results

in static mechanism design. Then we connect the static and dynamic formulations by transforming

the original dynamic problem into an equivalent one where it is easier to separate the initial private

information and future information that can be taken to be independent of the initial type as

proposed in Eső and Szentes (2007). After formulating the optimization problem of the principal,



24

we discuss some examples with explicit solutions to the optimal contracting problem.

4.1 Preliminaries from Static Mechanism Design

Not surprisingly, the assumptions needed for tractability in static mechanism design problems are

also needed in the dynamic case. We assume that all payoff functions are linear in transfers, the

agents’types are intervals of the real line, Θi = [θi, θi] ⊂ R, θ̃i is independent of θ̃j, and that the
agents’payoff functions vi (x, θ) are strictly supermodular in (x, θi) . To make the connection to the

dynamic setting more immediate, we allow the allocation decision x ∈ X to be multidimensional.

In the presentation below, we concentrate on the case with a single agent and therefore we omit the

identity subscripts.7 A direct mechanism (x (θ) , p (θ)) is incentive compatible if for all types θ ∈ Θ

and all reports r ∈ Θ, we have

U (θ; θ) , v (x (θ) , θ)− p (θ) ≥ v (x (r) , θ)− p (r) , U (θ; r) ,

and let

V (θ) , U (θ; θ) .

The envelope theorem of Milgrom and Segal (2002) gives the following necessary condition for

incentive compatibility, their Theorem 2 and 3, respectively. We denote by v2 (x, θ) the partial

derivative with respect to the second argument, here θ.

Theorem 2 (Payoff Equivalence Theorem)

Assume that v (x, ·) is differentiable for all x ∈ X and that there exists a K < ∞ such that for all

x ∈ X and all θ,

|v2 (x, θ)| ≤ K.

Then V (θ) is absolutely continuous, V ′ (θ) = vθ (x(θ), θ) for almost every θ, and therefore

V (θ) = V (θ) +

∫ θ

θ

v2 (x(s), s) ds. (5)

This result is called the payoff equivalence theorem because we can now pin down the transfers

by just determining the physical allocation x (θ) and the additive constant V (θ) :

p (θ) = v (x (θ) , θ)− V (θ)−
∫ θ

θ

v2 (x(s), s) ds. (6)

7Since types are independent, incentive compatibility reduces to individual incentive compatibility by taking

expectations over the other agents’types.
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With the help of this necessary condition for implementability, we can rewrite the full incentive

compatibility requirement as the following integral monotonicity condition:∫ θ

r

(v2 (x (s) , s)− v2 (x (r) , s)) ds ≥ 0. (7)

As an intermediate step towards the dynamic analysis, consider for a moment the case where

the principal and the agent can write contracts based on a publicly observable sequence of random

variables {ε̃t}Tt=1 so that the allocation x0 is determined by the initial private information θ and xt
is determined by θ and the sequence of realizations εt , (ε1, ..., εt). Assume also that the following

separability requirement is satisfied:

vt
(
x, θ, εT

)
= vt

(
xt, θ, ε

t
)
.

Incentive compatibility is then equivalent to requiring that for all θ, r ∈ Θ,∫ θ

r

Eε[
∞∑
t=0

δt
∂vt
∂θ

(
xt
(
s, ε̃t

)
, s
)
−
∞∑
t=0

δt
∂vt
∂θ

(
xt
(
s, ε̃t

)
, r
)
]ds ≥ 0 (8)

In the static setting, single-dimensional types and single-dimensional allocations with super-

modular payoff functions yield a full characterization of incentive compatible allocation rules: a

mechanism is incentive compatible if and only if the physical allocation is monotone and the trans-

fers are pinned down by the payoff equivalence theorem. The static problem is then solved by

maximizing the designer’s objective function over the feasible set of monotone allocation rules.

Unfortunately it is not possible to find an equally attractive characterization for incentive com-

patibility in the dynamic model. In some sense, this is not too surprising. The static formula for

contingent allocations in equation (8) requires monotonicity on average when taking expectations

over {ε̃t}Tt=1. If xt
(
θ, ε̃t

)
is monotonic in θ for all realizations εt, then incentive compatibility fol-

lows. This suffi cient condition is obviously not a necessary condition since the sum of non-monotonic

functions may well be monotonic.

In the remainder of this section, we express the process of types θt in terms of the initial type

θ0 and a sequence of independent (uniform) random variables {ε̃t}Tt=1. The main analysis considers

the case where the {ε̃t}Tt=1 are privately observed by the agent, but we also discuss the connections

to the static case above where all future information {ε̃t}Tt=1 is publicly observed.

4.2 Orthogonalized Information

Eső and Szentes (2007) emphasize the benefits from distinguishing between private information at

the time of contracting (captured in θ0) and subsequent independent private information. With
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Markovian types, each θ̃t is statistically dependent on θ̃t−1 and as a result, all future types are also

influenced by the initial type θ̃0. We present below an equivalent formulation for the type process

{θ̃t}Tt=0 that allows us to distinguish in a transparent manner between the initial and the future

private information despite the statistical dependency.

Consider an arbitrary random variable x̃ with distribution function F . Then the random variable

ỹ, with

ỹ , F (x̃) ,

is by construction uniformly distributed on [0, 1]. Building on this simple observation, consider

next a random variable θ̃1 with a conditional distribution F (· |θ0 ) dependent on some realization

θ0. Then

ε̃1 , F
(
θ̃1 |θ0

)
is uniformly distributed for all θ0. As a result ε̃1 is independent of θ0 by construction. We can view

ε1 as the realized percentile in the conditional distribution F (· |θ0 ). Since F (· |θ0 ) is an increasing

function, knowledge of ε1 and θ0 allows for solving θ1 = F−1 (ε1 |θ0 ) .8 Hence the information content

of
(
θ̃0, θ̃1

)
is the same as the information content of

(
θ̃0, ε̃1

)
.

As a final preparatory step, let us consider the effect of θ̃0 on θ̃1. Letting θ1 = F−1 (ε1 |θ0 ) , we

can evaluate the effect of a change in θ0 on θ1 for a fixed ε1.9

∂F−1 (ε1 |θ0 )

∂θ0

= −
∂F (θ1|θ0 )

∂θ0

f (θ1 |θ0 )
, I1 (θ0, θ1) .

The function I1 (·) is called the impulse response function in Pavan, Segal, and Toikka (2014) and
it will play a key role in the following analysis. Since θ̃0 is independent of ε̃1, the distribution of ε̃1

does not vary as θ0 changes. This fact implies that a characterization of the information rent of the

buyer follows by the envelope theorem if ∂F (θ1 |θ0 ) /∂θ0 and f (θ1 |θ0 ) are suffi ciently well-behaved.

We refer to (
θ̃0, ε̃1, F

−1 (ε1 |θ0 )
)

as the canonical (orthogonal) representation of the original information.

8If F (· |θ0 ) is constant for some interval or if it has upward jumps, we can define F−1 (ε1 |θ0 ) =

inf{θ1 |F (· |θ0 ) ≥ ε1 }.
9Since

ε1 , F
(
F−1 (ε1 |θ0 ) |θ0

)
,

the second equality in the formula follows by total differentiation with respect to θ0.
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Since θ̃0 is independent of ε̃1 by construction, we may view θ̃0 as the true private information

to the agent and ε̃1 as information not available at the moment of contracting. If ε̃1 were publicly

observable and contractible, then we would indeed be dealing with the static problem in the previous

subsection. If the solution of the mechanism design problem with observable and unobservable ε̃1

coincide, then the principal does not have to give any information rent to the agent in excess of

that contained in θ̃0. We will discuss below when this conclusion holds and when it does not.

As long as θ̃1 is first order stochastically increasing in θ̃0, we have I1 ≥ 0. In the Appendix, we

provide a construction of the t-period impulse responses for a general Markov process {θ̃t}Tt=0 and

we record here that:

It
(
θt, xt−1

)
, −

t∏
k=1

∂F (θk|θk−1,xk−1 )

∂θk−1

f (θk |θk−1, xk−1 )
,

where we allow the transition function to depend on the current state and the current allocation,

thus a controlled stochastic process.

