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Abstract.  Humans cooperate a great deal in economic activity, but our two major models 

of equilibrium – Walrasian competitive in markets and Nash in games – portray us as 

only non-cooperative.    In earlier work, I have proposed a model of cooperative decision 

making (Kantian optimization); here, I embed Kantian optimization in general- 

equilibrium models and show that ‘Walras-Kant’ equilibria exist and often resolve 

inefficiencies associated with income taxation, public goods and bads, and non-traditional 

firm ownership, which typically plague models where agents are Nash optimizers.    In 

four examples, introducing Kantian optimization in one market – often the labor market – 

suffices to internalize externalities, generating Pareto efficient equilibria in their 

presence.  The scope for efficient decentralization via markets appears to be significantly 

broadened with cooperative behavior.  
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1. Introduction 

 Economic theory has studied par excellence how economic agents compete with 

each other, the two magisterial models being general-equilibrium theory and game 

theory.    However, what distinguishes our species’ economic behavior from that of the 

other great apes is our ability to cooperate with each other.  A series of recent books, by 

economists, anthropologists, and evolutionary psychologists focus upon our cooperative 

abilities ( Bowles and Gintis [2011],  Tomasello [2014, 2016], Henrich and Henrich 

[2007]).   It is a serious lacuna in our economic modeling not to have attempted to 

introduce a model of cooperation at the level of abstraction of Nash equilibrium into 

general-equilibrium theory, to rectify the one-sided view of economic decision-making 

that Nash equilibrium represents. 

 In recent work, I (2010, 2015) have proposed how cooperation of economic 

agents can be formalized as a mathematical first cousin of Nash optimization, a protocol 

I’ve called Kantian optimization.    In a variety of non-market games, Kantian 

optimization delivers equilibrium allocations that are Pareto efficient when Nash 

optimization fails to do so.    In the present paper, I insert Kantian optimization into 

Arrow-Debreu general-equilibrium models of market economies, and show that the same 

result holds.   To wit, if there is Kantian optimization in a single market  (usually the 

labor market), this suffices to resolve a number of classical inefficiencies, dubbed 

‘market failures.’    Examples presented below show that Kantian optimization delivers 

decentralized, Pareto efficient allocations when there are public and private goods; that it 

can eliminate the dead-weight loss of income taxation; that it provides a decentralized, 

efficient solution to the problem of global carbon emissions; and that it gives Pareto 

efficient equilibria in an economy with worker-owned firms.   In most of these cases, 

there are degrees of freedom in the equilibrium income distribution that can be 

exogenously chosen, while preserving Pareto efficiency.   Thus, in a word, cooperative 

economic behavior, modeled as Kantian optimization, enables us to separate efficiency 

from distributional considerations. 

 The notable advantage of the Kantian approach is that it does not rely on the 

ubiquitous practice of behavioral economics (to date) in explaining cooperative behavior, 
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which is to insert ‘exotic’ arguments into preferences – arguments like altruism, or a 

warm glow, or a preference for equality or fairness – and then to derive the cooperative 

solution as a Nash equilibrium of the game with altered preferences.    Granted, a moral 

view motivates Kantian optimization, but that morality is captured in how people 

optimize, rather than by amending their preferences.    I claim that to get the ‘right 

equilibrium’ using the technique of inserting exotic arguments into preferences usually 

requires that the modeler know what the cooperative equilibrium is ex ante – then 

preferences can be constructed (reverse engineering) so that the Nash equilibrium of the 

game with the altered preferences is the desired (cooperative) strategy profile.  But in 

many cases – including all the cases I study below—it is not obvious what the 

cooperative  (i.e., Pareto efficient) equilibrium is, ex ante, and so this technique cannot be 

used.  Do we know what the frontier of Pareto efficient allocations in the problem of 

global emissions is?  In the absence of knowledge of all the information about 

preferences and technologies, I assert we do not: but the Kantian model I propose below 

finds a point  -- in fact a multi-dimensional manifold of such points --  on this frontier in 

a decentralized manner.     In the models below preferences are classical and self-

interested, containing only traditional (non-exotic) arguments.  Parsimony in modeling 

preferences is achieved by varying the optimization protocol.  

 Indeed, these results suggest that our nomenclature of ‘market failures’ may be 

off-base: for the efficiency results I demonstrate are all achieved in market economies.  

The failure of efficiency appears to be due, not to the market as such, but to Nash 

optimization.  

 In the next section, I review the definition of three kinds of Kantian optimization 

in games, and their moral motivation.  Section 3 presents a model of greenhouse gas 

emissions by a set of countries, where Pareto efficient equilibrium allocations exist, and 

the income distribution among m countries at equilibrium has  degrees of freedom.   

Section 4 decentralizes the efficient allocation of a public and private good in a semi-

market economy.  Section 5 presents a model of market socialism, where Pareto efficient 

Walras-Kant equilibria exist at almost any degree of income equality.   Section 6 presents 

a model of worker-owned firms, where production involves labor in m occupations, and 

there are Pareto efficient equilibria with  degrees of freedom in the income 
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distribution.   Section 7 concludes by briefly addressing the skepticism that many will 

have with regard to the realism of Kantian optimization as a human behavioral protocol. 

An appendix presents the proofs of the existence theorems. 

 I do not present the most general model in each of the four substantive cases I 

discuss: on the contrary, I try to present the simplest models that make the point, so as not 

to distract the reader with complexity that would render less transparent the central 

arguments.  The third substantive model, in section 5, is presented in most detail.   

 

2.  Kantian equilibrium in games1 

 We consider games in normal form among n players, whose payoff functions are 

denoted  , where the strategy spaces   are intervals of  non-

negative real numbers.  Strategies will be usually denoted  ;  a strategy profile is 

denoted E;  for any vector  , denote  .   Denote the  partial 

derivative of any function f by  . 

 

Definition 1  A game  is strictly monotone decreasing (increasing) if the 

payoff of each player is strictly decreasing (increasing) in the strategies of the other 

players.  A game is strictly monotone if it is either strictly monotone increasing or 

decreasing. 

 Consider, first, symmetric games.  It will suffice, for our purposes here, to 

consider symmetric games where the payoff function of player i is  , for 

some function V.   The supposition that the game is of this form is that all players ‘are in 

the same boat,’ and being in the same boat induces a kind of solidarity, which suggests 

the question “What is the strategy I’d like all of us to play?”  In this case, each player 

chooses the strategy that maximizes  .   Clearly players unanimously agree on 

the answer.  This motivates: 

                                                 
1 This section reviews material presented in Roemer (2010, 2015, in press). 
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Definition 2  A simple Kantian equilibrium is a strategy   such that: 

  . (2.1)  

Typically, simple Kantian equilibria do not exist.  However, if the game is symmetric, 

they do.    More generally, they exist if the game has a ‘common diagonal’:  that is, if 

every player orders the strategy profiles associated with the ‘main diagonal’ of the payoff 

matrix in the same way. 

 It is noteworthy that solidarity is defined (in the American Heritage Dictionary) as 

as ‘a union of purpose, sympathies, or interests among the members of a group.’  This is 

most easily interpreted as a symmetric game.    Thus, solidarity is not the characterization 

of the actions that the members of the group take  (e.g., a simple Kantian equilibrium), 

but rather of the state of the world that places them ‘in the same boat.’   I am suggesting 

that the Kantian question proposed in the last paragraph is induced by the commonality of 

the members’ interests2. 

 The aphorism that summarizes this kind of thinking is “either we all hang 

together, or we each hang separately,”   a phrase first uttered by Benjamin Franklin at the 

signing of the Declaration of Independence in 1776.    Franklin was urging his co-signers 

not to reason according to the Nash protocol, which would have produced too many free 

riders – too few signers of the Declaration.   

 The nomenclature ‘Kantian equilibrium’ is borrowed, with some apology, from 

Kant’s categorical imperative:  that morality requires taking that action that one would 

wish be universalized. 

