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Abstract

A data buyer faces a decision problem under uncertainty. He can augment his ini-

tial private information with supplemental data from a data seller. His willingness to

pay for supplemental data is determined by the quality of his initial private informa-

tion. The data seller optimally offers a menu of statistical experiments. We establish

the properties that any revenue-maximizing menu of experiments must satisfy. Every

experiment is a non-dispersed stochastic matrix, and every menu contains a fully in-

formative experiment. In the cases of binary states and actions, or binary types, we

provide an explicit construction of the optimal menu of experiments.
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1 Introduction

1.1 Motivation

The mechanisms by which information is traded can shape the creation and the distribution

of surplus in many important markets. Information about individual borrowers guides banks’

lending decisions, information about consumers’ characteristics facilitates targeted online

advertising, and information about a patient’s genome enhances health care delivery. In

all these settings, information buyers (i.e., lenders, advertisers, and health care providers)

have private knowledge relevant to their decision problem at the time of contracting (e.g.,

independent knowledge of a borrower, prior interactions with specific consumers, access

to a patient’s family history). Thus, potential data buyers seek to acquire supplemental

information to improve the quality of their decision making.

In this paper, we develop a framework to analyze the sale of supplemental information.

We consider a data buyer who faces a decision problem under uncertainty. A monopolist

data seller owns a database containing information about a “state”variable that is relevant

to the buyer’s decision. Initially, the data buyer has only partial information about the state.

This information is private to the data buyer and unknown to the data seller. The precision

of the buyer’s private information determines his willingness to pay for any supplemental

information. Thus, from the perspective of the data seller, there are many possible types of

the data buyer. We investigate the revenue-maximizing information policy, i.e., how much

information the data seller should provide and how she should price access to the data.

In order to screen the heterogeneous data buyer types, the seller offers a menu of infor-

mation products. In our context, these products are statistical experiments– signals that

reveal information about the payoff-relevant state. Only the information product itself is

assumed to be contractible. By contrast, payments cannot be made contingent on either the

buyer’s action or the realized state and signal. Consequently, the value of an experiment to

a buyer is determined by the buyer’s private belief and can be computed independently of

the price of the experiment. We can recast the resulting screening problem as a nonlinear

pricing framework wherein the buyer’s type is given by his prior belief. In other words, the

seller’s problem is to design and price different versions of experiments, that is, different

information products from the same underlying database. Because the design of information

can be rephrased in terms of hypothesis testing, the present analysis can also be interpreted

as a pricing model for statistical tests.

A large body of literature studies the problem of versioning information goods, empha-

sizing that digital production allows sellers to easily customize (or degrade) the attributes

of such products (Shapiro and Varian, 1999). This argument applies even more forcefully
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to information products (i.e., statistical experiments). In a nutshell, the data seller’s prob-

lem consists of degrading the quality of the information sold to some buyers in order to

charge higher prices to higher-value buyers. We show that the very nature of information

products enriches the scope of price discrimination. Because information is valuable to the

extent to which it affects decision making, buyers with different beliefs do not simply value

experiments differently: they may even disagree on their ranking. In this sense, the value

of information naturally has both a vertical element (the quality of the information), and a

horizontal element (the position of the information).

We show that the optimal menu contains, in general, both the fully informative experi-

ment and partially informative, “distorted”experiments. The distorted information products

are not simply noisy versions of the same data. Instead, optimality imposes considerable

structure on the distortions in the information provided. In particular, every experiment

offered as part of the optimal menu is non-dispersed, i.e., it contains a signal realization that

rules out one of the states. Moreover, if the buyer’s decision problem is to match his action

with a state, every experiment is concentrated, i.e., it induces the buyer to take the correct

action with probability one, conditional on at least one realized state.

We provide a full characterization of the optimal menu in the case of binary states and

actions. This setting yields sharp insights into the profitability of discriminatory pricing for

selling information. In the binary-state environment, the buyer’s types are one dimensional

and the utilities are piecewise linear with a kink at the belief at which the buyer would switch

his optimal action. If all buyer types are congruent, i.e., they take identical actions without

additional information, an intuition analogous to the “no-haggling” result for monopoly

pricing (Myerson, 1981; Riley and Zeckhauser, 1983) applies: the seller simply offers the

fully informative experiment at a fixed price. In general, however, the seller’s problem

consists of screening types both within and across classes of congruent types.

The beneficial use of partial information can be seen with two types that are ranked

according to their valuation of the fully informative experiment. The “high”type is ex ante

less informed, while the “low” type is ex ante more informed. Suppose that types would

pursue distinct actions in the absence of additional information. A feasible policy for the

seller is to offer the high type the fully informative experiment and the low type a partially

informative experiment that generates one of two signals: with small but positive probability,

the signal informs the low type without noise about the state that he considers less likely ex

ante; with the remaining probability, it sends a second noisy signal. This allows the low type

to improve the quality of his decision making; thus, he would be willing to pay a positive

amount for the experiment. By contrast, the high type would not attach a positive value

to this partial information. After all, he would have chosen the action suggested by the
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noiseless signal under his prior anyway, and given his prior, the noisy signal is too weak to

modify his action.

The optimal menu for two types exploits the horizontal element of information to ex-

tract value from the low type without conceding any rents to the high type. Such profitable

screening by providing partial information is the novel element that distinguishes the pricing

of information from other monopoly problems, such as designing insurance or goods of dif-

ferentiated quality. With a continuum of types, the optimal menu still contains at most two

experiments: one is fully informative, and the other contains two signals, one of which per-

fectly reveals the true state. In particular, the optimal menu involves discriminatory pricing

(i.e., two different experiments are offered) only if “ironing”is required (Myerson, 1981). In-

tuitively, the second experiment intends to serve buyers in one group, while charging higher

prices to the other group.

Our findings have concrete implications for the sale of information. In Section 5, we

illustrate our results in the context of the information being sold by online data brokers,

focusing on a broad class of products (“data appends”) that are used for marketing and

risk-mitigation purposes. We use the language of hypothesis testing and statistical errors to

demonstrate how the design of data products can be informed by the structural properties

of the optimal experiments we identified in our analysis. In particular, we argue that no

experiment in an optimal menu should add unbiased noise to the seller’s information, and

we discuss whether enabling the buyer to access only a portion of the seller’s data is equivalent

to introducing noise.

In Section 6, we take the first step toward more general results. We fully characterize the

menu with two types that face a matching decision problem. In an optimal menu, the high

type purchases the fully informative experiment, while the low type purchases an experiment

that is at least partially informative. This can occur even if the types are congruent. The

latter experiment provides “directional”information about the states the low type perceives

to be relatively more likely and induces him to take the corresponding actions more often.

In this way, the seller optimally reduces the information rents of the less informed type,

possibly to zero, without needing to exclude the more informed type.

1.2 Related Literature

Our paper is part of the body of literature on selling information to imperfectly informed

decision makers. In seminal papers, Admati and Pfleiderer (1986, 1990) analyze the sale

of information to a continuum of ex ante homogeneous agents, all with the same prior

information. After the purchase of supplemental information, the agents trade an asset
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with a common value. They show that it is optimal to provide noisy, idiosyncratic and,

hence, heterogeneous information. This idiosyncratic information guarantees the traders a

local monopoly, which preserves the value of acquiring information even in an informative,

rational-expectations equilibrium. Thus, Admati and Pfleiderer (1986, 1990) explicitly con-

sider interactions among data buyers that we do not pursue here. By contrast, we focus

on ex ante heterogeneous types of a single buyer who value information differently due to

their different prior beliefs. The data seller in our setting offers noisy versions of the data to

screen the buyer’s initial information and to extract more surplus, leading to profound dif-

ferences in the optimal experiments. A second contribution of this paper relative to Admati

and Pfleiderer (1986, 1990) is that we consider all feasible statistical experiments, whereas

they restrict their attention to normally distributed priors and signals. We shall see that the

optimal experiment is outside of the normal class, even if the priors are normally distributed.

In recent work, Babaioff, Kleinberg, and Paes Leme (2012) also analyze the optimal mech-

anisms for selling information. While we consider the same general question, the details of

the model, the contracting environment, and the nature of the results differ substantially.

In their model, the ex post payoff function of the data buyer depends on two state vari-

ables. The seller has private information about one state variable, and the buyer has private

information about the other. Their contracting environment differs from ours in that the

seller is allowed to make the information disclosure and the price dependent on his privately

observed signal. By contrast, we ask the data seller to commit to a selling mechanism before

the realization of any state variable. The central results of their paper are statements of

the revelation principle and algorithms for the optimal mechanism using surplus extraction

arguments, as in Cremer and McLean (1988).

Within the mechanism design literature, our approach is related to, yet conceptually

distinct from, models of discriminatory information disclosure in which the seller of a good

discloses match-value information and sets a price. Several papers, including Lizzeri (1999),

Ottaviani and Prat (2001), Johnson and Myatt (2006), Bergemann and Pesendorfer (2007),

Eső and Szentes (2007a), Krähmer and Strausz (2015), and Li and Shi (2015), analyze this

problem from an ex ante perspective, where the seller commits (simultaneously or sequen-

tially) to a disclosure rule and a pricing policy.1 Eső and Szentes (2007b) consider a related

model of selling advice. Their model is distinct from our analysis in two dimensions. First,

the private information of the agent is the expected value difference between two possible

actions. Thus, the private information is one dimensional rather than multidimensional.

1In addition, a number of more recent papers, including Balestrieri and Izmalkov (2014), Celik (2014),
Koessler and Skreta (2016), and Mylovanov and Tröger (2014), analyze this question from an informed
principal perspective.
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Second, the seller can make the payment contingent on both the statistical experiment and

the buyer’s action. By contrast, our seller can price the information but not the action itself.

Commitment to a disclosure policy is present in the literature on Bayesian persuasion, e.g.,

Rayo and Segal (2010), Kamenica and Gentzkow (2011), and Kolotilin, Li, Mylovanov, and

Zapechelnyuk (2015). In contrast to this line of work, our model admits monetary transfers

and rules out any direct effect of the buyer’s ex post action on the seller’s utility.

Our previous work (Bergemann and Bonatti, 2015) considered the information-acquisition

policy of a data buyer who then decided on the placement of display advertising. This earlier

model was simpler in many respects. First, the price of information was given or determined

by a competitive market. Second, the data buyer did not have any private information.

Third, despite allowing for a continuum of matching values (states) and advertising levels

(actions), the available information structures were restricted to simple queries that perfectly

revealed individual state realizations. The analysis focused on the nature of the buyer’s

optimal queries given the distribution of match values and the cost of advertising.

Hörner and Skrzypacz (2016) share a similar title but consider a very different setting.

They consider a dynamic hold-up game, except that information rather than a physical

object is sold. At the beginning of the game, the buyer has no private information and

wants to hire a competent data seller. The data seller knows whether she is competent

and can prove her competence by sequentially undertaking tests within a fixed subclass of

statistical experiments. Hörner and Skrzypacz (2016) allow for sequential monetary transfers

and characterize an equilibrium that is most favorable to the competent seller.

Finally, our seller’s problem bears some resemblance to a bundling problem. With more

than two states, the buyer types are multidimensional and it is well-known– see, for example,

Pavlov (2011b)– that the single-price result of Myerson (1981) and Riley and Zeckhauser

(1983) does not hold. Indeed, the optimal menu involves stochastic bundling quite generally,

and the structure of the bundles offered can be quite rich.2 Stochastic bundles are analogous

to the partially informative experiments in our model. To further distinguish from these

classic multidimensional problems, stochastic bundling can arise in our setting even when

buyer types are one dimensional.

2For example, see Manelli and Vincent (2006), Pycia (2006), Pavlov (2011a), and Rochet and Thanassoulis
(2015). In particular, Daskalakis, Deckelbaum, and Tzamos (2017) construct an example wherein the types
follow a Beta distribution, and the optimal menu contains a continuum of stochastic allocations.
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2 Model

A single decision maker, the data buyer, faces a decision problem under uncertainty. The

state of nature ω is drawn from a finite set Ω = {ω1, ..., ωi, ...., ωI}. The data buyer chooses
an action a from a finite set A = {a1, ..., aj, ...., aJ}. The ex post utility is denoted by

u (ωi, aj) , uij ∈ R+. (1)

The ex post payoffs can thus be represented by an I × J matrix:

u a1 · · · aJ

ω1 u11 · · · u1J

...
...

...

ωI uI1 · · · uIJ

.

We impose the following weak assumptions on the matrix: (i) I ≤ J , and (ii) uii > uij

for all j 6= i. These two assumptions capture the idea that the action space is at least as

rich as the state space and that for every state ωi, there is a unique action (labeled ai) that

maximizes the decision maker’s utility in that state.

Matching Utility A useful special case is one in which the data buyer faces binary ex

post payoffs in each state, i.e., he seeks to match the state and the action. In that case,

we frequently drop the second subscript for the ex post utility on the diagonal. The utility

function u (ωi, aj) is then given by

u (ωi, aj) , I[i=j] · ui, and ui , uii; (2)

or in matrix form,
u a1 · · · aI

ω1 u1 0
...

. . .

ωI 0 uI

.

This formulation assumes that, in each state, the data buyer assigns the same value (nor-

malized to zero) to each wrong action. This assumption has no bite across states because

adding a state-dependent translation to the utility function does not affect preferences over

actions. Under this assumption, it is without loss of generality to assume that the sets of

actions and states have the same cardinality: |A| = |Ω| = I = J.

