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Abstract

We study the classic sequential screening problem under ex-post participation constraints. Thus

the seller is required to satisfy buyers’ ex-post participation constraints. A leading example is the

online display advertising market, in which publishers frequently cannot use up-front fees and instead

use transaction-contingent fees.

We establish when the optimal selling mechanism is static (buyers are not screened) or dynamic

(buyers are screened), and obtain a full characterization of such contracts. We begin by analyzing

our model within the leading case of exponential distributions with two types. We provide a necessary

and sufficient condition for the optimality of the static contract. If the means of the two types are

sufficiently close, then no screening is optimal. If they are sufficiently apart, then a dynamic contract

becomes optimal. Importantly, the latter contract randomizes the low type buyer while giving a

deterministic allocation to the high type. It also makes the low type worse-off and the high type

better-off compared to the contract the seller would offer if he knew the buyer’s type. Our main

result establishes a necessary and sufficient condition under which the static contract is optimal for

general distributions. We show that when this condition fails, a dynamic contract that randomizes

the low type buyer is optimal.
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1 Introduction

1.1 Motivation

In many markets, sellers are constrained to sell products in such a way that buyers obtain a non-negative

net utility once they have realized their valuation. A leading example is the online display advertising

market. In this setting, typical business constraints impose that publishers cannot use up-front fees

and thus instead run a series of “waterfall auctions” that implicitly impose different priorities over

participants. Commonly, higher-priority auctions have higher reserves. 1 Another example, is online

shopping, in which shoppers have the chance to return the purchased item after delivery, usually at no

or low cost.

Motivated by this, we study the sequential screening problem as described by Courty and Li (2000)

and in order to match our previous narrative we incorporate ex-post participation constraints. The goal

of this work is to understand when the optimal selling mechanism is static (buyers are not screened

ex-ante) or dynamic (buyers are screened ex-ante) and obtain a full characterization of such contracts.

Our model considers a seller who is selling one unit of an object, at no cost to the seller, to a

buyer who has an outside option of zero. The sequence of events occurs in two periods. In the first,

the buyer privately learns her type and the parties contract—we restrict our analysis to two types of

buyers (low and high). The high type has a valuation distribution that dominates the low type one. The

contract specifies allocation and payment functions. In the second period, the buyer privately learns

her valuation, and allocations and transfers are realized. At this point, the buyer only accepts the

contracting terms if her realized net utility is weakly larger than her outside option. This model aligns

with our aforementioned examples. In the case of display advertising, the first period can be thought of

as the time at which the buyer decide in which auction (priority/reserve) to participate in. The second

period is when the auction is actually run. We begin by analyzing our model in the case of exponential

valuations, which allow us to obtain clean and intuitive closed-form expressions. We then provide a

general version of the results.

1.2 Our Results

One of our main contributions is to characterize when a static contract—that is, a contract that does not

sequentially screen buyers—is optimal. We provide a necessary and sufficient condition for the optimality

of the aforementioned contract. For further reference, we call this condition (NR). The characterization

1See, for example, https://adexchanger.com/the-sell-sider/the-programmatic-waterfall-mystery.
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we provide is an average monotonicity condition around the optimal static threshold that encodes

information about the similarity of the ex-ante types. For example, in the case of exponential valuations,

the static contract is optimal if and only if the means of the distributions of the low and high type are

appropriately close.

Our second main contribution characterizes the optimal mechanism when the condition mentioned

above does not hold and a static contract is no longer optimal. Specifically, we prove that the opti-

mal dynamic contract randomizes the low type and gives a deterministic allocation to the high type.

Basically, randomization occurs to prevent the high type buyer from taking the low type’s contract.

To prove this, we first show that when (NR) is not satisfied, such a sequential screening contract with

random allocations becomes feasible and yields an improvement in the seller’s revenue compared to the

static contract. Even though this contract yields an improvement over the static one, it does not need

to be optimal. However, we are able to identify some regularity conditions that imply optimality.

More specifically, the optimal contract is characterized by an allocation probability χ ∈ (0, 1), and

three thresholds θ1, θ2, and θ3 with θ1 ≤ θ2 ≤ θ3. In this contract, the seller allocates the object to a

low-type buyer with probability χ whenever her valuation is between θ1 and θ3, and asks for a payment

of θ1 ·χ. When the valuation of this type is above θ3, the object is always allocated to her and the seller

demands a payment of θ3 − (θ3 − θ1) · χ. The high-type buyer gets the object with certainty and only

when her valuation is above θ2, at which point the payment she has to make to the seller is θ2. These

parameters are set in such a way that the ex-ante incentive compatibility constraints are satisfied.

A salient feature of this type of contract is that it discriminates the low type in two dimensions.

First, it can be proven that θ1 is above the optimal threshold a seller would set if she was selling

exclusively to low-type buyers. That is, the low type buyer is being allocated the object less often in the

presence of high type buyers. An opposite result is true for high-type buyers, they are being allocated

the object more often than if they were alone. Second, there is a range of values for which the object is

sold to the low type with some probability, which further reduces the chances of a low type to receive

the object compared to a case in which there are no high-type buyers. All these values and properties

can be clearly expressed for the exponential distribution case. At the end of the paper, we discuss

directions on how to expand our analysis and results.

1.3 Related Work

Our model builds on the sequential screening literature as pioneered by Courty and Li (2000), in which

there is a buyer who sequentially and privately learns her true valuation. In this classic paper, the buyer
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only has partial information about her valuation ex-ante when signing a contract to which she can fully

commit. This feature is represented by an ex-ante participation constraint. In contrast, in this paper

we give the option to the buyer to quit the relationship ex-post after acquiring complete information

about her valuation. We represent this by an ex-post participation constraint.

The closest paper to ours that studies sequential screening with ex-post participation constraints is

Krähmer and Strausz (2015). They establish that the static contract is optimal under a monotonicity

condition regarding the cross-hazard rate functions. This condition imposes strong restrictions on

the primitives as it rules out common valuation distributions such as the exponential distribution.

Furthermore, the condition is only sufficient and thus gives an incomplete characterization of the space

of primitives for which the static contract is optimal. However, Krähmer and Strausz (2014) also

acknowledge the existence of a necessary condition for the optimality of the static contract. In our

paper, for the setting of a single buyer and two ex-ante types, we close this gap by providing a necessary

and sufficient condition under which the static contract is optimal. Further and importantly, when our

condition breaks we characterize the optimal dynamic mechanism and show that randomization of one

of the ex-ante types is required for optimality.2 In terms of approaches, Krähmer and Strausz (2015)

relax both the low to high IC and monotonicity constraints and then show that, under their condition,

the contract that maximizes the Lagrangian is deterministic and that as a result the static contract is

optimal. In contrast, we also relax the same IC constraint but we keep monotonicity. For the relaxed

problem, we perform a first-principle analysis, in the style of Samuelson (1984) and Fuchs and Skrzypacz

(2015), that leads us to identify not only the right structure of the optimal contract but also the main

objects of analysis. In turn, this permits us not only to determine our necessary and sufficient condition

but also to characterize the optimal dynamic contract when our condition breaks. In related recent

work, Heumann (2016) considers a setting in which a seller can design the screening mechanism as well

as the information disclosure mechanism with ex-post participation constraints.

The sequential nature of our model and the incorporation of ex-post (IR) is related to the work

of Ashlagi, Daskalakis, and Haghpanah (2016) and Balseiro, Mirrokni, and Paes Leme (2016). These

authors consider a model in which a seller, constrained by ex-post IR (also motivated by the display

advertising market), repeatedly sells objects to a buyer whose valuations are independent across periods.

Both papers provide characterizations for a nearly optimal mechanism. They are different from ours

2See also Manelli and Vincent (2007) and Daskalakis, Deckelbaum, and Tzamos (2015) for examples of multi-good

environments in which stochastic allocations can improve over deterministic ones. In a related note, Krähmer and Strausz

(2016) establish that with multiple, as opposed to a single good, generically, the static contract is not optimal for the

sequential screening problem with ex-post participation constraints.
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because we consider a single sale and construct the exactly optimal mechanism in a sequential screening

model.

2 The Model

We consider a seller (he) who is selling one unit of an object at zero cost to a buyer (she) who has

an outside option of zero. Both parties are risk-neutral and have quasilinear utility functions. The

sequence of events unfolds in two periods. In the first period, the buyer privately learns her type and

then the parties contract. The type provides information about the buyer’s valuation distribution. The

contract specifies allocation and payment functions. In the second period, the buyer privately learns

her valuation, and allocations and transfers are realized. At this point the buyer only accepts the

contracting terms if her net realized utility is larger than her outside option.

In the first period both parties do not possess information about the buyer’s valuation θ (or ex-

post type) but the buyer privately knows her type k (or ex-ante type). We assume that the buyer has

probability αk of being of type k ∈ {1, . . . ,K}, with
∑K

k=1 αk = 1 and αk > 0. In the second period, a

buyer of type k privately learns her valuation θ which we assume to have cdf Fk(·) and pdf fk(·), with

full support in [0, θ̄] (possibly infinite). It will be convenient to denote the upper cdf by F̄k(·) , 1−Fk(·).

All the distributions are common knowledge.

The terms of trade are specified in the first period by the seller. For a payment t ∈ R and a

probability of receiving the object x ∈ [0, 1], a buyer with valuation θ receives a utility of θ ·x− t, while

the seller gets paid t. We assume that the buyer agrees to purchase the object only if she is guaranteed

a non-negative net utility for any possible valuation of the object she might have. That is, we require

θ · x − t to be non-negative for all θ. The seller’s problem is to design a contract that maximizes his

expected payment, constrained to guaranteeing the buyer a non-negative realized ex-post utility.

In general, two types of contract can arise as a solution to the seller’s problem: static and dynamic.

A static contract does not screen among ex-ante types and, therefore, offers to all of them the same

terms of trade. A dynamic contract offers different contracting conditions for different ex-ante types.

For example, if we had only low or high valuation buyers, a static contract would offer a unique menu

of transfers and allocations, while a dynamic contract would offer two menus and each type of buyer

would self-select into one of the menus.
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2.1 Mechanism Design Formulation

By means of the revelation principle (see, e.g., Myerson (1979) ) we can focus on incentive compatible

direct revelation mechanisms, with allocations xk : [0, θ̄] → [0, 1] and transfers tk : [0, θ̄] → R, that

depend on the types (k, θ) reported to the mechanism. Then, for a buyer reporting an ex-ante type

k′ and an ex-post type θ′ the mechanism allocates the object with probability xk′(θ
′) and charges the

buyer tk′(θ
′).

We define the ex-post utility of a buyer who reported k in the first period and θ′ in the second period

while her true valuation is θ as

uk(θ; θ
′) , θ · xk(θ′)− tk(θ′),

with the understanding that uk(θ) equals uk(θ; θ) . Similarly, we define the ex-ante expected utility of

a buyer whose true ex-ante type is k but reported to the mechanism k′ as

Ukk′ ,
∫ θ̄

0
max
θ′∈[0,θ̄]

{uk′(z; θ′)} · fk(z)dz,

where the maximum is included because double deviations are allowed.

There are two kinds of incentive compatibility constraints that must be satisfied by our mechanism.

The first one is ex-post incentive compatibility or (ICxp) constraint which requires that for any report

in the first period, truth-telling is optimal in the second period, that is,

uk(θ) ≥ uk(θ; θ′) ∀k ∈ {1, . . . ,K},∀θ ∈ [0, θ̄]. (ICxp)

The second one is ex-ante incentive compatibility or (ICxa) constraint which requires that truth-telling

is optimal in the first period, that is,

Ukk ≥ Ukk′ ∀k, k′ ∈ {1, . . . ,K}. (ICxa)

Also, we require the mechanism to satisfy an ex-post individual rationality constraint or (IRxp)

uk(θ) ≥ 0, ∀k ∈ {1, . . . ,K}, ∀θ ∈ [0, θ̄]. (IRxp)

Then, the seller’s problem is

(P) max
K∑
k=1

αk ·
∫ θ̄

0
tk(z) · fk(z)dz

s.t (ICxa), (ICxp), (IRxp)

0 ≤ x ≤ 1 .
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Observe that (IRxp) implies ex-ante individual rationality. In fact, if we were to relax (P) by considering

only ex-ante individual rationality we would be in the setting of Courty and Li (2000) for discrete ex-ante

types.

3 Elementary Characterizations

We can obtain a more amenable characterization of the constraints by eliminating the transfer from the

constraints.

Lemma 1 The mechanism (x, t) satisfies (ICxa),(ICxp) and (IRxp) if and only if

1. xk(·) is a non-decreasing function for all k in {1, . . . ,K} and

uk(θ) = uk(0) +

∫ θ

0
xk(z)dz, ∀k ∈ {1, . . . ,K},∀θ ∈ [0, θ̄]. (1)

2. uk(0) ≥ 0 for all k in {1, . . . ,K}.

3. uk(0) +
∫ θ̄

0 xk(z)F̄k(z)dz ≥ uk′(0) +
∫ θ̄

0 xk′(z)F̄k(z)dz for all k, k′ in {1, . . . ,K}.

Proof. The proof of this result is standard and, thus, omitted.

The first condition in the lemma is the standard envelope condition and it comes from the ex-

post incentive compatibility constraint. The second condition is derived from the ex-post individual

rationality constraint and the fact that uk(θ) is non-decreasing. The third condition is simply the

envelope formula plugged into the ex-ante incentive compatibility constraint.

Lemma (1) enables us to obtain a more compact formulation for the seller’s problem. Specifically,

we can use equation (1) and integration by parts to write down the objective of (P) in terms of the

allocation rule x and the lowest ex-post type utilities {uk(0)}Kk=1. Also, we can consider each uk(0) as

a new variable which we denote by uk. With this, the new formulation is

(Pd) max
0≤x≤1

−
K∑
k=1

αkuk +
K∑
k=1

αk

∫ θ̄

0
xk(z)µk(z)fk(z)dz

s.t xk(θ) non-decreasing, ∀k ∈ {1, . . . ,K}

uk ≥ 0, ∀k ∈ {1, . . . ,K}

uk +

∫ θ̄

0
xk(z)F̄k(z)dz ≥ uk′ +

∫ θ̄

0
xk′(z)F̄k(z)dz, ∀k, k′ ∈ {1, . . . ,K},
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where µk(·) is the virtual valuation of the ex-ante type k defined as:

µk(θ) , θ − F̄k(θ)

fk(θ)
, ∀k ∈ {1, . . . ,K},∀θ ∈ [0, θ̄].

Note that in (Pd) the variables are the allocation rule x and the vector of lowest ex-post type utilities

u. Further, once we solve for this variables the transfers are determined by equation (1).