A very rough protocol for solving dynamic mechanism design problems can now be given as

follows. First, find the dynamic equivalent of the envelope formula (5) in the payoff equivalence

theorem to compute the transfers as a function of the allocation process. Second, consider the

relaxed principal’s problem where her payoff is maximized subject to the constraint that the transfer

is computed from (6). Third, verify that the obtained solution satisfies the dynamic equivalent of the

full incentive compatibility requirement (7). We pursue this program in the next few subsections.

4.3 Dynamic Payoff Equivalence

Since the dynamic mechanism design problem inherits the trade-off between effi ciency and informa-

tion rent from the static problem, we must find a characterization for the information rent in terms

of the allocation as in the static payoff equivalence theorem. This is where the above orthogonalized

model becomes useful. In a model of perfect commitment, the mechanism designer maximizes her

payoff from the perspective of t = 0. The orthogonalization gives a tractable solution for the

agent’s equilibrium payoff in t = 0 (and hence also her expected transfers).

Recall that in a dynamic direct mechanism (x,p) the agent reports her type θt at each t. Any

allocation rule x under truthful reporting induces a stochastic process whose transitions are given

by:

θt+1 ∼ F (· |θt, xt ) ,

and we denote this process by λ[x]. By the dynamic revelation principle Myerson (1986), it is
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without loss of generality to consider a dynamic direct mechanism where the buyer reports her type

θt truthfully in each t, and any such mechanism is said to be incentive compatible.

We want to compute the equilibrium payoff to the agent with initial private information θ0 :

V (θ0) = Eλ[x]

[
T∑
t=0

δt (v(xt (θt, ht) , θt)− pt (θt, ht))

]
,

where the expectation is taken with respect to λ[x]. The following theorem is a special case of the

characterization of local incentive compatibility in Theorem 1 of Pavan, Segal, and Toikka (2014).10

Theorem 3 (Dynamic Payoff Equivalence)

If (x,p) is incentive compatible, then V0 (θ0) is Lipschitz continuous and has almost everywhere the

derivative:

V ′ (θ0) = Eλ[x]

[
T∑
t=0

It
(
θt, xt−1

)
δt
∂v(xt (θt, ht) , θt)

∂θt

]
. (9)

The reason for using the canonical state representation is that it allows for an application of the

Milgrom-Segal envelope theorem more easily than the original formulation. The representation also

shows that the equilibrium payoff to the agent from truthful reporting is the same in the original

game and the game where the ε̃t are publicly observed. This indeed follows immediately from the

assumption of truthtelling and the envelope formula. We will return to this issue, but it should be

noted already here that there are instances where truthtelling is not optimal in a mechanism with

privately observed ε̃t but where the allocation rule can be implemented with observable ε̃t.

As in the static case, the payoff equivalence theorem shows that the (dynamic) allocation pins

down the agent’s payoff and therefore her transfers up to a constant. To interpret the result, let

U (x, θ) ,
T∑
t=0

δtv(xt, θt)

so that
∂U

∂θt
= δt

∂v

∂θt
.

The derivative of the indirect utility (9) then becomes:

V ′0 (θ0) = E
T∑
t=0

It
(
θt, xt−1

)
δt
∂v(xt, θt)

∂θt
.

10Modulo changing the notation for a different starting date and starting history, the same characterization holds

for ∂Vs
(
θs, θ

s−1) /∂θs for all s and all θs ∈ Θs.
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The impulse response function measures the effect of a small change in θs on θt and ∂v/∂θt measures

the induced change in period t utility. All the other effects across periods depend on the reported

types, not the true types. The transfers that support the indirect utility of the agent can then be

derived just as in the static model.

4.4 Dynamic Incentive Compatibility

Characterizing incentive compatible dynamic mechanisms is not hard at a very abstract level. A

counterpart for the static integral monotonicity condition in equation (7) can be given as follows.

A mechanism (x,p) is incentive compatible if the transfers are computed from formula (9) and if

for each s, θs and and report ms in period s,∫ θs

ms

[
∂Vs

(
q, θs−1

)
∂θs

−
∂V ms

s

(
q, θs−1

)
∂θs

]
dq ≥ 0, (10)

where ∂V ms
s

(
q, θs−1

)
/∂θs is the derivative of the continuation payoff with respect to the true type

q given the reports θs =
(
ms, θ

s−1
)
and given that all future reports are truthful.

Even though a condition for full incentive compatibility can be expressed in a concise form, it

does not yield an easy characterization of the feasible mechanisms for the principal. Pavan, Segal,

and Toikka (2014) offer stronger suffi cient conditions for implementability that are easier to verify.

A very strong suffi cient condition is that the payoff functions are supermodular in the allocation

and type and that the allocation (at all histories) is non-decreasing in all types.

It should also be noted that while the canonical representation is convenient for proving the

payoff equivalence theorem, it is not helpful for analyzing full incentive compatibility. When one

writes the payoff functions in terms of the canonical representation (θ̃0, {ε̃t}Tt=1, {Zt}Tt=1) as defined

in the Appendix using the orthogonal shocks ε̃t, one obtains:

vt (xt, θt) = v(xt, Zt
(
θ0, ε

t, xt−1
)
) , v̂t

(
xt, ε

t, xt−1
)
.

In other words, the agent’s utility in period t depends on variables that are determined by past

and current reported types and the whole sequence of realized εt. The first dependence is present

in the original model as well, but the second type breaks the Markovian nature of the agents’s

problem. This adds new diffi culties into checking full incentive compatibility since checking for

optimal behavior after non-truthful messages is no longer easy.11

11Within the Markovian setting of the original model, the future incentives for truthtelling are independent of past
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4.5 Optimal Dynamic Mechanism

We proceed to describe the solution of the optimal dynamic mechanism design. Similar to the static

case, we start by considering a relaxed problem where the only constraint for the problem is that

the transfers are calculated from the payoff equivalence theorem.

Relaxed Problem We denote the dynamic payoff to the mechanism designer by

T∑
t=0

δt (pt − ct (xt)) .

She designs a mechanism to maximize her own payoff. As always, we can write the designer’s payoff

as the difference between the social surplus and the agent’s information rent. Using formula (9)

to substitute for the payments gives after the usual integration by parts the following program for

maximizing the designer’s payoff from period t = 0 perspective:

max
(x,p)

Eλ[x]

T∑
t=0

δt (v(x (θt, ht) , θt)− c (x (θt, ht))) (11)

−Eλ[x] 1− F0 (θ0)

f (θ0)

[
T∑
t=0

δtI
(
θt, xt−1

) ∂v(x (θt, ht) , θt)

∂θt

]
− V (θ0) .

The maximization is also subject to period 0 participation constraints:

V (θ0) ≥ 0.

We denote the first line in the objective function by Eλ[x] [S (x, θ)] to represent the social surplus.

We have built the local incentive compatibility conditions into the objective function by using the

envelope formula to represent the buyer’s information rent. If the stage payoff functions of the

agent are supermodular and if θ̃t+1 is first order stochastically increasing in θ̃t, then the individual

participation constraint typically bind at the optimum for the lowest type and thus V (θ0) = 0.

Even though the relaxed problem can be written rather concisely, solving

max
x
Eλ[x]

[
S (x, θ)− 1− F (θ0)

f (θ0)

T∑
t=0

δtIt
∂vt
∂θt

]
(12)

involves dynamic programming and is not easy in general. When discussing the applications below,

we shall see some instances where more or less explicit solutions to the problem exist.

types. Hence if a report is optimal on the equilibrium path for type θt, it will also be optimal following non-truthful

reports.
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Properties of the Solution to the Relaxed Problem If the process of {θ̃t}Tt=1 does not depend

on the allocations xt and if there are no intertemporal restrictions on xt, then a pointwise solution is

possible as in the static case. Examples of this setting were covered already in Baron and Besanko

(1984) and Besanko (1985). In this case, we can deduce some immediate properties of equation

(12).

