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Abstract

We introduce and characterize a recursive model of dynamic choice that accom-

modates naiveté about present bias. The model incorporates costly self-control in

the sense of Gul and Pesendorfer (2001) to overcome the technical hurdles of the

Strotz representation. The important novel condition is an axiom for naiveté. We

first introduce appropriate definitions of absolute and comparative naiveté for a

simple two-period model, and explore their implications for the costly self-control

model. We then extend this definition for infinite-horizon environments, and dis-

cuss some of the subtleties involved with the extension. Incorporating the definition

of absolute naiveté as an axiom, we characterize a recursive representation of naive

quasi-hyperbolic discounting with self-control for an individual who is jointly overop-

timistic about her present-bias factor and her ability to resist instant gratification.

We study the implications of our proposed comparison of naiveté for the parame-

ters of the recursive representation. Finally, we discuss the obstacles that preclude

more general notions of naiveté, and illuminate the impossibility of a definition that

simultaneously incorporates both random choice and costly self-control.
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1 Introduction

Naiveté about dynamically inconsistent behavior seems intuitively realistic and has impor-

tant consequences for economic analysis. Behavioral models of agents with overoptimistic

beliefs about their future decisions are now prevalent tools that feature across a variety

of applications. Naiveté is an inherently dynamic phenomenon that implicates today’s

projections regarding future behavior. When the domain of choice is itself temporal, as

in consumption over time, yet another layer of dynamics is introduced since naiveté then

involves current assessments of future trade-offs.

Of course, complicated long-run dynamic problems are central to many economic set-

tings that have nothing to do with naiveté. The standard approach to manageably analyze

such problems is through a recursive representation of dynamic choice. The development

of modern finance or macroeconomics seems unimaginable without the endemic recursive

techniques that are now a standard part of the graduate curriculum. Despite the general

importance of behavior over time in economics and its particular importance for appli-

cations of naiveté, a recursive dynamic model of a naive agent making choices over time

remains outstanding. This paper remedies that gap, providing the appropriate environ-

ment and conditions to characterize a system of recursive equations that parsimoniously

represents naive behavior over an infinite time horizon.

An immediate obstacle to developing a dynamic model of naiveté is that the ubiqui-

tous Strotz model of dynamic inconsistency is poorly suited for recursive representations.

Even assuming full sophistication, the Strotz model is well-known to be discontinuous

and consequently ill-defined for environments with more than two periods of choice (Pe-

leg and Yaari (1973); Gul and Pesendorfer (2005)).1 This is because a Strotzian agent

lacks any self-control to curb future impulses and therefore is highly sensitive to small

changes in the characteristics of tempting options. Our approach instead follows Gul and

Pesendorfer (2004), Noor (2011), and Krusell, Kuruşçu, and Smith (2010) in considering

self-control in a dynamic environment. The moderating effects of even a small amount

of self-control allows escape from the technical issues of the Strotz model. In addition

to its methodological benefits, incorporating self-control into models of temptation has

compelling substantive motivations per se, as argued in the seminal paper by Gul and Pe-

sendorfer (2001). For methodological and substantive reasons, we employ the self-control

model to represent dynamic naive choice.

An important foundational step in route to developing a recursive representation for

naive agents is formulating appropriate behavioral definitions of naiveté. Our first order

of business is to introduce definitions of absolute and comparative naiveté for individuals

1One workaround to finesse this impossibility is to restrict the set of decision problems and preferences
parameters, e.g., by imposing lower bounds on risk aversion, the present-bias parameter, and uncertainty
about future income (Harris and Laibson (2001)). We take a different approach in this paper.
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who can exert costly self-control in the face of temptation. While definitions of absolute

sophistication for self-control preferences have been proposed by Noor (2011) and defi-

nitions of absolute and comparative naiveté for Strotz preferences have been proposed

by Ahn, Iijima, Le Yaouanq, and Sarver (2016),2 no suitable definitions of naiveté for

self-control currently exist.

We first explore these concepts in a simple two-stage environment with ex-ante rank-

ings of menus and ex-post choice from menus to sharpen intuitions. We then proceed to

extend these intuitions to infinite-horizon environments. We propose a system of equa-

tions to recursively represent naive quasi-hyperbolic discounting over time, building on

earlier related recursive representations for fully sophisticated choice by Gul and Pesendor-

fer (2004) and Noor (2011). These equations capture an agent who is naive about both

her present-bias and her ability to resist the impulse for immediate gratification. Incor-

porating an infinite-horizon version of our definition of absolute naiveté as an axiom, we

provide a behavioral characterization of our proposed model. To our knowledge, this pro-

vides the first recursive model of dynamic naive choice. The model is applied to a simple

consumption-saving problem to illustrate how naiveté influences consumption choice in

the recursive environment.

We conclude by discussing the scope of our proposed definition of naiveté with self-

control and its relationship to other proposals. We relate our definition to the definition

of naiveté for consequentialist behavior proposed by Ahn, Iijima, Le Yaouanq, and Sarver

(2016) and show that the two approaches are equivalent for deterministic Strotz prefer-

ences. However, we also argue for the impossibility of a comprehensive definition of naiveté

that is suitable for both random choice and self-control: No definition can correctly ac-

commodate both the deterministic self-control model and the random Strotz model, and

no definition can accommodate random self-control.

2 Prelude: A Two-Stage Model

2.1 Primitives

To establish intuition, we commence our analysis with a two-stage model in this section

before we proceed to the infinite-horizon recursive model in the next section. Let C

denote a compact and metrizable space of outcomes and ∆(C) denote the set of lotteries

(countably-additive Borel probability measures) over C, with typical elements p, q, . . . ∈
∆(C). Slightly abusing notation, we identify c with the degenerate lottery δc ∈ ∆(C). Let

K(∆(C)) denote the family of nonempty compact subsets of ∆(C) with typical elements

2See also the recent theoretical analysis by Freeman (2016) that uses procrastination to uncover naiveté
within Strotzian models of dynamic inconsistency.
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x, y, . . . ∈ K(∆(C)). An expected-utility function is a continuous affine function u :

∆(C) → R, that is, a continuous function such that, for all lotteries p and q, u(αp +

(1 − α)q) = αu(p) + (1 − α)u(q). Write u ≈ v when u and v are ordinally equivalent

expected-utility functions, that is, when u is a positive affine transformation of v.

We study a pair of behavioral primitives that capture choice at two different points in

time. The first is a preference relation % on K(∆(C)). This ranking of menus is assumed

to occur in the first period (“ex ante”) before the direct experience of temptation but

while (possibly incorrectly) anticipating its future occurrence. As such, it allows infer-

ences about the individual’s projection of her future behavior. The second is a choice

correspondence C : K(∆(C)) ⇒ ∆(C) with C(x) ⊂ x for all x ∈ K(∆(C)). The behav-

ior encoded in C occurs the second period (“ex post”) and is taken while experiencing

temptation.

These primitives are a special case of the domain used in Ahn, Iijima, Le Yaouanq,

and Sarver (2016) to study naiveté without self-control and in Ahn and Sarver (2013) to

study unforeseen contingencies.3 The identification of naiveté and sophistication in our

model relies crucially on observing both periods of choice data. Clearly, multiple stages

of choice are required to identify time-inconsistent behavior. In addition, the ex-ante

ranking of non-singleton option sets is required to elicit beliefs about future choice and

hence to identify whether an individual is naive or sophisticated. This combination of ex-

ante choice of option sets (or equivalently, commitments) and ex-post choice is therefore

also common in the empirical literature that studies time inconsistency and naiveté.4

Perhaps most closely related is a recent experiment by Toussaert (2016) that elicited

ex-ante menu preferences and ex-post choices of the subjects and found evidence for the

self-control model of Gul and Pesendorfer (2001).

2.2 Naiveté about Temptation with Self-Control

We introduce the following behavioral definitions of sophistication and naiveté that ac-

count for the possibility of costly self-control.

Definition 1 An individual is sophisticated if, for all lotteries p and q with {p} � {q},

C({p, q}) = {p} ⇐⇒ {p, q} � {q}.
3In these papers the second-stage choice is allowed to be random. While we feel this is an important

consideration when there is uncertainty about future behavior, in this paper we restrict attention to
deterministic choice in each period. This restriction is not solely for the sake of exposition: We argue
in Section 4 that no definition of naiveté can satisfactorily accommodate both self-control and random
choice.

4Examples include DellaVigna and Malmendier (2006); Shui and Ausubel (2005); Giné, Karlan, and
Zinman (2010); Kaur, Kremer, and Mullainathan (2015); Augenblick, Niederle, and Sprenger (2015).
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An individual is naive if, for all lotteries p and q with {p} � {q},

C({p, q}) = {p} =⇒ {p, q} � {q}.

An individual is strictly naive if she is naive and not sophisticated.5

This definition of sophistication was introduced by Noor (2011, Axiom 7) and a simi-

lar condition was used by Kopylov (2012). To our knowledge, the definition of naiveté is

new. Both definitions admit simple interpretations: An individual is sophisticated if she

correctly anticipates her future choices and exhibits no unanticipated preference reversals,

whereas a naive individual my have preference reversals that she fails to anticipate. More

concretely, consider both sides of the required equivalence in the definition of sophisti-

cation. On the right, a strict preference for {p, q} over {q} reveals that the individual

believes that she will choose the alternative p over q if given the option ex post. On

the left, the ex-ante preferred option p is actually chosen. That is, her anticipated and

actual choices align. A sophisticated individual correctly forecasts her future choices and

therefore strictly prefers to add an ex-ante superior option p to the singleton menu {q} if

and only if it will be actually chosen over q ex post.

In contrast, a naive individual might exhibit the ranking {p, q} � {q}, indicating

that she anticipates choosing the ex-ante preferred option p, yet ultimately choose q over

p in the second period. Thus a naive individual may exhibit unanticipated preference

reversals. However, our definition of naiveté still imposes some structure between believed

and actual choices. Any time the individual will actually choose in a time-consistent

manner ({p} � {q} and C({p, q}) = {p}) she correctly predicts her consistent behavior;

she does not anticipate preference reversals when there are none. Rather than permitting

arbitrary incorrect beliefs for a naive individual, our definition is intended to capture

the most pervasive form of naiveté that has been documented empirically and used in

applications: underestimation of the future influence of temptation.6

Ahn, Iijima, Le Yaouanq, and Sarver (2016) proposed definitions of sophistication

and naiveté for individuals who are consequentialist in the sense that they are indifferent

between any two menus that share the same anticipated choices, as for example in the case

of the Strotz model of changing tastes. Specifically, Ahn, Iijima, Le Yaouanq, and Sarver

(2016) classify an individual as naive if x % {p} for all x and p ∈ C(x), and as sophisticated

5Definition 1 can be stated in terms of non-singleton menus. That is, an individual is sophisticated if
for all menus x, y such that {p} � {q} for all p ∈ y and q ∈ x, C(x∪y) ⊂ y ⇐⇒ x∪y � x. An individual
is naive if for all menus x, y such that {p} � {q} for all p ∈ y and q ∈ x, C(x ∪ y) ⊂ y =⇒ x ∪ y � x.

6Our definition classifies an individual as naive if she makes any unanticipated preference reversals,
which is sometimes also referred to as “partial naiveté” in the literature on time inconsistency. Some
papers in this literature reserve the term “naive” for the case of complete ignorance of future time
inconsistency. This extreme of complete naiveté is the special case of our definition where {p, q} � {q}
any time {p} � {q}.
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if x ∼ {p} for all x and p ∈ C(x). In the presence of self-control, these conditions are

too demanding. An individual who chooses salad over cake may still strictly prefer to go

to a restaurant that does not serve dessert to avoid having to exercise self-control and

defeat the temptation to eat cake. That is, costly self-control may decrease the value of

a menu that contains tempting options so that {p} � x for p ∈ C(x) is possible for a

sophisticated, or even a naive, individual. Definition 1 instead investigates the marginal

impact of making a new option p available in the ex-ante and ex-post stages. Section 4.1

formally analyzes the relationship between these two sets of definitions and shows that

Definition 1 is applicable more broadly to preferences both with and without self-control.7

With the definition of absolute naiveté in hand, we can now address the comparison of

naiveté across different individuals. Our approach is to compare the number of violations

of sophistication: A more naive individual exhibits more unexpected preference reversals

than a less naive individual.

Definition 2 Individual 1 is more naive than individual 2 if, for all lotteries p and q,[
{p, q} �2 {q} and C2({p, q}) = {q}

]
=⇒

[
{p, q} �1 {q} and C1({p, q}) = {q}

]
.

A more naive individual has more instances where she desires the addition of an option

ex ante that ultimately goes unchosen ex post. Our interpretation of this condition is that

any time individual 2 anticipates choosing the ex-ante superior alternative p over q (as

reflected by {p, q} �2 {q}) but in fact chooses q ex post, individual 1 makes the same

incorrect prediction. Note that any individual is trivially more naive than a sophisticate:

If individual 2 is sophisticated, then it is never the case that {p, q} �2 {q} and C2({p, q}) =

{q}; hence Definition 2 is vacuously satisfied.

As an application of these concepts, consider a two-stage version of the self-control

representation of Gul and Pesendorfer (2001).

Definition 3 A self-control representation of (%, C) is a triple (u, v, v̂) of expected-utility

functions such that the function U : K(∆(C))→ R defined by

U(x) = max
p∈x

[
u(p) + v̂(p)

]
−max

q∈x
v̂(q)

represents % and

C(x) = argmax
p∈x

[u(p) + v(p)].

