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Abstract

We propose an incomplete information analogue of rationalizability. An action is said

to be belief-free rationalizable if it survives the following iterated deletion process. At

each stage, we delete actions for a type of a player that are not a best response to some

conjecture that puts weight only on profiles of types of other players and states that that

type thinks possible, combined with actions of those types that have survived so far. We

describe a number of applications.

This solution concept characterizes the implications of equilibrium when a player is

known to have some private information but may have additional information. It thus an-

swers the "informational robustness" question of what can we say about the set of outcomes

that may arise in equilibrium of a Bayesian game if players may observe some additional

information.
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1 Introduction

We propose a definition of incomplete information rationalizability. A player’s possibilities are

the set of states that he believes possible. Suppose that we fix each player’s possibilities, his

possibilities about others’possibilities, and so on (his "higher-order possibilities"). An action

is belief-free rationalizable for a given higher-order possibility type if it survives the following

iterated deletion process. A conjecture of a player is a belief about other players’action profiles,

their higher-order possibilities and a payoff relevant state. At each stage of an iterated deletion,

delete for each type the set of actions that are not a best response to any conjecture that

assigns probability zero to (i) states that that type considers impossible; and (ii) action and type

combinations of other players that have already been deleted.

This paper makes a number of contributions. First, we propose this new solution concept

for incomplete information games. Second, we study the implication of this solution concept in

a number of important economic applications. And third, we show that the solution concept

captures the idea of informational robustness: what can we say about rational play in a given

environment if we know that players have a certain amount of private information - about payoff

relevant states and others’private information - but cannot rule out the possibility that players

have additional information? The new solution concept also provides a benchmark for a larger

literature looking at informational robustness, which we review.

With respect to the economic applications, we first consider the payoff-type environments,

where each player knows his own payoff-type and thinks every payoff-type profile of other players

is possible. In this case, belief-free rationalizability has a simpler characterization. In this

setting, a player’s payoff-type is a suffi cient condition for his higher-order possibility type. Now

we can iteratively delete actions for each payoff-type that are not a best response to some belief

about others’payoff-types and actions that puts zero probability on action - payoff-type pairs

that have already been deleted. Players have unique rationalizable actions if their utilities are

suffi ciently insensitive to others’types. We provide a tight characterization of when there is

suffi cient insensitivity to obtain a unique outcome, in linear best response games; we also describe

how this result extends to a class of games where each player’s utility depends on some suffi cient

statistic of all other players’payoff-types.

We then depart from known payoff-type environments, and consider two-player two-action

games where each player is choosing between a risky action and a safe action. The safe action
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always gives a payoff of zero. The payoff to the risky action depends on the other player’s

action and the payoff state. The payoff to the risky action when the other player takes the safe

action is always negative, and can be interpreted as the cost of taking the risky action. Two

important applications, within this class of games, are studied. In coordination games - where

if both players take the risky action, the payoffs of the players always have the same sign - we

interpret the risky action as "invest". In trading games - where if both players take the risky

action, the payoffs of the players have different signs - we interpret the risky action as accepting

a trade. The safe action ("don’t invest" or "reject trade") is always belief-free rationalizable in

these games. We characterize when the risky action ("invest" or "accept trade") is belief-free

rationalizable. An event is said to be commonly possible for a player if he thinks that the event

is possible (i.e., assigns it strictly positive probability), thinks that it is possible that both the

event is true and that the other player thinks it is possible; and so on. Invest (the risky action

in the coordination game) is belief-free rationalizable for a player if and only if it is a common

possibility for that player that the payoff from both players investing is positive. Accepting

trade (the risky action in the trading game) is belief-free rationalizable for a player if and only if

an analogous iterated statement about possibility is true: (i) each player thinks that it is possible

that he gains from trade; (ii) each player thinks it is possible that both he gains from trade and

that (i) holds for the other player; and so on.

To understand the informational robustness foundations of belief-free rationalizability, sup-

pose we start with a fully-specified type space, including players’beliefs as well the support of

those beliefs (i.e., the set of states and others’types that are thought possible). Now suppose

that players started with the information in that type space but were able to observe additional

information. What can we say about a player’s updated beliefs? One restriction is that that

player cannot assign positive probability to something that was not thought possible. But for

some subjective interpretation of the signals a player observes, there will be no other restrictions

on what updated beliefs might look like. But our definition of belief-free rationalizability exactly

captures these assumptions: the support of beliefs is fixed but not the exact probabilities.

We can also use belief-free rationalizability to understand a larger literature on informational

robustness. Belief-free rationalizability is permissive because it allows players to observe payoff-

relevant information and does not impose the common prior assumption. If one allows only

payoff-irrelevant information, i.e., correlating devices, but still without imposing the common
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prior assumption, then we get the solution concept of interim correlated rationalizability (Dekel,

Fudenberg, and Morris (2007)). If one imposes the common prior assumption, but allow payoff-

relevant information, then we get Bayes correlated equilibrium (Bergemann and Morris (2016a)).1

If one imposes both the common prior assumption and payoff- irrelevant information, then one

gets the belief invariant Bayes correlated equilibrium studied in Liu (2015). The following table

now summarizes these relationships between the solution concepts:

payoff-relevant signals payoff-irrelevant signals only

non common prior belief-free rationalizability interim correlated rationalizability

common prior Bayes correlated equilibrium belief invariant Bayes correlated equilibrium

Under complete information - the solution concepts without the common prior assumption

reduce to the standard notion of correlated rationalizability (Brandenburger and Dekel (1987)),

while both correlated equilibrium notions (with the common prior assumption) reduce to the

standard notion of (objective) correlated equilibrium Aumann (1987).

One contribution of this paper is to then provide a unified description for informational

robustness foundations of these solutions concepts. In each case, we characterize what can

happen in (Bayes Nash) equilibrium if we allow players to observe additional information as

described above. These informational robustness foundations follow Brandenburger and Dekel

(1987) and Aumann (1987) in showing even if one makes the strong (and perhaps unjustified2)

assumption of equilibrium, one cannot remove the possibility of rationalizable play or correlated

equilibrium distributions being played if payoff-irrelevant signals are observed (not imposing or

imposing the common prior assumption, respectively, in the two cases).

The formal statements in Brandenburger and Dekel (1987) and Aumann (1987) have the in-

formational robustness statements described above.3 However, both papers interpret their results

informally as establishing foundations for solution concepts by establishing that they correspond
1In recent work, we have argued that Bayes correlated equilibrium is the relevant tool for characterizing

(common prior) robust predictions in games as well as information design (Bergemann and Morris (2013) and

Bergemann and Morris (2016b)).
2There is a potential tension between assuming equilibrium - a solution concept that has correct common beliefs

built into it - in environments where the common prior assumption is not satisfied. Thus Dekel, Fudenberg,

and Levine (2004) argue that natural learning justifications that would explain equilibrium in an incomplete

information setting would also give rise to a learning justification of common prior beliefs.
3Thus Proposition 2.1 of Brandenburger and Dekel (1987), while stated in the language of interim payoffs,

established that the set of actions played in an appropriate version of subjective correlated equilibrium equals
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to the implications of common certainty of rationality,4 with or without the common prior as-

sumption: imposing common certainty of rationality is formally equivalent to the assumption

of equilibrium on the commonly certain component of the type space. The later literature on

"epistemic foundations" has developed more formal statements of these results as consequence of

common certainty of rationality.5 In the current paper, we deliberately focus on a narrower in-

formational robustness interpretation of the results both because this is the interpretation that is

relevant for our applications and because the modern epistemic foundations literature addresses

a wide set of important but subtle issues that are relevant for the epistemic interpretation but

moot for our informational robustness interpretation. Desiderata that are important in the

modern epistemic foundations literature are therefore not addressed, including (i) the removal

of reference to players’beliefs about their own types or counterfactual belief of types (Aumann

and Brandenburger (1995)); (ii) restricting attention to state spaces that reflect "expressible"

statements about the model (Brandenburger and Friedenberg (2008) and Battigalli, Di Tillio,

Grillo, and Penta (2011)); (iii) giving an interim interpretation of the common prior assump-

tion (Dekel and Siniscalchi (2014)). Battigalli and Siniscalchi (2003) introduced the notion of

"∆-rationalizability" for both complete and incomplete information environments, building in

arbitrary restrictions on the beliefs of any type about other players’types and actions, and states.