 When games are not symmetric, simple Kantian equilibria rarely exist.    We 

generalize in two ways.   Imagine, now, a game with heterogeneous preferences  and 

suppose the existing strategy profile is  .   Agent 1 is considering  

increasing his effort by 10%.   But he understands that there are externalities to the choice 

of effort levels, and he asks, “How would I like it if everyone increased his effort by 

10%?”  If there are negative externalities (a monotone decreasing game), then he might 

                                                 
2 That humans, and not chimpanzees, have the capacity to think this way is certainly 
related to what Tomasello calls our ability to conceptualize ‘joint intentionality.’   
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well answer that he would dislike this change  (unlike a Nash optimizer who might find 

increasing only his own effort by 10% attractive).   This motivates the definition: 

 

Definition 3    is a multiplicative Kantian equilibrium if no player would 

prefer to re-scale the entire vector by any non-negative scalar.  That is: 

  . (2.2) 

To be precise, for agent i, the domain of r in the ‘argmax’ function is bounded by the 

requirement that  .  It is not necessary, however, that   for .3   

 In other words,  a multiplicative Kantian equilibrium is a stable point with respect 

to optimization protocol “change my effort by a factor r only if I would prefer the 

strategy profile where everyone changes his effort by the factor r.”   The first-cousin 

relationship to Nash equilibrium is evident – players evaluate the counterfactual using 

their own preferences, and need not know the preferences of others. 

 The motivation here is, again, a kind of solidarity.   By contemplating the effect of 

a general re-scaling of the strategy profile, the agent is forced to consider the externalities 

others impose on him. He is not an altruist – that is, the protocol does not force him to 

consider the externalities his behavior has for others.   But, indeed, it turns out that the 

internalization of externalities that this kind of Kantian reasoning induces suffices, in 

many cases, to resolve inefficiencies characteristic of Nash equilibrium. (When a small 

child throws her candy wrapper on the sidewalk, the parent may say “How would you 

like it if everyone threw his candy wrapper on the sidewalk?”  This query assumes or 

encourages a Kantian morality in the child.  In contrast, exploiting altruism, the parent 

would say, “How do you think others feel when you throw your candy wrapper….” The 

altruistic approach may be ineffective, if the child understands that her candy wrapper has 

a miniscule effect on the environment.)     

                                                 
3 To be still more precise, the domain condition on r when considering agent i is that 

 and  defines a payoff for i.  In all the games in this paper, it’s in 
fact the case that   -- that is, the payoff depends on one’s own 
contribution and the total contribution – and there is a given domain Di for the function 

 .  The proper domain specification for r in (2.2) is  . 
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 Re-scaling the strategy profile is only one kind of symmetric change in the 

profile.  Another kind of counterfactual an agent could consider is translating the strategy 

profile by a constant.   This induces another kind of Kantian equilibrium: 

 

Definition 4  is an additive Kantian equilibrium if no player would prefer to 

translate the entire vector by any scalar; that is: 

  .    (2.3) 

 The sense in which Kantian optimization models cooperation is suggested by: 
 
Proposition 14   If the game   is a strictly monotone game, then any simple or 

additive Kantian equilibrium is Pareto efficient in the game, and any positive 

multiplicative Kantian equilibrium is Pareto efficient in the game.   

 Thus, Kantian optimization resolves tragedies of the commons (monotone 

decreasing games) and the inefficiency of public-good provision/ free rider problems 

(monotone increasing games).     

  

An example 

 Consider a fishing economy where the fishers have utility functions   

where x is fish consumed and E is efficiency units of labor expended fishing.  The 

production function of the lake where people fish is  , G increasing and 

concave.  The allocation rule is ‘each keeps his catch,’ so (apart from noise) the 

allocation of fish at an effort vector is proportional to effort: 

    . 

This induces a game defined by: 

    . 

If G is strictly concave, this is a monotone decreasing game.    Proposition 1 tells us that 

any multiplicative Kantian equilibrium is Pareto efficient in the game.   But something 

                                                 
4 Roemer (in press, chapters 2 and 3). 
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stronger is true: such an equilibrium is also Pareto efficient in the economy.   To see this, 

we write the characterizing condition for a multiplicative Kantian equilibrium in the 

differentiable case: 

   

                        For all i  . (2.4) 

Expanding this expression, and assuming all efforts are positive, yields: 

   for all i     ,     

which is just the statement that the marginal rates of substitution of all agents between 

labor and consumption equal the marginal rate of transformation, the condition for Pareto 

efficiency in the economy.    

 In other words, efficiency in the game means that, among all allocations 

achievable according to the ‘each-keeps-his-catch’ rule, the Kantian equilibrium is 

efficient.   Efficiency in the economy means that there is no other feasible allocation, 

under any rule, that Pareto dominates the Kantian equilibrium of the game.    

 Mathematically, we can contrast Nash (non-cooperative) behavior with Kantian 

(cooperative) behavior in this way.   At a given strategy profile  , each Nash 

optimizer contemplates changing the strategy profile by varying his own dimension only 

of the profile E.  Thus the n counterfactual strategy profiles are chosen from different 

unidimensional line segments of the profile space .  However, in Kantian 

optimization, all players contemplate deviating within the same unidimensional line 

segment of the profile space – in the case of multiplicative Kantian along the ray through 

the profile E, and in additive Kantian, along the 45 degree line (in the two player case) in 

the profile space containing E.  Restricting individual deviations to a common space of 

strategy profiles is the mathematical representation of cooperation.  

 There are many other ‘Kantian variations’ besides the additive and multiplicative 

ones (see Roemer[2015]), but they will not be needed in the present analysis. 
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 I do not claim that Kantian optimization is rational in one-shot games.  What I 

argue is that in many situations, the same players counteract with each other all the time, 

and a morality of solidarity may develop that induces players to optimize in the Kantian 

manner, if they come to feel a sense of solidarity.    It is not my task here to show how 

this emerges; rather, I want to show that if Kantian optimization is a moral protocol in a 

population, then many inefficiencies in market economies can be resolved. I suggest 

readers think of Kantian optimization as a moral code.   In the last section of the paper, I 

address the accessibility of Kantian reasoning to human beings in somewhat more detail. 

 I amplify on my remark about behavioral economics in the Introduction.  An 

experimenter observes in the lab that subjects do not play what the experimenter believes 

is the Nash equilibrium of the game  (think of trust games, public-good games, the 

ultimatum and dictator games).   So the experimenter looks for ‘exotic’ preferences, 

which would, if held by the subjects, produce the observed outcome as a Nash 

equilibrium.   This is done by inserting arguments like altruism, a concern for fairness, a 

concern for equality, etc., as arguments of preferences.     In contrast, my approach is to 

keep preferences classical, but to alter the way that agents optimize.     

 I believe my approach is superior, because it decentralizes the cooperative 

solution even when it is not obvious what that solution is.    Contrast this with the lab 

games that I listed above: in all those cases, we can immediately see what the cooperative 

solution is, and so it is not so hard to design preferences that will make that solution a 

Nash equilibrium of the game so defined.   But in many cases, the cooperative solution is 

not obvious.  Take the fishing example above:  it is far from obvious what the Pareto 

efficient allocation in which each keeps his catch is. (Under general conditions of 

convexity, such an allocation exists, and is locally unique: see Roemer and Silvestre 

[1993].)   But the multiplicative Kantian equilibrium locates it without resorting to 

inventing new preferences for the players.  How would you go about assigning new 

preferences to the fishers so that the Nash equilibrium of the new game is the Pareto 

efficient allocation in which each keeps his catch?  In other work, I have shown there is 

no natural way to do this (Roemer [in press]).   

 To reiterate: my earlier papers on Kantian equilibrium have investigated its ability 

to resolve inefficiencies in non-market games, or in very simple market games.  The 



 9 

contribution of the present paper is to embed Kantian optimization in general-equilibrium 

market economies, and to show how it can resolve inefficiencies there that are prevalent 

with Nash optimization. 

 

3. A model of global carbon emissions 

 Country i  operates a single firm, whose production function is   where 

K is capital and E is carbon emissions.   All firms produce a single consumption good, 

called x.   (We could generalize and have many goods, but that is just a distraction.)   

Labor is implicit.   Capital is purchased on an international capital market, but labor is 

immobile:  hence, the entire labor supply of country i works in the firm of the country.  

We therefore do not display explicitly the dependence of the technology on labor, nor do 

we display labor in the utility function of each country. 

 There is a representative agent in each country, with utility function  , 

where  is the global emissions.   Utility is increasing in x and decreasing in 

.   We assume that these agents care about the future citizens of their country, and they 

have internalized this in their preferences through the dependence of utility on global 

emissions. 

 Country i has a capital endowment of  .  It is easiest to assume that capital does 

not depreciate.    (It also has a labor endowment, but as I remarked, we need not display 

that explicitly.)   

 An allocation   is feasible if: 

      . 