7However, the definitions proposed in Ahn, Iijima, Le Yaouanq, and Sarver (2016) have the advantage
that they are readily extended to random choice driven by uncertain temptations, so long as the individual
is consequentialist (exhibits no self-control).
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The first function u reflects virtuous or normative utilities, for example how healthy

different foods are. The second function v̂ reflects how tempting the individual expects

each options to be, for example how delicious different foods are. The interpretation is

that the individual expects to maximize u(p) minus the cost [maxq∈x v̂(q)− v̂(p)] of having

to exert self-control to refrain from eating the most tempting option. She therefore antic-

ipates choosing the option that maximizes the compromise u(p)+ v̂(p) of the virtuous and

(anticipated) temptation utility among the available options in menu x. The divergence

between u and u+ v̂ captures the individual’s perception of how temptation will influence

her future choices. For a potentially naive individual, her actual ex-post choices are not

necessarily those anticipated ex ante. Instead, the actual self-control cost associated with

choosing p from the menu x is [maxq∈x v(q) − v(p)], where the actual temptation v can

differ from anticipated temptation v̂. The decision maker’s ex-post choices are therefore

governed by the utility function u+ v rather than u+ v̂.

The following definition offers a structured comparison of two utility functions w and

w′ and formalizes the a notion of greater congruence with the commitment utility u.

Recall that w ≈ w′ denotes ordinal equivalence of expected-utility functions, i.e., one is a

positive affine transformation of the other.

Definition 4 Let u,w,w′ be expected-utility functions. Then w is more u-aligned than

w′, written as w �u w
′, if w ≈ αu+ (1− α)w′ for some α ∈ [0, 1].

We now provide a functional characterization of our absolute and comparative defini-

tions of naiveté for the self-control representation. Our result begins with the assumption

that the individual has a two-stage self-control representation, which is a natural start-

ing point since the primitive axioms on choice that characterize this representation are

already well established.8 We say a pair (%, C) is regular if there exist lotteries p and

q such that {p} � {q} and C({p, q}) = {p}. Regularity excludes preferences where the

choices resulting from actual temptation in the second period are exactly opposed to the

commitment preference.

Theorem 1 Suppose (%, C) is regular and has a self-control representation (u, v, v̂). Then

the individual is naive if and only if u + v̂ �u u + v (and is sophisticated if and only if

u+ v̂ ≈ u+ v).

If the decision maker is naive, then she believes that her future choices will be closer

to the virtuous ones. This overoptimism about virtuous future behavior corresponds to a

8Specifically, (%, C) has a (two-stage) self-control representation (u, v, v̂) if and only if % satisfies the
axioms of Gul and Pesendorfer (2001, Theorem 1) and C satisfies the weak axiom of revealed preference,
continuity, and independence.
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particular alignment of these utility functions:

u+ v̂ ≈ αu+ (1− α)(u+ v).

The individual optimistically believes that her future choices will include an unwarranted

weight on the virtuous preference u. Although the behavioral definition of naiveté permits

incorrect beliefs, it does place some structure on the relationship between anticipated and

actual choices. For example, it excludes situations like a consumer who thinks she will

find sweets tempting when in fact she will be tempted by salty snacks. Excluding such

orthogonally incorrect beliefs is essential in relating v̂ to v and deriving some structure in

applications.

Note that our behavioral definition of naiveté places restrictions on the utility functions

u + v̂ and u + v governing anticipated and actual choices, but it does not apply directly

to the alignment of the temptation utilities v̂ and v themselves. This seems natural since

our focus is on naiveté about the choices that result from temptation, not about when

individuals are tempted per se. Example 1 below illustrates the distinction: It is possible

for an individual to be overly optimistic about choice, as captured by u + v̂ �u u + v,

while simultaneously being overly pessimistic about how often she will be tempted, as

captured by v �u v̂.

Our behavioral comparison of naiveté is necessary and sufficient for linear alignment of

the actual and believed utilities across individuals. In particular, the more naive individual

has a more optimistic view of her future behavior (u1 + v̂1 �u1 u2 + v̂2), while actually

making less virtuous choices (u2 + v2 �u1 u1 + v1). We say (%1, C1) and (%2, C2) are

jointly regular if there exist lotteries p and q such that {p} �i {q} and Ci({p, q}) = {p}
for i = 1, 2.

Theorem 2 Suppose (%1, C1) and (%2, C2) are naive, jointly regular, and have self-control

representations (u1, v1, v̂1) and (u2, v2, v̂2). Then individual 1 is more naive than individual

2 if and only if either

u1 + v̂1 �u1 u2 + v̂2 �u1 u2 + v2 �u1 u1 + v1,

or individual 2 is sophisticated (u2 + v̂2 ≈ u2 + v2).

Figure 1a illustrates the conditions in Theorems 1 and 2. Naiveté implies that, up to an

affine transformation, the anticipated compromise between commitment and temptation

utility ui + v̂i for each individual is a convex combination of the commitment utility

ui and the actual compromise utility ui + vi. Moreover, if individual 1 is more naive

than individual 2, then the “wedge” between the believed and actual utilities governing

choices, ui + v̂i and ui + vi, respectively, is smaller for individual 2. These relationships

7



u2

u1

u2

u1 + v̂1

u2

u2 + v̂2

u2 + v2

u1 + v1

(a) Theorem 2: Alignment of believed and
actual utilities implied by comparative naiveté.

u

v = v̂2

v̂1

u+ v̂1

u+ v = u+ v̂2

(b) Example 1: Individual 1 can be more
naive than individual 2 even if v̂2 �u v̂1

(u1 = u2 = u and v1 = v2 = v).

Figure 1. Comparing naiveté

provide functional meaning to the statement that beliefs about the influence of temptation

are more accurate for individual 2 than 1. Figure 1a also illustrates several different

possible locations of u2 relative to the other utility functions. There is some freedom in

how the normative utilities of the two individuals are aligned, which permits meaningful

comparisons of the degree of naiveté of individuals even when they do not have identical

ex-ante commitment preferences.9

There is an obvious connection between the choices an individual anticipates making

and her demand for commitment: If an individual anticipates choosing a less virtuous

alternative from a menu, she will exhibit a preference for commitment. However, for self-

control preferences, there will also be instances in which an individual desires commitment

even though she anticipates choosing the most virtuous option in the menu. This occurs

when she finds another option in the menu tempting, but expects to resist that temptation.

Although our comparative measure concerns the relationship between the anticipated and

actual choices by individuals, it does not impose restrictions on whether one individual

or another is tempted more often. The following example illustrates the distinction.

Example 1 Fix any u and v that are not affine transformations of each other. Let

(u, v, v̂1) and (u, v, v̂2) be self-control representations for the ex-ante preferences of indi-

9There are, of course, some restrictions on the relationship between u1 and u2 in Theorem 2. The
assumption that (%1, C1) and (%2, C2) are jointly regular implies there exist lotteries p and q such that
ui(p) > ui(q) and (ui + vi)(p) > (ui + vi)(q) for i = 1, 2. When individual 2 is strictly naive, this
implies that u2 lies in the arc between −(u1 + v1) and u2 + v̂2 in Figure 1a, which can be formalized as
u2 + v̂2 �u2

u2 + v2 �u2
u1 + v1.
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viduals 1 and 2, respectively, where v̂1 = (1/3)(v − u) and v̂2 = v. Then,

u+ v̂1 =
2

3
u+

1

3
v ≈ 1

2
u+

1

2
(u+ v).

Since v̂2 = v2 = v1 = v, this implies that the condition in Theorem 2 is satisfied:

u+ v̂1 �u u+ v̂2 = u+ v2 = u+ v1.

Thus the two individuals make the same ex-post choices, individual 2 is sophisticated,

and individual 1 is naive. In particular, individual 1 is more naive than individual 2,

even though her anticipated temptation utility diverges further from her commitment

utility than that of individual 2, v̂2 �u v̂1.10 Figure 1b illustrates these commitment and

temptation utilities. �

It is worthwhile to note that the self-control representation has been applied to a

variety of settings, including habit formation, social preferences, and non-Bayesian belief

updating.11 Thus our results are also applicable to these specific settings to characterize

the particular implications of absolute and comparative naiveté. While naiveté in self-

control models has been relatively less explored in the literature, we are not the first study

that formalizes it. The welfare effects of naiveté within a special case of the self-control

representation were examined by Heidhues and Kőszegi (2009). In the next section, we

illustrate the implications of our definitions for their proposed model.

2.3 Naiveté about the Cost of Exerting Self-Control

Heidhues and Kőszegi (2009) proposed the following special case of the self-control rep-

resentation.

Definition 5 A Heidhues-Kőszegi representation of (%, C) is tuple (u, v̄, γ, γ̂) of expected-

utility functions u and v̄ and scalars γ, γ̂ ≥ 0 such that the function U : K(∆(C)) → R
defined by

U(x) = max
p∈x

[
u(p) + γ̂v̄(p)

]
−max

q∈x
γ̂v̄(q)

represents % and

C(x) = argmax
p∈x

[u(p) + γv̄(p)].

10Gul and Pesendorfer (2001, Theorem 8) characterized a comparative measure of preference for com-
mitment. In the case where individuals 1 and 2 have the same commitment utility u, their results show
that v̂2 �u v̂1 if and only if individual 1 has greater preference for commitment than individual 2: That
is, for any menu x, if there exists y ⊂ x such that y �2 x then there exists y′ ⊂ x such that y′ �1 x.
Their comparative measure could easily be applied in conjunction with ours to impose restrictions on
both the relationship between v̂1 and v̂2 and the relationship between u+ v̂1 and u+ v̂2.

11Lipman and Pesendorfer (2013) provide a comprehensive survey.
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The Heidhues-Kőszegi representation can be written as a self-control representation

(u, v, v̂) by taking v = γv̄ and v̂ = γ̂v̄. The interpretation of this representation is that the

individual correctly anticipates which alternatives will be tempting but may incorrectly

anticipate the magnitude of temptation and hence the cost of exerting self-control. Put

differently, temptation may have a greater influence on future choice than the individual

realizes, but she will not have any unexpected temptations.

The following proposition characterizes the Heidhues-Kőszegi representation within

the class of two-stage self-control representations. We say that % has no preference for

commitment if {p} � {q} implies {p} ∼ {p, q}.

Proposition 1 Suppose (%, C) is has a self-control representation (u, v, v̂), and suppose

there exists some pair of lotteries p and q such that {p} ∼ {p, q} � {q}. Then the following

are equivalent:

1. Either % has no preference for commitment or, for any lotteries p and q,

{p} ∼ {p, q} � {q} =⇒ C({p, q}) = {p}.

2. (%, C) has a Heidhues-Kőszegi representation (u, v̄, γ, γ̂).

To interpret the behavioral condition in this proposition, recall that {p} ∼ {p, q} � {q}
implies that q is not more tempting than p. In contrast, {p} � {p, q} � {q} implies that q

is more tempting than p but the individual anticipates exerting self-control and resisting

this temptation. Condition 1 in Proposition 1 still permits preference reversals in the

latter case, but rules out reversals in the former case. In other words, the individual may

hold incorrect beliefs about how tempting an alternative is, but she will never end up

choosing an alternative that she does not expect to find tempting at all.12

The implications of absolute and comparative naiveté for the Heidhues-Kőszegi repre-

sentation follow as immediate corollaries of Theorems 1 and 2. To simplify the statement

of the conditions in this result, we assume that the function v̄ is independent of u, meaning

it is not constant and it is not the case that v̄ ≈ u. Note that this assumption is without

loss of generality.13

Corollary 1 Suppose (%1, C1) and (%2, C2) are jointly regular and have Heidhues-Kőszegi

representations (u, v̄, γ1, γ̂1) and (u, v̄, γ2, γ̂2), where v̄ is independent of u.

12The exception is the case where % has no preference for commitment. In this case, the individual
anticipates no temptation whatsoever (γ̂ = 0), yet may in fact be tempted (γ > 0).

13If (u, v̄, γ, γ̂) is a Heidhues-Kőszegi representation of (%, C) and v̄ is not independent of u, there is an
equivalent representation (u, v̄′, 0, 0), where v̄′ is an arbitrary non-constant function with v̄′ 6≈ u.
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1. Individual i is naive if and only if γ̂i ≤ γi (and is sophisticated if and only if γ̂i = γi).

2. When both individuals are naive, individual 1 is more naive than individual 2 if and

only if either γ̂1 ≤ γ̂2 ≤ γ2 ≤ γ1 or individual 2 is sophisticated (γ̂2 = γ2).

3 Infinite Horizon

3.1 Primitives

Now having some intuition gained from the two-period model, we consider a fully dy-

namic model with infinitely many discrete time periods. We represent the environment

recursively. Let C be a compact metric space for consumption in each period. Gul and

Pesendorfer (2004) prove there exists a space Z homeomorphic to K(∆(C × Z)), the

family of compact subsets of ∆(C × Z) . Each menu x ∈ Z represents a continuation

problem. We study choices over ∆(C × Z). For notational ease, we identify each degen-

erate lottery with its sure outcome, that is, we write (c, x) for the degenerate lottery δ(c,x)

returning (c, x) with probability one. To understand the domain, consider a deterministic

(c, x) ∈ C × Z. The first component c represents current consumption, while the second

component x ∈ Z represents a future continuation problem. Therefore preferences over

(c, x) capture how the decision maker trades off immediate consumption against future

flexibility.

At each period t = 1, 2, . . . , the individual’s behavior is summarized by a preference

relation %t on ∆(C ×Z).14 The dependence of behavior on the date t allows for the pos-

sibility that sophistication can vary over time. In Sections 3.2, 3.3, and 3.4, we will study

preferences that are time-invariant, so p %t q ⇐⇒ p %t+1 q. This implicitly assumes that

sophistication and self-control are stationary. Stationarity is an understandably common

assumption, as it allows for a fully recursive representation of behavior, which we believe

will help the application of the model to financial and macroeconomic environments. In

Section 3.5, we will relax stationarity to allow for increasing sophistication over time.

Note that imposing time-invariance of the preference relation does not assume dynamic

consistency or sophistication. The structure of the recursive domain elicits both actual

choices today and preferences over tomorrow’s menus (through the second component Z of

continuation problems), but imposes no relationship between them. There can be tension

between today’s choices and what the decision maker believes will be chosen tomorrow.