Battigalli, Di Tillio, Grillo, and Penta (2011) describes how interim correlated rationalizability

(in general) and belief-free rationalizability (in the case of payoff-type environments) are special

cases of "∆-rationalizability", where particular restrictions are placed on beliefs about other

players’types and states. Belief-free rationalizability could also be given a ∆-rationalizability

the set of correlated rationalizable actions. The main theorem of Aumann (1987) showed that under assump-

tions equivalent to Bayes Nash equilibrium on a common prior type space with payoff-irrelevant signals, the ex

ante distribution of play corresponds to an (objective) correlated equilibrium. Aumann (1974) has an explicit

informational robustness motivation.
4Aumann (1987) notes in the introduction that he assumes "common knowledge that each player chooses a

strategy that maximizes his expected utility given his information". Brandenburger and Dekel (1987) write in

the introduction that their approach "starts from the assumption that the rationality of the players is common

knowledge." We follow the recent literature in replacing the term "knowledge" in the expression common knowl-

edge because it corresponds to "belief with probability 1," rather than "true belief" (the meaning of knowledge

in philosophy and general discourse). We use "certainty" to mean "belief with probability 1".
5Thus Dekel and Siniscalchi (2014) state a modern version of the main result of Brandenburger and Dekel

(1987) as Theorem 1 and a (somewhat) more modern statement of Aumann (1987) in Section 4.6.2.
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formulation, outside of payoff-type environments, where the corresponding type-dependent re-

striction on beliefs would be on the support of the beliefs only.

There are two important special cases where belief-free rationalizability has already been ap-

plied in payoff-type environments. A leading example of a payoff-type environment is a private

values environment (where a player’s payoff depends only on his own payoff-type), and Chen,

Micali, and Pass (2015) have proposed what we are calling belief-free rationalizability in this

context and used it for novel results on robust revenue maximization. Payoff-type environments

without private values were the focus of earlier work of ours on robust mechanism design col-

lected in Bergemann and Morris (2012); and we report here translations of our mechanism design

results on payoff-type environments to general games.6 Battigalli, Di Tillio, Grillo, and Penta

(2011) studied - and used the name - "belief-free rationalizability" in the context of payoff-type

environments. We used Bayes correlated equilibrium (in the special case of payoff-type envi-

ronments) in Bergemann and Morris (2008). The unified treatment of informational robustness

thus also embeds both our earlier work on robust mechanism design and our more recent work

on robust predictions in games (Bergemann and Morris (2013), (2016)).

The informational-robustness results in this paper concern what happens if players observe

extra signals about payoffs, but without allowing payoff perturbations. A related but differ-

ent strand of the literature (Fudenberg, Kreps, and Levine (1988), Kajii and Morris (1997)

and Weinstein and Yildiz (2007)) examines the robustness of equilibrium predictions to payoff

perturbations about which players face uncertainty.

We define the notion of belief-free rationalizability in Section 2. We develop the implications

of belief-free rationalizability in a number of applications in Section 3. We relate belief-free

rationalizability to three other, previously introduced, solution concepts in Section 4. There

we also give unified informational-robustness foundations for all of these solution concepts. In

the final Section 5, we discuss the support assumption and relate it the notion of a posteriori

equilibrium of Aumann (1974) in complete information games.

6Our working paper, Bergemann and Morris (2007), covered some of the same material as this paper for

payoff-type environments and is thus incorporated in this paper.
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2 Setting and Belief Free Rationalizability

We will fix a finite set of players 1, ..., I and a finite set of payoff-relevant states Θ.

We divide a standard description of an incomplete information game into a "basic game"

and a "type space". A basic game G = (Ai, ui)
I
i=1 consists of, for each player, a finite set of

possible actions Ai and a payoff function ui : A × Θ → R where A = A1 × · · · × AI . A type

space T = (Ti, πi)
I
i=1 consists of, for each player, a finite set of types Ti and, for each player, a

belief over others’types and the state, πi : Ti → ∆ (T−i ×Θ). An incomplete information game

consists of a basic game G = (Ai, ui)
I
i=1 and a type space T = (Ti, πi)

I
i=1.

In defining belief-free rationalizability, it is only the support of πi (ti) that matters, not the

(strictly positive) probabilities assigned to elements of that support. We allow the implied

redundancies in our description of the type space to facilitate later comparisons with other

solution concepts.

We define belief-free rationalizability inductively as follows. Suppose BFRn
i (ti) describes the

n−th level (belief-free) rationalizable actions for type ti of agent i. Write BFRn for the profile

of correspondences where each BFRn
i is a non-empty correspondence BFR

n
i : Ti → 2Ai

/
∅. We

will say that ai is not (belief-free) dominated for type ti with respect to BFRn if there exists a

conjecture over profiles of other players’actions, types and payoff relevant states, whose support

is consistent with BFRn and the support of that type’s beliefs. Thus writing BFRn
i (ti) for the

set of actions that survive n rounds of deletion, we let BFR0i (ti) = Ai, let BFRn+1
i (ti) be the

set of actions for which there exists a conjecture νi ∈ ∆ (T−i × A−i ×Θ) such that

(1) νi (a−i, t−i, θ) > 0⇒ aj ∈ BFRn
j (tj) for each j 6= i;

(2)
∑
a−i

νi (a−i, t−i, θ) > 0⇒ πi (t−i, θ|ti) > 0 for each t−i, θ;

(3) ai ∈ arg max
a′i

∑
a−i,t−i,θ

νi (a−i, t−i, θ)ui ((a
′
i, a−i) , θ) ;

(1)

and let

BFRi (ti) =
⋂
n≥1

BFRn
i (ti) .

Definition 1 (Belief-Free Rationalizable)

Action ai is belief-free rationalizable for type ti (in game (G, T )) if ai ∈ BFRi (ti).
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Note that this definition is independent of a type’s numerical beliefs and depends only on

which profiles of other players’types and states he considers possible, i.e., the support of his

beliefs.

3 Applications of Belief-Free Rationalizability

In this section, we investigate the implications of belief-free rationalizability in some well-known

economic environments: first, linear best response games and, second, coordination and trading

games.

3.1 Payoff-Type Environments and Linear Best-Response Games

We first study payoff-type environments. We suppose that each player i has a payoff-type θi

that he knows; and that the payoff state θ is just the profile of players’payoff-types, θ = (θi)
I
i=1.