First, if the type is perfectly persistent, then It
(
θt
)

= 1 for all t and θt. This implies that the

optimal pointwise solution collapses to the static solution to

max
x

{
st (x, θ)− 1− F (θ0)

f (θ0)

∂vt
∂θt

}
. (13)

Notice that here the distortions in the allocation rule remain over time.

Second, if the θ̃t are independent of θ̃0 for t > 0, then xt maximizes the social surplus for all

t > 0. In this case, initial private information has no effect on future types.

Third, if the type process follows an AR(1) process:

θt = λθt−1 + εt,

with θ−1 = 0, then one finds from the moving average representation:

θt =
t∑

s=0

λt−sεs

that It
(
θt
)

= λt. Since we require that
∣∣It (θt)∣∣ <∞, we must have λ ≤ 1. If we have a persistent

random walk, i.e. λ = 1, then the solution is as with persistent types. If λ < 1, then the distortions

from the effi cient allocation vanish as t → ∞. This simply reflects the fact that as time goes on,
the effect of the initial shock θ0 = ε0 on θt vanishes and at the moment of contracting, the principal

and the agent have almost identical beliefs about θ̃t for large t.

Full Solution If the relaxed problem allows for an explicit solution, one can check if the suffi cient

conditions for full incentive compatibility are satisfied. For the examples that we describe below,

the solution of the relaxed problem can be characterized in suffi cient detail to allow us to verify

suffi cient conditions for full incentive compatibility.

The optimal solution in the original mechanism design problem coincides with the optimal

solution in the modified problem of the canonical representation where the orthogonal shocks ε̃t are

publicly observable. By the payoff equivalence theorem, this implies that the agent gets the same
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expected payoff in the two problems. Hence it is reasonable to say that the agent does not benefit

from the additional private information that she gets during the game.

At the same time, if the solution to the relaxed problem is not fully incentive compatible, this

is no longer true. In the appendix, we present an example showing that the solution of the relaxed

problem may not be incentive compatible even though the solution is incentive compatible when

the ε̃t are publicly observable.

Implementing the Solution Unfortunately there is no general recipe along the lines of the

taxation principle for natural indirect implementations of the optimal direct mechanism in the

dynamic setting. In some cases, the solution to the optimal contracting problem is suggestive of

natural ways to implement the solution. For example, the sequential screening problem and the

dynamic auction formats discussed below have solutions that can be implemented through option

contracts and through various types of handicapped auctions.

5 Leading Applications

We shall now discuss how the general insights translate into specific solutions in a number of

important economic applications.

5.1 Sequential Screening

Starting with Courty and Li (2000), the simplest model of bilateral trading with a dynamic flow of

information has been called the sequential screening model. The canonical model extends over two

periods t ∈ {0, 1} with trade taking place only in period t = 1. An uninformed seller proposes a

mechanism to an informed buyer with type θ0 ∈ [θ, θ] in t = 0. Her second period type θ1 ∈ [θ, θ]

is unknown to both parties at the moment of contracting, but it is common knowledge that its

conditional distribution is given by F (θ1 |θ0 ). The prior on θ0 is denoted by F0 (θ0) .

The key economic question for the model is whether the seller can use the dynamic nature

of information arrival to increase her expected revenue. Obviously she can sell using an optimal

Myerson mechanism based on either θ̃0 or on θ̃1. The main observation in sequential screening

models is that she can do strictly better by offering an option contract. In t = 0, the seller offers

a menu of strike prices for period t = 1. Based on different θ0, the buyers choose different strike

prices (obviously at different up-front payments) and this improves the seller’s payoff.
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Different interpretations are possible for θ0. It can be thought as a prior mean for θ0 or alterna-

tively it can be thought of as a measure of the precision of the agent’s prior information about θ1.

In the first case, it would be natural to assume that θ̃1 is first order stochastically increasing in θ̃0

while in the second, one would expect θ̃1 to be second order stochastically increasing in θ̃0.

Since trading takes place only in period t = 1, there is no loss of generality in assuming that θ1

is the value of the buyer in t = 1. We also assume that the good is indivisible (or alternatively the

payoffs are linear in quantities) and that the seller has no value for the object herself. This leads

to the payoffs:

uS (θ1, x, p) = p,

uB (θ1, x, p) = θ1x− p,

for the seller and the buyer respectively, where x is the probability of trading and p is the transfer

from the buyer to the seller. We also assume that the outside option for the buyer yields payoff 0.

We can use the general result from the previous section to see rather quickly how to arrive at

this solution. A direct dynamic mechanism is now a pair of functions:

x : Θ0 ×Θ1 → [0, 1],

p : Θ0 ×Θ1 → R+.

We recall that the single period impulse response function can be written as:

I1 (θ0, θ1) = −
∂F (θ1|θ0 )

∂θ0

f (θ1 |θ0 )
.

Together with equation (9), this gives:

V ′(θ0) = −
∫

Θ1

x(θ0, θ1)
∂F (θ1 |θ0 )

∂θ0

dθ1.

Solving for the expected transfer (i.e. the seller’s expected payoff), the relaxed problem becomes

(after an integration by parts and using the individual rationality constraint V (θ) = 0):

max
x

∫
Θ0

∫
Θ1

x[θ1 −
1− F0(θ0)

f0(θ0)
I1 (θ0, θ1)]f(θ1|θ0)f(θ0)dθ1dθ0.

But this is a linear problem in x and hence the relaxed solution is easy to find.

Define a modified virtual value ψ(θ0, θ1) by

ψ(θ0, θ1) , θ1 −
1− F0(θ0)

f0(θ0)
I1 (θ0, θ1) .
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This modifies the classic Myersonian virtual value by multiplying the information rent component

(1− F0(θ0)) /f0(θ0) by the impulse response I1.

Since the value of the integral is linear in x, it is clearly optimal to set x(θ0, θ1) = 1 whenever

ψ(θ0, θ1) ≥ 0 in the relaxed program. If ψ(θ0, θ1) is strictly increasing in both components, then

this solution solves the revenue maximization problem. Hence we assume from now on that ψ is

increasing in both arguments. To complete the description of the optimal mechanism, define the

following function

q(θ0) = min{θ1 ∈ Θ1|ψ(θ0, θ1) ≥ 0}.

Since ψ is increasing, q (·) is well defined. With the help of this function, we can characterize the
optimal selling mechanisms.

Theorem 4 (Optimal Screening Mechanism)

If ψ(θ0, θ1) is increasing in both arguments, then a direct dynamic mechanism (x, t) maximizes the

seller’s expected profit in the class of incentive compatible mechanisms if and only if

x(θ0, θ1) = I{θ1≥q(θ0)},

and the transfer is computed from the envelope formula.

As anticipated, in the optimal mechanism the buyer pays an up-front fee p(θ0) for the option

of purchasing the good at strike price q(θ0). Hence the mechanism seems to bear some relation

to contracts that are actually observed in situations where uncertainty is gradually resolved and

revealed about the value of the alternatives.

Courty and Li (2000) show that in the case where θ̃1 is second order stochastically increasing in

θ̃0, the standard Myersonian downward distortions may be reversed. If θ̃1 is first order stochastically

increasing in θ̃0, this is not possible. This result can be understood in terms of the sign of the impulse

response function in the two cases. Under first-order stochastic dominance (FOSD), I1 (θ0, θ1) is

always positive. For the case of second-order stochastic dominance (SOSD), it may well be negative,

thus leading to a reversal in the direction of the distortions.