For example, suppose (c, {p}) �t (c, {q}). This means that p is a more virtuous than

q because the consumer strictly prefers to commit to it for tomorrow, keeping today’s

14Alternatively, we could take a choice correspondence as primitive and impose rationalizability as an
axiom as in Noor (2011).
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consumption constant. Moreover, if (c, {p, q}) �t (c, {q}), then she believes she will select

p over q tomorrow. Now suppose q �t p, so the consumer succumbs to temptation and

chooses q over p today. Then her beliefs about her future behavior do not align with her

immediate choices. For stationary preferences, this also implies q �t+1 p and hence the

consumer exhibits an unanticipated preference reversal. This is exactly why the domain

∆(C × Z) is the appropriate environment to study sophistication.

3.2 Stationary Quasi-Hyperbolic Discounting

Recall the self-control representation consists of normative utility U and a (perceived)

temptation utility V̂ . With the dynamic structure, we can sharpen U and V̂ into spe-

cific functional forms. In particular, we exclude static temptations over immediate con-

sumption, like eating chocolate instead of salad, and make self-control purely dynamic.

Temptation is only about the tradeoff between a better option today versus future oppor-

tunities.

As a foil for our suggested naive representation, we describe a self-control version of

the (β, δ) quasi-hyperbolic discounting model of Gul and Pesendorfer (2005) and Krusell,

Kuruşçu, and Smith (2010), which is a special case of a model characterized by Noor

(2011).15 As mentioned, the ability to construct well-defined recursive representations for

this environment is an important advantage for the continuous self-control model over the

Strotz model.

Definition 6 A sophisticated quasi-hyperbolic discounting representation of {%t}t∈N con-

sists of continuous functions u : C → R and U, V : ∆(C×Z)→ R satisfying the following

system of equations:

U(p) =

∫
C×Z

(u(c) + δW (x)) dp(c, x)

V (p) = γ

∫
C×Z

(u(c) + βδW (x)) dp(c, x)

W (x) = max
q∈x

(U(q) + V (q))−max
q∈x

V (q)

and such that, for all t ∈ N,

p %t q ⇐⇒ U(p) + V (p) ≥ U(q) + V (q),

where 0 ≤ β ≤ 1, 0 < δ < 1, and γ ≥ 0.

15This is a special case of what Noor (2011) refers to as “quasi-hyperbolic self-control” (see his Definition
2.2 and Theorems 4.5 and 4.6). He permits the static felicity function in the expression for V to be another
function v and allows β > 1.
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The tension between time periods in the quasi-hyperbolic self-control model is more

transparent when we explicitly compute the choice that maximizes the utility U + V for

a family of deterministic consumption streams, where the only nontrivial flexibility is in

the first period. Recall that

U(p) + V (p) =

∫
C×Z

(
(1 + γ)u(c) + (1 + γβ)δW (x)

)
dp(c, x)

= (1 + γ)

∫
C×Z

(
u(c) +

1 + γβ

1 + γ
δW (x)

)
dp(c, x).

For a deterministic consumption stream (ct, ct+1, . . . ), the indirect utility is simple:

W (ct+1, ct+2, . . . ) = U(ct+1, ct+2, . . . ) =
∞∑
i=1

δi−1u(ct+i).

Thus choice at period t for a deterministic consumption stream within a menu of such

streams is made to maximize

u(ct) +
1 + γβ

1 + γ

∞∑
i=1

δiu(ct+i). (1)

The relationship between the self-control and Strozian models in the dynamic case is

essentially similar to the two-period model, but with additional structure. The parameter

γ measures the magnitude of the temptation for immediate consumption. As γ → ∞,

this model converges to the Strotzian version of the (β, δ) quasi-hyperbolic discounting

with the same parameters.16 However, there are technical difficulties in developing even

sophisticated versions of Strotzian models with infinite horizons and nontrivial future

choice problems, as observed by Peleg and Yaari (1973) and Gul and Pesendorfer (2005).

While admitting the Strotz model as a limit case, the small perturbation to allow just

a touch of self-control through a positive γ allows for recursive formulations and makes

the self-control model amenable to application, e.g., Gul and Pesendorfer (2004) and

Krusell, Kuruşçu, and Smith (2010). Alternate perturbations can also recover continuity,

for example, Harris and Laibson (2013) introduce random duration of the “present” time

period towards which the agent is tempted to transfer consumption.

Of course, the preceding model is fully sophisticated, so it cannot capture the effects of

naiveté. We now introduce a recursive formulation of the (β, β̂, δ) model of O’Donoghue

and Rabin (2001). A leading application of the (β, β̂, δ) model is procrastination on a sin-

gle project like the decision to enroll in a 401(k). Such stopping problems are statistically

16In fact, when preferences are restricted to full commitment streams, Equation (1) shows that the
observed choices of the quasi-hyperbolic self-control model over budget sets of consumption streams can
be rationalized by a normalized quasi-hyperbolic Strotzian representation with present bias factor 1+γβ

1+γ .
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convenient because continuation values are trivial once the task is completed. On the

other hand, many natural decisions are not stopping problems but perpetual ones, such

as how much to contribute each period to the 401(k) after enrollment. To our knowledge,

the (β, β̂, δ) model has not yet been applied in recursive infinite-horizon settings, and we

hope this model takes steps to bridge that gap.

Definition 7 A naive quasi-hyperbolic discounting representation of {%t}t∈N consists of

continuous functions u : C → R and U, V̂ , V : ∆(C × Z) → R satisfying the following

system of equations:

U(p) =

∫
C×Z

(u(c) + δŴ (x)) dp(c, x)

V (p) = γ

∫
C×Z

(u(c) + βδŴ (x)) dp(c, x)

V̂ (p) = γ̂

∫
C×Z

(u(c) + β̂δŴ (x)) dp(c, x)

Ŵ (x) = max
q∈x

(U(q) + V̂ (q))−max
q∈x

V̂ (q)

and such that, for all t ∈ N,

p %t q ⇐⇒ U(p) + V (p) ≥ U(q) + V (q),

where β, β̂ ∈ [0, 1], 0 < δ < 1, and γ, γ̂ ≥ 0 satisfy

1 + γ̂β̂

1 + γ̂
≥ 1 + γβ

1 + γ
.

In the basic two-stage model, naiveté is captured by the divergence between the antici-

pated temptation V realized in the second period and the temptation V̂ anticipated in the

first period. In the dynamic environment, V̂ appears as a component of the continuation

utility Ŵ while the actual temptation V is used to make today’s choice. That is, the

consumer believes tomorrow she will maximize U + V̂ even while she chooses to maximize

U + V today. Moreover, in the dynamic setting the wedge between V̂ and V is given a

specialized parametric form as the difference between β̂ and β. So all of the temptation

and naiveté is purely temporal, rather than a result of static tastes.

We note that the values of γ and β are not individually identified, because they influ-

ence the individual’s choice at the current period only through weighting instantaneous

utility u and continuation payoff δŴ by 1+γ and 1+γβ, respectively. Due to this lack of

uniqueness, if a naive quasi-hyperbolic discounting representation exists, we can always

find another equivalent representation with β ≤ β̂ and γ ≥ γ̂. In addition, the presence
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of the additional parameters γ and γ̂ makes the parametric characterization of naiveté

more subtle. That is, a simple comparison of β and β̂ is insufficient to identify naiveté in

this model because it does not control for naiveté regarding the intensity parameter γ.

3.3 Characterization

The naive version of the quasi-hyperbolic model is new, so its foundations are obviously

outstanding. Related axiomatizations of sophisticated dynamic self-control do exist, e.g.,

Gul and Pesendorfer (2004) and Noor (2011), and we borrow some of their conditions.

Recall that (c, x) refers to the degenerate lottery δ(c,x). Mixtures of menus are defined

pointwise: λx + (1 − λ)y = {λp + (1 − λ)q : p ∈ x, q ∈ y}. The first six axioms are

standard in models of dynamic self-control and appear in Gul and Pesendorfer (2004) and

Noor (2011).

Axiom 1 (Weak Order) %t is a complete and transitive binary relation.

Axiom 2 (Continuity) The sets {p : p %t q} and {p : q %t p} are closed.

Axiom 3 (Independence) p �t q implies λp+ (1− λ)r �t λq + (1− λ)r.

Axiom 4 (Set Betweenness) (c, x) %t (c, y) implies (c, x) %t (c, x ∪ y) %t (c, y).

Axiom 5 (Indifference to Timing) λ(c, x) + (1− λ)(c, y) ∼t (c, λx+ (1− λ)y).

Axiom 6 (Separability) 1
2
(c, x)+1

2
(c′, y) ∼t 1

2
(c, y)+1

2
(c′, x) and (c′′, {1

2
(c, x)+1

2
(c′, y)}) ∼t

(c′′, {1
2
(c, y) + 1

2
(c′, x)}).

These first six axioms guarantee that preferences over continuation problems, defined

by (c, x) %t (c, y), can be represented by a self-control representation (Ut, V̂t). For this

section, we restrict attention to stationary preferences. The following stationarity axiom

links behavior across time periods and implies the same (U, V̂ ) can be used to represent

preferences over continuation problems in every period.

Axiom 7 (Stationarity) p %t q ⇐⇒ p %t+1 q.

The next two axioms are novel and provide more structure on the temptation utility

V . Before introducing them, some notation is required. For any p ∈ ∆(C × Z), let p1

denote the marginal distribution over C and p2 denote the marginal distribution over Z.

For any marginal distributions p1 and q2, let p1 × q2 denote their product distribution.
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In particular, p1 × p2 is the measure that has the same marginals on C and Z as p,

but removes any correlation between the two dimensions. The prior axioms make any

correlation irrelevant, so p ∼t p1 × p2. Considering marginals is useful because it permits

the replacement of a stream’s marginal distribution over continuation problems, holding

fixed the marginal distribution over current consumption.

Axiom 8 (Present Bias) If q �t p and (c, {p}) %t (c, {q}), then p �t p1 × q2.

In many dynamic models without present bias, an individual prefers p to q in the

present if and only if she holds the same ranking when committing for some future period:

p %t q ⇐⇒ (c, {p}) %t (c, {q}). (2)

Clearly, this condition is would not be satisfied by an individual who is present biased, as

the prototypical experiment on present bias finds preferences reversals occur with temporal

distancing. Axiom 8 relaxes this condition: Equation (2) can be violated by preferring

q to p today while preferring p to q when committing for the future, but only if q offers

better immediate consumption and p offers better future consumption—this is the essence

of present bias. Thus replacing the marginal distribution p2 over continuation values with

the marginal q2 makes the lottery strictly worse, as formalized in our axiom.

The next axiom rules out temptations when there is no intertemporal tradeoff. As a

consequence, all temptations involve rates of substitution across time, and do not involve

static temptations at a single period.

Axiom 9 (No Temptation by Atemporal Choices) If p1 = q1 or p2 = q2, then

(c, {p, q}) %t (c, {p}).

Correctly anticipating all future choices corresponds to the sophistication condition

defined previously in Section 2.2. The following conditions directly apply the definitions

for sophistication and naiveté introduced in the two-period model on the projection of

preferences on future menus. Some subtleties do arise in extending the two-stage defini-

tions of naiveté to general environments. In particular, the analog of a “commitment”

consumption in an infinite horizon is not obvious, especially when considering a recursive

representation. For example, the notion of a commitment as a singleton choice set in

the subsequent period is arguably too weak in a recursive representation because such a

choice set may still include nontrivial choices at later future dates. It fixes a single lottery

over continuation problems in its second component Z, but leaves open what the choice

from that period onward will be, since Z is itself just a parameterization of K(∆(C×Z)).

Instead, the appropriate analog of a commitment should fully specify static consumption
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levels at all dates, that is, a commitment is an element of ∆(CN). It is important to

observe that ∆(CN) is a strict subset of ∆(C × Z).

The following definitions extend the concepts from the two-period model, substituting

∆(CN) as a fully committed stream of consumption levels.

Axiom 10 (Sophistication) For all p, q ∈ ∆(CN) with (c, {p}) �t (c, {q}),

p �t+1 q ⇐⇒ (c, {p, q}) �t (c, {q}).

Axiom 11 (Naiveté) For all p, q ∈ ∆(CN) with (c, {p}) �t (c, {q}),

p �t+1 q =⇒ (c, {p, q}) �t (c, {q}).

In words, if a virtuous alternative is chosen in the subsequent period, that choice was

correctly anticipated, but the converse may not hold. The individual may incorrectly

anticipate making a virtuous choice in the future.

In the two-period model, there is only one immediate future choice period. In the

dynamic model, there are many periods beyond t + 1. Therefore, Axiom 11 may appear

too weak because it only implicates conjectures at period t regarding choices in period

t+1, but leaves open the possibility of naive conjectures regarding choices in some period

t + τ with τ > 1. However, the other axioms that are invoked in our representation

will render these additional implications redundant. For example, consider the following,

stronger definition of niaveté: For every τ ≥ 1 and p, q ∈ ∆(CN),

(c, . . . , c︸ ︷︷ ︸
τ periods

, {p, q}) �t (c, . . . , c︸ ︷︷ ︸
τ periods

, {q})

whenever

(c, . . . , c︸ ︷︷ ︸
τ periods

, {p}) �t (c, . . . , c︸ ︷︷ ︸
τ periods

, {q}) and p �t+τ q.

Together with our other axioms, this stronger condition is implied by Axiom 11.

The following representation result characterizes sophisticated and naive stationary

quasi-hyperbolic discounting. We say a profile of preference relations {%t}t∈N is nontrivial

if, for every t ∈ N, there exist c, c′ ∈ C and x ∈ Z such that (c, x) �t (c′, x).

Theorem 3

1. A profile of nontrivial relations {%t}t∈N satisfies Axioms 1–10 if and only if it has

a sophisticated quasi-hyperbolic discounting representation (u, γ, β, δ).
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2. A profile of nontrivial relations {%t}t∈N satisfies Axioms 1–9 and 11 if and only if

it has a naive quasi-hyperbolic discounting representation (u, γ, γ̂, β, β̂, δ).

3.4 Comparatives

We now study the comparison of naiveté in infinite-horizon settings. The following def-

inition is an adaptation of our comparative from the two-period setting to the dynamic

environment. Recalling the earlier intuition, a more naive individual today at period t has

more instances where she incorrectly anticipates making a more virtuous choice tomorrow

at period t + 1 (captured by the relation (c, {p, q}) �1
t (c, {q})), while in reality she will

make the less virtuous choice at t+ 1 (captured by the relation q �1
t+1 p).