Note that a solution to (Pd) that screens the ex-ante types is a dynamic contract. However, note

that a solution to (Pd) can also be static as it might pool the ex-ante types into a single type. Formally,

we say that a solution to (Pd) or contract is static when xk(·) ≡ x(·) and uk ≡ u for all k in {1, . . . ,K}.

It turns out that solving (Pd) over the space of static contracts is a simpler problem. The (ICxa)

constraints disappear from the problem because in this case there is effectively only one ex-ante type.

Also, it is clear that any optimal solution sets uk = 0 for all k in {1, . . . ,K}. So, the static version of

the seller’s problem is given by

(Ps) max
0≤x≤1

∫ θ̄

0
x(z) ·

( K∑
k=1

αkµk(z)fk(z)
)
dz

s.t x(θ) non-decreasing,

which corresponds to the classic optimal mechanism design problem, where the term in parenthesis

corresponds to the virtual values of the mixture distribution times the density function of the mixture.

The main focus of this paper is two-fold. First, to study when the optimal solutions to the static and

dynamic programs, (Ps) and (Pd), coincide. Second, when they are not the same, we aim to characterize

the optimal solution to (Pd).

We say that an allocation rule x(·) : [0, θ̄]→ [0, 1] is a threshold allocation characterized by θ̃ ∈ [0, θ̄]

if

x(θ) =

1 if θ ≥ θ̃

0 if θ < θ̃.

4 Leading Example: Exponential Distribution

Before we begin developing our general theory and in order to build intuition we provide our results for

exponentially distributed valuations. In particular, we provide a necessary and sufficient condition for

the static contract to be optimal and, we also give a full characterization of the optimal static contract

and the dynamic contract when optimal.

We consider K = 2 and the density functions

fk(θ) = λke
−λkθ, k = {L,H} θ ≥ 0.
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We assume λL > λH , so L and H stand for low and high type respectively. Note that H dominates L

in the sense of the hazard rate stochastic order and the first order stochastic dominance. In addition,

for the ex-ante probabilities we have αL + αH = 1 with αL, αH > 0.

We begin by studying the optimal solution to the static formulation. The optimal static contract

is given by a threshold allocation.3 Thus, in the exponential case the seller’s expected revenue for any

given threshold θ is

Rs(θ) ,
∫ θ̄

θ
(α1µ1(θ)f1(θ) + α2µ2(θ)f2(θ))dθ = αLθe

−λLθ + αHθe
−λHθ.

In order to find the optimal threshold we just need to maximize the expression above. The first order

condition yields

αL(θ − 1

λL
)λLe

−λLθ + αH(θ − 1

λH
)λHe

−λHθ = 0, (2)

that is, the optimal threshold is a zero of the mixture virtual valuation. Notice that equation (2) cannot

be explicitly solve; however, we can (as we do in the forthcoming results) provide comparative statics.

Interestingly, in Proposition 2 below, we show that we can obtain explicit expressions for the thresholds

characterizing the optimal dynamic contract.

The following lemma provides some initial properties of the optimal static contract.

Lemma 2 The optimal solution to (Ps) is a threshold allocation characterized by θs in [ 1
λL
, 1
λH

], solving

(2). Also, θs is a non-increasing function of αL with θs(0) = 1
λH

and θs(1) = 1
λL
.

We thus establish that the optimal allocation is given by a threshold allocation between 1/λL and

1/λH . Note that the optimal static contract allocates using the mixture of the valuation distributions

for the low and high types which cross zero at 1/λL and 1/λH , respectively. Finally, the monotonicity

property in Lemma 2 implies that as the proportion of low types increases, the optimal threshold should

be closer to the one the seller would set if the only ex-ante type was the low type.

Next, we state a necessary and sufficient condition for the static contract to be optimal.

Proposition 1 The static contract is optimal if and only if

θs ≤ 1

λL − λH
. (3)

We note that the left hand side, θs, is a solution to equation (2) and, therefore, it also depends on

the parameters λL and λH . Subsequent corollaries provide sharper characterizations that only depend

3See, e.g., Riley and Zeckhauser (1983).
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on model primitives. It is also worth mentioning that equation (3) possesses a general analog. As a

matter of fact, in Section 5.2 we state the general version of this necessary and sufficient condition.

Proposition 1 provides an intuitive characterization for when the seller is better-off screening the

ex-ante types than not. In terms of equation (3), when λL and λH are sufficiently close then the ratio

1/(λL−λH) is large and, therefore, equation (3) should hold, in which case the static contract is optimal.

Conversely, when λL and λH are sufficiently apart from each other the ratio 1/(λL − λH) is small and

potentially smaller than θs, so the static contract might not longer be optimal.

At a more intuitive level, when the ex-ante types are similar any contract that screens the types

would be close in terms of expected revenue to the static contract because for each type it could get at

most what it would get by setting thresholds 1/λL and 1/λH for each type, but θs ∈ [ 1
λL
, 1
λH

]. However,

when screening, the seller has to pay an extra cost to prevent the types from mimicking each other and,

since the contracts’ revenue will be similar, it is likely that this cost offsets the earnings from screening.

On the other hand, when ex-ante types are sufficiently apart in their mean valuation then the seller can

tailor the contract to each type and in this way extract more from them than in the static contract.

Corollary 1 Assume λL ∈ (λH , 2λH ], then for any αL ∈ [0, 1] the static contract is optimal.

This result establishes that when the distributions of the low and high type buyers are sufficiently

close to each other then no matter in which proportion the types are, the static contract is always

optimal.

Corollary 2 Assume λL > 2λH , then there exists ᾱ ∈ (0, 1) such that for all αL ∈ (0, ᾱ) the dynamic

contract is strictly optimal and for all αL ∈ [ᾱ, 1] the static contract is optimal.

Corollary 2 asserts that when the mean of the low and high type buyers are sufficiently different

then both contracts can be optimal. If the proportion of low type is low enough (but not zero) then the

seller is better-off screening the types. On the other hand, if there is a very large proportion of low type

buyers then the static contract is optimal. This follows because as αL increases, one can show that θs

decreases, and at some point condition (3) holds. This discussion suggests our final corollary.

Corollary 3 For λH and αH fixed, there exists λ̄L larger than 2λH such that for all λL ∈ [λ̄L,∞) the

dynamic contract is strictly optimal.

Now we provide a characterization of the optimal dynamic contract.
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Proposition 2 Assume equation (3) does not hold, then the optimal allocations are

x?L(θ) =

0 if θ < θL

χ if θL ≤ θ
and x?H(θ) =

0 if θ < θH

1 if θH ≤ θ,

with optimal transfers t?L(θ) = θL · χ · 1{θ≥θL} and t?H(θ) = θH · 1{θ≥θH}. The thresholds are

θL =
1

λL − λH
and θH =

1

λH
− αL
αH

e−1

λL − λH
,

with θL ≤ θH . And low type’s probability of receiving the object is

χ = exp
(
− λH

[ 1

λH
− αL
αH

e−1

λL − λH
− 1

λL − λH

])
. (4)

This results aligns with the discussion succeeding Proposition 1. When the types are different enough

from each other or, equivalently, when equation (3) does not hold then it is optimal to screen the types.

That’s why in Proposition 2 we have different allocations for low and high type buyers. The low type

buyers are allocated the object more frequently ( θL ≤ θH) but they are randomized. This is done as a

way to prevent the buyers from mimicking each other. Specifically, we must have θL ≤ θH ; otherwise,

the low type buyers would have an incentive to pretend being the high type since that would get them

allocated the object more often and at a lower price. In general, for exponential valuations the ex-ante

IC constraint for the high type is binding.

It is worth noting that the dynamic contract makes the low type worse-off and the high type better-

off with respect to the contract the seller would offer if he could perfectly screen each type. For the

low type that contract would set a threshold equal to 1/λL and would always allocate the object when

her value is above the threshold. However, the dynamic contract allocates the object to the low type

whenever her valuation is above θL > 1/λL and with some probability. So the low type is worse-off in

two dimensions, it is allocated the object less often and with less probability. On the other hand, the

high type buyer gets allocated the object more often and with certainty because θH < 1/λH .

In order to better understand the role of the ex-post IR constraints it is useful to compare our solution

to the one we would obtain if we only had ex-ante IR constraints. In the latter case, the solution can

be derived following Courty and Li (2000).4 This solution always allocates the object to the high type

and it allocates the object to the low type whenever her valuation is above some threshold θ∗(possible

infinite). Furthermore, the utilities for the lowest ex-post types satisfy uH < uL ≤ 0. Clearly this

4Note that the exponential distribution satisfies first order stochastic dominance; however, the virtual valuations as

constructed in the Courty and Li (2000) setting, µL(θ) = θ− αH
αL

e−λHθ−e−λLθ

λLe
−λLθ

and µH(θ) = θ, do not satisfy the regularity

condition because µL(θ) is not non-decreasing. Nonetheless, it is still possible to obtain the optimal mechanism.
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solution, that uses up-front fees, is not feasible in our context as the high type buyer has negative utility

for her lowest valuation. Moreover, the allocations differ for both the static and dynamic contracts.

We now illustrate our findings with numerical results where we vary the difference in the mean

between the low and the high type. Specifically, we fix αL to be 0.7 and λH to be 0.5, that is, the high

type has mean 2. Since we are assuming λL > λH , we consider λL to be λH + δ with δ > 0. Figure

1 shows how the different thresholds vary as δ increases or, equivalently, as the mean of the low type

decreases to zero. As we can see, there is a value of δ (δ =0.93) to the left of which the static contract

is optimal and to its right the dynamic contract is optimal. This aligns with Proposition 1, because as

δ increases 1/(λL − λH) decreases converging to zero and, therefore, we expect it to be below θs (see

Corollary 2 and Corollary 3). At a more intuitive level as δ increases both distribution become more

and more different from each other with one of them having a larger average value than the other. Thus,

there is a gain in screening the types.

Static optimal Dynamic optimal

θs = 1
λ1−λ2

δ0.93

2
θ

0.2

θH

θL

θs

Figure 1: Optimal thresholds for static and dynamic contracts when setting λL = λH +δ, with αL = 0.7

and λH = 0.5.

In terms of thresholds, for the static contract we observe that θs is decreasing at the beginning and

then it increases and goes close to 1/λH = 2. This happens because as we increase δ we are making

1/λL smaller ; however, at some point this value is too small and, therefore, the probability of allocating

the object to a low type, P (value low type > θs) = e−λLθ
s
, is going to be so low that the seller will be

better off by choosing a threshold tailored for the high type, that is, close to 1/λH = 2. For the dynamic

thresholds, the one for the low type is decreasing while the one for the high type is increasing. This

makes sense because in the dynamic case the seller can adjust the threshold for each type; hence, as δ

increases the distributions become more and more different and, therefore, is optimal to set thresholds
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closer and closer to the threshold a seller would set if he knew the types in advance, that is, 1/λL and

1/λH . Also, note that from equation (4) we see that χ is a decreasing function of δ because as the mean

of the low type goes to zero we are less and less constrained to offer a high probability of allocation;

however, in the limit χ(δ) ≈ e−1, hence even though the low type buyers will have values concentrated

at zero we still need to offer them a positive probability of allocation so that we prevent them from

mimicking the high type buyers.

We can also compare the different mechanism in terms of revenue. Note that from Proposition 2,

we can derive the optimal revenue for the dynamic contract:

Rd = αL · χ · θL · e−λLθL + αH · θH · e−λHθH .

Then, we can plot the different revenues as we vary δ. Figure 2 depicts the results. For values of δ above

0.93 the dynamic contract dominates the static one reaching an improvement of 16.5%. Note that when

δ grows large the improvement of the dynamic over the static decrease because both contracts set the

thresholds to maximize what they can extract from the high type buyer. Actually, we have that

lim
δ→∞

Rd(δ) = lim
δ→∞

Rs(δ) = αH
e−1

λH
,

which equals the optimal revenue a seller could make if he was only selling to the high type buyer.

Revenue

θs = 1
λ1−λ2

0.22

0.58

0.93 δ

Dynamic (Rd)

Static (Rs)
%

0

16.5

0.93 δ

100× (Rd−Rs)
Rs

Figure 2: Left: Optimal expected revenue for static, dynamic and ex-ante (IR) contracts. Right:

Percentage improvement of the dynamic over the static contract. In both figures we set set λL = λH +δ,

with αL = 0.7 and λH = 0.5
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5 General Results: K = 2

In this section we present our main results for the case when we have two ex-ante types and general

valuation distributions. We begin with notation and stating the main objects of our analysis. Then we

provide the main results for both the static and dynamic contracts. In particular, this section generalizes

Proposition 1 by providing a sharp necessary and sufficient condition for the optimality of the static

contract. Then we provide a general statement, similar to Proposition 2, for the characterization of the

optimal dynamic contract.

First, we give some definitions that are standard in the mechanism design literature.

Definition 1 (threshold) We define the smallest threshold to be:

θ̂k , min{θ ∈ [0, θ̄] : µk(θ) ≥ 0}, ∀k ∈ {1, . . . ,K},

where µk(·) is the virtual valuation function of type k.

Also we define the hazard rate and cross-hazard rate functions as follows.

Definition 2 (hazard rate and cross-hazard rate functions)

h`k(θ) ,
F̄k(θ)

f`(θ)
, ∀`, k ∈ {1, . . . ,K},∀θ ∈ [0, θ̄],

where when ` equals k we refer to this function as hazard rate, and when ` does not equal k we refer to

it as cross-hazard rate.

With out loss of generality we assume

θ̂1 ≤ · · · ≤ θ̂K , (5)

one way of thinking about this is in terms of hazard rate stochastic order. For example consider K = 2,

then:

h22(θ) ≥ h11(θ), ∀θ ∈ [0, θ̄]⇔ θ − h22(θ) ≤ θ − h11(θ)⇔ µ2(θ) ≤ µ1(θ)⇒ θ̂1 ≤ θ̂2.

That is, hazard rate stochastic order implies the order of the thresholds {θ̂k}Kk=1. Hence, for K = 2 we

can think of type 2 as being the high valuation type and type 1 as being the low valuation type.

As it is standard in the mechanism design literature we make the following assumption, which we

keep for the rest of paper, about the hazard rate function

hkk(θ) are non-increasing in θ. (DHR)
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This assumption is satisfied by a large class of distributions, for example, all log-concave distributions

satisfy condition (DHR). An important consequence of this condition is that it implies the virtual val-

uation functions are increasing and, therefore, the thresholds {θ̂}Kk=1 are uniquely determined. Another

related condition is about the cross-hazard rate functions,

h`k(θ) are non-increasing in θ, ∀`, k ∈ {1, . . . , n}. (R)

To the best of our knowledge condition (R) was first introduced in the context of sequential screening

by Krähmer and Strausz (2015). In that paper the authors show that under condition (R) the optimal

solution to (Pd) and to (Ps) coincide, that is, the static contract is optimal. However, condition (R)

is very demanding and there are many common distribution that do not satisfy it. In fact, our leading

example in Section 4 does not satisfy this condition because in this case the hazard rate is

h`k(θ) =
e−(λk−λ`)θ

λ`
, `, k = 1, 2.

