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Abstract

This paper studies estimation of a panel data model with latent structures where individuals
can be classified into different groups where slope parameters are homogeneous within the same
group but heterogeneous across groups. To identify the unknown group structure of vector pa-
rameters, we design an algorithm called Panel-CARDS which is a systematic extension of the
CARDS procedure proposed by Ke, Fan, and Wu (2015) in a cross section framework. The
extension addresses the problem of comparing vector coefficients in a panel model for homo-
geneity and introduces a new concept of controlled classification of multidimensional quantities
called the segmentation net. We show that the Panel-CARDS method identifies group struc-
ture asymptotically and consistently estimates model parameters at the same time. External
information on the minimum number of elements within each group is not required but can
be used to improve the accuracy of classification and estimation in finite samples. Simulations
evaluate performance and corroborate the asymptotic theory in several practical design set-
tings. Two empirical economic applications are considered: one explores the effect of income
on democracy by using cross-country data over the period 1961-2000; the other examines the
effect of minimum wage legislation on unemployment in 50 states of the United States over
the period 1988-2014. Both applications reveal the presence of latent groupings in these panel
data.
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1 Introduction

Conventional panel data analysis often assumes complete slope homogeneity, which is convenient
in practical work and takes full advantage of cross section averaging. However, homogeneity as-
sumptions are frequently rejected in empirical panel studies, as in Hsiao and Tahmiscioglu (1997),
Phillips and Sul (2007), Browning and Carro (2007) and Su and Chen (2013). But if complete slope
heterogeneity is permitted, estimation can be imprecise or even impractical when the time dimen-
sion is very short, thereby losing a key advantage of working with panel data. These considerations
motivate the present study and much of the recent research on panel structure modeling.

This paper follows earlier work by Su, Shi, and Phillips (2016, SSP hereafter) by studying a
linear panel data model with latent structures that embody unknown homogeneous elements. It
is assumed that the cross sectional units can be classified into a small number of groups with
homogeneous slopes within each group and heterogeneity across groups. There are many moti-
vating examples for such models in empirical work: in cross country economic growth studies,
the presence of possible convergence clubs in the data is often of interest (Phillips and Sul 2007);
in financial markets, stock returns in the same sector are commonly thought to share common
characteristics (Ke, Fan, and Wu 2015); and in economic geography, location may be a relevant
factor in economic performance, leading to spatial geographic groupings in the data (Fan, Lv, and
Qi 2011; Bester and Hansen 2016).

The inherent difficulty in studying latent panel structure lies in the unknown nature of the
group composition. The practical econometric problem in such cases is that the number of groups
is unknown as well as individual group membership within the panel. Since the number of all
possible classifications is a Bell number, it is not feasible to try all possible combinations (Shen
and Huang 2010). One way to determine the group structure is to use external variables or prior
knowledge, such as geographic location and industrial sector composition, to assist in classifying
individuals into groups (Bester and Hansen 2016). But this approach is vulnerable to misleading
inference when the number of groups or the individual identities are incorrectly specified. Moreover,
in many panel data models, there are no natural external variables to assist in classification.
Accordingly, much effort has been devoted to determining the unknown panel structure without
resorting to the use of external factors. One approach is to use finite mixture models; see Sun
(2005), Kasahara and Shimotsu (2009), and Browning and Carro (2010). Another approach adapts
the K-means algorithm to panel models in order to form a group structure in the panel; see Lin
and Ng (2012), Sarafidis and Weber (2015), Bonhomme and Manresa (2015), and Ando and Bai
(2016). In addition, machine learning methods that penalize incorrect choices have also been used
to extract group patterns using penalized extremum estimation. In recent work that employs this
approach, SSP develop a classification Lasso method (called C-Lasso) in which the penalty takes
an additive-multiplicative form that forces the parameters to form into different groups. Coupled
with the C-Lasso method, SSP propose BIC-type information criteria to determine the number of

groups. In additional work, Lu and Su (2016) propose a direct testing procedure to identify the



group number in this linear panel structure model.

When a panel data model has a latent group structure, the problem falls within the framework
of high dimensional modeling with parameters that may lie in a low dimension subspace. This type
of regression model is now a major research area in statistics; see, for example, the monograph by
Bithlmann and van der Geer (2011). Since the work of Tibshirani (1996) and Fan and Li (2001),
much of the statistical research has concentrated on sparsity, where a large dimensional space is
simplified by zeroing out many elements to reduce dimension. Sparsity may be regarded as a
special case of homogeneity where the commonality arises from a shared zero coefficient value.
Much effort has been devoted to the study of homogeneity in parameters. When there is a natural
variable to define neighborhood, the idea of fused lasso (Tibshirani et al. 2005) can be used to
study homogeneity. When there is no such natural variable, exhaustive pairwise penalties have
been proposed to address homogeneity. For instance, Bondell and Reich (2008) design a method
called OSCAR (octagonal shrinkage and clustering algorithm for regression) where the octagonal
penalty is imposed on all pairs of coordinates to form clusters; and Shen and Huang (2010) propose
to use a truncated L penalty on all pairs of predicators to extract a grouping structure.

Ke, Fan, and Wu (2015, KFW hereafter) explore homogeneity in regressions by designing a
method called CARDS (clustering algorithm in regression via data-driven segmentation). They
first estimate the parameters by OLS to obtain preliminary estimates. Then the fitted coefficients
are ranked from smallest to largest and ordered partition sets (groups) of regressors are constructed
based on this ranking. Penalized least squares (PLS) regressions are run to obtain the final
estimates where the penalties are imposed on both the within group coefficient differences and
neighboring group coefficient differences. KFW show that CARDS can produce oracle estimates
with probability approaching 1 (w.p.a.1).! They remark that CARDS can be extended to panel
data models, but their simple extension does not explore the panel data structure fully and there
are conceptual and technical complications that prevent immediate implementation.

This paper extends the CARDS method to panel structure models in a systematic way that
deals with these complications. The new method is called Panel-CARDS and it differs from CARDS
in two ways. First, Panel-CARDS imposes penalties on slope vector differences while CARDS does
so on individual slope differences. In a panel data model with p > 1 regressors, the KFW CARDS
method treats each of the p regressors as an independent unit, constructs the penalty term for each
regressor as in the cross section framework, and then adds all p penalty terms to the least squares
objective function to form the PLS extremum estimation problem. Usually, different regressors will
report different classification results which the new Panel-CARDS can avoid. Second, to use more
information from the preliminary estimates, we extend the ordered segmentation concept proposed
in KFW to the segmentation net, which enables us to extract groups more accurately. Just as
CARDS for cross section data or the SSP C-Lasso for panel data, Panel-CARDS can identify the
number of groups and estimate the parameters at the same time.

In addition, we relax various conditions used in KFW and SSP. For example, KFW require non-

! An oracle estimate is one that one can achieve by knowing the exact group structure.



stochastic regressors and sub-Gaussian errors whereas we permit random regressors, include lagged
dependent variables, and replace sub-Gaussian requirements by moment conditions. Further, SSP
require the number of elements in each group to be divergent with sample size and the number
of groups to be fixed, whereas we allow the number of elements in each group and the number of
groups to be either fixed or divergent to infinity.

We provide two empirical applications of this new panel classification procedure. The first ap-
plication re-investigates relationships between income and democracy, a matter that has attracted
considerable interest among political economists (c.f. Acemoglu et al. 2008). In different coun-
tries, the effect of income on democracy might be similar or might differ. Our methods reveal
a positive relationship between the two variables in some countries (e.g., South Korea, Japan,
Romania, and Spain), a negative relationship between them in other countries (e.g., Iran and
Malaysia), and little evidence of a relationship between income and democracy in the remainder
(e.g., China and Singapore). In particular, the democracy indices for the countries in the last
group have not changed much over the last four decades despite their rapid economic growth.
For this reason, estimation and inference based on a fully homogeneous panel data model might
well lead to misleading inferences about a generic form of this relationship. Our approach allows
for a panel structure of possibly homogeneous and heterogeneous effects of income on democracy.
The empirical implementation of Panel-CARDS estimation with these data identifies three latent
groupings among the 74 countries corresponding to positive, negative, and indifferent associations
between income and democracy.

Our second application studies the impact of minimum wage legislation on unemployment in
the United States. This topic has been widely studied in labor economics but has generated some
controversy over the last two decades with different research drawing different conclusions (c.f.
Dube et al. 2010). This divergence in past empirical research motivates the use of a more flexible
modeling framework in which latent panel structures allow for unobserved slope heterogeneity
across groups. Panel-CARDS estimation identifies two groupings of states. In one group, a rise in
the minimum wage is associated with a decrease in the unemployment rate whereas the opposite
effect is observed in the other group. One notable finding from our study is that the two groups
have a surprisingly regular geographic distribution on the map, in which the top 15 largest states
in terms of GDP all lie in the same group despite the fact that no geographic or economy scale
information is used in the Panel-CARDS. This finding indicates that the data-based methodology
of Panel-CARDS can help in the discovery of relevant geographic determinants.

The rest of the paper is organized as follows. Section 2 introduces the panel structure model
and the Panel-CARDS algorithm. Section 3 develops the properties and asymptotic theory of
Panel-CARDS. Simulation performance in finite samples is studied in Section 4. Section 5 applies
the methodology to study the effect of income on democracy and that of the minimum wage on
unemployment. Section 6 concludes. Proofs are given in the Appendix.

Notation. For integer n, R"™ denotes n dimensional Euclidean space. For vector o € R"”, the
Lg norm of a is defined as |[afl, = (327, laj|9)Y4 with 1 < ¢ < co. When ¢ = 2, we abbreviate



|-l as |||l . Let ||a|looc = maxi<j<n |a;|. For a square matrix A of order n, its induced L4 norm
is ||All; = maxqq),=1 [|[Acll;: When g = 2, we omit the subscript ¢. When A is symmetric, we
denote by pi.(A) and 5, (A) the largest and smallest eigenvalues of A. For two real numbers
a and b, a V b denotes max(a,b). For two real sequences {ax} and {by}, ar > by means that

ay /by, — oo as k — oo.

2 Panel-CARDS

This section introduces the panel structure model and reviews the original CARDS procedure
before developing the Panel-CARDS algorithm.
2.1 Panel structure models

Following SSP, we consider a panel data model with latent group structure
Yit = X8 + p; + e, i=1,..,N, t=1,..,T, (2.1)

where x;; = (@1, ..., Titp)' is a p x 1 vector of regressors, i, is the individual fixed effect which may
be correlated with x;, €4 is an idiosyncratic error term with zero mean, and ﬁ? is a p X 1 vector

of slope parameters that admit a possible grouping structure of the form
af ifi e GY
Bl=1 S (2.2)
a9 if i € G%
Here af # af for any | # k, and G = {GY,GY,...,G%} forms a partition of {1,2,..., N}. Let
N = ‘Gg} denote the cardinality of G?, k = 1,..., K. Let

a=(a,..,dy) and 8= (8),....08y). (2.3)

The true values of a and B are denoted by o and B°. We intend to apply a CARDS-type

approach to identify the group structure G and to estimate the group-specific regression coefficients

0

«” simultaneously.

2.2 The original CARDS
KFW consider the cross sectional linear regression model
yi =xb%+e;, i=1,..,n, (2.4)

where x; is a p X 1 vector of regressors, the e;’s are independently and identically distributed (i.i.d.)

error terms with mean zero and variance o2, and b? is a p x 1 vector of parameters of interest.



They assume that there is a partition H = {HY, HY, ..., H%} of the parameter indices {1,2,...,p}

such that
a? if L € HY

=1 : 2 (2.5)
a9 if L€ HY
where ag is the common parameter value shared by all members in H ,8 , and a? % ag for any [ # k.
Note that in (2.2), cross sectional individuals have the grouping structures and the 3,’s are
vectors. While in (2.5), regressors have the group structure and the b,’s are scalars. This is a
fundamental difference in the two models that is due to the structure of cross sectional and panel
data. Without loss of generality, we assume af < ad < --- < al.
The basic idea in the KFW CARDS algorithm is to use preliminary estimates to construct a
ranking of the estimates that leads to an ordered segmentation. The formal definition of ordered

segmentation is as follows.

Definition 1. For a segmentation B = { B, ..., Bp} which is a partition of the set {1,...,p}, B is

called an ordered segmentation if max,cp, b) < min,ep,, , W forl=1,..,L —1.2

Once an ordered segmentation is determined, penalized least squares (PLS) can be used to

extract potential groupings of the regressors. This is performed in the following steps:

e Preliminary Estimation: Obtain a consistent preliminary estimate b of b. For model

(2.4) with p < n, we can use the OLS estimate as the preliminary estimate.

e Preordering: Sort the coefficients in b in ascending order. The rank mapping 7(-) is

determined by the ranking relation below
BT(].) < 57(2) <. < ET(p)?
where l;T(L) is the +-th smallest value in {l;l 11 <1 <p}.

e Ordered Segmentation: Let § > 0 be a tuning parameter. Find all the indexes iy < i3 <
.-+ < 11, such that the gaps

’ET(L) _E’T(l,—l)’ > 9, L =12, ...,0L.
Construct the ordered segmentation B as
By ={7(i;),7(i1 + 1), ..., m(i41 — 1)}, l=1,...,L,

where i1 =1 and if11 =p+ 1.

%In brief, an ordered segmentation in KFW means that the order of b? is preserved.



e CARDS Penalty Function: Next construct a penalty function with two parts. One is the
within-segmentation penalty and the other is a penalty between neighboring segmentations.
The penalty function py (-) used here is the smoothly clipped absolute deviation (SCAD)
penalty of Fan and Li (2001). The within-segment penalty drives parameters in the same
segment to converge to each other when they are actually in the same true group. The other
penalty term penalizes neighboring segment pairs. If the preliminary estimates are accurate
enough, the neighboring pairs may be true neighbors or in the same group. In both cases,
the SCAD penalty function can help achieve homogeneous values for parameters in the same
group and heterogeneous values across groups. The form of the CARDS penalty is given by

the expression

L-1 L
P (b) = Z Z p,\l(’bL—b,{D—i-Z Z P, ([0 = bx|) - (2.6)

=1 1€B;,k€B;41 =1 1€B;,keB;

between-segment penalty within-segment penalty

e Penalized Least Squares: Solve the PLS problem

n

1

Qn(b) = o Z(yi — x/b)? + Py .\, 1, (D). (2.7)
i=1

Given the tuning parameter vector A = (8, A1, A2)’, we obtain an estimate b (A) which may

be used to obtain the estimated number of groups, K (X). Let 02(A) = 2 3% [y, —x}b (A)]2.