Definition 8 Individual 1 is more naive than individual 2 if, for all p, q ∈ ∆(CN),[
(c, {p, q}) �2

t (c, {q}) and q �2
t+1 p

]
=⇒

[
(c, {p, q}) �1

t (c, {q}) and q �1
t+1 p

]
.

The following theorem characterizes comparative naiveté for individuals who have

quasi-hyperbolic discounting representations. Recall that if individual 2 is sophisticated,

i.e., 1+γ̂2β̂2

1+γ̂2
= 1+γ2β2

1+γ2
, then individual 1 is trivially more naive. Otherwise, if individual 2

is strictly naive, then our comparative measure corresponds to a natural ordering of the

present bias factors.

We say {%1
t}t∈N and {%2

t}t∈N are jointly nontrivial if, for every t ∈ N, there exist

c, c′ ∈ C and x ∈ Z such that (c, x) �it (c′, x) for i = 1, 2. Joint nontriviality ensures that

both u1 and u2 are non-constant and that they agree on the ranking ui(c) > ui(c′) for

some pair of consumption alternatives.

Theorem 4 Suppose {%1
t}t∈N and {%2

t}t∈N are jointly nontrivial and admit naive quasi-

hyperbolic discounting representations. Then individual 1 is more naive than individual 2

if and only if either individual 2 is sophisticated or u1 ≈ u2, δ1 = δ2, and

1 + γ̂1β̂1

1 + γ̂1
≥ 1 + γ̂2β̂2

1 + γ̂2
≥ 1 + γ2β2

1 + γ2
≥ 1 + γ1β1

1 + γ1
.

3.5 Extension: Diminishing Naiveté

In this section we relax the stationarity assumption (Axiom 7) used in Theorem 3. There

are many ways to formulate a non-stationary model, but motivated by recent research em-

phasizing individuals’ learning about their self-control over time we consider the following
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representation.17

Definition 9 A quasi-hyperbolic discounting representation with diminishing naiveté of

{%t}t∈N consists of continuous functions u : C → R and Ut, V̂t, Vt : ∆(C × Z) → R for

each t satisfying the following system of equations:

Ut(p) =

∫
C×Z

(u(c) + δŴt(x)) dp(c, x)

Vt(p) = γ

∫
C×Z

(u(c) + βδŴt(x)) dp(c, x)

V̂t(p) = γ̂t

∫
C×Z

(u(c) + β̂tδŴt(x)) dp(c, x)

Ŵt(x) = max
q∈x

(Ut(q) + V̂t(q))−max
q∈x

V̂t(q)

and such that, for all t ∈ N,

p %t q ⇐⇒ Ut(p) + Vt(p) ≥ Ut(q) + Vt(q),

where β, β̂t ∈ [0, 1], 0 < δ < 1, and γ, γ̂t ≥ 0 satisfy

1 + γ̂tβ̂t
1 + γ̂t

≥ 1 + γ̂t+1β̂t+1

1 + γ̂t+1

≥ 1 + γβ

1 + γ
.

In this formulation, the individual’s anticipation updates to become more accurate

over time, as expressed by the condition 1+γ̂tβ̂t
1+γ̂t

≥ 1+γ̂t+1β̂t+1

1+γ̂t+1
≥ 1+γβ

1+γ
. One subtle epistemic

consideration is the individual’s view of her future updating, in addition to the attendant

higher-order beliefs about how her future selves will anticipate future updating. This

model suppresses these complications and takes the simplification that the individual is

myopic about her future updating. She does not expect to actually revise her anticipation

in future, since the continuation value function is used to evaluate the future problems. In

other words, she is unaware of the possibility that her understanding can be misspecified.

The following axiom states that the individual’s period-t self is more naive than her

period-(t+ 1) self, that is, she becomes progressively less naive about her future behavior

over time.

Axiom 12 (Diminishing Naiveté) For all p, q ∈ ∆(CN),[
(c, {p, q}) �t+1 (c, {q}) and q �t+2 p

]
=⇒

[
(c, {p, q}) �t (c, {q}) and q �t+1 p

]
17Kaur, Kremer, and Mullainathan (2015) find evidence that sophistication about self-control improves

over time. Ali (2011) analyzes a Bayesian individual who updates her belief about temptation strength
over time.
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We will focus in this section on preference profiles that maintain the same actual

present bias over time. The only variation over time is in the increasing accuracy of beliefs

about present bias in future periods.18 We therefore impose the following stationarity

axiom for preferences over commitment streams of consumption.

Axiom 13 (Commitment Stationarity) For p, q ∈ ∆(CN),

p %t q ⇐⇒ p %t+1 q.

Relaxing Axiom 7 (Stationarity) and instead using Axioms 12 and 13, we obtain the

following characterization result for the quasi-hyperbolic discounting model with dimin-

ishing naiveté.

Theorem 5 A profile of nontrivial relations {%t}t∈N satisfies Axioms 1–6, 8–9, and 11–

13 if and only if it has a quasi-hyperbolic discounting representation with diminishing

naiveté (u, γ, γ̂t, β, β̂t, δ)t∈N.

3.6 Application: Consumption-Saving Problem

As a simple exercise in the recursive environment, we apply our stationary naive quasi-

hyperbolic discounting representation to a consumption-saving problem. The per-period

consumption utility obeys constant relative risk aversion, that is,

u(c) =

{
c1−σ

1−σ for σ 6= 1

log c for σ = 1,

where σ > 0 is the coefficient of relative risk aversion. Let R > 0 denote the gross interest

rate.

Slightly abusing notation, let Ŵ (m) denote the anticipated continuation value as a

function of wealth m ≥ 0. It obeys

Ŵ (m) = max
ĉ∈[0,m]

[
(1 + γ̂)u(ĉ) + δ(1 + γ̂β̂)Ŵ (R(m− ĉ))

]
− γ̂ max

c̃∈[0,m]

[
u(c̃) + δβ̂Ŵ (R(m− c̃))

]
. (3)

18More general representations are also possible. In the proof of Theorems 4 and 5 in Appendix A.5,
we first characterize a more general representation in Proposition 5 in which both actual and anticipated
present bias can vary over time.
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The consumption choice at m is given by

c(m) ∈ argmax
c∈[0,m]

[
u(c) + δ

1 + γβ

1 + γ
Ŵ (R(m− c))

]
.

In the proposition below we focus on a solution in which the value function takes the

same isoelastic form as u. We do not know whether there exist solutions that do not have

this form. However, the restriction seems natural in this exercise, since the solution of

this form is uniquely optimal under the benchmark case of exponential discounting (i.e.,
1+γβ
1+γ

= 1+γ̂β̂
1+γ̂

= 1).

Proposition 2 Assume that (1 + γ̂β̂)δR1−σ < 1.19 Then there exist unique A > 0 and

B ∈ R such that

Ŵ (m) = Au(m) +B

is a solution to Equation (3). Moreover, the optimal policy c for this value function

satisfies c(m) = λm for some λ ∈ (0, 1), and:

1. If σ < 1, then A is increasing and λ is decreasing in β̂.

2. If σ = 1, then A and λ are constant in β̂.

3. If σ > 1, then A is decreasing and λ is increasing in β̂.

In all cases, λ is decreasing in β.

While increasing β always leads to a lower current consumption level c(m), the effect

of increasing β̂ depends on the value of σ. As an analogy, it is worthwhile to point out that

increasing β̂ leads to the same implication as increasing the interest rate R. Recall that,

under standard exponential discounting, as R becomes higher, the current consumption

increases if σ > 1, is constant if σ = 1, and decreases if σ < 1. This is because a higher

interest rate implies two conflicting forces: The first is the intertemporal substitution

effect that makes the current consumption lower, and the second is the income effect

that raises the current consumption. The first effect dominates when the intertemporal

elasticity of substitution 1/σ is higher than 1, and the second effect dominates if 1/σ is

less than 1.

19This assumption is used to guarantee the unique existence of a solution.
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4 Connections and Impossibilities

4.1 Relating the Strotz and Self-Control Naiveté Conditions

Ahn, Iijima, Le Yaouanq, and Sarver (2016) consider naiveté in a class of Strotz prefer-

ences where the individual always maximizes the temptation utility v in the ex-post stage,

rather than maximizing u + v as in the self-control model. The following is a version of

the two-stage Strotz model that is adapted to our deterministic choice correspondence

domain. For any expected-utility function w, let Bw(x) denote the set of w-maximizers

in x, that is, Bw(x) = argmaxp∈xw(p).

Definition 10 A Strotz representation of (%, C) is a triple (u, v, v̂) of expected-utility

functions such that the function U : K(∆(C))→ R defined by

U(x) = max
p∈Bv̂(x)

u(p)

represents % and

C(x) = Bu(Bv(x)).

The following are the definitions of naiveté and sophistication for Strotz preferences

from Ahn, Iijima, Le Yaouanq, and Sarver (2016), adapted to the current domain.

Definition 11 An individual is Strotz sophisticated if, for all menus x,

x ∼ {p}, ∀p ∈ C(x).

An individual is Strotz naive if, for all menus x,

x % {p}, ∀p ∈ C(x).

The definition of Strotz naiveté is too restrictive in the case of self-control preferences.

The following result shows the exact implications of this definition for the self-control

representation.

Proposition 3 Suppose (%, C) is regular and has a self-control representation (u, v, v̂).

Then the individual is Strotz naive (Definition 11) if and only if v̂ �u u+ v.

One interesting implication of Proposition 3 is that the Heidhues–Koszegi representa-

tion of Definition 3 can never be Strotz naive, and hence it requires alternate definitions

like those provided in this paper for nonparametric foundations.
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It is important to note that the case of v̂ ≈ u + v does not correspond to Strotz-

sophisticated. In fact, Strotz-sophistication automatically fails whenever there are lotter-

ies p, q such that {p} � {p, q} � {q} because there is no selection in x = {p, q} that is

indifferent to x.

Although the implications of Strotz-naivete are too strong when applied to the self-

control representation, the implications of naiveté proposed in this paper are suitable for

Strotz representations. This is because Strotz representations are a limit case of self-

control representations. To see this, parameterize a family of representations (u, γv, γv̂)

and take γ to infinity. Then the vectors v and v̂ dominate the smaller u vector in determin-

ing actual and anticipated choice. Moreover, since choices are almost driven entirely by

temptation, the penalty for self-control diminishes since no self-control is actually exerted.

Given appropriate continuity in the limit, our definitions of naiveté for self-control repre-

sentations should therefore also have the correct implications for Strotz representations.

Indeed they do.

Proposition 4 Suppose (%, C) is regular and has a Strotz representation (u, v̂, v) such

that v is non-constant. Then, the following are equivalent:

1. the individual is naive (resp. sophisticated)

2. the individual is Strotz naive (resp. Strotz sophisticated)

3. v̂ �u v (resp. v̂ ≈ v)

4.2 Impossibility of a Unified Definition of Naiveté for Self-

Control and Random Strotz Preferences

Ahn, Iijima, Le Yaouanq, and Sarver (2016) propose a single definition of naiveté suitable

for both Strotz representations and the more general class of random Strotz represen-

tations. Proposition 4 showed that our definitions of naiveté under self-control for the

general class of deterministic self-control preferences, when applied to deterministic Strotz

preferences, viewed as a special limit case with large intensity of temptation, yield the

same parametric restrictions as the definition of naiveté proposed by Ahn, Iijima, Le

Yaouanq, and Sarver (2016) for the general class of random Strotz preference, with de-

terministic Strotz being a special deterministic case. This begs the question of whether a

single definition exists that can be applied across both general classes of random Strotz

and of self-control representations. This is impossible. The following example shows that

no suitable definition of naiveté or sophistication can be applied to both consequentialist

and nonconsequentialist models once random choice is permitted.
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Example 2 Suppose % has a self-control representation (u, v̂):

U(x) = max
p∈x

[u(p) + v̂(p)]−max
q∈x

v̂(q).

By Theorem 1 in Dekel and Lipman (2012), % also has the following random Strotz

representation:20

U(x) =

∫ 1

0

max
p∈Bv̂+αu(x)

u(p) dα.

Let x∗SC = Bu+v̂(x) and x∗RS =
∫ 1

0
Bu(Bv̂+αu(x)) dα. These would be the (average) choice

sets of a sophisticated individual for these two different representations for the same ex-

ante preference %. Note that the second representation results in stochastic anticipated

ex-post choices. A natural primitive for ex-post stochastic decisions is a random choice

correspondence C : K(∆(C))⇒ ∆(∆(C)) that specifies a set of possible random selections

for the agent, satisfying the feasibility constraint C(x) ⊂ ∆(x). For any λx ∈ C(x), let

m(λx) =
∫
x
p dλx(p) denote the mean of λx and let m(C(x)) = {m(λx) : λx ∈ C(x)} denote

the set of means induced by C(x).21

Using the desired functional characterizations of sophistication and naiveté, if the

individual does in fact exert self-control with a fixed anticipated temptation utility v̂,

then she is sophisticated if m(C(x)) = x∗SC , and she is naive if the lotteries in m(C(x))

are worse than those in x∗SC . If instead she does not anticipate exerting self-control

and anticipates choosing according to the utility function v̂ + αu where α is distributed

uniformly on [0, 1], then she is sophisticated if m(C(x)) = x∗RS and she is naive if the

lotteries in m(C(x)) are worse than those in x∗RS.

The difficulty arises because the lotteries in x∗SC are generally better than those in

x∗RS.22 For example, suppose x = {p, q} where u(p) > u(q), v̂(q) > v̂(p), and (u+ v̂)(p) >

(u + v̂)(q). Then x∗SC = {p}, whereas x∗RS ⊂ {βp + (1 − β)q : β ∈ (0, 1)}. Hence

u(x∗SC) > u(x∗RS). Suppose the choice correspondence satisfies

u(x∗SC) > u(m(C(x))) > u(x∗RS).