If we consider λ1 > λ2 then h12(θ) is an increasing function and, therefore, it violates conditions (R).

However, notice (DHR) is satisfied because the simple hazard rate functions are constant and equal to

1/λk.

Now we define the key elements in our analysis, the c-ratios and the k -averaged c-ratios.

Definition 3 (c-ratios)

c`k(θ) ,
f`(θ)µ`(θ)

F̄k(θ)
=

µ`(θ)

h`k(θ)
, ∀`, k ∈ {1, . . . ,K},∀θ ∈ [0, θ̄].

In words, the c`k-ratios correspond to the quotient between type `’s virtual valuation and the cross-

hazard rate function between types ` and k. These quantities are the same as introduced in Krähmer and

Strausz (2014) Section 8.4, to study the role of the cross-hazard rate functions. They provide a sufficient

condition using these ratios and show that if the static contract is optimal then the c-ratios must be

weakly increasing around θs. Also, note that condition (R) implies that the c-ratios are increasing. In

contrast, condition (DHR) implies that only the ckk-ratios are increasing.

The next definition introduces weighted averages of the c-ratios.

Definition 4 (k-averaged c-ratios)

C`k(θa, θb) ,

∫ θb
θa
F̄k(z)c

`k(z)dz∫ θb
θa
F̄k(z)dz

, ∀`, k ∈ {1, . . . ,K}, 0 ≤ θa ≤ θb ≤ θ̄.

The quantity C`k(θa, θb) represents the average value of c`k weighted by the tail CDF of type k for

values of θ between θa and θb. As it will become clear in Section 5.2 these ratios are relevant for the

characterization of the optimal mechanism.
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5.1 Static Contract

In Section 2 we defined a static contract as one that does not screen the ex-ante types and, therefore,

it sets uk ≡ u and xk ≡ x for all k in {1, . . . ,K}. Thus, a static contract can be cast as the optimal

solution to (Ps). From this formulation we see that the relevant quantity that shapes the allocation

x(·) is µ̄(θ) ,
∑K

k=1 αkµk(θ)fk(θ). In general, independent of any regularity assumptions imposed over

µ̄(θ), the optimal way to choose a non-decreasing allocation x(·) that maximizes∫ θ̄

0
x(z)µ̄(z)dz, (6)

is a threshold allocation (see, e.g., Myerson (1981) or Riley and Zeckhauser (1983)). We summarize this

and some other properties of the optimal solution in the following lemma.

Lemma 3 The solution to (Ps) is a threshold allocation characterized by θs in [θ̂1, θ̂K ], maximizing

(6). In addition, θs satisfies the following properties for K = 2:

1. Is a solution to α1c
12(θs) + α2c

22(θs) = 0.

2. Is a non-increasing function of α1 with θs(0) = θ̂2 and θs(1) = θ̂1.

The fact that θs is in the interval [θ̂1, θ̂K ] and property (2), follow the same intuition as in the

exponential case presented in Section 4. Property (1) is the optimality condition found by Riley and

Zeckhauser (1983) written in terms of the c-ratios, it establishes that the optimal threshold must be a

zero of µ̄(·).

5.2 Dynamic Contract

The purpose of this section it to characterize the conditions under which it is optimal to screen the

ex-ante types. In particular, we provide a necessary and sufficient condition for the static contract to be

optimal. For the cases in which the static contract is not optimal we characterize the optimal dynamic

contract.

Our analysis consists in studying the following relaxation to (Pd)

(PdR) max
0≤x≤1

−
2∑

k=1

αkuk +
2∑
i=1

αk

∫ θ̄

0
xk(z)µk(z)fk(z)dz

s.t xk(θ) non-decreasing, ∀k = 1, 2

uk ≥ 0,∀k = 1, 2

u2 +

∫ θ̄

0
x2(z)F̄2(z)dz ≥ u1 +

∫ θ̄

0
x1(z)F̄2(z)dz.
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The difference between (PdR) and the original dynamic formulation lies in relaxing the type 1 to type 2 IC

constraint (or low to high IC constraint). Importantly, we are not relaxing the monotonicity constraint

and we can obtain a characterization of the optimal solution to (PdR) as stated by the following result.

Theorem 1 Consider problem (PdR), the optimal solution has allocations

x?1(θ) =


0 if θ < θ1

χ if θ1 ≤ θ ≤ θ3

1 if θ3 < θ,

x?2(θ) =

0 if θ < θ2

1 if θ2 ≤ θ,

and transfers

t?1(θ) =


0 if θ < θ1

θ1 · χ if θ1 ≤ θ ≤ θ3

θ3 − (θ3 − θ1) · χ if θ3 < θ,

t?2(θ) =

0 if θ < θ2

θ2 if θ2 ≤ θ.

for some values θ1, θ2, θ3 with θ̂1 ≤ θ1 ≤ θ2 ≤ θ3, θ2 ≤ θ̂2. And u2 = u1 = 0.

Next we provide an informal and intuitive description of what leads us to Theorem 1. This de-

scription adapts techniques from Fuchs and Skrzypacz (2015) that enable us to derive the allocations’

structure. We begin with ex-ante type 2, consider an allocation x?2(θ) equal to some χ in some interval

(θa, θb), with χ ∈ (0, 1). Then the part of the objective for the ex-ante type 2 in this interval is

α2 · χ ·
∫ θb

θa

µ2(z)f2(z)dz.

If µ2(θ̂) ≥ 0 for some θ̂ ∈ (θa, θb) then because of (DHR), µ2(θ) ≥ 0 for all θ ≥ θ̂ and, therefore, we can

always find a better solution by setting x?2(θ) = 1 for all θ ≥ θ̂ (note that this does not affect feasibility

in (PdR)). On the other hand, if µ2(θ) < 0 for all θ ∈ (θa, θb), then it must be the case that

u2 +

∫ θ̄

0
x2(z)F̄2(z)dz = u1 +

∫ θ̄

0
x1(z)F̄2(z)dz,

otherwise we could decrease χ and obtain a strict improvement in the objective. Now, consider splitting

the interval in half, that is, take θ̂ = (θa + θb)/2. Doing some manipulations and using (DHR) we get:∫ θ̂
θa
µ2(z)f2(z)dz∫ θ̂
θa
F̄2(z)dz

=

∫ θ̂
θa
F̄2(z)c22(z)dz∫ θ̂
θa
F̄2(z)dz

≤ c22(θ̂) ≤
∫ θb
θ̂
F̄2(z)c22(z)dz∫ θb
θ̂
F̄2(z)dz

=

∫ θb
θ̂
µ2(z)f2(z)dz∫ θb
θ̂
F̄2(z)dz

, (7)
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or equivalently C22(θa, θ̂) ≤ C22(θ̂, θb). We can use this to find an improvement to the objective function.

To do so, modify x?2(θ) to be χ − ε1 for θ ∈ (θa, θ̂) andχ + ε2 for θ ∈ (θ̂, θb), with ε1, ε2 > 0 and such

that

−ε1 ·
∫ θ̂

θa

F̄2(z)dz + ε2 ·
∫ θb

θ̂
F̄2(z)dz = 0,

so the IC constraint still binds. Now, replacing in the objective:

−α2 ·
ε2 ·
∫ θb
θ̂
F̄2(z)dz∫ θ̂

θa
F̄2(z)dz

·
∫ θ̂

θa

µ2(z)f2(z)dz + α2 · ε2 ·
∫ θb

θ̂
µ2(z)f2(z)dz,

which by (7) is non-negative. Then we can keep increasing ε2 until either χ − ε1 = x?2(θa) or χ + ε2 =

x?2(θb). Hence, we can weakly improve the objective function by modifying the solution in a way that

for one of the two halves of the interval the step, χ, reaches the boundary given by either x?2(θa) or

x?2(θb). For the half that did not reach the boundary we can do the same procedure, which we can then

repeat until we eliminate the intermediate step χ completely. This argument shows why the high type

allocation is deterministic.

For the ex-ante type 1 (the low type) we can try to follow a similar argument; but, in order to obtain

an improvement to the objective function we would need the analogue of condition (7) to hold, which

considering the high to low IC constraint is:

C12(θa, θ̂) ≤ C12(θ̂, θb). (8)

However, in general this condition is not satisfied, as the c-ratio c12(·) does not need to be a non-

decreasing function. Therefore, we cannot apply a similar argument to show we can restrict attention

to deterministic contracts for the low type. Nonetheless, the optimal contract can be shown to have

the structure given in Theorem 1. To see this, suppose for example that x?1(θ) equals χa in (θa, θ̂) and

χb in (θ̂, θb) with 0 < χa < χb < 1 , and also assume (8) does not hold. Then, we can increase χa and

decrease χb (maintaining feasibility) and obtain an improvement to the objective function. We can do

this until χa and χb collapse in a single value.

This discussion not only provides intuition about the structure of the optimal dynamic contract but

also highlights the importance of the k -averaged c-ratios. Roughly speaking, when (7) and (8) hold

we can find an improvement over a stochastic allocation, because we can modify the allocation to put

more weight where the average virtual valuation is higher.

Now, we state an important corollary for our analysis that follows from the proof of Theorem 1 that

allows us to focus on (PdR) when characterizing the static contract’s optimality.
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Corollary 4 The static contract is an optimal solution to (Pd) if and only if it is an optimal solution

to (PdR).

Thus, to find a necessary and sufficient condition for the optimality of the static contract in (Pd) it

suffices to find such a condition for (PdR). The next theorem, which is one of our main results, provides

the condition. Note that the condition implies not only that the allocation must be deterministic, as

discussed in equation (8), but also that the static contract is optimal.

Theorem 2 The static contract is optimal if and only if

max
0≤θ≤θs

C12(θ, θs) ≤ min
θs≤θ≤θ̄

C12(θs, θ). (NR)

Condition (NR) is the general version of the condition in Proposition 1 for exponential valuations

regarding the similarity of the distributions of both types. Note that condition (R) implies the mono-

tonicity of the c-ratios, and therefore condition (NR) holds, because:

C12(θ, θs) =

∫ θs
θ F̄2(z)c12(z)dz∫ θs

θ F̄2(z)dz
≤ c12(θs), ∀θ ≤ θs,

and

C12(θs, θ) =

∫ θ
θs F̄2(z)c12(z)dz∫ θ

θs F̄2(z)dz
≥ c12(θs), ∀θ ≥ θs.

Hence, the result by Krähmer and Strausz (2015) that if condition (R) holds then the static contract is

optimal follows as corollary of Theorem 2. We highlight that while condition (R) implies the c-ratios

are increasing, our condition (NR) only implies a type of monotonicity over an appropriate weighted

average of the c-ratios.

We can also compare Theorem 2 with Lemma 12 in Krähmer and Strausz (2014). In that lemma they

assume h22(θ) > h11(θ), which we already saw it implies θ̂1 < θ̂2, and they establish that a necessary

condition for the static contract to be optimal is to have the c-ratio c12(θ) being increasing at θs. Our

results also contains this lemma, because if c12(·) was decreasing at θs we can always find θ < θs and

θ > θs such that

C12(θ, θs) > C12(θs, θ),

so (NR) does not hold and, therefore, the static contract would not be optimal. Figure 3 illustrates how

our condition closes the gap between the ones by Krähmer and Strausz.

In terms of methodology, our approach differs from that of Krähmer and Strausz (2015). Their

approach consists of relaxing the low to high ex-ante IC constraint and then – by using their condition
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is no longer optimal.

Kramer and Strausz
Necessity

Kramer and Strausz
Sufficiency

This paper
Sufficiency and Necessity

c12(·) non-decreasing at θs

(NR)

(DHR)

(R)
Outside this set the static contract

Figure 3: Optimality of the static contract for (DHR) distributions, with K = 2 and a single buyer.

(R) – they relax the monotonicity constraint and prove that the solution must be a threshold schedule

for each type. From there, they show that the threshold for both types must be equal and, therefore,

the static contract is optimal. In our approach we also use a relaxation of the general formulation, but

we do not impose any condition on the primitives and we do not relax the monotonicity constraint. We

perform a first principle analysis which allows us to understand what are the conditions under which is

possible to find objective improvements. From this analysis we not only determine the structure of the

optimal contract but we also identify the main objects of analysis, the k-averaged c-ratios. This leads

us to Theorem 1, once we have that result we realize that the static contract is optimal for the relaxed

problem if and only if it optimal for the original problem. Hence, to obtain a complete characterization

of the optimality of the static contract we can study (PdR). Then using this formulation, we use the

KKT conditions to show that condition (NR) yields a sharp characterization as stated in Theorem 2.

An important contribution of our work is that, to the best of our knowledge, we provide the first

characterization of the optimal dynamic contract when the necessary and sufficient condition associated

to the static contract being optimal fails. A first step towards this is given by the following proposition.

Proposition 3 Assume condition (NR) does not hold. Then there exists θa, θb such that θa < θs < θb

and C12(θa, θ
s) > C12(θs, θb), for which the following allocation yields a strict improvement over the

static contract:

x1(θ) =


0 if θ < θa

χ if θa ≤ θ ≤ θb

1 if θb < θ,

x2(θ) =

0 if θ < θs

1 if θs ≤ θ,

where χ =
∫ θb
θs F̄2(z)dz/

∫ θb
θa
F̄2(z)dz. And we set u1 = u2 = 0.

In the proof of Proposition 3 we can see that as soon as condition (NR) breaks two things happen.
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First, a non-static contract becomes feasible as it does not violate the incentive compatibility constraints.

Second, the same contract obtains a larger expected revenue than the static one. So, from this we see

that (NR) is preventing both the feasibility and optimality of a dynamic contract. In terms of the

k-averaged c-ratios, when (NR) fails to hold type 1’s average virtual value in (θa, θ
s) is larger than that

in (θs, θb). Hence, by increasing the static allocation in (θa, θ
s) and reducing it in (θs, θb) (in a feasible

manner) we can find a better dynamic allocation.

The next result characterizes the optimal dynamic contract and it also provides conditions that

allow to compute the optimal thresholds.