Eső and Szentes (2007) extend the model to allow for multiple bidders for the good (otherwise the

model is identical to the model above). They find an optimal auction—called the handicap auction—

where the bidders can make up-front payments in the first period to influence the allocation rule

determining the second period allocation (the handicaps for the final auction). In order to analyze

the model, Eső and Szentes (2007) introduced the orthogonalization process described in section
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(4.2). They compare the revenue to the seller under two scenarios: one where she releases the

orthogonal signals to the buyers and one where she does not. They conclude that the seller is

always better off releasing the information.

Bergemann and Wambach (2015) and Li and Shi (2017) offer extensions of the sequential screen-

ing model that incorporate information and mechanism design. Li and Shi (2017) show that even

though the seller always wants to release all of the orthogonalized information to the buyer, she

may prefer to send garbled information based on the original (not orthogonalized) type θ1. The

question of what types of disclosure policies are optimal in this setting is still open.

5.2 Selling Options

The second illustrative example is a stopping problem rather than a recurrent allocation problem.

Suppose we would like to allocate a single object among N bidders, but we can allocate it only once

and for all. Thus, the seller faces a stopping problem, and at the moment of stopping must decide

to whom to allocate the object. Suppose the evolution of the willingness to pay by bidder i is given

by:

θi,t = γθi,t−1 + εi,t,

with θi,0 ∼ Gi (θi,0) , εi,t ∼ Hi (·) , i.i.d. If we set γ = 1, we are essentially dealing with the model

of Board (2007).

We can now compute the indirect utility function in the familiar way,

Vi,0 (θi,0) = E
T∑
t+0

δt
1−Gi (θi,0)

gi (θi,0)
γtxi,t (θ) ,

and find that the expected revenue to the seller is

E
T∑
t=0

N∑
i=1

δt
[
θi,t −

1−Gi (θi,0)

gi (θi,0)
γt
]
xi,t (θ) ,

The seller’s problem is thus an optimal stopping problem, and her decision in period t is whether

to stop the process and collect

max
i

{
θi,t −

1−Gi (θi,0)

gi (θi,0)
γt
}
,

or to continue until t + 1 and draw a new valuation vector θt+1 = γθt + εt for the bidders. As

time progresses and t increases, the distortion relative to the planner’s solution in the allocation

diminishes.
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5.3 Bandit Auctions

A single indivisible object is allocated in each period amongst n possible bidders who learn about

their true valuation for the good. The type of bidder i changes only in periods t where she is

allocated the good: if xi,t = 0, then θi,t+1 = θi,t, if xi,t = 1,then

θi,t+1 = θi,t + εi (ni (t)) (14)

where εi is a random variable whose distribution depends on the number of periods up to t, ni (t) ,

in which the good has been allocated to i. For some stochastic processes such as the normal learning

process outlined in Section 2.2, the number of observations from the process (here ni (t)) and the

current posterior mean (here θi,t ) form a suffi cient statistic. We can interpret the allocation process

as intertemporal licensing where the current use of the object is determined by the past and current

reports of the bidders. Notably, the assignment of the object can move back and forth between

the bidders as a function of their reports. Pavan, Segal, and Toikka (2014) and Bergemann and

Strack (2015) consider a revenue maximizing auction for the special case of the multi-armed bandit

model in discrete or continuous time, respectively. The effi cient allocation policy under private

information was analyzed earlier in Bergemann and Välimäki (2010).

A useful aspect of the bandit model with the additive noise model is the easily verified property

that:
s∏
t=r

− ∂Fi(θi,t+1|θi,t )

∂θi,t

fi (θi,t+1 |θi,t )

 = 1. (15)

Hence the revenue maximization problem is now turned (again using the usual steps) into a modified

bandit problem where the seller maximizes

max
x∈X

E
T∑
t=0

N∑
i=1

δt
[
θi,t −

1− Fi (θi,0)

Fi (θi,0)

]
xi (θi,t) ,

where X = {(x1, ..., xN) ∈ RN+ |Σixi = 1}. Stated in this form, the problem can be solved using

the dynamic allocation index, the Gittins index. Pavan, Segal, and Toikka (2014) verify that

the solution satisfies the average monotonicity condition and is hence implementable. Thus, the

resulting dynamic optimal auction proceeds by finding the bidder with the highest valuation after

taking into account the handicap, which is determined exclusively by the initial private information

θi,0. Moreover, by (15), the impulse response function, and hence the handicap is constant in time

and determined only by the initial shock.
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Kakade, Lobel, and Nazerzadeh (2013) consider a class of dynamic allocation problems that

includes the above bandit problem. By imposing a separability condition (additive or multiplicative)

on the interaction of the initial private information and all subsequent signals, they obtain an explicit

characterization of the revenue-maximizing contract and derive transparent suffi cient conditions for

the optimal contract.

5.4 Repeated Sales

A common economic setting where long-term contracts govern the interaction between buyer and

seller is the repeated sales problem. The buyer anticipates that he might purchase a good or a

service repeatedly over time, but is uncertain about his future valuation of the good. At any point

in time his willingness-to-pay is private information, and the current willingness-to-pay is a good

prediction of the future willingness to pay. A variety of dynamic contracts are used to support

the provision of services, as documented by DellaVigna and Malmendier (2006), Grubb (2009) and

Eliaz and Spiegler (2008) for gym memberships, mobile phone contracts and may other services.

These allocation problems can be viewed has being separable across periods in two important

aspects: (i) the set of feasible allocations at time t is independent of the history of the allocations,

and (ii) the flow utility functions depends only on current type. This class of models is particularly

tractable since a pointwise solutions to the relaxed problem is quite easily obtained and the condi-

tions for full incentive compatibility can be directly checked. In fact, the earliest contributions to

the dynamic mechanism design literature, Baron and Besanko (1984) and Besanko (1985) restricted

attention to time-separable problems of this form.

Bergemann and Strack (2015) consider time-separable allocation problems in continuous time.

They leverage the structure of the continuous-time setting to obtain closed-form solutions of the

optimal contract. In the leading example of repeat sales of a good or service, they establish that

many commonly observed contract features such as flat rates, free consumption units and two-part

tariffs can emerge naturally as part of the optimal contract.

In their setting, the flow value is given by vtxt − pt, vt is the willingness-to-pay in time t and
xt the quantity or quality assigned to buyer in period t. The willingness to pay is assumed to be a

function:

vt = φ (t, θ0,Wt) ,

that is weakly increasing in the initial type θ0 and the value of a Brownian motion Wt in period t.

With the time separability of the allocation across periods, the virtual utility in period t is simply
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given by

vt −
1− F (θ0)

f (θ0)

∂φ (t, θ0,Wt)

∂θ0

. (16)

This is simply the continuous-time analogue to the relaxed problem that we derived earlier in (13),

where the derivative
∂φ (t, θ0,Wt)

∂θ0

,

often referred to as the stochastic flow replaces the product of the marginal flow value times the

impulse response function. The nature of the initial information θ0 together with the shape of the

stochastic process now determine how the stochastic flow, and ultimately the optimal allocation

vary over time.

Bergemann and Strack (2015) then analyze how the optimal contract depends on the nature

of initial private information and the structure of the stochastic process. In their leading case the

valuation evolves as a geometric Brownian motion

dvt = (vt − v)σdWt,

where v ≥ 0 is a lower bound on the flow utility, andWt is a Brownian motion. If the initial private

information is simply the initial value of the process, θ0 = v0, then the stochastic flow is simply

∂φ (t, θ0,Wt)

∂θ0

=
vt − v
v0

.

Thus, the corresponding expression from discrete time, the impulse response function, reduces to a

simple expression. They can consequently show that a menu of either flat rate contracts, or different

two-part tariffs, or different free minute contracts can arise as optimal solutions depending on the

value of the lower bound v and the flow cost of providing the service, given by c (x).

By contrast, if the initial private information θ0 is the drift of the geometric Brownian motion,

thus

dvt = vt (θ0dt+ σdWt) ,

then the stochastic flow can be computed to be

∂φ (t, θ0,Wt)

∂θ0

= vtt.