20The intuition for this equivalence is straightforward. Let fx(α) ≡ maxp∈x(v̂ + αu)(p). Note that the
self-control representation is defined by precisely U(x) = fx(1) − fx(0). By the Envelope Theorem, we
also have

fx(1)− fx(0) =

∫ 1

0

f ′x(α) dα =

∫ 1

0

u(p(α)) dα,

where p(α) ∈ argmaxq∈x(v̂ + αu)(q) for all α ∈ [0, 1].
21We assume that the set all selections λx ∈ C(x) is observable to make the proposed tension even

stronger: Even with information about the full choice correspondence (as opposed to only observing a
selection function from that correspondence), we cannot determine whether the individual is naive or
sophisticated.

22Dekel and Lipman (2012, Theorem 5) made a similar observation.
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If the individual actually has a self-control representation, then she should be classified

as naive. However, if she actually has a random Strotz representation, then she is overly

pessimistic and should not be classified as naive. �

There are obviously instances in which the individual would be classified as naive

regardless of her actual representation, that is, when u(x∗SC) > u(x∗RS) ≥ u(m(C(x))).

Thus there are sufficient conditions for naiveté (see, e.g., Proposition 3 or Ahn, Iijima, Le

Yaouanq, and Sarver (2016, Theorem 9)), but a tight characterization is not possible.

4.3 Impossibility of any Definition of Naiveté for Random Self-

Control Preferences

Another approach to incorporate stochastic choice is to consider random temptations

within the self-control representation. However, as observed by Stovall (2010) and Dekel

and Lipman (2012), this type of representation is generally not uniquely identified from

ex-ante preferences. The following example shows that this lack of identification precludes

a sensible definition of naiveté for random self-control preferences. This impossibility is

true even if Strotz and random Strotz preferences are excluded a priori from the analysis.

Example 3 Suppose % has a self-control representation (u, v̂):

U(x) = max
p∈x

[u(p) + v̂(p)]−max
q∈x

v̂(q).

Fix any α ∈ (0, 1) and let v̂1 = 1
1−α(αu+ v̂) and v̂2 = 1

α
v̂. Note that

u+ v̂1 =
1

1− α
(u+ v̂) and u+ v̂2 =

1

α
(αu+ v̂),

and therefore U can also be expressed as a (nontrivially) random self-control representa-

tion:

U(x) = (1− α)

(
max
p∈x

[u(p) + v̂1(p)]−max
q∈x

v̂1(q)

)
+ α

(
max
p∈x

[u(p) + v̂2(p)]−max
q∈x

v̂2(q)

)
.

Let x∗ = Bu+v̂(x) and x∗∗ = (1− α)Bu+v̂(x) + αBαu+v̂(x). These would be the (average)

choice sets of a sophisticated individual for these respective representations.

Similar to the issues discussed in the previous section, the difficulty arises because the

lotteries in x∗ are generally better than those in x∗∗. For example, suppose x = {p, q}
where (u + v̂)(p) > (u + v̂)(q) and (αu + v̂)(q) > (αu + v̂)(p). Then x∗ = {p} and
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x∗∗ = {(1− α)p+ αq}. Hence u(x∗) > u(x∗∗). If the choice correspondence satisfies

u(x∗) > u(m(C(x))) > u(x∗∗),

then we again have the problem of not knowing how to properly classify this individual.

Under the first self-control representation, we should classify her as naive. However, under

the second random self-control representation, she is overly pessimistic and we should not

classify her as naive. �

While a tight characterization of naiveté accommodating both the random Strotz and

random self-control models is impossible, some interpretable sufficient conditions that

imply naivete for both models are possible, and indeed some were proposed by Ahn,

Iijima, Le Yaouanq, and Sarver (2016). However, as the examples in this section show,

the problem is in finding tight conditions that are also necessary for naiveté for both

models.

As a final note, one could also take an alternative perspective on this issue. Instead

of asking when behavior should definitively be classified as naive versus sophisticated, as

we have done in this section, one could instead ask when behavior could be rationalized

as naive (or sophisticated) for some random self-control or random Strotz representation

of the preference %. The examples in this section show that there is some overlap of

these regions: Some distributions of actual choices can be rationalized as both naive

and sophisticated (and also pessimistic), depending on whether ex-ante preferences are

represented by a self-control, random self-control, or random Strotz representation. Le

Yaouanq (2015, Section 4) contains a more detailed discussion of this approach.
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A Proofs

A.1 Preliminaries

The following lemma will be used repeatedly in the proofs of our main results.

Lemma 1 Let u,w,w′ be expected-utility functions defined on ∆(C) such that u and w′ are not

ordinally opposed.23 If for all lotteries p and q we have[
u(p) > u(q) and w′(p) > w′(q)

]
=⇒ w(p) > w(q),

then w �u w
′.

In the case of finite C, it is easy to show that Lemma 1 follows from Lemma 3 in Dekel

and Lipman (2012), who also noted the connection to the Harsanyi Aggregation Theorem. Our

analysis of dynamic representations defined on infinite-horizon decision problems requires the

more general domain of compact outcome spaces. We include a short proof of Lemma 1 for the

case of compact C to show that no technical problems arise in extending their result to our more

general domain. Our proof is based on the following slight variation of Farkas’ Lemma.24

Lemma 2 Suppose f1, f2, g : ∆(C) → R are continuous and affine, and suppose f1 and f2 are

not ordinally opposed. Then the following are equivalent:

1. For all p, q ∈ ∆(C): [f1(p) > f1(q) and f2(p) > f2(q)] =⇒ g(p) ≥ g(q).

2. There exist scalars a, b ≥ 0 and c ∈ R such that g = af1 + bf2 + c.

Proof of Lemma 2: It is immediate that 2 implies 1. To show 1 implies 2, we first argue

that 1 implies the same implication holds when the strict inequalities are replaced with weak

inequalities:

[f1(p) ≥ f1(q) and f2(p) ≥ f2(q)] =⇒ g(p) ≥ g(q). (4)

The argument relies on the assumption that f1 and f2 are not ordinally opposed and is similar

to the use of constraint qualification in establishing the Kuhn-Tucker Theorem. Suppose p, q ∈
∆(C) satisfy f1(p) ≥ f1(q) and f2(p) ≥ f2(q). Since f1 and f2 are not ordinally opposed, there

exist p∗, q∗ ∈ ∆(C) such that f1(p∗) > f1(q∗) and f2(p∗) > f2(q∗). Let pα ≡ αp∗ + (1 − α)p

and qα ≡ αq∗ + (1− α)q. Since these functions are affine, f1(pα) > f1(qα) and f2(pα) > f2(qα)

23That is, there exist lotteries p and q such that both u(p) > u(q) and w′(p) > w′(q).
24There are two small distinctions between this result and the classic version of Farkas’ Lemma. First,

Farkas’ Lemma deals with linear functions defined on a vector space whereas we restrict to linear functions
defined on the convex subset ∆(C) of the vector space ca(C) of all finite signed measures on C. Second,
in condition 1 we only assume the conclusion that g(p) ≥ g(q) when the corresponding inequalities for
f1 and f2 are strict. Together with our assumption that f1 and f2 are not ordinally opposed, we show in
the proof that this condition implies the same conclusion for the case where the inequalities are weak.
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for all α ∈ (0, 1]. Condition 1 therefore implies g(pα) ≥ g(qα) for all α ∈ (0, 1]. By continuity

g(p) ≥ g(q). This establishes the condition in Equation (4).

Fix any c̄ ∈ C and define f̄1(p) ≡ f1(p)−f1(δc̄), f̄2(p) ≡ f2(p)−f2(δc̄), and ḡ(p) ≡ g(p)−g(δc̄).

Note that Equation (4) holds for f1, f2, g if and only if it holds for f̄1, f̄2, ḡ. Each of these

functions can be extended to a continuous linear function on the space ca(C) of all finite signed

measures on C: Since the mapping c 7→ f̄1(δc) is continuous in the topology on C, the function

F1(p) ≡
∫
f̄1(δc)dp for p ∈ ca(C) is a well-defined continuous linear functional that extends f̄1.

Define F2 and G analogously. We next show that for any p, q ∈ ca(C):

[F1(p) ≥ F1(q) and F2(p) ≥ F2(q)] =⇒ G(p) ≥ G(q). (5)

To establish this condition, fix any p, q ∈ ca(C) and suppose Fi(p) ≥ Fi(q) for i = 1, 2. Let

p′ = p− p(C)δc̄ and q′ = q − q(C)δc̄. Then p′(C) = q′(C) = 0, and we also have Fi(p
′) ≥ Fi(q

′)

since f̄i(δc̄) = 0. Equivalently, Fi(p
′ − q′) ≥ 0. There exist p′′, q′′ ∈ ∆(C) and α ≥ 0 such that

p′ − q′ = α(p′′ − q′′). By linearity, Fi(p
′′) ≥ Fi(q

′′), which implies fi(p
′′) ≥ fi(q

′′) for i = 1, 2.

Equation (4) therefore implies g(p′′) ≥ g(q′′), which implies G(p′′) ≥ G(q′′) and consequently

G(p′) ≥ G(q′) and G(p) ≥ G(q). This establishes Equation (5).

By the Convex Cone Alternative Theorem (an infinite-dimensional version of Farkas’ Lemma)

(Aliprantis and Border (2006, Corollary 5.84)), Equation (5) implies there exist a, b ≥ 0 such that

G = aF1+bF2. Thus ḡ = af̄1+bf̄2, and hence g = af1+bf2+c, where c = g(δc̄)−af1(δc̄)−bf2(δc̄).

�

Proof of Lemma 1: By Lemma 2, the conditions in this lemma imply that there exist

scalars a, b ≥ 0 and c ∈ R such that w = au+ bw′+ c. Since there must exist some p and q such

that u(p) > u(q) and w′(p) > w′(q), the function w cannot be constant. This implies a+ b > 0.

Thus w ≈ αu+ (1− α)w′ for α = a/(a+ b) ∈ [0, 1]. �

A.2 Proof of Theorem 1

Sufficiency: To establish sufficiency, suppose the individual is naive. Then, for any lotteries

p and q, [
u(p) > u(q) and (u+ v)(p) > (u+ v)(q)

]
=⇒ C({p, q}) = {p} � {q}
=⇒ {p, q} � {q} (by naiveté)

=⇒ (u+ v̂)(p) > (u+ v̂)(q).

Regularity requires that u and u + v not be ordinally opposed. Therefore, Lemma 1 implies

u+ v̂ �u u+ v.
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If in addition the individual is sophisticated, then an analogous argument leads to[
u(p) > u(q) and (u+ v̂)(p) > (u+ v̂)(q)

]
=⇒ (u+ v)(p) > (u+ v)(q)

for any lotteries p and q, which ensures u+ v �u u+ v̂ by Lemma 1. Thus u+ v ≈ u+ v̂.

Necessity: To establish necessity, suppose u+ v̂ ≈ αu+ (1−α)(u+ v) for α ∈ [0, 1] and take

any lotteries p and q. Then[
{p} � {q} and C({p, q}) = {p}

]
=⇒

[
u(p) > u(q) and (u+ v)(p) > (u+ v)(q)

]
=⇒

[
u(p) > u(q) and (u+ v̂)(p) > (u+ v̂)(q)

]
=⇒ {p, q} � {q},

and thus the individual is naive. If in addition u+ v ≈ u+ v̂, then one can analogously show[
{p} � {q} and {p, q} � {q}

]
=⇒ C({p, q}) = {p},

and thus the individual is sophisticated.

A.3 Proof of Theorem 2

We first make an observation that will be useful later in the proof. Since each individual is

assumed to be naive, Theorem 1 implies ui + v̂i ≈ αiui + (1 − αi)(ui + vi) for some αi ∈ [0, 1],

and consequently, for any lotteries p and q,[
(ui + v̂i)(p) > (ui + v̂i)(q) and (ui + vi)(q) > (ui + vi)(p)

]
=⇒ ui(p) > ui(q).

Therefore, for any lotteries p and q,[
(ui + v̂i)(p) > (ui + v̂i)(q) and (ui + vi)(q) > (ui + vi)(p)

]
⇐⇒

[
ui(p) > ui(q) and (ui + v̂i)(p) > (ui + v̂i)(q) and (ui + vi)(q) > (ui + vi)(p)

]
⇐⇒

[
{p, q} �i {q} and Ci({p, q}) = {q}

]
.

(6)

Sufficiency: Suppose individual 1 is more naive than individual 2. By Equation (6), this can

equivalently be stated as[
(u2 + v̂2)(p) > (u2 + v̂2)(q) and (u2 + v2)(q) > (u2 + v2)(p)

]
=⇒

[
(u1 + v̂1)(p) > (u1 + v̂1)(q) and (u1 + v1)(q) > (u1 + v1)(p)

]
.

If individual 2 is sophisticated then the conclusion of the theorem is trivially satisfied, so suppose

not. Then individual 2 must be strictly naive, and hence there must exist lotteries p and q such

that (u2 + v̂2)(p) > (u2 + v̂2)(q) and (u2 +v2)(q) > (u2 +v2)(p). Thus the functions (u2 + v̂2) and
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−(u2 + v2) are not ordinally opposed. Therefore, by Lemma 2, there exist scalars a, â, b, b̂ ≥ 0

and c, ĉ ∈ R such that

u1 + v̂1 = â(u2 + v̂2)− b̂(u2 + v2) + ĉ,

−(u1 + v1) = a(u2 + v̂2)− b(u2 + v2) + c.

Taking b times the first expression minus b̂ times the second, and taking a times the first

expression minus â times the second yields the following:

b(u1 + v̂1) + b̂(u1 + v1) = (âb− ab̂)(u2 + v̂2) + (bĉ− b̂c),

a(u1 + v̂1) + â(u1 + v1) = (âb− ab̂)(u2 + v2) + (aĉ− âc).
(7)

Claim 1 Since (%1, C1) and (%2, C2) are jointly regular, âb > ab̂. In particular, â > 0, b > 0,

and b
b̂+b

> a
â+a .