Theorem 3 Assume condition (NR) does not hold. Suppose there exist θ1 ≤ θ2 ≤ θ1 such that

1. C12(θ1, θ1) ≤ minθ1≤θ≤θ̄ C12(θ1, θ).

2. max0≤θ≤θ1 C12(θ, θ1) ≤ C12(θ1, θ1)

3. α1 · C12(θ1, θ1) + α2c
22(θ2) = 0.

Then (θ1, θ2, θ1) characterize the optimal contract of Theorem 1, with θ1 = θ1, θ2 = θ2, θ3 = θ1 and

χ =
∫ θ1
θ2
F̄2(z)dz/

∫ θ1
θ1
F̄2(z)dz.

Conditions (1), (2), and (3) of the theorem ensure that the IC constraint from the low ex-ante type

is satisfied, and can be thought as optimality conditions that characterize the thresholds. Intuitively,

condition (1) asserts that for any θ larger that θ1, type 1’s average virtual valuation is always above

its average value in the interval (θ1, θ1) and , therefore, always allocating the object for these values is

optimal. Condition (2) identifies an intermediate interval for which type 1’s average virtual valuation

is largest, thus maximizing what the seller can make from randomizing the low type in the interval

(θ1, θ1). Finally, condition (3) is simple a first order optimality condition on θ2.

This result generalizes Proposition 2. For the exponential distribution the conditions of the theorem

are always met. We note that in the exponential case we only have two intervals for the low type’s

allocation as we can show that θ1 =∞.

We would like to stress that conditions (1), (2), and (3) in the theorem are only sufficient conditions

for optimality. However, there is a more general approach to compute the optimal solution. The key

is that the optimal solution to (PdR) can be shown to be feasible for (Pd). Hence, it is enough to solve

(PdR). From Theorem 1 we already know that the optimal contract depends solely on the variables

θ1, θ2, θ3 and χ. It can be shown then that at optimality the IC constraint must bind and, therefore, χ

is a function of the thresholds. This implies that we can optimize the objective in (PdR) as a function of

the thresholds only and with no IC constraint.
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5.3 Indirect Implementation

Next, we discuss how the optimal dynamic contract can be implemented in practice. By means of the

taxation principle we can verify that the following menu of contracts is an indirect implementation of

our optimal mechanism:

• Contract H: there is a single posted price of p2 = θ2.

• Contract L: in this case, the buyer can choose between two items:

(a) Buy at a price of p1 = θ1 · χ and be allocated with probability χ.

(b) Buy at a price of p1 = θ1 − (θ1 − θ1) · χ and be allocated with probability 1.

The prices in the above menu of contracts are set using the values in Theorem 3. This implementation

offers a posted price to the high type buyer, and gives to the low type buyer two options. In option (a)

the low type buyer can pay a low price but it can potentially not acquire the item; in (b), the low type

buyer pays a high price and always gets the object.

An appealing feature of the implementation is that if we think of allocations as quantities, then we

can order the per unit prices. In contract L, the per unit prices are θ1 and θ1 · χ + θ1 · (1− χ) for (a)

and (b), respectively. Hence, the per unit price in (a) is less than or equal to the one in (b). That is,

the low type in (a) receives less of the good but at a discounted price compare to the low type in (b).

For contract H, the per unit price is θ2 and, since θ1 is less than or equal to θ2, the low type in (a)

receives less of the good at a discounted price compared to the high type buyer. To contrast the per

unit prices of the low type in (b) and the high type is less straightforward. Even-though θ2 is between

θ1 and θ1 we are not able to compare it to θ1 · χ + θ1 · (1 − χ). However, intuitively, if the high type

puts a large mass in values larger than θ1 then we expect the per unit price of the high type to be

below the one of the low type in (b) because, otherwise, the high type buyer would have an incentive

to take contract L. Equivalently, the high type or the low type in (b) have to pay a premium for the

additional quantity. We can also refer back to the exponential case of Section 4. From Proposition 2,

the premium the high type has to pay is given by θH − θL = log(1/χ)/λH and, therefore, the larger the

quantity the lower is the premium. Finally, note that this implementation accommodates the case in

which the static contract is optimal. In that case, we have χ = 1 and θ1 = θ2 = θ1 thus both contracts

are the same.
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6 Future Work and Extensions

There are several directions in which we would like to extend the work presented in this paper.

The theoretical and numerical results we presented in this paper are for two ex-ante types. Even

though this setting is already rich and, as it was shown in Section 4 provides good economic insights,

a more general setting with more than just two ex-ante types is an important venue for future work.

We would like to extend Theorems 2 and 3 for multiple ex-ante types. In this sense, an interesting

question concerns the number of ‘intermediate classes’. Theorem 3 establishes that the low type buyer

has an interval in which she is allocated the object with some probability χ ∈ (0, 1); hence, there is

one intermediate class. An interesting question is whether the number of intermediate classes increases

with the number of ex-ante types. Also, is there a fixed number of intermediate classes that yield a

good approximation to the optimal solution for an arbitrary number of ex-ante types?

Related to the possible number of intermediate classes is the (DHR) assumption. As we saw in the

discussion after Theorem 1, the order of the k-averaged c-ratios plays an important role in determining

whether an allocation has an intermediate class or not. This order is guaranteed (or partially guaranteed)

by conditions over the cross-hazard rate or hazard rate functions such as (R) or (DHR). In fact, as we

weaken condition (R) one intermediate class for the low type buyer emerges. Therefore we postulate

that if we weaken condition (DHR), then more intermediate class might appear, in particular, the high

type buyer now could have an intermediate class. However, in order to make this last point one has to

be careful because in this case relaxing the high type IC constraint might no longer be a valid relaxation

to the original formulation.

Another direction for future work is increasing the number of buyers. This has important practical

consequences particularly in industries that use market mechanisms like auctions, such as display ad-

vertising alluded at the beginning of the paper. We believe that our extension to multiple buyers will

allow us to study whether the market design of running a series of “waterfall auctions” with different

priorities over participants and reserves is effective in screening buyers and how close it is to the optimal

dynamic mechanism.
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APPENDIX

A Proofs for section 5

We will need the following auxiliary lemmata.

Lemma 4 Assume θ̂1 ≤ θ̂2, then

1. α1 minθs≤θ≤θ̄ C12(θs, θ) ≤ −α2c
22(θs) ≤ α1 max0≤θ≤θs C12(θ, θs).

2. max0≤θ≤θs C12(θ, θs) ≤ minθs≤θ≤θ̄ C12(θs, θ) if and only if α1 max0≤θ≤θs C12(θ, θs) = −α2c
22(θs) =

α1 minθs≤θ≤θ̄ C12(θs, θ).

Proof of Lemma 4. We prove (1) first. For the inequality involving the min consider ε > 0.

Then, from the definition of C12 we have

α1 min
θs≤θ≤θ̄

C12(θs, θ) ≤ α1 ·
∫ θs+ε
θs F̄2(z)c12(z)dz∫ θs+ε

θs F̄2(z)dz

ε→0−→ α1c
12(θs) = −α2c

22(θs),

where in the equality we used Lemma 3. A similar argument applies to max0≤θ≤θs C12(θ, θs). Property

(2) is a direct consequence of what we have just proved for (1).

Lemma 5 Let θi ∈ [0, θ̄] for i = 1, 2, 3 be such that θ1 < θ2 < θ3. Also, consider functions f, g :

[θ1, θ3]→ R+, with f, g > 0 almost everywhere in [θ1, θ3]. Then,∫ θ3
θ1
f(z)dz∫ θ3

θ1
g(z)dz

≤
∫ θ3
θ2
f(z)dz∫ θ3

θ2
g(z)dz

if and only if

∫ θ2
θ1
f(z)dz∫ θ2

θ1
g(z)dz

≤
∫ θ3
θ2
f(z)dz∫ θ3

θ2
g(z)dz

.

Proof of Lemma 5.∫ θ3
θ1
f(z)dz∫ θ3

θ1
g(z)dz

≤
∫ θ3
θ2
f(z)dz∫ θ3

θ2
g(z)dz

⇔
(∫ θ3

θ2

g(z)dz
)(∫ θ3

θ1

f(θ)dz
)
≤
(∫ θ3

θ1

g(z)dz
)(∫ θ3

θ2

f(z)dz
)

⇔
(∫ θ3

θ2

g(z)dz
)(∫ θ2

θ1

f(z)dz
)
≤
(∫ θ2

θ1

g(z)dz
)(∫ θ3

θ2

f(z)dz
)

⇔
∫ θ2
θ1
f(z)dz∫ θ2

θ1
g(z)dz

≤
∫ θ3
θ2
f(z)dz∫ θ3

θ2
g(z)dz
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Lemma 6 Suppose

max
0≤θ≤θs

C12(θ, θs) > min
θs≤θ≤θ̄

C12(θs, θ).

Then, there exist θa, θb ∈ [0, θ̄] with θa < θs < θb such that C12(θa, θ
s) > C12(θs, θb). Note that this

implies that: 0 <
∫ θs
θa
F̄2(z)c12(z)dz =

∫ θs
θa
F̄1(z)c11(z)dz.

Proof of Lemma 6. Suppose the result is not true. That is, for all θa, θb ∈ [0, θ̄] with θa < θs < θb

we have

C12(θa, θ
s) ≤ C12(θs, θb). (9)

Take ε > 0 and consider θb(ε) = θs + ε, then from equation (9) we have

C12(θa, θ
s) ≤ C12(θs, θs + ε), ∀ε > 0,

taking the limit as ε approaches to 0 yields C12(θa, θ
s) ≤ c12(θs) for all θa < θs. This implies that

max
0≤θ≤θs

C12(θ, θs) = c12(θs).

Using equation (9) again, we can do the same for the minimum and, therefore, we obtain a contradiction.

To finalize, we argue why 0 <
∫ θs
θa
F̄2(z)c12(z)dz. Note that since θb > θs ≥ θ̂1 we have C12(θs, θb) >

0. Therefore, C12(θa, θ
s) > 0 which implies the desired inequality.

Proof of Lemma 3. The fact that the optimal solution is a threshold allocation and property

(1) are explained in the main text. Thus, we only need to provide a proof for θs being in the interval

[θ̂1, θ̂K ] and property (2).

We begin showing that θs belongs to the interval [θ̂1, θ̂K ]. Note that for all θ below θ̂1, µk(θ) is

negative for all k ∈ {1, . . . ,K}. Therefore, µ̄(θ) is negative for all θ below θ̂1. Similarly, for all θ above

θ̂K , µ̄(θ) is positive. Since the allocation is of the threshold type, it is optimal to set x(θ) equal to 0 for

θ below θ̂1 and to set x(θ) equal to 1 for θ above θ̂K . This necessarily implies that θs is in [θ̂1, θ̂K ].

As for Property (2), note first that θs can be seen as a function of α1 and α2 but since α2 equals

1 − α1, we can effectively consider θs just a function of α1. Then, when α1 equals 0 is as we only had

type 2 buyers and, therefore, the optimal threshold is θ̂2. While when α1 equals 1 is as we only had

type 1 buyers so the optimal threshold is θ̂1. Hence, θs(0) equals θ̂2 and θs(1) equals θ̂1.

Now we prove that θs(α1) is non-increasing. Consider αa1 < αb1 and suppose that θs(αa1) < θs(αb1).

Define

`(θ, α1) ,
∫ θ̄

θ
α1f1(z)µ1(z) + (1− α1)f2(z)µ2(z)dz,
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note that this is a linear function of α1 and, for fixed α1, it is maximized at θs(α1). Hence,

`(θs(αa1), αb1) ≤ `(θs(αb1), αb1)

= `(θs(αb1), αb1 − αa1) + `(θs(αb1), αa1)

≤ `(θs(αb1), αb1 − αa1) + `(θs(αa1), αa1)

therefore∫ θs(αb1)

θs(αa1)
αb1f1(z)µ1(z) + (1− αb1)f2(z)µ2(z)dz ≤

∫ θs(αb1)

θs(αa1)
αa1f1(z)µ1(z) + (1− αa1)f2(z)µ2(z)dz. (10)

Recall that θs is in [θ̂1, θ̂2] and, therefore, θ̂1 ≤ θs(αa1) < θs(αb1) ≤ θ̂2. This in turn implies that

µ1(z) > 0 and µ2(z) < 0, ∀z ∈ (θs(αa1), θs(αb1)),

so for z in (θs(αa1), θs(αb1)) we have

αa1f1(z)µ1(z) + (1− αa1)f2(z)µ2(z) < αb1f1(z)µ1(z) + (1− αb1)f2(z)µ2(z),

which contradicts (10).

Proof of Theorem 1. For easy of exposition we restate the problem’s formulation.

(PdR) max
0≤x≤1

−
2∑

k=1

αkuk +
2∑
i=1

αk

∫ θ̄

0
xk(z)µk(z)fk(θ)dθ

s.t xk(θ) non-decreasing, ∀k = 1, 2

uk ≥ 0,∀k = 1, 2

u2 +

∫ θ̄

0
x2(z)F̄2(z)dz ≥ u1 +

∫ θ̄

0
x1(z)F̄2(z)dz.

For any optimal solution to (PdR) two possible situations may arise:

1. The allocation has an interval in which is continuously strictly increasing.

2. The allocation does not have an interval in which is continuously strictly increasing, but is a

piecewise constant non-decreasing function.

The proof idea is as follows. For each ex-ante type, we prove that if we are in case (2), we can

modify the allocation in that interval to be constant and obtain at least a weak improvement in the

objective. This implies that for any optimal allocation, we can construct another optimal allocation

that is a piecewise constant non-decreasing function. Therefore, we can always assume we are in case
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(3). In this case, we show that for ex-ante type 1 there is only one intermediate step, and for ex-ante

type 2 there is no intermediate step. We split the proof in ex-ante type 1 and 2.

Let x?1(θ) and x?2(θ) denote the optimal allocations. We begin with ex-ante type 1.

•

• Ex-ante type 1 case (1): Suppose there is an interval (θ1, θ2) in which x?1(θ) is continuously

strictly increasing. Before we start with the main argument, note that if θ̂1 > θ1 then we can set

x?1(θ) to be equal to x?1(θ1) for all θ in (θ1, θ̂1). This strictly increases the objective function while

maintaining feasibility. So we can assume θ̂1 ≤ θ1, which in turn implies that µ1(·) is non-negative

in the interval (θ1, θ2).

