
 
 
 

HOMOGENEITY PURSUIT IN PANEL DATA MODELS:  
THEORY AND APPLICATIONS 

 
 

By 
 

Wuyi Wang, Peter C. B. Phillips and Liangjun Su 
 
 
 
 

November 2016 
 
 
 
 
 
 

COWLES FOUNDATION DISCUSSION PAPER NO. 2063 
 

 
 
 
 
 
 
 
 

 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
 http://cowles.yale.edu/  

http://cowles.yale.edu/


Homogeneity Pursuit in Panel Data Models: Theory and

Applications∗

Wuyi Wang Peter C.B. Phillips, Liangjun Su

 School of Economics, Singapore Management University
 Yale University, University of Auckland, University of Southampton,

& Singapore Management University

November 29, 2016

Abstract

This paper studies estimation of a panel data model with latent structures where individuals

can be classified into different groups where slope parameters are homogeneous within the same

group but heterogeneous across groups. To identify the unknown group structure of vector pa-

rameters, we design an algorithm called Panel-CARDS which is a systematic extension of the

CARDS procedure proposed by Ke, Fan, and Wu (2015) in a cross section framework. The

extension addresses the problem of comparing vector coefficients in a panel model for homo-

geneity and introduces a new concept of controlled classification of multidimensional quantities

called the segmentation net. We show that the Panel-CARDS method identifies group struc-

ture asymptotically and consistently estimates model parameters at the same time. External

information on the minimum number of elements within each group is not required but can

be used to improve the accuracy of classification and estimation in finite samples. Simulations

evaluate performance and corroborate the asymptotic theory in several practical design set-

tings. Two empirical economic applications are considered: one explores the effect of income

on democracy by using cross-country data over the period 1961-2000; the other examines the

effect of minimum wage legislation on unemployment in 50 states of the United States over

the period 1988-2014. Both applications reveal the presence of latent groupings in these panel

data.
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1 Introduction

Conventional panel data analysis often assumes complete slope homogeneity, which is convenient

in practical work and takes full advantage of cross section averaging. However, homogeneity as-

sumptions are frequently rejected in empirical panel studies, as in Hsiao and Tahmiscioglu (1997),

Phillips and Sul (2007), Browning and Carro (2007) and Su and Chen (2013). But if complete slope

heterogeneity is permitted, estimation can be imprecise or even impractical when the time dimen-

sion is very short, thereby losing a key advantage of working with panel data. These considerations

motivate the present study and much of the recent research on panel structure modeling.

This paper follows earlier work by Su, Shi, and Phillips (2016, SSP hereafter) by studying a

linear panel data model with latent structures that embody unknown homogeneous elements. It

is assumed that the cross sectional units can be classified into a small number of groups with

homogeneous slopes within each group and heterogeneity across groups. There are many moti-

vating examples for such models in empirical work: in cross country economic growth studies,

the presence of possible convergence clubs in the data is often of interest (Phillips and Sul 2007);

in financial markets, stock returns in the same sector are commonly thought to share common

characteristics (Ke, Fan, and Wu 2015); and in economic geography, location may be a relevant

factor in economic performance, leading to spatial geographic groupings in the data (Fan, Lv, and

Qi 2011; Bester and Hansen 2016).

The inherent difficulty in studying latent panel structure lies in the unknown nature of the

group composition. The practical econometric problem in such cases is that the number of groups

is unknown as well as individual group membership within the panel. Since the number of all

possible classifications is a Bell number, it is not feasible to try all possible combinations (Shen

and Huang 2010). One way to determine the group structure is to use external variables or prior

knowledge, such as geographic location and industrial sector composition, to assist in classifying

individuals into groups (Bester and Hansen 2016). But this approach is vulnerable to misleading

inference when the number of groups or the individual identities are incorrectly specified. Moreover,

in many panel data models, there are no natural external variables to assist in classification.

Accordingly, much effort has been devoted to determining the unknown panel structure without

resorting to the use of external factors. One approach is to use finite mixture models; see Sun

(2005), Kasahara and Shimotsu (2009), and Browning and Carro (2010). Another approach adapts

the K-means algorithm to panel models in order to form a group structure in the panel; see Lin

and Ng (2012), Sarafidis and Weber (2015), Bonhomme and Manresa (2015), and Ando and Bai

(2016). In addition, machine learning methods that penalize incorrect choices have also been used

to extract group patterns using penalized extremum estimation. In recent work that employs this

approach, SSP develop a classification Lasso method (called C-Lasso) in which the penalty takes

an additive-multiplicative form that forces the parameters to form into different groups. Coupled

with the C-Lasso method, SSP propose BIC-type information criteria to determine the number of

groups. In additional work, Lu and Su (2016) propose a direct testing procedure to identify the
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group number in this linear panel structure model.

When a panel data model has a latent group structure, the problem falls within the framework

of high dimensional modeling with parameters that may lie in a low dimension subspace. This type

of regression model is now a major research area in statistics; see, for example, the monograph by

Bühlmann and van der Geer (2011). Since the work of Tibshirani (1996) and Fan and Li (2001),

much of the statistical research has concentrated on sparsity, where a large dimensional space is

simplified by zeroing out many elements to reduce dimension. Sparsity may be regarded as a

special case of homogeneity where the commonality arises from a shared zero coefficient value.

Much effort has been devoted to the study of homogeneity in parameters. When there is a natural

variable to define neighborhood, the idea of fused lasso (Tibshirani et al. 2005) can be used to

study homogeneity. When there is no such natural variable, exhaustive pairwise penalties have

been proposed to address homogeneity. For instance, Bondell and Reich (2008) design a method

called OSCAR (octagonal shrinkage and clustering algorithm for regression) where the octagonal

penalty is imposed on all pairs of coordinates to form clusters; and Shen and Huang (2010) propose

to use a truncated 1 penalty on all pairs of predicators to extract a grouping structure.

Ke, Fan, and Wu (2015, KFW hereafter) explore homogeneity in regressions by designing a

method called CARDS (clustering algorithm in regression via data-driven segmentation). They

first estimate the parameters by OLS to obtain preliminary estimates. Then the fitted coefficients

are ranked from smallest to largest and ordered partition sets (groups) of regressors are constructed

based on this ranking. Penalized least squares (PLS) regressions are run to obtain the final

estimates where the penalties are imposed on both the within group coefficient differences and

neighboring group coefficient differences. KFW show that CARDS can produce oracle estimates

with probability approaching 1 (w.p.a.1).1 They remark that CARDS can be extended to panel

data models, but their simple extension does not explore the panel data structure fully and there

are conceptual and technical complications that prevent immediate implementation.

This paper extends the CARDS method to panel structure models in a systematic way that

deals with these complications. The new method is called Panel-CARDS and it differs from CARDS

in two ways. First, Panel-CARDS imposes penalties on slope vector differences while CARDS does

so on individual slope differences. In a panel data model with   1 regressors, the KFW CARDS

method treats each of the  regressors as an independent unit, constructs the penalty term for each

regressor as in the cross section framework, and then adds all  penalty terms to the least squares

objective function to form the PLS extremum estimation problem. Usually, different regressors will

report different classification results which the new Panel-CARDS can avoid. Second, to use more

information from the preliminary estimates, we extend the ordered segmentation concept proposed

in KFW to the segmentation net, which enables us to extract groups more accurately. Just as

CARDS for cross section data or the SSP C-Lasso for panel data, Panel-CARDS can identify the

number of groups and estimate the parameters at the same time.

In addition, we relax various conditions used in KFW and SSP. For example, KFW require non-

1An oracle estimate is one that one can achieve by knowing the exact group structure.
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stochastic regressors and sub-Gaussian errors whereas we permit random regressors, include lagged

dependent variables, and replace sub-Gaussian requirements by moment conditions. Further, SSP

require the number of elements in each group to be divergent with sample size and the number

of groups to be fixed, whereas we allow the number of elements in each group and the number of

groups to be either fixed or divergent to infinity.

We provide two empirical applications of this new panel classification procedure. The first ap-

plication re-investigates relationships between income and democracy, a matter that has attracted

considerable interest among political economists (c.f. Acemoglu et al. 2008). In different coun-

tries, the effect of income on democracy might be similar or might differ. Our methods reveal

a positive relationship between the two variables in some countries (e.g., South Korea, Japan,

Romania, and Spain), a negative relationship between them in other countries (e.g., Iran and

Malaysia), and little evidence of a relationship between income and democracy in the remainder

(e.g., China and Singapore). In particular, the democracy indices for the countries in the last

group have not changed much over the last four decades despite their rapid economic growth.

For this reason, estimation and inference based on a fully homogeneous panel data model might

well lead to misleading inferences about a generic form of this relationship. Our approach allows

for a panel structure of possibly homogeneous and heterogeneous effects of income on democracy.

The empirical implementation of Panel-CARDS estimation with these data identifies three latent

groupings among the 74 countries corresponding to positive, negative, and indifferent associations

between income and democracy.

Our second application studies the impact of minimum wage legislation on unemployment in

the United States. This topic has been widely studied in labor economics but has generated some

controversy over the last two decades with different research drawing different conclusions (c.f.

Dube et al. 2010). This divergence in past empirical research motivates the use of a more flexible

modeling framework in which latent panel structures allow for unobserved slope heterogeneity

across groups. Panel-CARDS estimation identifies two groupings of states. In one group, a rise in

the minimum wage is associated with a decrease in the unemployment rate whereas the opposite

effect is observed in the other group. One notable finding from our study is that the two groups

have a surprisingly regular geographic distribution on the map, in which the top 15 largest states

in terms of GDP all lie in the same group despite the fact that no geographic or economy scale

information is used in the Panel-CARDS. This finding indicates that the data-based methodology

of Panel-CARDS can help in the discovery of relevant geographic determinants.

The rest of the paper is organized as follows. Section 2 introduces the panel structure model

and the Panel-CARDS algorithm. Section 3 develops the properties and asymptotic theory of

Panel-CARDS. Simulation performance in finite samples is studied in Section 4. Section 5 applies

the methodology to study the effect of income on democracy and that of the minimum wage on

unemployment. Section 6 concludes. Proofs are given in the Appendix.

Notation. For integer , R denotes  dimensional Euclidean space. For vector α ∈ R, the

 norm of α is defined as kαk = (
P

=1 | |)1 with 1 ≤   ∞. When  = 2 we abbreviate
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k·k2 as k·k  Let kαk∞ = max1≤≤ | |. For a square matrix  of order  its induced  norm

is kk = max:kk=1 kαk. When  = 2, we omit the subscript . When  is symmetric, we

denote by max() and min() the largest and smallest eigenvalues of . For two real numbers

 and ,  ∨  denotes max( ). For two real sequences {} and {},  À  means that

 →∞ as  →∞.

2 Panel-CARDS

This section introduces the panel structure model and reviews the original CARDS procedure

before developing the Panel-CARDS algorithm.

2.1 Panel structure models

Following SSP, we consider a panel data model with latent group structure

 = x
0
β

0
 +  +   = 1    = 1   (2.1)

where x = (1  )
0 is a ×1 vector of regressors,  is the individual fixed effect which may

be correlated with x,  is an idiosyncratic error term with zero mean, and β0 is a × 1 vector
of slope parameters that admit a possible grouping structure of the form

β0 =

⎧⎪⎪⎨⎪⎪⎩
α01 if  ∈ 01
...

...

α0 if  ∈ 0

 (2.2)

Here α0 6= α0 for any  6= , and G = {01 02  0} forms a partition of {1 2  }. Let
 =

¯̄
0
¯̄
denote the cardinality of 0  = 1  Let

α ≡ (α01 α0)0 and β ≡ (β01 β0)0 (2.3)

The true values of α and β are denoted by α0 and β0. We intend to apply a CARDS-type

approach to identify the group structure G and to estimate the group-specific regression coefficients
α0 simultaneously.

2.2 The original CARDS

KFW consider the cross sectional linear regression model

 = x
0
b
0 +   = 1   (2.4)

where x is a ×1 vector of regressors, the ’s are independently and identically distributed (i.i.d.)
error terms with mean zero and variance 2, and b0 is a  × 1 vector of parameters of interest.
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They assume that there is a partition H = {0
1  

0
2  

0
} of the parameter indices {1 2  }

such that

0 =

⎧⎪⎪⎨⎪⎪⎩
01 if  ∈ 0

1
...

...

0 if  ∈ 0


 (2.5)

where 0 is the common parameter value shared by all members in 
0
 , and 

0
 6= 0 for any  6= .

Note that in (2.2), cross sectional individuals have the grouping structures and the β’s are

vectors. While in (2.5), regressors have the group structure and the ’s are scalars. This is a

fundamental difference in the two models that is due to the structure of cross sectional and panel

data. Without loss of generality, we assume 01  02  · · ·  0 .

The basic idea in the KFW CARDS algorithm is to use preliminary estimates to construct a

ranking of the estimates that leads to an ordered segmentation. The formal definition of ordered

segmentation is as follows.

Definition 1. For a segmentation B = {1  } which is a partition of the set {1  }, B is
called an ordered segmentation if max∈

0 ≤ min∈+1
0 for  = 1  − 12

Once an ordered segmentation is determined, penalized least squares (PLS) can be used to

extract potential groupings of the regressors. This is performed in the following steps:

• Preliminary Estimation: Obtain a consistent preliminary estimate b̃ of b. For model
(2.4) with ¿ , we can use the OLS estimate as the preliminary estimate.

• Preordering: Sort the coefficients in b̃ in ascending order. The rank mapping (·) is
determined by the ranking relation below

̃(1) ≤ ̃(2) ≤ · · · ≤ ̃()

where ̃() is the -th smallest value in {̃ : 1 ≤  ≤ }.

• Ordered Segmentation: Let   0 be a tuning parameter. Find all the indexes 2  3 

· · ·   such that the gaps

|̃() − ̃(−1)|    = 2  

Construct the ordered segmentation B as

 = {() ( + 1)  (+1 − 1)}  = 1  

where 1 = 1 and +1 = + 1.

2 In brief, an ordered segmentation in KFW means that the order of b0 is preserved.
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• CARDS Penalty Function: Next construct a penalty function with two parts. One is the
within-segmentation penalty and the other is a penalty between neighboring segmentations.