7

Page 7 of 62



Prior Information The interim belief θ about the state is the type of the data buyer

θ ∈ Θ , ∆Ω,

where θi denotes the interim probability that type θ assigns to state ωi, with i = 1, ..., I.

The interim beliefs of the data buyer are his private information. From the perspective of

the data seller, these beliefs are distributed according to a distribution

F ∈ ∆Θ,

which we take as a primitive of our model.3

In line with the interpretation of selling supplemental information, however, we note that

the beliefs θ ∈ Θ can be generated from a common prior and privately observed signals.

Thus, suppose there is a common prior µ ∈ ∆Ω. The decision maker privately observes a

signal r ∈ R according to a commonly known experiment

λ : Ω→ ∆R.

The decision maker then forms his interim belief via Bayes’rule

θ (ω | r) , λ (r | ω)µ (ω)∑
ω′∈Ω λ (r | ω′)µ (ω′)

.

The interim beliefs θ (ω | r), simply denoted by θ, are thus the private information of the data
buyer. From the data seller’s perspective, the common prior µ ∈ ∆Ω and the distribution of

signals λ : Ω→ ∆R induce a distribution F ∈ ∆Θ of interim beliefs.

Supplemental Information The data buyer seeks to augment his initial private informa-

tion by obtaining additional information from the data seller in order to improve the quality

of his decision making. A statistical experiment (equivalently, an information structure)

E = (S, π) consists of a set S of signals s and a likelihood function:

π : Ω→ ∆S.

We assume throughout that the realization of the buyer’s private signal r ∈ R and that of

the signal s ∈ S from any experiment E are independent, conditional on the state ω. In

other words, the buyer and the seller draw their information from independent sources.

For a given experiment E = (S, π), let S denote the (finite) set of signals that are in the

3As usual, the model allows for the alternative interpretations of a single buyer and a continuum of buyers.
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support of the experiment and πik the conditional probability of signal sk ∈ S in state ωi.
Letting K , |S|, we have

πik , Pr (sk | ωi) ,

where πik ≥ 0 and
∑K

k=1 πik = 1 for all i. We then obtain the stochastic matrix

E s1 · · · sk · · · sK

ω1 π11 · · · π1k · · · π1K

...
...

...

ωi πi1 πik πiK
...

...
...

ωI πI1 · · · πIk · · · πIK

. (3)

The following experiments are of particular interest:

1. a non-dispersed experiment that contains at least one nil entry πik = 0 for some i, k;

2. a concentrated experiment that contains a standard basis vector πii = 1 for some i;

3. the fully informative experiment E, with πii = 1 for all i.

In non-dispersed experiment, one signal sk allows the decision maker to rule out some

state ωi. In a concentrated experiment, there exists a state ωi that is ruled out by all signals

sk 6= si. The fully informative experiment perfectly reveals the true state.

A menu of experiments M = {E , t} (or an information policy) consists of a collection E
of experiments E and an associated tariff function

t : E → R+.

Our goal is to characterize the revenue-maximizing menu for the seller. The timing of the

game is as follows:

1. the seller posts a menuM;

2. the true state ω and the buyer’s type θ are realized;

3. the buyer chooses an experiment E ∈ E and pays the corresponding price t (E);

4. the buyer observes a signal s from experiment E and chooses an action a.

We emphasize that the data seller is unrestricted in her choice of statistical experiment

(i.e., the seller can improve upon the buyer’s original information with arbitrarily accurate
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signals), and that the marginal cost of providing the information is nil. These assumptions

capture settings in which sellers hold very precise data and distribution costs are negligible.

We deliberately focus on the pure problem of the design and pricing of statistical ex-

periments. We thus assume that the seller commits to a menu of experiments before the

realization of the state ω and the type θ. We further assume that none of the following

are contractible: the buyer’s action a, the realized state ω, or the signal s. Thus, scoring

rules and other belief-elicitation schemes that compare the elicited beliefs with the realiza-

tion of some random variable are not available to the seller. Finally, we consider only static

mechanisms and do not investigate sequential protocols. We expect that the sequential sale

of experiments would allow the data seller to extract additional surplus relative to static

mechanisms, as this would allow the seller to correlate individual payments with the realized

states. However, the nature of the incentive constraints would not be affected (at least in the

last round of communication), and we expect the qualitative results to remain unchanged.

3 Information Design

3.1 Value of Information

We first describe the value of the buyer’s initial information and then determine the incre-

mental value of an experiment E = (S, π). The value of the data buyer’s problem under

prior information only is given by choosing the action aj that maximizes the expected utility

given the interim belief θ:

a (θ) , arg max
aj∈A

{∑I

i=1
θiuij

}
.

The expected utility of type θ is therefore given by

u (θ) , max
aj∈A

{∑I

i=1
θiuij

}
.

By contrast, if the data buyer has access to an experiment E = (S, π), he first observes

the signal realization sk ∈ S, updates his beliefs and then chooses an appropriate action.

The marginal distribution of signals sk from the perspective of type θ is given by

Pr [sk | θ] =
∑I

i=1
θiπik.

Consequently, for any signal sk that occurs with strictly positive probability Pr [sk | θ], the
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action that maximizes the expected utility of type θ is given by

a (sk | θ) , arg max
aj∈A

{∑I

i=1

(
θiπik∑I

i′=1 θi′πi′k

)
uij

}
, (4)

which leads to the following conditional expected utility:

u (sk | θ) , max
aj∈A

{∑I

i=1

(
θiπik∑I

i′=1 θi′πi′k

)
uij

}
. (5)

Integrating over all signal realizations sk and subtracting the value of prior information, the

(net) value of an experiment E for type θ is given by

V (E, θ) , E [u (s | θ)]− u (θ) =
∑K

k=1
max
j

{∑I

i=1
θiπikuij

}
− u (θ) . (6)

In the case of the previously defined matching utility (2), the value of information takes

the simpler form

V (E, θ) =
∑K

k=1
max
i
{θiπikui} −max

i
{θiui} . (7)

The value of the prior information, given by maxi θiui, is generated by the action that has

the highest value-weighted probability of matching the state. The value of an experiment E

is generated by choosing an action on the basis of the posterior belief θiπik induced by each

signal sk. Under matching utility, the value of information is given by the (value-weighted)

incremental probability of choosing the correct action.4

In Figure 1, we illustrate the value of an experiment in a model with three actions

and three states ωi ∈ {ω1, ω2, ω3}. The prior belief of each agent is therefore an element
of the two-dimensional simplex, θ = (θ1, θ2, 1− θ1 − θ2). The utility function is given by

state-action matching with uniform weights, i.e., ui , 1. We display the value of the fully

informative experiment E and of a partially informative experiment E as a function of the

buyer’s prior.5

4The value of information for the data buyer differs from a consumer’s value for multiple goods or bundles
of characteristics. In particular, the first max operator in (6) and (7) corresponds to the optimality condition
for the buyer’s action given the available information. The second max operator reflects the type-dependent
nature of participation constraints. Both elements are missing from the multiproduct monopolist’s problem
(Pavlov, 2011a,b; Daskalakis, Deckelbaum, and Tzamos, 2017).

5The information structure in the right panel is given by the following stochastic matrix:

E s1 s2 s3
ω1 1/2 1/4 1/4
ω2 0 3/4 1/4
ω3 0 1/4 3/4
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Figure 1: Value of Full and Partial Information, I = J = 3

Viewed as a function of the types, the value of an experiment V (E, θ) is piecewise linear

in θ with a finite number of linear components. The linearity of the value function is a

consequence of the Bayesian nature of our problem, where types are prior probabilities of

states. The downward kinks are due to the max operator in the buyer’s reservation utility

u (θ). They correspond to changes in the buyer’s action without supplemental information.

The upward kinks are generated by themax operator in (5) and reflect changes in the buyer’s

preferred action upon observing a signal. Finally, the experiment E is only valuable if at

least two signals lead to different actions. If the buyer chooses a constant action following

every signal sk, then V (E, θ) = 0, as can be seen in formulations (6) and (7), as well as in

Figure 1 (right).

3.2 The Seller’s Problem

The seller’s choice of a profit-maximizing menu of experiments may involve, in principle,

designing one experiment per buyer type. In turn, each experiment entails a type-dependent

mapping from signals into actions. The seller’s problem can, however, be simplified by

reducing the set of menus of experiments to a smaller and very tractable class.

First, by the revelation principle, we can restrict our attention to direct mechanisms

M = {E (θ) , t (θ)} that assign an experiment E (θ) = (S (θ) , π (θ)) and a price t (θ) to each

type θ of data buyer. We denote the indirect (net) utility for the truth-telling agent by

V (θ) , V (E (θ) , θ)− t (θ) .
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The seller’s problem consists of maximizing the expected transfers

max
{E(θ),t(θ)}

∫
θ∈Θ

t (θ) dF (θ) (8)

subject to incentive-compatibility constraints

V (θ) ≥ V (E (θ′) , θ)− t (θ′) , ∀ θ, θ′ ∈ Θ, (9)

and individual-rationality constraints

V (θ) ≥ 0, ∀θ ∈ Θ.

Second, given any direct mechanismM ={E (θ) , t (θ)}, we say that experiment E (θ) is

responsive if every signal s ∈ S (θ) leads type θ to a different optimal choice of action and,

in particular,

a (sk | θ) = ak for all sk ∈ S (θ) . (10)

Importantly, condition (10) is only required for every experiment E (θ) and for the corre-

sponding type θ. In other words, we do not require this condition to hold if signals sk ∈ S (θ)

are evaluated by a different type θ′ 6= θ. Finally, we define an outcome of a menu as the joint

distribution of states, actions, and monetary transfers resulting from every type’s optimal

choice of experiment and subsequent choice of action.

Proposition 1 establishes that it is without loss of generality to restrict attention to re-

sponsive menus– direct revelation mechanisms in which every experiment E (θ) is responsive.

Proposition 1 (Responsive Menus)
The outcome of every menuM can be attained by a responsive menu.

Our proof closely follows the argument of the revelation principle for Bayesian games of

communication established by Myerson (1982). We show that we can always reduce the size

of the signal space to the size of the action space recommended in equilibrium. The intuition

is straightforward. Consider an incentive-compatible menu that contains an experiment

E (θ) with more signals than actions. We can combine all signals in E(θ) that lead to the

same choice of action for type θ. The value of this experiment remains constant for type

θ, who does not modify his behavior. However, because the new experiment is (weakly)

less informative than the experiment we started with, V (E(θ), θ′) decreases (weakly) for all

θ′ 6= θ, relaxing the incentive constraints. Finally, because every signal sent with positive

probability under experiment E (θ) leads type θ to a different action, we can order the signals

such that each sk ∈ S (θ) recommends the corresponding action ak.
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The language of the Bayesian games of communication, as suggested by Myerson (1982),

is helpful for understanding the nature of the seller’s problem more generally. The solution

to the data seller’s problem has to satisfy two different constraints, the truth-telling (or

honesty) constraint given by (9) and the obedience constraint given by (4). Thus, the buyer

must be jointly honest and obedient. In particular, double deviations (lying and disobeying)

must not be profitable for the buyer.

An immediate implication of Proposition 1 is that, without loss of generality, we can

restrict our attention to experiments in which the signal space has the cardinality of the

action space, i.e., K = J . This insight allows us to write the likelihood function of every

experiment (3) as a matrix with the same dimensions as the payoff matrix, i.e.,

E (θ) s1(= a1) · · · si (= aj) · · · sJ (= aJ)

ω1 π11 · · · π1j · · · π1J

...
...

...

ωi πi1 πij πiJ
...

...
...

ωI πI1 · · · πIj · · · πIJ

Thus, we can replace the signal sj with the action recommendation aj. This property

does not require that every action aj is recommended with strictly positive probability. For

instance, some signals sj may never be sent, corresponding to a column vector of zeros at

the j-th position. The resulting value of experiment E (θ) for type θ can be written as

V (E (θ) , θ) =
∑J

j=1

∑I

i=1
θiπijuij −max

j

{∑I

i=1
θiuij

}
. (11)

Under the restriction to responsive experiments, formulation (11) removes the first max op-

erator from the value of experiment E (θ) for the truth-telling type θ. Because a misreporting

type need not always take the recommended action, we must still use the original formulation

(6) when computing the value of experiment E (θ) for type θ′.

When payoffs are given by state-action matching as in (2), the value of experiment E (θ)

for the truth-telling type θ simplifies to

V (E (θ) , θ) =
∑I

i=1
θiπiiui −max

i
{θiui} . (12)

In formulation (12), the value of experiment E (θ) for type θ is fully determined by its diag-

onal entries πii. By contrast, the off-diagonal entries πij may enter the value of experiment

E (θ) for different types θ′, as in (7).
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3.3 Structural Properties

We now leverage the nature of the value of information to impose additional structure on

the experiments that are part of an optimal menu.

Proposition 2 (Optimal Experiments)

1. The fully informative experiment E is part of an optimal menu.

2. Every experiment in any optimal menu is non-dispersed, i.e., πij = 0 for some i 6= j.

3. In the matching case, every experiment in any optimal menu is concentrated, i.e.,

πii = 1 for some i.

The first part of this result can be established via contradiction. Every type θ values

the fully informative experiment E the most among all the experiments. Suppose, then,

that E is not part of the menu, and denote the most expensive item currently on the menu

by E ′. The seller can replace experiment E ′ with the complete experiment E, keeping all

other prices constant and charging a higher price for E than for E ′. The new menu weakly

increases the seller’s revenue without lowering the net utility of any buyer type.6

The second and third parts imply that every optimal experiment eliminates the buyer’s

uncertainty along some dimension. They are also established by an improvement argument.