Proof: Joint regularity requires there exist lotteries p and q such that ui(p) > ui(q) and

(ui + vi)(p) > (ui + vi)(q) for i = 1, 2. Since both individuals are naive, by Theorem 1 this also

implies (ui + v̂i)(p) > (ui + v̂i)(q). Thus

â(u2 + v̂2)(p)− b̂(u2 + v2)(p) = (u1 + v̂1)(p)− ĉ

> (u1 + v̂1)(q)− ĉ = â(u2 + v̂2)(q)− b̂(u2 + v2)(q),

a(u2 + v̂2)(q)− b(u2 + v2)(q) = −(u1 + v1)(q)− c
> −(u1 + v1)(p)− c = a(u2 + v̂2)(p)− b(u2 + v2)(p).

Rearranging terms, these equations imply

â(u2 + v̂2)(p− q) > b̂(u2 + v2)(p− q)
b(u2 + v2)(p− q) > a(u2 + v̂2)(p− q).

Multiplying these inequalities, and using the fact that (u2+v̂2)(p−q) > 0 and (u2+v2)(p−q) > 0

by the regularity inequalities for individual 2, we have âb > ab̂. This implies (â+ a)b > a(b̂+ b),

and hence b
b̂+b

> a
â+a . �

By Claim 1, Equation (7) implies

u2 + v̂2 ≈ α̂(u1 + v̂1) + (1− α̂)(u1 + v1),

u2 + v2 ≈ α(u1 + v̂1) + (1− α)(u1 + v1),

where

α̂ =
b

b̂+ b
>

a

â+ a
= α.

Since u1 + v̂1 is itself an affine transformation of a convex combination of u1 and u1 + v1, we
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have

u1 + v̂1 �u1 u2 + v̂2 �u1 u2 + v2 �u1 u1 + v1,

as claimed.

Necessity: If individual 2 is sophisticated, then trivially individual 1 is more naive than

individual 2. Consider now the case where individual 2 is strictly naive and

u1 + v̂1 �u1 u2 + v̂2 �u1 u2 + v2 �u1 u1 + v1,

which can equivalently be stated as

u2 + v̂2 ≈ α̂(u1 + v̂1) + (1− α̂)(u1 + v1),

u2 + v2 ≈ α(u1 + v̂1) + (1− α)(u1 + v1),

for α̂ > α. Then, for any lotteries p and q,[
(u2 + v̂2)(p) > (u2 + v̂2)(q) and (u2 + v2)(q) > (u2 + v2)(p)

]
=⇒ α̂(u1 + v̂1)(p− q) + (1− α̂)(u1 + v1)(p− q)

> 0 > α(u1 + v̂1)(p− q) + (1− α)(u1 + v1)(p− q)
=⇒

[
(u1 + v̂1)(p) > (u1 + v̂1)(q) and (u1 + v1)(q) > (u1 + v1)(p)

]
.

By Equation (6), this condition is equivalent to individual 1 being more naive than 2.

A.4 Proof of Proposition 1

Proof of 2 ⇒ 1: The relation % has no preference for commitment when γ̂ = 0. Otherwise,

when γ̂ > 0, {p} ∼ {p, q} � {q} is equivalent to u(p) > u(q) and v̄(p) ≥ v̄(q). Thus (u+γv̄)(p) >

(u+ γv̄)(q) for any γ ≥ 0, and hence C({p, q}) = {p}.

Proof of 1 ⇒ 2: If % has no preference for commitment, let v̄ = v, γ = 1, and γ̂ = 0. In

the alternative case where % has a preference for commitment (so v̂ is non-constant and v̂ 6≈ u),

condition 1 requires that for any p and q,

[u(p) > u(q) and v̂(p) ≥ v̂(q)] ⇐⇒ {p} ∼ {p, q} � {q}
=⇒ C({p, q}) = {p}
⇐⇒ (u+ v)(p) > (u+ v)(q).

(8)

We assumed there exist some pair of lotteries p and q such that {p} ∼ {p, q} � {q}. Therefore, u

and v̂ are not ordinally opposed. Thus, by Lemma 1, u+v �u v̂. That is, u+v ≈ αu+(1−α)v̂

for some 0 ≤ α ≤ 1.

Note that u 6≈ v̂ since % has a preference for commitment, and u 6≈ −v̂ since the two
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functions are not ordinally opposed. Therefore, there must exist lotteries p and q such that

u(p) > u(q) and v̂(p) = v̂(q). By Equation (8), this implies (u + v)(p) > (u + v)(q). Hence

u+ v 6≈ v̂, that is, α > 0. We therefore have u+ v ≈ u+ 1−α
α v̂. Let v̄ = v̂, γ = 1−α

α , and γ̂ = 1.

A.5 Proof of Theorems 3 and 5

We begin by proving a general representation result using the following weaker form of station-

arity.

Axiom 14 (Weak Commitment Stationarity) For p, q ∈ ∆(CN),

(c, {p}) %t (c, {q}) ⇐⇒ (c, {p}) %t+1 (c, {q}).

Axiom 14 permits the actual present bias to vary over time. After proving the following

general result, we add Axiom 7 (Stationarity) to prove Theorem 3, and we add Axioms 12

(Diminishing Naiveté) and 13 (Commitment Stationarity) to prove Theorem 5.

Proposition 5 A profile of nontrivial relations {%t}t∈N satisfies Axioms 1–6, 8–9, 11, and 14

if and only if there exist continuous functions u : C → R and Ut, V̂t, Vt : ∆(C×Z)→ R satisfying

the following system of equations:

Ut(p) =

∫
C×Z

(u(c) + δŴt(x)) dp(c, x)

Vt(p) = γt

∫
C×Z

(u(c) + βtδŴt(x)) dp(c, x)

V̂t(p) = γ̂t

∫
C×Z

(u(c) + β̂tδŴt(x)) dp(c, x)

Ŵt(x) = max
q∈x

(Ut(q) + V̂t(q))−max
q∈x

V̂t(q)

and such that, for all t ∈ N,

p %t q ⇐⇒ Ut(p) + Vt(p) ≥ Ut(q) + Vt(q),

where βt, β̂t ∈ [0, 1], 0 < δ < 1, and γt, γ̂t ≥ 0 satisfy

1 + γ̂tβ̂t
1 + γ̂t

≥ 1 + γt+1βt+1

1 + γt+1
. (9)

Moreover, {%t}t∈N also satisfies Axiom 10 if and only if Equation (9) holds with equality.
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A.5.1 Proof of Proposition 5

We only show the sufficiency of the axioms. Axioms 1–3 imply there exist continuous functions

ft : C × Z → R for t ∈ N such that

p %t q ⇐⇒
∫
ft(c, x) dp(c, x) ≥

∫
ft(c, x) dq(c, x).

The first part of Axiom 6 (Separability) implies that f is separable, so

ft(c, x) = f1
t (c) + f2

t (x)

for some continuous functions f1
t and f2

t . In addition, Axiom 5 (Indifference to Timing) implies

ft is linear in the second argument: λft(c, x)+(1−λ)ft(c, y) = ft(c, λx+(1−λ)y). Equivalently,

λf2
t (x) + (1− λ)f2

t (y) = f2
t (λx+ (1− λ)y).

Next, Axiom 14 (Weak Commitment Stationarity) implies that, for any p, q ∈ ∆(CN),

f2
t ({p}) ≥ f2

t ({q}) ⇐⇒ f2
t+1({p}) ≥ f2

t+1({q}).

By the linearity of f2
t , this implies that, for any t, t′ ∈ N, the restrictions of f2

t and f2
t′ to

deterministic consumption streams in CN are identical up to a positive affine transformation.

Therefore, by taking an affine transformation of each ft, we can without loss of generality assume

that f2
t ({p}) = f2

t′({p}) for all t, t′ ∈ N and for all p ∈ ∆(CN).

Define a preference %∗t over Z by x %∗t y if and only if f2
t (x) ≥ f2

t (y) or, equivalently,

(c, x) %t (c, y). Note that this induced preference does not depend on the choice of c by

separability. Axioms 1-5 imply that the induced preference over menus Z satisfies Axioms

1-4 in Gul and Pesendorfer (2001). Specifically, the linearity of f2
t in the menu (which we

obtained using the combination of Axioms 3 and 5) implies that %∗t satisfies the independence

axiom for mixtures of menus (Gul and Pesendorfer, 2001, Axiom 3). Their other axioms are

direct translations of ours. Thus, for each t ∈ N, there exist continuous and linear functions Ut,

V̂t : ∆(C × Z)→ R such that

x %∗t y ⇐⇒ max
p∈x

(Ut(p) + V̂t(p))−max
q∈x

V̂t(q) ≥ max
p∈y

(Ut(p) + V̂t(p))−max
q∈y

V̂t(q).

Since both f2
t and this self-control representation are linear in menus, they must be the same up

to an affine transformation. Taking a common affine transformation of Ut and V̂t if necessary,

we therefore have

f2
t (x) = max

p∈x
(Ut(p) + V̂t(p))−max

q∈x
V̂t(q). (10)

By Equation (10), f2
t ({p}) = Ut(p) for all p ∈ ∆(C × Z). Thus the second part of Axiom 6
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(Separability) implies that Ut is separable, so

Ut(c, x) = u1
t (c) + u2

t (x) (11)

for some continuous functions u1
t and u2

t .

Claim 2 There exist scalars θut,i, α
u
t,i for i = 1, 2 with θut,2 ≥ θut,1 > 0 such that uit = θut,if

i
t + αut,i.

Proof: Axiom 8 (Present Bias) ensures that (i) u1
t ≈ f1

t and (ii) u2
t ≈ f2

t . To show (i),

take any p, q such that p2 = q2 and f1
t (q1) > f1

t (p1).25 Then q �t p and p ∼t p1 × q2,

which implies (c, {q}) �t (c, {p}) by Axiom 8. Thus u1
t (q

1) > u1
t (p

1), and the claim follows

since f1
t is non-constant (by nontriviality). To show (ii), take any p, q such that p1 = q1 and

f2
t (q2) > f2

t (p2). Then q �t p and p ≺t p1 × q2, which implies (c, {q}) �t (c, {p}) by Axiom 8.

Thus u2
t (q

2) > u2
t (p

2), and the claim follows since f2
t is non-constant (by Equation (10) and u1

t

non-constant).

Thus we can write uit = θut,if
i
t + αut,i for some constants θut,i, α

u
t,i with θut,i > 0 for i = 1, 2.

Finally, toward a contradiction, suppose that θut,2 < θut,1. Then, since f1
t and f2

t are non-constant,

we can take p, q such that f1
t (p1) > f1

t (q1), f2
t (p2) < f2

t (q2), and

θut,2
θut,1

<
f1
t (p1)− f1

t (q1)

f2
t (q2)− f2

t (p2)
< 1.

The first inequality implies θut,1f
1
t (q1) + θut,2f

2
t (q2) < θut,1f

1
t (p1) + θut,2f

2
t (p2), and hence Ut(p) >

Ut(q) or, equivalently, (c, {p}) �t (c, {q}). The second inequality implies f1
t (p1) + f2

t (p2) <

f1
t (q1) + f2

t (q2), and hence q �t p. Axiom 8 therefore requires that p �t p1× q2. However, since

f2
t (p2) < f2

t (q2), we have p1 × q2 �t p, a contradiction. Thus we must have θut,2 ≥ θut,1. �

Claim 3 For all t, t′ ∈ N, θut,2 = θut′,2 ∈ (0, 1) and u1
t (c) + αut,2 = u1

t′(c) + αut′,2 for all c ∈ C.

Proof: Note that by Equations (10) and (11) and Claim 2, for any (c0, c1, c2, . . . ) ∈ CN,26

f2
t (c0, c1, c2, . . . ) = Ut(c0, c1, c2, . . . )

= u1
t (c0) + u2

t (c1, c2, . . . )

= u1
t (c0) + αut,2 + θut,2f

2
t (c1, c2, . . . ).

(12)

Following the same approach as Gul and Pesendorfer (2004, page 151), we show θut,2 < 1 using

continuity. Fix any c ∈ C and let xc = {(c, c, c, . . . )} = {(c, xc)}. Fix any other consumption

25We write f1
t (p1) to denote

∫
f1
t (c) dp1(c), and write f2

t (p2) to denote
∫
f2
t (x) dp2(x). We adopt similar

notational conventions for u1
t and u2

t .
26Our notation here is slightly informal. More precisely, for any (c0, c1, c2, . . . ) ∈ CN, there exists

xi ∈ Z for i = 0, 1, 2, . . . such that xi = {(ci, xi+1)}. To simplify notation, we write (c0, c1, c2, . . . ) to
indicate the menu x0 = {(c0, x1)} = {(c0, {(c1, x2)})} = · · · .
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stream y = {(c0, c1, c2, . . . )} ∈ Z such that f2
t (y) 6= f2

t (xc). Let y1 = {(c, y)} and define yn

inductively by yn = {(c, yn−1)}. Then yn → zc, and therefore by continuity,

f2
t (yn)− f2

t (xc) =
(
θut,2
)n(

f2
t (y)− f2

t (xc)
)
→ 0,

which requires that θut,2 < 1.

Recall that f2
t ({p}) = f2

t′({p}) for all t, t′ ∈ N and for all p ∈ ∆(CN) or, equivalently,

Ut|∆(CN) = Ut′ |∆(CN). Therefore, by Equation (12), we must have θut,2 = θut′,2 and u1
t (c) + αut,2 =

u1
t′(c) + αut′,2 for all c ∈ C, as claimed. �

To begin constructing the representation, set δ ≡ θut,2 ∈ (0, 1) and

u(c) ≡ u1
t (c) + αut,2 = θut,1f

1
t (c) + αut,1 + αut,2.

Claim 3 ensures that δ and u are well-defined, as they do not depend on the choice of t. Set

Ŵt(x) ≡ f2
t (x) and hence, by Equation (11) and Claim 2,

Ut(c, x) = θut,1f
1
t (c) + αut,1 + θut,2f

2
t (x) + αut,2 = u(c) + δŴt(x),

so the first displayed equation in Proposition 5 is satisfied.