By standard methods,  one shows the following: 

 

Fact.  An interior allocation is Pareto efficient if and only if: 

 

  (i) for all i,j    
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 (ii)  for all i,  ,               (3.1) 

as well as the material balance conditions.  Thus, efficiency requires equalization across 

countries of both marginal products, and a Samuelson condition relating the marginal 

product of emissions to the marginal rates of substitution. 

 There are three prices,    for the good,  capital, and a unit of emissions, 

respectively.    Each firm will maximize profits, which are given by  

if the firm ‘demands5’ Of course, profits include neoclassical profits and labor 

income.   We need not distinguish between these, since workers in each country offer 

their labor inelastically to the firm, and all profits net of capital costs and emissions 

payments redound to the citizenry.  

   Capital will be supplied on the global market by the citizenry that owns it.    

The citizenry of each country must ‘supply’ the universe of firms with emissions.  

It is the determination of the global emission supply that is unconventional.   

 A firm will pay into a global fund if it emits , and these revenues will be 

distributed to the global citizenry, according to a share vector , non-negative 

and summing to one, which emerges endogenously as part of the equilibrium. Thus the 

income of country i from this demogrant will be  , while the country’s firm pays 

 into the fund. 

 Consider the following game whose n players are the citizenries of each country  

(i.e., the n representative agents).   The strategy space for each player is  .  Given a 

capital and emissions demand by its firm  , prices, and a vector 

   the payoff function for player i is: 

  ,  (3.2) 

where   is a proposal, by county i,  for global emissions.    

                                                 
5 To say the firm ‘demands’ emissions  means it proposes to emit that many tons of 
carbon. 
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Note the first argument in u is the amount of the good that country i can purchase 

given its income, which comes from three sources – its capital income, its profit income, 

and its demogrant. 

Note that a simple Kantian equilibrium for   is a 

number such that, for all i,   maximizes  . 

The ethical appeal of the simple Kantian equilibrium of the game defined, if it 

exists, is that it is a unanimous decision of the global level of the public bad, which 

maximizes the utility of countries, subject to the existence of a feasible share rule for 

allocating the sum total of emissions taxes. 

 

Definition 5.   A global Walras-Kant equilibrium with emissions is a price vector  

and a share vector ,summing to one, demands for capital and emissions 

 by each firm  ,  a vector of consumptions  , and a total supply of 

global emissions   , such that: 

 

• For each i,      

• The number    is a simple Kantian equilibrium of the game V defined in 

(3.2), given prices,    ,   and  .   Countries 

unanimously agree on the global emissions supply.   

 

• for all i,  ) 

 

•    ,   , and   .    

 

Note, especially, that there are no ex ante limits on emissions, and no ex ante allocation 

of emissions credits to countries.  So these two contentious problems in the discussion of 

global emissions’ control are solved by the use of Kantian optimization – that is to say, 
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by cooperation in the choice of emission ‘supplies.’   The citizens supply the permission 

to the countries in toto to emit.  The agreement among countries specifies that firms may 

not emit until it is verified that total emissions will be no greater (in fact equal to) the 

citizenry-determined total supply of emissions.  

 

Proposition 2   Any global W-K equilibrium with global emissions is Pareto efficient. 

 

Proof: 

1.      By profit-maximization, we have: 

   

  . (3.3) 

2.  It follows from the Fact (3.1) characterizing Pareto efficiency that condition (i) holds.  

What remains to prove for condition (ii) is that 

     . 

3.  A simple Kantian  equilibrium of the game V, satsifies 

 

   . (3.4) 

 Compute  this says: 

  for all i  ,      

which reduces to:    

 for all i  .     (3.5) 

Summing the last equations over i proves the claim, by step 2.  

 

 I demonstrate existence under an assumption that is simplifying but probably not 

necessary: 
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Assumption QL.   All the utility functions are quasi-linear of the form 

 and   satisfies the Inada conditions. 

 

Nevertheless, the Assumption QL is perhaps not a bad one since the agents are countries: 

it says countries wish to maximize GDP minus the costs of global warming. 

 

Proposition 3  Under Assumption QL, and standard concavity assumptions on the 

functions  including Inada conditions,  a Walras-Kant equilibrium with global 

emissions exists. 

Proof:  See Appendix, Parts A and B.  

 

Remark.  Without the assumption of quasi-linearity, the determination of the 

, in step 2 of the above proof,  is not so easy.   

 I have stated the ethical appeal of the simple Kantian equilibrium for global 

emissions.   It is this appeal that would motivate countries to agree to this procedure. 

 Now the income allocation, which is locally unique and that emerges from this 

equilibrium, may not be so desirable.  This can be amended by adding fixed transfers to 

  the incomes of all countries, which sum zero.  These transfers will not alter the 

analysis. Thus, we have an  manifold of efficient equilibria.   Of course, there will 

be a political problem in agreeing upon what the transfers will be. 

 This equilibrium concept decentralizes the problem. There is no need for a 

centralized decision on the allocation of permits.  The scheme is reminiscent of ‘cap-and-

trade,’ where the global cap on emissions is set by the world’s citizenry.  The market for 

emission permits is replaced by the requirement (agreed to by the community of 

countries) that total emissions do not exceed the ‘supply’ of global emission permits, 

which is the simple Kantian equilibrium of the game defined in (3.2).  

 Skepticism with regard to the proposal may be due, first, to whether the simple 

Kantian equilibrium of the game defined is indeed ethically attractive to the participants, 

and second, in having confidence that the preferences of countries will properly take 

future effects of global emissions into account.  However, if countries are not willing to 
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take the effects of emissions on future generations into account, there is no satisfactory 

solution to the global emissions problem under any procedure. 

 

4.  An economy with a private good and a public good 

   

Consider an economy with a private good (x), a public good (y), and labor (E).  

Citizens have concave, differentiable utility functions  of the usual kind.  There 

is a private firm that produces the private good with production function  using labor 

as the only input.  There is a cooperative firm that produces the public good from labor, 

using production function H.  The private firm is owned by citizens.  Each citizen is 

endowed with  , a positive amount of labor in efficiency units and a share of the 

private firm.  The cooperative firm will be organized along a cooperative principle. 

Let  be a supply of labor by agent i  to firm 1 (private) and firm 2 

(cooperative), respectively.   There are n citizens.  A feasible allocation satisfies: 

     

Fact.    An interior6 allocation in the differentiable case is Pareto efficient if and only if: 

  (A)   , and (B)   ,     (4.1) 

in addition to the material balance equations.  

 We define a notion of equilibrium, which is semi-market.   The private firm 

maximizes profits facing prices for the private good and labor .   Citizens supply 

labor to both the private firm and the cooperative firm.  Workers are paid wages by the 

private firm, but not by the cooperative firm, which operates outside the market.  The 

vector of labor supplies and demands for the private good are conventional.  But the 

vector of labor supplies to the cooperative firm must be an additive Kantian equilibrium 

of a game to be defined. 

                                                 
6   An interior allocation is one where   is positive for all i and  .   It is 
not necessary that both  be positive for every i.   
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Suppose we are given a vector of labor supplies to the private firm 

 and private-good consumptions .   Define a game among 

the n players with the following payoff functions: 

                            (4.2)  

(Recall  .)     

 We can now define a Walras-Kant equilibrium with a public and private good as 

follows.   It consists of a price vector  , an allocation of goods , n effort 

vectors  ,  and a supply of the good and demand for labor by the private firm 

  such that: 

 

(a)   The vector  maximizes Firm 1’s profits , i.e.,  .  Denote these profits 

by  ;   

(b)  Given  ,  for each i, the choice  maximizes  

over the budget set: 

    ; 

(c)  Given ,  the vector  is an additive Kantian 

equilibrium of the game V defined in (4.2) above; 

(d) Markets clear:   ,  ,  and in addition   

In other words, every worker may participate in both the private and cooperative 

economy; his choices in the private economy are optimal for him, given prices, and given 

the labor he expends in the cooperative firm and the value of the public good, and the 

levels of participation of workers in the cooperative firm form an additive Kantian 

equilibrium for them,  given the consumption and labor they receive in the private/market 

sector.   So in the private economy, workers behave as they do under capitalism, but 

when producing the public good, they optimize in a cooperative fashion. 
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Proposition 4   Any Walras-Kant equilibrium with a public and private good is Pareto 

efficient. 

Proof: 

1. I will assume the equilibrium is interior for simplicity, although the proof extends to 

corner solutions. 