~n
e Select Tuning Parameters by BIC: Choose A to minimize

1
BIC(A) = In (62(\)) + K(A)%. (2.8)
The CARDS method has a straightforward extension to panel data models. In KFW’s Exper-
iment 5, which is a panel structure model as described above, they construct the CARDS penalty
for each regressor and then add them up together. So the penalized objective function can be

expressed as

N T p
QNr(B) = 0w D0 i~ XaB) + D Poonson, (8,). (29)
) =1

i=1 t=1
where 8 = (8y,,..., 8 ~.) collects the coefficients of the t-th regressors for all N cross sectional
units. This method works but has two serious drawbacks. First, it involves 3p tuning parameters,
which is excessive for a Lasso procedure when p > 2. Second, since Pg, »,, 5, (8,) imposes a penalty
that is specific to regressor ¢ only, the classification errors tend to accumulate through the addition
of the p sets of penalty terms. Below, we introduce the modified procedure Panel-CARDS which
removes these drawbacks and provides an improvement over the basic CARDS procedure for panel

data applications.



2.3 Rank mapping in the panel data model

Without the latent group structure (2.2), we can estimate the model (2.1) directly. After concen-

trating out the fixed effects, we obtain the objective function

N T
Lnr(B) = ﬁ Z Z(.@z’t —X0,8,)%, (2.10)
i=1 t=1
where X3 = X; — X; and ¥ = v — ¥; with X; = %Zle x;¢ and §; = %Zthl Yit- Solving
the optimization problem yields the OLS estimates 3; = (% 23:1 iiti;t)_l(% Zthl Xityit) for
1=1,2,...,N.

Define 3 = (,B;,B;,...,,BIN)’, a pN x 1 vector, and B = (,51,5’2,--- ,BN), a p X N matrix.
To use CARDS, we need to have a rank mapping over the cross section dimensions according to
the vector B If p = 1, the problem is exactly the same as the cross sectional case. We just sort
elements in B in ascending order. But usually p > 1, and we face the awkward problem of ranking
N column vectors in B, which is not trivial. Reasonable ranking rules should satisfy the following

set of conditions:

1. Unrestricted Domain: All N! kinds of rankings are possible.

2. Unanimity: If all p elements in BZ are less than the corresponding elements in Bl, then BZ
should rank before 3.

3. Independence of Irrelevant Alternatives: The rankings of Bl and Bl are not affected by Bk
where k # 4 and k # [. Otherwise, the ranking result might be totally changed by the

introduction of a new individual N + 1.

The above three criteria connect the problem of ranking vectors with a famous impossibility
theorem in social choice theory. In that setting, we take ¢ = 1,2,...,p as voters (each row of B)
and the numeric ranking as a preference order. According to Arrow’s impossibility theorem (e.g.,
Mas-Colell et al. 1995, p.796), to satisfy all the above three criteria we will inevitably end up with
a “dictator”, which means our ranking must be totally determined by a single “voter”. So we have

the following theorem.

Theorem 2.1 To satisfy the unrestricted domain, unanimity, and independence of irrelevant al-
ternatives assumptions, the rankings of N preliminary vector estimates (columns of matriz B )
must be totally determined by the rankings of the preliminary estimates of the coefficients of one

regressor, i.e., one particular row of B.

Now we only need to select a proper element ¢* from {1,2,...,p} as the “dictator”. Noting that
we want to obtain the heterogeneity /homogeneity information from preliminary estimates across
individuals, it is wise to choose the regressor whose slope coefficient estimates have larger variation

across individuals than the others. Let ¢* denote the index of the regressor which has the largest



variation across individuals for its coefficient estimates. Then we can sort {Bu*, i=1,2,..,N} to

obtain the order
/BT(].)L* < BT(Q)L* <. < /BT(N)L*‘ (211)
To proceed, we need to define an admissible segmentation.

Definition 2. For a segmentation B = {By,---,Br} of the set {1,..., N} with true grouping
structure G = {G9,GY, -+ ,G%}, let Vig = GO N By if we have: (i) for each k, GY is properly
segmented by B—there exist dy and uyp such that dp < ug, Gg = U;L:’“dekl, and Vi = By for
di <1 < wuy; (1) for each I, there exist a; and by such that a; < by, By = Uzl:alel, and Vi = Gg

for ap < k < by, then the segmentation B is called an admissible segmentation.

Note that when p = 1, an ordered segmentation is also an admissible segmentation. Intuitively,
the admissible segmentation I3 should segment the individuals in a way that no true group members
of Gg fall to disconnected B;’s. Consider a simple illustrative example where N = 10 and G =
{GY,GY, GY} with GY = {1,2,3}, GY = {4,5,6} and GY = {7,8,9,10}. If from (2.11) together
with a tuning parameter 6 we have a segmentation comprised of By = {2,3}, By = {1,5}, B3 =
{4,6,7}, By = {9,10}, and Bs = {8}, then we can easily verify that the segmentation is admissible
by Definition 2.> But the segmentation B = {Bj,---,Bs} with By = {2,3}, By = {1,5,7},
Bs = {4,6}, B4 = {9,10} and Bs = {8} is not admissible.

To rank vectors, we need to make sure the admissibility of a segmentation. But the last
requirement is not always ensured and it may be difficult to satisfy when the true group-specific
coefficients exhibit some patterns. To see this, suppose p = 2 in the above example and the true

group-specific coeflicients are given by

1 1 1
w1 e

If we choose * = 1, say, then there is no chance to obtain an admissible segmentation no matter
how accurate the preliminary estimates are. On the other hand, if we will choose (* = 2, then
it is not hard to obtain an admissible segmentation asymptotically provided that the preliminary
estimates are consistent. If, for the above example, p = 3 and the true group-specific parameter

values are given by

1 1] [2
(@,ad,ad) =] |1],]2],|1] |, (2.13)
2l |1 1

then it is generally impossible to obtain an admissible segmentation no matter which regressor is
chosen to construct the ranking and whether the preliminary estimates are consistent or not. The

latter case needs special attention and will be addressed in Section 2.5 below.

?One possible ranking is: By,« < By, < Byx <+ < Bope < Brope < Bgpr, With B,u —Bape > 8, -+ Byge —Brop >
6. Besides, Vi1 = {2,3}, Vi = {1}; Vaz = {5}, Va3 = {4,6}; Vas = {7}, Vaa = {9,10}, V35 = {8}.



2.4 Construction of the basic Panel-CARDS

Now suppose we have an admissible segmentation B = {B1, Ba, ..., Br}. As in the KFW CARDS
algorithm, we propose the following hybrid penalty

L-1 L
PeaoaB) =Y > eu(Bi-B10+> > pu(Bi— 55, (2.14)

I=1 i€B;,jEB 11 I=1 i€B,,jEB,

~
between-segment penalty within-segment penalty

where py(+) is the SCAD function of Fan and Li (2001). Here we use L; distance to measure the
difference between coefficient pairs. For L, distance, the larger ¢ is, the more weight is placed
on the large elements in the norm. In the extreme where ¢ = 0o, only the largest element in the
vector matters. By adding the penalty term (2.14) to the original objective function (2.10), we

obtain the following PLS objective function

QNT(B) = LNT(B) + P 2. (8). (2.15)

We call the above procedure basic Panel-CARDS. For implementation, we may apply the local
linear approximation (LLA) algorithm to obtain the solution. We start from the initial solution

and update it by solving the following iterative minimization problem

~(s+1)

B = argmin {Lur(8) + R(B”:8) }. (2.16)

where (B 8) = SF S pienn o 1B =B I018: = Bi1 + 5 Sic s ien v (18L -
Bg-s) 1)118; — B;ll1- Noting that the objective function in (2.16) is convex, we can apply a standard
convex optimization package to obtain the solution. We use ,3 = B (A) to denote the final solution.

Evidently, the performance of B = B (A) depends on the choice of A. Following SSP, we can

choose A =(d, A1, A2)’ to minimize the following information criterion

IC(A) =In (6% (X)) +pK(X) (2.17)

1
20/NT’

where 03(A) and K () are estimates of 02 and number of groups associated with X.1

2.5 Construction of the advanced Panel-CARDS

In these last two subsections, we study the admissible segmentation and then construct PLS
estimates based upon it. This is a direct extension of CARDS from the cross sectional case to

panel data. Nevertheless, such a method does not work in some sparse cases. For example, for the

*Note that the value of § determines the number of segments L in B. Too small or too large a & will generate too
many or too few segments which are not ideal in achieving correct identification. In practice, we find it is helpful to
set the number of segments directly, which is also easy to control. For example, when N = 100, we try L = 10, 20,
and 30. The choices of A1 and A2 depend on the value of coefficients we use in the DGP. Generally speaking, when
the coefficients are large, the tuning parameters A1 and A2 are large correspondingly.

10



group-specific parameters considered in (2.13), whichever regressor is chosen, we cannot obtain an
admissible segmentation no matter how accurate the preliminary estimates are. So the basic Panel-
CARDS method fails to work asymptotically in this case and we need to consider an alternative
way to obtain robust classification and estimation.

In the example introduced at the end of section 2.3, we can only extract partial information
about the grouping property from any single regressor. Naturally, we want to combine information
from all regressors in a proper way to derive the true grouping property. Based on this idea, we
propose an advanced version of Panel-CARDS which can be regarded as an extension of the basic
Panel-CARDS procedure.

In the basic Panel-CARDS method, the admissible segmentation is used to construct both the
within segment penalty and the neighboring segments penalty. Compared with the number of
exhaustive pairwise penalty terms, the number of penalty terms in basic Panel-CARDS is much
smaller. This tends to eliminate penalty terms that are necessary in recovering the true grouping
properties when the segmentation is not admissible. In practice, it is desirable to maintain a
balance between keeping the number of penalty terms small and having enough penalty terms to

extract the grouping structure.

Definition 3. Let G = {GY,GY, ...,G?(} denote the true grouping structure. Given R segmenta-
tions B,,, ..., B.y, if for any Gg, there exists a B,, such that Gg can be properly segmented by B,,

as defined in Definition 2, then N = {B,,,...,B,,} is called an admissible segmentation net.
Given an admissible segmentation net N = {B,,,---, B, }, the advanced Panel-CARDS algo-

rithm is as follows:

e For each B, , we construct the penalty function Pg, , x,(8) as introduced in (2.14).

e For the admissible segmentation net NV, the total penalty is
R
Prae(B) = Ps,n0(8).
r=1

e We choose 8 to minimize the following PLS function:
Qnr(B) = Ln7(B) + P 2. (B)- (2.18)

Advanced Panel-CARDS reduces to basic Panel-CARDS in case R = 1. When R > 1,
P a0, (B) contains all the penalty terms that are necessary to recover the true grouping structure.
The basic idea of an admissible segmentation net is to extract an adequate amount of information
from the preliminary estimates: not too much because we don’t use exhaustive pairwise penalties
which are challenging in computation and not accurate in statistical inference (as in KFW); and

not too few, in order to handle the sparse parameters case introduced at the end of Section 2.3.°

®Tts existence follows directly from Theorem 3 of KFW.

11



Although here we need the admissible segmentation net to properly segment every true group,
we show in DGP 1 below through simulations that when this condition is mildly violated (e.g.,
there exists one group which cannot be properly segmented by any segmentation), the classification

based on the basic Panel-CARDS may still perform well in finite samples.

2.6 Hierarchical clustering

When the signal noise ratio is small or the time period T is relatively small, the preliminary
estimates might be quite different from the true parameter values. In such cases, both the basic and
advanced Panel-CARDS procedures may produce an estimated number of groups that is greater
than the true number of groups, and some estimated groups may only contain few individuals. It
is hard, if it is possible at all, to disentangle whether such small groups are the correct groups or
are generated because of mis-classification. However, if we have some a priori knowledge about
the grouping structure, we can use this knowledge during the Panel-CARDS implementation.
Following the idea presented in Park et al. (2007), we can use hierarchical clustering to combine
members in small groups into large groups. For example, if we know each group contains more
than 7 = 2% of individuals, then we can easily incorporate such information in the procedure. The

details will be introduced in the simulation section.

3 Asymptotic Analysis of Panel-CARDS

This section analyzes the large sample properties of the Panel-CARDS algorithm.

3.1 Assumptions

To proceed, we define some notation. Let X; = (X1, ,Xi7), ¥i = (Giy -, Uir)'s Xi = (X1, -y Xi7),
and y; = (Y1, ..., yir)'- Let max;; denote max) <<y maxi<i<r . Let p; (s) = )\j_lij (s) and p; (s) =
Py (s) = p'Aj (|s])sgn(s) where p'Aj (s) = dpy, (s) /ds for j = 1,2. Let by = § minj<pej<k [af) —
a?||1. Given {GY} and segmentation { By, - - , B}, we define ¢, = Ni,/ min{ N3, ming, <;<y, | Bi|*}.
Note that 1/N? < ¢}, < Ny. We use (Ni, T') — oo to signify that Nj and T pass to infinity jointly.

We make the following assumptions.

Assumption A1l.(i) For each i, {(Xit,yit) : t = 1,2, ...} is strong mizing with mizing coefficients
a; (+). a() = max;a; () satisfies a (1) < cqp” for some co > 0 and p € (0,1). {x;,y:} are
independent across i. B (g;1) = 0 and E (x4) = 0 for each i and t.

(ii) There exist two constants ¢1 and cz such that 0 < ¢1 < minj<g<x fmin <T+\Ik ZZEGQ E(i;ii))
and Max]<i<N fmax (%E(x;xz)) < ¢y < 0.

(iii) There exists a constant cg < 0o such that maxi7tE||xit||2q < c3 and maxi7tE|6it|2q < c3
for some q > 4.

(iv) T — oo. For k = 1,...,K, Ny either passes to infinity or stays fived as T — oo, and
N=0(T?%.
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Assumption A2. p,(-) is symmetric function and is nondecreasing and concave on [0,00). p (s)
ezists and is continuous except for a finite number of s and p'\ (0+) = 1. There exists a constant
a > 0 such that p; (s) is constant for all [s| > al.

Assumption A3. (i) K = o(T/(InT)?) and by > InT+/K/T.
(ii) The tuning parameters A1 and A2 satisfy the following conditions: by > amax{\1, A2},

1> > ]i[n\}%, and 1> Ay > ﬁfwmaxlgkgg @1, where Npin = min{Nl, ...,NK}.

Assumption A4. (i) Foreach k=1,... K, ®; = ﬁ Zz’eGg 23:1 Xit X, Lt O > 0as (Ng,T) —
oo or T'— oo alone.