The penalty function  (·) used here is the smoothly clipped absolute deviation (SCAD)
penalty of Fan and Li (2001). The within-segment penalty drives parameters in the same

segment to converge to each other when they are actually in the same true group. The other

penalty term penalizes neighboring segment pairs. If the preliminary estimates are accurate

enough, the neighboring pairs may be true neighbors or in the same group. In both cases,

the SCAD penalty function can help achieve homogeneous values for parameters in the same

group and heterogeneous values across groups. The form of the CARDS penalty is given by

the expression

B12(b) =
−1X
=1

X
∈∈+1

1(| − |)| {z }
between-segment penalty

+

X
=1

X
∈∈

2(| − |)| {z }
within-segment penalty

 (2.6)

• Penalized Least Squares: Solve the PLS problem

(b) =
1

2

X
=1

( − x0b)2 + B12(b) (2.7)

Given the tuning parameter vector λ ≡ ( 1 2)0, we obtain an estimate b̂ (λ) which may
be used to obtain the estimated number of groups,  (λ)  Let 2(λ) =

1


P
=1[−x0b̂ (λ)]2

• Select Tuning Parameters by BIC: Choose λ to minimize

BIC(λ) = ln
¡
2(λ)

¢
+(λ)

ln


 (2.8)

The CARDS method has a straightforward extension to panel data models. In KFW’s Exper-

iment 5, which is a panel structure model as described above, they construct the CARDS penalty

for each regressor and then add them up together. So the penalized objective function can be

expressed as

 (β) =
1

2

X
=1

X
=1

( − x0β)
2 +

X
=1

B12
³
β


´
 (2.9)

where β

= (1  )

0 collects the coefficients of the -th regressors for all  cross sectional

units. This method works but has two serious drawbacks. First, it involves 3 tuning parameters,

which is excessive for a Lasso procedure when  ≥ 2. Second, since B12(β
) imposes a penalty

that is specific to regressor  only, the classification errors tend to accumulate through the addition

of the  sets of penalty terms. Below, we introduce the modified procedure Panel-CARDS which

removes these drawbacks and provides an improvement over the basic CARDS procedure for panel

data applications.
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2.3 Rank mapping in the panel data model

Without the latent group structure (2.2), we can estimate the model (2.1) directly. After concen-

trating out the fixed effects, we obtain the objective function

 (β) =
1

2

X
=1

X
=1

(̃ − x̃0β)
2 (2.10)

where x̃ = x − x̄ and ̃ =  − ̄ with x̄ =
1


P
=1 x and ̄ =

1


P
=1 . Solving

the optimization problem yields the OLS estimates β̃ = ( 1


P
=1 x̃x̃

0
)
−1( 1



P
=1 x̃̃) for

 = 1 2   .

Define β̃ = (β̃
0
1 β̃

0
2  β̃

0
)

0, a  × 1 vector, and B̃ = (β̃1 β̃2 · · ·  β̃) a  ×  matrix.

To use CARDS, we need to have a rank mapping over the cross section dimensions according to

the vector β̃. If  = 1, the problem is exactly the same as the cross sectional case. We just sort

elements in β̃ in ascending order. But usually   1 and we face the awkward problem of ranking

 column vectors in B̃, which is not trivial. Reasonable ranking rules should satisfy the following

set of conditions:

1. Unrestricted Domain: All  ! kinds of rankings are possible.

2. Unanimity : If all  elements in β̃ are less than the corresponding elements in β̃, then β̃

should rank before β̃.

3. Independence of Irrelevant Alternatives: The rankings of β̃ and β̃ are not affected by β̃

where  6=  and  6= . Otherwise, the ranking result might be totally changed by the

introduction of a new individual  + 1.

The above three criteria connect the problem of ranking vectors with a famous impossibility

theorem in social choice theory. In that setting, we take  = 1 2   as voters (each row of B̃)

and the numeric ranking as a preference order. According to Arrow’s impossibility theorem (e.g.,

Mas-Colell et al. 1995, p.796), to satisfy all the above three criteria we will inevitably end up with

a “dictator”, which means our ranking must be totally determined by a single “voter”. So we have

the following theorem.

Theorem 2.1 To satisfy the unrestricted domain, unanimity, and independence of irrelevant al-

ternatives assumptions, the rankings of  preliminary vector estimates (columns of matrix B̃)

must be totally determined by the rankings of the preliminary estimates of the coefficients of one

regressor, i.e., one particular row of B̃.

Now we only need to select a proper element ∗ from {1 2  } as the “dictator”. Noting that
we want to obtain the heterogeneity/homogeneity information from preliminary estimates across

individuals, it is wise to choose the regressor whose slope coefficient estimates have larger variation

across individuals than the others. Let ∗ denote the index of the regressor which has the largest
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variation across individuals for its coefficient estimates. Then we can sort {̃∗   = 1 2  } to
obtain the order

̃(1)∗ ≤ ̃(2)∗ ≤ · · · ≤ ̃()∗  (2.11)

To proceed, we need to define an admissible segmentation.

Definition 2. For a segmentation B = {1 · · ·  } of the set {1  } with true grouping
structure G = {0102 · · ·  0}, let  = 0 ∩  if we have: (i) for each , 0 is properly

segmented by B–there exist  and  such that  ≤  
0
 = ∪= and  =  for

    ; (ii) for each , there exist  and  such that  ≤   = ∪= and  = 0

for     , then the segmentation B is called an admissible segmentation.
Note that when  = 1, an ordered segmentation is also an admissible segmentation. Intuitively,

the admissible segmentation B should segment the individuals in a way that no true group members
of 0 fall to disconnected ’s. Consider a simple illustrative example where  = 10 and G =
{01 02 03} with 01 = {1 2 3}, 02 = {4 5 6} and 03 = {7 8 9 10}. If from (2.11) together

with a tuning parameter  we have a segmentation comprised of 1 = {2 3}, 2 = {1 5}, 3 =
{4 6 7}, 4 = {9 10}, and 5 = {8}, then we can easily verify that the segmentation is admissible
by Definition 2.3 But the segmentation B = {1 · · ·  5} with 1 = {2 3}, 2 = {1 5 7},
3 = {4 6}, 4 = {9 10} and 5 = {8} is not admissible.

To rank vectors, we need to make sure the admissibility of a segmentation. But the last

requirement is not always ensured and it may be difficult to satisfy when the true group-specific

coefficients exhibit some patterns. To see this, suppose  = 2 in the above example and the true

group-specific coefficients are given by

(α01α
0
2α

0
3) =

Ã"
1

05

#


"
1

1

#


"
1

15

#!
 (2.12)

If we choose ∗ = 1, say, then there is no chance to obtain an admissible segmentation no matter
how accurate the preliminary estimates are. On the other hand, if we will choose ∗ = 2, then

it is not hard to obtain an admissible segmentation asymptotically provided that the preliminary

estimates are consistent. If, for the above example,  = 3 and the true group-specific parameter

values are given by

(α01α
0
2α

0
3) =

⎛⎜⎝
⎡⎢⎣11
2

⎤⎥⎦ 
⎡⎢⎣12
1

⎤⎥⎦ 
⎡⎢⎣21
1

⎤⎥⎦
⎞⎟⎠  (2.13)

then it is generally impossible to obtain an admissible segmentation no matter which regressor is

chosen to construct the ranking and whether the preliminary estimates are consistent or not. The

latter case needs special attention and will be addressed in Section 2.5 below.

3One possible ranking is: ̃2∗ ≤ ̃3∗ ≤ ̃1∗ ≤ · · · ≤ ̃9∗ ≤ ̃10∗ ≤ ̃8∗ , with ̃1∗− ̃3∗  , · · · ̃8∗− ̃10∗ 

. Besides, 11 = {2 3}, 12 = {1}; 22 = {5}, 23 = {4 6}; 33 = {7}, 34 = {9 10}, 35 = {8}.
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2.4 Construction of the basic Panel-CARDS

Now suppose we have an admissible segmentation B = {1 2  }. As in the KFW CARDS

algorithm, we propose the following hybrid penalty

B12(β) =
−1X
=1

X
∈∈+1

1(kβ − βk1)| {z }
between-segment penalty

+

X
=1

X
∈∈

2(kβ − βk1)| {z }
within-segment penalty

 (2.14)

where (·) is the SCAD function of Fan and Li (2001). Here we use 1 distance to measure the
difference between coefficient pairs. For  distance, the larger  is, the more weight is placed

on the large elements in the norm. In the extreme where  = ∞, only the largest element in the
vector matters. By adding the penalty term (2.14) to the original objective function (2.10), we

obtain the following PLS objective function

 (β) =  (β) + B12(β) (2.15)

We call the above procedure basic Panel-CARDS. For implementation, we may apply the local

linear approximation (LLA) algorithm to obtain the solution. We start from the initial solution

and update it by solving the following iterative minimization problem

β̂
(+1)

= argmin


n
 (β) +(β̂

()
;β)

o
 (2.16)

where (β̂
()
;β) =

P−1
=1

P
∈∈+1

01(kβ̂
()

 −β̂
()

 k1)kβ−βk1+
P

=1

P
∈∈

02(kβ̂
()

 −
β̂
()

 k1)kβ−βk1 Noting that the objective function in (2.16) is convex, we can apply a standard
convex optimization package to obtain the solution. We use β̂ = β̂ (λ) to denote the final solution.

Evidently, the performance of β̂ = β̂ (λ) depends on the choice of λ Following SSP, we can

choose λ =( 1 2)
0 to minimize the following information criterion

IC(λ) = ln
¡
2 (λ)

¢
+ (λ)

1

2
√


 (2.17)

where 2 (λ) and (λ) are estimates of 2 and number of groups associated with λ.4

2.5 Construction of the advanced Panel-CARDS

In these last two subsections, we study the admissible segmentation and then construct PLS

estimates based upon it. This is a direct extension of CARDS from the cross sectional case to

panel data. Nevertheless, such a method does not work in some sparse cases. For example, for the

4Note that the value of  determines the number of segments  in B. Too small or too large a  will generate too
many or too few segments which are not ideal in achieving correct identification. In practice, we find it is helpful to

set the number of segments directly, which is also easy to control. For example, when  = 100, we try  = 10, 20,

and 30. The choices of 1 and 2 depend on the value of coefficients we use in the DGP. Generally speaking, when

the coefficients are large, the tuning parameters 1 and 2 are large correspondingly.
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group-specific parameters considered in (2.13), whichever regressor is chosen, we cannot obtain an

admissible segmentation no matter how accurate the preliminary estimates are. So the basic Panel-

CARDS method fails to work asymptotically in this case and we need to consider an alternative

way to obtain robust classification and estimation.

In the example introduced at the end of section 2.3, we can only extract partial information

about the grouping property from any single regressor. Naturally, we want to combine information

from all regressors in a proper way to derive the true grouping property. Based on this idea, we

propose an advanced version of Panel-CARDS which can be regarded as an extension of the basic

Panel-CARDS procedure.

In the basic Panel-CARDS method, the admissible segmentation is used to construct both the

within segment penalty and the neighboring segments penalty. Compared with the number of

exhaustive pairwise penalty terms, the number of penalty terms in basic Panel-CARDS is much

smaller. This tends to eliminate penalty terms that are necessary in recovering the true grouping

properties when the segmentation is not admissible. In practice, it is desirable to maintain a

balance between keeping the number of penalty terms small and having enough penalty terms to

extract the grouping structure.

Definition 3. Let G = {01 02  0} denote the true grouping structure. Given  segmenta-

tions B1  B  if for any 0, there exists a B such that 0 can be properly segmented by B
as defined in Definition 2, then N ≡ {B1  B} is called an admissible segmentation net.

Given an admissible segmentation net N = {B1  · · · B}, the advanced Panel-CARDS algo-
rithm is as follows:

• For each B , we construct the penalty function B 12(β) as introduced in (2.14).

• For the admissible segmentation net N , the total penalty is

N 12(β) =

X
=1

B 12(β)

• We choose β to minimize the following PLS function:

∗ (β) =  (β) + N 12(β) (2.18)

Advanced Panel-CARDS reduces to basic Panel-CARDS in case  = 1. When   1,

N 12(β) contains all the penalty terms that are necessary to recover the true grouping structure.

The basic idea of an admissible segmentation net is to extract an adequate amount of information

from the preliminary estimates: not too much because we don’t use exhaustive pairwise penalties

which are challenging in computation and not accurate in statistical inference (as in KFW); and

not too few, in order to handle the sparse parameters case introduced at the end of Section 2.3.5

5 Its existence follows directly from Theorem 3 of KFW.
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Although here we need the admissible segmentation net to properly segment every true group,

we show in DGP 1 below through simulations that when this condition is mildly violated (e.g.,

there exists one group which cannot be properly segmented by any segmentation), the classification

based on the basic Panel-CARDS may still perform well in finite samples.

2.6 Hierarchical clustering

When the signal noise ratio is small or the time period  is relatively small, the preliminary

estimates might be quite different from the true parameter values. In such cases, both the basic and

advanced Panel-CARDS procedures may produce an estimated number of groups that is greater

than the true number of groups, and some estimated groups may only contain few individuals. It

is hard, if it is possible at all, to disentangle whether such small groups are the correct groups or

are generated because of mis-classification. However, if we have some a priori knowledge about

the grouping structure, we can use this knowledge during the Panel-CARDS implementation.

Following the idea presented in Park et al. (2007), we can use hierarchical clustering to combine

members in small groups into large groups. For example, if we know each group contains more

than  = 2% of individuals, then we can easily incorporate such information in the procedure. The

details will be introduced in the simulation section.

3 Asymptotic Analysis of Panel-CARDS

This section analyzes the large sample properties of the Panel-CARDS algorithm.

3.1 Assumptions

To proceed, we define some notation. Let x̃ = (x̃1 · · ·  x̃ )0 ỹ = (̃1  ̃ )0 x = (x1 x )0
and y = (1   )

0. Letmax denotemax1≤≤ max1≤≤  Let  () = −1  () and ̄ () =

0 () = 0 (||)sgn() where 0 () =  ()  for  = 1 2 Let  =
1
2
min1≤≤ kα0 −

α0k1 Given {0} and segmentation {1 · · ·  }, we define  = min{3
 min≤≤ ||2}.

Note that 12
 ≤  ≤ . We use (  )→∞ to signify that  and  pass to infinity jointly.

We make the following assumptions.

Assumption A1.(i) For each  {(x ) :  = 1 2 } is strong mixing with mixing coefficients
 (·).  (·) ≡ max  (·) satisfies  () ≤ 

 for some   0 and  ∈ (0 1). {xy} are
independent across  E () = 0 and E (x) = 0 for each  and 

(ii) There exist two constants 1 and 2 such that 0  1 ≤ min1≤≤ min

³
1



P
∈0


E(x̃0x̃)

´
and max1≤≤ max

¡
1

E(x0x)

¢ ≤ 2 ∞

(iii) There exists a constant 3  ∞ such that max E kxk2  3 and max E ||2  3

for some   4

(iv)  → ∞ For  = 1   either passes to infinity or stays fixed as  → ∞ and

 = 
¡
 2
¢

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Assumption A2. (·) is symmetric function and is nondecreasing and concave on [0∞) 0 ()
exists and is continuous except for a finite number of  and 0 (0+) = 1 There exists a constant
  0 such that  () is constant for all || ≥ .