2.  By profit maximization,  .   By utility maximization over , it is 

easy to check that  where the argument of   is  .   It follows that 

condition (A) of the characterization of Pareto efficiency in (4.1) holds. 

2.  By concavity,  the following first-order condition characterizes the additive Kantian 

equilibrium of the game V: 

 

for all i,      

 

 Expanding this condition we have: 

  For all i,   .                                   (4.3) 

Using the fact that  , proved in step 2,   we can write (4.3) as: 

   .                             (4.4) 

Now, since  , by interiority of the equilibrium,   is well-defined and 

positive;  rewrite equation (4.4) as: 

     .                         (4.5) 

Now add condition (4.5) over i,  giving condition (B) in  (4.1) of Pareto efficiency.  

 

 What happens if we substitute for condition (c), condition (c*): 

 

(c*)     Given   the vector  is a multiplicative Kantian 

equilibrium of the game V defined in  (2) above. 
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We have: 

Proposition 5  Any Walras-Kant (multiplicative variant) equilibrium in which for all i 

  is Pareto efficient. 

Proof: 

1.  Same step 2 in Prop. 4. 

2.   We now require: 

  for all i,    ,  

or:     . 

Again, we substitute   for  , giving: 

    . 

Adding over i  gives the required condition (B) for Pareto efficiency.   

 

We have the existence result: 

 

Proposition 6   If G obeys the Inada conditions and is strictly concave, and the utility 

functions are strictly concave,  then an additive Walras-Kant equilibrium with a public 

and private good exists. 

See Appendix, Parts A and C. 

 

Remark.  The proof of existence of a multiplicative Walras-Kant equilibrium should also 

be true, but will be more delicate.  This is because the zero vector is always a 

multiplicative Kantian equilibrium of the game V, but we want to show the existence of a 

Walras-Kant equilibrium where the vector   is strictly positive (or else we lose Pareto 

efficiency).  Doing this requires cutting out a small piece of the domain  near 

the origin, and then some conditions on the derivatives of  are needed to guarantee that 

 maps this slightly smaller domain into itself.  To avoid this complication, I have 
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elected to prove existence for the additive Kantian version, which does not suffer from 

this problem. 

 

5.   A design for market socialism 

 This model is somewhat more complicated, for it is the only one in which I 

assume there are two produced private commodities and labor.   I have chosen to 

introduce this complication to show that the usefulness of Kantian optimization is not 

restricted to economies with a single private commodity.    It will be clear that the 

arguments will hold for economies with any number of private, produced commodities.   

A. Introduction 

Market-socialist models to date have not modeled cooperation or solidarity among 

citizens although these features are at the heart of the socialist ideal. Despite the 

importance of cooperation to the socialist vision, existing models present no explicit 

conception of how people would behave differently (cooperatively) in a socialist society 

from how they behave (non-cooperatively) in a capitalist economy.  In market-socialist 

models heretofore (e.g., Lange and Taylor [1938], Roemer [1994]), agents are presumed 

to optimize in the same way that Arrow-Debreu agents optimize, maximizing a self-

regarding preference order subject to constraints.   One might suppose that socialist 

citizens would possess preferences with an altruistic element in them.    However, I have 

not seen any market-socialist models with this property – and in any case, if an agent is 

small in the economy, it is unclear whether his having a preference order with an 

altruistic character would produce equilibria any different from one in which agents are 

entirely self-regarding.  (See Dufwenberg et al [2011].)  After all, if an agent is small, 

what difference would his altruistic contribution make, and would this small contribution 

outweigh the personal cost he sustains by making it?  The preferences of agents are 

standard and self-regarding in my proposal. 

  Income taxation is the redistributive mechanism here.   The key observation is that 

Kantian (as opposed to Nash) optimization in the labor-supply decision nullifies the usual 

deadweight loss incurred with income taxation.   Any degree of post-fisc income equality 

can be achieved without sacrificing Pareto efficiency.  The economic mechanism is 
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decentralized, efficient, and as equal as citizens choose it to be, through a presumably 

democratic choice of the tax rate. 

 

 B.  The economic environment 

 There are two produced private goods and a homogeneous kind of labor, 

measured in efficiency units.  There are two firms, each of which produces one of the 

goods from inputs of labor and capital, using production functions G and H respectively, 

which map  .  Worker i is endowed with  units of labor in efficiency units, 

and receives a profit share  from Firm l , for  . The state owns fractions  of 

firm  , and is endowed with  units of the capital good.   Good 1 is used both for 

consumption and capital, and Good 2 is a pure consumption good.  The state uses its 

capital to finance investment in the two firms, and the private agents spend their incomes 

on consumption of the two goods.  Private agent i has preferences over the two 

consumption goods and labor expended (in efficiency units) represented by a utility 

function .  All activity takes place in a single period. 

 Firms are traditional – they are price-takers and demand capital and labor and 

supply commodities to maximize profits.  A linear tax at an exogenous rate  will 

be levied on all private incomes, with the tax revenues returned to the population as an 

equal demogrant.   Given their incomes (which consist of after-tax wages, profit income 

and the demogrant) and their labor supply,  producer-consumers choose the optimal 

commodity bundle in the classical way.   However, the determination of labor supply, 

and hence of income, is non-traditional – that is to say, the worker does not choose her 

labor supply in the Nash manner. A vector of labor supplies must be an additive Kantian 

equilibrium of a game to be defined below.  

 

C.   The game 

Let  be a price vector where  is the price of commodity l, for   

w is the wage rate for labor in efficiency units, and  r is  the interest rate on capital.  Let 

be a labor supply vector by agent i to Firms 1 and 2.   Thus the vector of labors 
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supplied to Firm G  is   and the vector of labors supplied to Firm H is 

 .  Fix the capital levels ,   of the two firms.   Define the 

income of private agent i at under a linear income tax at rate t as: 

 
(5.1)

 

where  the profits of the two firms are defined by: 

,   (5.2) 

and  is the labor supplied to Firm l.  The last term on the r.h.s. of  (5.1) is the value of 

the demogrant, equal to the per capita share of total tax revenues (where taxes are levied 

on all private incomes but not on the state’s income).  

The income of the state is: 

  . (5.3) 

That is, the state receives its share of firms’ profits plus the return on its investment, but 

this is not taxed, which explains the specification of the demogrant in equation (5.1). 

Now suppose that every (private) agent were to increase her total labor by a constant 

, positive or negative.  Then i’s hypothetical income would be:  

 

  (5.4) 

where  fraction  of the total increase in labor  is allocated to Firm 1, and fraction 

 to Firm 2.  We need not adopt a rule for how each agent would allocate her 

additional labor  between the two firms, as this will turn out not to matter.  It is 

assumed that workers are price takers:  in particular, they take the wage w as given. 

A comment on the logic behind equation (5.4) is in order.  A Nash player, who 

chooses his labor supply while assuming all other labor supplies remain fixed, need not 

consider the effect of his labor-supply decision on either the profits of firms in which he 
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works or owns equity, or upon the demogrant, if the economy is large.  Hence, our 

practice in Nash-type analysis is to ignore these effects.  But in Kantian optimization, the 

counterfactual the worker envisages is that all workers change their labor supplies in the 

same amount as the change he is contemplating, and hence consistency in the thought 

experiment requires that we alter the labor supplies to firms, and the value of the 

demogrant, accordingly.   Hence, the formulation of equation (5.4)7. 

At this counterfactual labor supply by worker i, , given her income as 

specified by (5.4) , let the agent compute her commodity demands, which are the solution 

of the program: 

    (5.5) 

Denote the solution to this program by  , where I 

abbreviate with the notation  .   

We now define the payoff functions of a game.   The payoff to agent i is his utility 

at prices  if the capital invested in the firms is  , and  the vector of 

labor supplies  were to determine wage income, profit income, and the value 

of the demogrant, that is: 

  . (5.6)  

Incorporated in the payoff function is the assumption that at her personal part of the 

community effort vector, agent i has chosen her commodity demands optimally, given the 

income generated. 

Thus, given a vector of prices , and the ownership shares of firms, a 

game whose strategies are effort/labor supplies is defined, denoted   .  We can define 

                                                 
7 Saying that workers are price-takers means they do not contemplate the change in the 
wage that would be forthcoming were the aggregate labor supply to change.  Strictly 
speaking, their taking the wage as fixed must be regarded as an illusion.  This contrasts 
with price-taking under Nash optimization, which is rational if the economy is large. 
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its additive Kantian equilibrium, which is a vector of labor supplies   

satisfying (2.3): that is to say,  a vector   such that: 

 

 .  (5.7) 

 
D.    Walras-Kant equilibrium market-socialist equilibrium with taxation 

The data of the economy are .  It 

is useful, for conceptualizing Pareto efficiency, to define the utility function of the state, 

which is: 

     .     (5.8) 

That is, the state cares only about Good 1, which it uses for investment. 
 