(ii) For each k =1,..., K, ﬁZieGQ S Ricir — Benr 2 N (0,9%) as (N, T) — oo or
T — oo alone where Biyr = ﬁ Ziecg S E (Riear) is either 0 or O(y/Ny/T) depending on
whether x; is strictly exogenous.

Assumption A1(i) imposes conditions on {(Xit, ¥it)} . We require {(xit, yit)} to be weakly de-
pendent (strong mixing is assumed here) but not necessarily stationary in the time dimension, and
independent but not necessarily identically distributed in the cross section dimension. The regres-
sor x;; can be either strictly exogenous or sequentially exogenous. Note that A1(i) does not rule
out serial correlation among {g;;,t = 1,2,...} or {x;ei,t =1,2,...} . Al(ii) requires that the min-
imum eigenvalue of TLN)C ZieG% E(X;%;) be bounded away from zero and the maximum eigenvalue
of %E(xgxz) be bounded away from infinity, uniformly in k£ and 4, respectively. A1(iii) imposes
some moment conditions on xX;; and €. In comparison with conditions 1 and 3 in KFW which
require nonrandom regressors and sub-Gaussian error terms, the conditions in A1(i)-(iii) are quite
weak. Al(iv) states conditions on 7', N, and Nj where we allow Nj to be fixed for some groups
and to pass to infinity for other groups, thereby providing some practical flexibility in group size.
In contrast, SSP require that Nj passes to infinity at the same rate as N for each k.

Assumption A2 is identical to condition 2 in KFW. Following KFW, we specify py(:) as the
SCAD penalty function in our simulations and applications below. Assumption A3 imposes condi-
tions on K, byr, A1 and Aa. A3(i) allows the number of groups to diverge with 7" and the minimum
difference between two group-specific coefficients to shrink to zero at a slow rate. A3(ii) specifies
the ranges of speed at which A\; and Ay shrink to zero. Assumption A4 borrows from SSP and is
used in studying the asymptotic distributional properties of the Panel-CARDS estimators. If x;;
contains lagged dependent variables (e.g., yi;—1), it is well known that the fixed effects within-
group (WGQG) estimator has asymptotic bias of order O (1/T") in homogeneous dynamic panel data
models. This implies that Byyr = O(\/W ) in dynamic panel data models and bias correction
is required for statistical inference unless T' passes to infinity faster than Ni. See SSP for detailed

discussions concerning A4.
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3.2 Analysis of the basic Panel-CARDS

Next we define the oracle estimators of 3 and a. When the grouping structure in G = {GY, ..., G?{}
is known, we can utilize the information that all coefficients B, within the same true group are
identical to estimate 3 by minimizing Ly7(3) in (2.10). The resulting estimator of 3 is denoted
Borade. Similarly, by using the true grouping structure, we obtain the oracle estimator & ¢ of
a with a typical block given by
-1
et = Kxi| Y XKFifork=1,..,K (3.1)
i€GY i€G?

The following theorem reports the asymptotic properties of the basic Panel-CARDS estimator
B of 3.

Theorem 3.1 Suppose that Assumptions A1-A8 hold. Suppose that the preliminary estimate B
and tuning parameter § together generate a segmentation B admissible with the true grouping
pattern with probability at least 1 — €y. Then with probability at least 1 — eqg — o (K/T), the Panel-
CARDS objective function (2.15) has a strictly local minimizer B :(Bll, B;, ,B/N)’ such that B =

~oracle ~
B and |8 - B° = Op(v/K/T).

Theorem 3.1 parallels Theorem 6 in KFW. It shows that the basic Panel-CARDS procedure

~ oracl
includes the oracle estimator ,Bomc “ as a strict local minimizer with high probability. When the
preliminary estimators ,@Z are all consistent as in our panel setup with large T, the segmentation
B is assured to be admissible w.p.a.1 as T — 00.5 In this case, €g = g — 0 and we have
~  ~oracl
P(,B:,Bomce) — lasT — o0.

Given the Panel-CARDS estimate 3, we can obtain the estimated groups by classifying indi-
viduals with the same coefficient estimate (Bl) into the same group. We use ék, k=1,2,.., K
to denote the K estimated groups, and &g,k =1,2,..., K, to denote the group-specific estimated

slope coefficients. By definition,
G = {z €{1,2,...,N}: 3, = ak} for k=1,2,.., K. (3.2)
The following theorem reports the asymptotic distributional properties of éy.

Theorem 3.2 Suppose that the conditions in Theorem 3.1 are satisfied. Suppose that Assumption
A4 holds and eg = g7 — 0 as T — oo. Then, after suitable relabeling of the indices of the true
groups, we have:

(i) P<K:K) —1 andP(@l :G?,...,GK :G(I){> — 1 asT — oo

(i) for k=1, | K, /NiT (6t — a) — &7 "By 2 N(0, ;0@ Y) as either (Ng, T) — oo
orT — oo.

%See Theorem 3 in KFW for a proof.
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Theorem 3.2(i) indicates that w.p.a.1 we can determine the correct number of groups. Theorem
3.2(ii) reports the asymptotic distribution of the group-specific estimator. As SSP remark, the

oracle

oracle estimator &j, satisfies

VN T (agmde — a2> — O By B N (0,8, 00 Y) as (Ni, T) — oo or T — o0

under Assumption A4. Theorem 3.2(ii) indicates that the Panel-CARDS estimator ¢&j, achieves
the same limit distribution as this oracle estimator with knowledge of the exact membership of
each individual. In this sense, we say that Panel-CARDS estimators {&y} have the asymptotic
oracle property.

Given the estimated grouping structure {Gk} , we can define the post Panel-CARDS estimator

of ayy, as

-1
ae = | Y X% Y Ky, k=1,..,K. (3.3)
iEék ieék

The following theorem reports the asymptotic distribution of &’@k'

Theorem 3.3 Suppose that the conditions in Theorem 8.2 are satisfied. Then, fork=1,--- K,
VNiT (b, —af) — & By 2 N(0, 0 0@ ") as (N, T) — 00 or T — .

So post Panel-CARDS estimators also share the asymptotic oracle property of the Panel-
CARDS estimators. It is well known that the post-Lasso estimators have less bias than the Lasso
estimators and better finite sample performance than the latter. In the simulations below, we
accordingly focus on the finite sample performance of the post Panel-CARDS estimates.

It is worth mentioning that in comparison with SSP who require both N and T to pass to
infinity, the asymptotic theory here does not require Ny — oo or N = Zszl N — oo. In the
special case where Ny is fixed, Bynr = O(\/l/_T ) = o(1) and no bias correction is needed for

either the Panel-CARDS estimators or their post-Lasso version.

3.3 Analysis of the advanced Panel-CARDS

The advanced Panel-CARDS method is an extension of basic Panel-CARDS. With some minor
abuse of notation, we continue to use 3 to denote the advanced Panel-CARDS estimator. The

following theorem reports the asymptotic properties of B

Theorem 3.4 Suppose that Assumptions A1-A8 hold. Suppose that the preliminary estimate B,
the tuning parameter §, and the choice of R together generate an admissible segmentation net
N with probability at least 1 — €. Then with probability at least 1 — e; — o (K/T), the Panel-

~oracle

CARDS objective function (2.18) has a strictly local minimizer B such that B = B and
1B = B°ll = Op(\/E/T).
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The above theorem shows that the advanced Panel-CARDS procedure includes the oracle
. ~ l . C e . . . .. .
estimator Bomc “ as a strict local minimizer with high probability. When the preliminary estimators

B; are all consistent as in our panel setup with large 7', the segmentation B can be assured to be
~  aoracl

admissible w.p.a.1 as T — oo. In this case, ¢ = ¢;7 — 0 and we have P (B = Bomce — 1

as T — oo. Then analogous results as in Theorems 3.2-3.3 hold for the advanced Panel-CARDS

estimators and their post-Lasso version. For brevity, we do not state the corresponding theorems.

4 Monte Carlo Simulations

In this section we conduct a small set of Monte Carlo simulations to demonstrate the finite sample
performance of Panel-CARDS. We choose experimental design settings for the Monte Carlo study
that enable comparisons between the basic and advanced Panel-CARDS procedures and that reflect

the type of challenges likely to be present in applied work.

4.1 Data generating processes

We consider four data generating processes (DGPs).

DGP 1. Both the fixed effects p; and the error terms follow the i.i.d. standard normal
distribution across time and individuals and are mutually independent of each other. Individuals
are divided into three groups with Nj : Ny : N3 =4 : 3 : 3. The observations (y;t, X;) are generated
from the panel model (2.1) where x;t = (i1, Tit2)', Titr = 0.2, + €it1, Tira = 0.2u; + €i12, €1 and

eito are both i.i.d. standard normal. The true coeflicients are

(] 1)

Note that for the first regressor, its slope coefficient is homogeneous across groups 1 and 2; and
similarly for the second regressor, its slope coefficient is homogeneous across groups 2 and 3. In
this case, we cannot construct an admissible segmentation using the rank of the estimates of one
single slope coefficient. We want to evaluate the performance of basic Panel-CARDS and make
comparisons with advanced Panel-CARDS.

DGP 2. Here we use DGP 1 in SSP. Individuals are also divided into three groups with
Ny : Ny : N3 =4 :3:3. The observations (y;;,%;:) are generated from the panel model (2.1)
where x4 = (241, Tit2)', Tit1 = 0.2p; + €41, Tira = 0.2p; + €442, €11 and ejo are both i.i.d. standard

normal. The true coefficients are

(0. ol o) — 04] [1] [16
LTS 16| (1] 04| )"

DGP 3. In this DGP, we set the true number of groups to 8 where the first group has 30%
of individuals and each of the other seven groups has 10% of individuals. We let p = 2, and the
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regressors are generated as DGP 1. The true group-specific parameters take the values

BT E BB

DGP 4. Here we consider a dynamic panel data model where there are 3 groups with N7 : N» :

-3
3

)

N3 =4 :3:3. The regressors are X;; = (Y;+—1, Tit1, Tir2)', where (zi1, xi2) are generated as DGP
1. In generating 7' periods of observations for individual ¢, we first generate 7"+ 100 observations

with initialization y;,0 = 0, and then take the last T periods of observations. The true parameter

values are
0.6 0.6 0.6
(@ ad,ad) =] |15, 1],]05
-1 0 1

In DGP 2-4, the fixed effects and the error terms in (2.1) are generated as in DGP 1. We
will consider N = 100, 200 and 1" = 10, 20, 40 and 80. Since Panel-CARDS is computationally

intensive, we fix the number of replications to 100 for all scenarios in this investigation.

4.2 Implementation and evaluation

For DGP 1 we use both the basic and advanced Panel-CARDS methods together with the hierar-
chical clustering setup. Since the performance of the basic Panel-CARDS is not robust and leads
to rather unsatisfactory performance in DGP 1, we only implement advanced Panel-CARDS in
DGPs 2-4. Recall that n controls the minimum percentage of observations within each estimated
group. We set n = 10%, 5%, 2%, and 0 to estimate the model and obtain the grouping results.
When 1 = 0, we allow the minimum number of elements in an estimated group to be 1. The larger
the value of n, the larger the number of elements for the smallest estimated group that is allowed
and the smaller the number of groups estimated. For DGPs 1-2, we consider all candidate values
of n : 10%,5%,2%, and 0; for DGPs 3-4, we consider 1 = 5%, 2%, and 0 because n = 10% is a
strong assumption when we have 8 groups in DGP 3.

The hierarchical clustering is carried out as follows.

e Let N* = Nn. For a Panel-CARDS classification A° = {4, A, ..., Apo}, if |Ax| > N*, we
consider Ay as a properly identified group; otherwise, we treat it as misclassified. Without
loss of generality, we assume the properly identified groups are given by A = {A1, As, ..., Az},
and the misclassified members are in set J = Ufz - 1As. For all members in the misclassified

K
groups, we re-run the classification.

e For each j € J, we estimate its group membership by

K T
SOSTS i — %) + (e — KuBy)? - Uk = 1]

I=1i€A; t=1

k* = arg rp1n _1
ke{1,2,...K0}8, - By 2NT
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Now we re-classify the element j to group A« for k* € {1, ..., K }. In other words, we treat j
as a new observation, and reclassify it to the group which makes the objective function the

smallest.

e We repeat the last step for the remaining elements in J. The final estimated grouping
structure is denoted by G= {G’l, Go, ..., GK}

We use a BIC-type information criteria to choose the tuning parameters. Given the Panel-
CARDS classification results G = {@1, Ga,...,G & }» which are obtained by using the tuning para-

meter vector A\, we calculate

IC(A) =In (o3 (X)) —i—pf(w%,
where 03 (A) = 77 Zﬁil D icA, S (G — %, By (V)2 the B, (A)’s are post Panel-CARDS and
hierarchical clustering estimators, and here we make their dependence on A explicit.

We report the frequency of obtaining a particular number of groups based on 100 replications
for all DGPs. Despite the importance of correct determination of the number of groups, it does
not show how similar the estimated groups are to the true groups. Following KFW, we use
the normalized mutual information (NMI) measure to assess the similarity between the estimated
grouping structure QA and the true grouping structure G. For two classifications/grouping structures
A={A;,As,---} and B = {Bj, Ba,---} on the same set {1,2,--- , N}, the NMI is defined as

NMI(A, B) = _IAB
’ H(A)H(B)’
where
I(A,B)_%:(yAmBjy/N)l <\Ai\/N-\Bj]/N> d H(A) Z ~ <N>

When A and B have the same classification, we have (A, B) = H(A) = H(B), and NMI(A, B) = 1.
In general, the more similar two classifications are, the closer their NMI value is to 1.

We report NMI(§ ,G) for all DGPs. In addition, we report the root mean square error (RMSE)
for DGP 2 only to save space.

4.3 Simulation results

Table 1 reports the frequency of the estimated number of groups for DGP 1 based on the basic
Panel-CARDS (b-Panel-CARDS). Apparently, the performance of b-Panel-CARDS in DGP 1 is
poor, which is as expected. Theorem 3.1 requires an admissible segmentation for the b-Panel-
CARDS to work well. But the choice of the group-specific parameter values in DGP 1 rules out
the possibility of admissible segmentation by using the preliminary estimates of a single coefficient

to construct the segmentation.

18



Because the b-Panel-CARDS is not robust against certain patterns of group-specific parameter
values such as those in DGP 1, below we will focus on the performance of the advanced Panel-
CARDS (a-Panel-CARDS).” We use R = 2 regressors to construct the segmentation net. Given
the matrix of preliminary estimates, B = (Bl, ,32, cee B ~), we calculate the sample variance of
each row of B and choose the two regressors with the largest variances for their coefficient estimates
to construct the segmentations.