By Claim 2, we have 0 < θut,1/θ
u
t,2 ≤ 1. Therefore, there exist γt ≥ 0 and βt ∈ [0, 1] such that

1 + γtβt
1 + γt

=
θut,1
θut,2

.

Note that there are multiple values of γt and βt that satisfy this equality, so these parameters

are not individually identified from preferences. Next, defining Vt as in the second displayed

equation in Proposition 5, we have

(Ut + Vt)(c, x) = (1 + γt)u(c) + (1 + γtβt)δŴt(x)

= (1 + γt)

(
u(c) +

1 + γtβt
1 + γt

δŴt(x)

)
= (1 + γt)

(
θut,1f

1
t (c) + θut,1f

2
t (x) + αut,1 + αut,2

)
,

which is a positive affine transformation of ft(c, x). Thus

p %t q ⇐⇒ Ut(p) + Vt(p) ≥ Ut(q) + Vt(q),

The next claims are used to establish the desired form for V̂t.

Claim 4 The function V̂t is separable for all t, so V̂t(c, x) = v̂1
t (c) + v̂2

t (x).

Proof: It suffices to show that correlation does affect the value assigned to a lottery p by
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the function V̂t. That is, we only need to show V̂t(p) = V̂t(p
1 × p2) for all lotteries p.27 We

will show that non-equality leads to a contradiction of Axiom 9 (No Temptation by Atemporal

Choices) by considering two cases. For now, restrict attention to lotteries in the set

A =
{
p ∈ ∆(C × Z) : min

c∈C
u1
t (c) < u1

t (p
1) < max

c∈C
u1
t (c)

}
.

Case (i): V̂t(p) > V̂t(p
1 × p2). By the continuity of V̂t, there exists q1 ∈ ∆(C) such that

u1
t (q

1) > u1
t (p

1) and V̂t(p) > V̂t(q
1 × p2). The first inequality implies Ut(q

1 × p2) > Ut(p). By

the self-control representation in Equation (10), this implies (c, {q1× p2}) �t (c, {q1× p2, p}), in

violation of Axiom 9.

Case (ii): V̂t(p) < V̂t(p
1 × p2). By the continuity of V̂t, there exists q1 ∈ ∆(C) such that

u1
t (q

1) < u1
t (p

1) and V̂t(p) < V̂t(q
1×p2). The first inequality implies Ut(p) > Ut(q

1×p2). By the

self-control representation in Equation (10), this implies (c, {p}) �t (c, {p, q1× p2}), in violation

of Axiom 9.

We have now shown that V̂t(p) = V̂t(p
1 × p2) for all p ∈ A. Since u1

t is non-constant, A

is dense in ∆(C × Z). By the continuity of V̂t, we therefore have V̂t(p) = V̂t(p
1 × p2) for all

p ∈ ∆(C × Z). �

Claim 5 There exist scalars θvt,i ≥ 0 and αvt,i ∈ R for i = 1, 2 such that v̂1
t = θvt,1u + αvt,1 and

v̂2
t = θvt,2δŴt + αvt,2.

Proof: Axiom 9 (No Temptation by Atemporal Choices) ensures that (i) v̂1
t ≈ u or v̂1

t

is constant, and (ii) v̂2
t ≈ δŴt or v̂2

t is constant. To show (i), take any p, q with p2 = q2

and u(p1) > u(q1). Then u1
t (p

1) > u2
t (q

1) and hence (c, {p}) ∼t (c, {p, q}) �t (c, {q}) by

Axiom 9, which requires that v̂1
t (p

1) ≥ v̂1
t (q

1). Since u is non-constant, the desired claim fol-

lows. Part (ii) is analogously shown by taking any p, q with p1 = q1 and δŴt(p
2) > δŴt(q

2).

Then u2
t (p

2) > u2
t (q

2) and hence (c, {p}) ∼t (c, {p, q}) �t (c, {q}) by Axiom 9, which implies

v̂2
t (p

2) ≥ v̂2
t (q

2). �

By Equation (10), changing V̂t by the addition of a scalar does not alter the function f2
t .

Therefore, we can without loss of generality assume that αvt,1 = αvt,2 = 0. We next characterize

the implications of naiveté and sophistication.

Claim 6

1. If {%t}t∈N satisfies Axiom 11 (Naiveté), then 1+γt+1βt+1

1+γt+1
≤ 1+θvt,2

1+θvt,1
≤ 1.

27To see that this condition is sufficient for separability, fix any c̄ ∈ C and x̄ ∈ Z, and define v̂1
t (c) ≡

V̂t(c, x̄) and v̂2
t (x) ≡ V̂t(c̄, x)− V̂t(c̄, x̄). For any (c, x), let p = 1

2δ(c,x) + 1
2δ(c̄,x̄) and q = 1

2δ(c,x̄) + 1
2δ(c̄,x).

Then p1 × p2 = q1 × q2, so V̂t(p) = V̂t(q). Thus V̂t(c, x) + V̂t(c̄, x̄) = V̂t(c, x̄) + V̂t(c̄, x) or, equivalently,
V̂t(c, x) = v̂1

t (c) + v̂2
t (x).
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2. If {%t}t∈N satisfies Axiom 10 (Sophistication), then 1+γt+1βt+1

1+γt+1
=

1+θvt,2
1+θvt,1

≤ 1.

Proof: To prove 1, note that for all p, q ∈ ∆(CN),[
Ut(p) > Ut(q) and (Ut+1 + Vt+1)(p) > (Ut+1 + Vt+1)(q)

]
=⇒

[
(c, {p}) �t (c, {q}) and p �t+1 q

]
=⇒ (c, {p, q}) �t (c, {q}) (by Axiom 11)

=⇒ (Ut + V̂t)(p) > (Ut + V̂t)(q).

Since Ut and Ut+1+Vt+1 both rank constant consumption streams (c, c, c, . . . ) ∈ CN in accordance

with u, they are not ordinally opposed on ∆(CN). Therefore, by Lemma 1, there exists α ∈ [0, 1]

such that

(Ut + V̂t)
∣∣
∆(CN)

≈ (αUt + (1− α)(Ut+1 + Vt+1))
∣∣
∆(CN)

.

Thus, for any (c0, c1, c2, . . . ) ∈ CN,

(Ut + V̂t)(c0, c1, c2, . . . ) = (u+ v̂1
t )(c0) + (δŴt + v̂2

t )(c1, c2, . . . )

= (1 + θvt,1)u(c0) + (1 + θvt,2)δŴt(c1, c2, . . . )

must be a positive affine transformation of

(αUt + (1− α)(Ut+1 + Vt+1))(c0, c1, c2, . . . )

= (αu+ (1− α)(1 + γt+1)u)(c0) + (αδŴt + (1− α)(1 + γt+1βt+1)δŴt+1)(c1, c2, . . . )

= (α+ (1− α)(1 + γt+1))u(c0) + (α+ (1− α)(1 + γt+1βt+1))δŴt(c1, c2, . . . ),

where the last equality follows because Ŵt and Ŵt+1 agree on CN. This is only possible if

1 + θvt,2
1 + θvt,1

=
α+ (1− α)(1 + γt+1βt+1)

α+ (1− α)(1 + γt+1)
,

which implies
1 + γt+1βt+1

1 + γt+1
≤

1 + θvt,2
1 + θvt,1

≤ 1.

To prove 2, note that we now have stronger restrictions on the utility functions in the

representation: For all p, q ∈ ∆(CN),[
Ut(p) > Ut(q) and (Ut+1 + Vt+1)(p) > (Ut+1 + Vt+1)(q)

]
⇐⇒

[
(c, {p}) �t (c, {q}) and p �t+1 q

]
⇐⇒

[
(c, {p}) �t (c, {q}) and (c, {p, q}) �t (c, {q})

]
(by Axiom 10)

⇐⇒
[
Ut(p) > Ut(q) and (Ut + V̂t)(p) > (Ut + V̂t)(q)

]
.

37



Applying Lemma 1 twice, we obtain

(Ut + V̂t)
∣∣
∆(CN)

≈ (Ut+1 + Vt+1)
∣∣
∆(CN)

,

which implies
1 + γt+1βt+1

1 + γt+1
=

1 + θvt,2
1 + θvt,1

≤ 1,

as claimed. �

Set γ̂t = θvt,1 ≥ 0. If γ̂t = 0, then set β̂t ≡ 0. Otherwise, set β̂t ≡ θvt,2/θ
v
t,1 = θvt,2/γ̂t. By

Claim 6, θvt,2 ≤ θvt,1 and therefore β̂t ∈ [0, 1]. In addition, we have γ̂tβ̂t = θvt,2 in both the case of

γ̂t = 0 and γ̂t > 0. Thus

V̂t(c, x) = θvt,1u(c) + θvt,2δŴt(x) = γ̂tu(c) + γ̂tβ̂tδŴt(x),

so the third displayed equation in Proposition 5 is satisfied. Note also that by Claim 6,

1 + γ̂tβ̂t
1 + γ̂t

=
1 + θvt,2
1 + θvt,1

≥ 1 + γt+1βt+1

1 + γt+1
,

with equality if {%t}t∈N satisfies Axiom 10 (Sophistication). This completes the proof of Propo-

sition 5.

A.5.2 Proof of Theorem 3

We only show the sufficiency of the axioms.

Part 2: The assumptions in this part of the theorem are the same as in Proposition 5,

except that Axiom 14 (Weak Commitment Stationarity) is replaced with the stronger con-

dition of Axiom 7 (Stationarity). The profile of relations {%t}t∈N therefore has a represen-

tation (u, γt, γ̂t, βt, β̂t, δ)t∈N as in Proposition 5, with the additional condition that for any

p, q ∈ ∆(C × Z) and any t, t′ ∈ N,

Ut(p) + Vt(p) ≥ Ut(q) + Vt(q) ⇐⇒ Ut′(p) + Vt′(p) ≥ Ut′(q) + Vt′(q).

Therefore, for any fixed t ∈ N, setting (u, γ, γ̂, β, β̂, δ) = (u, γt, γ̂t, βt, β̂t, δ) and (U, V̂ , V, Ŵ ) =

(Ut, V̂t, Vt, Ŵt) gives a naive quasi-hyperbolic discounting representation for {%t}t∈N.

Part 1: By replacing Axiom 11 (Naiveté) with the more restrictive Axiom 10 (Sophistication),

Proposition 5 implies that

1 + γ̂β̂

1 + γ̂
=

1 + γ̂tβ̂t
1 + γ̂t

=
1 + γt+1βt+1

1 + γt+1
=

1 + γβ

1 + γ
.
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It is therefore without loss of generality to set γ = γ̂ and β = β̂, giving a sophisticated quasi-

hyperbolic discounting representation (u, γ, β, δ).

A.5.3 Proof of Theorem 5

We only show the sufficiency of the axioms. Note first that if {%t}t∈N satisfies Axioms 1–

3 and 5, then Axiom 13 (Commitment Stationarity) implies Axiom 14 (Weak Commitment

Stationarity). Therefore, the profile of preferences has a representation (u, γt, γ̂t, βt, β̂t, δ)t∈N as

in Proposition 5. By Axiom 13, for any p, q ∈ ∆(CN) and t, t′ ∈ N,

Ut(p) + Vt(p) ≥ Ut(q) + Vt(q) ⇐⇒ Ut′(p) + Vt′(p) ≥ Ut′(q) + Vt′(q).

Thus, for any (c0, c1, c2, . . . ) ∈ CN,

(Ut + Vt)(c0, c1, c2, . . . ) = (1 + γt)u(c0) + (1 + γtβt)
∞∑
i=1

δiu(ci)

must be a positive affine transformation of

(Ut′ + Vt′)(c0, c1, c2, . . . ) = (1 + γt′)u(c0) + (1 + γt′βt′)
∞∑
i=1

δiu(ci),

which is only possible if
1 + γtβt
1 + γt

=
1 + γt′βt′

1 + γt′
.

Thus it is without loss of generality to assume that γ ≡ γt = γt′ and β ≡ βt = βt′ for all t, t′ ∈ N.

We prove that the individual’s beliefs become more accurate over time by mapping into an

appropriate version of the two-period environment from Section 2 and applying the comparative

naivaté result from Theorem 2.

We construct preferences over menus K(∆(CN)) ⊂ Z and choice correspondences from these

menus as follows: For each time period t ∈ N, define an induced preference %∗t over K(∆(CN))

by x %∗t y if and only if Ŵt(x) ≥ Ŵt(y) or, equivalently, (c, x) %t (c, y). Define an induced choice

function from menus in K(∆(CN)) by

Ct+1(x) ≡ argmax
p∈x

[
Ut+1(p) + Vt+1(p)

]
= argmax

p∈x

[
Ut(p) + Vt(p)

]
,

where the second inequality follows because γt = γt+1 and βt = βt+1 imply Ut(p) = Ut+1(p) and

Vt(p) = Vt+1(p) for all p ∈ ∆(CN). By construction, (Ut, Vt, V̂t) (more precisely, the restrictions

of these functions to ∆(CN)) is a self-control representation for (%∗t , Ct+1).

Note that, for any p, q ∈ ∆(CN),[
(c, {p, q}) �t (c, {q}) and q �t+1 p

]
⇐⇒

[
{p, q} %∗t {q} and Ct+1({p, q}) = {q}

]
.
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Therefore, Axiom 12 (Diminishing Naiveté) is equivalent to (%∗t , Ct+1) being more naive than

(%∗t+1, Ct+2) according to Definition 2 for all t ∈ N. In addition, nontriviality implies there

exist c, c′ ∈ C such that u(c) > u(c′). Letting p = δ(c,c,c,... ) and q = δ(c′,c′,c′,... ), this implies

Ut(p) > Ut(q) and Vt(p) > Vt(q). Thus {p} �∗t {q} and Ct+1({p, q}) = {p} for all t ∈ N, so the

joint regularity condition from Theorem 2 is satisfied. We can therefore apply the theorem to

conclude that, for every t ∈ N, either

Ut + V̂t �Ut Ut+1 + V̂t+1 �Ut Ut+1 + Vt+1 �Ut Ut + Vt,

or the individual is sophisticated at t+ 1:

Ut+1 + V̂t+1 ≈ Ut+1 + Vt+1.