Now the optimal contract is a menu of leasing contracts with deterministic deadlines as the flow

virtual utility takes the form:

vt

(
1− 1− F (θ0)

f (θ0)
t

)
.
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Interestingly, the distortion is linearly increasing in time. It follows that in contrast to much of the

models analyzed so far, the allocative distortion is now increasing over time rather than decreasing

over time. A noteworthy aspect of this last example is that the initial private information of the

agent is not the initial value of the stochastic process, but rather a parameter of the stochastic

process itself.

5.5 Private Information about the Stochastic Process

In fact, a number of recent contributions have considered the possibility that the initial private

information is about a parameter of the stochastic process itself, such as the drift or the variance

of the process. For example, Boleslavsky and Said (2013) let the initial private information of the

agent be the mean of a multiplicative random walk. This changes the impact that the initial private

information has on the future allocations. The distortions in the future allocation may now increase

over time rather than decline as in much of the earlier literature. The reason is that the influence

of the parameter of the stochastic process on the valuation may increase over time. Pavan, Segal,

and Toikka (2014) and Skrzypacz and Toikka (2015) report similar findings.12

The impulse response function in Boleslavsky and Said (2013) involves the number of past

realized upticks and downticks of the binary random walk. Bergemann and Strack (2015) consider

the continuous-time version of the multiplicative random walk, the geometric Brownian motion.

Interestingly, in the continuous-time version, the impulse response function is simply the expected

number of upticks or downticks, which is a deterministic function of time and the initial state. This

implies that the factor modifying the standard Myersonian virtual valuation is increasing linearly

over time, and the optimal contract prescribes a deterministic time at which the trade ends, thus

suggesting a leasing contract with fixed term length. More generally, Bergemann and Strack (2015)

allow the valuation process of the buyer to be either the arithmetic, geometric, or mean-reverting

Brownian motion. Across these classes of models, they show that the allocative distortion of the

revenue-maximizing contract can be constant, decreasing, increasing, or even random over time

depending on the precise nature of the private information.

12This is equivalent to assuming that the private information of the agent corresponds to the state of a two-

dimensional Markov process, whose first component is constant after time zero, but influences the transitions of the

second component.
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5.6 Beyond the First-Order Approach

The method of analysis for the dynamic contracting problem above relies heavily on the payoff

equivalence theorem, also known as the first-order approach. For this approach to be successful, the

models must be such that the solutions to the relaxed problem are incentive compatible. Battaglini

and Lamba (2017) show that in models with discrete types, the first-order approach becomes prob-

lematic if the agents interact frequently. In particular, the solution to the first-order problem is no

longer monotonic if types are highly persistent. They propose and analyze optimal contracts in the

class of strongly monotonic allocation functions and show that these contracts are approximately

effi cient in the class of all incentive compatible contracts.

Garrett, Pavan, and Toikka (2017) take a different approach to the problem. They characterize

necessary properties of the optimal contract by a relatively simple perturbation argument. They

show that regardless of whether the first order approach is applicable or not, the optimal contract

must have vanishing distortions as long as the underlying process on types is suffi ciently mixing in

the sense that the impact of initial information on future types vanishes. Hence this paper confirms

for a larger class of models one of the key findings in Battaglini (2005) derived for models with

binary types.

6 Dynamic Populations

In this section, we consider mechanism design problems where the population of privately informed

agents changes over time. To fix ideas, we return to our leading example of a seller who has a

fixed capacity K of indivisible goods to sell by a (possibly infinite) deadline T . Potential buyers

arrive according to a stochastic process and the seller wants to extract as much revenue as possible

from them. Variants of this problem have been studied in the literature on revenue management in

management science and in operations research.

Important economic examples fit this description very nicely. By far the most important and the

most analyzed example is the pricing of airline tickets. As airlines customers have noticed. prices for

identical tickets on a given flight vary over time. The airlines industry uses various dynamic pricing

and allocation methods for the seats. They use time-varying posted prices that may depend on the

query data for the flight in question, and sometimes also more complicated mechanisms allowing

for the possibility of securing a future price by paying an up-front fee. These feature are important

for potential buyers as well. Forward looking buyers should time their purchases optimally given
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their expectation of the price path. In fact, services such as Kayak have been developed to alert

buyers to particularly good moments to purchase tickets.

Optimal timing of the purchases is a natural element in any dynamic mechanism design problem

of this type. The findings in this literature have a clear substantive message. In a wide class of

models, the literature shows that sellers cannot be made worse off if the buyers are forward looking

rather than myopic. Moreover, the analysis of models with forward looking buyers guides practical

implementations for the revenue maximizing scheme.

A key modeling decision with dynamic populations is whether the arrival of a buyer is publicly

observable or not. We start with the simpler models where observability is assumed. We discuss

also models where arrival is private information to the buyer. In this case, the buyer’s type has

two dimensions: age and valuation, but the model has enough structure that the analysis remains

tractable.

6.1 Observable Arrival of Short-Lived Buyers

The first approach in the revenue management literature was to assume away problems of asym-

metric information, i.e. assume that the seller observes the valuations and that the buyers are

short lived (i.e. they disappear if they are not allocated the good).13 In this framework, the seller’s

problem coincides with the problem of surplus maximization and the analysis is a standard (but not

analytically simple) exercise in dynamic programming. Within the revenue management literature,

the key analytical aspect of the problem is to find a characterization for the optimal allocation rule

for the goods as a function of remaining objects k at any point in time, and remaining time t to

the deadline. The key finding in this literature is that the optimal allocation rule is often given by

a cutoff rule in the set of types or valuations: allocate at (k, t) if and only if vt ≥ g (k, t) for some

function g that is typically decreasing in k and increasing in t.14

The mechanism design approach to this problem emphasizes the effects of incentive compatibility

when the buyers’s types are not observable to the seller. When buyers are short-lived and their

process of arrivals is observable to the seller, then we are specializing the general model to the case

described at the end of Subsection 2.2, where the agent’s type in period t is θi,τ i ∈ [0, θ] if t = τ i

13The classical references are Derman, Lieberman, and Ross (1972) for the case of known distribution of buyer

valuations and Albright (1977) for the case where the seller learns about the distribution based on the observed

types.
14With an infinite deadline, the problem becomes stationary if the arrival process of buyers is stationary and the

solution of the process simplifies considerably.
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for some (possibly random) publicly observed arrival period τ i and θi,τ ∈ θ0 if t 6= τ i and her payoff

from allocation x in a (possibly random) period τ i is vi(xi,τ i , θi,τ i).

In the simplest case, the buyers have unit demands for the object and they have independent

valuations. By the payoff equivalence theorem, incomplete information about the type of the buyer

transforms the maximization of total expected revenue to the relaxed problem of maximizing ex-

pected virtual surplus. For notational convenience, we assume that the distribution of the realized

type does not depend on the arrival time τ i, but this could be easily accommodated in the model

as well.

For the case of identical objects and with vi(xi,τ i , θi,τ i) = θi,τ ixi,τ i , where xi,τ i ∈ {0, 1} indicates
whether the object is allocated or not to i in τ i, we can write the expected revenue of the seller in

terms of the expected virtual utility:

Eθ
N∑
i=1

δτ i
[
θi −

1− F (θi)

F (θi)

]
xi,τ i

such that
N∑
i=1

xi,τ (θi) ≤ K for all θi ∈ Θi,

where the expectation is taken over the vector θ of type processes and the allocation decisions

depend only on the realized part θτ i of the process at τ i.

Full incentive compatibility typically boils down to an appropriate monotonicity requirement

for the allocation rule in type θi,t. For the case of identical objects, monotonicity is equivalent

to a cutoff characterization of the allocation rule. Hence a sequence of posted prices can always

implement the optimal allocation. Versions of this problem has been analyzed in a sequence of

papers by Gershkov and Moldovanu (2009a), (2009b), and additional results collected in Gershkov

and Moldovanu (2014). The revenue maximization problem in Gershkov and Moldovanu (2009a)

allows for the possibility that the K objects to be allocated have different (vertical) qualities.