Table 2 and Figure 1 report the classification results for DGP 1 based on the a-Panel-CARDS
for different combinations of N, T', and n. Unsurprisingly, the results in Table 2 are much better
than those in Table 1. Table 2 suggests that when we set the tuning parameter 1 to be 10%, the
a-Panel-CARDS procedure performs well even when T is very small relative to N, and we can
correctly determine the number of groups with a large probability. When T increases, we have
more accurate preliminary estimates of the parameters and the classification also improves. When
71 decreases, the a-Panel-CARDS tends to estimate more groups than the correct number of groups
for small values of T'; but its performance quickly improves as T increases. Figure 1 shows the NMI
between the estimated group structure G and the true group structure G for different combinations
of N, T, and 7. It suggests that as T" increases, the NMI between G and G increases rapidly. When
T = 80, the estimation is almost as good as the oracle for all values of 7. We also note that the
performance of a-Panel-CARDS with n = 2% or 5% significantly improves that with n = 0, but a
further increase of 17 does not necessarily lead to improved performance.

Table 3 reports the frequency of the estimated number of groups for DGP 2 based on the a-
Panel-CARDS. It suggests that when 7" is small (10 or 20), a higher value of 1 helps considerably in
determining the correct number the groups as in DGP 1. But when T is sufficiently large (say, 80),
the a-Panel-CARDS with n = 0 can also achieve almost perfect classification. Comparing Table 3
with the results of DGP 1 in SSP, we find that the performance here is not as good as theirs. But
note here that we use the a-Panel-CARDS, whose number of penalty terms approximately doubles
that of the b-Panel-CARDS approach. As remarked earlier, increasing penalty terms has the side
effect of accumulating errors. When we use the b-Panel-CARDS (which is sufficient for DGP 2)
and set n = 10%, its performance is comparable to that of SSP and significantly dominates the
latter when T = 10.

Figure 2 reports the NMI for DGP 2 for various combinations of N, T'; and . The NMI patterns
in Figure 2 are similar to those in Figure 1 for DGP 1. Figure 3 presents the RMSE of for different
combinations of N, T, and 5. Also reported in the figure is the RMSE for the estimates {Bz}
which are obtained by treating every unit (¢) as a group and labeled as “unitwise” estimates. To
evaluate the finite sample gains from using the a-Panel-CARDS, we compare its RMSE with that of

unitwise estimators and oracle estimators. Figure 3 suggests that the a-Panel-CARDS estimators

"But this does not mean that the a-Panel-CARDS dominates the b-Panel-CARDS in all cases. In DGP 2 below,
we find that b-Panel-CARDS can generate more accurate grouping results than the a-Panel-CARDS or SSP’s C-
Lasso. In real data applications, we apply both the a-Panel-CARDS and b-Panel-CARDS, and then rely on the
information criteria introduced in the last subsection to choose between them. And we call the result Panel-CARDS.
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Table 1: Frequency of obtaining the estimated number of groups in DGP 1 based on b-Panel-
CARDS

mn |N T] 1 2 3 4 5 6 7 3+
0.10 | 100 10| 0.00 0.20 0.63 0.6 0.0 0.00 0.00 0.00
100 20 | 0.00 0.03 0.87 0.10 0.0 0.00 0.00 0.00
100 40 | 0.00 0.01 0.89 0.10 0.00 0.00 0.00 0.00
100 80 | 0.00 0.00 0.89 0.11 0.0 0.0 0.00 0.00
200 10 |0.00 025 0.61 0.3 0.0l 0.00 0.00 0.00
200 20 ]0.00 0.09 0.79 0.2 0.0 0.0 0.00 0.00
200 40| 0.00 0.03 0.85 0.10 0.2 0.0 0.00 0.00
200 80 |0.00 001 092 006 0.0l 0.00 0.00 0.00
0.05 | 100 10| 0.00 0.00 0.36 042 022 0.00 0.0 0.00
100 20 | 0.00 0.00 0.55 0.37 0.07 0.01 0.00 0.00
100 40 | 0.00 0.00 0.61 0.32 0.07 0.0 0.00 0.00
100 80 | 0.00 0.00 0.57 0.36 0.06 0.01 0.00 0.00
200 10 |0.00 0.00 0.13 045 031 0.1 0.0 0.00
200 20 |0.00 0.00 0.23 041 026 0.07 0.03 0.00
200 40 | 0.00 0.00 0.60 0.29 0.08 0.03 0.00 0.00
200 80 |0.00 0.00 043 045 0.1 0.01 0.00 0.00
0.02 [ 100 10| 0.00 0.00 0.09 023 035 028 0.02 0.3
100 20 | 0.00 0.00 0.27 049 0.19 0.04 0.01 0.00
100 40 | 0.00 0.00 0.56 0.38 0.06 0.00 0.00 0.00
100 80 | 0.00 0.00 0.50 0.33 0.16 0.01 0.00 0.00
200 10 0.00 0.00 0.00 0.06 0.14 0.10 0.22 0.8
200 20 |0.00 000 006 0.15 022 0.8 0.11 0.28
200 40| 0.00 0.00 0.12 0.35 029 0.17 0.04 0.03
200 80 |0.00 0.00 0.1 037 034 0.15 0.03 0.00
0 [ 100 10]0.00 0.00 0.00 0.00 0.00 0.0 0.0l 0.99
100 20 | 0.00 0.00 0.00 0.01 0.03 0.04 0.07 0.85
100 40 | 0.00 0.00 0.00 0.03 0.05 0.18 0.18 0.56
100 80 | 0.00 0.00 0.00 0.02 0.11 0.19 027 0.41
200 10| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
200 20 |0.00 0.00 0.00 0.00 0.0 0.00 0.0 1.00
200 40| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
200 80 |0.00 0.00 0.00 0.00 0.00 0.00 0.0 1.00

generally outperform the unitwise estimators, and when 7' increases to 80, their performance is
almost as good as the oracle. With respect to 1, we again find that a choice of n = 2% or 5% tends
to outperform n = 0.

Table 4 and Figure 4 show that the classification results for DGP 3 where the true number of
groups is reasonably large (8 here). They show that the classification is very accurate even in this
challenging scenario as long as T' > 20 and 1 > 2%. As before, the choice of n = 0 produces good
classification results only when 7' is sufficiently large.

Table 5 and Figure 5 report the classification results for DGP 4 where the panel is a dynamic
panel. Apparently, the a-Panel-CARDS performs very well in this situation unless T is very small

and 1 = 0. The general conclusions from DGP 1-3 also hold here.
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Table 2: Frequency of obtaining the estimated number of groups in DGP 1 based on a-Panel-
CARDS

mn |N T] 1 2 3 4 5 6 7 =3+
0.10 | 100 10| 0.00 0.04 0.84 0.1 0.0I 0.00 0.00 0.00
100 20 | 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
100 40 | 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
100 80 | 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 10 |0.00 0.06 0.82 0.11 0.0l 0.00 0.00 0.00
200 20 |0.00 0.00 0.99 0.01 0.0 0.00 0.00 0.00
200 40| 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 80 |0.00 0.00 1.00 0.00 0.0 0.0 0.00 0.00
0.05 | 100 10| 0.00 0.00 051 0.37 0.0 0.02 0.0 0.00
100 20 | 0.00 0.00 0.99 0.01 0.0 0.00 0.00 0.00
100 40 | 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
100 80 | 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 10| 0.00 0.00 0.49 037 0.1 0.03 0.00 0.00
200 20 |0.00 001 094 002 0.03 0.00 0.00 0.00
200 40| 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 80 |0.00 0.00 1.00 0.00 0.0 0.00 0.0 0.00
0.02 | 100 10 ]0.00 0.00 034 031 023 0.06 0.05 0.01
100 20 | 0.00 0.00 0.93 0.07 0.00 0.00 0.00 0.00
100 40 | 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
100 80 | 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
200 10 | 0.00 0.03 036 020 0.4 008 0.08 0.11
200 20 |0.00 0.00 096 001 0.0l 0.00 0.00 0.02
200 40| 0.00 0.00 1.00 0.00 0.00 0.0 0.00 0.00
200 80 |0.00 0.00 1.00 0.00 0.0 0.00 0.0 0.00
0 | 100 10[0.00 0.00 000 000 001 0.05 0.6 0.8
100 20 | 0.00 0.00 0.08 0.24 021 013 013 0.21
100 40 | 0.00 0.00 0.70 0.26 0.03 0.01 0.00 0.00
100 80 | 0.00 0.00 0.97 0.03 0.00 0.00 0.00 0.00
200 10 0.00 0.00 0.01 0.0l 0.02 0.0l 0.05 0.90
200 20 |0.00 003 005 007 0.12 0.17 0.13 0.43
200 40 | 0.00 0.01 0.68 0.24 0.06 0.01 0.00 0.00
200 80| 0.00 0.00 1.00 0.00 0.0 0.0 0.00 0.00
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Figure 1: NMI of DGP 1 classification results using a-Panel-CARDS

5 Empirical Applications

5.1 Income and democracy

As Acemoglu et al. (2008) remark, one of the most notable empirical regularities in modern
political economy is the positive relationship between income per capita and democracy. Existing
studies such as Barro (1999) and Acemoglu et al. (2008) establish a strong cross-country correlation
between income and democracy, but do not typically control for cross-country heterogeneity in the
slope coefficients. For different countries, the relationship between the two variables might well be
similar or equally well be quite different. In South Korea, the degree of democracy increases when
the economy is growing steadily. Similar patterns emerge for other countries such as Japan, Spain,
and Romania. However, for China the story is quite different. The democracy index composed by
Freedom House has not changed very much over the last three decades or more for China despite the
fact that China has made remarkable economic progress over the same period. Moreover, for some

countries like Iran and Malaysia, a negative correlation is observed between income and democracy.
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Table 3: Frequency of obtaining the estimated number of groups in DGP 2 based on a-Panel-

CARDS

S OO OO OO OO DOV LD ONOANO NSO ODI-O
TESSSoSSoRaSSSoooCSRISSeooomAgsavod
i =l elelalololola] oo ool ol ol ol o] oo o ol fo ol ol R o R R Ko o

o000 OP OO HIO|HOOORVOS —H O[O ONODOM=O
R RIee IR He IS

elofoiafolole] ofefefeleiofelel ofelel oo lelefe] o fe ool ookl

C OO O ONOON—TOOI-I~100O I~ 0OV ONMNMANO —HF OO
ORI eRrReeeeeeRreeeeeeRrR T

sjesjienjenjenjenjenjen) enjlienjienjenjenjenNenjan) evjienjianjien N enRen N anjan ) avjlanjiananjan sl e Ran)

CNOON OO NOODN—HO|HNOONFNODODODDNVM D
0L HeNe oI Oo QO

folofoislolele] ofefefefelolelel ofefefefefelofe] o felefef ool

0NV OO O NOI-I-—HO DD IO —THONFTOOOMI—HOLWLMNO
HE RN eI HeMAOMAICOO MO OMO

OO OO OO OO PO OO OO OO0 OO0 OoO

(O VO OMN IO O—TNOMOIOIITNNOOCOMNMDHIOWLOO
N RQRRQQMARQQTRMEROATRQLL R OMe

OO 00O 00O O OO 0O O OO OO

OO~ OONNOONOOD|HNOOVOOD|ONDDDDDD
NN =R

felofciaiolole] fefefelololelel ofefefelofelofe] o felefef ool

OO OO OO OO OO OO DO OO OO DO
— 2R eeeeeeRreeeeeeeReeeeee

elesjienjesjenjenjenjen) enjienjienjenjenjenNenjan) evjienjienjenNen R e e en ) avjlanjananjan N an e Ran)
Lo oooooorpoSoooooroSooooorosooS

— N <H OO — AN <FHOO— A <FOO— O <O O <HOO— <00 |— A <0 — A < O

el ioaiaia] alalalaiaiaiajoa) alaiaiaialaiaioa) ool lan )
rd sistsiclelclolel slofcfofefolofo] slclofofofelolo] o lo o fefe e Yo R

T T AN AN AN AN S S T AN AN NN [~ AN AN AN~ — A AN

=] O N
S = = <

=) - -}

23



0.8
0.6
0.4

0.8
0.6
0.4

0.8
0.6
0.4

0.5

Figure 2: NMI of DGP 2 classification results

+ +
+ S L s
T L+ L
eta=0 eta=2% eta=5% eta=10%
N=100, T=20
S5 F g
T T L
eta=0 eta=2% eta=5% eta=10%
N=100, T=40
= F T ¥
* T ¢
eta=0 eta=2% eta=5% eta=10%
N=100, T=80
# — __r —
eta=0 eta=2% eta=5% eta=10%

24

0.5

0.5

0.5

0.5

N=200, T=10

L = = =
eta=0 eta=2% eta=5% eta=10%
N=200, T=20
" — —
e =
+
eta=0 eta=2% eta=5% eta=10%
N=200, T=40
* ; ? ;
eta=0 eta=2% eta=5% eta=10%
N=200, T=80
— —+ — —
eta=0 eta=2% eta=5% eta=10%

using a-Panel-CARDS




N=100, T=10
0.8 T T T
+ +
o B =R £
0a} B L &
L ¥ i
0.2 +
L= .
oracle unitwise eta=0 eta=2% eta=5%eta = 10%
N=100, T=20
0.8 T T
0.6 ]
Il == R == R A
T T
L= . . . .
oracle unitwise eta=0 eta=2% eta=5%eta=10%
N=100, T=40
0.8 T T T T T T
0.6
0.4 1
+
=== ="
L = ==
oracle unitwise eta=0 eta=2% eta=5%eta = 10%
N=100, T=80
0.8 T T
0.6
0.4
0.2 —_— .
0 + = L o |
oracle unitwise eta=0 eta=2% eta=5%eta=10%

0.8 T T T T T
of = o
- =
=2
0.2r
o= . . . .
oracle unitwise eta=0 eta=2% eta=5%eta=10%
N=200, T=20
0.8 T T
0.6 + 1
o == R== RNy
02f + T I
L= L L L L L
oracle unitwise eta=0 eta=2% eta=5%eta=10%
N=200, T=40
0.8 T T T T T T
0.6
04r 1
oL = T
oracle unitwise eta=0 eta=2% eta=5%eta=10%
N=200, T=80
0.8 T T
0.6
04r
02r —_— 1
oL === N - i - =
oracle unitwise eta=0 eta=2% eta="5%eta=10%

Figure 3: Root mean square error of DGP 2 post classification estimators
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Table 4: Frequency of obtaining the estimated number of groups in DGP 3 based on a-Panel-

CARDS
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Figure 4: NMI of DGP 3 classification results using a-Panel-CARDS
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Figure 5: NMI of DGP 4 classification results using a-Panel-CARDS
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Figure 6: Scatter Plot of Preliminary Estimates

These observations motivate the use of more flexible panel modeling methods that permit some
individual heterogeneity and potential country groupings of the type that are admitted within the
latent panel structure model studied in this paper.