This assumption is maintained in many settings (including throughout our own work on robust

mechanism design collected in Bergemann and Morris (2012)). We will also maintain a full

support assumption: all types of all players - while knowing their own payoff-types - think that

every profile of others’payoff-types are possible (this assumption was implicit in our work on

robust mechanism design). Under these assumptions, a payoff-type is a suffi cient statistic for a

player’s higher-order possibilities, since every type is certain of his own payoff-type and there is

common certainty that no player is ever certain of anything else. Thus we can identify types

with payoff-types for purposes of defining belief-free rationalizability. The definition of belief-free

rationalizability now simplifies. Writing BFRn
i (θi) for the set of actions that survive n rounds

of deletion, we have BFR0i (ti) = Ai , BFRn+1
i (θi) equal to the set of actions for which there

exists a conjecture νi ∈ ∆ (A−i ×Θ−i) such that

(1) νi (a−i, θ−i) > 0⇒ aj ∈ BFRn
j (θj) for each j 6= i;

(2) ai ∈ arg max
a′i

∑
a−i,θ−i

νi (a−i, θ−i)ui ((a
′
i, a−i) , (θi, θ−i)) ;

and

BFRi (θi) =
⋂
n≥1

BFRn
i (θi) .

We illustrate belief-free rationalizability in payoff-type spaces by considering a linear best-

response game. Such games arise in a wide variety of settings (and arose endogenously out of
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a mechanism design problem in our prior work, e.g. Bergemann and Morris (2009)). For this

section, we will have continuum - instead of finite - actions and payoff-types. We could formally

extend our earlier definitions to such continuum action type settings straightforwardly but at the

expense of additional notation and qualifications.

So suppose now that Ai = Θi = [0, 1] for all i and that agent i has payoff-type θi and belief

µi ∈ ∆ (A−i ×Θ−i). We suppose that agent i has a best response to set his action equal to:

ai = θi + γEµi

(∑
j 6=i

(aj − θj)
)
. (2)

Thus each player wants to set his action equal to the payoff state θi but make a linear

adjustment based on the distance of others’actions from their payoff-types. If the parameter γ

is positive, then this is a game with strategic complementarities, while a negative γ corresponds

to a game with strategic substitutes. Many payoffs could give rise to this best response function.

In particular, this best response function could arise from a common interest game:

ui (a, θ) = v (a, θ)

= −
I∑
j=1

(aj − θj)
[

(aj − θj) + γ
∑
k 6=j

(ak − θk)
]

= −
I∑
j=1

(aj − θj)2 − γ
I∑
j=1

(aj − θj)
∑
k 6=j

(ak − θk) ,

for some γ ∈ R. In this case, a player’s utility from choosing action ai is

Eµi (v|ai, θi) = −
∫

a−i,θ−i

(
I∑
j=1

(aj − θj)2 + γ
I∑
j=1

(aj − θj)
∑
k 6=j

(ak − θk)
)
dµi.

The first-order condition for this problem is then:

dEµi (v|ai, θi)
dai

= −2 (ai − θi)− 2γEµi

(∑
j 6=i

(aj − θj)
)
,

and setting this equal to zero gives agent i’s best response (2). This game has a unique ex post

equilibrium, where each player sets his action equal to his payoff-type. The set of belief-free

rationalizable actions are:

BFRi (θi) =

 {θi} , if − 1
I−1 < γ < 1

I−1 ;

[0, 1] , otherwise.
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This can be shown inductively:

BFRk
i (θi) ,

[
max

{
0, θi − (|γ| (I − 1))k

}
,min

{
1, θi + (|γ| (I − 1))k

}]
.

If |γ| < 1
I−1 , the set of kth-level rationalizable actions shrinks at every iteration. If |γ| >

1
I−1 , the

bounds on the kth-level rationalizable actions explode so no action is excluded. In Bergemann

and Morris (2009) we show how this logic can be generalized to asymmetric linear best response

games when the best response function of player i is given by:

ai = θi − Eµi

(∑
j 6=i

γij (aj − θj)
)

;

and to general games where a player’s best response is monotonic in his payoffstate and an aggre-

gate statistic of other players’actions. In both cases, there is a unique belief-free rationalizable

action if and only if players’utilities are not too sensitive to other players’payoff-types.

3.2 Binary Actions: Coordination and Trade

We now consider some classic economic problems - coordination and trade. For simplicity, we

focus our attention on a class of two-player two-action games where the payoffs in state θ ∈ Θ

are given by:

θ Risky Safe

Risky x1 (θ)− c, x2 (θ)− c −c, 0
Safe 0,−c 0, 0

, (3)

where the risky payoff (x1 (θ) , x2 (θ)) ∈ R2 depends on the realized payoff-state θ. We will
characterize belief-free rationalizable actions in this class of games, with additional restrictions

giving coordination and trading interpretations. Before presenting these characterizations, we

report a general language for discussing higher-order possibility and common possibility that is

useful in the characterization of rationalizable behavior in both classes of games.

3.2.1 Higher-Order and Common Possibility

For a fixed type space T , an event E is a subset of T ×Θ. "Possibility operators" are defined as

follows. We present the definitions here for two players and the generalization to many players
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is immediate, but not necessary for our purpose here. We write Bi (E) for the set of types of

player i that think that E is possible:

Bi (E) =

ti ∈ Ti
∣∣∣∣∣∣ ∃tj ∈ Tj and θ ∈ Θ such that

((ti, tj) , θ) ∈ E and πi (tj, θ|ti) > 0

 .
For a pair of events E1 ⊆ T1 and E2 ⊆ T2, (E1, E2) are a common possibility for player i if:

1. player i thinks it is possible that Ei is true,

2. player i thinks it is possible that both (i) Ei is true; and (ii) player j thinks that Ej is

possible,

3. and so on... .

Thus if we write Ci (E1, E2) for the set of types of player i for whom (E1, E2) are a common

possibility, we have

Ci (E1, E2) = Bi (Ei) ∩Bi (Ei ∩Bj (Ej)) ∩Bi (Ei ∩Bj (Ej ∩Bi (Ei))) ∩ .....

More formally, define operatorsBk
1 andB

k
2 on pairs of events byB

0
i (E1, E2) = Ti andBk+1

i (E1, E2) =

Bi

(
Ei ∩Bk

j (Ej)
)
for each k = 1, 2..., we have

Ci (E1, E2) =
⋂
k≥1

Bk
i (E1, E2) . (4)

The sequence Bk
i (E1, E2) is decreasing under set inclusion for each i. Thus this definition of

common possibility also has a well-defined fixed point characterization:

Lemma 1 (Common Possibility as Fixed Point)

Let F1 ⊆ T1 and F2 ⊆ T2 be the largest sets of types satisfying F1 ⊆ B1 (E1 ∩ F2) and F2 ⊆
B2 (E2 ∩ F2). Then Ci (E1, E2) = Fi.

The definition given by (4) describes a concept of common possibility for a pair of events

(E1, E2) for the two players. If we are only interested in a single event, and we can adapt the

above definitions to a single event E1 = E2 = E, so that event E is a common possibility for

player i if:
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1. player i thinks it is possible that E is true,

2. player i thinks it is possible that both (i) E is true; and (ii) player j thinks that E is

possible,

3. and so on... .

We will write Ci (E) as shorthand for Ci (E,E), and so

Ci (E) = Bi (E) ∩Bi (E ∩Bj (E)) ∩Bi (E ∩Bj (E ∩Bi (E))) ∩ .....;

and this is equivalent to inductively defining

B0
i (E) = Ti and Bk+1

i (E) = Bi

(
E ∩Bk

j (E)
)
,

and setting

Ci (E) =
⋂
k≥1

Bk
i (E) .

3.2.2 Coordination Games

We now return to the two person two action game described by (3) above. For the class of

coordination games, define ΘG to be the set of "good" payoff states where both players strictly

benefit if both take the risky action ("invest"); thus

ΘG = {θ ∈ Θ |x1 (θ) > c and x2 (θ) > c} .