Now we give the main argument. Note that by Theorem 1 in Luenberger (1969, p. 217), x?1(θ)

must maximize the Lagrangean

L(u,x,λ,w) = u1(w1 − λ− α1) + u2(λ− α2 + w2)

+

∫ θ̄

0
x1(z) ·

[
α1µ1(z)f1(z)− λF̄2(z)

]
dz +

∫ θ̄

0
x2(z) ·

[
α2µ2(z)f2(z) + λF̄2(z)

]
dz,

with λ,w1, w2 ≥ 0. Define L1(·) by

L1(θ) , α1µ1(θ)f1(θ)− λF̄2(θ),

then it must be the case that L1(θ) = 0 for all θ ∈ (θ1, θ2). Suppose this is not true, then we could

have θ̂ ∈ (θ1, θ2) such that L1(θ̂) > 0, since L1(·) is a continuous function this must also be true

for all θ ∈ (θ̂ − ε, θ̂ + ε) for ε > 0 small enough. But then we can obtain an strict improvement

by setting x1(θ) = x?1(θ̂ + ε) for all θ ∈ (θ̂ − ε, θ̂ + ε). A similar argument holds when L1(θ̂) < 0.

Therefore, we have just proved that L1(θ) = 0 for all θ ∈ (θ1, θ2). In other words,

α1
µ1(θ)f1(z)

F̄2(θ)
= λ, ∀θ ∈ (θ1, θ2). (11)

Also, by the second mean value theorem for integrals there exists θ̂ ∈ (θ1, θ2) such that

x?1(θ̂) =

∫ θ2
θ1
x?1(z)F̄2(z)dz∫ θ2
θ1
F̄2(z)dz

. (12)

Going back to (PdR), we have that the part of objective associated to x?1 in (θ1, θ2) is∫ θ2

θ1

α1x
?
1(z)µ1(z)f1(z)dz = λ ·

∫ θ2

θ1

x?1(z)F̄2(z)dz, (13)
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where in the equality we have used (11). Now, consider modifying x?1 to be x̃?1 equal to x?1(θ̂) in

(θ1, θ2). Then from (11), (12) and (13) we get∫ θ2

θ1

x?1(z)α1µ1(z)f1(z)dz = λ · x?1(θ̂) ·
∫ θ2

θ1

F̄2(z)dz

= x?1(θ̂) ·
∫ θ2

θ1

α1µ1(z)f1(z)dz

=

∫ θ2

θ1

x̃?1(z)α1µ1(z)f1(z)dz,

therefore, the modified x̃?1 has the same objective value than the old one. Also, note that we have

preserved feasibility because

u1 +

∫ θ̄

0
x̃?1(z)F̄2(z)dz = u1 +

∫ θ2

θ1

x̃?1(z)F̄2(z)dz +

∫
(θ1,θ2)c

x̃?1(z)F̄2(z)dz

= u1 + x?1(θ̂) ·
∫ θ2

θ1

F̄2(z)dz +

∫
(θ1,θ2)c

x?1(z)F̄2(z)dz

(a)
= u1 +

∫ θ2

θ1

x?1(z)F̄2(z)dz +

∫
(θ1,θ2)c

x?1(z)F̄2(z)dz

= u1 +

∫ θ̄

0
x?1(z)F̄2(z)dz,

where in (a) we used equation (12).

• Ex-ante type 1 case (2): Suppose for x?1(·) there exists θ1 < θ2 < θ3 and 0 < χ1 < χ2 < 1

such that x?1(θ) = χ1 in (θ1, θ2) and x?1(θ) = χ2 in (θ2, θ3). Since type’s 1 allocation is piecewise

constant we must have x?1(θ−1 ) < χ1 and χ2 < x?1(θ+
3 ).

Then, the part of objective associated to ex-ante type 1 in these intervals is

α1 · χ1 ·
∫ θ2

θ1

µ1(z)f1(z)dz + α1 · χ2 ·
∫ θ3

θ2

µ1(z)f1(z)dz. (14)

If µ1(θ̂) ≤ 0 for some θ̂ ∈ (θ1, θ3) then because of (DHR), µ1(θ) ≤ 0 for all θ ≤ θ̂ and, therefore,

we can always find a better solution by setting x?1(θ) = 0 for all θ ≤ θ̂ (note that this does not

affect feasibility in (PdR)). So assume µ1(θ) > 0 for all θ ∈ (θ1, θ3), then it must be the case that

u2 +

∫ θ̄

0
x2(z)F̄2(z)dz = u1 +

∫ θ̄

0
x1(z)F̄2(z)dz, (15)

otherwise we could increase χ1 and obtain an strict improvement in the objective. There are two

cases:
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a)

∫ θ2
θ1

µ1(z)f1(z)dz∫ θ2
θ1

F̄2(z)dz
≥

∫ θ3
θ2

µ1(z)f1(z)dz∫ θ3
θ2

F̄2(z)dz
: In this case consider decreasing χ2 by ε2 > 0 and increasing

χ1 by ε1 > 0, in such a way that equation (15) remains with equality, that is,

ε1 ·
∫ θ2

θ1

F̄2(z)dz − ε2 ·
∫ θ3

θ2

F̄2(z)dz = 0. (16)

The change in equation (14) is

α1 ·
ε2 ·
∫ θ3
θ2
F̄2(z)dz∫ θ2

θ1
F̄2(z)dz

·
∫ θ2

θ1

µ1(z)f1(z)dz − α1 · ε2 ·
∫ θ3

θ2

µ1(z)f1(z)dz, (17)

which under our current assumption is non-negative. So we can weakly improve our objective,

indeed we can do it so until χ1 + ε1 and χ2 − ε2 are equal,

χ1 + ε1 = χ2 − ε2 ⇔ χ1 + ε2 ·
∫ θ3
θ2
F̄2(z)dz∫ θ2

θ1
F̄2(z)dz

= χ2 − ε2 ⇔ ε2 =
(χ2 − χ1)

1 +

∫ θ3
θ2

F̄2(z)dz∫ θ2
θ1

F̄2(z)dz

,

since χ2 > χ1 we have ε2 > 0 and, therefore, we have shown that it is possible to increase

χ1 and to decrease χ2 in such a way the objective is weakly improved and the solution is

constant in (θ1, θ3).

b)

∫ θ2
θ1

µ1(z)f1(z)dz∫ θ2
θ1

F̄2(z)dz
<

∫ θ3
θ2

µ1(z)f1(z)dθ∫ θ3
θ2

F̄2(z)dz
: In this case consider increasing χ2 by ε2 > 0 and decreasing

χ1 by ε1 > 0 in such a way that equation (15) remains with equality. By doing this the change

in the objective is strictly positive, and we do it until either χ1 = x?(θ−1 ) or χ2 = x?(θ+
3 ).

This proves the result for ex-ante type 1 and case (2).

In conclusion, putting together what we have proved for cases (1) and (2), we can always consider

x?1 to be a step function with at most one intermediate step.

Now we proceed with ex-ante type 2.

• Ex-ante type 2 case (1): Suppose there is an interval (θ1, θ2) in which x?2(θ) is continuously

strictly increasing. Before we start with the main argument, note that if θ̂2 < θ2 then we can set

x?2(θ) to be equal to x?2(θ2) for all θ in (θ̂2, θ2). This strictly increases the objective function and

maintains feasibility. So we can assume θ̂2 ≥ θ2, which in turn implies that µ2(·) is non-positive

in the interval (θ1, θ2).
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Now we give the main argument. Note that by Theorem 1 in Luenberger (1969, p. 217), x?2(θ)

must maximize the Lagrangean

L(u,x,λ,w) = u1(w1 − λ− α1) + u2(λ− α2 + w2)

+

∫ θ̄

0
x1(z) ·

[
α1µ1(z)f1(z)− λF̄2(z)

]
dz +

∫ θ̄

0
x2(z) ·

[
α2µ2(z)f2(z) + λF̄2(z)

]
dz,

with λ,w1, w2 ≥ 0. Define L2(·) by

L2(θ) , α2µ2(θ)f2(θ) + λF̄2(θ),

then it must be the case that L2(θ) = 0 for all θ ∈ (θ1, θ2). Suppose this is not true, then we could

have θ̂ ∈ (θ1, θ2) such that L2(θ̂) > 0, since L2(·) is a continuous function this must also be true

for all θ ∈ (θ̂ − ε, θ̂ + ε) for ε > 0 small enough. But then we can obtain an strict improvement

by setting x2(θ) = x?2(θ̂ + ε) for all θ ∈ (θ̂ − ε, θ̂ + ε). A similar argument holds when L2(θ̂) < 0.

Therefore, we have just proved that L2(θ) = 0 for all θ ∈ (θ1, θ2). In other words,

α2
µ2(θ)f2(θ)

F̄2(θ)
= −λ, ∀θ ∈ (θ1, θ2). (18)

Also note that by the second mean value theorem for integrals, there exists θ̂ ∈ (θ1, θ2) such that

x?2(θ̂) =

∫ θ2
θ1
x?2(z)F̄2dz∫ θ2

θ1
F̄2(z)dz

. (19)

Going back to (PdR), we have that the part of objective associated to x?2 in (θ1, θ2) is∫ θ2

θ1

α2x
?
2(z)µ2(z)f2(z)dz = −λ ·

∫ θ2

θ1

x?2(z)F̄2(z)dz, (20)

where in the equality we have used (18). Now, consider modifying x?2 to be x̃?2 equal to x?2(θ̂) in

(θ1, θ2). Then from (18), (19) and (20) we get∫ θ2

θ1

x?2(z)α2µ2(z)f2(z)dz = −λ · x?2(θ̂) ·
∫ θ2

θ1

F̄2(z)dz

= x?2(θ̂) ·
∫ θ2

θ1

α2µ2(z)f2(z)dz

=

∫ θ2

θ1

x̃?2(z)α2µ2(z)f2(z)dz,
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therefore, the modified x̃?2 has the same objective value than the old one. Also, note that we have

preserved feasibility because

u2 +

∫ θ̄

0
x̃?2(z)F̄2(z)dz = u2 +

∫ θ2

θ1

x̃?2(z)F̄2(z)dz +

∫
(θ1,θ2)c

x̃?2(z)F̄2(z)dz

= u2 + x?2(θ̂) ·
∫ θ2

θ1

F̄2(z)dz +

∫
(θ1,θ2)c

x?2(z)F̄2(z)dz

(a)
= u2 +

∫ θ2

θ1

x?2(z)F̄2(z)dz +

∫
(θ1,θ2)c

x?2(z)F̄2(z)dz

= u2 +

∫ θ̄

0
x?2(z)F̄2(z)dz,

where in (a) we used equation (19).

• Ex-ante type 2 case (2): Suppose x?2(·) is an optimal solution to (PdR) for which there exists

θ1 < θ2 and 0 < χ < 1 such that x?2(θ) = χ in (θ1, θ2). Similar to the proof of type 1 assume

x?2(θ−1 ) < χ < x?2(θ+
2 ).

Then the part of the objective for the ex-ante type 2 in this interval is

α2 · χ ·
∫ θ2

θ1

µ2(z)f2(z)dz. (21)

If µ2(θ̂) ≥ 0 for some θ̂ ∈ (θ1, θ2) then because of (DHR), µ2(θ) ≥ 0 for all θ ≥ θ̂ and, therefore,

we can always find a better solution by setting x?2(θ) = 1 for all θ ≥ θ̂ (note that this does not

affect feasibility in (PdR)). So assume µ2(θ) < 0 for all θ ∈ (θ1, θ2), then it must be the case that

u2 +

∫ θ̄

0
x2(z)F̄2(z)dz = u1 +

∫ θ̄

0
x1(z)F̄2(z)dz, (22)

otherwise we could decrease χ and obtain an strict improvement in the objective. Now, consider

splitting the interval in half, that is, take θ̂ = (θ1 + θ2)/2 and note that because of (DHR) we

always have ∫ θ̂
θ1
µ2(z)f2(z)dz∫ θ̂
θ1
F̄2(z)dz

≤
∫ θ2
θ̂
µ2(z)f2(z)dz∫ θ2
θ̂
F̄2(z)dz

. (23)

We can modify x?2(θ) in (θ1, θ2) as follows and obtain an, at least weakly, objective improvement.

For θ ∈ (θ1, θ̂) set x?2(θ) = χ − ε1 and for θ ∈ (θ̂, θ2) set x?2(θ) = χ + ε2 with ε1, ε2 > 0, and such

that equation (22) remains with equality. That is,

−ε1 ·
∫ θ̂

θ1

F̄2(z)dz + ε2 ·
∫ θ2

θ̂
F̄2(z)dz = 0.
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With this modification the change in the objective is

−α2 ·
ε2 ·
∫ θ2
θ̂
F̄2(z)dz∫ θ̂

θ1
F̄2(z)dz

·
∫ θ̂

θ1

µ2(z)f2(z)dz + α2 · ε2 ·
∫ θ2

θ̂
µ2(z)f2(z)dz,

which thanks to equation (23) is non-negative. Then we can keep increasing ε2 until either

χ − ε1 = x?2(θ−1 ) or χ + ε2 = x?2(θ+
2 ). This proofs we can, at least weakly, improve the objective.

It also proves that we can modify the solution in such a way that for one of the two halves of the

intervals the step reaches the boundary bound given by either x?2(θ−1 ) or x?2(θ+
2 ). For the half that

did not reach the boundary, we can do the same procedure described above and then repeat this

procedure until we completely get rid of the intermediate step between (x?2(θ−1 ), x?2(θ+
2 )). Note

that this process can be potentially infinite, in which case a more rigorous argument is required.

Suppose the process described above goes for infinitely many steps. In this case, an allocation

sequence {xn2 (θ)}n∈N defined in [θ1, θ2] is generated. To prove that the argument works, we need

to show that there exists θ∞ ∈ [θ1, θ2] such that

lim
n→∞

∫ θ2

θ1

xn2 (z)µ2(z)f2(z)dz = x?2(θ1)

∫ θ∞

θ1

µ2(z)f2(z)dz + x?2(θ2)

∫ θ2

θ∞

µ2(z)f2(z)dz. (24)

To prove this, let {θn, θn, θ̂n}n∈N be the sequence generated in the infinite process where:

– θn and θn correspond to the lower and upper bound of the interval. For example, at the

beginning θ1 = θ1 and θ1 = θ2. At the next iteration we will have either θ2 = θ1 and θ2 = θ̂

or θ2 = θ̂ and θ2 = θ2. Note that for all n ∈ N: θn, θn ∈ [θ1, θ2].

– θ̂n is defined to be the half of the interval. So θ̂1 = θ̂, and θ̂2 = (θ2 + θ2)/2.

From these definitions we have that θn and θn are bounded monotonic sequences (the first non-

decreasing and the second non-increasing), thus both converge to a limit. Also,

θ̂n =
θn + θn

2
,

then all three quantities, θn, θn and θ̂n, converge to the same limit which we denote by θ∞ ∈ [θ1, θ2]

(if the limit was not the same we could continue iterating the process). Now, from this we have

that

lim
n→∞

xn2 (θ) =

x
?
2(θ−1 ) if θ < θ∞

x?2(θ+
2 ) if θ ≥ θ∞,

a.s in [θ1, θ2]. (25)
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To see why (25) holds, consider θ ∈ [θ1, θ∞) then from the convergence of θn we have

∃n0 ∈ N,∀n ≥ n0, θ < θn ≤ θ∞.