Following the lead of Acemoglu et al. (2008) and Bonhomme and Manresa (2015), we consider

the following regression model
dit = /Bilfi,t—l + /BiQdi,t—l + u; + Eit, 1=1,..,N, t=1,...,T, (51)

where d;; denotes a measure of democracy for country ¢ in period ¢, I;; denotes the logarithm of the
real GDP per capita for country ¢ in period ¢, p, is the fixed effect, €;; is the error term, and /3;; and
B are the slope coefficients, which are assumed to be constant across countries in early studies.
See Acemoglu et al. (2008) and Bonhomme and Manresa (2015) for detailed descriptions of the
variables d;; and I;;. As in these latter papers, we use a balanced panel dataset where the number
of countries (V) is 74 and the time index ¢ runs from 1 to 7. Here each time period corresponds to
a five-year interval over the period 1961-2000. For example, t = 0 refers to the 1961-1965 period.

Without assuming any latent group structure, we can estimate the model in (5.1) by minimizing
the non-penalized objective function in (2.10). Let (8,1, 34) denote the estimates. Since T = 7
is relatively small, these estimates cannot be very accurate. To get an intuitive idea about these
preliminary estimates, we display their scatter plot in Figure 6. From this figure we see that these

estimates have wide dispersion over the plane from which it is hard to discern any pattern.
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Figure 7: Scatter Plot of Classification Results

Next, we apply Panel-CARDS to determine the number of groups and estimate the group-
specific parameters. We assume that each group contains at least 7 = 2% of the countries and
apply the IC to choose the tuning parameter as in the simulations. The classification results are
reported in Table 6 and Figure 7. Table 6 suggests that we can identify three groups and each
group contains a fairly large number of countries. To connect with Table 6, we denote green
triangles for group 1, blue stars for group 2, and red circles for group 3. The differences among
these three groups are significant.

Table 7 reports the estimation results for each group-specific parameter and those for the pooled
fixed effects (FE) estimates, all of which are bias-corrected by using the half-panel jackknife of
Dhaene and Jochmans (2015). The last column in Table 7 reports the long run effect (LRE) of
income on democracy: ;/(1—/5). Based on these estimates of the effect of income on democracy,
we classify countries into three groups: Group 1 is a “negative effect” group, Group 2 a “small
effect” group, and Group 3 a “large effect” group. Thus, income has a negative association-effect
on democracy in Group 1, a small positive association-effect on democracy in Group 2, and a large
positive association-effect on democracy in Group 3.

These group selections and empirical results obtained by Panel-CARDS estimation can be
compared with full panel regression outcomes. If we pool all countries together and estimate a
homogeneous panel, the findings show only a positive association-effect of income with democracy,
an outcome that fails to explain the disparate country phenomena discussed at the beginning of

this section.
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Table 6: Classification Results of Countries/Regions

Group 1: “negative effect” group (|G1]| = 21)

Burkina Faso Central African Rep. Chad Colombia Guatemala
Guinea Guyana Iran Jamaica Kenya
Madagascar Malaysia Mauritania Nicaragua Niger
Sierra Leone South Africa Sri Lanka Tanzania Togo
Turkey

Group 2: “small effect” group (|G| = 24)
Argentina Burundi Cameroon hina Congo Dem. Rep.
Congo Rep. Dominican Rep. Egypt Arab Rep. EI Salvador Gabon
Ghana India Indonesia Mexico Morocco
Nigeria Paraguay Rwanda Singapore Sweden
Syrian Arab Rep. Tunisia Uganda Zambia

Group 3: “large effect” group (|G3| = 29)
Algeria Benin Bolivia Brazil Chile
Cyprus Ecuador Finland Greece Honduras
Israel Japan Jordan Korea Rep. Luxembourg
Malawi Mali Nepal Panama Peru
Philippines Portugal Romania Spain Taiwan
Thailand Trinidad and Tobago Uruguay Venezuela RB

Table 7: Regression Results
B Ba LRE

estimates s.e. t-stat estimates s.e. t-stat
Group 1 (“negative effect”) -0.416 0.068  -6.134 0.179  0.061  2.939 -0.507
Group 2 (“small effect”) 0.248  0.017 8.200 -0.013  0.079 -0.232 0.245
Group 3 (“large effect”) 0.392  0.052 7.502 0.507  0.069 7.314  0.796
Pooled FE model 0.076  0.017 2.912 0.492  0.048 10.362 0.151
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5.2 Minimum wage and unemployment

The relationship between minimum wage and unemployment has been widely studied in labor
economics; see Brown (1999) for a summary. Conventional economic theory suggests that a rise in
the minimum wage should lead to reduced employment and thus a higher unemployment rate. This
assertion is challenged by empirical evidence in different ways, depending on the methodological
approach employed. As Dube et al. (2010) remark, the minimum wage literature in the United
States can be classified into two categories. One is based on traditional national level studies, and
the other is based on case studies. National level studies such as Neumark and Washer (1992, 2007)
use all cross-state variation in the minimum wage over time to estimate the employment effects
of increase in minimum wage. Case studies such as Card and Krueger (1994, 2000) and Neumark
and Wascher (2000) typically compare adjoining local areas with different minimum wages around
the time of a policy change. In both kinds of study, the conclusions are mixed. For example, Card
and Krueger (1994) study the impact of a minimum wage rise on employment using survey data
for 410 fast-food restaurants in New Jersey and Eastern Pennsylvania and find that an increase in
the minimum wage causes an increase in employment. In contrast, Neumark and Wascher (2000)
re-examine the issue for the same two states by using administrative payroll data but find negative
effects of a minimum wage rise on employment. Dube et al. (2010) show that both approaches
may generate misleading results when unobserved heterogeneity is not properly accounted for.
Given these mixed findings concerning the effect of the minimum wage on employment, we
might conjecture that unobserved slope heterogeneity in the across-state data is partly responsible
for the mixed evidence. The panel structure model is designed to cope with unobserved hetero-
geneity in the response function and this motivates the use of the following modeling framework

to accommodate potential heterogeneity

uriy = B1urii—1 + Boigrit—1 + Baimw; i1 + p; + Eit, (5.2)

where ur;, gri and mw;; denote the unemployment rate, GDP growth rate, and real minimum
wage rate (deflated by the CPI)® for state i in year ¢, respectively, y; is a fixed effect, &;; is an error
term, and {3;, B;, B3;} denote heterogenous slope response parameters that may have certain
latent group structures. We use US panel data for all 50 states from 1988 to 2014. So N = 50
and T = 26 in our study. All data are downloaded from the Bureau of Labor Statistics and the
Federal Reserve Bank of St. Louis. We normalize the four variables to have mean 0 and variance
1 for all states.

Implementing the a-Panel-CARDS procedure, we obtain the classification results and post
classification estimates reported in Tables 8 and 9, respectively. Table 8 suggests that the 50 states
can be classified into two groups, each group containing roughly one half of the states. Table 9

reports the group-specific estimation results together with the pooled FE estimation results, where

8For most states, there are state minimum wage and federal minimum wage rates. We take the higher one as the

state minimum wage.
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Table 8: Classification Results of States
Group 1: “positive effect” group (|G1] = 27)

Alabama Arizona California Colorado Connecticut
Florida Georgia Hawaii Illinois Maine
Maryland Massachusetts ~ Michigan Nevada New Hampshire
New Jersey New York North Carolina  Ohio Pennsylvania
Rhode Island  South Carolina Texas Utah Virginia
Washington Wisconsin

Group 2: “negative effect” group (|G| = 23)
Alaska Arkansas Delaware Idaho Indiana
Towa Kansas Kentucky Louisiana Minnesota
Mississippi Missouri Montana Nebraska New Mexico
North Dakota  Oklahoma Oregon South Dakota  Tennessee
Vermont West Virginia Wyoming

all estimated are bias-corrected via the half-panel jackknife. The estimates of the coefficients of the
lagged dependent variable are similar across Groups 1 and 2. For each group, the impact of GDP
growth on the unemployment rate is strongly negative, which accords with Okun’s law. The pooled
FE estimation results suggest that increases in the minimum wage have barely any effect on the
unemployment rate. The group results differ significantly: in Group 1, we find that an increasing
minimum wage leads to a higher unemployment rate; but in Group 2, an increase in minimum
wage causes a drop in the unemployment rate. For both groups, the coefficients are statistically
significant at the 10% level, but they cancel each other out in the pooled FE estimation.
Naturally, it is interesting to contemplate reasons for these observed group differences in state
outcomes. To provide some intuition, we present the geographic distribution of the classification
results, and mark them on the map in Figure 8. States classified in Groups 1 and 2 are painted
blue and white, respectively. Although our methodology makes no use of geographic information,
the map shows that the observed geographic pattern is surprisingly regular. Almost all Group 2
(colored white) states are connected and located in the middle region of the United States. Group
1 (colored blue) states are largely scattered around the east and west coasts of the United States.
This map pattern is naturally reminiscent of the standard geopolitical map of American politics
involving so-called blue states and red states.” In addition, by sorting the 2014 GDP outcomes
from largest to smallest for the 50 states, we find that the top 15 largest economy states are
all included in Group 1 (blue). One possible explanation is as follows: due to geographic, his-
torical, transportation, demographic, and natural resource differences, people from the states in
Group 1 and Group 2 have different employment choice sets, different networking opportunities,
different exposure to the various manufacturing, mining, technological, educational, and financial
industries, as well as different political opinions. Exploring the underlying determinants of these
socio-economic-political differences is clearly of substantial interest in economic-political geography

but is beyond the scope of the current paper.

For example, readers may refer to https://en.wikipedia.org/wiki/United States presidential election, 2012

33



Table 9: Regression Results

B1 B B3
estimates s.e. t-stat  estimates s.e. t-stat  estimates s.e. t-stat
Group 1 0.617 0.029 21.258 -0.424 0.034 -12.455 0.059 0.033 1.748
Group 2 0.864 0.040 21.516 -0.175 0.031 -5.577 -0.080 0.043 -1.855
Pooled FE  0.765 0.025 30.094 -0.295 0.025 -11.934 -0.010 0.028 -0.367
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Figure 8: Classification Results on the Map

6 Conclusion

Panel data offer empirical investigators the opportunity to study individual unit behavior over time
which provides the appealing prospect of increased precision in estimation due to cross section av-
eraging. But this advantage hinges on the validity of homogeneous responses in the individual
units to system covariates and the predetermined variables. Assessing the validity of such ho-
mogeneous response conditions is an important feature of successful panel data research. When
homogeneity is absent and further information is lacking, empirical research is inevitably reliant

on econometric methodology to assist in discovering any latent structures in the data which may

lead to homogeneous sub-classes wherein cross section averaging will be valid and effective.
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This paper combines with other recent work in providing such methodology for the discovery
and estimation of latent structures in panel data. Our approach extends to a systematic panel
framework some recent research on the CARDS method proposed by KFW. The Panel-CARDS
procedure developed here is data-driven and enables identification and estimation of latent group
structures compatible with oracle estimation without the use of auxiliary variates to achieve em-
pirical classification. In comparison with the CARDS method, we consider the slope parameters
of each individual unit as a whole rather than as a special case of a cross section model. Together
with the use of a new concept of controlled classification of multidimensional quantities called the
segmentation net, this framework provides a robust approach to group selection. If prior infor-
mation about the minimum number of elements in each group does happen to be available, the
method also allows for hierarchical clustering to improve estimation accuracy.

We apply the new Panel-CARDS methodology to revisit two longstanding examples of panel
data research in economics. Our study of the international relationship between income and
democracy identifies three latent groups of countries which demonstrate distinctive association
effects, each relating income to democracy in a different way. Our study of the effect of minimum
wage legislation on unemployment rates in the United States identifies two latent groups within the
50 American states, one in which the unemployment rate responds negatively to increases in the
minimum wage and a second group where the response is positive. These applications demonstrate
that it is possible to take advantage of increased precision in estimation from cross section averaging
while at the same time identifying those subgroups of a panel in which homogeneous responses are
validated by the data.
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Appendix

A  Proofs of the Main Results

This appendix provides proofs of the main results in the above paper. Throughout we use M
to denote a generic positive constant that may vary across lines. References are made in this
Appendix to Lemma B.1, which is a technical result contained in Appendix B, a supplementary
document to the present paper.

The proof of Theorem 3.1 makes use of the following lemma.

Lemma A.1 Suppose that Assumption A1 holds. Then for each k =1,..., K,
(i) P (umin (%Nk 2iecy iﬁz‘) < 01/2> =o(T7),

(ii) P (HTLN;C Ziecg Xle;|| > MIH—JS:;T) + MUI}ET)P) =0 (T") for some M >0,

(m) P (maxlgiSN Hnax (%i X; ) > 202) =o0 (Tﬁl) .

Proof of Lemma A.1. (i) First, using %Zle XX, = %Zle XitX,, — X;X, we employ the
decomposition

T

z:: Xltxzt TN ZEEG:O ; X’thzt X’Ltiét)]
T
2"

1
(XitXiy) T—Nk Z Z [xirxiy — B (xirxiy) |

iEGO t=1

1
T, E
G
1
TN, E
G
_NL %%, — B(%)B(R)] + — Z Cov(%:, %;).
k

ieGY N e

37



It follows that

T T
Hmin TN Z i,i’b 2 Mmin T Z ZE Xltxzt - TN Z Z XZtX'Lt Xltx'lit)]
K i€GY k i€GY t=1 k i€GY t=1
1
N Z [iiié - E(iz)E(i;)]
b i€G)

By Lemma B.1(i) of the supplementary document Appendix B, we have
Pl 3 Z xixly — B (xixy)] | = e1/4 | = o (T) ™).

K ieGY t=1
Using Lemma B.1(ii), the fact that maxj<;<n [|E(X;)|| < M for some M < oo, and the represen-
tation %;%. — B(%;)E(X)) = %; [X; — E(X:)] + [%: — E(X;)] E(X}), we can readily show that

1 = = - O\ (% -1
P A Z (%% — B(X)E(X)]|| > c1/4] =0 (T7).
i€GY

It follows that with probability 1 — o (Tﬁl) we have fii, (TLNk ZieG% 5(;5(7) >c—ca/d—c/4>
e1/2. That is, P (e (77 Licn Xi%i) < e1/2) = o (T7).