Define ΘB to be the set of "bad" payoff states where both players are strictly made worse off

even if both take the risky action; thus

ΘB = {θ ∈ Θ |x1 (θ) < c and x2 (θ) < c} .

Here, c has the interpretation that it is a cost of investment that is occurred independent of

whether others invest. We will define a coordination game to be a situation where all states are

either good or bad, so that

Θ = ΘG ∪ΘB.
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To remove uninteresting cases based on indifference, this definition excludes the possibility that

xi (θ) = c. We write EG and EB for the set of states where the payoff state is good and bad,

respectively, so

EG = {(t, θ) |θ ∈ ΘG} and EB = {(t, θ) |θ ∈ ΘB } .

In coordination games, at all good states, the corresponding complete information game has two

strict Nash equilibria (both invest and both not invest), while at all bad states, both players

have a strictly dominant strategy to not invest. Now we have:

Proposition 1 (Belief-Free Rationalizability in Coordination Game)

In a coordination game, the safe action (not invest) is always belief-free rationalizable; the risky

action (invest) is belief-free rationalizable for player i if and only if the event EG is a common

possibility for player i.

The first claim follows immediately because both not invest is always a strict Nash equilibrium

of the underlying complete information game. For the second claim, observe that Bk
i (EG) is

the set of types of agent i for whom invest is kth level belief-free rationalizable. This follows

by induction since B0
i (EG) = Ti corresponds to the set of types for whom invest is 0th level

belief-free rationalizable; and, if Bk
j (EG) is the set of types of player j for whom invest is kth

level belief-free rationalizable, then invest is (k + 1)th level rationalizable for player i only if he

attaches positive probability to EG ∩ Bk
j (EG) . But - by definition - the set of types of player i

for which this is true is exactly Bk+1
i

(
EG ∩Bk

i (EG)
)
, so we have our induction.

3.2.3 Trading Games

We now want to consider a class of trading games where the safe action is interpreted as no

trade and the risky action is interpreted as (agreeing to) trade. For this exercise, we think of

c as being very small and corresponding to a small transaction cost associated with agreeing to

trade. But trade will only take place if both players agree to trade. Let Θi ⊆ Θ be the set of

"i gain (payoff) states" where trade is beneficial for player i, but not for player j, so

Θi = {θ ∈ Θ |xi (θ) > c and xj (θ) < c} .

Define a trading game to be a situation where all states are gain states for exactly one player,

so that

Θ = Θ1 ∪Θ2.
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True zero-sum trade would require that x1 (θ) + x2 (θ) = 0 for all θ, while a weaker non-positive

sum trade requirement would be that x1 (θ) + x2 (θ) ≤ 0 for all θ. We do not use either of these

restrictions for our results and we would not get sharper results if we imposed either of them.

Now write E+i for the set of states and types corresponding to i-gain payoff state for player i,

E+i = {(t, θ) |θ ∈ Θi} .

Now we have:

Proposition 2 (Belief-Free Rationalizability in Trading Game)

In a trading game, the safe action (reject trade) is always belief-free rationalizable; the risky

action (accept trade) is belief-free rationalizable for player i if and only if the events
(
E+1 , E

+
2

)
are a common possibility for player i.

The first claim is immediate because, in a trading game, the strictly positive cost c implies

that there is always a strict equilibrium where each player never trades, which in turn implies that

rejecting trade must be belief-free rationalizable. For the second claim, observe thatBk
i

(
E+i , E

+
j

)
is the set of types of player i for whom trade is kth level belief-free rationalizable. This follows

by induction: B0
i

(
E+i , E

+
j

)
= Ti corresponds to the set of types from whom accepting trade is

0th level belief-free rationalizable; and if Bk
j

(
E+j , E

+
i

)
is the set of types of player j for whom

accepting trade is k-th level belief-free rationalizable, then trade is (k + 1)-th level belief-free

rationalizable for player i only if he attaches positive probability to Ei∩ Bk
j

(
E+j , E

+
i

)
. But - by

definition - the set of types of player i for which this is true is exactly Bk+1
i

(
E+i ∩Bk

j

(
E+j , E

+
i

))
,

so we have our induction.

We follow Morris and Skiadas (2000) in proving a no trade result under rationalizability.7

While they did not explicitly use belief-free rationalizability as a solution concept, their results

are remain true as stated for this definition and our proposition is essentially the same as theirs,

although their characterization is expressed in very different language. In the working paper

version of this paper Bergemann and Morris (2015), we show how our characterization reduces

to the one reported there.

7Morris and Skiadas (2000) maintained the payoff type assumption, so that trades were conditional on only

the type profile.
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4 Solution Concepts and Informational Robustness

We now discuss three more solution concepts in order to put belief-free rationalizability in context

and provide unified informational-robustness foundations of solution concepts.

4.1 Three More Solution Concepts

First, consider interim correlated rationalizability (Dekel, Fudenberg, and Morris (2007)), which

is a refinement of belief-free rationalizability. An action is interim correlated rationalizable for a

type ti if we iteratively delete actions which are not a best response to any supporting conjecture

over other players’actions and types, as well as states, which (1) puts probability 1 on action

type profiles which have survived the iterated deletion procedure so far, and (2) has a marginal

belief over others’types and states which is consistent with that type’s beliefs on the type space.

Crucially, this definition allows arbitrary correlation in the supporting conjecture as long as (1)

and (2) are satisfied. Formally, let ICR0i (ti) = Ai and let ICRn+1
i (ti) equal the set of actions

for which there exists νi ∈ ∆ (A−i × T−i ×Θ) such that

(1) νi (a−i, t−i, θ) > 0⇒ aj ∈ ICRn
j (tj) for each j 6= i;

(2)
∑
a−i

νi (a−i, t−i, θ) = πi (t−i, θ|ti) for each t−i, θ;

(3) ai ∈ arg max
a′i

∑
a−i,t−i,θ

νi (a−i, t−i, θ)ui ((a
′
i, a−i) , θ) ;

(5)

and let

ICRi (ti) =
⋂
n≥1

ICRn
i (ti) .

Definition 2 (Interim Correlated Rationalizable)

Action ai is interim correlated rationalizable for type ti (in game (G, T )) if ai ∈ ICRi (ti).

We now consider two parallel definitions of (objective) incomplete information correlated

equilibrium for the same incomplete information game. Type space T = (Ti, πi)
I
i=1 satisfies the

common prior assumption if there exists π∗ ∈ ∆ (T ×Θ) such that∑
t′−i,θ

′

π∗
((
ti, t

′
−i
)
, θ′
)
> 0,
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for all i and ti, and

πi (t−i, θ|ti) =
π∗ ((ti, t−i) , θ)∑

t′−i,θ
′

π∗
((
ti, t′−i

)
, θ′
) ,

for all i, (ti, t−i) and θ.8

Now we have a common prior incomplete information game (G, T ). Behavior in this incom-

plete information game can be described by a decision rule mapping players’types and states to

a probability distribution over players’actions, σ : T × Θ → ∆ (A). A decision rule σ satisfies

belief-invariance if, for each player i,

σi (ai| (ti, t−i) , θ) ,
∑
a−i

σ ((ai, a−i) | (ti, t−i) , θ) (6)

is independent of (t−i, θ). Thus a decision rule satisfies belief-invariance if a player’s action does

not reveal any additional information to him about others’types and the state. This property

has played an important role in the literature on incomplete information correlated equilibrium,

see, Forges (1993), Forges (2006) and Lehrer, Rosenberg, and Shmaya (2010). Notice that

property (2) in the iterative definition of interim correlated rationalizability in (5) was a belief-

invariance assumption.