Fix an experiment E and suppose all entries πij are strictly positive. In each state (row) i,

the seller increases the probability πii of the signal si that yields the highest payoff uii for an

obedient type in that state. Concurrently, the seller reduces the probability πij of the signal

sj that yields the lowest payoffminj uij for an obedient type. The seller shifts a probability

mass inversely proportional to the difference in payoffs uii − uij, and hence, the resulting

payoff gain is uniform across states ωi. This procedure is applied until the first entry πij
reaches 0. Because the beliefs of each type θ sum to one, this shift is valued uniformly by all

obedient types and weakly less by any other type. A commensurate increase in the price of

the experiment offsets the value of the additional information provided and, hence, strictly

increases profits while (weakly) relaxing the truth-telling and participation constraints.

Thus, with arbitrary payoffs, every experiment E contains a signal sj that allows the

buyer to rule out some state ωi. The limits of this result are related to the possibility

of double deviations evoked earlier. A misreporting type θ′ may not necessarily choose

the action recommended by every signal in the experiment E (θ) intended for type θ. For

6The fully informative experiment is part of every optimal menu if all types assing positive probability
to all states. It need not be part of every optimal menu if some types assign zero probability to some states.
In that case, an optimal menu may contain a partially informative experiment that, combined with some
type’s prior, fully reveals all states that have positive probability, and so remains fully informative in this
weaker sense.
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the above improvement argument to discourage double deviations, it is critical that the

probability mass is shifted away from the worst action in each state ωi, thus yielding the

largest possible marginal benefit (maxj uij − minj uij) for every obedient type in state ωi.

Any other shift may yield a strictly higher benefit to type θ′ than to type θ and lead to the

violation of the truth-telling constraints.

In the case of matching utility, the seller can shift the probability mass to the diagonal

from any off-diagonal entry until the first entry πii reaches 1. Indeed, when the probability

is shifted to the diagonal, any type that does not follow the signal’s recommendation obtains

a strictly lower benefit relative to an obedient type. As a result, any optimal experiment

is concentrated, i.e., there exists at least one state ωi under which signal si is sent with

probability one, and the buyer takes the correct action ai. Conversely, the buyer is able to

rule out (at least) one state ωi after observing any signal sk 6= si.

In Sections 4 and 6, we show that with binary states and actions or binary types, re-

spectively, it is suffi cient to consider truth-telling and obedience separately. By contrast,

Example 3 in the Supplemental Appendix demonstrates that with three (or more) actions

and types, double deviations typically impose additional restrictions on the optimal menu.

4 Optimal Menu with Binary Actions

In this section, we consider an environment with two actions a ∈ {a1, a2} and two states
ω ∈ {ω1, ω2}. In this setting, the restriction to matching utility functions entails no loss
of generality relative to a general payoff matrix. To wit, for every state ωi, we can always

subtract the (state-dependent) constant uij with i 6= j. This linear transformation normalizes

the payoffs of the data buyer by setting u12 = u21 = 0 without affecting the optimality

conditions of the data buyer’s decision problem.

We thus obtain a diagonal payoff matrix as in (2) with positive entries given by

u1 , u11, u2 , u22.

With binary states, the interim belief of the data buyer (his type) is one dimensional. We

identify each type with the interim probability of state ω1:

θ , Pr [ω = ω1] ∈ [0, 1] .
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We denote the interim belief type θ that is indifferent between action a1 and a2 by θ
∗ as

θ∗u1 = (1− θ∗)u2 ⇔ θ∗ =
u2

u1 + u2

. (13)

4.1 Binary Experiments

With binary actions, Proposition 1 implies that it is suffi cient to consider for every type θ

experiments E (θ) that generate (at most) two signals:

E (θ) s1 s2

ω1 π11 (θ) 1− π11(θ)

ω2 1− π22(θ) π22(θ)

. (14)

With binary signals, we can simplify the notation by dropping the second subscript for

diagonal entries, as we did for the payoff function:

π1 (θ) , π11 (θ) , π2 (θ) , π22 (θ) .

Without loss of generality, we assume that π1(θ) + π2(θ) ≥ 1. In other words, signal s1 is

relatively more likely to occur than signal s2 under state ω1 than under state ω2, or

π1 (θ)

1− π1 (θ)
≥ 1− π2 (θ)

π2 (θ)
.

With binary states and actions, the general payoff environment conforms to the matching

utility environment. We can therefore write the value for an arbitrary experimentE as follows

by modifying expression (12):

V (E, θ) = max {θπ1u1 + (1− θ) π2u2 −max{θu1, (1− θ)u2}, 0} . (15)

As in the earlier formulation (12), the diagonal entries of the matrix π (θ) generate the

probability that experiment E (θ) allows type θ to match the realized state with his action.

Conversely, the first max operator accounts for the possibility that a misreporting type θ′

does not follow the recommendation implicit in one of the signals of E (θ) and, hence, derives

no value from the supplemental information.

In Figure 2, we illustrate how the value of information changes as a function of the type

θ for the case u1 = u2 = 1. We compare two experiments with binary signals, namely, the

fully informative experiment E ′ = (π′1, π
′
2) = (1, 1) and a partially informative experiment

E ′′ = (π′′1, π
′′
2) = (1/2, 1).
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Figure 2: Value of Full and Partial Information (I = J = 2, u1 = u2 = 1)

The value of information as a function of the buyer’s interim beliefs θ reflects many

intuitive properties that we formally establish in the next subsection:

1. The most valuable type for the seller is the ex ante least informed. In the examples in

Figure 2, this is type θ∗ = 1/2. Conversely, the most informed types θ ∈ {0, 1} have
zero value of information. The linear decline in each direction away from θ∗ follows

from the linearity of the value of information in the interim probability.

2. When we consider any asymmetric experiment, such as the one displayed in the right

panel of Figure 2, the distance from the least informed type |θ − θ∗| is not a suffi cient
statistic for the value of information. The different slopes on each side of θ∗ indi-

cate different marginal benefits for matching state ω1 versus state ω2 on the basis of

differences in the interim beliefs θ.

Thus, even in an environment where types are clearly one dimensional, information prod-

ucts are inherently multidimensional (in this case, two dimensional). In particular, infor-

mation always has both vertical (quality) and horizontal (positioning) dimensions. Unlike

in models of nonlinear pricing (with respect to either quantity or quality) where all the

types agree on the relative ranking of all the products, in the current environment, the types

disagree on the very ranking of all partially informative experiments.

4.2 Binary Types

We derive the optimal menu with two data buyer types, θ ∈ Θ =
{
θL, θH

}
. The high (value)

type θH assigns a higher value to receiving the fully informative experiment, i.e.,

V
(
E, θH

)
> V

(
E, θL

)
. (16)
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With uniform weights u1 = u2 > 0, this simply means the high (value) type is less well-

informed ex ante, i.e., ∣∣θH − 1/2
∣∣ ≤ ∣∣θL − 1/2

∣∣ .
We refer to the distance between the interim belief θ and the indifference belief θ∗ as the

precision of the type θ. We denote the frequency of a high type as

γ , Pr(θ = θH).

The following distinction proves helpful. The interim beliefs of the two types are said to

be congruent if both types would choose the same action without additional information. If

we adopt the convention that the high type chooses action a1 under his prior information

(i.e., θH > θ∗), then beliefs (and corresponding types) are congruent if θ∗ < θH < θL and

noncongruent if θL < θ∗ < θH .

We first establish two familiar properties: “no distortion at the top,” i.e., for the high

type and “no rent at the bottom,”i.e., for the low type.

Proposition 3 (Binding Constraints)
In an optimal menu:

1. type θH purchases the fully informative experiment E;

2. the participation constraint of type θL binds;

3. the incentive-compatibility constraint of type θH binds.

We note that these properties of the two-type environment hold for any number of states

and actions under arbitrary payoffs, and we shall revisit them in Section 6. The description

of the optimal menu is then completed by characterizing the experiment E(θL) purchased

by the low type. Here, it is productive to distinguish between congruent and noncongruent

beliefs.

Congruent Beliefs. In the case of congruent beliefs
(
θ∗ < θH < θL

)
, the argument is

related to the classic monopoly pricing problem. By Proposition 2, we know that the optimal

experiment E(θL) is concentrated. With congruent beliefs, both types would choose action a1

absent any additional information. The data seller does not want to reduce the information

relative to the outside option and, thus, sets π1(θL) = 1. The issue is then how much

information to provide about state ω2, i.e.,

E(θL) s1 s2

ω1 1 0

ω2 1− π2(θL) π2(θL)

.
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Now, any partially informative experiment with π2(θL) ∈ (0, 1) geared towards the low

type is also valuable to the high type. Using the expression for the value of information

given by (15), we can write the incentive constraint for the high type as follows:

θHu1 +
(
1− θH

)
u2 − t(θH) ≥ θHu1 +

(
1− θH

)
π2(θL)u2 − t(θL),

since π1(θH) = π2(θH) = 1 and π1(θL) = 1. The incentive constraint for the high type thus

reduces to: (
1− θH

)︸ ︷︷ ︸
Pr(ω2)

·
(
1− π2(θL)

)︸ ︷︷ ︸ ·u2

additional precision

≥ t(θH)− t(θL). (17)

Hence, we observe that both the objective and the constraints in the seller’s problem are

linear in the choice variable π2. We can therefore appeal to the no-haggling result of Riley

and Zeckhauser (1983) that establishes the optimality of an extremal policy. Such a policy

consists of either allocating the object (here, the information) with probability one or not

allocating it at all, hence, π2 ∈ {0, 1}. As in the single-good monopolist’s problem, the
optimal policy depends on the distribution of buyer types. In particular, the low type

receives the fully informative experiment if and only if the probability γ of the high type is

suffi ciently small, or

(
1− θL

)
u2 ≥ γ

(
1− θH

)
u2 ⇐⇒ γ ≤ 1− θL

1− θH
.

Noncongruent Beliefs. In the case of noncongruent beliefs
(
θL < θ∗ < θH

)
, both the

argument and the result are distinct from those of the classic monopoly problem. In the

absence of additional information, the two types choose different actions. The seller can

then provide information in a format that has positive value to one type but zero value

to the other type. For example, suppose that π2(θL) = 1 and π1(θL) is chosen such that

after receiving signal s2, the high type θ
H is indifferent between actions a1 and a2 (i.e., his

posterior belief is θ∗):

θH (1− π′1)u1 =
(
1− θH

)
u2 ⇐⇒ π′1 =

u1θ
H − u2

(
1− θH

)
u1θ

H
∈ (0, 1) . (18)

Because type θH chooses action a1 without additional information, the experiment

E ′ s1 s2

ω1 π′1 1− π′1
ω2 0 1

(19)
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does not lead to a strict improvement in the decision making (or utility) of the high type

θH . By contrast, the low type θL assigns a positive value to experiment E ′. After all, signal

s1 would lead him to match his action to state ω1, which he would never achieve without

additional information. Thus, the seller can offer partial information to the low type without

incurring any implicit cost in terms of surplus extraction vis-à-vis the high type.7

The argument in support of a partially informative experiment is illustrated for the case

u1 = u2 = 1 in Figure 3, which depicts the value of two experiments net of the price as a

function of the buyer’s type θ ∈ [0, 1]. In this example, we set θL = 1/5 < 1/2 < 7/10 = θH .

Figure 3: Suboptimal Menu: (π1, π2) ∈ {(1, 1), (4/7, 1)}

The net value of the fully informative experiment E is depicted by the solid line at a price

t(θH) = 1− θH that leaves the type θH indifferent between buying and not buying the fully
informative experiment. The dashed line depicts the partial information experiment given by

π′1, as described by (18). The associated partially informative experiment E
′ leaves the low

type θL indifferent between buying and not buying. As for the high type θH , this experiment

offers zero value at a positive price, leaving his incentive constraint slack. Correspondingly,

for the high type, the net value of the partially informative experiment E ′ is strictly below

the net value of the fully informative experiment.

As the incentive-compatibility constraints are slack given this specific menu of experi-

ments for both types, the seller can offer a more informative experiment E ′′ to the low type

θL while still satisfying the incentive constraint for the high type θH . As the partially infor-

mative experiment E ′′ has a positive price tailored to type θL, i.e., t(θL) = θLπ′′1u1, the high

type can be made indifferent between experiments E and E ′′ by making sure that incentive

7Discriminatory menus that do not shut down the low-value type are optimal in nonlinear screening
models, such as the monopolistic insurance market studied in Stiglitz (1977). The novel element of selling
information to buyers with noncongruent priors is that the seller can more easily extract (possibly all) the
information rents.
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constraint (17) is binding:

θH︸︷︷︸
Pr(ω1)

· (1− π′′1)︸ ︷︷ ︸ ·u1

additional precision

=
(
1− θH

)
u2︸ ︷︷ ︸

t(θH)

− θLπ′′1u1︸ ︷︷ ︸
t(θL)

⇐⇒ π′′1 =
u1θ

H − u2

(
1− θH

)
u1

(
θH − θL

) . (20)

The experiment E ′′ characterized in (20) is as informative as possible while satisfying the high

type’s incentive compatibility constraint and both participation constraints with equality.