(ii) We make the following decomposition

1 -~
T_Nk Z X;’Sz‘ = TN Z Z Xit — €zt

ieG) i€GY t=1
- TN Z Zx”g” TN Z Z“lslt Z (% — i) &,
i€GY t=1 i€GY t=1 zeGg

where g; = % ZZ;I git- By Lemma B.1(i), there exists large M > 0 such that

Mn(NT)\ B
P zezG:O ;th&t > W = o0 ((NkT) 1) , and
1 Mn(N,T)\ .
P e ZGZG:O ;Msn > S| = e ((NkT) > .

By Lemma B.1(ii), P (maXiGGg 1%i — gl > %) =o(T!) and P (maxl-egg |Ei] > %)
= o (T~1) for some M > 0. It follows that

P _Z M :O(Tfl)_

zEGO
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Consequently,

P 1 T x M1n(NyT) M [n(T))?
TN, g T /NG T T
k
- [l ZZT:X . M1n (N, T) 1 ZZT: s MIn(N,T)
TN, Lo 205N = T NG T TN, Zo 2SN = 5 UNT
ieGY 1=1 i€GY t=1
1 _ . M [In (T)]?
+ P ~ (Ri — py) Eil| >
~ Z 7
= O(T_l)

(iii) In view of the fact £X/%; = = S B (xixl,) + + ST [, — B (xix),)] — %%}, we have

T
1_,. 1
Hmax <TX;XZ> < Hmax (T ZE (Xitxgt)> + ‘ .
t=1

As in the proof of (i), we can readily argue that with probability 1—o (T*I) we have fi,,.. (%5{;5{,) <
co + co = 2¢o. This concludes the proof of the lemma. W

Proof of Theorem 3.1. To prove the theorem, we follow Ke, Fan and Wu (2015, KFW) and prove
that with a high probability the Panel-CARDS has a strictly local minimizer given by the oracle

. - ! - le . . . .
estimator ﬂomc °. Recall that ,Bomc “ is obtained with knowledge of the true grouping structure.

T

1

T Z [Xitx;t —E (Xitxgt)]
t=1

First, we introduce the restricted parameter space
Mg ={BeRN?:3;=p, forany i,j € G),1<k < K}. (A1)

Note that 3 = (ﬁ'l, -+, B%)" and the set {Gg}i{zl denotes the true grouping structure. So Mg is
connected with the parameter space of the oracle estimator. We define two mappings:

S : Mg — REP and §* : RNP — REP, (A.2)

where S(3) is a Kp x 1 vector whose k-th block (the length of a block is p) is the common slope
vector (o) of group k, and S*(8) is a Kp x 1 vector whose k-th block (the length of a block is
p) is given by N%c ZieGg B;, the mean value of slope vectors in group k. Apparently, S and S*

are the same when the domain of S* is also restricted to be Mg. In addition, a® = S(3°) and
~ oracle

doracle — S(,@ )
N T
The objective function is Qnr(8) = Ly7(8) + Pnr(8), where Lyp(8) = ﬁ S (G —

1=1t=1
%/,8;)% and Py1(B) = Pg., .0, (B). For any a € REP, define H
Lr(@) = Lnr(S7™Y(a)), Pgp(a)= Pyr(S™ (a)), and
Q@) = L§p(a)+ Pip(c). (A.3)

~ le . . C . . -
We need to show that ,Bomc “isa strictly local minimizer of Q7 with probability at least 1 —¢g —
0 (K/T). Let & denote the event that the segmentation B is admissible with the true parameter 3°.
By the conditions in the theorem, P (£f) < ¢y where, for any event £, £¢ denotes its complement.
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Next, we prove that

(Hﬁ"’“’e — 8% < M\/K (InT)? /T) >1— o(K/T) for some M > 0. (A.4)

Define the event &y = {,umin (TLN;C Zz‘eGg i;iz) > 01/2} Using &§™"*—af = (Zz’eGg %i;ii)—l > ieqo

k
%}E;si and by Lemma A.1, we have uniformly in &k

P {\/Nk ‘ agracle _ agu > MlnT/\/T}
-1
1 . 1 -
= P{\/Nk T_]sz X X5 T_]sz X, E; ZMIHT/\/T
ieGY i€GY
-1
1 —~ 1 -
ieG) i€GY
-1
1 .
< P{\/Nk ™, ,XG:OXiXi TNk ZG,:()XEZ >MInT/VT,& +o(T7h
1€Gy 1€

1 ~ ARy - -
- P( TNy Zoxé& > (Z) MInT/V/NT | +0(T7) =o(T7),
where P (A, B)

K
P( Boracle _ﬁoH2 > M?K (InT)? /T> = F (;Nk

ﬁp (Nk

k=1

denotes P (AN B). With this, we can readily show that

2
agracle _ a%” > M2K (InT)? /T)

IN

2
dzracle _ a%H > M? (lnT)2 /T) = O(K/T) .

Thus (A.4) follows.
Now we consider a small neighborhood of 3°

Wy = {5 eRMP . (|3 — 87| < MlnT\/K/T} . (A.5)
By (A.4), there exists a set & with P(82) < o(K/T) and \\ﬁomele — 8% < MInT\/K/T over &.
For an element 3 € WY and 3* = o S*(B). We want to show
(i) Over the set &1 N &y,
% ~oracle
Qnr(B7) = Qnr(B ) (A.6)

~oracle

and the inequality is strict when 3% # B

(ii) There is a set £3 (to be deﬁned) with P(E5) < o(T~1). Over the set £1NE2 NEs, there exists
acle
a set Wy which contains B such that

QnT(B) = QnT(87) (A.7)
for any B €Wnr, and the inequality is strict when 3 # 3*.

40



~oracle ~oracle

If both (i) and (ii) hold, then we have Qnr(8) > Qnr(8 ) for any 8 € Wyt and 8 is a
strict local minimizer of QN7 over the set £1 NE N E3. We prove these two claims in Propositions
A.2 and A.3 below. B

~oracle

Proposition A.2 Suppose that the conditions in Theorem 3.1 hold. Then Qnr(8%) > Qnr(8 )

~oracle

on the set £1 N Ey and the inequality is strict when 3% # 3 .

Proof of Proposition A.2. We demonstrate that
PS.-(S*(B)) = Constant for any 3 € Wr. (A.8)

Recall that Vj; = Gg NB for k=1,2,---,Kand [ = 1,2,---,L. For any 3 € WR,T, denote
a = S*(3). Define n,(;i = ZL:EI(’VleVm(lHﬂ + [Vt |[Vire1y|),'0 which is the number of between-

segment penalty terms imposed on segments k and m. Similarly, define ngzl = 25 Vil Vi | as
the number of within-segment penalty terms. Then

1 2
Pir(e) =X > ool —aml) +22 S 02 oy(low — aml), (A.9)
1<k<m<K 1<k<m<K

where p; (t) = )\j_lij (t) for j = 1,2. In view of the fact that

i oo = el =, min || (en. = o) = (e = o) = (e = evm)
= 1§l~cn<1}7rzlg< ledk = e, =2 max | — |,

> 2bnT — 2p||,@ — ,BOHOO > 2bnT — QlenT\/K/T > byt > amax{)\l, )\2}

by Assumption A3, PJ%T(CX) in (A.9) is constant on W3, by Assumption A2.

Since L%T(a) is convex with respect to a and &°"*“*¢ minimizes L]gVT(a), we have

LEr(S7(8)) = Ly (@7t)

for any o =S* (8) and the above inequality is strict whenever S* (3) # e or equivalently,
~oracle

B* # S~ (amley = 3 . The conclusion then follows by observing that on £1 N &y,

Qnr(B") = Qur(S7' 0 5%(8)) = Q51 (5*(8)) = LY (S*(8)) + PR (5*(8))
= L]gVT(S* (B3)) + Constant

~oracle

and, similarly, Qn7 (8 )= L%T(dorade) + PJ%T(S*(dOT“Cle)) = L]gVT(domde) + Constant.

Proposition A.3 Suppose that the conditions in Theorem 3.1 hold. Then there exists a set Wyt
which contains BOMCle such that Qnr(8) > QnT(8") on the set E1NE2NE3 for any B EWnNT, and
the inequality is strict when B # 3*.

1Since the ordered segmentation is admissible, we note here that many of the Vj,;s are empty with cardinality 0.
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Proof of Proposition A.3. We construct a subset of WR,T defined by

~oracle

Wit =W n{B:[8-8"""| < tnr}, (A.10)
where ty7 is a positive sequence such that ﬁtﬁ < A9 and ty7 < A1. Recall that g% =
S~1 o S*(B), which implies 18— 8 < |B—0 for any 3 € Mg. In particular, we have

1B — B* < 8- ,Bomc °|l. Consequently, it suffices to prove the proposition by showing (A.7)
holds for any @ such that || — 8| < tnr, and the inequality is strict when 3 # 8.

We now analyze how Qn7(8) responds to the change of 8 eWxnr. We make the following
decomposition

OnT(B) — QN1 (B8") = [LNT(B) — LNT(B8)] + [PNT(B) — Pn7(B")] = 11 + 12, say.  (A.11)

The basic idea is to demonstrate that upon moving from 8 to a = S*(3), the decrease in the
penalty term I dominates the increase in the least squares function I; with high probability. By
the Cauchy-Schwarz inequality, [|8; — 8,3 < 18; — B, < pllB; — B;ll3. For I we have

Iy = Pyr(B)— Pyr(8Y)

L—-1 L
= > > enlB-B10+d> > (B -85l

=1 i€B;,jEB 11 =1 i€B,,jeB,
L-1 L
=S B -810-> > pu8 -8l
=1 iGBl,jGBz+1 =1 iEBl,jEBz
= M Z Y. 1B = Bylh) + >\2Z Yo B -85l
=1 zEBl,]EBH_l,zNj =1 ZEBl,jEBl,ZN]

v

=1 ieB, jeBi1,il) LieB jeB,ig;

where i 2 j means ¢ and j are in the same true group in which case 3; = B;f, the third equality
follows from the proof of (A.8), and the last inequality follow from the concavity of p;(-) and py(+)

and for 4, j in the same true group, ||3; — B;ll1 < 2/B|IB — B*||/vNmin < 2v/PtNT/V Numin-
For I, we apply a Taylor development, giving

I = LNT(ﬁ) Lyt (8)

N T | K T
- Z > (Gie —uB:)° — ONT 2 Z Jit — X Bi)”

ZZI t=1 GO t=1

=
=

1 1
= SNT Z (yi — %iBy) (¥i — %iB;) — ONT Z Z (¥ — %81 (3 — %:8%)

k=1ieGY k=1ieG?

=

1 - - < ~ *
- NT (Vi = XiBr(o)) %:(B; — Br)
k=1ieG9

=

Uk

(A.13)

I
|
3/~
]~
<
|
24!
I
=
U
)
|
o)
ij

k=1l=dy i€V

L—1

VPENT 2\/PtNT
A 18; — Bl + A 18; — B,ll1, (A.12)
DORED DI GV S TR AIRS S S oA ) PR



where Ek(i) denotes the intermediate value that lies between 8; and B} elementwise. Let z; =

v . Uk
X;(¥i — XiBp(;))- Noting that B = Nik Zi,eeg B = N%c llzzl > iev,, Bir, we have
=0k

K ug K ug

L= Y S -8 =ﬁ?§ﬁ)—2§)

k=1 l=d}, i€V, l=dy, i€V U'=d 1 EVkl/

S SR 5D 3D Dl SR RIS

k=1 l di U'=dy 1€V 1 EVM/

1 1 ’
= _ﬁzﬁ Z > (zi—2) (B; — By)

k=1 I=dy, 1€V ! €V

1 K 1 Y,
—ﬁz— Z Z i —zi) (B — By)

k=1 dp, <I<U' <up i€V i/ €V
= 11+ L. (A.14)

We will evaluate 17 and I19 in turn. First we transform I1; for comparison,

111 = 2NTZ Z Z Z _Z’L /61’)

k=1 l dy, 1€V i/ €V

=
L
= % Z Z 0 (Z),(Bz —By), (A.15)

. G.
1,1 € By i~/

where z = (2}, -+ ,zy)’, 01/(z) = ﬁ(zl —z;1), and as before 7 £ i means that i and ¢ belong to
the same true group. Now we change I12 to a form that can be easily compared with I5. By the
property of the partition B, we can write

-1

B0 b= SN — 3 S (8, - By,

h=i+1] kh| {(ig,i1q1, vigr): iy=iyipp=i'3ip €V, h=l+1,-- 1’1} h=l

where the second summation is a telescope summation with common value 3, — B,, the first
summation is over all possible paths from all sets Vi, between Vj; and Vi, and the total number
of different paths is given by H%;ll 1 |Vkn|. For notation consistency, when I = I — 1, we define
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v
[Th=ia [Ven| = 1.

Plugging the expression into /12, we have

K
I T o - By)
e SE D MDY DI
NT £~ Ny, ¥ i
k=1 dp <I<l'<up 1€V i EVM/
K / / -1
B 1 1 Zy — %,
- wmiw ¥ S el S
k=1 di <I<l'<uy, {(’Ll,ll+1, ll/)’LhGth,h L, l'} h=Il+1 kh| p=i
K
SOOI
= —— —_— ’
NT N, 1 k>
k=1 di <I<l'<uy
where
I'-1 / /
S _ Z’il - Z’il/
wE=Y > W(ﬁz‘h = Bin)-
h=l {(il’il+17“' 77’l/)7’]€ij7j:la 7l/} j:lJrl k']

To simplify the last expression, we discuss four cases: (a) l=h=10'—1,(b)l=h <l'—1, (c)
I<h<l'—1,and (d) I < h=1"—1, and write

Sk = Sk (@) + Sk (b) + S (¢) + S i (d)

where, for example, Sy, (a) denotes the summation in Sy j for which h is restricted to satisfy the

conditions in (a).

Sk (a)

In case (b),

Sk (b)

In case (a), we have

-1 / !