Gershkov and Moldovanu (2009b) shows that learning or correlation in types may cause problems

for the monotonicity even for the socially effi cient allocation rule. Thus, the diffi culty of obtaining

a monotone allocation rule does not arise solely due to non-monotonic virtual surpluses. This

observation can be illustrated nicely within our leading example.

Example 3 (Learning and Incentive Compatibility)

A single indivisible good is to be allocated effi ciently to one of two bidders i ∈ {1, 2}, both with
a strictly positive valuation for the object. It is commonly known that τ i = i and therefore the
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relevant social allocation decisions are given by x ∈ {1, 2}, where the first choice indicates allocating
the object to bidder 1 in period 1 and the second indicates allocating to bidder 2 in period 2. The

planner’s objective is to maximize the social surplus and she has a discount factor δ.

The valuation θ1 ∈ [0, 1] of bidder 1 is known at the outset of the game. Bidder 2 learns her value in

period 2. The valuations can come from one of two possible distributions: θi is uniformly distributed

on either [0, 1
2
] or (1

2
, 1]. The prior probability of each of these distributions is identical.

With observable types, the planner’s optimal solution is immediate: allocate to agent 1 in period 1

iff

θ1 ∈ [
1

2
δ,

1

2
] ∪ [

3

4
δ, 1].

As long as δ > 2/3, this allocation rule is not monotone and since the bidders’payoffs are super-

modular, it fails to be incentive compatible for the case of unobserved types. If a bidder can make a

payment only in the period when he receives the good, we see that there is no way of implementing

the effi cient decision rule in the model with incomplete information. This problem does not arise if

we can condition payments on the reports of both types. The team mechanism derived in Section 3

works nicely here if such contingent payments are allowed. Hence the example points out the prob-

lems that arise as a consequence of the (often quite realistic) requirement that monetary transfers

occur only in conjunction with physical allocation decisions. This requirement sometimes goes under

the name of "online" payments.

6.2 Unobservable Arrival of Long-Lived Buyers

With unobservable arrivals, the buyers will have an incentive to time their purchases strategically.

If prices decrease over time, they will delay reporting to the mechanism in order to get a better deal

later on. Any incentive compatible mechanism must take this possibility into account. By contrast,

if the arrivals are publicly observed then this is not a concern. The seller may simply commit not to

offer any contracting opportunities except in the period of arrival. If the arrivals are not observed,

the seller cannot distinguish between new arrivals in any period t from those that arrived earlier

and waited with their announcement.

Board and Skrzypacz (2015) consider the sales problem of K identical indivisible units to a

population of arriving buyers when the arrivals are private information. In their model, the statis-

tical properties of the arrivals and valuations are common knowledge at the beginning of the game

and arrivals and types satisfy independence across buyers and across periods. They show that the

optimal selling mechanism is surprisingly simple: it is a deterministic sequence of posted prices
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depending on (k, t). Interestingly this pattern leads to waiting by the buyers along the equilibrium

path. Even if the seller knew the past realized arrivals, this would not change the solution. If the

demand is decreasing over time, they find a surprisingly explicit analytical solution for the problem.

The other main substantive finding is that under the optimal mechanism, the seller gets a higher

revenue than she would get if the buyers were short-lived. This happens even though sales are

more back-loaded in the case with forward-looking buyers and prices are falling. If the modeling

assumptions are relaxed, each of these two main predictions may fail and complete solutions seem

diffi cult to obtain. see for example the analysis in Mierendorff (2016) for the case where the agents

are forward looking but may disappear or have different discount factors.

Gershkov, Moldovanu, and Strack (2017) extend the model to cover the case where the buyers’

arrival process is initially not known. This relaxes the assumption of independence in arrival times.

They show that even though the optimal allocation is no longer implementable through anonymous

posted prices, a simple name-your-own-price mechanism can be used as an indirect mechanism that

achieves the maximal revenue. Further results in the paper show that the seller does not benefit

from hiding information, say, about the existing stock of k units and that forward-looking buyers

still benefit the seller as in Board and Skrzypacz (2015).

Since the models of dynamic populations where the buyers’types, the willingness-to-pay, are

fixed over time lead to considerations of strategic timing, it is natural to ask how the case where

buyers’types change over time would change the problem. In this case, there are two reasons for

optimizing over the purchasing time: the price may be more favorable in the future or the type may

change to one with a higher information rent.

A related issue is the timing of the contractual agreement between principal and agents. Much

of the current analysis assumes that the arrival of the agents is known to the principal and that

the principal can make a single, take-it-or-leave-it offer at the moment of the agent’s arrival. This

constraint, while natural in a static setting, is much less plausible in dynamic settings. In particular,

it explicitly excludes the possibility for the agent to postpone and delay the acceptance decision to

a later time when he may have additional information about the value of the contract offered to

him.

Garrett (2017) considers a model of sales of a non-durable good where the buyer appears at a

random future time, the arrival is private information, and her privately known valuation changes

over time. He shows that in the optimal mechanism, the principal commits to punishing the agent

for late arrival by inducing more ineffi ciencies to diminish information rents from manipulating the
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entry time.

A more ambitious attempt in this direction appears in Garrett (2016) where generations of new

buyers are arriving over time to contract with a seller. A full mechanism design approach is not

tractable in this case, and the paper restricts attention to optimal time-dependent sequence of posted

prices. Using anonymous posted prices implies that old and new buyers with the same valuation

type have the same incentives for all purchases. In this sense, explicit penalties for late arrivals are

not possible. In an otherwise stationary environment, the optimal posted price fluctuates. This

comes as a surprise after the well known result in Conlisk, Gerstner, and Sobel (1984) showing that

stationary prices are optimal because the forward-looking buyers with high values anticipate lower

prices and therefore are reluctant to buy at high prices. In Garrett (2016), high valuation buyers

are more keen to buy immediately since they understand that their type may decrease in the future.

Bergemann and Strack (2017) analyze a dynamic revenue-maximizing problem in continuous

time when the arrival time of the agent is uncertain and unobservable to the seller. The valuation

of the agent is private information as well and changes over time. They derive the optimal dynamic

mechanism, characterize its qualitative structure and derive a closed form solution. As the arrival

time of the agent is private information, the optimal dynamic mechanism has to be stationary to

guarantee truth-telling. The truth-telling constraint regarding the arrival time can be represented

as an optimal stopping problem. They show that the ability to postpone the acceptance of an offer

to a future period can increase the value of the buyer and can lead to a more effi cient allocation

resulting in equilibrium.

7 Connections to Nearby Models

In this section, we briefly discuss two classes of dynamic contracting models that do not assume

quasi-linear payoffs. Since Rogerson (1985), models of dynamic moral hazard have discussed the

smoothing of dynamic risks in models with incentive problems. In dynamic settings, the distinction

between dynamic moral hazard and adverse selection is almost impossible to make and many models

that share the informational structure with our general dynamic model have been discussed under

the name of dynamic moral hazard. The key difference between these models and those discussed

in the previous sections is that with risk averse preferences, the trade-off between effi cient physical

allocation and effi cient risk allocation emerges. Whether private information exists at the moment

of contracting or not is not that important for this literature since the incentives-insurance trade-off
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emerges in any case as private information is generated.

In models of financial economics, a key assumption is that the privately informed managers may

be risk-neutral but that they do not have suffi cient funds to buy the entire enterprise. This is typ-

ically formalized through a limited liability constraint stating that the manager (the agent) cannot

make payoffs to the owner (the principal). Recent work starting with Clementi and Hopenhayn

(2006), DeMarzo and Sannikov (2006), DeMarzo and Fishman (2007), and Biais, Mariotti, Plantin,

and Rochet (2007) has analyzed the problem of incentivizing a manager who privately observes the

cash flow of a firm.