Experiments E and E ′′ are illustrated in Figure 4, again for the case u1 = u2 = 1.

Figure 4: Optimal Menu: (π1, π2) ∈ {(1, 1), (4/5, 1)}

This example highlights the horizontal aspect of selling information that increases the

scope of screening: the high type θH buys the perfectly informative experiment; the low

type θL buys a partially informative experiment; and the seller extracts the entire surplus

(which, however, falls short of the socially effi cient surplus). The relative frequency of each

buyer type determines the shape of the optimal menu. In particular, the partially informative

experimentE ′′ is replaced by the fully informative experiment when there is a high proportion

of low types, i.e., when γ < θL/θH for all payoffs (u1, u2).

We have thus shown the following results for the fully binary model.

Proposition 4 (Partial Information)

1. With congruent priors, the low type receives either zero or complete information.

2. With noncongruent priors, the low type receives either partial or complete information.

With congruent priors, both types receive complete information if they are suffi ciently

similar or if the low type is relatively frequent. With noncongruent priors, the optimal

menu offers the fully informative experiment to both types if they are suffi ciently similar in

their prior information, or if the low type is suffi ciently frequent. Offering two experiments
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becomes optimal if the two types are suffi ciently different in their level of informativeness.

Importantly, the low type always receives some information in that case and is not excluded.8

Furthermore, the high type receives positive rents only if he is pooled with the low type.

Otherwise, the seller extracts the entire surplus that is generated.

We now examine the comparative statics of the optimal menu. Because the high type

buys the fully informative experiment E and the low type’s experiment is concentrated with

π2 = 1, the optimal experiment E(θL) can be described by its first diagonal entry π1.

Proposition 5 (Comparative Statics)
The informativeness π1 of the optimal experiment E(θL) is

1. decreasing in the probability γ of the high type;

2. decreasing in the precision of the low type’s prior belief
∣∣θL − θ∗∣∣;

3. increasing in the precision of the high type’s prior belief
∣∣θH − θ∗∣∣ when priors are

congruent or the menu is discriminatory.

Thus, even though the shape of the optimal menu depends on whether types have con-

gruent or noncongruent priors, the comparative statics of the optimal experiment are robust

across the different scenarios. The rent extraction vs. effi ciency trade-off is resolved at the

expense of the low type as (i) the fraction of high types increases, or (ii) the low type’s

willingness to pay for the complete experiment decreases.

Finally, as the high type’s willingness to pay for information decreases (his prior becomes

more precise), the optimal menu may switch from offering full to partial information to the

low type. This occurs because separating the two types becomes profitable whenever the

gap in their prior beliefs is suffi ciently wide. Once partial information is offered, however,

the optimal distortions decrease with the precision of the high type. This accounts for the

qualifying statement in Proposition 5.3.

4.3 Continuum of Types

We now complete the analysis of the binary-action environment. We denote the interim

belief of the data buyer by θ , Pr (ω = ω1) and consider a continuum of types θ ∈ [0, 1] on

the unit interval, with a distribution F (θ) and associated density f (θ). We shall show that

8In Section 6, we establish a stronger result: with many actions and states, there always exists a distri-
bution γ such that partial information is provided to the low type unless the two types agree on both the
most likely state and the relative likelihood of any other two states. In the binary-state model, the latter
condition is vacuously satisfied. However, with more than two states, the latter condition fails generically.
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many qualitative properties of the two-type case– including the cardinality of the optimal

menu– hold in this setting.

Recall the value of information was described in (15):

V (E, θ) = max {θπ1u1 + (1− θ) π2u2 −max{θu1, (1− θ)u2}, 0} .

We can rewrite the value of information as

V (E, θ) = max {θ (π1u1 − π2u2) + π2u2 −max{θu1, (1− θ)u2}, 0} ,

and we capture the value of experiment E for type θ via a one-dimensional variable

q(θ) , π1(θ)u1 − π2(θ)u2 ∈ [−u2, u1] ,

which describes the differential informativeness of the experiment. The endpoints of the

interval [−u2, u1] identify two extreme experiments q ∈ {−u2, u1} that are attained when
either one of the two signals occurs with probability one in both states. In either case,

the resulting experiment reveals no information to the data buyer. Conversely, the fully

informative experiment is given by q = u1 − u2. Because Proposition 2 establishes that

either π1 (θ) = 1 or π2 (θ) = 1 (or both) for each type θ, we know that q (θ) > u1−u2 implies

π1 (θ) = 1, and that q (θ) < u1 − u2 implies π2 (θ) = 1. Collecting terms, we can rewrite the

value of an experiment in terms of the one-dimensional variable q as follows:

V (q, θ) = max {θq + u2 + min {u1 − u2 − q, 0} −max{θu1, (1− θ)u2}, 0} . (21)

The value of information in (21) illustrates the main properties of our screening problem:

(i) the buyer has a type-dependent participation constraint; (ii) the ex ante indifferent type

θ∗ has the highest willingness to pay for any experiment q; (iii) the experiment q = u1−u2 is

the most valuable for all types θ; (iv) different types θ rank partially informative experiments

differently; and (v) the utility function V (q, θ) has the single-crossing property in (θ, q).

The single-crossing property indicates that types with a higher θ, those who believe

that state ω1 is more likely, assign a higher value to experiments with a higher q. In turn,

these experiments contain a signal that delivers stronger evidence regarding state ω2, which

they deem less likely ex ante. As in the binary-type case, the vertical dimension (quality

of the information) and the horizontal dimension (position of the information) cannot be

chosen separately by the seller. In particular, it is not possible to change the differential

informativeness of the experiment (i.e., to choose a very high or a very low q) without
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reducing its overall informativeness.

We know from Proposition 1 that we can focus on responsive menus. In the case of

binary actions, an experiment is responsive if and only if the value of following both signals’

recommendations is non-negative. Therefore, equation (21) implies that experiment q (θ)

offered to type θ is responsive if and only if

q (θ) ∈ Q (θ) ,
{ [
−u2,

u1
1−θ − u2

]
for θ ≤ θ∗,[

u1 − u2
θ
, u1

]
for θ ≥ θ∗.

(22)

In other words, the restriction q (θ) ∈ Q (θ) allows us to eliminate the first max operator

from (21) when computing the value V (q (θ) , θ). We thus obtain a characterization of

implementable and responsive menus of experiments.

Lemma 1 (Implementable and Responsive Menus)
A menu {q (θ)}θ∈Θ is implementable and responsive if and only if

q (θ) ∈ [−u2, u1] is non-decreasing (23)

and ∫ 1

0

q (θ) dθ = u1 − u2. (24)

To obtain some intuition for constraint (24), observe that the interior type θ∗ assigns the

highest value to any experiment q, and that the utility function V (q, θ) has a downward kink

at θ = θ∗. In order to compute the buyer’s rent function V , we apply the envelope theorem

to the two intervals on [0, θ∗] and [θ∗, 1] separately. Because information has zero value for

types θ ∈ {0, 1}, we know that V (0) = V (1) = 0. We thus obtain two (potentially different)

expressions for V (θ∗). Finally, the buyer’s gross value of an experiment (21) is jointly

continuous in (q, θ), and hence, the rent function V is continuous by the MaximumTheorem.9

Incentive compatibility then imposes the following restriction on responsive allocations:

V (θ∗) =

θ∗∫
0

Vθ(q, θ)dθ = −
1∫

θ∗

Vθ(q, θ)dθ.

Computing the buyer’s marginal rent from (21) and using the definition of θ∗ to simplify

(??) yields the integral condition in the Lemma.10 Notably, condition (22) does not appear

9Intuitively, if the rent function had a downward jump at θ∗, some nearby type θ∗+ ε could purchase the
experiment intended for type θ∗ − ε. This yields a payoff that is arbitrarily close to V (θ∗ − ε), and hence,
gives θ∗ + ε an incentive to misreport his type.
10Our environment with type-dependent participation constraints is an instance of the “high convexity”
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in the statement of Lemma 1 because it is implied by the monotonicity condition (23) and

by the integral constraint (24).

With this result in place, the transfer t (θ) associated with every experiment q(θ) can

be computed from the envelope formula on the [0, θ∗] and [θ∗, 1] separately. Using integral

constraint (24) to simplify further, the seller’s problem can be written as

max
q(·)

∫ 1

0

[(θf (θ) + F (θ)) q (θ) + min {(u1 − u2 − q (θ)) f (θ) , 0}] dθ, (25)

subject to constraints (23) and (24).

Observe that the seller’s objective (25) is piecewise linear (and concave) in the experiment

q (θ). Thus, absent the integral constraint, the optimal experiments take values at the kinks,

i.e., q∗(θ) ∈ {−u2, u1 − u2, u1} for all θ. This corresponds to a menu containing the fully
informative experiment only. While such a menu is, in fact, optimal under some conditions,

the seller can sometimes do better by offering (at most) one additional experiment.

Proposition 6 (Cardinality of the Optimal Menu)
An optimal menu consists of at most two experiments.

To establish this property of optimal menus, we reduce the seller’s problem (25) to a linear

program with equality and non-negativity constraints. An application of the Fundamental

Theorem of Linear Programming (e.g., Theorem 8.4 in Chvatal (1983)) implies that the

solution is an increasing step function with at most three jumps.11 Because it is optimal

to set q (0) = −u2 and q (1) = u1, this means that the optimal menu contains at most two

informative experiments q ∈ (−u2, u1). When offered, the second experiment contains a

signal that perfectly reveals one state. However, the linearity of the environment prevents

the seller from offering more than one distorted experiment, i.e., no further versioning is

optimal. We formalize this intuition in the following subsection.

4.4 Single-Item vs. Discriminatory Pricing

To obtain further insights into the properties of the optimal menu, we refine our approach to

the seller’s problem. We combine Lagrange methods, as in the type-dependent participation

case in Jullien (2000). As such, the integral condition for implementability (24) differs from budget, capacity,
or enforceability constraints because the distribution F (θ) does not appear in the integrand. A similar
condition, for different reasons and with different implications, appears as a persuasion budget constraint in
Kolotilin, Li, Mylovanov, and Zapechelnyuk (2015).
11This result is related to linear mechanism-design problems with budget constraints, such as Samuelson

(1984), Brusco and Hopenhayn (2007), and Fuchs and Skrzypacz (2015). In our setting, the reduction to a
linear program is obtained through a change of variable from q (θ) to its increments, and by imposing the
additional constraint that some type θ∗ ∈ (0, 1) purchases the fully informative experiment.
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constraints model of Jullien (2000), with the ironing procedure developed by Toikka (2011)

extending that in Myerson (1981). This approach allows us to overcome two diffi culties posed

by our problem: (i) integral constraint (24) and objective (25) have generically different

weights, dθ and dF (θ); hence, (ii) the problem is non-separable in the type θ and the

experiment q (θ), which interact in two different terms. In particular, the “virtual values”

φ (θ, q)– defined as the partial derivative of the integrand in (25) with respect to q– are a

non-constant function of the experiment.

We derive the solution to the seller’s problem by maximizing the virtual values. Because

the integrand in objective (25) is piecewise linear in q, its partial derivative φ(θ, q) takes on

only two values. We then define the following two functions

φ−(θ) , θf (θ) + F (θ) ,

φ+ (θ) , (θ − 1)f (θ) + F (θ)

that describe the virtual value φ(θ, q) for q < u1 − u2 and q ≥ u1 − u2, respectively. Heuris-

tically, the two virtual values represent the marginal benefit to the seller of increasing each

type’s experiment q from −u2 to u1 − u2 and from u1 − u2 to u1. If ironing à la Myerson is

required, we denote the ironed virtual values as φ̄− (θ) and φ̄+
(θ).

Finally, we say that a menu satisfies the pooling property if it is constant on any interval

where the relevant (ironed) virtual value is constant.

Proposition 7 (Optimal Menu)
The menu {q∗ (θ)}θ∈Θ is optimal if and only if the following conditions hold:

1. there exists λ∗ > 0 such that, for all θ,

q∗(θ) = arg max
q∈[−u2,u1]

[
φ̄
−

(θ) min {q, u1 − u2}+ φ̄
+

(θ) max {0, q − (u1 − u2)} − λ∗q
]

;

2. {q∗ (θ)}θ∈Θ has the pooling property and satisfies integral constraint (24).

We now illustrate the optimal menu under flat and discriminatory pricing separately.

Corollary 1 (Single-Item Menu)
The optimal menu contains a single item whenever any of the following hold:

1. almost all types have congruent priors, i.e., F (θ∗) ∈ {0, 1};

2. the monopoly price for experiment E is equal on [0, θ∗] and [θ∗, 1];

3. both virtual values φ−(θ) and φ+(θ) are strictly increasing.
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To grasp the intuition behind these results, consider a relaxed problem where the seller

contracts separately with two groups of buyers, θ < θ∗ and θ ≥ θ∗. Part (1) essentially

addresses this case. Because of the linearity of the problem, the optimal mechanism is a

cutoff mechanism: the seller offers only the fully informative experiment to each group, at

generically different prices. Part (2) states that, if the cutoff types in the two subproblems

have the same willingness to pay, then those cutoffs also solve the unrestricted problem. For

instance, when u1 = u2, any distribution that is symmetric around θ = 1/2 satisfies this

condition. Part (3) identifies regularity conditions on the distribution of types that rule out,

for example, most bimodal distributions. Under these conditions, the seller prefers to offer

the fully informative experiment to all buyers at an intermediate price.