_Ta P I=h="
Z Z Hl’—l ’V‘(Blh_’ﬁthrl)l{ - - _1}
h=l {(iryirg 1, iy )i € Vij g = '} LLj=141 1V k]
!
Z (23, — 2iy1,) (Bi, = Biy)
ih€Vih ih41€ Vi, ht1
>, D, (m—2)(B;-By)
1E€EVEp 1 EVk, h+1
'—1
%~ %y 1{i=h<l -1
> > W(Bih—ﬁim) {i=h<l'-1}
h=t { (i, t141, iz/)'ijEijvj*l py Lj=i411Vkj
_ I
> > X (8, — B
!th 1\ ini)
Th€Vih th41€ Vi, hy1 1y EViyr
Vi
Z Z |th 1’ (Zih - kl’) (Bzh /Bih+1)
th€Vih th4+1€Vi, ht1 ot
Vi |
Z Z | —zZwr) (B; — By)
k: l+l’

1€EVEh i€V el
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where Zyy =

Sk (d

In case (c)

Sk (¢

It follows that

-1

Sk = Z

h=l{ (iy i1,

where

Then

)

)

12

1 e .
Vo] ZJ'EVW z;. Similarly, in case (d) we have

-1 , ,

ZZAl Zil/ ,
Z Z ?(ﬁih—ﬁihﬂ)l {l<h:l _1}

Vil

>

=l {(il7il+11"' 1Zl/)ZJ€Vk]7]:l7 7l’} H]:l+1

Vil - N
Z Z Vi1 (Zr — 2i) (Bs — By)-

1€Vin ’L'/EV)C’thl ’

!
— 7z, — 7!

2 > (B, — By, )L{I<h <l 1}

h=l {(iy i1, i )i € Vi, g=L, '} Hj:l+1 ‘Vk?]’

-2 , ,

Zil - Zil/
Z Z W(,@ih = Bin)
h=Il+1 {(’L'l,’iprl,“',il/):i]‘Eijyj:l’...’l/} j:l+1 k_]

’
-2 , 2

Zy, — 2y,
> X > B = B
h=l41 i, EVipsint1€ Ve, ht1 1EVityiy €Vigyr [Vinl Vi1
-2
ViallVirl -
Z Z (@1 — Zwr) (Bs, — B, )-

h=1+1i,EVin,int+1€Vi,ht1 |Vien| |Vk,h+1!

1 gl -1

Z;, —Z;,
Z l_ll,il—“l/kj‘ (’B%h _'Bih+1 Z Z Z wn’ AU h

iy )ity EViggog=l,-- '} LL7=l+1 h=li€Vin ' €Vi(nt1)

Z; — 2y, l:h:l/—l
M . _ ! _ 1

Wi n(2) = |Vk‘</l+|1|)‘|/(z| Zr), I=h<l

0,7, - kil Vi = = ;o

|vk|,€/|—|1|/k(h+1)| (Zwr — Zgr), L<h<l -1
kl 7. . T

Vw1 (2Kt = 27), I<h=1

-1

2i>—l
S
M) =

Nik Z Z w;i/,ll/,h(z)(ﬁi_ﬁi’)

k=1 F qy<I<l<uy h=l i€Vip i evk(hﬂ)
| L1 b W
" NT Z Z Z Wi 1 (2) | (B — Byr)
h=1 k=ay, i€Vip,i er ) | i=dg r=h+1
= /
“NT Z Ti(2)(B; — Bi)s
h=1

iGBh,i’EBthl,ir%i’
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where 7(z) = N%c Zgl:dk D1 Wi n(2). Let Giy, = Ui<h Vie and Gip = Uiy, Vie. Then by
(A.16)

Tii’(z) = _Z Z Wig 11" b )

ko= dkl/ Rl
Vil Vel L [Vl
kl kU —_ —_ kl| —
= =~ Z Z Vi 1V o Bk — Zg) + N, Z V—(Zkl —Zjr)
k Sg G Venl Vi k 57 Vil
I & |V _ 1
+F V’vA(Z’L _Zkl’) + F(ZZ _Zi')
k Sy Vi) k
h—
L Wl Warl) 1 i Vil
Nk:l ~  VallVigui) Ne Vil
Z Zl dk|Vkl|)|Vkl’|z 1 Zl dk|Vkl’Z
I—— kl/ —_— !
S IVinl Vi Ny Vil
1 |Gl |G
p— Zv_— Z
Vin| Veanl | Ne Z TN Z !
J€GY 1) I€EGE i1y
|Gl Gl >
L+ z z (A.18
<Nk\Vk(h+1)\ N[Vl )

By (A.14), (A.15) and (A.17), we have

|| < !111!+|~712|

< NTZ S 105l ﬁu1+NTZ S i@l - 8, (A19)

]EBMN] ZEBLJEBZJAJ«N]

y (A.11), (A.13) and (A.19), we have

L
(@) - Qur(8) = 3 % [vart (L) - gl @l | 18- 8l

DD DR (WY Ty R ATR [

=l ieBy,jeB1,i%)
= Ju+Ji2 (A.20)

Now we only need to find a high probability event &3 over which the right hand side of (A.20)
is nonnegative, and P(€3) should be at least 1 — o(T!). Noting that

zi = Xi(§i—XiBuu) = XiEi + %)) — XiBr))
= &~ X%i(B; — BR) — XiXi(Bry — BY). (A.21)
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we have

1 1

0:5(z) = R (%j&; — %j&;) — T (Ri%: — %'%;) (8 — BY)
1 oo o L )
o {X;Xi(:@k(z‘) - Br) — X;-Xj(,@k(j) — gk)}

= 0ij1 — 0i2 — 0453, say.

T = = T — - — —
Note that 01']',1 = ﬁ Zt:l (Xitf‘:it — thé“jt) = ﬁ Zt:l (Xitf‘:it — thEjt) -+ ﬁ (Xi&' — ngj) . By
Lemma B.1, we can readily show that

1 10,1, > MInT
- i1 > —
Y ! Nmin\/T

For 6;;2, we have by Lemma A.1(iii), with probability 1 — o (Tfl)

P ( max max

=o(T™") for some M > 0.
1<k<K ijeGo T > ()

1
max max —
1<k<Kijeq9 T

max_max Y2 || (%% — %) (65 — BY||

0..2
|| B ||1 ISkSKi,jGGg QTNk;

IN

N o 0 2c94/p
S B B e (SRIT) B 101 B < T e

Similarly, max;<p<x max; jego % 043]l; < %twp with probability 1 —o (Tﬁl) . It follows that
with probability 1 — o (T_l) we have

1 1
NT B gy 10 S T s e 195 — Oz~ il
MInT 4eg\/p M (ln T )
< + tyy < == tinr).
NNmin\/T NNmin NNmin vT

Define

< 1 16::(2)], < M lnT+t
={—— max max |0;;(z — [ —= )
PTNNT k<K igeay M S NN \vT

By choosing sufficiently small ¢y7, we have A}min (th; +t NT) < Ag. It follows that Ji; > 0 over

the event £1 N &y N E31 with P (51 N& N 532) =1-o0 (T_l).
Next, we consider Ji2. By the linearity of 7;;(-) and (A.21), we can write

Tii(2) = 7'7;7;'(5(/5) - 7'7;7;'(5((1)) - Tii’(X@)):

where X denotes an NT x Np block diagonal matrix with the ¢th diagonal block given by X;, 5((1)
is Np x 1 vector with typical block X/%;(3;; — 3% fori € GY, and 5((2) is Np x 1 vector with typical
block X%;(Byi) — Bi) for i € GY. By (A.18),

ri(Xle) = 1 Gil Z e Gl Z e

7 -
Virl[Vigepy | | Ne 4 Ny £ 7
J€GL (1) VSE I

|Gih| ~/ |Gllch| =/ >
+ —Xie‘ — X € | .
<Nk|Vk(h+1)! C Nk[Vin|
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By Lemma B.1, we can readily show that with probability 1 — o (T *1) we have

1 2
, y MT /|G | y MInT /|G, )|
T >, K| < T1/2 and = >, el < T1/2
jEGilc(hﬂ) 1 jEGi(thl) 1
It follows that with probability 1 — o (T*I) ,
1 ~ MInT
— o (X'e H = maxS
NT 135 e |7 (X'e)||, = iz maxSen,
2 4 |G |G 1) | HIGkn P 1GR )| 4|GE, 2 4Gy, l2
;Vhereh(Skh) T Vin PV ? N} + NEWVihany 2 NZVin 2 Below we use the
act that

G-yl < |Ghn| < Niy |Gyl < |Gon] < Niy and |G| + |GEy| = Ny

We consider four subcases: (1) h > di, h+1 < ug, (2) h > dg, h+1 = ug, (3) h =di, h+1 < ug,
and (4) h = dg, h + 1 = ug. In subcase (1), we have |Vin| = [Bi|, [Vi(hs1)l = [Bat1l, and

< 4Ny, n 4 n 4
~ Bul2[Bhia?  [Bual? 0 |Brl*

(Skn)?

In subcase (2), we have [Vix| = |Bp|, |G2,| = |Vi(ns1)| » and

AN, 4 4

Sin)’ < s + 5t
(Sin) |Bul?|Vi(hay |2 NP | Byl?

In subcase (3) we have |G}, | = [Vinl, [Vinin)| = [Brtal, and

4Ny, 4 4
Skn)? < + +—.
) = VoD Bl T
In subcase (4), we have |Gp,| = [Vial, |G2yl = | Vit |, and
8
Skn)? < —.
In sum, (Skh)2 < 12N, =: 12¢,. It follows that with probability 1 — o (T_l)

= min{N}, ming, <i<y, [Bi[?}

1
——— ImaxX max
NT 1<k<K ijeq?

~ MInT
ruiil], < 8L 5

By the same token, we can show that with probability 1 — o (T‘l)

Tz'@'/(X(s))Hl < ]\\{_k 1I§r}caéXK HIBk - 52“ < ]\\{_k

1

— INaX mhax
NT 1<k<K i jeq?

tyr for s =1,2.
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Then with probability 1 — o (T *1) we have

1 1
NT (B e Ima @l = ma mas

< InT ; 5
= N T2 TINT )/ R Ok

Tn"(X’e) - Tii’(X(l)) - Tii’(X(Q))Hl

Define
M (InT ;
T1/2 TinT 1<I<:<K¢k

By choosing sufficiently small ty7 (e.g., ty7 = M InT/T'?), we have % <% + tNT> \/qﬁ_k <
A1. By the conditions on Aj, A2, and ¢, we have Ji2 > 0 on the event £1 N & N E32 with
P(gl N &y ﬂggg) =1-o0 (T_l).

In sum, over the event £1 N E N E with & = E31 N E32, we have Qnr(8) > Qnr(B¥) for any
B € Wyt and the strict inequality holds for 8 # 3*. B

Eip = 4 — Ir5@, <
2T\ NT 1Sk eI =T

~oracle

Proof of Theorem 3.2. () By Theorem 3.1, P(,B B ) — 1 provided €y = €or — 0 as
T — oo. It follows that P(K = K) — 1 and P(G; = GY,...,Gx = GY|K = K) — 1 as T — oo,
perhaps after suitable relabeling among the Gg’s. In addition,

P(GlzG?,...,GK:G(}(> =P<C¥1:G(1), G =GYUK = K)P(K:K) 1lasT — oo
(ii) Let C be any Borel-measurable set in RP. By (i),

P(VNiT(ar—af)ec) = P(VNT(ar—af)ecip=p3""")pr(8=5""")
4P (\/m(ak —a?) ECW%ﬁoracze) (67é180racle>
= P(VNT(@g™ —af) € ¢) {1 -o(1)}+o0(1)
— P(\/m( "mde—ai)66> as T — oo.

That is, /NI (&, — @) shares the same asymptotic distribution as / N T (agracle — a?). As in
the proof of Theorem 3.1, we have

-1

1
\/m( prace — ag) = TN, Z X;Xi TNk Z Xi€i-

ieGY ieGY

By Assumption A4, (i) @ = ﬁ ZieG% Zthl Xit X} 5 ®;. > 0 and % EiEGO ZtT 1 Xit&it —
Biny 2 N (0,¥}) as (N, T) — oo or T — oo alone. It follows that /NyT(&g* — af) —
o, 'Binr 2 N(0,®, ;& ') and the conclusion in Theorem 3.2(ii) follows. l

Proof of Theorem 3.3. Let C be defined as in the proof of Theorem 3.2(ii). In view of the fact

49



that &, becomes &g conditional on G, = GY, we have by Theorem 3.2(i)

P (m(aék —al e c) - P (JW(aék —a% eclGy = G%) P (Gk - Gg)
+P (\/W(dék —a?) e |Gy £ Gg) P <Gk ” Gg)
= P(VNT(@g™—af) e ¢) {1 -o(1)} +0(1)
. p <m(dzmcle ol e C) .

~ oracle

That is, v/ N T (G, — a?) is asymptotically equivalent to /NI (&5,
in Theorem 3.3 follows. W

aV) and the conclusion

Proof of Theorem 3.4. The proof is built on and similar to that of Theorem 3.1 and we only
sketch the main difference. The penalty term Pg y, x,(3) now becomes

R
Pranaa(B8) = Ps, a0 (8),
r=1

which involves the addition of R penalty terms. As assumed, {B,,,...,B,,} together forms an
admissible segmentation net N. For the first group G(l), there exists a B,, € N such that G? is
properly segmented by B,,. To make the notation easier to follow, we rename B = B, for the
moment. Recall that th) = UE‘:l & Vi1, where Vq; = G(l) N By, and B; € B. Without loss of generality
and possibly with some renaming of notation, we can assume B,,\G{ # @ and B,, N GY # @.
Here* \’ is the relative complement operator. Next we find the B € N that properly segments GY.
Similarly we can write GY = Shis 4, V21 And so on. Finally, for each Gg we have G% = U d Vil
The redefined segmentation B* = {Vig,, ..., Viuys s Vikdye s ---» VKuy + 1S an admissible segmentation
according to the definition. Now we decompose Py, x,(8) as

PN,)\17>\2 (/6) = PB*,)\17>\2 (/6) + PWithin(IB) + Pbetween(ﬁ)v

where Pg« y, ,(8) is defined according to the new admissible segmentation B*, Pyithin(3) contains
all other penalty terms between members belonging to the same true group, and Pyetween(3)
contains all other penalty terms for members belonging to different true groups.

Next we specify the events.

1. Let £; be the event that the segmentation net is admissible with the true parameters 3°
so that we could generate the B* described above. According to the assumption, we have
P (Ef ) < €1.

2. Let & = {||Borade -8 < MlnT\/K/T}. According to the proof in Theorem 3.1, we

have P(€5) = o(K/T). Furthermore, over the event £ N&,, we have property (i) in Theorem
3.1. Note that here Pp- x, x,(8) plays a similar role to that of Pg, x,(8) in Theorem 3.1;
Pyithin(B) and Phetween(3) are zero and a constant, respectively, conditional on £ N &.