Then, from the way xn2 is constructed, it must be the case that xn2 (θ) equals x?2(θ−1 ). A similar

argument holds for θ ∈ (θ∞, θ2]. Thus, xn2 (θ) satisfies the almost surely convergence in equation

(25). Finally, we can use the almost surely version of the dominated convergence theorem to

obtain (24). This completes the proof for ex-ante type 2 and case (2).

Proof for the reminder of the properties:

From the previous discussion we can write down (PdR) as follows

max −
2∑

k=1

αkuk + α1χ

∫ θ3

θ1

µ1(z)f1(z)dz + α1

∫ θ̄

θ3

µ1(z)f1(z)dz + α2

∫ θ̄

θ2

µ2(z)f2(z)dz

s.t χ ∈ [0, 1], θ1 ≤ θ3

uk ≥ 0, k = 1, 2

u2 +

∫ θ̄

θ2

F̄2(z)dz ≥ u1 + χ

∫ θ3

θ1

F̄2(z)dz +

∫ θ̄

θ3

F̄2(z)dz.

• u1 = 0: From the formulation above it is clear that is always optimal to set u1 = 0.

• θ̂1 ≤ θ1: Suppose the opposite, that is, θ̂1 > θ1. This implies that between θ1 and θ̂1, µ1(·) is

negative. Then, we can increase θ1 while keeping feasibility and, at the same time, increasing

the objective function. Note this argument is also valid when θ1 = θ3. Also, note that we can

obtain a strict improvement only when χ > 0; however, when χ = 0 we can only obtain a weak

improvement. In either case, we can always consider θ̂1 ≤ θ1.

• θ2 ≤ θ̂2: Suppose the opposite, θ2 > θ̂2. Since µ(θ) > 0 for all θ ≥ θ̂2, we can can decrease θ2 and

obtain an objective improvement while maintaining feasibility.

• u2 = 0: Suppose u2 > 0, then we must have

u2 +

∫ θ̄

θ2

F̄2(z)dz = χ

∫ θ3

θ1

F̄2(z)dz +

∫ θ̄

θ3

F̄2(z)dz, (26)

otherwise, we could decrease u2 and, by doing so, improve the objective.

Since u2 > 0, equation (26) yields

0 < u2 = χ

∫ θ3

θ1

F̄2(z)dz +

∫ θ̄

θ3

F̄2(z)dz −
∫ θ̄

θ2

F̄2(z)dz, (27)
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then it must be true that θ1 < θ2; otherwise, from equation (27) we would have∫ θ1

θ2

F̄2(z)dz +

∫ θ3

θ1

F̄2(z)dz +

∫ θ̄

θ3

F̄2(z)dz < χ

∫ θ3

θ1

F̄2(z)dz +

∫ θ̄

θ3

F̄2(z)dz,

which implies ∫ θ1

θ2

F̄2(z)dz < 0,

a contradiction. Thus, θ1 < θ2.

Now consider, a new contract for type 2 which consists on decreasing the cut-off θ2 by ε > 0

sufficiently small, but at the same time maintaining the equality in equation (26). Specifically, let

θ2(ε) = θ2 − ε > 0 (this is true because we just saw that θ2 > θ1 ≥ 0) and let u2(ε) be

u2(ε) = χ

∫ θ3

θ1

F̄2(z)dz +

∫ θ̄

θ3

F̄2(z)dz −
∫ θ̄

θ2(ε)
F̄2(z)dz,

note that by taking ε small we still have u2(ε) > 0. We claim that this new contract, character-

ized by θ1, θ3, χ, θ2(ε) and u2(ε), yields a larger objective that the old contract, characterized by

θ1, θ3, χ, θ2 and u2. The old contract objective’s is

−α2u2 + α1χ

∫ θ3

θ1

µ1(z)f1(z)dz + α1

∫ θ̄

θ3

µ1(z)f1(z)dz + α2

∫ θ̄

θ2

µ2(z)f2(z)dz,

and using equation (26) it becomes

χ

∫ θ3

θ1

(α1µ1(z)f1(z)− α2F̄2(z))dz +

∫ θ̄

θ3

(α1µ1(z)f1(z)− α2F̄2(z))dz + α2

∫ θ̄

θ2

zf2(z)dz.

We obtain a similar expression for the new contract’s objective. Specifically, the first two terms

in the expression above are the same and the third term differs in θ2. Hence, the new contract

yields an improvement over the old one if and only if∫ θ̄

θ2

zf2(z)dz <

∫ θ̄

θ2(ε)
zf2(z)dz.

Since θ2(ε) < θ2 this last inequality is true. Thus, if u2 > 0 we can always construct a new

contract yielding a larger objective value and, therefore, at any optimal contract we must have

u2 = 0.

• θ2 ≤ θ3: Since at any optimal solution u2 = 0, the IC constraint is∫ θ̄

θ2

F̄2(z)dz ≥ χ
∫ θ3

θ1

F̄2(z)dz +

∫ θ̄

θ3

F̄2(z)dz.
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Hence, if θ2 > θ3 from the expression above we would have∫ θ̄

θ2

F̄2(z)dz ≥ χ
∫ θ3

θ1

F̄2(z)dz +

∫ θ2

θ3

F̄2(z)dz +

∫ θ̄

θ2

F̄2(z)dz,

which implies θ2 = θ3, a contradiction.

• θ1 ≤ θ2: First we show that θ1 ≤ θ̂2. Suppose the opposite, that is, θ1 > θ̂2. Then, since θ̂2 ≥ θ2

we must have θ1 > θ2 and, therefore,∫ θ̄

θ2

F̄2(z)dz =

∫ θ1

θ2

F̄2(z)dz +

∫ θ̄

θ1

F̄2(z)dz

>

∫ θ̄

θ1

F̄2(z)dz

=

∫ θ3

θ1

F̄2(z)dz +

∫ θ̄

θ3

F̄2(z)dz

≥ χ
∫ θ3

θ1

F̄2(z)dz +

∫ θ̄

θ3

F̄2(z)dz.

That is, the IC constraint is not binding. Therefore, since θ1 > θ̂2 ≥ θ̂1 we can slightly decrease

θ1 and, in this way, obtain an objective improvement whenever χ > 0. When χ = 0, because

θ3 ≥ θ1, we can decrease θ3 and obtain an objective improvement as well. Hence, at any optimal

solution we must have θ1 ≤ θ̂2.

In order to complete the proof, suppose θ1 > θ2 then, as before, we have∫ θ̄

θ2

F̄2(z)dz > χ

∫ θ3

θ1

F̄2(z)dz +

∫ θ̄

θ3

F̄2(z)dz.

Using that θ1 ≤ θ̂2 implies θ2 < θ̂2, we can slightly increase θ2 (maintaining feasibility) and thus

obtain an objective improvement. In conclusion, at any optimal solution we must have θ1 ≤ θ2.

Proof of Corollary 4. From Theorem 1 we know that we can formulate (PdR) as

(PdR) max α1χ

∫ θ3

θ1

µ1(z)f1(z)dz + α1

∫ θ̄

θ3

µ1(z)f1(z)dz + α2

∫ θ̄

θ2

µ2(z)f2(z)dz

s.t χ ∈ [0, 1]

θ̂1 ≤ θ1 ≤ θ2 ≤ θ3, θ2 ≤ θ̂2∫ θ̄

θ2

F̄2(z)dz ≥ χ
∫ θ3

θ1

F̄2(z)dz +

∫ θ̄

θ3

F̄2(z)dz.

35



It is easy to see that if the static contract is an optimal solution to (PdR) then it is also an optimal

solution to (Pd). This is true because the optimal value of (PdR) is always an upper bound to the

optimal value of (Pd), and the static contract is always feasible for (Pd).

For the other direction, suppose that the static contract is an optimal solution to (Pd) but is not an

optimal solution to (PdR). We will find a contract that is feasible for (Pd) and yields a larger objective

than the the static contract.

Let θ1, θ2, θ3 and χ be the optimal solution to (PdR). Then, it must be the case that∫ θ̄

θ2

µ̄(z)dz < α1χ

∫ θ3

θ1

µ1(z)f1(z)dz + α1

∫ θ̄

θ3

µ1(z)f1(z)dz + α2

∫ θ̄

θ2

µ2(z)f2(z)dz. (28)

This is true because the static contract (u1, u2, x1, x2) = (0, 0,1{θ≥θ2},1{θ≥θ2}) is a feasible contract

for (Pd) and, therefore, it must yield a lower objective than the optimal static contract. Under the

current assumption, the optimal static contract yields a strictly lower objective than the solution to

(PdR). Therefore, equation (28) holds.

From the formulation of (PdR) we know that θ̂1 ≤ θ1 ≤ θ2 ≤ θ3. Then, this and equation (28) deliver

0 ≤
∫ θ3

θ2

µ1(z)f1(z)dz < χ

∫ θ3

θ1

µ1(θ)f1(z)dz.

Hence, θ1 < θ3 and ∫ θ3
θ2
µ1(z)f1(z)dz∫ θ3

θ1
µ1(z)f1(z)dz

< χ. (29)

Also, since χ ≤ 1 we must have θ1 < θ2.

Now we argue that the contract optimizing (PdR) is feasible for (Pd). Since the high to low IC

constraint is satisfied, we only need to verify the low to high IC constraint. That is, we need to verify

the following inequality

χ

∫ θ3

θ1

F̄1(z)dz +

∫ θ̄

θ3

F̄1(z)dz ≥
∫ θ̄

θ2

F̄1(z)dz,

or equivalently

χ ≥
∫ θ3
θ2
F̄1(z)dz∫ θ3

θ1
F̄1(z)dz

. (30)

When θ2 = θ3, equation (30) trivially holds. So, assume θ2 < θ3. Then, to see why (30) continues to

hold in this case, observe that from Lemma 5 we have∫ θ3
θ1
µ1(z)f1(z)dz∫ θ3
θ1
F̄1(z)dz

≤
∫ θ3
θ2
µ1(z)f1(z)dz∫ θ3
θ2
F̄1(z)dz

⇔
∫ θ2
θ1
µ1(z)f1(z)dz∫ θ2
θ1
F̄1(z)dz

≤
∫ θ3
θ2
µ1(z)f1(z)dz∫ θ3
θ2
F̄1(z)dz

. (31)
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The right hand side in (31) always hold because thanks to (DHR) we have:∫ θ2
θ1
µ1(z)f1(z)dz∫ θ2
θ1
F̄1(z)dz

=

∫ θ2
θ1
F̄1c

11(z)dz∫ θ2
θ1
F̄1(z)dz

≤ c11(θ2) ≤
∫ θ3
θ2
F̄1c

11(z)dz∫ θ3
θ2
F̄1(z)dz

=

∫ θ3
θ2
µ1(z)f1(z)dz∫ θ3
θ2
F̄1(z)dz

.

Thus the left hand side in (31) holds. Equivalently,∫ θ3
θ2
F̄1(z)dz∫ θ3

θ1
F̄1(z)dz

≤
∫ θ3
θ2
µ1(z)f1(z)dz∫ θ3

θ1
µ1(z)f1(z)dz

Using this, together with equation (29), delivers equation (30). This concludes the proof.

Proof of Theorem 2. The proof relies on the global theory of constrained optimization. Specifi-

cally, we make use of Theorem 1 in Luenberger (1969, p. 217) and of Theorem 1 in Luenberger (1969,

p. 220).

We begin by seeting up the stage for the proof. Define the set of functions

F , {x : [0, θ̄] −→ [0, 1] : x(·) is non-decreasing},

that is, F is the set of all feasible allocations. Then, the domain we are optimizing on is

Ω , R× R×F ×F .

An element of Ω is (u1, u2, x1, x2), the ex-post utility for the lowest ex-post type for both ex-ante

types and, the allocation schedule for each ex-ante type. The constraints of the problem are the

ex-post individually rationality constraints and the ex-ante incentive compatibility constraints. The

optimization problem is then

(Pd) max
(u1,u2,x1,x2)∈Ω

−α1u1 − α2u2 +

∫ θ̄

0

(
α1x1(z)µ1(z)f1(z) + α2x2(z)µ2(z)f2(z)

)
dθ

s.t u1 +

∫ θ̄

0
x1(z)F̄1(z)dz ≥ u2 +

∫ θ̄

0
x2(z)F̄1(z)dz

u2 +

∫ θ̄

0
x2(z)F̄2(z)dz ≥ u1 +

∫ θ̄

0
x1(z)F̄2(z)dz

u1, u2 ≥ 0.

Note that from Corollary 4 we can relax the low to high IC constraint. We present here a more general

proof which does not relay on any relaxation. Nonetheless, the next argument also applies to the relaxed

formulation.
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The lagrangian for this problem is

L(u,x,λ,w) , u1 · (−α1 + w1 + λ1 − λ2) +

∫ θ̄

0
x1(z) ·

[
α1µ1(z)f1(z) + λ1F̄1(z)− λ2F̄2(z)

]
dz

+ u2 · (−α2 + w2 − λ1 + λ2) +

∫ θ̄

0
x2(z) ·

[
α2µ2(z)f2(z)− λ1F̄1(z) + λ2F̄2(z)

]
dz,

where w1, w2 ≥ 0 are the multipliers associated to the ex-post individually rationality constraints and,

λ1, λ2 ≥ 0 are the multipliers associated to the ex-ante incentive compatibility constraints.

Now we are ready to begin the proof. We prove both implications separately. Suppose first that the

static contract is optimal, we want to prove that condition (NR) holds. We proceed by contradiction.

So assume (NR) does not hold, then by Lemma 6 there exist θa < θs < θb such that∫ θs
θa
F̄2(z)c12(z)dz∫ θs
θa
F̄2(z)dz

>

∫ θb
θs F̄2(z)c12(z)dz∫ θb

θs F̄2(z)dz
. (32)

We resort to Theorem 1 in Luenberger (1969, p. 217). In order to use the theorem we need to verify

the interior, or Slater, condition. So we need to find (u1, u2, x1, x2) ∈ Ω such that

u1 > 0, u2 > 0,

u1 +

∫ θ̄

0
x1(θ)F̄1(θ)dθ > u2 +

∫ θ̄

0
x2(θ)F̄1(θ)dθ

u2 +

∫ θ̄

0
x2(θ)F̄2(θ)dθ > u1 +

∫ θ̄

0
x1(θ)F̄2(θ)dθ.