Decision rule σ satisfies obedience if∑
a−i,t−i,θ

π∗ (ti, t−i)σ ((ai, a−i) | (ti, t−i) , θ)ui ((ai, a−i) , θ)

≥
∑

a−i,t−i,θ

π∗ (ti, t−i)σ ((ai, a−i) | (ti, t−i) , θ)ui ((a′i, a−i) , θ) .

for all i, ti ∈ Ti and ai, a′i ∈ Ai. Obedience has the following mediator interpretation. Suppose
that an omniscient mediator knew players’types and the true state, randomly selected an action

profile according to σ and privately informed each player of his recommended action. Would a

player who knew his own type and heard the mediator’s recommendation have an incentive to

follow the recommendation? Obedience says that he would want to follow the recommendation.

8When the common prior assumption is maintained, we understand the common prior π∗ to be implicitly

defined by the type space. In the (special) case where multiple common priors satisfy the above properties, our

results will hold true for any choice of common prior. By requiring that all types are assigned positive probability,

we are making a slightly stronger assumption than some formulations in the literature. This version simplifies

the statement of our results and will also tie in with the support assumption that we impose in the informational

robustness foundations in Section 4.3.
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Definition 3 (Belief Invariant Bayes Correlated Equilibrium (BIBCE))

Decision rule σ is a belief invariant Bayes correlated equilibrium (BIBCE) if it satisfies obedience

and belief-invariance.

Liu (2015) described the subjective correlated equilibrium analogue of interim correlated

rationalizability. If one then imposes the common prior assumption (as he discusses in Section

5.2), then the version of incomplete information correlated equilibrium that one obtains is given

by Definition 3.9 Its relation to the incomplete information correlated equilibrium literature is

further discussed in Bergemann andMorris (2016a): it is in general a weaker requirement than the

belief invariant Bayesian solution of Forges (2006) and Lehrer, Rosenberg, and Shmaya (2010),

because - like interim correlated rationalizability - it allows unexplained correlation between types

and payoff states. It is immediate from the definitions that any action played with positive

probability by a type in a belief-invariant Bayes correlated equilibrium is interim correlated

rationalizable.

Definition 4 (Bayes Correlated Equilibrium (BCE))

Decision rule σ is a Bayes correlated equilibrium (BCE) if it satisfies obedience.

This solution concept is studied in Bergemann and Morris (2016a). It is immediate from

the definitions that any action played with positive probability by a type in a Bayes correlated

equilibrium is belief-free rationalizable.

4.2 Back to the Applications

We will selectively report what happens to some of our earlier applications under these three

additional solution concepts.

4.2.1 Payoff-Type Spaces and Linear Best Response Games

The three new solution concepts lead to simpler statements and interpretations in the special

case of payoff-type environments. In a payoff-type environment, there is "distributed certainty":

9Liu (2015) refers to what we are calling the belief invariant Bayes correlated equilibrium as the "common-prior

correlated equilibrium" (see Definition 4 in Liu (2015)). We use the current language to emphasize the belief

invariance property relative to the Bayes correlated equilibrium itself.
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the join of players’information reveals the true state . But under this assumption, the "correla-

tion" in interim correlated rationalizability is no longer relevant, and it is equivalent to interim

independent rationalizability; the belief invariant Bayes correlated equilibrium reduces to the

belief invariant Bayesian solution of Forges (2006) and Lehrer, Rosenberg, and Shmaya (2010);

and Bayes correlated equilibrium reduces to the Bayesian solution of Forges (1993).

One can show that if

γ ∈
[
− 1

I − 1
, 1

]
,

there is a unique Bayes correlated equilibrium in the linear best response example. In this

equilibrium, each player sets his action equal to his payoff-type. Thus if 1 < γ < − 1
I−1 , then

there is a unique Bayes correlated equilibrium but all actions are belief-free rationalizable. This

follows from results in Bergemann and Morris (2008), via a potential game argument.

4.2.2 Binary Actions: Coordination and Trade

Higher-Order and Common Beliefs We now introduce belief operators analogous to the

possibility operators introduced earlier. We will use both possibility and p-belief operators

to analyze the coordination and trading game under interim correlated rationality and belief-

invariant Bayes correlated equilibrium. We write Bp
i (E) for the set of types of player i who

assign probability at least p to event E,

Bp
i (E) =

ti ∈ Ti
∣∣∣∣∣∣

∑
{(tj ,θ)|((ti,tj),θ)∈E}

πi (tj, θ|ti) ≥ p

 .
The connection with possibility operators is that if a player assigns probability p to an event for

any p > 0, then he thinks that the event is possible:

Bi (E) =
⋃
p>0

Bp
i (E) .

Event E is repeated common p-belief for player i if:

1. player i assigns probability at least p to event E,

2. player i assigns probability at least p to the event that both (i) E is true; and (ii) player j

assigns probability at least p to event E,
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3. and so on... .

Now writing Cp
i (E) for the set of types of player i for whom event E is repeated common

p-belief, we have that

Cp
i (E) = Bp

i (E) ∩Bp
i

(
E ∩Bp

j (E)
)
∩Bp

i

(
E ∩Bp

j (E ∩Bp
i (E))

)
∩ .....;

and this is equivalent to inductively defining

Bp,0
i (E) = Ti and B

p,k+1
i (E) = Bp

i

(
E ∩Bp,k

j (E)
)
,

and setting

Cp
i (E) = ∩

k≥1
Bp,k
i (E) .

This definition of belief operators follows Monderer and Samet (1989) while the definition of

repeated common p-belief comes from Monderer and Samet (1996).10

Coordination We now focus on a more specialized class of coordination games. Suppose that

θ ∈ ΘG ⇒ x1 (θ) = x2 (θ) = x > c,

θ ∈ ΘB ⇒ x1 (θ) = x2 (θ) = 0.

Call this a simple coordination game.

Proposition 3 (Belief-Free Rationalizability in a Simple Coordination Game)

In a simple coordination game, the safe action (not invest) is always interim correlated rational-

izable; the risky action (invest) is interim correlated rationalizable if and only if the event EG is

repeated common c/x-belief for player i.

Again, the first claim follows immediately because since both not invest is always a strict

Nash equilibrium of the underlying complete information game. For the second claim, note that

10The definition of repeated common p-belief is closely related to the more widely used concept of common

p-belief introduced in Monderer and Samet (1989) given by

C̃pi (E) = Bpi (E) ∩B
p
i (B

p
1 (E) ∩B

p
2 (E)) ∩B

p
i (B

p
1 (B

p
1 (E) ∩B

p
2 (E)) ∩B

p
2 (B

p
1 (E) ∩B

p
2 (E))) ∩ .....;

Monderer and Samet (1996) describe the close relationship between common p-belief and repeated common p-

belief, which we omit here.
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invest is a best response for a player only if he attaches probability at least c/x to both the state

being good and his opponent choosing to invest. Now, analogously to belief-free rationalizability

case, we can show by induction that B
c
x
,k

i (EG) is the set of types of agent i for whom invest is

k−th level belief-free rationalizable: B
c
x
,0

i (E) = Ti is the set of types from whom invest is 0th

level belief-free rationalizable, and, if B
c
x
,k

j (E) is the set of types of player j for whom invest is

kth level belief-free rationalizable, then invest is (k+ 1)th level rationalizable for player i only if

he attaches probability at least c/x to E ∩B
c
x
,k

j (E) and so, again, we have our induction.