We note that only condition (3) can be stated independently of the matching values

(u1, u2). For example, an optimal menu contains a single item whenever the values are

uniformly distributed, irrespective of the payoffs. Figure 5 describes the optimal menu for the

case of constant match values, u1 = u2 = 1, and uniformly distributed types. Because both

virtual values are strictly increasing, they cross the threshold level λ∗ only once. Thus, the

optimal menu is a step function q (θ) ∈ {−1, 0, 1} assigning the fully informative experiment
q = 0 to types θ ∈ [1/4, 3/4] at a price t = 1/4, and no information to all other types.

Figure 5: Optimal Allocation with Uniform Distribution

If the conditions of Corollary 1 fail, however, the seller may choose to offer a second

(distorted) experiment to one group in order to maintain a high price for the fully informative

experiment. Furthermore, Corollary 1.3 implies that the seller offers a second experiment

only if the distribution of types requires ironing of the virtual values. When types correspond

to interim beliefs, it is natural to consider bimodal densities that fail the strong regularity

conditions and, therefore, introduce the need for ironing. This is the case, for example, if most

buyers are well informed ex ante (with most types close to 0 or 1). In other words, ironing is

not a technical curiosity in our case but rather a technique that becomes unavoidable because

of the properties of the information environment. Figure 6 (left) illustrates the ironed virtual
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values for a bimodal probability density function (drawn on a different scale).12 Figure 6

(right) illustrates the resulting optimal menu, again for the case u1 = u2.

Figure 6: Probability Density Function and Optimal Allocation

As in the optimal menu in the binary-type setting, the partially informative experiment

q ≈ −0.21 contains one signal that perfectly reveals state ω1. This experiment is relatively

unattractive for higher types, and it allows the monopolist to increase the price for the large

mass of types located around θ ≈ 0.7. Note that the ex ante least informed type θ∗ need not

purchase the fully informative experiment, despite having the highest value of information

and obtaining the highest rent V (θ∗). Indeed, the type that is indifferent between the two

experiments in Figure 6 is θ ≈ 0.55. From the seller’s perspective, incentivizing type θ = 1/2

to purchase the fully informative experiment would require further distortions (and, hence,

a lower price) for the second experiment. This leads to a loss of revenue from the types

around θ ≈ 0.2. Because such types are quite frequent, this loss more than offsets the gain

in revenue from the types around θ = 1/2.

Finally, a suffi cient condition for the optimality of two-item menus can be obtained by

continuity with the binary-type case. In that setting, when the two types are equally likely,

symmetric about 1/2 and suffi ciently well informed (i.e., θH > 2/3), the optimal menu is

discriminatory for all u1 6= u2.

5 Implications for Data Pricing

We discuss how to bring our model’s results to bear on the design of real-world information

products. We focus on offl ine and online brokers of big data– firms such as Acxiom, Nielsen,

and Oracle– that sell information about individual consumers to business customers.
12The distribution in Figure 6 (left) represents a “perturbation”of the two-type example in Section 4.2.

It is a mixture (with equal weights) of two Beta distributions with parameters (8, 30) and (60, 30).
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Data obtained from brokers is typically used to facilitate marketing efforts and to mitigate

risks.13 Information used for marketing purposes is typically sold through data appends and

marketing lists. Data appends reveal supplemental information about a firm’s existing or

potential customers, allowing the firm to place them into more precise market segments.

For instance, all major data brokers offer data management platforms (DMPs)– customized

software that enables websites to track their users and integrate their own data with 3rd-

party data. Most risk-mitigation data products offered by credit rating agencies are also

of this kind. Conversely, marketing lists facilitate targeted advertising to new consumers.

Advertisers can choose whether to acquire standard lists of potential consumers with pre-

specified sets of characteristics, or to customize their list of desired consumer attributes.

Our model of selling supplemental information is best suited to analyzing data appends.14

We therefore describe these information products in greater detail, and we comment on

marketing lists and other data services at the end of this section. For concreteness, consider

the following examples of data appends.

• Oracle ID-Graph tracks firms’customers across several devices, augmenting the data
collected on the firms’websites with behavioral observations from different sources.15

• Email Intelligence by TowerData attaches demographic, income, intent, and purchase
information to a merchant’s own list of email addresses.16

• The credit reporting agency Equifax offers its business customers (e.g., banks and
credit card companies) a risk-mitigation product called Undisclosed Debt Monitoring.

This product tracks an individual borrower to identify new negative information that

arrives between the original loan approval and the closing date.17

Each of these products is available in several versions, which differ mainly in terms of the

number of informative variables the seller discloses to the buyer. For instance, ID-Graph and

Email Intelligence allow buyers to customize their queries to the database (e.g., a consumer’s

age group, income level, interests, and intent). Similarly, the versions of Undisclosed Debt

13Marketing and risk-mitigation products generate 46% and 41% of data brokers’revenues, respectively
(Federal Trade Commission, 2014).
14Many brokers offer both kinds of products. For example, Nielsen Total Audience identifies two

ways of packaging its data: a DMP to “expand, optimize, segment and activate your customer data
across all marketing channels and platforms” and Data as a Service (DaaS) to “find your target audi-
ence segment, or customize your own based on the characteristics that are most important to you.” See
http://www.nielsen.com/us/en/solutions/capabilities/total-audience.html for more details.
15https://www.oracle.com/marketingcloud/products/data-management-platform/id-graph.html
16http://www.towerdata.com/email-intelligence/pricing
17https://www.equifax.com/business/undisclosed-debt-monitoring
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Monitoring differ in terms of the number of potentially negative events (e.g., late payments,

credit inquiries, bankruptcy filings) that are monitored and disclosed.

The most common buyers of data products are marketing and advertising firms, lenders

and financial services firms, and retail companies (Federal Trade Commission, 2014). The

data buyers differ along several dimensions, including their ability to process data and the

richness of their action space.18 Any of these dimensions of heterogeneity can lead to inter-

esting sorting patterns of buyers into product versions. Here we focus on the differences in

the strength of the buyers’priors, i.e., in the availability of initial information.

Our main structural results (Propositions 1 and 2) derive the properties of the distribution

of states and signals that are associated with monopolistic screening. In particular, our

results impose restrictions on the support of the conditional distribution of signals in a given

state. In order to leverage these insights to evaluate and inform the design of data appends,

it is useful to rephrase the design of a statistical experiment in terms of hypothesis testing.

Our structural results identify the types of statistical errors incurred by data buyers as a

consequence of market power in the sale of information.19

For the present purpose, consider a data buyer, such as an advertiser or a lender. The

data buyer wishes to test the null hypothesis “target with an ad”or “grant a loan” for a

specific consumer, i.e., to distinguish a null hypothesis H0 from an alternative hypothesis H1.

The data buyer is a Bayesian decision maker with a prior distribution over the hypotheses.

He can take one of two actions, each of which is optimal under the respective hypothesis.

The data seller has a test statistic whose distribution, conditional on the true state

of the world, is given by H0 or H1 as in Figure 7. We assume that H0 and H1 satisfy the

monotone likelihood ratio property. While the data seller could potentially disclose arbitrary

information about the distribution of the test statistic, suppose she chooses to inform the

data buyer if the statistic is above or below a certain threshold. The data buyer then chooses

the corresponding action. We can represent this experiment as a statistical test of the null

hypothesis H0 = {ω2},
E s1 s2

ω1 1− β β

ω2 α 1− α
18For instance, a local bank deciding whether to give a mortgage at the prevailing rate has a coarser action

space than a major credit card company deciding on a new account’s credit limit and interest rate.
19Any data broker enjoys some degree of market power to the extent that its data sources are not perfectly

correlated with those of other brokers or it has a superior ability to process information. Furthermore, it
can be shown that the structural properties of optimal menus (Proposition 2) hold even in an imperfectly
competitive setting with differentiated products (e.g., competition in nonlinear prices among sellers with
partially correlated databases). In that case, non-dispersed and concentrated experiments are the most
profitable instruments through which to provide any given utility level to the data buyer.
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Figure 7: Conditional Distributions of the Test Statistic

where α and β denote the probability of a type I and type II statistical error, respectively.20

Given the information contained in the database of the seller in Figure 7, the set of

feasible statistical tests is described by the area between the blue curve and the red line in

the left panel of Figure 8. The blue curve identifies the loci of the least type I and type II

statistical errors given the data available. As the data seller can always introduce noise into

the test statistic, the set of feasible statistical tests is given by the entire area. In our model,

we assumed that the data seller has complete information, and thus, the boundary is given

by the blues lines in the right panel of Figure 8, which coincide with the α and β axes.21

Figure 8: Feasible Information Structures

The central issue for the data seller is that she does not know the data buyer’s prior

beliefs and, hence, the buyer’s willingness to pay for this information. She must therefore

employ a richer mechanism to screen heterogeneous buyers. In particular, the seller offers

the buyer a menu of binary (“pass/fail”) tests. Each test reports the outcome “pass”when

20A type I error leads the decision maker to reject the null hypothesis even though it is true. By contrast,
a type II error leads the decision maker to accept the null hypothesis even though it is false.
21Because distributions H0 and H1 satisfy the monotone likelihood ratio property, the feasibility frontier

is spanned by threshold tests. As the informativeness of the statistic increases, the feasible set expands and
approaches our unrestricted setting.
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the test statistic is below a particular threshold. Each test yields a different combination of

type I and type II errors (α, β).

Our main structural result (Proposition 2) identifies systematic patterns in the optimal

design of partially informative statistical tests. With binary states and actions, and no

constraints on (α, β), the seller induces some buyers to make either type I or type II errors,

but not both. The logic underlying this result extends to the case of a partially informed

seller: an identical argument establishes the stronger result that all optimal tests lie on

the lower boundary of the feasible set in Figure 8 (left). Separation in the optimal menu

is then supported by the differences in the error structure of each test and by the buyers’

heterogeneous preferences over statistical errors.

A concrete implication of the optimality of non-dispersed experiments is that no product

in an optimal menu should add unbiased noise to the seller’s information. Adding idio-

syncratic noise can be useful when multiple buyers compete in a downstream market, as

in Admati and Pfleiderer (1986), or when it is important to preserve the anonymity of the

data, as in the differential privacy literature (Dwork, 2008). In the absence of these con-

cerns, our results suggest that this practice reduces the seller’s revenues. Instead, optimal

experiments should minimize the type-II error for any level of type-I error (as in Figure 8).

For example, if the data buyer faces a binary advertising decision, the optimal menu should

lead to excessively broad or to excessively narrow campaigns, i.e., advertising to a subset

of high-value consumers but not to low-value consumers, or to all high-value and to some

low-value consumers.

Interestingly, in practice, none of the data products described earlier appear to introduce

noise into the data. For example, credit rating agencies do not offer both precise and noisy

versions of the same information (e.g., computing a consumer’s credit score on the basis of

more or less detailed data). Instead, information is degraded by revealing only a portion

of the available data to the buyer. We now discuss how omitting explanatory variables can

be seen as implementing our optimal mechanism under specific conditions on the buyer’s

decision problem and on the seller’s data.

Consider the following stylized description of the above-mentioned Equifax product Undis-

closed Debt Monitoring. A credit rating agency collects K binary characteristics xk ∈ {0, 1}
for each potential borrower. Each realization xk = 1 corresponds to a “red flag”on the bor-

rower’s record. Suppose, for simplicity, that the data buyer’s (the lender’s) payoff-relevant

state is ω = 1
[
ΣK
k=1xk = 0

]
, i.e., it is optimal to grant a loan if and only if there are no

red flags. The data seller knows the borrower’s vector of characteristics (x1, . . . , xK), while

the data buyer privately knows the (identical) probability distribution of each binary char-

acteristic xk. In this case, hiding the realized value of any characteristic xk induces the data
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buyer to grant a loan to an unqualified borrower with positive probability, but no qualified

borrower is ever turned down.

In this example, the data buyer incurs only one type of statistical error. Thus, omitting

variables can be part of an optimal design if subsets of the seller’s data contain conclusive

evidence against at least one state. In other settings, withholding data may introduce full-

support noise into the experiment. This is the case any time a hidden variable could have

overturned the signals based on the revealed data and changed the buyer’s action in any

direction. For example, it is not diffi cult to construct examples in which a broker (e.g.,

Oracle or Nielsen) provides demographic, income and interest information about consumers,

but using demographic and income data as proxies for interest leads the data buyer to incur

both types of statistical errors.

Data brokers offer several other information products in addition to data appends. For

instance, marketing lists are queries to a broker’s database of individual consumer records.

Such queries allow advertisers to identify potential customers with a set of desired character-

istics.22 Thus, a marketing list can be viewed as a statistical experiment where each signal

indicates (possibly with error) a pre-specified consumer segment. From a modeling stand-

point, however, selling a list is very different from appending data to the buyer’s existing

information. In particular, when selling a list, the seller is able to charge a price contin-

gent on the signal realization.23 Marketing lists can also be sold contextually to advertising

space. This occurs when a data provider (e.g., Bluekai) partners with a publisher of space

(Doubleclick) and charges the advertiser a price per impression in addition to the cost of the

advertising space. Thus the price of the data augments the cost of the ads. In other words,

the buyer’s advertising decision is contractible.24

6 Optimal Menu with Many Actions

We now extend the analysis of the optimal menu to environments with many actions and

many states. In order to make progress in this richer environment, we restrict our attention

to the case of binary types and matching payoffs defined in (2). We then provide a suitable

generalization of the optimal menu derived in Section 4. We continue to define the low

22For example, the online invitation website Evite sells lists of attendees of events at specific locations;
the share-buttons provider AddThis sells lists of internet users’tastes for news; and Mailways sells lists of
physical mailing addresses at the mail carrier route level (Anderson and Simester, 2013).
23Babaioff, Kleinberg, and Paes Leme (2012) provide further insight into the role of realization-contingent

pricing. In our model, contracting on signal realization leads to the first-best profits for the seller.
24In our setting, contracting on the buyer’s action leads to the first-best profits when the payoffof matching

state and action is constant, though the same is not true in more general environments. Data provider-
publisher partnerships can be analyzed more comprehensively in the setting of Eső and Szentes (2007b).