To see why this is true, consider equation (32) and note that together with Lemma 5 it implies∫ θb
θs F̄2(z)dz∫ θb
θa
F̄2(z)dz

>

∫ θb
θs F̄2(z)c12(z)dz∫ θb
θa
F̄2(z)c12(z)dz

. (33)
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Also, note that ∫ θb
θs F̄2(z)c12(z)dz∫ θb

θs F̄1(z)dz
=

∫ θb
θs F̄1(z)c11(z)dz∫ θb

θs F̄1(z)dz

≥ c11(θs)

∫ θb
θs F̄1(z)dz∫ θb
θs F̄1(z)dz

= c11(θs)

≥ c11(θs)

∫ θs
θa
F̄1(z)dz∫ θs

θa
F̄1(z)dz

≥
∫ θs
θa
F̄1(z)c11(z)dz∫ θs
θa
F̄1(z)dz

=

∫ θs
θa
F̄2(z)c12(z)dz∫ θs
θa
F̄1(z)dz

,

where the inequalities come from the fact that c11(·) is an increasing function. This in turn yields∫ θb
θs F̄2(z)c12(z)dz∫ θb
θa
F̄2(z)c12(z)dz

≥
∫ θb
θs F̄1(z)dz∫ θb
θa
F̄1(z)dz

. (34)

Putting equations (33) and (34) together implies

∃χ ∈ (0, 1) :

∫ θb
θs F̄2(z)dz∫ θb
θa
F̄2(z)dz

> χ >

∫ θb
θs F̄1(z)dz∫ θb
θa
F̄1(z)dz

.

Now, take u1 = u2 > 0 and

x1(θ) =


0 if θ < θa

χ if θa ≤ θ ≤ θb

1 if θb < θ

and

x2(θ) =

0 if θ < θs

1 if θs ≤ θ,

then is not hard to check that for this choice of (u1, u2, x1, x2) ∈ Ω the interior condition is satisfied, as

required. Theorem 1 in Luenberger (1969, p. 217) gives then the existence of Lagrange multipliers and

it also states that the static contract

(u1, u2, x1, x2) = (0, 0,1{θ≥θs},1{θ≥θs}),

39



should maximize the lagrangean. In other words, ∃,λ,w ≥ 0 such that

L(0, 0,1{θ≥θs},1{θ≥θs},λ,w) ≥ L(u,x,λ,w), ∀(u1, u2, x1, x2) ∈ Ω. (35)

Since this is for any (u1, u2, x1, x2) ∈ Ω we can take u1, u2 = 0, x2 defined as above and two possible

x1: one equal to 1{θ≥θa} and the other equal to 1{θ≥θb}. Then from (35) we get

α1 ·
∫ θs
θa
F̄2(z)c12(z)dz∫ θs
θa
F̄2(z)dz

+ λ1 ·
∫ θs
θa
F̄1(z)dz∫ θs

θa
F̄2(z)dz

≤ λ2 ≤ α1 ·
∫ θb
θs F̄2(z)c12(z)dz∫ θb

θs F̄2(z)dz
+ λ1 ·

∫ θb
θs F̄1(z)dz∫ θb
θs F̄2(z)dz

,

this and equation (32) imply

λ1 ·
∫ θs
θa
F̄1(z)dz∫ θs

θa
F̄2(z)dz

< λ1 ·
∫ θb
θs F̄1(z)dz∫ θb
θs F̄2(z)dz

,

if λ1 = 0 we get a contradiction. While if λ1 > 0 from equation (32) we deduce∫ θb
θs F̄1(z)c11(z)dz∫ θs
θa
F̄1(z)c11(z)dz

<

∫ θb
θs F̄2(z)dz∫ θs
θa
F̄2(z)dz

<

∫ θb
θs F̄1(z)dz∫ θs
θa
F̄1(z)dz

,

which in turn implies

c11(θs) ≤
∫ θb
θs F̄1(z)c11(z)dz∫ θb

θs F̄1(z)dz
<

∫ θs
θa
F̄1(z)c11(z)dz∫ θs
θa
F̄1(z)dz

≤ c11(θs), (36)

a contradiction.

For the other direction we assume condition (NR) holds and we want to verify the static contract is

optimal. In order to do so we use Theorem 1 in Luenberger (1969, p. 220). This theorem states that if

we are able to find lagrange multipliers λ,w ≥ 0 for which equation (35) holds, then the static contract

is optimal.

So, set the lagrange multipliers as follows

w1 = α1 − α2c
22(θs), w2 = α2 + α2c

22(θs), λ1 = 0, λ2 = −α2c
22(θs), (37)

these multipliers are non-negative because c22(θs) ≤ 0 and

w2 = α2 + α2c
22(θs) ≥ 0⇔ c22(θs) ≥ −1⇔ [θs − h22(θs)] ≥ −h22(θs)⇔ θs ≥ 0.

We first claim that

max
x1∈Ω

∫ θ̄

0
x1(z) ·

[
α1µ1(z)f1(z)− λ2F̄2(z)

]
dz =

∫ θ̄

θs

[
α1µ1(z)f1(z)− λ2F̄2(z)

]
dz. (38)

40



To prove this first note that the optimal solution x1 on the left hand side of (38) is of the threshold

type, that is, x1 = 1{θ≥θ?}. We proceed by contradiction, suppose∫ θ̄

θ?

[
α1µ1(z)f1(z)− λ2F̄2(z)

]
dz >

∫ θ̄

θs

[
α1µ1(z)f1(z)− λ2F̄2(z)

]
dz, (39)

if θ? > θs then the previous equation is equivalent to

0 >

∫ θ?

θs

[
α1µ1(z)f1(z)− λ2F̄2(z)

]
dz,

or put it in another way

−α2c
22(θs) >

∫ θ?
θs
α1µ1(z)f1(z)dz∫ θ?
θs
F̄2(z)dz

= α1 ·
∫ θ?
θs
F̄2(z)c12(z)dz∫ θ?
θs
F̄2(z)dz

,

which thanks to Lemma 4 implies

max
0≤θ≤θs

C12(θ, θs) > min
θs≤θ≤θ̄

C12(θs, θ),

contradicting condition (NR). If θ? < θs then equation (39) is equivalent to∫ θs

θ?

[
α1µ1(z)f1(z)− λ2F̄2(z)

]
dz > 0,

which is the same that

α1 ·
∫ θs
θ? F̄2(z)c12(z)dz∫ θs

θ? F̄2(z)dz
> −α2c

22(θs),

which thanks to Lemma 4 contradicts condition (NR). This proves equation (38).

Now, recall our choice of lagrange multipliers in (37) and consider the lagrangean evaluated at some

arbitrary (u1, u2, x1, x2) ∈ Ω. Then, we can verify (35)

L(u,x,λ,w) =

∫ θ̄

0
x1(z) ·

[
α1µ1(z)f1(z)− λ2F̄2(z)

]
dz +

∫ θ̄

0
x2(z) ·

[
α2µ2(z)f2(z) + λ2F̄2(z)

]
dz

≤ max
x1∈Ω

∫ θ̄

0
x1(z) ·

[
α1µ1(z)f1(z)− λ2F̄2(z)

]
dz

+ max
x2∈Ω

∫ θ̄

0
x2(z) ·

[
α2µ2(z)f2(z) + λ2F̄2(z)

]
dz

(a)
=

∫ θ̄

θs

[
α1µ1(z)f1(z)− λ2F̄2(z)

]
dz +

∫ θ̄

θs

[
α2µ2(z)f2(z) + λ2F̄2(z)

]
dz

=

∫ θ̄

θs

[
α1µ1(z)f1(z) + α2c

22(θs)F̄2(z)
]
dz +

∫ θ̄

θs

[
α2µ2(z)f2(z)− α2c

22(θs)F̄2(z)
]
dz

=

∫ θ̄

θs

[
α1µ1(z)f1(z) + α2µ2(z)f2(z)

]
dz

= L(0, 0,1{θ≥θs},1{θ≥θs},λ,w),
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where in (a) we have used (38) and the fact that

α2µ2(θ)f2(θ) + λ2F̄2(θ) ≥ 0⇔ c22(θ) ≥ c22(θs),

which, since c22(·) is increasing, holds if and only θ ≥ θs. Thus, we have proved that for this choice of

lagrange multipliers the static contract maximizes the lagrangen and, therefore, thanks to Theorem 1

in Luenberger (1969, p. 220) it is optimal.

Proof of Proposition 3. Take θa, θb from Lemma 6. In the proof of Theorem 2 we already saw

that this allocation is feasible. So we only need to verify that it yields a larger payoff than the static

contract, that is, we want∫ θ̄

θs
[α1f1(z)µ1(z) + α2f2(z)µ2(z)]dz < χ ·

∫ θb

θa

α1f1(z)µ1(z)dz +

∫ θ̄

θb

α1f1(z)µ1(z)dz

+

∫ θ̄

θs
α2f2(z)µ2(z)dz,

this is equivalent to ∫ θb
θs F̄2(z)dz∫ θb
θa
F̄2(z)dz

·
∫ θb

θa

α1f1(z)µ1(z)dz >

∫ θb

θs
α1f1(z)µ1(z)dz,

which is the same as ∫ θs
θa
F̄2(z)c12(z)dz∫ θs
θa
F̄2(z)dz

>

∫ θb
θs F̄2(z)c12(z)dz∫ θb

θs F̄2(z)dz
.

which is exactly the property satisfied by θa, θb.

Proof of Theorem 3. We relax the constraint associated to type 1 from (Pd) , that is, we relax

the following inequality

u1 +

∫ θ̄

0
x1(θ)F̄2(θ)dθ ≥ u2 +

∫ θ̄

0
x2(θ)F̄1(θ)dθ (40)

thus we end up with the same optimization problem that in the proof of Theorem 1: (PdR).

We use Theorem 1 in Luenberger (1969, p. 220) to prove that the proposed solution actually

optimizes (PdR). Then, we show that this solution is feasible for the original problem and, therefore,

optimal.

For easy of notation set θ1 = θ1, θ2 = θ2 and θ3 = θ1. With this notation our assumptions are:

there exists θ1 ≤ θ2 ≤ θ3 such that

1. C12(θ1, θ3) ≤ minθ3≤θ≤θ̄ C12(θ3, θ).

2. max0≤θ≤θ3 C12(θ, θ3) ≤ C12(θ1, θ3)
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3. α1 · C12(θ1, θ3) + α2c
22(θ2) = 0.

Note that from this condition is immediate that θ̂1 ≤ θ1 and θ2 ≤ θ̂2. For easy of exposition we

assume θ1 < θ2 < θ3, but the next argument still goes through if we don’t assume this.

Now, the Lagrangean for (PdR) is

L(u,x,λ,w) = u1(w1 − λ− α1) + u2(λ− α2 + w2)

+

∫ θ̄

0
x1(z) ·

[
α1µ1(z)f1(z)− λF̄2(z)(z)

]
dz +

∫ θ̄

0
x2(θ) ·

[
α2µ2(z)f2(z) + λF̄2(z)

]
dz,

consider the following multipliers

λ = α1 ·
∫ θ3
θ1
F̄2(z)c12(z)dz∫ θ3
θ1
F̄2(z)dz

, w1 = λ+ α1, w2 = −λ+ α2,

note that λ and w1 are trivially non-negative, and for w2 we have

w2 ≥ 0⇔ α2 + α2c
22(θ2) ≥ 0⇔ c22(θ2) ≥ −1⇔ [θ2 − h22(θ2)] ≥ −h22(θ2)⇔ θ2 ≥ 0,

where in the first if and only if we used condition (3). in our hypothesis. Thus when we optimize the

lagrangean we obtain

max
(u,x)∈Ω

L(x,u,λ,w) = max
0≤θ≤θ̄

∫ θ̄

θ

[
α1µ1(z)f1(z)−λF̄2(z)

]
dz+ max

0≤θ≤θ̄

∫ θ̄

θ

[
α2µ2(z)f2(z)+λF̄2(z)

]
dz. (41)

If we are able to show that L(x,u,λ,w) evaluated at our candidate solution is an upper bound for the

RHS above we are done. Let’s begin with the second term, take any 0 ≤ θ ≤ θ̄ then∫ θ̄

θ

[
α2µ2(z)f2(z) + λF̄2(z)

]
dz =

∫ θ̄

θ

[
α2µ2(z)f2(z)− α2c

22(θ2)F̄2(z)
]
dz

=

∫ θ̄

θ
α2F̄2(z)

[
c22(z)− c22(θ2)

]
dz

≤
∫ θ̄

θ2

α2F̄2(z)
[
c22(z)− c22(θ2)

]
dz

=

∫ θ̄

0
x?2(z)

[
α2µ2(z)f2(z) + λF̄2(z)

]
dz,

where in the first equality we used condition (3) and the inequality comes from the fact that c22(·) is

non-decreasing. Now we look into the first term in equation (41), consider first θ ≥ θ3∫ θ̄

θ

[
α1µ1(z)f1(z)− λF̄2(z)

]
dz =

∫ θ̄

θ3

[
α1µ1(z)f1(z)− λF̄2(z)

]
dz

−
∫ θ

θ3

[
α1µ1(z)f1(z)− λF̄2(z)

]
dz

≤
∫ θ̄

θ3

[
α1µ1(z)f1(z)− λF̄2(z)

]
dz,
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where we have used the following

−
∫ θ

θ3

[
α1µ1(z)f1(z)− λF̄2(z)

]
dz ≤ 0⇔ α1 ·

∫ θ3
θ1
F̄2(z)c12(z)dz∫ θ3
θ1
F̄2(z)dz

= λ ≤ α1 ·
∫ θ
θ3
F̄2(z)c12(z)dz∫ θ
θ3
F̄2(z)dz

,

which thanks to condition (1) in our hypothesis is true. A similar argument holds for θ ≤ θ3, but using

condition (2).

Since L(0,x?,λ,w) equals

χ

∫ θ3

θ1

[
α1µ1(z)f1(z)− λF̄2(z)

]
dz +

∫ θ̄

θ3

[
α1µ1(z)f1(z)− λF̄2(z)

]
dz +

∫ θ̄

θ2

[
α2µ2(z)f2(z) + λF̄2(z)

]
dz,

which by the definition of λ simplifies to∫ θ̄

θ3

[
α1µ1(θ)f1(θ)− λF̄2(θ)

]
dθ +

∫ θ̄

θ2

[
α2µ2(θ)f2(θ) + λF̄2(θ)

]
dθ,

we conclude that

max
(u,x)∈Ω

L(u,x,λ,w) ≤ L(0,x?,λ,w),

as required.