Assumption A3. (i)  = ((ln )2) and  À ln
p
 

(ii) The tuning parameters 1 and 2 satisfy the following conditions:  À max{1 2}
1À 1 À ln


√

 and 1À 2 À ln

min
√


p
max1≤≤  where min = min{1  }

Assumption A4. (i) For each  = 1 , Φ̄ ≡ 1


P
∈0



P
=1 x̃x̃

0


→ Φ  0 as (  )→
∞ or  →∞ alone

(ii) For each  = 1 , 1√


P
∈0



P
=1 x̃ − B

→  (0Ψ) as (  ) → ∞ or

 →∞ alone where B =
1√


P
∈0



P
=1 E (x̃) is either 0 or (

p
 ) depending on

whether x is strictly exogenous.

Assumption A1(i) imposes conditions on {(x )}  We require {(x )} to be weakly de-
pendent (strong mixing is assumed here) but not necessarily stationary in the time dimension, and

independent but not necessarily identically distributed in the cross section dimension. The regres-

sor x can be either strictly exogenous or sequentially exogenous. Note that A1(i) does not rule

out serial correlation among {  = 1 2 } or {x  = 1 2 }  A1(ii) requires that the min-
imum eigenvalue of 1



P
∈0


E(x̃0x̃) be bounded away from zero and the maximum eigenvalue

of 1

E(x0x) be bounded away from infinity, uniformly in  and , respectively. A1(iii) imposes

some moment conditions on x and  In comparison with conditions 1 and 3 in KFW which

require nonrandom regressors and sub-Gaussian error terms, the conditions in A1(i)-(iii) are quite

weak. A1(iv) states conditions on   and  where we allow  to be fixed for some groups

and to pass to infinity for other groups, thereby providing some practical flexibility in group size.

In contrast, SSP require that  passes to infinity at the same rate as  for each 

Assumption A2 is identical to condition 2 in KFW. Following KFW, we specify (·) as the
SCAD penalty function in our simulations and applications below. Assumption A3 imposes condi-

tions on    1 and 2 A3(i) allows the number of groups to diverge with  and the minimum

difference between two group-specific coefficients to shrink to zero at a slow rate. A3(ii) specifies

the ranges of speed at which 1 and 2 shrink to zero. Assumption A4 borrows from SSP and is

used in studying the asymptotic distributional properties of the Panel-CARDS estimators. If x

contains lagged dependent variables (e.g., −1), it is well known that the fixed effects within-
group (WG) estimator has asymptotic bias of order  (1 ) in homogeneous dynamic panel data

models. This implies that B = (
p
 ) in dynamic panel data models and bias correction

is required for statistical inference unless  passes to infinity faster than  See SSP for detailed

discussions concerning A4.
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3.2 Analysis of the basic Panel-CARDS

Next we define the oracle estimators of β and α. When the grouping structure in G = {01 0}
is known, we can utilize the information that all coefficients β within the same true group are

identical to estimate β by minimizing  (β) in (2.10). The resulting estimator of β is denoted

β̂


 Similarly, by using the true grouping structure, we obtain the oracle estimator α̂ of

α with a typical block given by

α̂
 =

⎛⎝X
∈0



x̃0x̃

⎞⎠−1 X
∈0



x̃0ỹ for  = 1  (3.1)

The following theorem reports the asymptotic properties of the basic Panel-CARDS estimator

β̂ of β

Theorem 3.1 Suppose that Assumptions A1-A3 hold. Suppose that the preliminary estimate β̃

and tuning parameter  together generate a segmentation B admissible with the true grouping

pattern with probability at least 1− 0. Then with probability at least 1− 0 −  ( ), the Panel-

CARDS objective function (2.15) has a strictly local minimizer β̂ =(β̂
0
1 β̂

0
2  β̂

0
 )

0 such that β̂ =
β̂


and kβ̂ − β0k = (
p
 ).

Theorem 3.1 parallels Theorem 6 in KFW. It shows that the basic Panel-CARDS procedure

includes the oracle estimator β̂


as a strict local minimizer with high probability. When the

preliminary estimators β̃ are all consistent as in our panel setup with large  the segmentation

B is assured to be admissible w.p.a.1 as  →∞.6 In this case, 0 ≡ 0 → 0 and we have


³
β̂ = β̂


´
→ 1 as  →∞

Given the Panel-CARDS estimate β̂ we can obtain the estimated groups by classifying indi-

viduals with the same coefficient estimate (β̂) into the same group. We use ̂  = 1 2  ̂

to denote the ̂ estimated groups, and α̂  = 1 2  ̂ to denote the group-specific estimated

slope coefficients. By definition,

̂ =
n
 ∈ {1 2  } : β̂ = α̂

o
for  = 1 2  ̂ (3.2)

The following theorem reports the asymptotic distributional properties of α̂

Theorem 3.2 Suppose that the conditions in Theorem 3.1 are satisfied. Suppose that Assumption

A4 holds and 0 ≡ 0 → 0 as  → ∞ Then, after suitable relabeling of the indices of the true

groups, we have:

(i) 
³
̂ = 

´
→ 1 and 

³
̂1 = 01  ̂ = 0

´
→ 1 as  →∞;

(ii) for  = 1 · · · 
√
 (α̂−α0)− Φ̄−1 B

→ (0Φ−1 ΨΦ
−1
 ) as either (  )→∞

or  →∞.
6See Theorem 3 in KFW for a proof.
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Theorem 3.2(i) indicates that w.p.a.1 we can determine the correct number of groups. Theorem

3.2(ii) reports the asymptotic distribution of the group-specific estimator. As SSP remark, the

oracle estimator α̂
 satisfiesp


³
α̂
 −α0

´
− Φ̄−1 B

→ 
¡
0Φ−1 ΨΦ

−1


¢
as (  )→∞ or  →∞

under Assumption A4. Theorem 3.2(ii) indicates that the Panel-CARDS estimator α̂ achieves

the same limit distribution as this oracle estimator with knowledge of the exact membership of

each individual. In this sense, we say that Panel-CARDS estimators {α̂} have the asymptotic
oracle property.

Given the estimated grouping structure
n
̂

o
 we can define the post Panel-CARDS estimator

of α as

α̂
̂
=

⎛⎝X
∈̂

x̃0x̃

⎞⎠−1 X
∈̂

x̃0ỹ  = 1  ̂ (3.3)

The following theorem reports the asymptotic distribution of α̂
̂


Theorem 3.3 Suppose that the conditions in Theorem 3.2 are satisfied. Then, for  = 1 · · · √
 (α̂̂

−α0)− Φ̄−1 B
→ (0 Φ−1 ΨΦ

−1
 ) as (  )→∞ or  →∞

So post Panel-CARDS estimators also share the asymptotic oracle property of the Panel-

CARDS estimators. It is well known that the post-Lasso estimators have less bias than the Lasso

estimators and better finite sample performance than the latter. In the simulations below, we

accordingly focus on the finite sample performance of the post Panel-CARDS estimates.

It is worth mentioning that in comparison with SSP who require both  and  to pass to

infinity, the asymptotic theory here does not require  → ∞ or  =
P

=1 → ∞ In the

special case where  is fixed, B = (
p
1 ) =  (1) and no bias correction is needed for

either the Panel-CARDS estimators or their post-Lasso version.

3.3 Analysis of the advanced Panel-CARDS

The advanced Panel-CARDS method is an extension of basic Panel-CARDS. With some minor

abuse of notation, we continue to use β̂ to denote the advanced Panel-CARDS estimator. The

following theorem reports the asymptotic properties of β̂

Theorem 3.4 Suppose that Assumptions A1-A3 hold. Suppose that the preliminary estimate β̃

the tuning parameter  and the choice of  together generate an admissible segmentation net

N with probability at least 1 − 1.Then with probability at least 1 − 1 −  ( ), the Panel-

CARDS objective function (2.18) has a strictly local minimizer β̂ such that β̂ = β̂


and

kβ̂ − β0k = (
p
 ).
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The above theorem shows that the advanced Panel-CARDS procedure includes the oracle

estimator β̂


as a strict local minimizer with high probability. When the preliminary estimators

β̃ are all consistent as in our panel setup with large  the segmentation B can be assured to be
admissible w.p.a.1 as  → ∞. In this case, 1 ≡ 1 → 0 and we have 

³
β̂ = β̂


´
→ 1

as  → ∞ Then analogous results as in Theorems 3.2-3.3 hold for the advanced Panel-CARDS

estimators and their post-Lasso version. For brevity, we do not state the corresponding theorems.

4 Monte Carlo Simulations

In this section we conduct a small set of Monte Carlo simulations to demonstrate the finite sample

performance of Panel-CARDS. We choose experimental design settings for the Monte Carlo study

that enable comparisons between the basic and advanced Panel-CARDS procedures and that reflect

the type of challenges likely to be present in applied work.

4.1 Data generating processes

We consider four data generating processes (DGPs).

DGP 1. Both the fixed effects  and the error terms follow the i.i.d. standard normal

distribution across time and individuals and are mutually independent of each other. Individuals

are divided into three groups with 1 : 2 : 3 = 4 : 3 : 3. The observations (x) are generated

from the panel model (2.1) where x = (1 2)
0, 1 = 02 + 1, 2 = 02 + 2, 1 and

2 are both i.i.d. standard normal. The true coefficients are

(α01α
0
2α

0
3) =

Ã"
1

2

#


"
1

1

#


"
2

1

#!


Note that for the first regressor, its slope coefficient is homogeneous across groups 1 and 2; and

similarly for the second regressor, its slope coefficient is homogeneous across groups 2 and 3. In

this case, we cannot construct an admissible segmentation using the rank of the estimates of one

single slope coefficient. We want to evaluate the performance of basic Panel-CARDS and make

comparisons with advanced Panel-CARDS.

DGP 2. Here we use DGP 1 in SSP. Individuals are also divided into three groups with

1 : 2 : 3 = 4 : 3 : 3. The observations (x) are generated from the panel model (2.1)

where x = (1 2)
0, 1 = 02+ 1, 2 = 02+ 2, 1 and 2 are both i.i.d. standard

normal. The true coefficients are

(α01α
0
2α

0
3) =

Ã"
04

16

#


"
1

1

#


"
16

04

#!


DGP 3. In this DGP, we set the true number of groups to 8 where the first group has 30%

of individuals and each of the other seven groups has 10% of individuals. We let  = 2, and the
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regressors are generated as DGP 1. The true group-specific parameters take the valuesÃ"
−4
4

#


"
−3
3

#


"
−2
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#
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−1
1

#

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−1

#


"
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#


"
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"
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−4

#!


DGP 4. Here we consider a dynamic panel data model where there are 3 groups with 1 : 2 :

3 = 4 : 3 : 3. The regressors are x = (−1 1 2)0, where (1 2) are generated as DGP
1. In generating  periods of observations for individual , we first generate  + 100 observations

with initialization 0 = 0, and then take the last  periods of observations. The true parameter

values are

(α01α
0
2α

0
3) =

⎛⎜⎝
⎡⎢⎣0615
−1

⎤⎥⎦ 
⎡⎢⎣061
0

⎤⎥⎦ 
⎡⎢⎣0605
1

⎤⎥⎦
⎞⎟⎠ 

In DGP 2-4, the fixed effects and the error terms in (2.1) are generated as in DGP 1. We

will consider  = 100 200 and  = 10 20 40 and 80. Since Panel-CARDS is computationally

intensive, we fix the number of replications to 100 for all scenarios in this investigation.

4.2 Implementation and evaluation

For DGP 1 we use both the basic and advanced Panel-CARDS methods together with the hierar-

chical clustering setup. Since the performance of the basic Panel-CARDS is not robust and leads

to rather unsatisfactory performance in DGP 1, we only implement advanced Panel-CARDS in

DGPs 2-4. Recall that  controls the minimum percentage of observations within each estimated

group. We set  = 10% 5% 2% and 0 to estimate the model and obtain the grouping results.

When  = 0 we allow the minimum number of elements in an estimated group to be 1. The larger

the value of  the larger the number of elements for the smallest estimated group that is allowed

and the smaller the number of groups estimated. For DGPs 1-2, we consider all candidate values

of  : 10% 5% 2% and 0; for DGPs 3-4, we consider  = 5% 2% and 0 because  = 10% is a

strong assumption when we have 8 groups in DGP 3.

The hierarchical clustering is carried out as follows.

• Let ∗ = . For a Panel-CARDS classification A0 = {1 2  ̂0}, if ||  ∗, we
consider  as a properly identified group; otherwise, we treat it as misclassified. Without

loss of generality, we assume the properly identified groups are given byA = {1 2  ̂
},

and the misclassified members are in set J = ∪̂0

=̂+1
 For all members in the misclassified

groups, we re-run the classification.

• For each  ∈ J , we estimate its group membership by

∗ = arg min
∈{12̂0};1··· ̂

1

2

̂X
=1

X
∈

X
=1

£
(̃ − x̃0β)

2 + (̃ − x̃0β)
2 · 1{ = }¤ 
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Now we re-classify the element  to group ∗ for 
∗ ∈ {1  ̂}. In other words, we treat 

as a new observation, and reclassify it to the group which makes the objective function the

smallest.

• We repeat the last step for the remaining elements in J . The final estimated grouping
structure is denoted by bG = {̂1 ̂2  ̂̂

}

We use a BIC-type information criteria to choose the tuning parameters. Given the Panel-

CARDS classification results bG = {̂1 ̂2  ̂̂
} which are obtained by using the tuning para-

meter vector λ we calculate

IC(λ) = ln
¡
2 (λ)

¢
+ ̂

1

2
√




where 2 (λ) =
1



P̂
=1

P
∈

P
=1(̃− x̃0β̂ (λ))

2 the β̂ (λ)’s are post Panel-CARDS and

hierarchical clustering estimators, and here we make their dependence on λ explicit.

We report the frequency of obtaining a particular number of groups based on 100 replications

for all DGPs. Despite the importance of correct determination of the number of groups, it does

not show how similar the estimated groups are to the true groups. Following KFW, we use

the normalized mutual information (NMI) measure to assess the similarity between the estimated

grouping structure bG and the true grouping structure G. For two classifications/grouping structures
A = {1 2 · · · } and B = {1 2 · · · } on the same set {1 2 · · ·  }, the NMI is defined as

NMI(AB) = (AB)p
(A)(B) 

where

(AB) =
X


(| ∩ |) ln
µ | ∩ |
|| · | |

¶
and (A) = −

X


||


ln

µ ||


¶


When A and B have the same classification, we have (AB) = (A) = (B), and NMI(AB) = 1.
In general, the more similar two classifications are, the closer their NMI value is to 1.

We report NMI(bGG) for all DGPs. In addition, we report the root mean square error (RMSE)
for DGP 2 only to save space.