7.1 Risk-Averse Agent

In most mechanism design problems, the key problem for the designer can be formulated as follows:

what is the most advantageous way of providing the agent with a fixed level of utility u0 (e.g. to

satisfy a participation constraint). With risk-averse agents and a risk-neutral principal, optimal

contracts provide some amount of insurance, but incentive compatibility precludes the possibility of

full insurance. This problem has attracted a large amount of attention starting with Green (1987)

and Thomas and Worrall (1990).15 Our goal here is not to assess this literature but merely point

out how it connects to the models in the previous sections of this survey.

The consumer derives utility v (xt, θt) in period t from allocation xt if her type is θt.We consider

incentive compatible dynamic direct mechanism. The agent’s problem is typically formulated as a

dynamic programming problem (induced by the mechanism):

V (θt) = max
rt

{
v (x (rt, ht) , θt) + E

[
V
(
θ̃t+1

)
|θt
]}

.

Under suffi cient regularity conditions, value functions Vt satisfying these equations exist and are

suffi ciently well behaved for an application of the envelope theorem. Indeed, if one assumes that

the set of possible types is a connected interval and that the process of types has full support, then

an application of the envelope theorem yields:

V ′ (θt) =
∂v (xt, θt)

∂θt
+

∫ θ

θ

V (θt+1)
∂f (θt+1 |θt )

∂θt
dθt+1.

15Many of the issues also arise in dynamic incentive provision models with hidden actions starting with Rogerson

(1985).
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Integration by parts gives:

V ′ (θt) =
∂v (xt, θt)

∂θt
+ E

[
−∂F (θt+1|θt )

∂θt

f (θt+1 |θt )
V ′ (θt+1)

]
.

Hence by iterating this formula forwards, one gets as before:

V ′ (θ0) = E

[ ∞∑
t=0

Itδ
t∂v(xt, θt)

∂θt

]
.

In other words, a similar envelope theorem characterization for the agent’s utility is still possible

in this model. Many papers in the new public finance literature adopt this approach. For example

Farhi and Werning (2007) study dynamic insurance schemes from this perspective.

But following with this first order approach to dynamic problems, the next step of substituting

the agent’s payoff into the principal’s objective unfortunately fails because the utility is not quasi-

linear. As a result, solving the model is in general more diffi cult than in the quasi-linear case and

numerical methods are typically needed. This also implies that checking full incentive compatibility

becomes much harder in this class of models.

7.2 Managerial Contracts and Hidden Actions

Garrett and Pavan (2012) consider a model where a risk-neutral principal contracts with a risk-

neutral manager whose type (productivity) changes over time. The manager (the agent) has to

be incentivized to take the optimal action at each point in time and the distortions now refer to

the dynamic distortions relative to the model where incentives are provided in a setting with no

private information. The paper shows that as long as the impulse response functions in the model

are positive (for the privately observed productivity of the manager), then the distortions to the

incentives diminish over time and incentives become more high-powered.16

Limited liability protection on the part of the agent implies an upper bound on the transfers that

can be made from the agent to the principal. Often this constraint takes the form that all transfers

must be from the principal to the agent. This prevents the principal from selling the enterprise to

the agent at the outset even when there is no initial asymmetric information and hence no losses

due to information rent left with the agent. A canonical model for this literature is one where the

16In contrast, Garrett and Pavan (2015) consider the case where a risk-neutral prinicpal provides incentives for a

risk-averse manager and shows that the power of incentives vanishes over time to reduce the overall riskiness in the

contract.
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agent reports a privately observed i.i.d. cash flow to the principal in each period. The mechanism

determines the transfers to the agent and a probability of continuing the project as functions of

the (history of) reported cash flows. A key finding in this literature is that over time, the contract

becomes more effi cient, i.e. the probability of ineffi cient liquidation decreases over time. It should

be noted that the intuition for this finding is very different compared to the models surveyed above.

With limited liability, the optimal contract effectively saves funds for the agent so that she can buy

the enterprise at a later time. Since recent surveys of this large literature exist (see for example

Biais, Mariotti, and Rochet (2013)), we do not survey the topic here.

8 Concluding Remarks

It was our objective to give a broad and synthetic introduction to the recent work on dynamic

mechanism design. We hope we have conveyed the scope and the progress that has been made in

the past decade. Still, many interesting questions remain wide open. We shall describe some of

them in these final remarks.

The intertemporal allocations and commitments that resulted from the dynamic mechanism

balanced trade-offs over time. These trade-offs were based on the expectations of the agents and

the principal over the future states. In this sense, all of the mechanisms considered were Bayesian

solutions and relied on a shared and common prior of all participating players. Yet, this clearly is a

strong assumption and a natural question would be to what extent weaker informational assump-

tions, and corresponding solution concepts, could provide new insights into the format of dynamic

mechanisms. For example, the sponsored search auctions, which provide much of the revenue for the

search engines on the web, are clearly repeated and dynamic allocations with private information,

yet, most of the allocations and transfer are determined by spot markets or short-term arrange-

ments rather than long-term contracts. An important question then is why not more transactions

are governed by long-term arrangements that could presumably share the effi ciency gains from less

distortionary allocations between the buyers and the seller. An important friction to long-term

arrangements is presumably the diversity in expectations about future events between buyer and

seller. In a recent paper, Mirrokni, Leme, Tang, and Zuo (2017) provide lower bounds for a revenue

maximizing mechanism in which the players do not have to agree on their future expectations. The

mechanism that achieves the lower bound in fact satisfies the interim participation and incentive

constraints for all possible realizations of future states. This approach reflects the recent interest of
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theoretical computer science in dynamic mechanism design, see for example Papadimitriou, Pier-

rakos, Psomas, and Rubinstein (2016). But in contrast to the Bayesian approach most commonly

taken by economic theorists who explicitly identify and design the optimal mechanism, theoretical

computer scientists often describe achievable performance guarantees. The bounds are frequently

achieved by mechanisms that have computational advantages in terms of computational complexity

relative to the, possible unknown, exact optimal mechanism.

As an important friction to long-term arrangements is presumably the diversity in expectations

about future events among the players, it is natural to ask to what extent the relevant insights

from static mechanism design can be transferred to dynamic settings. Mookherjee and Reichelstein

(1992) establish that in static environments the revenue maximizing allocation can frequently be im-

plemented by dominant rather than Bayesian incentive compatible strategies. Similarly, Bergemann

and Morris (2005) present conditions for static social choice functions under which an allocation

can be implemented for all possible interim beliefs that the agents may hold. The robustness to

private information is arguably an even more important consideration in dynamic environments.

The central problem that the literature of dynamic mechanism has addressed is how to provide

incentives to report the sequentially arriving private information. Thus, the central constraints on

the design are given by the sequence of interim incentive compatibility conditions. The participation

constraints on the other hand have—somewhat surprisingly for a dynamic perspective—have received

much less attention. A dynamic mechanism requires voluntary participation at the ex ante and

interim stages via interim or periodic ex-post constraints. The dynamic pivot mechanism that

governed the dynamically effi cient allocation provided such an instance.

By contrast, the dynamic revenue maximization contract only imposed the participation con-

straint in the initial period. Interim participation constraints can be handled by allowing the

agents to post bonds at the initial stage. In general, the mechanism does not provide any guar-

antees about ex post participation constraints.17 In fact, Krähmer and Strausz (2015) show that

sequential screening frequently reduces to a static screening solution if the seller has to meet the ex

post rather than the ex ante participation constraints of the buyers. More generally, if the dynamic

mechanism improves upon a static mechanism in the sequential screening model, then the ex post

participation constraint severely limits the ability of the seller to extract surplus through option

contracts as shown in Bergemann, Castro, and Weintraub (2017).