In order to conclude the proof we need to verify the proposed solution is indeed feasible for the

original problem. That is, we need to verify it satisfies equation (40) (note the other (IC) constraint is

satisfied with equality), which is equivalent to

χ ·
∫ θ3

θ1

F̄1(z)dz +

∫ θ̄

θ3

F̄1(z)dz ≥
∫ θ̄

θ2

F̄1(z)dz,

or in a more compact form ∫ θ3
θ2
F̄2(z)dx∫ θ3

θ1
F̄2(z)dz

≥
∫ θ3
θ2
F̄1(z)dz∫ θ3

θ1
F̄1(z)dz

. (42)

In order to verify equation (42) consider condition (2) with θ = θ2, that gives us∫ θ3
θ2
F̄2(z)dz∫ θ3

θ1
F̄2(z)dz

≥
∫ θ3
θ2
F̄2(z)c12(z)dz∫ θ3

θ1
F̄2(z)c12(z)dz

,

but thanks to (DHR) is not hard to check that∫ θ3
θ2
F̄2(z)c12(z)dz∫ θ3

θ1
F̄2(z)c12(z)dz

≥
∫ θ3
θ2
F̄1(z)dz∫ θ3

θ1
F̄1(z)dz

,

and, therefore, under our assumption equation (42) is verified. This concludes the proof.

44



B Proofs for section 4

Proof of Proposition 1. We make use of Theorem 2. Condition (NR) for the exponential distribution

is

max
θ≤θs

{θse−λ1θs − θe−λ1θ
e−λ2θ

s − e−λ2θ
}
≤ min

θs≤θ

{θe−λ1θ − θse−λ1θs
e−λ2θ − e−λ2θs

}
. (43)

Before we begin the proof we need some definitions and observations. Define the following functions

gL(θ) ,
θse−λ1θ

s − θe−λ1θ

e−λ2θ
s − e−λ2θ

and gU (θ) ,
θe−λ1θ − θse−λ1θs

e−λ2θ − e−λ2θs
.

Note the following

lim
θ→θs+

gU (θ) = lim
θ→θs−

gL(θ) =
(λ1θ

s − 1)

λ2
· e−θ

s(λ1−λ2), (44)

and

lim
θ→∞

gU (θ) = θs · e−θ
s(λ1−λ2). (45)

Finally note that

(λ1θ
s − 1)

λ2
· e−θ

s(λ1−λ2) ≤ θs · e−θ
s(λ1−λ2) ⇐⇒ θs ≤ 1

λ1 − λ2
. (46)

Now, suppose condition (NR) holds and

θs >
1

λ1 − λ2
(47)

From equations (44),(45) and (46) we see that

gU (θs) = gL(θs) > lim
θ→∞

gL(θ),

which implies

max
θ≤θs

{θse−λ1θs − θe−λ1θ
e−λ2θ

s − e−λ2θ
}
> min

θs≤θ

{θe−λ1θ − θse−λ1θs
e−λ2θ − e−λ2θs

}
(48)

contradicting the fact that condition (NR) holds.

For the other direction, assume equation (3) holds. We first prove that for θ ≤ θs we have gL(θ) ≤

gL(θs), indeed

gL(θ) ≤ gL(θs)⇐⇒ θse−λ1θ
s − θe−λ1θ

e−λ2θ
s − e−λ2θ

≤ (λ1θ
s − 1)

λ2
· e−θ

s(λ1−λ2)

⇐⇒ λ2 · (θse−λ1θ
s

− θe−λ1θ) ≥ (e−λ2θ
s

− e−λ2θ) · (λ1θ
s − 1) · e−θ

s(λ1−λ2)

⇐⇒ λ2θ
s · (1− θ

θs
e−λ1(θ−θs))− (1− e−λ2(θ−θs)) · (λ1θ

s − 1) ≥ 0,

so we just need to see that this las inequality holds for θ ≤ θs. For doing so define

H(θ) , λ2θ
s · (1− θ

θs
e−λ1(θ−θs))− (1− e−λ2(θ−θs)) · (λ1θ

s − 1),

45



and note that H(θs) = 0 and

H(0) = λ2θ
s + (eλ2θ

s

− 1) · (λ1θ
s − 1) ≥ λ2θ

s + λ2θ
s(λ1θ

s − 1) = λ2θ
s · λ1θ

s > 0,

where the inequality comes from convexity of the exponential function and the fact that θs ≥ 1/λ1.

Furthermore the derivative of H is given by

dH

dθ
= λ2(λ1θ − 1)e−λ1(θ−θs) − λ2(λ1θ

s − 1)e−λ2(θ−θs),

and it can be easily verified that for θ ≤ θs we have dH/dθ ≤ 0. This together to the facts that H(0) > 0

and H(θs) = 0 imply that gL(θ) ≤ gL(θs) for all θ ≤ θs. Which in turn implies

max
θ≤θs

{θse−λ1θs − θe−λ1θ
e−λ2θ

s − e−λ2θ
}

=
(λ1θ

s − 1)

λ2
· e−θ

s(λ1−λ2).

Now we prove that for θ ≥ θs we have gU (θ) ≥ gU (θs). Note that if we prove this we are done because

this and what we have just proven imply condition (NR). As before we do

gU (θ) ≥ gU (θs)⇐⇒ θe−λ1θ − θse−λ1θs

e−λ2θ − e−λ2θs
≥ (λ1θ

s − 1)

λ2
· e−θ

s(λ1−λ2)

⇐⇒ λ2(θse−λ1θ
s

− θe−λ1θ) ≥ (λ1θ
s − 1) · (e−λ2θ

s

− e−λ2θ) · e−θ
s(λ1−λ2)

⇐⇒ λ2(θs − θe−λ1(θ−θs))− (λ1θ
s − 1) · (1− e−λ2(θ−θs)) ≥ 0,

note that the LHS of this last inequality is again the function H(·) but this time defined for θ ≥ θs. We

have H(θs) = 0. It is easy to prove that for θs ≤ θ ≤ θ̃ the function H(θ) is increasing, and then for

θ > θ̃ is decreasing, where θ̃ > θs and dH(θ̃)/dθ = 0. Also,

lim
θ→∞

H(θ) = λ2θ
s − (λ1θ

s − 1) ≥ 0,

hence for θ ≥ θs we have H(θ) ≥ 0 and, therefore, gU (θ) ≥ gU (θs) for all θ ≥ θs, as desired.

Proof of Corollary 1. Recall that for any λL > λH from Lemma 2 we have

1

λL
≤ θs(αL) ≤ 1

λH
,

and

λL ≤ 2λH ⇐⇒
1

λH
≤ 1

λL − λH
,

therefore, for any αL ∈ [0, 1] equation (3) is satisfied. Then by Proposition 1 we conclude that the static

contract is optimal for any αL ∈ [0, 1].
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Proof of Corollary 2. First we show θs(·) is continuous from the right at zero. Let {αnL} ∈ [0, 1]

be any sequence such that

lim
n→∞

αnL = 0,

and suppose θs(αnL) does not converge to θs(0) = 1/λH . That is,

∃ε > 0, ∀n0,∃n ≥ n0, | 1

λH
− θs(αnL)| > ε,

since θs(αnL) ≤ 1
λH

we have

| 1

λH
− θs(αnL)| > ε⇐⇒ 1

λH
− θs(αnL) > ε.

This in turn means that we can create a subsequence {α`nL } ⊂ {αnL} such that

∀n, 1

λH
− ε > θs(α`nL ). (49)

But since θs(α`nL ) is a maximizer of Rs(·) we must have

α`nL θ
s(α`nL )e−λLθ

s(α`nL ) + (1− α`nL )θs(α`nL )e−λHθ
s(α`nL ) ≥ α`nL

1

λH
e
−λL 1

λH + (1− α`nL )
1

λH
e
−λH 1

λH ,

because λL > λH we can bound the LHS above to obtain

θs(α`nL )e−λHθ
s(α`nL ) ≥ α`nL

1

λH
e
−λL 1

λH + (1− α`nL )
1

λH
e
−λH 1

λH . (50)

Note that the function θe−λHθ has a unique maximum at θ = 1/λH and since θs(α`nL ) satisfies equation

(49), we can always find δ(ε) > 0 such that( 1

λH
+ δ(ε)

)
e
−λH( 1

λH
+δ(ε))

> θs(α`nL )e−λHθ
s(α`nL ), ∀n,

plugging this in equation (50) yields( 1

λH
+ δ(ε)

)
e
−λH( 1

λH
+δ(ε))

> α`nL
1

λH
e
−λL 1

λH + (1− α`nL )
1

λH
e
−λH 1

λH , ∀n,

so taking the limit over n gives a contradiction. In conclusion we have proved that θs(·) is continuous

from the right at zero. Now, to finalize the proof recall that we are assuming λL > 2λH or in other

words
1

λH
>

1

λL − λH
,

but since θs(0) = 1/λH and θs(·) is continuous from the right we can always find ᾱ1 ∈ (0, 1] such that

1

λH
≥ θs(ᾱ1) ≥ 1

λL − λH
,
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so thanks to Proposition 1, the dynamic contract is optimal when we set αL > ᾱ1. Note that the same

arguments is valid for 1/λL. That is, we can show that θs(αL) is continuos from the left at 1/λL and

then using the fact that
1

λL − λH
>

1

λL
,

we can find ᾱ2 ∈ [ᾱ1, 1) such that
1

λL − λH
> θs(ᾱ2) ≥ 1

λL
,

hence in [ᾱ2, 1] the static contract is optimal. All of this implies that since θs(·) is a non-increasing

function we can always find ᾱ ∈ (0, 1) with the desired property.

Proof of Corollary 3. Fix λH and αL. Suppose the result is not true, that is,

∀λ̄L ≥ 2λH , ∃λL ≥ λ̄L, θs(λL) ≤ 1

λL − λH
.

From this we can construct a sequence λnL ≥ 2λH such that

lim
n→∞

λnL =∞ and θs(λnL) ≤ 1

λnL − λH
, ∀n ∈ N,

therefore θs(λnL) converges to 0, and we have

Rs(θs(λnL)) = θs(λnL)e−λHθ
s(λnL)

(
αLe

−(λnL−λH)θs(λnL) + αH

)
≤ θs(λnL)e−λHθ

s(λnL) n→∞→ 0.

However, since θs(λnL) maximizes Rs(·) it must be the case that Rs(1/λH) ≤ Rs(θs(λnL)), that is,

αL
1

λH
e
−λnL

1
λH + αH

1

λH
e
−λH 1

λH ≤ Rs(θs(λnL)).

Taking limit over n at both sides of the previous equation yields

αH
1

λH
e
−λH 1

λH ≤ 0,

a contradiction.

Proof of Proposition 2. We need to find θ1 = θL, θ2 = θH and θ3 such that θ1 ≤ θ2 ≤ θ3 and

the following conditions are satisfied

1. C12(θ1, θ3) ≤ minθ3≤θ≤θ̄ C12(θ3, θ).

2. max0≤θ≤θ3 C12(θ, θ3) ≤ C12(θ1, θ3)

3. α1 · C12(θ1, θ3) + α2c
22(θ2) = 0.
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And then we can apply Theorem 3.

First note that since the support of the exponential distribution is unbounded from above, we can

take θ3 =∞ which eliminates condition (1). Conditions (2) and (3) can be cast as

θ1e
−θ1(λ1−λ2) ≥ θe−θ(λ1−λ2) ∀θ ≥ 0 and α1 · λ2θ1e

−θ1(λ1−λ2) = −α2 · (λ2θ2 − 1), (51)

By optimizing the first term in (51) we obtain

θ1 =
1

λ1 − λ2
,

and then solving for θ2 yields

θ2 =
1

λ2
− α1

α2

e−1

λ1 − λ2
.

What we need to check (and it is not obvious at a first glance) is that θ1 ≤ θ2. First, we show

α1(θ1 −
1

λ1
)λ1e

−λ1θ1 + α2(θ1 −
1

λ2
)λ2e

−λ2θ1 < 0. (52)

To prove this inequality notice that since θs is the optimal static cutoff we have

α1θ
se−λ1θ

s

+ α2θ
se−λ2θ

s

≥ α1θ1e
−λ1θ1 + α2θ1e

−λ2θ1 , (53)

then

α1(θ1 −
1

λ1
)λ1e

−λ1θ1 + α2(θ1 −
1

λ2
)λ2e

−λ2θ1 = α1θ1(λ1 − λ2)e−λ1θ1 + α1θ1λ2e
−λ1θ1 + α2θ1λ2e

−λ2θ1

− α1e
−λ1θ1 − α2e

−λ2θ1

= α1e
−λ1θ1 + λ2(α1θ1e

−λ1θ1 + α2θ1e
−λ2θ1)− α1e

−λ1θ1

− α2e
−λ2θ1

(a)

≤ λ2(α1θ
se−λ1θ

s

+ α2θ
se−λ2θ

s

)− α2e
−λ2θ1

(b)
< λ2(α1θ

se−λ1θ
s

+ α2θ
se−λ2θ

s

)− α2e
−λ2θs

= λ2α1θ
se−λ1θ

s

+ λ2α2e
−λ2θs(θs − 1

λ2
)

(c)
= λ2α1θ

se−λ1θ
s

− λ1α1e
−λ1θs(θs − 1

λ1
)

= α1e
−λ1θs

(
− θs(λ1 − λ2) + 1

)
(d)
< 0,
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where (a) comes from equation (53), (b) is true because the function −e−λ2θ increasing and θ1 < θs,

(c) comes from equation (2). And (d) comes from θ1 < θs. With this we have proven (52) and thus

λ1α2 · (θ2 −
1

λ2
)

(a)
= −λ1α1 · θ1e

−θ1(λ1−λ2)

= −λ1α1 ·
(
θ1 −

1

λ1

)
e−θ1(λ1−λ2) − λ1α1 ·

1

λ1
e−θ1(λ1−λ2)

(b)
> α2(θ1 −

1

λ2
)λ2 − α1 · e−θ1(λ1−λ2)

(c)
= α2(θ1 −

1

λ2
)λ2 +

α2

θ1
· (θ2 −

1

λ2
),

where in (a) and (c) we used the definition of θ2, and in (b) we used equation (52). From this we have

that

(θ2 −
1

λ2
) ·
(
λ1α2 −

α2

θ1

)
> α2(θ1 −

1

λ2
)λ2,

but replacing θ1 with 1/(λ1 − λ2) in this last expression we get θ2 > θ1.

Finally, following the result in Theorem 3 for χ we have

χ =

∫ θ3
θ2
f2(x)h22(x)dx∫ θ3

θ1
f2(x)h22(x)dx

=
e−λ2θ2

e−λ2θ1
= exp

(
− λ2

[ 1

λ2
− α1

α2

e−1

λ1 − λ2
− 1

λ1 − λ2

])
.
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