4.3 Simulation results

Table 1 reports the frequency of the estimated number of groups for DGP 1 based on the basic

Panel-CARDS (b-Panel-CARDS). Apparently, the performance of b-Panel-CARDS in DGP 1 is

poor, which is as expected. Theorem 3.1 requires an admissible segmentation for the b-Panel-

CARDS to work well. But the choice of the group-specific parameter values in DGP 1 rules out

the possibility of admissible segmentation by using the preliminary estimates of a single coefficient

to construct the segmentation.
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Because the b-Panel-CARDS is not robust against certain patterns of group-specific parameter

values such as those in DGP 1, below we will focus on the performance of the advanced Panel-

CARDS (a-Panel-CARDS).7 We use  = 2 regressors to construct the segmentation net. Given

the matrix of preliminary estimates, B̃ = (β̃1 β̃2 · · ·  β̃) we calculate the sample variance of

each row of B̃ and choose the two regressors with the largest variances for their coefficient estimates

to construct the segmentations.

Table 2 and Figure 1 report the classification results for DGP 1 based on the a-Panel-CARDS

for different combinations of  ,  , and . Unsurprisingly, the results in Table 2 are much better

than those in Table 1. Table 2 suggests that when we set the tuning parameter  to be 10%, the

a-Panel-CARDS procedure performs well even when  is very small relative to  and we can

correctly determine the number of groups with a large probability. When  increases, we have

more accurate preliminary estimates of the parameters and the classification also improves. When

 decreases, the a-Panel-CARDS tends to estimate more groups than the correct number of groups

for small values of  ; but its performance quickly improves as  increases. Figure 1 shows the NMI

between the estimated group structure bG and the true group structure G for different combinations
of  ,  , and . It suggests that as  increases, the NMI between bG and G increases rapidly. When
 = 80, the estimation is almost as good as the oracle for all values of  We also note that the

performance of a-Panel-CARDS with  = 2% or 5% significantly improves that with  = 0, but a

further increase of  does not necessarily lead to improved performance.

Table 3 reports the frequency of the estimated number of groups for DGP 2 based on the a-

Panel-CARDS. It suggests that when  is small (10 or 20), a higher value of  helps considerably in

determining the correct number the groups as in DGP 1. But when  is sufficiently large (say, 80),

the a-Panel-CARDS with  = 0 can also achieve almost perfect classification. Comparing Table 3

with the results of DGP 1 in SSP, we find that the performance here is not as good as theirs. But

note here that we use the a-Panel-CARDS, whose number of penalty terms approximately doubles

that of the b-Panel-CARDS approach. As remarked earlier, increasing penalty terms has the side

effect of accumulating errors. When we use the b-Panel-CARDS (which is sufficient for DGP 2)

and set  = 10%, its performance is comparable to that of SSP and significantly dominates the

latter when  = 10

Figure 2 reports the NMI for DGP 2 for various combinations of  ,  , and  The NMI patterns

in Figure 2 are similar to those in Figure 1 for DGP 1. Figure 3 presents the RMSE of for different

combinations of  ,  , and . Also reported in the figure is the RMSE for the estimates {̃}
which are obtained by treating every unit () as a group and labeled as “unitwise” estimates. To

evaluate the finite sample gains from using the a-Panel-CARDS, we compare its RMSE with that of

unitwise estimators and oracle estimators. Figure 3 suggests that the a-Panel-CARDS estimators

7But this does not mean that the a-Panel-CARDS dominates the b-Panel-CARDS in all cases. In DGP 2 below,

we find that b-Panel-CARDS can generate more accurate grouping results than the a-Panel-CARDS or SSP’s C-

Lasso. In real data applications, we apply both the a-Panel-CARDS and b-Panel-CARDS, and then rely on the

information criteria introduced in the last subsection to choose between them. And we call the result Panel-CARDS.
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Table 1: Frequency of obtaining the estimated number of groups in DGP 1 based on b-Panel-

CARDS
   1 2 3 4 5 6 7 8+
0.10 100 10 0.00 0.20 0.63 0.16 0.01 0.00 0.00 0.00

100 20 0.00 0.03 0.87 0.10 0.00 0.00 0.00 0.00
100 40 0.00 0.01 0.89 0.10 0.00 0.00 0.00 0.00
100 80 0.00 0.00 0.89 0.11 0.00 0.00 0.00 0.00
200 10 0.00 0.25 0.61 0.13 0.01 0.00 0.00 0.00
200 20 0.00 0.09 0.79 0.12 0.00 0.00 0.00 0.00
200 40 0.00 0.03 0.85 0.10 0.02 0.00 0.00 0.00
200 80 0.00 0.01 0.92 0.06 0.01 0.00 0.00 0.00

0.05 100 10 0.00 0.00 0.36 0.42 0.22 0.00 0.00 0.00
100 20 0.00 0.00 0.55 0.37 0.07 0.01 0.00 0.00
100 40 0.00 0.00 0.61 0.32 0.07 0.00 0.00 0.00
100 80 0.00 0.00 0.57 0.36 0.06 0.01 0.00 0.00
200 10 0.00 0.00 0.13 0.45 0.31 0.11 0.00 0.00
200 20 0.00 0.00 0.23 0.41 0.26 0.07 0.03 0.00
200 40 0.00 0.00 0.60 0.29 0.08 0.03 0.00 0.00
200 80 0.00 0.00 0.43 0.45 0.11 0.01 0.00 0.00

0.02 100 10 0.00 0.00 0.09 0.23 0.35 0.28 0.02 0.03
100 20 0.00 0.00 0.27 0.49 0.19 0.04 0.01 0.00
100 40 0.00 0.00 0.56 0.38 0.06 0.00 0.00 0.00
100 80 0.00 0.00 0.50 0.33 0.16 0.01 0.00 0.00
200 10 0.00 0.00 0.00 0.06 0.14 0.10 0.22 0.48
200 20 0.00 0.00 0.06 0.15 0.22 0.18 0.11 0.28
200 40 0.00 0.00 0.12 0.35 0.29 0.17 0.04 0.03
200 80 0.00 0.00 0.11 0.37 0.34 0.15 0.03 0.00

0 100 10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.99
100 20 0.00 0.00 0.00 0.01 0.03 0.04 0.07 0.85
100 40 0.00 0.00 0.00 0.03 0.05 0.18 0.18 0.56
100 80 0.00 0.00 0.00 0.02 0.11 0.19 0.27 0.41
200 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
200 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
200 40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
200 80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

generally outperform the unitwise estimators, and when  increases to 80, their performance is

almost as good as the oracle. With respect to , we again find that a choice of  = 2% or 5% tends

to outperform  = 0.

Table 4 and Figure 4 show that the classification results for DGP 3 where the true number of

groups is reasonably large (8 here). They show that the classification is very accurate even in this

challenging scenario as long as  ≥ 20 and  ≥ 2% As before, the choice of  = 0 produces good
classification results only when  is sufficiently large.

Table 5 and Figure 5 report the classification results for DGP 4 where the panel is a dynamic

panel. Apparently, the a-Panel-CARDS performs very well in this situation unless  is very small

and  = 0. The general conclusions from DGP 1-3 also hold here.
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Table 2: Frequency of obtaining the estimated number of groups in DGP 1 based on a-Panel-

CARDS
   1 2 3 4 5 6 7 8+
0.10 100 10 0.00 0.04 0.84 0.11 0.01 0.00 0.00 0.00

100 20 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
100 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
100 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 10 0.00 0.06 0.82 0.11 0.01 0.00 0.00 0.00
200 20 0.00 0.00 0.99 0.01 0.00 0.00 0.00 0.00
200 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.05 100 10 0.00 0.00 0.51 0.37 0.10 0.02 0.00 0.00
100 20 0.00 0.00 0.99 0.01 0.00 0.00 0.00 0.00
100 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
100 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 10 0.00 0.00 0.49 0.37 0.11 0.03 0.00 0.00
200 20 0.00 0.01 0.94 0.02 0.03 0.00 0.00 0.00
200 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.02 100 10 0.00 0.00 0.34 0.31 0.23 0.06 0.05 0.01
100 20 0.00 0.00 0.93 0.07 0.00 0.00 0.00 0.00
100 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
100 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 10 0.00 0.03 0.36 0.20 0.14 0.08 0.08 0.11
200 20 0.00 0.00 0.96 0.01 0.01 0.00 0.00 0.02
200 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0 100 10 0.00 0.00 0.00 0.00 0.01 0.05 0.06 0.88
100 20 0.00 0.00 0.08 0.24 0.21 0.13 0.13 0.21
100 40 0.00 0.00 0.70 0.26 0.03 0.01 0.00 0.00
100 80 0.00 0.00 0.97 0.03 0.00 0.00 0.00 0.00
200 10 0.00 0.00 0.01 0.01 0.02 0.01 0.05 0.90
200 20 0.00 0.03 0.05 0.07 0.12 0.17 0.13 0.43
200 40 0.00 0.01 0.68 0.24 0.06 0.01 0.00 0.00
200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
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Figure 1: NMI of DGP 1 classification results using a-Panel-CARDS

5 Empirical Applications

5.1 Income and democracy

As Acemoglu et al. (2008) remark, one of the most notable empirical regularities in modern

political economy is the positive relationship between income per capita and democracy. Existing

studies such as Barro (1999) and Acemoglu et al. (2008) establish a strong cross-country correlation

between income and democracy, but do not typically control for cross-country heterogeneity in the

slope coefficients. For different countries, the relationship between the two variables might well be

similar or equally well be quite different. In South Korea, the degree of democracy increases when

the economy is growing steadily. Similar patterns emerge for other countries such as Japan, Spain,

and Romania. However, for China the story is quite different. The democracy index composed by

Freedom House has not changed very much over the last three decades or more for China despite the

fact that China has made remarkable economic progress over the same period. Moreover, for some

countries like Iran and Malaysia, a negative correlation is observed between income and democracy.
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Table 3: Frequency of obtaining the estimated number of groups in DGP 2 based on a-Panel-

CARDS
   1 2 3 4 5 6 7 8+
0.10 100 10 0.00 0.06 0.76 0.18 0.00 0.00 0.00 0.00

100 20 0.00 0.01 0.88 0.08 0.03 0.00 0.00 0.00
100 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
100 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 10 0.00 0.25 0.53 0.19 0.03 0.00 0.00 0.00
200 20 0.00 0.17 0.51 0.29 0.01 0.02 0.00 0.00
200 40 0.00 0.00 0.97 0.03 0.00 0.00 0.00 0.00
200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.05 100 10 0.00 0.02 0.39 0.47 0.10 0.02 0.00 0.00
100 20 0.00 0.02 0.87 0.07 0.02 0.01 0.01 0.00
100 40 0.00 0.00 0.99 0.01 0.00 0.00 0.00 0.00
100 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 10 0.00 0.08 0.50 0.19 0.15 0.07 0.01 0.00
200 20 0.00 0.16 0.41 0.14 0.11 0.07 0.05 0.06
200 40 0.00 0.00 0.83 0.07 0.04 0.05 0.01 0.00
200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.02 100 10 0.00 0.01 0.33 0.37 0.21 0.07 0.01 0.00
100 20 0.00 0.02 0.76 0.20 0.02 0.00 0.00 0.00
100 40 0.00 0.00 0.99 0.01 0.00 0.00 0.00 0.00
100 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 10 0.00 0.06 0.29 0.33 0.13 0.08 0.08 0.03
200 20 0.00 0.16 0.42 0.14 0.04 0.08 0.10 0.06
200 40 0.00 0.00 0.89 0.06 0.02 0.00 0.01 0.02
200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0 100 10 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.92
100 20 0.00 0.02 0.10 0.13 0.18 0.13 0.15 0.29
100 40 0.00 0.00 0.53 0.34 0.09 0.02 0.02 0.00
100 80 0.00 0.00 0.99 0.01 0.00 0.00 0.00 0.00
200 10 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.99
200 20 0.00 0.00 0.05 0.05 0.08 0.04 0.13 0.65
200 40 0.00 0.00 0.30 0.33 0.13 0.10 0.07 0.07
200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
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Figure 2: NMI of DGP 2 classification results using a-Panel-CARDS
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Figure 3: Root mean square error of DGP 2 post classification estimators
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Table 4: Frequency of obtaining the estimated number of groups in DGP 3 based on a-Panel-

CARDS
   6 7 8 9 10 11 12 13+
0.05 100 10 0.71 0.18 0.09 0.01 0.00 0.00 0.00 0.01

100 20 0.00 0.00 0.91 0.09 0.00 0.00 0.00 0.00
100 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
100 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 10 0.10 0.28 0.59 0.03 0.00 0.00 0.00 0.00
200 20 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.02 100 10 0.00 0.00 0.34 0.31 0.23 0.06 0.05 0.01
100 20 0.00 0.00 0.93 0.07 0.00 0.00 0.00 0.00
100 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
100 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 10 0.00 0.00 0.67 0.27 0.05 0.01 0.00 0.00
200 20 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0 100 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
100 20 0.00 0.00 0.01 0.02 0.06 0.05 0.16 0.70
100 40 0.00 0.00 0.51 0.27 0.18 0.04 0.00 0.00
100 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
200 20 0.00 0.00 0.01 0.02 0.05 0.19 0.22 0.51
200 40 0.00 0.00 0.68 0.28 0.02 0.02 0.00 0.00
200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Table 5: Frequency of obtaining the estimated number of groups in DGP 4 based on a-Panel-

CARDS
   1 2 3 4 5 6 7 8+
0.05 100 10 0.00 0.00 0.85 0.14 0.01 0.00 0.00 0.00

100 20 0.00 0.00 0.98 0.02 0.00 0.00 0.00 0.00
100 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
100 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 10 0.00 0.00 0.79 0.15 0.05 0.01 0.00 0.00
200 20 0.00 0.00 0.94 0.05 0.01 0.00 0.00 0.00
200 40 0.00 0.00 0.98 0.02 0.00 0.00 0.00 0.00
200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.02 100 10 0.00 0.00 0.48 0.35 0.12 0.04 0.01 0.00
100 20 0.00 0.00 0.94 0.03 0.02 0.01 0.00 0.00
100 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
100 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 10 0.00 0.00 0.53 0.31 0.09 0.06 0.01 0.00
200 20 0.00 0.00 0.87 0.07 0.02 0.03 0.01 0.00
200 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0 100 10 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.97
100 20 0.00 0.04 0.08 0.18 0.22 0.22 0.16 0.10
100 40 0.00 0.01 0.91 0.07 0.01 0.00 0.00 0.00
100 80 0.00 0.00 0.99 0.01 0.00 0.00 0.00 0.00
200 10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.99
200 20 0.00 0.02 0.03 0.13 0.09 0.11 0.12 0.50
200 40 0.00 0.01 0.83 0.11 0.04 0.00 0.00 0.01
200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
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Figure 4: NMI of DGP 3 classification results using a-Panel-CARDS
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Figure 5: NMI of DGP 4 classification results using a-Panel-CARDS
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Figure 6: Scatter Plot of Preliminary Estimates

These observations motivate the use of more flexible panel modeling methods that permit some

individual heterogeneity and potential country groupings of the type that are admitted within the

latent panel structure model studied in this paper.