Note that it should be understood in these expressions that we are referring to the restrictions

of these functions to ∆(CN) ⊂ ∆(C × Z). Following similar arguments to those used to prove

Claim 6 in the proof of Proposition 5, these conditions translate immediately to the following:

Either
1 + γ̂tβ̂t
1 + γ̂t

≥ 1 + γ̂t+1β̂t+1

1 + γ̂t+1
≥ 1 + γt+1βt+1

1 + γt+1
≥ 1 + γtβt

1 + γt
or

1 + γ̂t+1β̂t+1

1 + γ̂t+1
=

1 + γt+1βt+1

1 + γt+1
.

Since γt = γ and βt = β for all t ∈ N, in either case we have

1 + γ̂tβ̂t
1 + γ̂t

≥ 1 + γ̂t+1β̂t+1

1 + γ̂t+1
≥ 1 + γβ

1 + γ
.

This completes the proof.

A.6 Proof of Theorem 4

Similar to the proof of Theorem 5, this proof consists of mapping the recursive environment into

an appropriate version the two-period environment from Section 2 and applying the comparative

naiveté result in Theorem 2.

We construct preferences over menus K(∆(CN)) ⊂ Z and choice correspondences from these

menus as follows: For individuals i = 1, 2, take U i, V̂ i, V i, Ŵ i as in the naive quasi-hyperbolic

discounting representations. Define an induced preference %∗i over K(∆(CN)) by x %∗i y if and

only if Ŵ i(x) ≥ Ŵ i(y) or, equivalently, (c, x) %it (c, y). Define an induced choice function from

menus in K(∆(CN)) by

Ci(x) ≡ argmax
p∈x

[
U i(p) + V i(p)

]
.

By construction, (U i, V i, V̂ i) (more precisely, the restrictions of these functions to ∆(CN)) is a

self-control representation for (%∗i , Ci).
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Note that, for any p, q ∈ ∆(CN),[
(c, {p, q}) �it (c, {q}) and q �it+1 p

]
⇐⇒

[
{p, q} %∗i {q} and Ci({p, q}) = {q}

]
.

Thus {%1
t }t∈N is more naive than {%2

t }t∈N according to Definition 8 if and only if (%∗1, C1) is

more naive than (%∗2, C2) according to Definition 2. In addition, joint nontriviality implies there

exist c, c′ ∈ C such that ui(c) > ui(c′) for i = 1, 2. Letting p = δ(c,c,c,... ) and q = δ(c′,c′,c′,... ), this

implies U i(p) > U i(q) and V i(p) > V i(q). Thus {p} �∗i {q} and Ci({p, q}) = {p} for i = 1, 2, so

the joint regularity condition from Theorem 2 is satisfied. We can therefore apply the theorem

to conclude that individual 1 is more naive than individual 2 if and only if either individual 2 is

sophisticated or

U1 + V̂ 1 �U1 U2 + V̂ 2 �U1 U2 + V 2 �U1 U1 + V 1. (13)

Note that it should be understood in this expression that we are referring to the restrictions of

these functions to ∆(CN) ⊂ ∆(C × Z).

The proof is completed by showing that Equation (13) is equivalent to the conditions in the

statement of the theorem. To see this, note first that U2 + V 2 �U1 U1 + V 1 (restricted to

∆(CN)) if and only if there exists α ∈ [0, 1] such that

(U2 + V 2)
∣∣
∆(CN)

≈ (αU1 + (1− α)(U1 + V 1))
∣∣
∆(CN)

.

Thus, for any (c0, c1, c2, . . . ) ∈ CN,

(U2 + V 2)(c0, c1, c2, . . . ) = (1 + γ2)u2(c0) + (1 + γ2β2)

∞∑
i=1

(δ2)iu2(ci)

must be a positive affine transformation of

(αU1 + (1− α)(U1 + V 1))(c0, c1, c2, . . . )

=
(
α+ (1− α)(1 + γ1)

)
u1(c0) +

(
α+ (1− α)(1 + γ1β1)

) ∞∑
i=1

(δ1)iu1(ci).

This is equivalent to u1 ≈ u2, δ1 = δ2, and

1 + γ2β2

1 + γ2
=
α+ (1− α)(1 + γ1β1)

α+ (1− α)(1 + γ1)
≥ 1 + γ1β1

1 + γ1
.

By analogous arguments, since u1 ≈ u2 and δ1 = δ2,

U2 + V̂ 2 �U1 U2 + V 2 ⇐⇒ 1 + γ̂2β̂2

1 + γ̂2
≥ 1 + γ2β2

1 + γ2
,

U1 + V̂ 1 �U1 U2 + V̂ 2 ⇐⇒ 1 + γ̂1β̂1

1 + γ̂1
≥ 1 + γ̂2β̂2

1 + γ̂2
.

This completes the proof.
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A.7 Proof of Proposition 2

Under any value function of the form Ŵ (m) = Au(m) +B such that A > 0 and B ∈ R, one can

explicitly solve

argmax
c∈[0,m]

[
(1 + γ̂)u(c) + δ(1 + γ̂β̂)Ŵ (R(m− c))

]
=

1

1 + (δ′ 1+γ̂β̂
1+γ̂ A)1/σ

m

argmax
c∈[0,m]

[
u(c) + δβ̂Ŵ (R(m− c))

]
=

1

1 + (δ′β̂A)1/σ
m

where we define δ′ := δR1−σ < 1. Consider first the case σ 6= 1. Then any such a value function

needs to satisfy

Ŵ (m) = max
ĉ∈[0,m]

[
(1 + γ̂)u(ĉ) + δ(1 + γ̂β̂)Ŵ (R(m− ĉ))

]
− γ̂ max

c̃∈[0,m]

[
u(c̃) + δβ̂Ŵ (R(m− c̃))

]
= (1 + γ̂)

1(
1 + (δ′ 1+γ̂β̂

1+γ̂ A)1/σ
)1−σ

m1−σ

1− σ

+ δ(1 + γ̂β̂)

A (δ′ 1+γ̂β̂
1+γ̂ A)1−σ/σ(

1 + (δ′ 1+γ̂β̂
1+γ̂ A)1/σ

)1−σ
(Rm)1−σ

1− σ
+B


− γ̂ 1(

1 + (δ′β̂A)1/σ
)1−σ

m1−σ

1− σ
− γ̂δβ̂

A (δ′β̂A)1−σ/σ(
1 + (δ′β̂A)1/σ

)1−σ
(Rm)1−σ

1− σ
+B


= (1 + γ̂)

1 + (δ′ 1+γ̂β̂
1+γ̂ A)1/σ(

1 + (δ′ 1+γ̂β̂
1+γ̂ A)1/σ

)1−σ
m1−σ

1− σ
− γ̂ 1 + (δ′β̂A)1/σ(

1 + (δ′β̂A)1/σ
)1−σ

m1−σ

1− σ
+ δB

for all m > 0, and thus A is a solution to the equation

A = (1 + γ̂)

(
1 + (δ′

1 + γ̂β̂

1 + γ̂
A)1/σ

)σ
− γ̂

(
1 + (δ′β̂A)1/σ

)σ
, (14)

and B = 0. Let g(A) denote the righthand side of (14).

The case of σ = 1 can be solved analogously to obtain the equation (14), and the value of B

is uniquely obtained from the value of A.

Claim 7 Equation (14) has a unique solution A∗ ∈ R++.

Proof: The derivative of g is calculated as

g′(A) = (1 + γ̂)

(
1 +

(1 + γ̂β̂

1 + γ̂
δ′A
)−1/σ

)σ−1

δ′
1 + γ̂β̂

1 + γ̂
− γ̂
(

1 + (β̂δ′A)−1/σ
)σ−1

δ′β̂. (15)
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Note that under σ < 1, the first (resp. second) term of the righthand side of (15) is increasing

(resp. decreasing) in A. Thus an upper-bound of g′(A) under σ < 1 is given by

lim
A→∞

[(
1 +

(1 + γ̂β̂

1 + γ̂
δ′A
)−1/σ

)σ−1

δ′(1 + γ̂β̂)

]
− lim
A→0

[(
1 + (β̂δ′A)−1/σ

)σ−1
δ′γ̂β̂

]
= δ′(1 + γ̂β̂) < 1.

The second-order derivative of g is

g′′(A) = (1 + γ̂)

(
1 +

(1 + γ̂β̂

1 + γ̂
δ′A
)−1/σ

)σ−2(
δ′

1 + γ̂β̂

1 + γ̂

)σ−1
σ
A−

1+σ
σ

1− σ
σ

− γ̂
(

1 + (δ′β̂A)−1/σ
)σ−2

(δ′β̂)
σ−1
σ A−

1+σ
σ

1− σ
σ

,

which is proportional to1 + γ̂

γ̂

1 + (δ′ 1+γ̂β̂
1+γ̂ A)

−1
σ

1 + (δ′β̂A)
−1
σ

σ−2  1+γ̂β̂
1+γ̂

β̂

σ−1
σ

− 1

 1− σ
σ

A−
1+σ
σ . (16)

When σ = 1, (16) is equal to 0. When σ > 1, the sign of (16) is negative, as it can be written as
1 + γ̂

γ̂

(1+γ̂β̂
1+γ̂ )

1
σ + (δ′A)

−1
σ

β̂
1
σ + (δ′A)

−1
σ

σ−1

︸ ︷︷ ︸
≥1

 1 + (δ′β̂A)
−1
σ

1 + (δ′ 1+γ̂β̂
1+γ̂ A)

−1
σ


︸ ︷︷ ︸

≥1

−1


1− σ
σ

A−
1+σ
σ .

Thus g is concave under σ > 1.

We now prove the unique existence of A. First observe that limA→∞ g
′(A) = δ′ < 1 by (15).

Thus, under any σ, there exist ε > 0 and Ā such that g′(A) ≤ 1− ε at all A ≥ Ā. This implies

that A > g(A) for all A sufficiently large. Given that g(0) = 1, the existence of a solution A∗ is

guaranteed by continuity of g.

If σ < 1, since g′(A) < 1 for all A, there cannot be another solution. If σ ≥ 1, as g is

concave, g′(A∗) < 1 at the smallest solution A∗. By concavity g′(A) < 1 for all A ≥ A∗ as well,

and thus there cannot be another solution. �

The above observation implies that there exists a unique value function Ŵ that has the form

of Ŵ (m) = Au(m) + B such that A > 0 and B ∈ R. Below we prove the comparative statics

results.

Claim 8 The unique solution A∗ to (14) is increasing in β̂ if σ < 1, decreasing in β̂ if σ > 1,

and constant in β̂ if σ = 1.

43



Proof: As we have shown in the proof of the previous claim, g′(A∗) < 1. Thus, by the

implicit function theorem, the unique solution A∗ is increasing (resp. decreasing) in β̂ if the

value of g(A) at each A > 0 is increasing (resp. decreasing) in β̂. The derivative of g(A) with

respect to β̂ can be calculated as

γ̂δ′A

[(
1 +

(
δ′

1 + γ̂β̂

1 + γ̂
A
)−1/σ

)σ−1

−
(

1 + (δ′β̂A)−1/σ
)σ−1

]
,

which is positive if σ < 1, negative if σ > 1, and zero if σ = 1. �

The actual consumption level is given by

c(m) = argmax
c∈[0,m]

[
c1−σ

1− σ
+ δ

1 + γβ

1 + γ
Ŵ (R(m− c))

]
=

1

1 + (δ′ 1+γβ
1+γ A

∗)1/σ
m.

Thus λ = 1

1+(δ′ 1+γβ
1+γ

A∗)1/σ
, which is decreasing in β̂ under σ < 1, increasing in β̂ under σ > 1,

and constant in β̂ under σ = 1. Furthermore, it is decreasing in β under any σ.

A.8 Proof of Proposition 3

For any lotteries p and q[
u(p) > u(q) and (u+ v)(p) > (u+ v)(q)

]
=⇒ C({p, q}) = {p} � {q}
=⇒ {p, q} % {p} � {q} (Strotz naiveté)

=⇒ v̂(p) > v̂(q).

Regularity requires that u and u + v not be ordinally opposed. Therefore, Lemma 1 implies

v̂ �u u+ v. To show necessity, note that v̂ �u u+ v implies

max
p∈x

[u(p) + v̂(p)]−max
q∈x

v̂(q) ≥ max
p∈Bv̂(x)

u(p) ≥ max
p∈Bu+v(x)

u(p),

which implies x % {p} for all p ∈ C(x).
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A.9 Proof of Proposition 4

To show that (1) implies (3), suppose that the individual is naive and take any lotteries p, q.

Then [
u(p) > u(q) and v(p) > v(q)

]
=⇒ C({p, q}) = {p} � {q}
=⇒ u(p) >

[
u(q) and v̂(p) ≥ v̂(q)

]
=⇒ {p, q} � {q}
=⇒ v̂(p) ≥ v̂(q),

which implies v̂ �u v since the regularity of (%, C) ensures that u and v are not ordinary

opposed. If in addition the individual is sophisticated, we can likewise show[
u(p) > u(q) and v̂(p) > v̂(q)

]
=⇒ v(p) ≥ v(q)

and thus v̂ ≈ v.

To show that (3) implies (1), suppose that v̂ ≈ αu + (1 − α)v for some α ∈ [0, 1] and take

any lotteries p, q. Then

C({p, q}) = {p} � {q} =⇒
[
u(p) > u(q) and v(p) ≥ v(q)

]
=⇒ v̂(p) ≥ v̂(q)

=⇒ {p, q} � {q},

and thus the individual is naive. If in addition v̂ ≈ v, then we can show

{p, q} � {q} =⇒ C({p, q}) = {p} � {q}

so that the individual is sophisticated.

The equivalence between (2) and (3) follows as in Ahn, Iijima, Le Yaouanq, and Sarver

(2016). (While the definition of v̂ �u v in Ahn, Iijima, Le Yaouanq, and Sarver (2016) allows

for the case v ≈ −u, this is ruled out by the regularity).
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