We now define a Walras-Kant (additive) equilibrium at tax rate t, to consist of:   

i. a price vector , 

ii. labor and capital demands by the two firms of  and  , respectively, 

iii. labor supplies  by all workers i to Firms 1 and 2, 

iv. for all private agents i, commodity demands  for the outputs of Firms 1 and 

2, resp., and a demand for the first good by the state of ,   

such that: 

v. at given prices,  maximizes profits of Firm l, for l = 1, 2, 

vi. the labor supply vector , where  ,  constitutes an 

additive Kantian equilibrium at the given prices of the game  , as defined in 

(5.6),  

vii.   maximizes the utility of agent i, given prices, her labor supply, and her 

income, given by (5.1),   

viii.   maximizes the state’s utility  subject to its budget constraint  

 , and  
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ix. all markets clear; that is,   ,   

 , and  . 

The depreciation rate of capital is set at zero. Thus, at the beginning of the next period 

the state’s endowment of the capital good will be   (see eqn. (5.3)).  

 

E.  The first theorem of welfare economics for market socialism 

The appropriate concept of Pareto efficiency will be called investment constrained 

Pareto efficiency  (ICPE).    An allocation is ICPE if there is no other feasible allocation 

that makes at least one agent better off without harming any agent, where the state is 

included as an agent.  Since the model is not intertemporal, it is important to qualify the 

kind of Pareto efficiency that can be realized:  citizens cannot trade off present against 

future consumption in the model, and hence we cannot speak of efficiency in the full 

sense.    To say this more straightforwardly:  the state’s investment is determined by its 

endowment of capital, not by any considerations of the population’s future welfare.    We 

know that both the Soviet Union and post-1949-China probably invested too much, 

committing their populations to excessively low consumption.   Such can happen in this 

model, too.   

 It is easy to show that, with differentiability, an interior allocation8 is ICPE 

exactly when: 

                                                 
8 An allocation is called interior if all private agents consume positive amounts of both 

commodities and leisure, and all supply positive amounts of labor (but it is not necessary 

that any agent supplies labor to both firms).   
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   (5.9) 

 where  , etc.  

 Conditions (a)-(d) specify feasibility; conditions (e)-(g) specify efficiency.  

 

Proposition 7   Assume differentiability of the production functions and the utility 

functions.  Assume that the production functions are concave and the utility functions are 

strictly concave.   Let  comprise a Walras-Kant 

(additive) equilibrium at any income tax rate  .    Then the induced allocation is 

investment-constrained Pareto efficient. 

Proof of Proposition 7: 

0. Although the theorem’s statement assumes the equilibrium is interior, this is easy to 

relax, with a concomitant alteration of the first-order conditions.   

1. At a Walras-Kant equilibrium at tax rate t,  profit-maximization gives: 

  , (5.10) 

and clearing of the capital market tells us that .  Therefore, it follows from 

(5.9)  that an interior equilibrium is ICPE if and only if: 

                             (5.11) 

 .  

2.  Consider the program: 
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where E  and I are fixed.    Denote the solution  .  The f.o.c.s for the 

solution of the program are: 

   (5.12) 

By the implicit function theorem, the functions   are differentiable and their 

derivatives are given by: 

  , (5.13) 

  , (5.14) 

  and (5.15) 

   
 

 ,   (5.16) 

where   is the leading principal sub-matrix of order two of the Hessian of the function 

,  and the superscript  indicates ‘transpose.’  Note that the implicit function theorem 

indeed applies because  is negative definite by the strict concavity of , and so the 

denominators of equations (5.13)-(5.16) do not vanish. 

4. Now the labor-supply vector is an interior additive Kantian equilibrium of the game 

  if and only if : 

 

for all  :   

 
 .  (5.17) 

This statement reduces to: 

 ,   (5.18) 
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where  .  

5. From (5.4), calculate that:

  

(5.19) 

Since the four partial derivatives   of the firms’ profit functions are zero, 

by profit maximization, and  , (5.19) reduces to: 

  , (5.20) 

for any t.    It is now evident why we did not have to specify how workers allocate the 

increment ρ in labor between the two firms:  that allocation does not affect the validity of 

(5.20). 

 We therefore write the condition for Kantian equilibrium of labor supplies, 

equation (5.18), as: 

   .    (5.21) 

6.  We now expand equation (5.21) by making a sequence of substitutions: (i) substitute 

the expressions for the four derivatives of the  and  functions from (5.13) through 

(5.16), and (ii)  eliminate   via the substitution  , the f.o.c. from (5.12).   So 

doing reduces (5.21) to: 

    (5.22) 
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where  , which is a negative number.   

Finally, divide both sides of equation (5.22) by the positive number , simplify, and 

calculate that that equation reduces to: 

   , (5.23) 

which is one of the two required efficiency conditions for agent i. 

7. Now substitute for  in the last equation using  , yielding: 

 
.  (5.24) 

By equations (5.23), (5.24) and (3.2),  the proposition is proved.   

   
The key move in the proof is to show that, regardless of the tax rate, when a worker 

thinks of all workers as varying their labor supplies in the amount she is contemplating 

varying her own, she internalizes the externality generated by her labor-supply choice – a 

choice that affects firm profits and tax revenues.   Her own action causes a negligible 

change in these magnitudes, but of course the aggregate effect of many small changes is 

significant.  The additive counterfactual in the universal change in labor supplies and 

linear income taxation combine in such a way as to exactly cancel the deadweight loss of 

taxation that afflicts Nash optimization in the labor-supply decision.  (This is the meaning 

of equation (5.20), the key to the proof.)   This kind of pairing – associating a specific 

cooperative optimization protocol with a particular allocation rule, where the two 

together deliver Pareto efficiency – is a feature of Kantian equilibrium in simpler (non-

market) environments.   What’s new here is combining additive Kantian optimization 

with markets. 

A remark on why the incentive problem, causing deadweight losses in the standard 

model, does not bite here.   Consider, for dramatic effect, an income tax rate of one, and 

suppose every worker is supplying zero labor  (as she would in the standard model at this 
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tax rate).   But here, by using the Kantian optimization protocol, a worker balances her 

share of an increase in income that would occur if all workers increased their labor 

supply from zero to some small positive ρ against her (very small) disutility of labor at 

zero.  The trade-off is usually worth it.   Consequently, at the Kantian equilibrium, even 

at a tax rate of unity, (most) workers will supply a positive amount of labor. 

  

E.  An example of Walras-Kant (additive) equilibrium 

Because capital allocation is passive in this model, let’s simplify by studying an 

economic environment where the capital inputs are fixed, there is no state, and we model 

production as a function of labor only: 

   (5.25) 

There are n agents, and the total endowment of labor is  .    We let 

 for all .  We set  .   We normalize the price vector by 

choosing  There is no market for capital and hence no interest rate. 

 An interior allocation is a Walras-Kant (additive) equilibrium at income tax rate t 

when the allocation is Pareto efficient, the income of i is given by (5.1), and markets 

clear.  (The critical condition that the labor supplies comprise a Kantian equilibrium of 

the game   is embedded in the efficiency conditions, as the proof of Proposition 1 

shows.)   We write these conditions as: 

   (5.26) 

and (5.1) holds for all i.     By (5.26), the post-fisc income of agent i is given by 

 .  Hence, (5.1) can be written: 
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  . (5.27) 

 

By adding up the equations over all i in (5.26), we have: 

 
  (5.28). 

Now using the expressions for commodity prices in (5.26), we write these equations as: 

 
.  (5.29) 

System (5.29) comprises two equations in the two unknowns  and  ; the solution 

must be a vector .   Thus total production at Walras-Kant 

equilibrium for this economy, if such exists, is independent of the tax rate t.  Profits are 

also independent of t.  Taxation simply redistributes a fixed output of commodities.   

 Parameterize the example with  ,   We have not 

yet specified the individual endowments  .    We solve (5.29): 

   . (5.30) 

Profits are positive for both firms, and comprise 28% of national income. 