Following the lead of Acemoglu et al. (2008) and Bonhomme and Manresa (2015), we consider

the following regression model

 = 1−1 + 2−1 +  +   = 1    = 1   (5.1)

where  denotes a measure of democracy for country  in period   denotes the logarithm of the

real GDP per capita for country  in period   is the fixed effect,  is the error term, and 1 and

2 are the slope coefficients, which are assumed to be constant across countries in early studies.

See Acemoglu et al. (2008) and Bonhomme and Manresa (2015) for detailed descriptions of the

variables  and  As in these latter papers, we use a balanced panel dataset where the number

of countries () is 74 and the time index  runs from 1 to 7 Here each time period corresponds to

a five-year interval over the period 1961-2000. For example,  = 0 refers to the 1961-1965 period.

Without assuming any latent group structure, we can estimate the model in (5.1) by minimizing

the non-penalized objective function in (2.10). Let (̃1 ̃2)
0 denote the estimates. Since  = 7

is relatively small, these estimates cannot be very accurate. To get an intuitive idea about these

preliminary estimates, we display their scatter plot in Figure 6. From this figure we see that these

estimates have wide dispersion over the plane from which it is hard to discern any pattern.
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Figure 7: Scatter Plot of Classification Results

Next, we apply Panel-CARDS to determine the number of groups and estimate the group-

specific parameters. We assume that each group contains at least  = 2% of the countries and

apply the IC to choose the tuning parameter as in the simulations. The classification results are

reported in Table 6 and Figure 7. Table 6 suggests that we can identify three groups and each

group contains a fairly large number of countries. To connect with Table 6, we denote green

triangles for group 1, blue stars for group 2, and red circles for group 3. The differences among

these three groups are significant.

Table 7 reports the estimation results for each group-specific parameter and those for the pooled

fixed effects (FE) estimates, all of which are bias-corrected by using the half-panel jackknife of

Dhaene and Jochmans (2015). The last column in Table 7 reports the long run effect (LRE) of

income on democracy: 1(1−2). Based on these estimates of the effect of income on democracy,
we classify countries into three groups: Group 1 is a “negative effect” group, Group 2 a “small

effect” group, and Group 3 a “large effect” group. Thus, income has a negative association-effect

on democracy in Group 1, a small positive association-effect on democracy in Group 2, and a large

positive association-effect on democracy in Group 3.

These group selections and empirical results obtained by Panel-CARDS estimation can be

compared with full panel regression outcomes. If we pool all countries together and estimate a

homogeneous panel, the findings show only a positive association-effect of income with democracy,

an outcome that fails to explain the disparate country phenomena discussed at the beginning of

this section.
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Table 6: Classification Results of Countries/Regions

Group 1: “negative effect” group (|̂1| = 21)
Burkina Faso Central African Rep. Chad Colombia Guatemala
Guinea Guyana Iran Jamaica Kenya
Madagascar Malaysia Mauritania Nicaragua Niger
Sierra Leone South Africa Sri Lanka Tanzania Togo
Turkey

Group 2: “small effect” group (|̂2| = 24)
Argentina Burundi Cameroon China Congo Dem. Rep.
Congo Rep. Dominican Rep. Egypt Arab Rep. El Salvador Gabon
Ghana India Indonesia Mexico Morocco
Nigeria Paraguay Rwanda Singapore Sweden
Syrian Arab Rep. Tunisia Uganda Zambia

Group 3: “large effect” group (|̂3| = 29)
Algeria Benin Bolivia Brazil Chile
Cyprus Ecuador Finland Greece Honduras
Israel Japan Jordan Korea Rep. Luxembourg
Malawi Mali Nepal Panama Peru
Philippines Portugal Romania Spain Taiwan
Thailand Trinidad and Tobago Uruguay Venezuela RB

Table 7: Regression Results

1 2 LRE

estimates s.e. t-stat estimates s.e. t-stat

Group 1 (“negative effect”) -0.416 0.068 -6.134 0.179 0.061 2.939 -0.507

Group 2 (“small effect”) 0.248 0.017 8.200 -0.013 0.079 -0.232 0.245

Group 3 (“large effect”) 0.392 0.052 7.502 0.507 0.069 7.314 0.796

Pooled FE model 0.076 0.017 2.912 0.492 0.048 10.362 0.151
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5.2 Minimum wage and unemployment

The relationship between minimum wage and unemployment has been widely studied in labor

economics; see Brown (1999) for a summary. Conventional economic theory suggests that a rise in

the minimum wage should lead to reduced employment and thus a higher unemployment rate. This

assertion is challenged by empirical evidence in different ways, depending on the methodological

approach employed. As Dube et al. (2010) remark, the minimum wage literature in the United

States can be classified into two categories. One is based on traditional national level studies, and

the other is based on case studies. National level studies such as Neumark and Washer (1992, 2007)

use all cross-state variation in the minimum wage over time to estimate the employment effects

of increase in minimum wage. Case studies such as Card and Krueger (1994, 2000) and Neumark

and Wascher (2000) typically compare adjoining local areas with different minimum wages around

the time of a policy change. In both kinds of study, the conclusions are mixed. For example, Card

and Krueger (1994) study the impact of a minimum wage rise on employment using survey data

for 410 fast-food restaurants in New Jersey and Eastern Pennsylvania and find that an increase in

the minimum wage causes an increase in employment. In contrast, Neumark and Wascher (2000)

re-examine the issue for the same two states by using administrative payroll data but find negative

effects of a minimum wage rise on employment. Dube et al. (2010) show that both approaches

may generate misleading results when unobserved heterogeneity is not properly accounted for.

Given these mixed findings concerning the effect of the minimum wage on employment, we

might conjecture that unobserved slope heterogeneity in the across-state data is partly responsible

for the mixed evidence. The panel structure model is designed to cope with unobserved hetero-

geneity in the response function and this motivates the use of the following modeling framework

to accommodate potential heterogeneity

 = 1−1 + 2−1 + 3−1 +  +  (5.2)

where ,  and  denote the unemployment rate, GDP growth rate, and real minimum

wage rate (deflated by the CPI)8 for state  in year , respectively,  is a fixed effect,  is an error

term, and {1 2 3} denote heterogenous slope response parameters that may have certain
latent group structures. We use US panel data for all 50 states from 1988 to 2014. So  = 50

and  = 26 in our study. All data are downloaded from the Bureau of Labor Statistics and the

Federal Reserve Bank of St. Louis. We normalize the four variables to have mean 0 and variance

1 for all states.

Implementing the a-Panel-CARDS procedure, we obtain the classification results and post

classification estimates reported in Tables 8 and 9, respectively. Table 8 suggests that the 50 states

can be classified into two groups, each group containing roughly one half of the states. Table 9

reports the group-specific estimation results together with the pooled FE estimation results, where

8For most states, there are state minimum wage and federal minimum wage rates. We take the higher one as the

state minimum wage.
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Table 8: Classification Results of States

Group 1: “positive effect” group (|̂1| = 27)
Alabama Arizona California Colorado Connecticut
Florida Georgia Hawaii Illinois Maine
Maryland Massachusetts Michigan Nevada New Hampshire
New Jersey New York North Carolina Ohio Pennsylvania
Rhode Island South Carolina Texas Utah Virginia
Washington Wisconsin

Group 2: “negative effect” group (|̂2| = 23)
Alaska Arkansas Delaware Idaho Indiana
Iowa Kansas Kentucky Louisiana Minnesota
Mississippi Missouri Montana Nebraska New Mexico
North Dakota Oklahoma Oregon South Dakota Tennessee
Vermont West Virginia Wyoming

all estimated are bias-corrected via the half-panel jackknife. The estimates of the coefficients of the

lagged dependent variable are similar across Groups 1 and 2. For each group, the impact of GDP

growth on the unemployment rate is strongly negative, which accords with Okun’s law. The pooled

FE estimation results suggest that increases in the minimum wage have barely any effect on the

unemployment rate. The group results differ significantly: in Group 1, we find that an increasing

minimum wage leads to a higher unemployment rate; but in Group 2, an increase in minimum

wage causes a drop in the unemployment rate. For both groups, the coefficients are statistically

significant at the 10% level, but they cancel each other out in the pooled FE estimation.

Naturally, it is interesting to contemplate reasons for these observed group differences in state

outcomes. To provide some intuition, we present the geographic distribution of the classification

results, and mark them on the map in Figure 8. States classified in Groups 1 and 2 are painted

blue and white, respectively. Although our methodology makes no use of geographic information,

the map shows that the observed geographic pattern is surprisingly regular. Almost all Group 2

(colored white) states are connected and located in the middle region of the United States. Group

1 (colored blue) states are largely scattered around the east and west coasts of the United States.

This map pattern is naturally reminiscent of the standard geopolitical map of American politics

involving so-called blue states and red states.9 In addition, by sorting the 2014 GDP outcomes

from largest to smallest for the 50 states, we find that the top 15 largest economy states are

all included in Group 1 (blue). One possible explanation is as follows: due to geographic, his-

torical, transportation, demographic, and natural resource differences, people from the states in

Group 1 and Group 2 have different employment choice sets, different networking opportunities,

different exposure to the various manufacturing, mining, technological, educational, and financial

industries, as well as different political opinions. Exploring the underlying determinants of these

socio-economic-political differences is clearly of substantial interest in economic-political geography

but is beyond the scope of the current paper.

9For example, readers may refer to https://en.wikipedia.org/wiki/United_States_presidential_election,_2012
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Table 9: Regression Results

1 2 3
estimates s.e. t-stat estimates s.e. t-stat estimates s.e. t-stat

Group 1 0.617 0.029 21.258 -0.424 0.034 -12.455 0.059 0.033 1.748

Group 2 0.864 0.040 21.516 -0.175 0.031 -5.577 -0.080 0.043 -1.855

Pooled FE 0.765 0.025 30.094 -0.295 0.025 -11.934 -0.010 0.028 -0.367
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Figure 8: Classification Results on the Map

6 Conclusion

Panel data offer empirical investigators the opportunity to study individual unit behavior over time

which provides the appealing prospect of increased precision in estimation due to cross section av-

eraging. But this advantage hinges on the validity of homogeneous responses in the individual

units to system covariates and the predetermined variables. Assessing the validity of such ho-

mogeneous response conditions is an important feature of successful panel data research. When

homogeneity is absent and further information is lacking, empirical research is inevitably reliant

on econometric methodology to assist in discovering any latent structures in the data which may

lead to homogeneous sub-classes wherein cross section averaging will be valid and effective.
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This paper combines with other recent work in providing such methodology for the discovery

and estimation of latent structures in panel data. Our approach extends to a systematic panel

framework some recent research on the CARDS method proposed by KFW. The Panel-CARDS

procedure developed here is data-driven and enables identification and estimation of latent group

structures compatible with oracle estimation without the use of auxiliary variates to achieve em-

pirical classification. In comparison with the CARDS method, we consider the slope parameters

of each individual unit as a whole rather than as a special case of a cross section model. Together

with the use of a new concept of controlled classification of multidimensional quantities called the

segmentation net, this framework provides a robust approach to group selection. If prior infor-

mation about the minimum number of elements in each group does happen to be available, the

method also allows for hierarchical clustering to improve estimation accuracy.

We apply the new Panel-CARDS methodology to revisit two longstanding examples of panel

data research in economics. Our study of the international relationship between income and

democracy identifies three latent groups of countries which demonstrate distinctive association

effects, each relating income to democracy in a different way. Our study of the effect of minimum

wage legislation on unemployment rates in the United States identifies two latent groups within the

50 American states, one in which the unemployment rate responds negatively to increases in the

minimum wage and a second group where the response is positive. These applications demonstrate

that it is possible to take advantage of increased precision in estimation from cross section averaging

while at the same time identifying those subgroups of a panel in which homogeneous responses are

validated by the data.
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Appendix

A Proofs of the Main Results

This appendix provides proofs of the main results in the above paper. Throughout we use 

to denote a generic positive constant that may vary across lines. References are made in this

Appendix to Lemma B.1, which is a technical result contained in Appendix B, a supplementary

document to the present paper.

The proof of Theorem 3.1 makes use of the following lemma.

Lemma A.1 Suppose that Assumption A1 holds. Then for each  = 1 
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Proof of Lemma A.1. (i) First, using 1
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It follows that
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By Lemma B.1(i) of the supplementary document Appendix B, we have
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Using Lemma B.1(ii), the fact that max1≤≤ kE(x̄)k ≤  for some   ∞, and the represen-
tation x̄x̄

0
 − E(x̄)E(x̄0) = x̄ [x̄ − E(x̄)]0 + [x̄ − E(x̄)]E(x̄0) we can readily show that



⎛⎝°°°°°° 1

X
∈0



£
x̄x̄

0
 − E(x̄)E(x̄0)

¤°°°°°° ≥ 14

⎞⎠ = 
¡
−1

¢


It follows that with probability 1− 
¡
−1

¢
we have min

³
1



P
∈0


x̃0x̃

´
≥ 1 − 14− 14 ≥

12 That is, 
³
min

³
1



P
∈0


x̃0x̃

´
≤ 12

´
= 

¡
−1

¢


(ii) We make the following decomposition
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As in the proof of (i), we can readily argue that with probability 1− ¡−1¢ we have max ¡ 1 x̃0x̃¢ ≤
2 + 2 = 22 This concludes the proof of the lemma. ¥
Proof of Theorem 3.1. To prove the theorem, we follow Ke, Fan andWu (2015, KFW) and prove

that with a high probability the Panel-CARDS has a strictly local minimizer given by the oracle

estimator β̂


 Recall that β̂


is obtained with knowledge of the true grouping structure.