34

Page 34 of 62



and the high type θ ∈
{
θL, θH

}
such that the high type values the completely informative

experiment more than the low type, as in (16).

The construction of the optimal menu now proceeds differently than in Section 4. We first

solve a relaxed problem wherein we require the high type θH to take action ai upon observing

signal si even when buying the experiment destined for the low type θ
L. We then show that

the solution to the relaxed problem– which disregards the obedience constraints– indeed

satisfies the original constraints; hence, it also solves the full problem. In other words, we

first guess and then verify that the optimal mechanism is obedient on and off the equilibrium

path. In Example 3, we show that this relaxed approach fails to deliver a valid solution with

more than two types. Thus, a different approach is required if we want to consider problems

with arbitrary cardinality in both the action/state space and the type space.

In the relaxed problem, we replace the high type’s incentive-compatibility constraint

V (θH) ≥ V
(
E(θL), θH

)
− t(θL) =

∑I

j=1
max
i

{
θHi uiπij(θ

L)
}
−max

i

{
θHi ui

}
− t(θL),

with the weaker constraint

V (θH) ≥
∑I

i=1
θHi uiπii(θ

L)−max
i

{
θHi ui

}
− t(θL). (26)

The relaxed version of the constraint drops the max operator and simply asks type θH to

accept the recommendation ai implicit in signal si.

Proposition 3 established that both the low type’s participation constraint and the high

type’s incentive constraint bind. This reduces the seller’s problem to choosing the diagonal

entries of the low-value type’s experiment πii(θ
L) ∈ [0, 1] . Substituting t(θL) = V (E(θL), θL)

in the right-hand side of (26) above, the seller maximizes

(1− γ)
(∑I

i=1
θLi uiπii(θ

L)−max
i
θLi ui

)
︸ ︷︷ ︸

t(θL)=V (E(θL),θL)

+ γ
(∑I

i=1
θHi ui −max

i
θHi ui − V (θH)

)
︸ ︷︷ ︸

t(θH)=V (E,θH)−V (θH)

(27)

subject to the high type’s participation constraint

V (θH) =
∑I

i=1
(θHi − θLi )uiπii(θ

L)−max
i

{
θHi ui

}
+ max

i

{
θLi ui

}
≥ 0. (28)

The relaxation of the incentive constraints– fixing a mapping from signals to actions for

both types and experiments– turns the seller’s problem into a linear program.

Intuitively, the seller’s choice of a partially informative experiment E(θL) is guided by

the disagreement in the beliefs over states of the two types. The seller is most willing to
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introduce noise into signals about states that the low type considers relatively less likely

than the high type. The resulting distortions in the decisions facilitate screening without

sacrificing too much of the surplus. To formalize this intuition, we re-order the states ωj by

the likelihood ratios of the two types’beliefs. In particular, let

θL1
θH1
≤ · · · ≤ θLi

θHi
≤ · · · ≤ θLI

θHI
. (29)

A basic application of the Lagrange multiplier method yields the following characterization

result, which generalizes the optimal experiment in Section 4.2.

Proposition 8 (Optimal Menu with Two Types)
There exists a critical state i∗ < I such that an optimal experiment E(θL) has πii = 0 for all

i < i∗ and πii = 1 for all i > i∗.

Because, without loss of generality, the low type chooses action ai when observing signal

si, a nil diagonal entry πii = 0 means signal si is never sent by experiment E(θL). Unlike in

the binary action case, the partially informative experiment E(θL) may thus contain fewer

signals than the available actions, as the seller drops some signals to reduce the information

rent of the high type. Furthermore, Proposition 8 implies that the optimal experiment E(θL)

has a lower triangular shape, with at most one strictly interior diagonal entry πi∗i∗ ∈ (0, 1):

E(θL) s1 · · · si∗ · · · sI

ω1 0 · · · 0 π1i∗ · · · π1I

...
...

...

ωi∗
...

... πi∗i∗ · · · πi∗I

0 1 0
...

...
. . .

ωI 0 · · · 0 0 0 1

. (30)

In other words, the seller chooses a subset of “targeted”states i ∈ {i∗, ..., I} in which the
buyer takes the correct action with positive probability. Conversely, when a “residual”state

i ∈ {1, ..., i∗ − 1} is realized, the buyer never takes the correct action. Residual states are
used to degrade the information revealed about the targeted states. The seller chooses how

to partition states based on two factors: the two types’ relative beliefs; and the relative

frequency of each type.

In order to construct the optimal experiment E(θL), we substitute the expression for the

information rent V (θH) from (28) into the seller’s objective (27). Up to an additive constant,
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the seller’s profits are given by ∑I

i=1
(θLi − γθHi )uiπii(θ

L). (31)

The shape of the optimal experiment then depends on whether the participation constraint

of the high type binds. In particular, if (28) is slack, the seller’s profits (31) are maximized

by assigning only extreme values to the diagonal, πii ∈ {0, 1}. Because the likelihood ratios
θLi /θ

H
i are increasing, we have πii = 1 for all i ≥ is, where

is , min{i : γ ≤ θLi /θ
H
i }. (32)

To determine whether the participation constraint of the high type is satisfied by this

solution, define the following function

R (j) ,
∑I

i=j
(θHi − θLi )ui −max

i

{
θHi ui

}
+ max

i

{
θLi ui

}
.

This expression corresponds to the rent of the high type if the seller drops all signals si (and,

hence, recommended actions ai) with i < j and sets πii = 1 for all i ≥ j. In particular,

R (1) is the difference in the value of full information between the high and the low type. By

construction, it is positive. We further note that R (j) is strictly decreasing in j if θHj > θLj

and increasing otherwise. Furthermore, because of the likelihood ratio order on states i, it

attains its minimum at ic , min{i : 1 ≤ θLi /θ
H
i }, where ic ≥ is. In the proof of Proposition 9,

we show that R (ic) < 0. Therefore, if R (is) ≥ 0, the constraint (28) is slack at the optimum.

Conversely, if R (is) < 0, then the solution to unconstrained problem (31) violates the

high type’s participation constraint. Therefore, constraint (28) must bind at the optimum.

In particular, the seller chooses a state ib and a diagonal entry πibib ∈ [0, 1] to satisfy (28)

with equality when, in addition, πii = 1 for all states i > ib and πii = 0 for all i < ib. By the

properties of R (j), this critical state ib is given by the unique solution to

R (ib) > 0 > R (ib + 1) .

Intuitively, state ib corresponds to the minimum number of signals (and corresponding action

recommendations) that must be eliminated in order to satisfy the high type’s incentive

constraint while extracting all the rent. Proposition 9 establishes that the participation

constraint of the high type binds if and only if ib < is.
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Proposition 9 (Information Rents)

1. The critical state ωi∗ in experiment (30) is given by i∗ = min{is, ib}.

2. If ib ≥ is, then E(θL) has πi∗i∗ = 1 and V (θH) > 0.

3. If ib < is, then E(θL) has πi∗i∗ = πBi∗ and V (θH) = 0.

To grasp the intuition, note that the definition of state ib does not depend on the dis-

tribution of types, while state is is increasing in the fraction of high types γ. The fraction

of high types represents the shadow cost of providing information to the low types. When

this opportunity cost is low, the monopolist prefers to limit distortions and concede rents to

the high type. As γ increases, the informativeness of the low type’s experiment decreases.

For example, if γ < θL1 /θ
H
1 (i.e., is = 1), Proposition 9 implies that both types purchase the

fully informative experiment E, and that the high type obtains positive rents. Conversely, if

γ > θLi /θ
H
i for all i such that θ

L
i /θ

H
i < 1, then is > ib and the high type obtains no rent.

To complete the description of the optimal experiment E(θL), we need to specify the

distribution of signals πij for i ≤ i∗. We construct an off-diagonal assignment procedure that

induces both types to follow the recommendation of every signal. In particular, for every

state i ≤ i∗, we begin with the last signal sI and assign the off-diagonal probabilities πiI
such that the high type is indifferent between actions ai and aI . We then proceed backward

to signal sI−1 preserving indifference and placing the residual probability, if any, on πii∗. We

show that the high type prefers action ai∗ to any action ai with i < i∗. Therefore, the solution

to the relaxed problem satisfies the original constraints. We illustrate the construction of

the optimal experiment and the implications for information rents in Example 1 in the

Supplemental Appendix.

Earlier, we defined any two types θL and θH as congruent if they shared the same optimal

action ai for some i given their interim beliefs:

arg max
ai∈A

{∑J

j=1
θLj uij

}
= arg max

ai∈A

{∑J

j=1
θHj uij

}
= ai. (33)

We now define two types to be strongly congruent if the posterior belief of θL can also

be represented as a convex combination of θH and the vertex of the probability simplex

identifying state ωi, i.e., if (33) holds and there exists λ ∈ [0, 1] such that

θL = λθH + (1− λ) (0, ..., 0, 1, 0, ..., 0) .

In other words, if θL and θH are strongly congruent, then θL lies on a ray that goes through

the vertex (0, ..., 0, 1, 0, ..., 0) and θH . An implication of this geometric condition is that the

types θL and θH have a constant likelihood ratio θLj /θ
H
j = λ across all states ωj 6= ωi.
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With more than two states, discriminatory pricing can now be profitable even if the two

types are congruent, as long as they are not strongly congruent.

Proposition 10 (Partial Information)

1. With strongly congruent priors, type θL receives zero or full information.

2. Without strongly congruent priors, type θL receives zero, partial or full information.

Proposition 10 thus strengthens and generalizes Proposition 4. With more than two

states, the seller can exploit disagreement along any dimension and extract all the surplus

through discriminatory pricing. Example 2 in the Supplemental Appendix illustrates how

congruent, but not strongly congruent beliefs, allow for surplus extraction.

With more than two types (and more than two actions and states), our relaxed approach

is not always valid, i.e., the optimal menu leads different types to choose different actions

in response to the same signal realizations. In particular, type θ need not follow the recom-

mendation of every signal in all experiments E(θ′), for θ 6= θ′. We provide an instance of

this additional issue in Example 3 of the Supplemental Appendix.

7 Conclusion

We have studied a monopolist who sells supplemental information to privately informed

buyers. The resulting screening problem reflects several key properties of information goods

that set it apart from traditional models of price discrimination.

First, the Bayesian nature of the buyers’decision making is fundamental to the seller’s

problem. Differences in the buyers’private beliefs introduce a novel aspect of horizontal

differentiation that widens the seller’s scope for price discrimination.

Second, information is inherently rich and can be modified in many ways. Even one-

dimensional data, such as a consumer’s credit score, can be turned into a rich set of infor-

mation products, as some data buyers may want to identify consumers with excellent scores,

while other data buyers may be concerned with avoiding consumers with very low scores.

Third, ultimately, instrumental information is useful as long as it guides the decision of the

data buyer. Information therefore enters as an input into the buyer’s decision problem. Thus,

buyers with different private beliefs may act differently upon receiving the same supplemental

information. We have shown that the buyer’s ability to adjust his behavior in response to

new information complicates the seller’s screening problem by introducing the possibility

of double deviations. In this respect, selling information is akin to selling multiple inputs
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to heterogeneous buyers who can combine them in different ways, according to a privately

known production technology.

In this paper, we have deliberately relied solely on belief heterogeneity to motivate sales

of supplemental information. In practice, however, buyers of information may differ along

several alternative or additional dimensions, including their cost of choosing specific actions,

their ability to process data, or their preferences for timely information.25 Each of these

extensions can be implemented within the framework we have outlined. Combining different

sources of heterogeneity appears more challenging but promises to yield additional insights.

Finally, we have focused on the packaging or versioning problem of a seller who is free to

acquire and degrade information. Thus, our results represent only a first pass at understand-

ing the trade-offs involved in selling information products. A richer model would distinguish

the fixed cost of acquiring the information (e.g., building a database) from the variable cost

of duplicating, distributing, and potentially degrading the available information.

25For example, the Consumer Sentiment Index (released by Thomson-Reuters and the University of Michi-
gan) screens buyers of time-sensitive data by offering information products that differ only in the timing of
their availability.
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A Appendix

Proof of Proposition 1. Consider any type θ and experiment E = (S, π). Without

loss of generality, let the type choose a single action after each signal.26 Let Sa denote the

set of signals in experiment E that induces type θ to choose action a. Thus, ∪a∈ASa = S.

Construct experiment E ′ = (S ′, π′) as a recommendation for type θ based on experiment E,

with signal space S ′ = {sa}a∈A and

π′ (sa|ω) =

∫
Sa
π (s | ω) ds ω ∈ Ω, a ∈ A.