Because this is a game of strategic complementarities, and the largest and smallest rational-

izable strategies (in the natural order) constitute equilibria, we have:

Proposition 4 (Belief Invariant BCE in a Simple Coordination Game)

In a simple coordination game, there is a belief-invariant Bayes correlated equilibrium where the

safe action (not invest) is always played. There is another belief-invariant Bayes correlated

equilibrium where the risky action (not invest) is played by player i if and only if the event

EG is repeated common c/x-belief. All other belief-invariant Bayes correlated equilibria are "in

between" these two, in the sense that invest is never played if the event EG is not repeated common

c/x-belief.

The structure of Bayes correlated equilibria is more subtle in this example; see Bergemann

and Morris (2016a) for a discussion of the structure of Bayes correlated equilibria in two-player

two-action games of incomplete information.

Trading The characterization of belief-free rationalizability extends almost immediately to

interim correlated rationalizability:

Proposition 5 (Interim Correlated Rationalizability in Trading Game)

In a trading game, the safe action (reject trade) is always interim correlated rationalizable; the

risky action (accept trade) is interim correlated rationalizable for player i if and only if the events

(E1, E2) are a common possibility of player i.

To see why, it is enough to show that the inductive step that worked for belief-free ratio-

nalizability continues to work for interim correlated rationalizability. In particular, suppose

that Ek
j is the set of types of player j for whom accept trade is k-th level rationalizable (recall
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that rejecting trade is always kth level rationalizable). Now consider a type ti of player i. He

will have an interim belief πi (·|ti) over (tj, θ), the type of the other player and the payoff state.

Suppose
(
t∗j , θ

∗) ∈ Ek
j ×Θi, i.e., a type payoff state pair where accept trade is k-th level interim

correlated rationalizable for player j and the payoff state is an i-gain state. Now we can endow

type ti of agent with a belief νi ∈ ∆ (Aj × Tj ×Θ) given by

νi (aj, tj, θ) =


πi (tj, θ|ti) , if aj = reject trade and (tj, θ) 6=

(
t∗j , θ

∗) ,
πi (tj, θ|ti) , if aj = accept trade and (tj, θ) =

(
t∗j , θ

∗) ,
0, if otherwise.

Clearly, accept trade is best response to this conjecture and thus (k + 1)-th level rationalizable

for type ti. Thus the induction argument for belief-free rationalizability goes through unchanged

for interim correlated rationalizability.

In the common prior case, we have

Proposition 6 (BCE in Trading Game)

In a trading game, there is a unique Bayes correlated equilibrium (and thus a unique belief

invariant Bayes correlated equilibrium) where both players always choose the safe action (reject

trade).

It is well known that trade is not possible under the common prior assumption: see Sebenius

and Geanakoplos (1983) for a statement in the bilateral risk neutral setting discussed here and

Milgrom and Stokey (1982) in a more general environment. Arguments from this literature

immediately apply.

4.3 Informational Robustness Foundations

Now suppose that we start out with type space T and we allow each player i to observe an

additional signal si ∈ Si. Each player i has a subjective belief φi about the distribution of

signals conditional on the type profiles and the payoff state:

φi : T ×Θ→ ∆ (S) .

We make the support assumption that, for all players i and ti ∈ Ti, there exists Si (ti) ⊆ Si such

that ∑
s−i,t−i,θ

φi ((si, s−i) | (ti, t−i) , θ) πi (t−i, θ|ti) > 0, (7)
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for each si ∈ Si (ti) and
φj ((si, s−i) |t, θ) = 0, (8)

for all j 6= i, si /∈ Si (ti), s−i, t and θ. The interpretation is that if player i does not think it is
possible that he will observe an additional signal si /∈ Si (ti) if he is type ti, then no player j ever
thinks it is possible that player i observes signal si when his type is ti. This support assumption

ensures that whenever a player other than i thinks that (ti, si) is possible, the beliefs of player i

conditional on (ti, si) are well-defined by Bayes rule. If this assumption is not made, then players

can attach positive probability to other players being types with undefined beliefs. Aumann

(1974) discussed why an assumption like this was necessary in a sensible definition of subjective

correlated equilibrium with an informational robustness interpretation. This assumption was

implicit in the formulation of a correlating device in Liu (2015). We briefly discuss in Section

5 alternative ways of addressing this issue and the relation to "a posteriori equilibrium" in the

complete information case.

We refer to any conditional distribution of signals, (Si, φi)
I
i=1, satisfying the support restriction

as an expansion of type space T . An expansion is belief-invariant if, for each player i,∑
s−i∈S−i

φi ((si, s−i) | (ti, t−i) , θ) , (9)

is independent of (t−i, θ). Note that this is the same definition as (6) applied to expansions rather

than decision rules, and it will immediately translate into belief-invariance of decision rules in

our informational robustness results. Liu (2015) has shown that this definition characterizes

payoff-irrelevance in the sense that players can observe signals without altering their beliefs and

higher-order beliefs about the state (see also Bergemann and Morris (2016a)).

Now a basic game G, a type space T and an expansion (Si, φi)
I
i=1 jointly define a game of

incomplete information. A (pure) strategy for player i in this game of incomplete information

is a mapping βi : Ti× Si → Ai. Now strategy profile β is a (Bayes Nash) equilibrium if, for each

player i, ti and si ∈ Si (ti), we have∑
t−i,s−i,θ

πi (t−i, θ|ti)φi (si, s−i| ((ti, t−i) , θ))ui
((
βi (ti, si) , β−i (t−i, s−i)

)
, θ
)

(10)

≥
∑

t−i,s−i,θ

πi (t−i, θ|ti)φi (si, s−i| ((ti, t−i) , θ))ui
((
ai, β−i (t−i, s−i)

)
, θ
)
,

for all ai ∈ Ai.
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Now we can formally state the informational robustness foundations for the two rationaliz-

ability solution concepts we discussed:

Proposition 7 (Informational Robustness to Payoff-Irrelevant Signals)

Action ai is interim correlated rationalizable for type ti of player i in (G, T ) if and only if there

exists a payoff-irrelevant expansion
(
Sj, φj

)I
j=1

of T , an equilibrium β of
(
G, T ,

(
Sj, φj

)I
j=1

)
and

a signal si ∈ Si (ti) such that βi (ti, si) = ai.

Versions of this observation appear as Proposition 2 in Dekel, Fudenberg, and Morris (2007)

and as Lemma 2 in Liu (2015). For completeness, and for comparison with the next Propo-

sition, we report a proof in the Appendix for the Proposition under the current notation and

interpretation.

Proposition 8 (Informational Robustness to Payoff-Relevant Signals)

Action ai is belief-free rationalizable for type ti of player i in (G, T ) if and only if there exists an

expansion
(
Sj, φj

)I
j=1

of T , an equilibrium β of
(
G, T ,

(
Sj, φj

)I
j=1

)
and signal si ∈ Si (ti) such

that βi (ti, si) = ai.

Proof. Suppose that action ai is belief-free rationalizable for type ti in (G, T ). By the

definition of belief-free rationalizability, there exists, for each aj ∈ BFRj (tj), a conjecture ν
aj ,tj
j ∈

∆ (T−j × A−j ×Θ) such that

(1) νaj ,tjj (t−j, a−j, θ) > 0⇒ ak ∈ BFRk (tk) for each k 6= j;

(2)
∑
a−j

ν
aj ,tj
j (t−j, a−j, θ) > 0⇒ πj (t−j, θ|tj) > 0 for each t−j, θ; and

(3) aj ∈ arg max
a′j

∑
t−j ,a−j ,θ

ν
aj ,tj
j (t−j, a−j, θ)uj

((
a′j, a−j

)
, θ
)
.