First, we introduce the restricted parameter space

G = {β ∈ R : β = β for any   ∈ 0 1 ≤  ≤ } (A.1)

Note that β = (β01 · · · β0)0 and the set
©
0
ª
=1

denotes the true grouping structure. So G is
connected with the parameter space of the oracle estimator. We define two mappings:

 :G → R and ∗ : R → R (A.2)

where (β) is a × 1 vector whose -th block (the length of a block is ) is the common slope
vector (α) of group , and ∗(β) is a  × 1 vector whose -th block (the length of a block is
) is given by 1



P
∈0


β the mean value of slope vectors in group . Apparently,  and ∗

are the same when the domain of ∗ is also restricted to be G . In addition, α0 = (β0) and

α̂ = (β̂


)

The objective function is  (β) =  (β) +  (β), where  (β) =
1
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(̃ −
x̃0β)

2 and  (β) = B12(β). For any α ∈ R, define

G (α) =  (
−1(α)) G (α) =  (

−1(α)) and

G (α) = G (α) + G (α) (A.3)

We need to show that β̂


is a strictly local minimizer of  with probability at least 1− 0−
 ( ). Let E1 denote the event that the segmentation B is admissible with the true parameter β0.
By the conditions in the theorem,  (E1) ≤ 0 where, for any event E  E denotes its complement.
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Next, we prove that



µ
kβ̂ − β0k ≤

q
 (ln )2 

¶
≥ 1− ( ) for some   0 (A.4)

Define the event E0 =
n
min

³
1



P
∈0


x̃0x̃

´
 12

o
Using α̂

 −α0 = (
P

∈0


1

x̃0x̃)

−1P
∈0



1

x̃0ε and by Lemma A.1, we have uniformly in 


np



°°°α̂
 −α0

°°° ≥ ln
√

o

= 

⎧⎨⎩p

°°°°°°
⎛⎝ 1



X
∈0



x̃0x̃

⎞⎠−1 1



X
∈0



x̃0ε

°°°°°° ≥ ln
√


⎫⎬⎭
≤ 

⎧⎨⎩p

°°°°°°
⎛⎝ 1



X
∈0



x̃0x̃

⎞⎠−1 1



X
∈0



x̃0ε

°°°°°° ≥ ln
√
  E0

⎫⎬⎭+  (E0)

≤ 

⎧⎨⎩p

°°°°°°
⎛⎝ 1



X
∈0



x̃0x̃

⎞⎠−1°°°°°°
°°°°°° 1



X
∈0



x̃0ε

°°°°°° ≥ ln
√
  E0

⎫⎬⎭+ 
¡
−1

¢

≤ 

⎛⎝°°°°°° 1



X
∈0



x̃0ε

°°°°°° ≥
³1
2

´
 ln

p


⎞⎠+ 
¡
−1

¢
= 

¡
−1

¢


where  () denotes  ( ∩). With this, we can readily show that



µ°°°β̂ − β0
°°°2 ≥2 (ln )2 

¶
= 

Ã
X
=1



°°°α̂
 −α0

°°°2 ≥2 (ln )2 

!

≤
X
=1



µ


°°°α̂
 −α0

°°°2 ≥2 (ln )2 

¶
=  ( ) 

Thus (A.4) follows.

Now we consider a small neighborhood of β0

W0
 ≡

n
β ∈ R : kβ − β0k   ln

p


o
 (A.5)

By (A.4), there exists a set E2 with  (E2) ≤ ( ) and kβ̂ − β0k ≤ ln
p
 over E2.

For an element β ∈W0
 and β

∗ = −1 ◦ ∗(β). We want to show
(i) Over the set E1 ∩ E2,

 (β
∗) ≥  (β̂


) (A.6)

and the inequality is strict when β∗ 6= β̂


.

(ii) There is a set E3 (to be defined) with  (E3) ≤ (−1). Over the set E1∩E2∩E3, there exists
a set W which contains β̂


such that

 (β) ≥  (β
∗) (A.7)

for any β ∈W , and the inequality is strict when β 6= β∗.
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If both (i) and (ii) hold, then we have  (β) ≥  (β̂


) for any β ∈W and β̂


is a

strict local minimizer of  over the set E1 ∩ E2 ∩ E3. We prove these two claims in Propositions
A.2 and A.3 below. ¥

Proposition A.2 Suppose that the conditions in Theorem 3.1 hold. Then  (β
∗) ≥  (β̂


)

on the set E1 ∩ E2 and the inequality is strict when β∗ 6= β̂




Proof of Proposition A.2. We demonstrate that

G (
∗(β)) = Constant for any β ∈W0

  (A.8)

Recall that  = 0 ∩  for  = 1 2 · · ·  and  = 1 2 · · ·  . For any β ∈ W0
 , denote

α = ∗(β). Define (1) =
P−1

=1 (|||(+1)|+ |||(+1)|)10 which is the number of between-
segment penalty terms imposed on segments  and . Similarly, define 

(2)

 = 2
P

=1 |||| as
the number of within-segment penalty terms. Then

G (α) = 1
X

1≤≤

(1)

1(kα −αk1) + 2
X

1≤≤

(2)

2(kα −αk1) (A.9)

where  () = −1  () for  = 1 2 In view of the fact that

min
1≤≤

kα −αk1 = min
1≤≤

k ¡α −α0
¢
+
¡
α0 −α0

¢− (α −α0)k1
≥ min

1≤≤
°°α0 −α0°°1 − 2 max1≤≤

°°α −α0
°°
1

≥ 2 − 2kβ − β0k∞ ≥ 2 − 2 ln
p
    max{1 2}

by Assumption A3, G (α) in (A.9) is constant on W0
 by Assumption A2.

Since G (α) is convex with respect to α and α̂
 minimizes G (α), we have

G (
∗ (β)) ≥ G

³
α̂

´
for any α =∗ (β) and the above inequality is strict whenever ∗ (β) 6= α̂ or equivalently,

β∗ 6= −1(α̂) = β̂


 The conclusion then follows by observing that on E1 ∩ E2

 (β
∗) =  (

−1 ◦ ∗(β)) = G (
∗(β)) = G (

∗(β)) + G (
∗(β))

= G (
∗(β)) + Constant

and, similarly,  (β̂


) = G (α̂
) + G (

∗(α̂)) = G (α̂
) + Constant. ¥

Proposition A.3 Suppose that the conditions in Theorem 3.1 hold. Then there exists a set W

which contains β̂


such that  (β) ≥  (β
∗) on the set E1∩E2∩E3 for any β ∈W , and

the inequality is strict when β 6= β∗.
10Since the ordered segmentation is admissible, we note here that many of the  ’

s are empty with cardinality 0.
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Proof of Proposition A.3. We construct a subset of W0
 defined by

W =W0
 ∩ {β : kβ − β̂

k ≤ } (A.10)

where  is a positive sequence such that 

min
¿ 2 and  ¿ 1. Recall that β∗ =

−1 ◦ ∗(β), which implies kβ − β∗k ≤ kβ − β0k for any β0 ∈ MG . In particular, we have

kβ − β∗k ≤ kβ − β̂k. Consequently, it suffices to prove the proposition by showing (A.7)
holds for any β such that kβ − β∗k ≤  , and the inequality is strict when β 6= β∗.

We now analyze how  (β) responds to the change of β ∈W . We make the following

decomposition

 (β)− (β
∗) = [ (β)−  (β

∗)] + [ (β)−  (β
∗)] ≡ 1 + 2 say. (A.11)

The basic idea is to demonstrate that upon moving from β to α = ∗(β), the decrease in the
penalty term 2 dominates the increase in the least squares function 1 with high probability. By

the Cauchy-Schwarz inequality, kβ − βk22 ≤ kβ − βk21 ≤ kβ − βk22. For 2 we have
2 =  (β)−  (β

∗)

=

−1X
=1

X
∈∈+1

1(kβ − βk1) +
X
=1

X
∈∈

2(kβ − βk1)

−
−1X
=1

X
∈∈+1

1(kβ∗ − β∗k1)−
X
=1

X
∈∈

2(kβ∗ − β∗k1)

= 1

−1X
=1

X
∈∈+1

G∼

1(kβ − βk1) + 2

X
=1

X
∈∈

G∼

2(kβ − βk1)

≥ 1

−1X
=1

X
∈∈+1

G∼

01

µ
2
√
√
min

¶
kβ − βk1 + 2

X
=1

X
∈∈

G∼

02

µ
2
√
√
min

¶
kβ − βk1 (A.12)

where 
G∼  means  and  are in the same true group in which case β∗ = β∗ , the third equality

follows from the proof of (A.8), and the last inequality follow from the concavity of 1(·) and 2(·)
and for ,  in the same true group, kβ − βk1 ≤ 2

√
kβ − β∗k√min ≤ 2√

√
min.

For 1 we apply a Taylor development, giving

1 =  (β)−  (β
∗)

=
1

2

X
=1

X
=1

(̃ − x̃0β)
2 − 1

2

X
=1

X
∈0



X
=1

(̃ − x̃0β∗)2

=
1

2

X
=1

X
∈0



(ỹ − x̃β)
0(ỹ − x̃β)−

1

2

X
=1

X
∈0



(ỹ − x̃β∗)0(ỹ − x̃β∗)

= − 1



X
=1

X
∈0



(ỹ − x̃β̆())
0x̃(β − β∗)

= − 1



X
=1

X
=

X
∈

(ỹ − x̃β̆())
0x̃(β − β∗) (A.13)
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where β̆() denotes the intermediate value that lies between β and β
∗
 elementwise. Let z =

x̃0(ỹ − x̃β̆()). Noting that β
∗
 =

1


P
0∈0


β0 =

1


P
0=

P
0∈0 β0  we have

1 = − 1



X
=1

X
=

X
∈

z0(β − β∗) = −
1



X
=1

X
=

X
∈

z0
1



X
0=

X
0∈0

(β − β0)

= − 1

2

X
=1

1



X
=

X
0=

X
∈

X
0∈0

(z − z0)0(β − β0)

= − 1

2

X
=1

1



X
=

X
∈

X
0∈

(z − z0)0(β − β0)

− 1



X
=1

1



X
≤0≤

X
∈

X
0∈0

(z − z0)0(β − β0)

= : 11 + 12 (A.14)

We will evaluate 11 and 12 in turn. First we transform 11 for comparison,

11 = − 1

2

X
=1

1



X
=

X
∈

X
0∈

(z − z0)0(β − β0)

= − 1

2

X
=1

X
=

X
∈

X
0∈

1



(z − z0)0(β − β0)

= − 1



X
=1

X
0∈

G∼0
θ0(z)

0(β − β0) (A.15)

where z = (z01 · · ·  z0N)0, θ0(z) = 1
2

(z − z0), and as before  G∼ 0 means that  and 0 belong to
the same true group. Now we change 12 to a form that can be easily compared with 2. By the

property of the partition B, we can write

β − β0 =
1Q0−1

=+1 ||
X

{(+1··· 0): =0=0;∈=+1··· 0−1}

0−1X
=

(β
− β+1

)

where the second summation is a telescope summation with common value β − β0  the first

summation is over all possible paths from all sets  between  and 0 , and the total number

of different paths is given by
Q0−1

=+1 ||. For notation consistency, when  = 0 − 1, we define
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Q0−1
=+1 || = 1. Plugging the expression into 12, we have

12 = − 1



X
=1

1



X
≤0≤

X
∈

X
0∈0

(z − z0)0(β − β0)

= − 1



X
=1

1



X
≤0≤

X
{(+1··· 0):∈=··· 0}

z0 − z00Q0−1
=+1 ||

0−1X
=

(β
− β+1

)

= − 1



X
=1

1



X
≤0≤

0

where

0 =

0−1X
=

X
{(+1··· 0):∈ =··· 0}

z0 − z00Q0−1
=+1 | |

(β
− β+1

)

To simplify the last expression, we discuss four cases: (a)  =  = 0 − 1 (b)  =   0 − 1 (c)
    0 − 1 and (d)    = 0 − 1 and write

0 = 0 () + 0 () + 0 () + 0 () 

where, for example, 0 () denotes the summation in 0 for which  is restricted to satisfy the

conditions in (a). In case (a), we have

0 () =

0−1X
=

X
{(+1··· 0):∈ =··· 0}

z0 − z00Q0−1
=+1 | |

(β
− β+1

)1
©
 =  = 0 − 1ª

=
X

∈+1∈+1

¡
z − z+1

¢0
(β

− β+1
)

=
X
∈

X
0∈+1

(z − z0)0(β − β0)

In case (b),

0 () =

0−1X
=

X
{(+1··· 0):∈ =··· 0}

z0 − z00Q0−1
=+1 | |

(β
− β+1

)1
©
 =   0 − 1ª

=
X

∈

X
+1∈+1

X
0∈0

z0 − z00
|+1|

(β
− β+1

)

=
X

∈

X
+1∈+1

|0 |
|+1|

¡
z0 − z̄00

¢
(β

− β+1
)

=
X
∈

X
0∈+1

|0 |
|+1|

(z − z̄0)0(β − β0)
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where z̄0 =
1

|0 |
P

∈0 z . Similarly, in case (d) we have

0 () =

0−1X
=

X
{(+1··· 0):∈ =··· 0}

z0 − z00Q0−1
=+1 | |

(β
− β+1

)1
©
   = 0 − 1ª

=
X
∈

X
0∈+1

||
|0−1|

(z̄ − z0)0(β − β0)

In case (c)

0 () =

0−1X
=

X
{(+1··· 0):∈ =··· 0}

z0 − z00Q0−1
=+1 | |

(β
− β+1

)1
©
    0 − 1ª

=

0−2X
=+1

X
{(+1··· 0):∈ =··· 0}

z0 − z00Q0−1
=+1 | |

(β
− β+1

)

=

0−2X
=+1

X
∈+1∈+1

X
∈0∈0

z0 − z00
|||+1|

(β
− β+1

)

=

0−2X
=+1

X
∈+1∈+1

|||0 |
|||+1|

(z̄ − z̄0)0(β
− β+1

)

It follows that

0 =

0−1X
=

X
{(+1··· 0):∈ =··· 0}

z0 − z00Q0−1
=+1 | |

(β
−β+1

) =

0−1X
=

X
∈

X
0∈(+1)

ω000(z)(β−β0)

where

ω00(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z − z0   =  = 0 − 1
|0 |

|(+1)|(z − z̄0)  =   0 − 1
|||0 |

|||(+1)|(z̄ − z̄0)     0 − 1
||

|(0−1)|(z̄ − z0)    = 0 − 1

 (A.16)

Then

12 = − 1



X
=1

1



X
≤0≤

0−1X
=

X
∈

X
0∈(+1)

ω000(z)(β − β0)

= − 1



−1X
=1

X
=

X
∈0∈(+1)

⎡⎣ 1



X
=

X
0=+1

ω000(z)

⎤⎦ (β − β0)

= − 1



−1X
=1

X
∈0∈+1

G∼0
τ 00(z)(β − β0) (A.17)
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where τ 0(z) =
1


P
=

P
0=+1ω00(z) Let 

1
 =

S
≤  and 2 =

S
 . Then by

(A.16)

τ 0(z) =
1



X
=

X
0=+1

ω00(z)

=
1



−1X
=

X
0=+2

|||0 |
|||(+1)|

(z̄ − z̄0) +
1



−1X
=

||
||

(z̄ − z0)

+
1



X
0=+2

|0 |
|(+1)|

(z − z̄0) + 1



(z − z0)

=
1



−1X
=

||(
P

0=+1 |0 |)
|||(+1)|

z̄ +
1



P
0=+1 |0 |
|(+1)|

z

− 1



X
0=+2

(
P

=
||)|0 |

|||(+1)|
z̄0 − 1



P
=

||
||

z0

=
1

|||(+1)|

⎛⎜⎝ |2|


X
∈1

(−1)

z − |
1
|



X
∈2

(+1)

z

⎞⎟⎠
+

µ |2|
|(+1)|

z −
|1|
||

z0

¶
 (A.18)

By (A.14), (A.15) and (A.17), we have

|1| ≤ |11|+ |12|

≤ 1



X
=1

X
∈

G∼

kθ(z)k1kβ − βk1 +
1



−1X
=1

X
∈∈+1

G∼

kτ (z)k1kβ − βk1(A.19)

By (A.11), (A.13) and (A.19), we have

 (β)− (β
∗) ≥

X
=1

X
∈

G∼

∙
2

0
2

µ
2
√
√
min

¶
− 1


kθ(z)k1

¸
kβ − βk1

+

−1X
=1

X
∈∈+1

G∼

∙
1

0
1

µ
2
√
√
min

¶
− 1


kτ (z)k1

¸
kβ − βk1

≡ 11 + 12 (A.20)

Now we only need to find a high probability event E3 over which the right hand side of (A.20)
is nonnegative, and  (E3) should be at least 1− (−1). Noting that

z = x̃0(ỹ − x̃β̆()) = x̃
0
(ε̃ + x̃β

0
)− x̃β̆())

= x̃0ε̃ − x̃0x̃(β∗ − β0)− x̃0x̃(β̆() − β∗) (A.21)
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we have

θ(z) =
1

2

¡
x̃0ε̃ − x̃0 ε̃

¢− 1

2

¡
x̃0x̃ − x̃0x̃

¢
(β∗ − β0)

− 1

2

h
x̃0x̃(β̆() − β∗)− x̃0x̃(β̆() − β∗)

i
≡ θ1 − θ2 − θ3 say.