By construction, E ′ andE induce the same outcome distribution for type θ; hence, V (E ′, θ) =

V (E, θ). Moreover, E ′ is a garbling of E. By Blackwell’s theorem, we have V (E ′, θ′) ≤
V (E, θ′) for all θ′. Therefore, for any incentive-compatible and individually rational direct

mechanism {E (θ) , t (θ)}, we can construct another direct mechanism {E ′ (θ) , t (θ)} whose
experiments lead type θ to take action a after observing signal sa ∈ S ′ (θ) that is also

incentive compatible and individually rational, thus yielding weakly larger profits.

Proof of Proposition 2. (1.) The argument is given in the text.

(2.) Let M = {E (θ) , t (θ)} be an individually rational and incentive-compatible direct
mechanism. Fix an experiment E ∈ M, let πij denote the conditional probability of signal

sj in state ωi, and suppose πij > 0 for all i and j. We argue the seller can improve her

profits by replacing E with a non-dispersed experiment. By Proposition 1, we can restrict

attention to responsive experiments with J signals. Hence, the value of experiment E for

any obedient type θ is given by

Vob (E, θ) =
∑I

i=1
θi
∑J

j=1
πijuij − u (θ) . (34)

For each state ωi, define the worst action aj(i) and the corresponding signal sj(i), where

j (i) ∈ arg minj uij. Now let

εi ,
η

uii − uij(i)
with η , min

i

{(
uii − uij(i)

)
πij(i)

}
,

and construct a new experiment E ′ where π′ii = πii + εi and π′ij(i) = πij(i) − εi for all i.

26Any signal inducing a mixed action could first be split (independently of ω) into subsignals that each
induce one of the pure actions in the support the mixed action. The resulting experiment still satisfies
obedience and truth-telling and induces the same outcome.
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Experiment E ′ is non-dispersed by construction, i.e., πi∗j(i∗) = 0, where

i∗ ∈ arg min
i
{(uii − uij(i))πij(i)}.

We now argue that the seller can improve his profits and relax the incentive constraints.

Using (34), we write the incremental value of experiment E ′ for an obedient type θ as follows:

Vob (E ′, θ)− Vob (E, θ) =
∑I

i=1
θi
(
uii − uij(i)

)
εi =

∑I

i=1
θiη = η.

The seller can therefore increase the price of experiment E by exactly η and leave the net

utility of any truth-telling type θ unchanged.

Now consider any other type θ′ who chooses a different action aj 6= aj(i) after signal sj(i)
from experiment E. The marginal benefit to type θ′ in state ωi from the shift in probability

from πij(i) to πii is given by

uii − uij ≤ uii − uij(i)

by definition of action j (i). Furthermore, if the discrete shift in probabilities causes type θ′

to change his action in response to a given signal, the average benefit of such a shift will be

a convex combination of uii − uij and uii − uij(i). Therefore, the value of experiment E ′ for
type θ′ exceeds the value of E by at most by η.

Finally, suppose the original experiment was intended for type θ, i.e., E = E (θ). The

direct mechanism M′, where E ′ (θ) replaces E (θ) and t (θ) + η replaces t (θ), is individ-

ually rational and incentive compatible. Moreover, experiment E ′ (θ) is non-dispersed by

construction, and all transfers are weakly greater than in the original mechanismM.

(3.) For some utility functions uij, multiple actions can be critical for any given state. The

uniform-improvement procedure can then be applied to an experiment as long as it assigns

positive probabilities to critical actions in every state. As a result, every optimal experiment

will contain one row with a number of zero entries greater than or equal tomini |arg minj uij|.
In the case of matching utility, |arg minj uij| = J−1 for all i; hence, every optimal experiment

is concentrated.

Proof of Proposition 3. (1.) We know from Proposition 2 that at least one type must

buy the fully informative experiment E. Suppose only type θL buys E as part of the optimal

menu. Then the price of E is at most V (E, θL). By incentive compatibility, if the high type

θH purchases E 6= E, it must be that t(θH) < V (E, θL). Therefore, eliminating experiment

E(θH) from the menu strictly improves the seller’s profits, yielding a contradiction.

(2.) The participation constraint of θL must bind. Indeed, some participation constraint

must bind, otherwise the seller could increase both prices. Suppose the constraint of θH is
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binding and that of θL is not. Since θH is served by E, then t(θH) = V
(
E, θH

)
≥ V

(
E, θL

)
.

Hence, we can increase the price t(θL) without violating incentive compatibility.

(3.) The incentive constraint of type θH must bind. Suppose not and then consider two

cases: if the participation constraint of type θH does not bind, we can increase t(θH); if the

participation constraint of type θH does bind, then it must be that E(θL) is not equal to E.

Since payoffs are continuous in πij we can increase both the informativeness of E(θL) and

the price t(θL).

Proof of Proposition 4. (1.) Recall the definition θ∗ = u2/(u1 + u2), and consider the

case of congruent priors θL > θH > θ∗. It follows from Proposition 9 that an optimal menu

contains only the fully informative experiment E. The value of experiment E is given by

(1− θH)u2 and (1− θL)u2 for the high type and the low type, respectively. The profits from

selling to one or both types are given by γ
(
1− θH

)
u2 and (1− θL)u2, respectively. Thus, it

is optimal to serve both types if and only if γ ≤ (1− θL)/(1− θH).

(2.) Consider the case of noncongruent priors, θL < θ∗ < θH . Let q , π11u1 − π22u2 and

denote qL = q(θL), qH = q(θH). It follows from Proposition 9 that in an optimal menu,

we have qL ≤ qH = u1 − u2. If γ < θL/θH , we wish to show that flat pricing is optimal,

i.e., qL = qH = u1 − u2 and t1 = t2 = (1 − θL)u1. Fix an incentive-compatible menu(
qH , qL, tH , tL

)
with qL < u1 − u2 and define the following modification:(
qH′, tH′, qL′, tL′

)
=
(
qH , tH − ε

(
θH − θL

)
, qL + ε, tL + εθL

)
. (35)

If qL < u1−u2, modification (35) with ε ∈ (0, u1 − u2 − qL) preserves incentive compatibility.

Furthermore, because γ < θL/θH , this improves profits by at least

εθL(1− γ)− ε
(
θH − θL

)
γ > 0,

which yields a contradiction. Finally, we argue that if γ > θL/θH , then discriminatory

pricing is optimal. First, notice that the individual rationality of the high type must bind,

i.e., qH = u1 − u2 and tH = (1 − θH)u2; otherwise, modification (35) would be profitable

for some ε < 0. Second, qL and tL maximize the payment of the low type, subject to his

individual-rationality constraint and to the high type’s incentive-compatibility constraint.

At the optimum, both constraints bind, and the solution is given by

qL =
θHu1 − (1− θL)u2

θH − θL
, tL =

(
θHu1 − (1− θH)u2

)
θL

θH − θL
.

Substituting the definition of q yields expression (20) in the text.
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Proof of Proposition 5. If priors are noncongruent and the optimal menu is discrimina-

tory, experiment E(θL) has

π̂1 =
u1θ

H − u2

(
1− θH

)
u1

(
θH − θL

) ≤ 1.

The informativeness π1 is increasing in types: ∂π̂1/∂θ
H ≥ 0 and ∂π̂1/∂θ

L ≥ 0. The propo-

sition then follows directly from the optimal menu characterization presented in the text.

(1.) If priors are congruent then π1 = 1 for γ ≤ (1− θL)/(1− θH) and π1 = 0 otherwise. If

priors are noncongruent then π1 = 1 for γ ≤ θL/θH and π1 = π̂1 otherwise.

(2.) If priors are congruent then
∣∣θL − θ∗∣∣ = θL − θ∗. The optimal menu has π1 = 1 if

θL ≤ 1−γ
(
1− θH

)
and π1 = 0 otherwise. If priors are noncongruent then

∣∣θL − θ∗∣∣ = θ∗−θL.
The optimal menu has π1 = 0 if θL < γθH and π1 = π̂1, which is increasing in θ

L, otherwise.

(3.) By the normalization of a high type
∣∣θH − θ∗∣∣ = θH − θ∗. If priors are congruent then

the optimal menu is π1 = 0 for θH < 1 −
(
1− θL

)
/γ and π1 = 1 otherwise. If priors are

noncongruent and the menu is discriminatory, then π1 = π̂1, which is increasing in θ
H .

Proof of Lemma 1. We begin with necessity. Consider a responsive menu {q (θ)}θ∈Θ and

any two types θ2 > θ1 who follow the recommendations of signals in both experiments q1

and q2. We can then rewrite the net utility of experiment q in (21) as

V (q, θ) = θq + u2 + min {u1 − u2 − q, 0} −max{θu1, (1− θ)u2}. (36)

Because the menu is implementable, the incentive-compatibility constraints imply

V (q1, θ1)− t1 ≥ V (q2, θ1)− t2,
V (q2, θ2)− t2 ≥ V (q1, θ2)− t1,

V (q2, θ2)− V (q1, θ2) ≥ t2 − t1 ≥ V (q2, θ1)− V (q1, θ1) .

The strict single-crossing property of V (q, θ) in (36) implies q2 ≥ q1; hence, q (θ) is increasing.

Because the buyer’s rent is differentiable with respect to θ on [0, θ∗] and [θ∗, 1] respectively,

we can compute the function V (θ) on these two intervals separately. By inspection of (36),

the rent is increasing on the former interval and decreasing on the latter. Furthermore,

because the utility function V (q, θ) is continuous in θ, the rent function V is continuous by

the Maximum Theorem. We thus obtain the expression in the text:

V (θ∗) = V (0) +

∫ θ∗

0

Vθ (q, θ) dθ = V (1)−
∫ 1

θ∗
Vθ (q, θ) dθ.
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By the envelope theorem, Vθ (q, θ) = q + u2 for θ < θ∗, and Vθ (q, θ) = q − u1 for θ > θ∗.

Finally, because V (0) = V (1), we can simplify the equation above and obtain∫ 1

0

q (θ) dθ = u1 − u2.

We now turn to suffi ciency. Suppose the menu {q (θ)}θ∈Θ is increasing and satisfies the

integral constraint (24). Then, construct the following transfers:

t (θ) =

{
θq (θ) + u2 + min {u1 − u2 − q (θ) , 0} −

∫ θ
0

(q (x) + u2) dx− (1− θ)u2 if θ < θ∗,

θq (θ) + u2 + min {u1 − u2 − q (θ) , 0}+
∫ 1

θ
(q (x)− u1) dx− θu1 if θ ≥ θ∗.

(37)

Because the menu satisfies the integral constraint, we have∫ θ

0

q (x) dx = u1 − u2 −
∫ 1

θ

q (x) dx,

and we can express all transfers t (θ) in (37) as

t (θ) = θq (θ) + min {u1 − u2 − q (θ) , 0} −
∫ θ

0

q (x) dx. (38)

Under these transfers, the expected utility of type θ from reporting type θ′ is given by

V (q (θ′) , θ)− t (θ′) = (θ − θ′) q (θ′) +

∫ θ′

0

q (x) dx+ u2 −max{θu1, (1− θ)u2}.

Because q is monotone, the expression on the right-hand side is maximized at θ′ = θ, and

hence, the incentive constraints are satisfied. Because the rent V (θ) , V (q (θ) , θ)− t (θ) is

non-negative for all θ ∈ [0, 1], the participation constraints are also satisfied.

Finally, note that the integral constraint (24) and the monotonicity condition imply

the responsiveness condition (22). The set Q (θ) of responsive experiments is described

in Figure 9 below. Suppose to the contrary, that q (θ) 6∈ Q (θ) and, in particular, that

q (θ) = q̂ < u1 − u2/θ for some θ > θ∗. Then, by monotonicity, we would have∫ 1

0

q (x) dx ≤ q̂θ + u1 (1− θ) < u1 − u2,

which yields a contradiction.
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Figure 9: Bounds on Responsive Experiments Q(θ)

Proof of Proposition 6. The Fundamental Theorem of Linear Programming applies to

settings with b ∈ Rm and c ∈ Rn, with m < n. Let A be an m× n matrix with the m rows

being linearly independent. If the linear problem

max
x∈Rn

c · x

s.t. Ax = b and x ≥ 0

has a solution, then it has a solution with all but m entries being zero.

In this form, the Fundamental Theorem cannot be directly applied to the monopolist’s

problem (25): in this problem, (i) the number of choice variables is a continuum; (ii) the

objective function is nonlinear; and (iii) monotonicity constraints are absent in the canon-

ical representation of the theorem. To address (i), we discretize the state space into a fine

grid with a radius ε, [0, ε, 2ε, . . . , 1]. To address (ii), we recall from Proposition 2 that

an optimal menu contains the fully informative experiment. Hence, for any optimal menu

{q (θ)}θ∈Θ, there is some type θ
I such that q

(
θI
)

= u1 − u2. Consequently, any optimal

q must solve the problem with the additional constraint q
(
θI
)

= u1 − u2 for an appropri-

ately chosen θI . Because the menu is monotone, the objective can be written linearly with

min {u1 − u2 − q (θ) , 0} = 0 for all θ < θI and min {u1 − u2 − q (θ) , 0} = u1 − u2 − q (θ)

for all θ > θI . Finally, to address (iii), we change variables from q (θ) to its increment

q̂ (θ) , q (θ) − q (θ − ε), where q̂ (0) , 0. Finally, we substitute q (θ) = −u2 +
∑θ

x=0 q̂ (x)

and rewrite the monotonicity constraint as q̂ (θ) ≥ 0.
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The monopolist’s problem (25) can be restated as

max
q̂(θ)

∑1

θ=0
q̂ (θ)

(∑1

x=θ
(xf (x) + F (x))−

∑1

x=θI
f (x)

)
s.t.