3. Let & be as defined in Theorem 3.1 such that P(€5) = o (T!). Combining the proof of
Theorem 3.1 and arguments in the last point, we obtain a similar evaluation as property (ii)
in Theorem 3.1.

~oracle

Thus, just as in the proof of Theorem 3.1, we can show that, over the event &, NENEs, B
is the unique optimization solution of @Qn7. In addition, P(E1N& NE) >1—e —o(K/T). B

50



Supplementary Material for
“Homogeneity Pursuit in Panel Data Model: Theory and Applications”
(Not for publication in the main text of the paper)

Wuyi Wang®, Peter C.B. Phillips®, Liangjun Su®
@ School of Economics, Singapore Management University
® Yale University, University of Auckland, University of Southampton, & Singapore Management
University

This supplement states and proves a technical lemma that is used in the main text of the above
paper.

B A Technical Lemma

Lemma B.1 Let §; denote a d¢ x 1 random vector with mean 0 and B ||£;||? < oo for some ¢ > 4.
Suppose that {&;;,i =1,...,N, t =1,...,T} are independent across i and are strong mizing in the
time index. Let GY, ...,GY be defined as in the main text with Ny = ‘G%} fork=1,...K. Let o ()
denote the mizing coefficients of {&,t =1,2,...} . Suppose that o; (1) < a(7) for alli =1,...,N
where a (1) < cop” for some co > 0 and p € (0,1). Then as T — oo and for some sufficiently

large positive constant M and any positive constant ¢ we have

(i) P (||t Sicop S| 2 5NE) =0 (Ne1)™) for b =1, K,

(ii) P (maX1§7;§Nk + Zthl Eirll = Mln(T)) =0 (T™") provided ¢ > 8 and N, = O (T?),

T1/2
(iii) P <max1§7;§N H% S Eall > c) =0 (T") provided N = O (T?).

Proof. (i) Let ay, 7 = M In(N,T) /N T and ny, 7 = (NT)" for ¥ = %. Let ¢¢ be an arbitrary
d¢ x 1 nonrandom vector with [|ee|| = 1. Let 1 = 1 {||€;;|| <y, 7} and 1; = 1 — 1;. Define

E1it = ve [SaLie — B (§Lit)], Eoi = 166 Lit, and Egyp = 1B (65 L4r) -
Apparently €15 + &5 — &gt = &3 as E(&;) = 0. We prove the lemma by showing that

T
. 1
(11) N.T-P W E E flit > aN, T = 0(1)7
ieGy t=1

T T

. 1 i 1

(i2) NeT- P | | > > bou| Zanr | = o(1), and (i3) N.T > Y &au| = olan,r)-
k i€GY t=1 k €GO t=1



First, we prove (i3). By the Holder and Markov inequalities

T
1 _
F7 2 G| < max max |8 (&L

1<i< Ny, 1<t<T

ieGY t=1
< may o {BIGI7 Y (P (6l > mag )} 2
T 1<Ki<NR 1KE<T i it NiT
(¢—2)/q
< .
< g max max {P (€l > nv,r)}
(¢—2)/q
< —q ] q}
< ey, max max {30 E (Il

= oY =0 ((NkT)_ﬂ(q_m ) = o(an,T),

2/q _
where e1y = max;cgo maxii<r {B €)1} and ea = max;cgp maxicir {B (1€}

Next, we prove (i2). Noting that Hﬁ Zieag S o
€]l > nn, 1> by the Boole and Markov inequalities, the dominated convergence theorem, and the
stated conditions, we have

> an, 7 implies that max;<;<n, maxi<i<r

T
1
P N.T Z Zf%‘t zanr | = P Tnax fg%XTHfitH > nNkT]
i€GY t=1 k
N,T
< max max B [[1€;[1* 1 {[I6;:]l > nn,r}]

N, i€GY 1St<T
~ 0 <(NkT)1*q19> — 0 ((NkT)’1> .

. . . _ 1 T .
To prove (il), we need to rewrite the expression Q17 = N.T ZieG% > i1 &14e- Without loss of
generality, we assume that we can split the time interval [1,T] into 27y, blocks with each block

of length Iy, 7 =T/ (2rn,7) < (NkT)%_'ﬁ where ar =< by means that ar/br is bounded away from
both 0 and infinity as T" — co. Then

TNy T TNy T

T
> &= Bigs1+ » Bias,
t=1 s=1 s=1

sl
where B; s = ﬁ Zt:N(Zil)lNkT—s—l &4 for s = 1,..., 2rn, 7. It follows that

T TN,T TN,T
1
P N.T Z Zﬁut >anr | <P Z Z Bias—1| > an,1/2 | +P Z Z Bias| > an,1/2
i€GY t=1 i€y s=1 i€GY s=1

Below we show that the first term can be bounded by o((N,T) ™). The second term can be studied
by using analogous arguments. Note that

1 (2s—Din,T

max max |Bj2s-1] = ——=max max Z ve [6ulie — B (§410))| £ — ot = Cenyr-
€GO 1<s<r ’ NiT icGo 1<s<r ! ! - 4§
i€G) 1sssrvgr kL ieGy 1sssrvgr t=(25-2)ln, 741

2



By the Davydov inequality, we can readily show that

TN T TN T (2s—1)In, T 2 c
V1
E g [ i,25—1 ] N2T2 § E E E v [t — B (& Lar)] NkT
ZGGO s=1 zGGO s=1 t:(23*2)lNkT+l

for some C < co. By Bradley’s lemma (e.g., Lemma 1.2 in Bosq 1998), we can construct a sequence
of random variables B}, B3, ... such that (1) B}y, B, .. are independent, (2) B/, ; has the
same distribution as B;2,—1, and (3) for any Cy € (0, Cen, 7,

P{‘BZ 951 — i,2$—1| > 02} < 18(C§NkT/C2)1/205 (lNkT) . (B.l)
Then we have
TN, T
P Z Z Bias—1| > an,T/2
ieG) s=1
TN, T TN, T
< P Z 23125 1 >aNkT/4 + P Z Z 125 1= 125—1) ZaNkT/4
i€GY s=1 ieGy s=1
= [+ 11, say.

In view of the fact that exp () < 14z + 22 for |z| < 1/2, 1 + 2 < exp (z) for any = > 0, and
E [B;2s—1] = 0, we have for Ay, 7 = Cg]\l,kT/Z,

E [exp (£An,7Bi2s-1)] < 1+ Ay, 7B |:(Bi,2sfl)2i| <exp (A%vaE [(31,2371)2}) -

Then by the Markov inequality, we have

TN, T
I = P> ) By i|>anr/4
ieGY s=1
A\ TNLT TN, T
NyTAN,T
< exp (_ et P VRL 1 k )E exp | An,T E Z Bios_1 | texp | —An,T Z Z Blos_1
ieqo s=1 ieGo s=1

A
= exp (—W) {HieGg [T5"E [exp (AverBlae1)] + [lieqy [T.25" E [exp (—ANkTBzzs—l)}}

A r
S Qexp <_W> H’L’GG% HSZﬁT exXp <)‘%VkTE |:(Bi,25—1)2]>
TN, T

A
= 2€Xp —M kTZ ZE[ 1,25—1 :|

zEGO s=1

< exp (=M In(NT)) = o (M)

: 2 NT )2 N -2 1—2¢
where the last line follows because Ay, 7/ (NyT') = (#N;@T"Nﬂ) /(N T) = Alﬁl?van%va < Iyt (NT)
=1 and

NI MIn(NgT) M (N,T)2 " In (N,.T)
4lNkT77NkT (NkT)l/2 4lNkT

AN, TON, T = = M In (NiT).



In addition, by (B.1) and the fact % < Cenyr

TN T
AN, T
II = P Z Z 125 1 12571) > 4k
zGGO s=1
TN, T TN, T C 1/2
« aN,T ¢N,T
S Z Z P <‘Bz‘725—1 _Bz 25— 1| = m) S Z Z 18 W Oé(lNkT)
i€Gy s=1 i€GY s=1 ANErN, T
C N 1/2
= 36Nkrn,T <M> a(lyr) < (NkT) for sufficiently large T,
anN, T

where L can be chosen arbitrarily large as a (In,7) decays to zero at the exponential rate and
Ing < (NkT) dlverges to co at a polynomial rate.
This completes the proof of (i).

(ii) The proof is similar to that of (i) and is therefore sketched. Let ar = MInT/+/T and
np = TY for 9 = % Let t¢ be an arbitrary d¢ x 1 nonrandom vector with [jee]| = 1. Let 1; =

1{H§zt|| <nr} and Ty = 1 — 1. Define &, = L/g (€ Lit — B (E410)] s Eope = Léﬁitiz‘u and &3 =
B (&;,1i) . Apparently &, + o5 — Eaip = te&ir as B(;) = 0. We prove the lemma by showing

that
2 -

) = o(1l), and (ii3) max
i€GY

'ﬂ |

(iil) T (max

i€GY

i

Following the proof of (i3) and using the Holder and Markov inequalities, we can readily show
that

(ii2) T (max

i€GY

’ﬂ |

—(q-2) _ —5‘(q—2)> _
< mae v 1B (L) | < exgen " =0 (T ~ oar).

Z 53@1‘,

Similarly, following the proof of (i2) and using the Boole and Markov inequalities, the dominated
convergence theorem, and the stated conditions, we have

P | max
i€GY

zGGO

€GO 1<t<T

ZaNkT> < P

N T
i e ma B il 1 €l > nv,r)]

= o0 (Nka@) =0 (Tﬁl)

max max ||&;] > nNkT]

where we use the fact that N, = O (TQ) .
For (iil), we assume that we can split the time interval [1,T] into 2rp blocks with each block

of length Ip = T/ (2rp) =< T3, Then Zthl €1 = > Bi,gs,l + > Bi’gs, where B@S =



; _
% ts:T(Sil)lTH &y for s =1, ..., 2rp. It follows that

1 - L
P | max |— Sl > a < P | max B; >ar/2 ) + P | max B; >ar/2
(iecg T;ﬁm > T) < (zecg ; i2s—1 T/ ) (zeGk ; i,2s T/ )

Below we show that the first term can be bounded by o (T_l) . The second term can be studied
by using analogous arguments. Note that

28l

1
max max |B; = —max max €1 — B (€1, <
i€GY 1§S§TNkT’ s 1{ T ieq 1<s<rr Z 5[5” * (S]] <
t=(25—1)lp+1

2y _
= Cerp.
T ¢

By the Davydov inequality, we can readily show that

2slr 2

Y E [(3@25—1)2} = % Y E Yo léalu —BE )| | < %
s=1 s=1

t=(2s—1)lp+1

for some C; < oo. By Bradley’s lemma, we can construct a sequence of random variables Bz 1
B '3, .. such that (1) B}, B}, .. are independent, (2) Bz*2s , has the same distribution as B; 251,
and (3) for any Cs € (0, Cerl,

P{‘BZ 961 — i,2$—1| > C’Q} < 18(C’§T/C’2)1/2a (lT) . (B.2a)

> aT/2>

Then we have

ZBzQS 1

max
zEG’g

s=1

T rr
< P (22%: ;Bi,Zs—l > aT/4> + P (gg}g{ ; (Bigs_1 — Bigs-1)| > aT/4>
= [II+1V, say.

Noting that E [exp (:i:/_\TBi,gs,l)] <1+ /\TE [( 2o 1)2} < exp ()\TE [( ;25— 1)2]> for \p =
C’ng /2 and by the Markov inequality, we have

A
I < EP( ><226Xp< T4aT+>\TZE[ 20— 1)?)
zEGO zEGO s=1
=< exp(-MInT)=o0 (T_l) for large M,
where the last line follows because /T = (74— 2/T = T = 1721""% < 1 and Apar =
T — \dnr — 16292 T - TOT —

1y
T MInT _ MT?2 InT _
Ty T3 = 7P = MInT.



In addition, by (B.2a) and the fact ;& < Cer,

T

Z ( ;:23_1 - Bz’,2sfl)

vV = P(max
i€G? —1

>a_T>
- 4

D o] (AR EES I wh et (- 3 s

i€GY s=1 €GY s=1 drp

IN

1/2
> o (Ip) < TF for sufficiently large T,

where L can be chosen arbitrarily large. This completes the proof of (ii).

(iii) The proof is similar to (ii) and is again only sketched here. Let ap = ¢ and np = T? for
¥ = 4 . Let &q4, €ty Eity Bis, Bz 5» and Cer be as defined in the proof of (ii). We prove the lemma
by showmg that

T

T Z Elit
T
252175 Z:

The proofs of (iii2) and (iii3) are similar to those of (ii2) and (ii3) and omitted. For (iiil), we
now assume that we can split the time interval [1,T7] into 277 blocks with each block of length
I = T/ (2r7) < T'7Y=¢ where € is an arbitrarily small positive number such that 1 — 49 — ¢ > 0
(which is possible because ¥ = 4 < 1 under our assumption). Then Y7 &1, = ST Biog 1 +

ZZTI B; 2,where B, 5= l SIT(S ip1 gm for s =1, ..., 2rp. Noting that E [exp (j:S\TBi,gs,l)] <

1+ /\TE [( i2s— 1) } < exp ()\TE [( i 25— 1) ]) for A\p = C’ng/2 and by the Markov inequality, we

have
> ar/ 4)

—_

(iiil) 7' - P ( max
1<i<N

ZGT) = o(1),

W
S
—

1<i<N

> aT) = o0(1), and (iii3) max

'ﬂl—l

(iii2) T - ( max

1<i<N

rT
*
E Bios—1

P | max
1<i<N

N rT
< ZP<ZBz2s 1 >aT/4) <2Zexp( T4aT+>\TZE[ 1,25 1)2})
=1 s=1 s=1

=< exp(—cT“+InN)=0(T"") for any ¢ >0 and € > 0,

_ 2
where the last line follows because )\%"/T = (ﬁ) /T = 1612 y = =O0BT'"?) =0 (T711%) =

o(1) for € < 0.5 and Arar = 4lT Ty ¢ = ¢TI In addition, as in the proof of (iil), we can show that
by Bradley’s lemma, for sufﬁmently large T,

rT 1/2
‘ Cer
P <1I<Illa<)](v Z (3172371 - BZ725_1) 2 CLT/4> S Z 18 ( ) « (ZT)
s=1 i=1 s=1 4”‘T
C, 1/2
= 36Nrr < faTTT> a(ly) <T L,
T



where L can be chosen arbitrarily large. The rest of the proof follows the corresponding part in
the proof of (iil). m
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