(11)

Now consider the expansion
(
Sj, φj

)I
j=1

of T , where Sj = Aj ∪
{
s∗j
}
and φj : T × Θ→ ∆ (S) is

given by

φj ((sj, s−j) | (tj, t−j) , θ) =


ε

#BFRj(tj)
ν
sj ,tj
j (t−j, s−j, θ) , if s ∈ BFR (t) ,

πj (t−j, θ|tj)− ε
∑

s−j∈A−j

ν
sj ,tj
j (t−j, s−j, θ) , if s = s∗,

0, if otherwise,

for some ε > 0. It is always possible to construct such an expansion for suffi ciently small ε > 0

because of property (2) in (11) above. Now, by construction, there is an equilibrium of the
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game
(
G, T ,

(
Sj, φj

)I
j=1

)
where if sj ∈ Sj (tj), βj (tj, sj) = sj, and βj

(
tj, s

∗
j

)
can be arbitrarily

set equal to any element of

arg max
a′j

∑
t−j ,a−j

πj (t−j, θ|tj)φj
(
s∗j , a−j| ((tj, t−j) , θ)

)
uj
((
a′j, a−j

)
, θ
)
.

For the converse, suppose that there exists an expansion
(
Sj, φj

)I
j=1

of T and an equilibrium
β of

(
G, T ,

(
Sj, φj

)I
j=1

)
. We will show inductively in n that, for all players j, aj ∈ BFRn

j (tj)

whenever sj ∈ Sj (tj) and βj (tj, sj) = aj. It is true by construction for n = 0. Suppose that

it is true for n. Since sj ∈ Sj (tj), equilibrium condition (10) implies that aj is a best response

to a conjecture over others’types and actions and the state. By the inductive hypothesis, this

conjecture assigns zero probability to type action profiles (tj, aj) of player j where aj /∈ BFRn
j (tj).

By construction, the marginal of this conjecture on T−j×Θ has support contained in the support

of πj (·|tj). Thus aj ∈ BFRn+1
j (tj).

An expansion (Si, φi)
I
i=1 satisfies the common prior assumption if φi is independent of i. An

expanded game
(
G, T , (Si, φi)

I
i=1

)
and a strategy profile β for that game will induce a decision

rule σ : T ×Θ→ ∆ (A):

σ (a|t, θ) =
∑

{(t,s):β(t,s)=a}

φ (s| (t, θ)) .

We record for completeness the corresponding results for expansions that satisfy the common

prior assumption.

Proposition 9 (Informational Robustness to Common Prior Payoff-Irrelevant Signals)

If T is a common prior type space, then σ is a belief invariant Bayes correlated equilibrium

of (G, T ) if and only if there exists a payoff-irrelevant common prior expansion (Si, φi)
I
i=1 of T

and equilibrium β of
(
G, T , (Si, φi)

I
i=1

)
such that β induces σ.

A subjective version of Proposition 9 appears in Liu (2015) (and the common prior case is

discussed in Section 5.2).

Proposition 10 (Informational Robustness to Common Prior Payoff-Relevant Signals)

If T is a common prior type space, then σ is a Bayes correlated equilibrium of (G, T ) if and only
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if there exists a common prior expansion (Si, φi)
I
i=1 of T and equilibrium β of

(
G, T , (Si, φi)

I
i=1

)
such that β induces σ.

Proposition 10 appears as Theorem 2 in Bergemann and Morris (2016a).

5 Discussion: Support Assumption and a Posteriori Equi-

librium

In our informational robustness foundations, an expansion was characterized by each player’s

subjective belief about how all players’signals were being (stochastically) chosen as a function

of players’types and the payoff state. Thus expansions were being explicitly identified with new

signals that players observed. In this section, we will discuss an alternative way of describing an

expansion of the type space, one that works directly with a player i’s interim beliefs conditional

on ti and si. There are a number of reasons for doing so. First, this will highlight the significance

and interpretation of the support assumption in the previous section. Second, it will clarify the

connection to the prior literature. Finally, it will provide a step towards explaining the relation

between "informational robustness" and "epistemic" foundations of solution concepts.

Suppose that we started with a type space T = (Ti, πi)
I
i=1 but now consider a different de-

finition of an expanded type space (which will reduce to the previous one under additional

assumptions). An expanded type space will take the form T̃ =
(
T̃i, π̃i

)I
i=1

where T̃i ⊆ Ti × Si
and, for each i and ti ∈ Ti, there exists si ∈ Si such that t̃i = (ti, si) . What can we say about

possible equilibrium behavior on such an expanded type space? We have built into this formu-

lation the assumption that all possible types are rational with respect to some beliefs, and, in

this sense, this formulation captures the idea of a posteriori equilibrium, the version of subjective

correlated equilibrium introduced by Aumann (1974) and applied in Brandenburger and Dekel

(1987). If we impose no restrictions on how the beliefs of (ti, si) on the expanded type space re-

late to the beliefs of ti on the original type space, then the original type space becomes irrelevant.

In particular, say that an action is ex post rationalizable in the basic game G if it survives an
iterative deletion procedure where, at each round, we delete actions that are not a best response

given any conjecture over surviving actions and payoff states. Formally, let EPR0i = Ai, let
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EPRn+1
i be the set of actions for which there exists νi ∈ ∆ (A−i ×Θ) such that

(1) νi (a−i, θ) > 0⇒ aj ∈ EPRn
j for each j 6= i,

(2) ai ∈ arg max
a′i

∑
a−i,θ

νi (a−i, θ)ui ((a
′
i, a−i) , θ) ;

and let

EPRi =
⋂
n≥1

EPRn
i .

This solution concept characterizes actions that can be played in equilibrium on any expanded

type space if we dropped the support assumption from the analysis of the previous section.

This motivates putting additional restrictions on the expanded type space. We start by

imposing a weak restriction that will correspond to the support assumption in the previous

section: a player’s beliefs on the original type space are not contradicted by his beliefs on the

expanded type space. Thus∑
s−i

π̃i ((t−i, s−i, θ) |ti, si) > 0⇒ πi ((t−i, θ) |ti) > 0. (12)

Restriction (12) reduces to the support restriction as defined in the previous section. Define

Si (ti) =
{
si ∈ Si

∣∣∣(ti, si) ∈ T̃i} ,
and

φi ((si, s−i) | (ti, t−i) , θ) =
1

#Si (ti)

π̃i ((t−i, s−i, θ) |ti, si)
πi ((t−i, θ) |ti)

(13)

whenever πi ((t−i, θ) |ti) > 0 and φi (·| (ti, t−i) , θ) is an arbitrary distribution otherwise. Now

(12) implies∑
s−i

φi ((si, s−i) | (ti, t−i) , θ) πi ((t−i, θ) |ti) =
1

#Si (ti)

∑
s−i

π̃i ((t−i, s−i, θ) |ti, si)

for each ti and si ∈ Si (ti), and so∑
s−i,t−i,θ

φi ((si, s−i) | (ti, t−i) , θ) πi ((t−i, θ) |ti) =
1

#Si (ti)

∑
s−i,t−i,θ

π̃i ((t−i, s−i, θ) |ti, si)

=
1

#Si (ti)

> 0,
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which is the support assumption. belief-invariance in the formulation of the previous section

adds the requirement on the current expanded type space that∑
s−i

π̃i (t−i, s−i, θ|ti, si) = π̃i (t−i, θ|ti)

for each i, t−i, θ, ti and si.