Note that θ1 =
1
2

P
=1 (x̃ − x̃) = 1

2

P
=1 (x − x) + 1

2
(x̄̄ − x̄ ̄)  By

Lemma B.1, we can readily show that



Ã
max
1≤≤

max
∈0



1


kθ1k1 ≥

 ln

min
√


!
= 

¡
−1

¢
for some   0

For θ2 we have by Lemma A.1(iii), with probability 1− 
¡
−1

¢
max
1≤≤

max
∈0



1


kθ2k1 ≤ max

1≤≤
max
∈0



√


2

°°¡x̃0x̃ − x̃0x̃¢ (β∗ − β0)°°
≤ max

1≤≤

√




max
1≤≤

max
¡
x̃0x̃

¢
max
1≤≤

°°β∗ − β0°° ≤ 22√min
 

Similarly, max1≤≤ max∈0


1

kθ3k1 ≤

22
√


min
 with probability 1−

¡
−1

¢
 It follows that

with probability 1− 
¡
−1

¢
we have

1


max
1≤≤

max
∈0



kθ(z)k1 ≤
1


max
1≤≤

max
∈0



kθ1 − θ2 − θ3k1

≤  ln

min
√

+
42
√


min
 ≤ 

min

µ
ln√

+ 

¶


Define

E31 =
(
1


max
1≤≤

max
∈0



kθ(z)k1 ≤


min

µ
ln√

+ 

¶)


By choosing sufficiently small   we have
1

min

³
ln√

+ 

´
¿ 2 It follows that 11  0 over

the event E1 ∩ E2 ∩ E31 with  (E1 ∩ E2 ∩ E32) = 1− 
¡
−1

¢
.

Next, we consider 12. By the linearity of  0(·) and (A.21), we can write

τ 0(z) = τ 0(X̃
0ε)− τ 0(X̃(1))− τ 0(X̃(2))

where X̃ denotes an  × block diagonal matrix with the th diagonal block given by x̃ X̃(1)

is ×1 vector with typical block x̃0x̃(β∗−β0) for  ∈ 0 and X̃(2) is ×1 vector with typical
block x̃0x̃(β̆() − β∗) for  ∈ 0 By (A.18),

τ 0(X̃
0ε) =

1

|||(+1)|

⎛⎜⎝ |2|


X
∈1

(−1)

x̃0ε −
|1|


X
∈2

(+1)

x̃0ε

⎞⎟⎠
+

µ |2|
|(+1)|

x̃0ε −
|1|
||

x̃00ε0
¶

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By Lemma B.1, we can readily show that with probability 1− 
¡
−1

¢
we have

1



°°°°°°°
X

∈1
(−1)

x̃0ε

°°°°°°°
1

≤
 ln

r¯̄̄
1
(−1)

¯̄̄
 12

and
1



°°°°°°°
X

∈2
(+1)

x̃0ε

°°°°°°°
1

≤
 ln

r¯̄̄
2
(+1)

¯̄̄
 12

It follows that with probability 1− 
¡
−1

¢


1


max
1≤≤

max
∈0



°°°τ 0(X̃0ε)°°°
1
≤  ln

 12
max


S

where (S)
2 = 4

||2|(+1)|2
|2


|2|1

(−1)|+|1|2|2(+1)|
2


+
4|2


|2

2

|(+1)|2+

4|1

|2

2

||2  Below we use the

fact that

|1(−1)| 
¯̄
1

¯̄
≤  |2(+1)| 

¯̄
2

¯̄
≤  and

¯̄
1

¯̄
+
¯̄
2

¯̄
= 

We consider four subcases: (1)    +1   (2)    +1 =  (3)  =  +1  

and (4)  =  + 1 =  In subcase (1), we have || = ||  |(+1)| = |+1|  and

(S)
2 ≤ 4

||2|+1|2
+

4

|+1|2
+

4

||2


In subcase (2), we have || = ||  |2| =
¯̄
(+1)

¯̄
 and

(S)
2 ≤ 4

||2|(+1)|2
+

4

2


+
4

||2


In subcase (3) we have |1| = ||  |(+1)| = |+1|  and

(S)
2 ≤ 4

||2|+1|2
+

4

|+1|2
+
4

2




In subcase (4), we have |1| = ||  |2| =
¯̄
(+1)

¯̄
, and

(S)
2 ≤ 8

2




In sum, (S)
2 ≤ 12

min{3

 min≤≤ ||2} =: 12 It follows that with probability 1− 

¡
−1

¢
1


max
1≤≤

max
∈0



°°°τ 0(X̃0ε)°°°
1
≤  ln

 12

p


By the same token, we can show that with probability 1− 
¡
−1

¢
1


max
1≤≤

max
∈0



°°°τ 0(X̃())°°°
1
≤ 

p



max
1≤≤

°°β∗ − β0°° ≤ 
p



 for  = 1 2
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Then with probability 1− 
¡
−1

¢
we have

1


max
1≤≤

max
∈0



kτ (z)k1 =
1


max
1≤≤

max
∈0



°°°τ 0(X̃0ε)− τ 0(X̃(1))− τ 0(X̃(2))°°°
1

≤ 



µ
ln

 12
+ 

¶q
max
1≤≤



Define

E32 =
(
1


max
1≤≤

max
∈0



kτ (z)k1 ≤




µ
ln

 12
+ 

¶q
max
1≤≤



)


By choosing sufficiently small  (e.g.,  =  ln 12) we have 1


³
ln
 12

+ 

´p
 ¿

1 By the conditions on 1 2 and  we have 12  0 on the event E1 ∩ E2 ∩ E32 with
 (E1 ∩ E2 ∩ E32) = 1− 

¡
−1

¢
.

In sum, over the event E1 ∩ E2 ∩ E3 with E3 = E31 ∩ E32 we have  (β) ≥  (β
∗) for any

β ∈W and the strict inequality holds for β 6= β∗ ¥

Proof of Theorem 3.2. (i) By Theorem 3.1,  (β̂ = β̂


) → 1 provided 0 ≡ 0 → 0 as

 → ∞ It follows that  (̂ = ) → 1 and  (̂1 = 01  ̂ = 0 |̂ = ) → 1 as  → ∞

perhaps after suitable relabeling among the 0’s. In addition,


³
̂1 = 01  ̂ = 0

´
= 

³
̂1 = 01  ̂ = 0 |̂ = 

´

³
̂ = 

´
→ 1 as  →∞

(ii) Let C be any Borel-measurable set in R By (i),


³p

 (α̂ −α0) ∈ C
´

= 
³p

 (α̂ −α0) ∈ C|β̂ = β̂


´

³
β̂ = β̂


´

+
³p

 (α̂ −α0) ∈ C|β̂ 6= β̂


´

³
β̂ 6= β̂


´

= 
³p

 (α̂

 −α0) ∈ C

´
{1−  (1)}+  (1)

→ 
³p

 (α̂

 −α0) ∈ C

´
as  →∞

That is,
√
 (α̂ −α0) shares the same asymptotic distribution as

√
 (α̂


 − α0) As in

the proof of Theorem 3.1, we have

p
 (α̂


 −α0) =

⎛⎝ 1



X
∈0



x̃0x̃

⎞⎠−1 1



X
∈0



x̃0ε

By Assumption A4, (i) Φ̄ ≡ 1


P
∈0



P
=1 x̃x̃

0


→ Φ  0 and 1√


P
∈0



P
=1 x̃−

B
→  (0Ψ) as (  ) → ∞ or  → ∞ alone. It follows that

√
 (α̂


 − α0) −

Φ̄−1 B
→ (0Φ−1 ΨΦ

−1
 ) and the conclusion in Theorem 3.2(ii) follows. ¥

Proof of Theorem 3.3. Let C be defined as in the proof of Theorem 3.2(ii). In view of the fact
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that α̂
̂
becomes α̂

 conditional on ̂ = 0 we have by Theorem 3.2(i)


³p

 (α̂̂
−α0) ∈ C

´
= 

³p
 (α̂̂

−α0) ∈ C|̂ = 0

´

³
̂ = 0

´
+

³p
 (α̂̂

−α0) ∈ C|̂ 6= 0

´

³
̂ 6= 0

´
= 

³p
 (α̂


 −α0) ∈ C

´
{1−  (1)}+  (1)

→ 
³p

 (α̂

 −α0) ∈ C

´


That is,
√
 (α̂̂

−α0) is asymptotically equivalent to
√
 (α̂


 −α0) and the conclusion

in Theorem 3.3 follows. ¥
Proof of Theorem 3.4. The proof is built on and similar to that of Theorem 3.1 and we only

sketch the main difference. The penalty term B12(β) now becomes

N 12(β) =

X
=1

B 12(β)

which involves the addition of  penalty terms. As assumed, {B1  B} together forms an
admissible segmentation net N  For the first group 01 there exists a B ∈ N such that 01 is

properly segmented by B  To make the notation easier to follow, we rename B = B for the
moment. Recall that 01 = ∪1=11, where 1 = 01 ∩ and  ∈ B. Without loss of generality
and possibly with some renaming of notation, we can assume 1\01 6= ∅ and 1 ∩ 02 6= ∅.
Here‘ \’ is the relative complement operator. Next we find the B ∈ N that properly segments 02.

Similarly we can write 02 = ∪2=22. And so on. Finally, for each 0 we have 
0
 = ∪=.

The redefined segmentation B∗ = {11   11      } is an admissible segmentation
according to the definition. Now we decompose N 12(β) as

N 12(β) = B∗12(β) + within(β) + between(β)

where B∗12(β) is defined according to the new admissible segmentation B∗, within(β) contains
all other penalty terms between members belonging to the same true group, and between(β)

contains all other penalty terms for members belonging to different true groups.

Next we specify the events.

1. Let E1 be the event that the segmentation net is admissible with the true parameters β0
so that we could generate the B∗ described above. According to the assumption, we have
 (E1) ≤ 1.

2. Let E2 =
n
kβ̂ − β0k ≤ ln

p


o
. According to the proof in Theorem 3.1, we

have  (E2) = ( ). Furthermore, over the event E1∩E2, we have property (i) in Theorem
3.1. Note that here B∗12(β) plays a similar role to that of B12(β) in Theorem 3.1;

within(β) and between(β) are zero and a constant, respectively, conditional on E1 ∩ E2.
3. Let E3 be as defined in Theorem 3.1 such that  (E3) = 

¡
−1

¢
. Combining the proof of

Theorem 3.1 and arguments in the last point, we obtain a similar evaluation as property (ii)

in Theorem 3.1.

Thus, just as in the proof of Theorem 3.1, we can show that, over the event E1∩E2∩E3, β̂

is the unique optimization solution of  . In addition,  (E1 ∩ E2 ∩ E3) ≥ 1− 1 −  ( ). ¥
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This supplement states and proves a technical lemma that is used in the main text of the above

paper.