17Many commonly observed dynamic contracts do in fact violate ex post participation constraints. For example,

an insurance company does not return the premium in case of no accident.
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An interesting set of issues arise when the mechanism itself can govern only some of the relevant

economic transaction. A specific setting where this is occurs are markets with resale. Here, the

design of the optimal mechanism in the initially stage of the game is affect by the interaction in

the resale market, see for example Calzolari and Pavan (2006), Dworczak (2016), Carroll and Segal

(2016) and Bergemann, Brooks, and Morris (2017). In particular, the information that is generated

by the mechanism may affect the nature of the subsequent interaction, and thus the tools from

information design and mechanism design may jointly yield interesting new insights.
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9 Appendix

9.1 Dynamic Pivot Mechanism and Independence

To see why the restriction to independent values is necessary, recall the transfer rule for agent i in

the static pivot mechanism:

pi (θ) = −
∑
j 6=i

uj (x∗ (θ) , θj) +
∑
j 6=i

uj
(
x∗−i (θ−i) , θj

)
,

where x∗−i (θ−i) is the optimal allocation for agents different from i. In the static case, x∗−i depends

only on the vector θ−i by the assumption of private values regardless of any statistical dependencies

between the agents’types. In the dynamic case, with correlated values, θi,t might have an effect on

x∗−i,t even when fixing θ−i,t. As a result, both sums on the right hand side of (2) depend on θi,t and

this distorts the incentives for truthful reporting. The following example illustrates this point.

Example 4 (Capacity Allocation and Correlated Types)

Three agents i ∈ {1, 2, 3} are bidding for a single indivisible object over three periods. Let xt ∈
{1, 2, 3} denote the possible allocations to i in period t. If the good is allocated in period s, then
θi,t = 0 for all i and all t > s (say because it is not worthwhile to pay a cost to learn the valuation

for an object that was already sold). Assume also that θi,t = 0 if i 6= t to indicate that agent i is

active at most in period t = i. The payoff to agent i in period t is then Pr{xt = i}θi,t.
Assume that θ1,1 ∈ {3, 3 − ε}, θ2,2 = 1 if x0 = N and θ3,3 = 0 otherwise, θ3,3 ∈ {2, ε} if

x1 = x2 = N and θ1,1 = 0 otherwise. Let π denote the prior probability that θ2,2 = 2 given that

x0 = x1 = N, and assume that 2πδ > 1. Then it is optimal to have x1 = N, x2 = 2 conditional on

x0 = N. As long as ε < 1, the effi cient decision is to have x0 = 0. But it is clear that this is not

incentive compatible if the transfers are calculated using the pivotal rule. To minimize the payments,

agent 0 should always report type θ0,0 = 3− ε.

9.2 The Canonical Representation of a Markov Process

Consider an arbitrary Markov process {θ̃t}Tt=0 with the prior distribution F0 (θ0) and the transition

kernel θ̃t+1 ∼ F (· |θt ) on Θ. Since ε̃t+1 = F
(
θ̃t+1 |θt

)
is uniformly distributed for all θt, we can

deduce θt+1 from (θ0, ε1, ..., εt) by using the recursive formula:

θt = F−1 (εt |θt−1 ) , Zt
(
θ0, ε

t
)
. (17)
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Since the functions Zt (·, ·) are common knowledge at the start of the game,
(
θ̃0, ..., θ̃t

)
con-

tains the same information as
(
θ̃0, ε̃1, ..., ε̃t

)
. Pavan, Segal, and Toikka (2014) call the collection

(θ̃0, {ε̃t}Tt=1, {Zt}Tt=1) the canonical representation of the process {θ̃t}Tt=0.

In computing the dynamic payoff equivalence formula, we need to evaluate the impact of the

initial private information on future types. Using the chain rule, we can compute from equation (17)

the impact Ît (εt) of the initial private information θ0 on θt for any fixed sequence of orthogonalized

future types εt :

Ît
(
εt
)

=

t∏
k=1

∂F−1 (εk |θk−1 )

∂θk−1

= −
t∏

k=1

∂F (θk|θk−1 )

∂θk−1

f (θk |θk−1 )
, It

(
θt
)
. (18)

The function It (·) that expresses this impact in terms of the original type formulation is called the
impulse response function in Pavan, Segal, and Toikka (2014) and it plays a key role the charac-

terization of the agent’s information rent.18 Notice that as long as θ̃t is first order stochastically

increasing in θ̃t−1, we can show that I
(
θt
)
≥ 0. From now on, we assume that

∣∣It (θt)∣∣ < K for

some K <∞ so that the formula for determining It
(
θt
)
makes sense, and we let I0 (θ0) = 1 for all

θ0.

The canonical representation is by no means a unique representation of the original model in

terms of initial information and subsequent independent information. The next Appendix gives an

example where a non-canonical representation allows us to overcome a differentiability problem in

the canonical representation.

We have presented the construction here for homogeneous Markov processes, but the same proce-

dure can be used to obtain a canonical representation for the more general processes F (θt+1 |θt, xt ) .
In this more general case, we denote the impulse response functions by It

(
θt, xt−1

)
.

18Since

εk ≡ F
(
F−1 (εk |θk−1 ) |θk−1

)
,

the second equality in the formula follows by total differentiation with respect to θk−1

∂F−1 (εk |θk−1 )

∂θk−1
= −

∂F (θk|θk−1 )
∂θk−1

f (θk |θk−1 )
.
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9.3 Implementability in the Orthogonalized Model

This example communicated to us by Juuso Toikka illustrates that the solution of the relaxed prob-

lem may not be (fully) incentive compatible, but where it can be implemented if the orthogonalized

information were publicly observable.

A seller (mechanism designer) with cost function ct (x1) =
x21
2
sells to a privately informed buyer

in period t = 1. In period t = 0, there is no trade and hence the allocation decision for that period

is trivial. The buyer’s (the agent’s) type in t = 0 is uniformly distributed, θ0 ∼ U [0, 1], and in

period t = 1, it remains unchanged with probability q. With probability (1− q) , the type is drawn
independently of θ0. The canonical representation of the model is

(
θ̃0, ε̃1, Z1 (θ0, ε1)

)
, where

Z1 (θ0, ε1) =


ε1

1−q if 0 ≤ ε1 < (1− q) θ0,

θ0 if (1− q) θ0 ≤ ε1 ≤ (1− q) θ0 + q,
ε1−q
1−q if (1− q) θ0 + q < ε1 ≤ 1.

Notice that Z1 (θ0, ε1) is not differentiable in θ0 at θ0 ∈
{

ε1
1−q ,

ε1−q
1−q

}
and hence the envelope theorem

is not directly applicable.19 This problem can however be overcome by selecting a different (non-

canonical) orthogonal representation with a two dimensional η1 = (η11, η12) where η11 is a Bernoulli

random variable with Pr{η11 = 1} = 1 − Pr {η11 = 0} = q and η12 is an independent uniform

random variable. Then we can write

θ1 = Ẑ1 (θ0, η11, η12) = η11θ0 + (1− η11) η12.

Now we see that Ẑ1 is differentiable in θ0 and

I1 (θ0, θ1) = 1{θ1=θ0} ∈ {0, 1} .

Hence the envelope theorem is applicable and we can write equation (12) for the relaxed problem

as

max
x1≥0
{x1

(
θ1 − (1− θ0)1{θ1=θ0}

)
− x2

1

2
}.

The solution to this problem is

x1 (θ0, θ1) =

{
θ1 if θ1 6= θ0,

max{0, 2θ1 − 1} if θ1 = θ0.

19A similar example can be constructed where the canonical representation is well behaved by smoothing the

distribution of θ1 around θ0.
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The allocation rule is non-monotone in θ1 for each θ0 < 1 and as a result, it cannot be imple-

mented if η1 is private information. On the other hand, it can be implemented if η1 is observed by

the seller. In this case, the seller knows θ1 if η11 = 0 and any rule is trivially implementable. If

η11 = 1, the solution to the problem is the usual Mussa-Rosen rule. The second part of the alloca-

tion rule x1 above is the optimal scheme for this case. Hence we conclude that x1 is implementable

with publicly observed η1.
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