We noted earlier that a posteriori equilibrium from Aumann (1974) and Brandenburger and

Dekel (1987) was equivalent to asking what can happen on all expanded type spaces in the case

of complete information. But in the case of incomplete information —in the sense of there being

many payoff states —we saw that the original type no longer mattered. Imposing either the

weaker support assumption or the belief-invariance assumption are the natural generalizations

of a posteriori equilibrium. Ex post rationalizability, like belief-free rationalizability and interim

correlated rationalizability, reduces to correlated rationalizability in complete information games.
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6 Appendix

Proof of Proposition 7. Suppose that action ai is interim correlated rationalizable for type ti

in (G, T ). By the definition of interim correlated rationalizability, there exists, for each player

j and aj ∈ ICRj (tj), a conjecture ν
aj ,tj
j ∈ ∆ (T−j × A−j ×Θ) such that

(1) νaj ,tjj (t−j, a−j, θ) > 0⇒ ak ∈ ICRk (tk) for each k 6= j;

(2)
∑
a−j

ν
aj ,tj
j (t−j, a−j, θ) = πj (t−j, θ|tj) for each t−j, θ; and

(3) aj ∈ arg max
a′j

∑
t−j ,a−j ,θ

ν
aj ,tj
j (t−j, a−j, θ)uj

((
a′j, a−j

)
, θ
)
.

Now consider the expansion
(
Sj, φj

)I
j=1

of T , where Sj = Aj and φj : T ×Θ→ ∆ (S) satisfies

φj ((aj, a−j) | (tj, t−j) , θ) =


ν
aj,tj
j (t−j ,a−j ,θ)

πj(t−j ,θ|tj)·#ICRj(tj) , if a ∈ ICR (t) ,

0, if otherwise;

whenever πj (t−j, θ|tj) > 0. Now, by construction, there is an equilibrium of the game (G, T ,
(
Sj, φj

)I
j=1

)

where

βj (tj, aj) = aj,

for all j, tj and aj ∈ ICRj (tj).

For the converse, suppose that there exists an expansion
(
Sj, φj

)I
j=1

of T , an equilibrium β of

(G, T ,
(
Sj, φj

)I
j=1

). We will show inductively in n that, for all players j, aj ∈ ICRn
j (tj) whenever

βj (tj, sj) = aj for some sj ∈ Sj (tj). It is true by construction for n = 0. Suppose that it is

true for n. Equilibrium condition (10) implies that aj is a best response to a conjecture over

others’types and actions and the state. By the inductive hypothesis, this conjecture assigns zero

probability to type action profile (tk, ak) of player k 6= j with ak /∈ ICRn
k (tk). By construction,

the marginal on T−j ×Θ is equal to πj (·|tj). Thus aj ∈ ICRn+1
j (tj).

28



References

Aumann, R. (1974): “Subjectivity and Correlation in Randomized Strategies,”Journal of Math-

ematical Economics, 1, 67—96.

Aumann, R. (1987): “Correlated Equilibrium as an Expression of Bayesian Rationality,”Econo-

metrica, 55, 1—18.

Aumann, R., and A. Brandenburger (1995): “Epistemic Foundations for Nash Equilib-

rium,”Econometrica, 63, 1161—1180.

Battigalli, P., A. Di Tillio, E. Grillo, and A. Penta (2011): “Interactive Epistemol-

ogy and Solution Concepts for Games with Asymmetric Information,”BE Press Advances in

Theoretical Economics, 1, Article 6.

Battigalli, P., and M. Siniscalchi (2003): “Rationalization and Incomplete Information,”

BE Press Advances in Theoretical Economics, 3, Article 3.

Bergemann, D., and S. Morris (2007): “Belief Free Incomplete Information Games,”Dis-

cussion Paper 1629, Cowles Foundation for Research in Economics, Yale University.

(2008): “The Role of the Common Prior in Robust Implementation,” Journal of the

European Economic Association Papers and Proceedings, 6, 551—559.

(2009): “Robust Implementation in Direct Mechanisms,”Review of Economic Studies,

76, 1175—1206.

(2012): Robust Mechanism Design: The Role of Private Information and Higher Order

Beliefs. World Scientific Publishing.

(2013): “Robust Predictions in Games with Incomplete Information,”Econometrica,

81, 1251—1308.

(2015): “Informational Robustness and Solution Concepts,”Discussion Paper 1973R,

Cowles Foundation of Research, Yale University and Princeton University.

(2016a): “Bayes Correlated Equilibrium and the Comparison of Information Structures

in Games,”Theoretical Economics, 11, 487—522.

29



(2016b): “Information Design, Bayesian Persuasion, and Bayes Correlated Equilibrium,”

American Economic Review Papers and Proceedings, 106(5), 586—591.

Brandenburger, A., and E. Dekel (1987): “Rationalizability and Correlated Equilibria,”

Econometrica, 55, 1391—1402.

Brandenburger, A., and A. Friedenberg (2008): “Intrinsic Correlation in Games,”Jour-

nal of Economic Theory, 141, 28—67.

Chen, J., S. Micali, and R. Pass (2015): “Tight Revenue Bounds with Possibilistic Beliefs

and Level-k Rationality,”Econometrica, 83(4), 1619—1639.

Dekel, E., D. Fudenberg, and D. Levine (2004): “Learning to Play Bayesian Games,”

Games and Economic Behavior, 46, 282—303.

Dekel, E., D. Fudenberg, and S. Morris (2007): “Interim Correlated Rationalizability,”

Theoretical Economics, 2, 15—40.

Dekel, E., and M. Siniscalchi (2014): “Epistemic Game Theory,”Discussion paper, North-

western University.

Forges, F. (1993): “Five Legitimate Definitions of Correlated Equilibrium in Games with

Incomplete Information,”Theory and Decision, 35, 277—310.

(2006): “Correlated Equilibrium in Games with Incomplete Information Revisited,”

Theory and Decision, 61, 329—344.

Fudenberg, D., D. Kreps, and D. Levine (1988): “On the Robustness of Equilibrium

Refinements,”Journal of Economic Theory, 44, 354 —380.

Kajii, A., and S. Morris (1997): “The Robustness of Equilibria to Incomplete Information,”

Econometrica, 65, 1283—1309.

Lehrer, E., D. Rosenberg, and E. Shmaya (2010): “Signaling and Mediation in Games

with Common Interest,”Games and Economic Behavior, 68, 670—682.

Liu, Q. (2015): “Correlation and Common Priors in Games with Incomplete Information,”

Journal of Economic Theory, 157, 49—75.

30



Milgrom, P., and N. Stokey (1982): “Information, Trade and Common Knowledge,”Journal

of Economic Theory, 26, 17—27.

Monderer, D., and D. Samet (1989): “Approximating Common Knowledge with Common

Belief,”Games and Economic Behavior, 1, 170—190.

(1996): “Proximity of Information in Games with Incomplete Information,”Mathemat-

ics of Operations Research, 21, 707—725.

Morris, S., and C. Skiadas (2000): “Rationalizable Trade,”Games and Economic Behavior,

31, 311—323.

Sebenius, J., and J. Geanakoplos (1983): “Don’t Bet on It: Contingent Agreements with

Asymmetric Information,”Journal of the American Statistical Association, 78, 424—426.

Weinstein, J., and M. Yildiz (2007): “Impact of Higher-Order Uncertainty,”Games and

Economic Behavior, 60, 200—212.

31