To complete the analysis, we must specify the   and solve for  .   Rewrite 

equation (5.27) as: 

 
 . (5.31) 

Examination shows that equation (5.31) possesses an interior solution in which  

  for all i exactly when: 

                              for all i,    . (5.32) 

If, on the other hand, (5.32) is false for some i, then there is no interior equilibrium.    
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It is of interest to compute the lower bound on the labor endowment, call it ,  that 

will guarantee an interior Walras-Kant equilibrium at tax rate t.    From (5.32) , this 

depends upon the tax rate. We compute this lower bound for various tax rates for our 

example:  

 

  

 

 

 

 

 

 

 

 

 

Table.    is the minimum value of  supporting an interior Walras-Kant equilibrium 

as a function of the tax rate 

Recall that the average labor endowment with our parameterization is .   From 

the table, a Walras-Kant (additive) equilibrium exists where all agents work regardless of 

the distribution of individual labor endowments, as long as  .  But as the tax rate 

rises, the restriction on the distribution of labor endowments bites.   

  For tax rates larger than 40%, equilibrium still exists, but workers who are 

insufficiently skilled do not work.   We illlustrate with a second paramaterization.  The 

utility functions and production parameters are as before, but we examine an economy 

with two agents  (n =2),  where  .  If both agents work, then   

are given by (5.30).  Let us look for an equilibrium where  .   Both agents must then 

have the same after-tax income. Inequality (5.32) is false for agent 1, so there is no 

equilibrium at   where both agents work.    We therefore set agent 2’s labor supply to 

zero:  .   The other equations characterizing a Walras-Kant equilibrium are: 
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   (5.33) 

The two equations in the first line say the marginal rates of substitution for the agent with 

positive labor supply equal the correct price ratios; the second line says the marginal rates 

of transformation equal the correct price ratios; the third line is true because when the tax 

rate is 1, both agents have the same (post-fisc) income, and so consume the two 

commodities identically; the fourth line expresses market-clearing for the two 

commodities; and the fifth line expresses the efficiency condition for the agent who 

supplies zero labor.  The solution is given by: 

 
  (5.34) 

 
F.  Existence of Walras-Kant market socialist equilibrium 

We first note: 

Proposition 8   Let  be a Walrasian equilibrium at 

.  (The state is simply another agent who desires to consume only the first good, and 

possesses no labor endowment.)   Then it is also an additive Walras-Kant market 

socialist equilibrium at   

Proof: 

We know the allocation is ICPE by the usual first welfare theorem for private-ownership 

economies.    The income equation (5.1) holds by definition of Walrasian equilibrium.   

We need only show that the labor supplies comprise a Kantian equilibrium, which is to 

say, that equation (5.21) holds.   But we have shown that this is equivalent to the 
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efficiency conditions that .  These conditions hold by hypothesis, since the 

allocation is Walrasian and therefore Pareto efficient, and the claim is proved.     

We assume: 

Assumption A 

 (i)   are unbounded, concave, homothetic, and the Inada conditions hold, and 

(ii) all consumer preferences are representable by strictly concave, differentiable 

utility functions, and both commodities are normal goods for all consumers. 

 

Proposition 9  Let an economic environment  be given and let 

Assumption A hold. Suppose that  for all (private) agents and that .  

Then a Walras-Kant equilibrium exists for any . 

Proof: See Appendix, Parts A and D.  

 A comment on investment in the model is called for.  In the approach I’ve taken, 

only the state invests.    Could private agents invest in the firms as well, and preserve the 

efficiency result?  The answer is yes, if the profile of investments is also an additive 

Kantian equilibrium.    I elected not to follow this route here, both for reasons of 

simplicity, and because it strikes me as more credible that workers can learn to adopt 

Kantian optimization in their labor-supply decisions than in their investment decisions.  

Perhaps I am here influenced by the observation that workers have a history of 

cooperation, and investors do not, at least to the same extent. 

 

6.  An economy with worker-owned firms 

 
 Traditionally, worker-owned firms are modeled as having the objective of 

maximizing value-added per worker.   Here, I propose instead that firms maximize 

profits, pay wages to workers, and then profits are divided among workers in proportion 

to their labor.   There are, however, workers from different occupations, whose labor is 

incommensurate, and so one must determine, somehow, what fraction of profits will be 

distributed to the set of workers in each occupation.    We will show these fractions can 

be specified exogenously. 
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There is an economy with one good.  There are two kinds of labor – two 

occupations.   The good is produced by a concave production function   where E 

and D are the levels of the two occupational labor supplies.  We simplify here by 

ignoring the capital input. 

  There are n citizen-workers, partitioned into two elements: 

    

where   is the endowment of labor the agent has in the E (or D) occupation. 

 Individuals have utility functions of the form   or   depending 

upon the kind of labor they possess.  

 The economy uses markets, with three prices,  , p being the price of the 

good, w the wage of E labor and d the wage of D labor.  There is one firm, utilizing the 

production function G.    The firm maximizes profits.  The profits accrue to workers in 

proportion to their labor supplies, as follows.   A fraction   of profits will be divided 

among the E workers in proportion to their labor contributions, while fraction  of 

the profits are divided among the D workers in proportion to their labor contributions.   

is an exogenous parameter of the model.  Thus, for instance, the income of a worker of 

type 1  (that is,  ) will be: 

  , (6.1) 

where  is the firm’s profits, and  .   The analogous express holds for 

workers of type 2. 

 Given prices, consider a game  whose players are the E workers.  We are given 

a total labor supply   by the type-2 workers.  The payoff functions for the E-workers  

are: 

 

  ; (6.2) 
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Analogously, given a total labor supply by the E workers of  , consider a game among 

the D workers whose payoff functions are: 

  . (6.3) 

Definition 6   A Walras-Kant worker-ownership equilibrium with profit-share parameter 

 is  

• a price vector   

• consumption bundles   for all   and   for all   

such that: 

• the vector  solves the firm’s profit maximization problem: 

   

• given  ,   is a multiplicative Kantian equilibrium of the 

game  defined in (6.2) for the type 1 workers, 

• given  ,  is a multiplicative Kantian equilibrium  of the 

game defined in (6.3) for the type 2 workers.  

 

Notice that all markets clear by the definition of equilibrium. 

Conceptually,  the main difference between this conception  of an economy with 

worker-owned firms and Drèze’s (1965) model of worker-owned firms is that here, 

workers receive a wage and then a share of profits whereas in Drèze’s model, workers do 

not receive wages, but divide up value-added net of the cost of capital.   In the present 

economic environment, since there is no payment to capital, this means that total firm 

revenues would be divided up among workers.  Drèze also gives weights to the shares 

that workers of different occupations receive, but they emerge endogenously, whereas in 

my model, the weights ( ) are exogenous – a policy variable. 
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Proposition 10 Any Walras-Kant worker-ownership equilibrium such that the two 

occupational labor vectors are strictly positive is Pareto efficient. 

Proof: 

 

1.  By profit-maximization, we have: 

  . (6.4) 

2.  The condition that the vector  be a multiplicative Kantian equilibrium 

of the game   is: 

   

  , (6.5) 

where   is the derivative of the profit function w.r.t. the labor supply of type 1.  By 

profit maximization, at the equilibrium allocation,  , and so (6.5)  reduces to: 

    

  ; (6.6) 

invoking the fact that  ,  we have: 

  for all  .        (6.7) 

3.  In like manner,   we have   

  for all  . (6.8) 

 4.   By (6.4),(6.7) and (6.8), the allocation is Pareto efficient.    

 

Proposition 11  Under standard conditions9, there exists a WKWO equilibrium for any 

 . 

Proof: See Appendix, Parts A and E.  

                                                 
9 The main assumption that deserves mention is that leisure and consumption are normal 
goods for all preference orders.  
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Remark.    Society is free to choose the share  .  More generally, suppose there are m 

occupations, and  .   Then there will exist equilibria for any profit-share 

vector  in the  unit simplex.  For instance, one could choose  so 

as to divide profits equally among all occupations, by letting  be proportional to the 

number of workers of occupational type j .   (Within each occupation, the profits will be 

divided in proportion to effort.)  Thus, in this economy, we can achieve an approximation 

to equality of distribution of capital income. 

Of course, we have avoided the question of capital inputs, and so have not had to 

worry about paying interest to investors.  I do not think there would be any problem 

adding capital to the model; however, workers would then have to pay interest to 

investors before dividing the remaining profits among themselves. 