B A Technical Lemma

Lemma B.1 Let  denote a ×1 random vector with mean 0 and E kk ∞ for some   4

Suppose that {  = 1    = 1  } are independent across  and are strong mixing in the
time index. Let 01  

0
 be defined as in the main text with  =

¯̄
0
¯̄
for  = 1 . Let  (·)

denote the mixing coefficients of {  = 1 2 }  Suppose that  () ≤  () for all  = 1  

where  () ≤ 
 for some   0 and  ∈ (0 1). Then as  → ∞ and for some sufficiently

large positive constant  and any positive constant  we have

(i) 
³°°° 1



P
∈0



P
=1 

°°° ≥  ln( )

( )
12

´
= 

³
( )

−1
´
for  = 1 

(ii) 
³
max1≤≤

°°° 1 P
=1 

°°° ≥  ln( )

12

´
= 

¡
−1

¢
provided   8 and  = 

¡
 2
¢


(iii) 
³
max1≤≤

°°° 1 P
=1 

°°° ≥ 
´
= 

¡
−1

¢
provided  = 

¡
 2
¢


Proof. (i) Let  = ln( )
√
 and 

= ( )
 for  = 2


 Let  be an arbitrary

 × 1 nonrandom vector with kk = 1. Let 1 = 1
©kk ≤ 

ª
and 1̄ = 1− 1 Define

1 = 0 [1 − E (1)]  2 = 01̄ and 3 = 0E (1̄) 

Apparently 1 + 2 − 3 = 0 as E() = 0 We prove the lemma by showing that

(i1)  · 
⎛⎝¯̄̄̄¯̄ 1



X
∈0



X
=1

1

¯̄̄̄
¯̄ ≥ 

⎞⎠ =  (1) 

(i2)  · 
⎛⎝¯̄̄̄¯̄ 1



X
∈0



X
=1

2

¯̄̄̄
¯̄ ≥ 

⎞⎠ =  (1)  and (i3)

¯̄̄̄
¯̄ 1



X
∈0



X
=1

3

¯̄̄̄
¯̄ =  ( ) 

1



First, we prove (i3). By the Hölder and Markov inequalities¯̄̄̄
¯̄ 1



X
∈0



X
=1

3

¯̄̄̄
¯̄ ≤ max

1≤≤

max
1≤≤

kE (1̄)k

≤ max
1≤≤

max
1≤≤

n
E kk2

o2 ©

¡kk  

¢ª(−2)
≤ 1 max

1≤≤

max
1≤≤

©

¡kk  

¢ª(−2)
≤ 1 max

1≤≤

max
1≤≤

n

−


E (kk)
o(−2)

= 12
−(−2)


= 
³
( )

−(−2)
´
= ( )

where 1 ≡ max∈0

max1≤≤

n
E kk2

o2
and 2 ≡ max∈0


max1≤≤ {E (kk)}(−2) 

Next, we prove (i2). Noting that
°°° 1


P
∈0



P
=1 2

°°° ≥  implies thatmax1≤≤
max1≤≤

kk  
 by the Boole and Markov inequalities, the dominated convergence theorem, and the

stated conditions, we have



⎛⎝°°°°°° 1



X
∈0



X
=1

2

°°°°°° ≥ 

⎞⎠ ≤ 

"
max
∈0



max
1≤≤

kk  

#

≤ 





max
∈0



max
1≤≤

E
£kk 1©kk  

ª¤
= 

³
( )

1−
´
= 

³
( )

−1
´


To prove (i1), we need to rewrite the expression 1 ≡ 1


P
∈0



P
=1 1Without loss of

generality, we assume that we can split the time interval [1  ] into 2 blocks with each block

of length  =  (2 ) ³ ( )
1
2
− where  ³  means that  is bounded away from

both 0 and infinity as  →∞ Then

X
=1

1 =

X
=1

2−1 +
X
=1

2

where  =
1



P

=(−1)+1
1 for  = 1  2  It follows that



⎛⎝¯̄̄̄¯̄ 1



X
∈0



X
=1

1

¯̄̄̄
¯̄ ≥ 

⎞⎠ ≤ 

⎛⎝¯̄̄̄¯̄X
∈0



X
=1

2−1

¯̄̄̄
¯̄ ≥ 2

⎞⎠+
⎛⎝¯̄̄̄¯̄X

∈0


X
=1

2

¯̄̄̄
¯̄ ≥  2

⎞⎠ 

Below we show that the first term can be bounded by (( )
−1) The second term can be studied

by using analogous arguments. Note that

max
∈0



max
1≤≤

|2−1| = 1


max
∈0



max
1≤≤

¯̄̄̄
¯̄ (2−1)X
=(2−2)+1

0 [1 − E (1)]
¯̄̄̄
¯̄ ≤ 2


≡  

2



By the Davydov inequality, we can readily show that

X
∈0



X
=1

E
h
(2−1)2

i
=

1

2


2

X
∈0



X
=1

E

⎡⎢⎣
⎛⎝ (2−1)X

=(2−2)+1
0 [1 − E (1)]

⎞⎠2
⎤⎥⎦ ≤ 1



for some 1 ∞ By Bradley’s lemma (e.g., Lemma 1.2 in Bosq 1998), we can construct a sequence

of random variables ∗1 
∗
3  such that (1) 

∗
1 

∗
3  are independent, (2) 

∗
2−1 has the

same distribution as 2−1 and (3) for any 2 ∈ (0  ]


©¯̄
∗2−1 −2−1

¯̄
 2

ª ≤ 18(2)
12 ( )  (B.1)

Then we have



⎛⎝¯̄̄̄¯̄X
∈0



X
=1

2−1

¯̄̄̄
¯̄ ≥ 2

⎞⎠
≤ 

⎛⎝¯̄̄̄¯̄X
∈0



X
=1

∗2−1

¯̄̄̄
¯̄ ≥ 4

⎞⎠+ 

⎛⎝¯̄̄̄¯̄X
∈0



X
=1

¡
∗2−1 −2−1

¢¯̄̄̄¯̄ ≥  4

⎞⎠
≡  +  say.

In view of the fact that exp () ≤ 1 + + 2 for || ≤ 12 1 +  ≤ exp () for any  ≥ 0 and
E [2−1] = 0 we have for  ≡ −1

2

E [exp (±2−1)] ≤ 1 + 2
E
h
(2−1)2

i
≤ exp

³
2

E
h
(2−1)2

i´


Then by the Markov inequality, we have

 = 

⎛⎝¯̄̄̄¯̄X
∈0



X
=1

∗2−1

¯̄̄̄
¯̄ ≥ 4

⎞⎠
≤ exp

µ
−

4

¶
E

⎧⎨⎩exp
⎛⎝

X
∈0



X
=1

∗2−1

⎞⎠+ exp
⎛⎝−

X
∈0



X
=1

∗2−1

⎞⎠⎫⎬⎭
= exp

µ
−

4

¶nQ
∈0



Q
=1 E

£
exp

¡


∗
2−1

¢¤
+
Q

∈0


Q
=1 E

£
exp

¡−
∗
2−1

¢¤o
≤ 2 exp

µ
−

4

¶Q
∈0



Q
=1 exp

³
2

E
h
(2−1)2

i´
= 2exp

⎛⎝−

4
+ 2

X
∈0



X
=1

E
h
(2−1)2

i⎞⎠
³ exp (− ln ( )) = 

³
( )

−1
´



where the last line follows because 2
( ) =

³


4 

´2
( ) =



162


2


³ −2
( )

1−2

³ 1 and

 =


4

 ln ( )

( )
12

=
 ( )

1
2
− ln ( )

4
³ ln ( ) 

3



In addition, by (B.1) and the fact


4
≤ 

 = 

⎛⎝¯̄̄̄¯̄X
∈0



X
=1

¡
∗2−1 −2−1

¢¯̄̄̄¯̄ ≥ 

4

⎞⎠
≤

X
∈0



X
=1



µ¯̄
∗2−1 −2−1

¯̄
≥ 

4

¶
≤
X
∈0



X
=1

18

⎛⎝ 


4

⎞⎠12  ( )

= 36

µ




¶12
 ( ) ≤ ( )

− for sufficiently large 

where  can be chosen arbitrarily large as  ( ) decays to zero at the exponential rate and

 ³ ( )
1−2
2 diverges to ∞ at a polynomial rate.

This completes the proof of (i).

(ii) The proof is similar to that of (i) and is therefore sketched. Let  =  ln
√
 and

 =  ̄ for ̄ = 4

 Let  be an arbitrary  × 1 nonrandom vector with kk = 1. Let 1 =

1 {kk ≤ } and 1̄ = 1 − 1 Define ̄1 = 0 [1 − E (1)]  ̄2 = 01̄ and ̄3 =

0E (1̄)  Apparently ̄1 + ̄2 − ̄3 = 0 as E() = 0 We prove the lemma by showing

that

(ii1)  · 
Ã
max
∈0



¯̄̄̄
¯ 1

X
=1

̄1

¯̄̄̄
¯ ≥ 

!
=  (1) 

(ii2)  · 
Ã
max
∈0



¯̄̄̄
¯ 1

X
=1

̄2

¯̄̄̄
¯ ≥ 

!
=  (1)  and (ii3) max

∈0


¯̄̄̄
¯ 1

X
=1

̄3

¯̄̄̄
¯ =  ( ) 

Following the proof of (i3) and using the Hölder and Markov inequalities, we can readily show

that

max
∈0



¯̄̄̄
¯ 1

X
=1

̄3

¯̄̄̄
¯ ≤ max∈0



max
1≤≤

kE (1̄)k ≤ 12
−(−2)
 = 

³
−̄(−2)

´
= ( )

Similarly, following the proof of (i2) and using the Boole and Markov inequalities, the dominated

convergence theorem, and the stated conditions, we have



Ã
max
∈0



¯̄̄̄
¯ 1

X
=1

̄2

¯̄̄̄
¯ ≥ 

!
≤ 

"
max
∈0



max
1≤≤

kk  

#

≤ 





max
∈0



max
1≤≤

E
£kk 1©kk  

ª¤
= 

³


1−̄
´
= 

¡
−1

¢
where we use the fact that  = 

¡
 2
¢


For (ii1), we assume that we can split the time interval [1  ] into 2 blocks with each block

of length  =  (2 ) ³ 
1
2
−̄ Then

P
=1 ̄1 =

P
=1 ̄2−1 +

P
=1 ̄2 where ̄ =

4



1


P
=(−1)+1 ̄1 for  = 1  2  It follows that



Ã
max
∈0



¯̄̄̄
¯ 1

X
=1

̄1

¯̄̄̄
¯ ≥ 

!
≤ 

Ã
max
∈0



¯̄̄̄
¯
X
=1

̄2−1

¯̄̄̄
¯ ≥ 2

!
+ 

Ã
max
∈0



¯̄̄̄
¯
X
=1

̄2

¯̄̄̄
¯ ≥ 2

!


Below we show that the first term can be bounded by 
¡
−1

¢
 The second term can be studied

by using analogous arguments. Note that

max
∈0



max
1≤≤

¯̄
̄2−1

¯̄
=
1


max
∈0



max
1≤≤

¯̄̄̄
¯̄ 2X
=(2−1)+1

0 [1 − E (1)]
¯̄̄̄
¯̄ ≤ 2

≡ ̄ 

By the Davydov inequality, we can readily show that

X
=1

E
h
(2−1)2

i
=
1

 2

X
=1

E

⎡⎣⎛⎝ 2X
=(2−1)+1

0 [1 − E (1)]
⎞⎠2⎤⎦ ≤ ̄1



for some ̄1  ∞ By Bradley’s lemma, we can construct a sequence of random variables ̄∗1
̄∗3  such that (1) ̄

∗
1 ̄

∗
3  are independent, (2) ̄

∗
2−1 has the same distribution as ̄2−1

and (3) for any ̄2 ∈ (0 ̄ ]


©¯̄
∗2−1 −2−1

¯̄
 ̄2

ª ≤ 18(̄̄2)
12 ( )  (B.2a)

Then we have



Ã
max
∈0



¯̄̄̄
¯
X
=1

2−1

¯̄̄̄
¯ ≥ 2

!

≤ 

Ã
max
∈0



¯̄̄̄
¯
X
=1

∗2−1

¯̄̄̄
¯ ≥ 4

!
+ 

Ã
max
∈0



¯̄̄̄
¯
X
=1

¡
∗2−1 −2−1

¢¯̄̄̄¯ ≥ 4

!
≡  +  say.

Noting that E
£
exp

¡±̄ ̄2−1
¢¤ ≤ 1 + ̄

2
E
h¡
̄2−1

¢2i ≤ exp³̄2E h¡̄2−1
¢2i´

for ̄ ≡
̄−1 2 and by the Markov inequality, we have

 ≤
X
∈0





Ã¯̄̄̄
¯
X
=1

̄∗2−1

¯̄̄̄
¯ ≥ 4

!
≤ 2

X
∈0



exp

Ã
− ̄

4
+ ̄

2


X
=1

E
h¡
̄2−1

¢2i!
³ exp (− ln ) = 

¡
−1

¢
for large 

where the last line follows because ̄
2
 =

³


4 

´2
 = 

162

2


³ −2  1−2 ³ 1 and ̄ =


4 

 ln
 12

= 
1
2
− ln
4

³ ln

5



In addition, by (B.2a) and the fact 
4
≤ ̄ 

 = 

Ã
max
∈0



¯̄̄̄
¯
X
=1

¡
∗2−1 −2−1

¢¯̄̄̄¯ ≥ 

4

!

≤
X
∈0



X
=1



µ¯̄
∗2−1 −2−1

¯̄
≥ 

4

¶
≤
X
∈0



X
=1

18

Ã
̄

4

!12
 ( )

= 36

µ
̄ 



¶12
 ( ) ≤ − for sufficiently large 

where  can be chosen arbitrarily large. This completes the proof of (ii).

(iii) The proof is similar to (ii) and is again only sketched here. Let  =  and  =  ̄ for

̄ = 4

 Let ̄1 ̄2 ̄3 ̄ ̄

∗
 and ̄ be as defined in the proof of (ii). We prove the lemma

by showing that

(iii1)  · 
Ã
max
1≤≤

¯̄̄̄
¯ 1

X
=1

̄1

¯̄̄̄
¯ ≥ 

!
=  (1) 

(iii2)  · 
Ã
max
1≤≤

¯̄̄̄
¯ 1

X
=1

̄2

¯̄̄̄
¯ ≥ 

!
=  (1)  and (iii3) max

1≤≤

¯̄̄̄
¯ 1

X
=1

̄3

¯̄̄̄
¯ =  (1) 

The proofs of (iii2) and (iii3) are similar to those of (ii2) and (ii3) and omitted. For (iii1), we

now assume that we can split the time interval [1  ] into 2 blocks with each block of length

 =  (2 ) ³  1−̄− where  is an arbitrarily small positive number such that 1 − ̄ −   0

(which is possible because ̄ = 4

 1 under our assumption). Then

P
=1 ̄1 =

P
=1 ̄2−1 +P

=1 ̄2where ̄ =
1


P
=(−1)+1 ̄1 for  = 1  2  Noting that E

£
exp

¡±̄ ̄2−1
¢¤ ≤

1+ ̄
2
E
h¡
̄2−1

¢2i ≤ exp³̄2E h¡̄2−1
¢2i´

for ̄ ≡ ̄−1 2 and by the Markov inequality, we

have



Ã
max
1≤≤

¯̄̄̄
¯
X
=1

∗2−1

¯̄̄̄
¯ ≥ 4

!

≤
X
=1



Ã¯̄̄̄
¯
X
=1

̄∗2−1

¯̄̄̄
¯ ≥ 4

!
≤ 2

X
=1

exp

Ã
− ̄

4
+ ̄

2


X
=1

E
h¡
̄2−1

¢2i!
³ exp (−  + ln) = 

¡
−1

¢
for any   0 and   0

where the last line follows because ̄
2
 =

³


4 

´2
 = 

162

2


= (2
1−2) = 

¡
−1+2

¢
=

 (1) for   05 and ̄ =


4 
 =   In addition, as in the proof of (ii1), we can show that

by Bradley’s lemma, for sufficiently large 



Ã
max
1≤≤

¯̄̄̄
¯
X
=1

¡
∗2−1 −2−1

¢¯̄̄̄¯ ≥ 4

!
≤

X
=1

X
=1

18

Ã
̄

4

!12
 ( )

= 36

µ
̄ 



¶12
 ( ) ≤ −

6



where  can be chosen arbitrarily large. The rest of the proof follows the corresponding part in

the proof of (ii1).
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