    

7. The psychology of Kantian optimization  

 

The differentia specifica of the models here proposed is Kantian optimization in the 

labor-supply decision (or in the emissions decision).   Having a formal definition of 

cooperation is, obviously, a pre-condition to embedding cooperation in equilibrium 

models.   

  It will likely be the case that skepticism regarding my proposal will focus upon the 

realism of supposing that a large population of producers can learn to optimize their 

labor-supply (or emissions) decisions in the Kantian manner.    There are, I think, three 

necessary conditions for the psychological accessibility of such behavior: desire, 

understanding, and trust.   Citizens/workers must desire to cooperate with each other, 

they must view themselves as part of a solidaristic society, whose members believe that 

cooperation in economic decisions is the modus operandi. But why should the Kantian 

optimization protocol appeal to people as the preferred mode of cooperation?   I think the 

motivation must be in the conception of fairness or solidarity embodied in the statement,  

“I should only reduce (increase) my labor supply if I would like all others to reduce 
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(increase) their labor supplies in like manner10.”   Our brains love symmetry, and fairness 

always, I believe, involves a conception of symmetrical treatment.   Secondly, people 

must understand that cooperation in the labor-supply decision internalizes the 

externalities that are improperly treated with Nash optimization.  That’s what Benjamin 

Franklin was appealing to when he uttered his famous phrase about hanging together, 

which later became a motivational slogan in the American labor movement.  For instance, 

in the market-socialist model, each must understand that if all increase their labor supply 

by a small increment, each person’s income increases by the wage times that increment, 

because what a worker loses in the tax on her wage, she gains back in the increased value 

of the demogrant.  Thirdly, individuals must trust that others will behave cooperatively as 

well, and will not take advantage of their own cooperative behavior, by optimizing in the 

Nash manner.  If these three conditions are met, then the method of implementing 

cooperative behavior is not difficult:  for instance, in the market-socialist model, each 

worker should choose his labor supply to equalize his marginal rates of substitution 

between commodities and labor to his gross real wage, rather than his after-tax wage.  

Rather than thinking “Is the disutility of an extra day’s work worth to me the after-tax 

wage increment?” the worker should ask whether it is worth the gross wage increment.   

If we believe people are capable of optimizing in the Nash manner, optimizing in the 

Kantian manner is no more cognitively demanding, if the necessary conditions are met. 

 To return to my earlier comment, these results suggest that the market  (conjoined 

with price-taking behavior) is an even more powerful allocation mechanism than standard 

theory suggests.    In many cases  -- I do not have a complete characterization of them – 

inefficiencies of market equilibrium are due not to ‘the market,’ but to the behavioral 

protocol of Nash optimization.   This is a mathematical claim, based on the efficiency 

theorems above, which is true regardless of the realism of Kantian optimization.  As I 

said, I do not challenge the claim that in truly one-shot games, Nash optimization is 

                                                 
10 But why should workers conceive of symmetric treatment as a translation of the labor 
vector rather than a rescaling of it (multiplication by positive constant)?  I have no good 
answer to this question, except to say that there are examples of it in history.  ‘Doing 
one’s bit’ in the Second World War in Britain arguably involved a translation of the labor 
vector, not a rescaling.  Unfortunately, there is no simple income tax function that will 
combine with ‘rescaling’ as the Kantian protocol to produce Pareto efficient allocations 
with any degree of income equality.   
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rational.  In games played by members of a society with a common culture, where 

members have learned to trust each other, due to a history of repeated interactions 

characterized by cooperative behavior, Kantian optimization may, however,   become a 

moral norm.   How that comes to be is another story.  

 I believe there are many examples in real life of simple Kantian equilibrium: 

many people recycle their garbage, even if penalties for failing to do so do not exist; 

voting can be viewed as a simple Kantian equilibrium; the British ‘doing their bit’ in the 

two world wars is a simple Kantian equilibrium or perhaps an additive Kantian 

equilibrium; the degree of tax compliance in most advanced democracies is far greater 

than can be rationalized by reasonable risk preferences and existing penalties, and is 

perhaps better understood as due to Kantian optimization  (I pay taxes because that’s the 

action I’d like all to take);  participation in labor strikes and demonstrations may be more 

convincingly explained as Kantian behavior than Nash behavior ( à la Olson [1965]).  I 

have discussed these examples in more detail elsewhere (Roemer [in press]).  I do not 

claim to have airtight proof that people are, indeed, optimizing according to a Kantian 

protocol in the above examples (and many others), but observation is consistent with this 

explanation.    And let us not belittle the suggestive role of theory:  once we have a 

precise model of a behavior, we may be stimulated to look for it in history and in the 

laboratory, and be surprised at how often it turns up11.   

 

 Appendix: Proofs of existence theorems 

 

A.   An important correspondence12 

 We will use the correspondence  defined below in a number of proofs, and the 

fact, shown here, that at a fixed point of  , all markets clear. 

 Let  be a price simplex of dimension  for an economy with n markets.     

Let  be the excess demand function of the economy, which obeys Walras’s 

                                                 
11 I would be interested in knowing how many economists thought Nash equilibrium was 
a crazy idea when Nash first proposed it.  As rumor has it, apparently John von Neumann 
did. 
12 See Mas-Colell, Whinston and Green (1995), Proposition 17.C.1.   
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Law:  for all .  Define the correspondence  as follows.   On 

 , define: 

    . 

On  , define: 

    . 

  Suppose   is a fixed point of  .   It must lie by definition in .  Thus 

 and the definition of  on  tells us that  .   It follows that 

 : for if   had a negative component, Walras’s Law would be contradicted.   

Therefore all markets in the economy clear at  . 

 

B. Essentials of the proof of Proposition 3 

 

1. Let , the price 2-simplex.   By profit maximization, assuming the Inada 

conditions hold for the production functions, we have the demands for capital and 

emissions in each country,  satisfy     

  

2.   The total supply of emissions by the n countries  must satisfy: 

   

for all i   (8.1) 

  

This says      for all i,                                             (8.2) 

where the   sum to one.      

        

Let’s define functions   by the equations: 

     .    
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Obviously   are increasing functions, and since  , and the  increase 

without bound,  there is a unique value   such that .    Let  . Thus, 

at these values of   there is unanimity among countries regarding the global supply 

of emissions.  

 

3.   We have now defined the demands and supplies of capital, emissions, and the good at 

any interior price vector, and the vector a.    Note that Walras’ Law holds: 

 

 

This uses the fact that  ; the   are defined by  , where   are 

the profits of the country i’s firm at the given prices. 

 Define the excess demand function =  where

 , etc. 

 

4.  Construct the correspondence   as in Part A above.  At a fixed point of  , all 

markets clear.  The shares  are given by step 2 above.   

 5. It is left to verify that the conditions of Kakutani’s FPT hold.   is convex-valued on 

  and u.h.c. here by the Maximum Theorem.  It is obviously convex valued on  , 

and standard argument shows it is u.h.c. here.  Thus a fixed point exists.      

 

C.  Proof of Proposition 6  

 

1.  Denote by   the 1-simplex of prices  .    Define the compact, convex set: 

    . 

We are given  . Define the supply of the private good and the 

demand for labor for the G firm by profit-maximization: 
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   . 

Denote the profits by  . 

2.  Next, define  ,  and define   as the solution of  

  

                          (8.3) 

   

3.  Define: 

   for all i  .            (8.4) 

Note, by the domain over which the maximization occurs,   .  By 

strict concavity of utility, the solution of  (8.4) for a given i  is unique.    

Now define for all i,  . 

4.  Note that Walras’ Law holds by adding up the budget constraints: 

     

Denote the excess demand function by: 

      where 

 .    Recall that   depends on  . 

 

Now define  as in Part A above.  That is, if  define: 

   . 

For   define  . 

Define , which is single-valued. 

Finally, define   , noting that  maps  into itself. 
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5.  Suppose   is a fixed point of  .  By Part A above,  .   

Now it also follows from the fixed point property that for all i,   . Therefore 

  is an additive Kantian equilibrium of the game V defined in (4.2).   This 

shows that the fixed point is a Walras-Kant equilibrium with a public and private good. 

 

6.  It is left only to verify that   is upper hemi-continuous and convex-valued.  Convex-

valuedness is immediate, as is u.h.c. on  .  The u.h.c. of  on  is a standard 

argument which we skip.    

 

D.  Proof of a lemma, and then Proposition 9 

Let  be the 3-simplex of price vectors . We define a 

correspondence on the domain .  Let Q can be any real number, and  be 

positive continuous functions on .   Let: 

            (8.5) 

Now define  by:  

  ,           (8.6) 

 where    may be positive, zero, or negative.  Finally, define: 

  .           (8.7) 

Lemma   Let  and   . Let  be  continuous 

functions for all i.   If Assumption A(ii) holds then  is a (non-empty) continuous 

function mapping  .  

Proof of lemma: 

1.  It suffices to show that   is single-valued and continuous for any i. By strict 

concavity of preferences, the correspondence  is single-valued and continuous on . 
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Suppose that  contains two elements; i.e., there are allocations   

  for  , with .   It 

follows that: 

  ,                                  (8.8) 

where  , etc.   Therefore the quantities on the right-hand sides of the two 

equations in (8.8) are equal, implying that: 

  , (8.9) 

and so   (note by assumption).  Therefore :  

  (8.10) 

and so either  .   But since  for , it 

must be that   because both commodities are normal goods, and the 

consumer’s wealth (check the definition of  )  is greater at   than at  .  This 

contradiction proves that  contains at most one element. 

2.  Next we show  contains at least one element.      is a planar 

segment. We say a point  lies above (resp. below) the planar segment 

 if it lies in the positive orthant and  (resp., 

).     Note that the points on planar segment 

    

lie entirely below (or, at one point, on) the planar segment   because: 

  . (8.11) 

 It therefore follows that  lies below (or possibly on) the planar segment 

 .   On the other hand, for large values of Q,  the points of  

   

must lie entirely above  .   Since   is a continuous function of Q,  by the 

Berge maximum theorem, it follows that there exists at least one value of Q such that 

.  Thus,   is a well-defined function. 
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3.  Continuity of  follows from Berge’s maximum theorem.   

  

Proof of Proposition 9: 

0.   The theorem is true for   by Proposition 8, since a Walrasian equilibrium exists 

at   under the stated premises.   Henceforth, we assume  . 

1. Let  be the 3-simplex of prices.  Given a price vector  define 

 to be the solution of: 

 

  (8.12) 

Note that, by Assumption A(i) the solution exists and satisfies: 

  .  

2. The profits of the two firms and the value of the demogrant are defined at  

.   Profits are positive for any price vector  . 

We now consider the budget constraints of individuals:  

 

 (8.13) 

and the budget constraint of the state at the firms’ demands: 

  . (8.14) 

Let  equal the sum of the last two terms on the r.h.s. of equation (8.13). By the 

theorem’s premise, all private agents have positive income at any , 

because the state does not receive all the firms’ profits by assumption, and the tax rate is 

positive.      are positive continuous functions, and so the premises of the Lemma 

hold; therefore the functions  are defined and continuous.  

Henceforth, we write  .  Let  for .  

4. Define the excess demand functions at a vector : 
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  . (8.15) 

Define the excess demand function for the economy by: 

  . (8.16) 

Next, define the correspondence  on  as in Part A above.  

6. By summing the budget constraints in (8.13) and (8.14) we calculate Walras’s 

Law for this economy, defined on  : 

 . (8.17) 

7. At a fixed point p of , by Part A above, . Consequently  

 , and all markets clear.  We deduce   

from the premise that  .   

8.   Associated with these prices is an allocation  , with  for all 

 .  We must show that is an additive Kantian equilibrium at prices p.   

This follows immediately from the definition of the functions  , because the first-order 

conditions for Kantian equilibrium, which were derived in steps 4,5,6, and 7 of the proof 

of Proposition 7,  follow from the definition of  , given that

.    

9.  Thus, a fixed point of  is a Walras-Kant equilibrium at tax rate t.  To show the 

existence of a fixed point, we need to check that the premises of Kakutani’s fixed point 

theorem hold.    is obviously convex-valued.  Upper-hemi-continuity of  at any point 

in  follows quickly.   

 Finally, we examine u.h.c. of   at  points on the boundary of the simplex. 

Suppose .   Suppose the sign pattern of   is (+,+,0,+).  We 

have  .    Eventually   are positive and bounded 

away from zero, and  .  
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 We must show that .   Without loss of generality, we may 

assume that   for all j.   Denote the excess demands at  by 

 .   We will show that, for j sufficiently large 

 ,   (8.18) 

 and this will imply that, for sufficiently large j,   .    To show (8.18), 

we will show that  , for  . 

  We show that  . We know  , because  , and so the 

firms will demand unbounded amounts of labor, while the supply of labor is bounded.  If 

  were bounded above, we would be done.  So we suppose that  is 

unbounded.  It follows that for at least one firm – say the G firm -- 

 .   But by profit maximization,  .  By 

homotheticity of G  (Assumption A(i)), the points   must eventually lie below 

any ray in the positive quadrant of   space. This implies that , as 

required. 

 To show  for  , it suffices to show  because the 

demand for the two commodities cannot grow faster than total profits (wage income goes 

to zero).  We show  .   Let  j be large and  .   Then: 

 ,(8.19) 

 by concavity of G, where  , etc., and so: 

    

 .        (8.20) 



 47 

Now let  , but j more slowly than J.   We know from above that  , and 

 , and  .   Therefore the right-

hand side of (8.20) approaches zero, and so  , as was to be proved. 

 We examine one more case on the boundary of the simplex.  Suppose the sign 

pattern of   is (0,+,0,+).   Then  .    We know that 

 and eventually  are bounded away from zero.  If eventually  

is greater than , then eventually .    

Firm 2  eventually demands huge amounts of labor, because the wage goes to zero but the 

price of output is significantly positive.  The profits of Firm 1 go to zero since  .   

These facts imply that   and so, as in the first case examined above,   

dominates the other excess demands, as required. 

 The other cases of points on  yield to similar analysis.   Hence, the premises of 

Kakutani’s theorem hold, and a fixed point in  , which is a Walras-Kant market 

socialist equilibrium, exists.    

 

E. Essentials of proof of Proposition 11 

 

1.  Let  be the 2-simplex.   Let  .  Let  be the profit 

maximizing supply of output, demand for labor of occupation 1 and demand for labor of 

occupation 2 by the firm.  This exists and is unique if G is strictly concave, differentiable, 

and satisfies the Inada conditions, since the f.o.c.s are then: 

    . 

2. Given B, we show the existence of a unique vector   such that: 

  (i) for each  ,  . and       



 48 

  (ii)   for each  ,   . 

It is easiest to see this claim is if we define worker i’s utility function over consumption 

and leisure (measured in efficiency units): 

    . 

Write  .   (i) and (ii) above  now become: 

  (i’)    and (ii’)  

. 

The locus of points  described by (i’)  is an expansion path for the utility function 

in the non-negative quadrant of the plane,  and the locus of points  

described by (ii’) intersects the positive quadrant of that plane in a non-empty straight-

line segment of negative slope.  The intersection of these two loci exists and is a unique 

point if consumption and leisure are both normal goods,  for this guarantees that the 

expansion path begins at the origin, is a monotone increasing path, and eventually lies 

entirely above the line segment of (ii’), so it intersects that line segment in a single point. 

 Hence the point defined by (i) and (ii) exists and is unique. 

 

3.  In like manner, given A, there exists a unique vector   such that: 

  (i) for each  ,  . and       

  (ii)       for each  ,  .   

4. We now define an excess demand function for this economy on  . Denote: 

  , (8.21) 

where   are the quantities defined in steps 2 and 3.  

 Define the excess demand function on  : 

        (8.22) 

6.  The reader may now verify that Walras’s Law holds: 
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    .    (8.23) 

7. We note that z is single-valued.   From here on, we proceed as in earlier sections. 

 Define the correspondence  as in Part A above.     

8.  If  is a fixed point of   then  . All three markets clear at  .   It is left 

only to observe that the conditions (i) and (ii) in steps 2 and 3, which define the supplies 

of the two occupational labor vectors, and the demand for the consumption good, exactly 

characterize what it means for those vectors to be multiplicative Kantian equilibria of the 

games  .  This is true, because condition (i) is the f.o.c. for the vector E  being 

a multiplicative Kantian equilibrium of the game  , and condition (ii) is the budget 

constraint of the worker (and likewise for the game  ).     This shows that the 

allocation is indeed a WKWO equilibrium and p* is an equilibrium price vector. 

 

9.   It is left to verify the premises of the Kakutani theorem for  .  On  , upper-

hemi continuity follows from Berge’s maximum theorem.   The correspondence is single-

valued on the interior, so it is convex valued.  We skip the verification of these properties 

on the boundary of the simplex.    
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