∑θI

θ=0
q̂ (θ) = u1,∑1

θ=θI
q̂ (θ) = u2,∑1

θ=0

(
−u2 +

∑θ

x=0
q̂ (x)

)
= u1 − u2,

q̂ (θ) ≥ 0.

This is a canonical linear programming problem with three linearly independent equality

constraints. The first two correspond to the total change from the experiment q (0) = −u2

to the fully informative experiment q
(
θI
)

= u1 − u2 to q (1) = u1. The last equality is

integral constraint (24). Hence, by the Fundamental Theorem, for any θI there is an optimal

menu of experiments with at most three positive entries. Since q (1) = u1 corresponds to

an uninformative experiment, this implies there are at most two informative experiments in

any optimal menu.

Finally, consider an arbitrary discrete distribution that converges in distribution to a

continuous distribution. The profits converge for any fixed menu, and hence, optimal profits

converge as well. Furthermore, the set of profits that can be achieved by two-item menus is

compact. Therefore, there exists an optimal menu with continuous types that has at most

two items.

Proof of Proposition 7. We first derive the seller’s objective in the usual way. Using

(38) to write the expected transfers and integrating by parts, we obtain∫ 1

0

t (θ) dF (θ) =

∫ 1

0

(
θq (θ) + min {u1 − u2 − q (θ) , 0} − 1− F (θ)

f (θ)
q (θ)

)
dF (θ) .

Using the integral constraint, we obtain (up to an additive constant)∫ 1

0

t (θ) dF (θ) =

∫ 1

0

[(θf (θ) + F (θ)) q (θ) + min {u1 − u2 − q (θ) , 0} f (θ)]dθ.

We now establish that the solution to the seller’s problem (25) can be characterized

through Lagrangian methods. For necessity, note that the objective is concave in the ex-

periment; the set of non-decreasing functions is convex, and the integral constraint can be
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weakened to the real-valued inequality constraint∫ 1

0

q(θ)dθ ≤ u1 − u2. (39)

Necessity of the Lagrangian then follows from Theorem 8.3.1 in Luenberger (1969). Suffi -

ciency follows from Theorem 8.4.1 in Luenberger (1969). In particular, any solution maxi-

mizer of the Lagrangian q(θ) with ∫ 1

0

q(θ)dθ = q̄

maximizes the original objective subject to the inequality constraint∫ 1

0

q(θ)dθ ≤ q̄.

Thus, any solution to the Lagrangian that satisfies the constraint solves the original problem.

Because the Lagrangian approach is valid, we apply the results of Toikka (2011) to solve

the seller’s problem for a given value of the multiplier λ on the integral constraint. Write

the Lagrangian as∫ 1

0

[(θf (θ) + F (θ)) q (θ) + min {u1 − u2 − q (θ) , 0} f (θ) + λ (u1 − u2 − q (θ))] dθ.

In order to maximize the Lagrangian subject to the monotonicity constraint, consider the

generalized virtual surplus

Φ(θ, q) :=

∫ q

−u2

(
φ̄ (θ, x)− λ∗

)
dx,

where φ̄ (θ, x) denotes the ironed virtual value for experiment x. (Up to a constant, Φ(θ, q)

is a general formulation of the virtual value in the statement of the proposition.) Note that

the virtual surplus Φ(θ, q) is weakly concave in q. Because the multiplier λ shifts all virtual

values by a constant, the result in Proposition 7 follows from Theorem 4.4 in Toikka (2011).

Finally, note that the optimal value of λ∗ is strictly positive. If not, the pointwise maximizer

of φ̄ (θ, q) would be weakly above u1− u2 and strictly so for some θ, leading to a violation of

the integral constraint. Therefore, the inequality constraint (39) must bind.

Proof of Proposition 9. We know from Proposition 3 that the high type θH purchases

the fully informative experiment. We now derive the optimal experiment E(θL). Suppose

(as we later verify) that both types θH and θL choose action ai after observing signal si from
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experiment E(θL). The seller’s relaxed problem can be written as

max
0≤πii≤1, V (θH)

(1− γ)
∑I

i=1
θLi uiπii − γV (θH),

s.t. V (θH) ≥
∑I

i=1
πiiui

(
θHi − θLi

)
−max

i
θHi ui + max

i
θLi ui ≥ 0.

where the latter inequality ensures that the high type θH achieves a non-negative payoff

when misreporting his type and following every signal’s recommendation.

We now simplify the problem as follows. By Proposition 3, the incentive-compatibility

constraint of type θH binds and the relaxed problem can be rewritten as

max
0≤πii≤1

∑I

i=1
πiiui(θ

L
i − γθHi ), (40)

s.t.
∑I

i=1
πiiui(θ

H
i − θLi )−max

i

{
θHi ui

}
+ max

i

{
θLi ui

}
≥ 0. (41)

Now, arrange the states such that

θL1
θH1
≤ · · · ≤ θLI

θHI
,

and consider the function R (i) defined in the text

R (j) ,
∑I

i=j
ui(θ

H
i − θLi )−max

i

{
θHi ui

}
+ max

i

{
θLi ui

}
.

The function R (j) is decreasing in j for j < ic and increasing in j for j > ic, where

ic , min
{
i : 1 ≤ θLi /θ

H
i

}
. (42)

We now show thatminj R (j) = R (ic) < 0. This is immediate ifmaxi
{
θHi ui

}
≥ maxi

{
θLi ui

}
,

as we have
∑I

i=ic
ui(θ

H
i −θLi ) < 0 by construction. Conversely, ifmaxi

{
θHi ui

}
< maxi

{
θLi ui

}
,

then we let iL , arg maxi
{
θLi ui

}
, and we derive the following bound:

R (ic) ≤ R (iL) ≤
∑I

i=iL
ui(θ

H
i − θLi )− θHiLuiL + θLiLuiL =

∑I

i=iL+1
ui(θ

H
i − θLi ) < 0

where the latter inequality follows from the fact that maxi
{
θHi ui

}
< maxi

{
θLi ui

}
implies

θLiL > θHiL , which means iL ≥ ic.

We now turn to the solution to the seller’s problem. Notice that (40)-(41) is a linear

problem that attains a monotone solution. In particular, any solution must be a monotone

sequence: πii = 0 for i < ı̂ and πii = 1 for i > ı̂, for some ı̂ ∈ {1, . . . , I}. (This structure can
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be seen immediately from the Lagrange multiplier method, as the solution must maximize

some linear combination of the objective function and the constraint.)

Suppose that the constraint does not bind at the optimum. Then, the solution assigns

πii = 1 if and only if i ≥ is , min
{
i : γ ≤ θLi /θ

H
i

}
. Note that is ≤ ic, which was defined in

(42). Therefore, if R (is) ≥ 0 the constraint is satisfied at the unconstrained optimum. If,

instead, we have R (is) < 0, then by the definition of the critical state ib,

R (ib) > 0 > R (ib + 1) ,

we have ib < is. In this case, the solution is given by πii = 0 for i < ib, πii = 1 for i > ib and

by setting πibib to satisfy (41) with equality, i.e.,

πibib =

∑I
j=ib+1(θLj − θHj )uj −maxj θ

L
j uj + maxj θ

H
j uj

(θHib − θ
L
ib

)uib
. (43)

Combining these two arguments, we conclude that the optimal cutoff state ı̂ is given by

i∗ = min {ib, is} and that πi∗i∗ ∈ {πibib , 1} depending on whether ib ≶ is.

To complete the menu, we now need to specify the off-diagonal entries πij to ensure both

types θH and θL choose action ai when observing signal si. This requires

πiiθiui ≥ πjiθjuj

for both types and for all j < i, because the signal matrix can be taken to be lower triangular.

In particular, we need to ensure that, for all j < i∗,

πi∗i∗ui∗θ
H
i∗ ≥ πji∗ujθ

H
j ,

πi∗i∗ui∗θ
L
i∗ ≥ πji∗ujθ

L
j .

Because θLj /θ
H
j ≤ θLi /θ

H
i for j < i, it suffi ces to satisfy the constraint of type θH .

We proceed as follows. Fix an alternative action aj with j < i∗. For any i > i∗, we make

type θH indifferent between following the recommendation of signal i and choosing action aj;

we do so beginning with πjI and proceeding backward as long as required. If this procedure

assigns positive weight to πji∗ , then it must be that

πji∗ = 1−
∑I

i=i∗+1

θHi ui

θHj uj
. (44)

We argue that type θH has strict incentives to follow the recommendation of signal i∗ when
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πi∗i∗ = πBi∗. (A fortiori, type θ
H has strict incentives to choose action ai following any signal

si with i ≥ i∗ if πii = 1.) Recall the definition

πi∗i∗θ
H
i∗ui∗ =

∑I
i=i∗+1 ui(θ

L
i − θHi )−maxi θ

L
i ui + maxi θ

H
i ui

θHi∗ − θLi∗
θHi∗ .

Let iL = arg maxi θ
L
i ui and iH = arg maxi θ

H
i ui, and consider the following two cases.

(1.) If iL > i∗, then we know that∑I

i=i∗+1
θLi ui > max

i
θLi ui,

and we bound πi∗i∗θ
H
i∗ui∗ by

πi∗i∗θ
H
i∗ui∗ >

θHi∗

θHi∗ − θLi∗
(
θHj uj − ΣI

i=i∗+1θ
H
i ui
)
> θHj uj − ΣI

i=i∗+1θ
H
i ui = πji∗θ

H
j uj.

(2.) If iL ≤ i∗, then from (43) and (44), we know that the difference πi∗i∗θ
H
i∗ui∗−πji∗θHj uj

is proportional to

∑I

i=i∗+1
ui(θ

L
i − θHi )−max

i
θLi ui + max

i
θHi ui −

(
1− θLi∗

θHi∗

)(
θHj uj − ΣI

i=i∗+1θ
H
i ui
)

=
∑I

i=i∗+1
ui

(
θLi −

θLi∗

θHi∗
θHi

)
−max

i
θLi ui + max

i
θHi ui −

(
1− θLi∗

θHi∗

)
θHj uj.

Notice that every term in the sum is positive because the likelihood ratio is increasing in i.

The remaining terms can be written as

−max
i
θLi ui + max

i
θHi ui −

(
1− θLi∗

θHi∗

)
θHj uj = −

θLiL
θHiL

θHiLuiL + θHiHuiH −
(

1− θLi∗

θHi∗

)
θHj uj

≥ θHiHuiH

(
1−

θLiL
θHiL

)
−
(

1− θLi∗

θHi∗

)
θHj uj.

Here, the likelihood ratios are ranked (because iL ≤ i∗ in this case), and θHiHuiH ≥ θHj uj by

the definition of iH .
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B Supplemental (Online) Appendix

B.1 Many Actions and States

We illustrate the construction of the optimal experiment as determined by Proposition 8 and

the implications for information rents in the following example.

Example 1 (Noncongruent Types) Consider uniform match values (ui = 1 for all i =

1, 2, 3) and two types, θL = (1/10, 1/10, 8/10) and θH = (4/10, 3/10, 3/10). These types

are noncongruent: without additional information, θH would choose action a1 and θ
L would

choose a3. The likelihood ratios θ
L
i /θ

H
i are (1/4, 1/3, 8/3). This implies ib = 2, whereas

is ∈ {1, 2} depending on the prior probability γ of the high type. For γ ∈ [0, 1/4] and

γ ∈ [1/4, 1/3], Proposition 9.2 applies, and the high type obtains positive rents. Furthermore,

for γ ≥ 1/4, the partially informative experiment E(θL) involves dropping signal s1. The

optimal experiment E(θL) as a function of γ is given by

E(θL) s1 s2 s3

ω1 1 0 0

ω2 0 1 0

ω3 0 0 1

if γ < 1/4,

E(θL) s1 s2 s3

ω1 0 1/4 3/4

ω2 0 1 0

ω3 0 0 1

if γ ∈ [1/4, 1/3] ,

E(θL) s1 s2 s3

ω1 0 1/4 3/4

ω2 0 1/2 1/2

ω3 0 0 1

if γ > 1/3.

Example 2 illustrates how congruent, but not strongly congruent beliefs, allow for surplus

extraction. In the example, the two types deem state ω2 the most likely. Thus the types are

congruent but not strongly congruent, as they disagree on the relative likelihood of states

ω1 and ω3.

Example 2 (Congruent Priors) Consider uniform match values (ui = 1 for all i =

1, 2, 3) and two types, θL = (5/10, 1/10, 4/10) and θH = (4/10, 3/10, 3/10). Because ib = 1,

the optimal experiment E(θL) as a function of γ is given by

E(θL) s1 s2 s3

ω1 1 0 0

ω2 0 1 0

ω3 0 0 1

if γ ≤ 1/3,

E(θL) s1 s2 s3

ω1 1 0 0

ω2 0 1/2 1/2

ω3 0 0 1

if γ > 1/3,

and the high type obtains positive rents only if γ < 1/3.
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In Example 3 we illustrate that the relaxed approach is not valid with many types. In

the example below with three types, no experiment E(θ1) can lead both types θ2 and θ3 to

follow the action recommended by every signal. Thus, the profits in the relaxed problem are

strictly greater than those in original problem.

Example 3 (Many Types and Actions) Consider uniform match values (ui = 1 for all

i = 1, 2, 3) and three types, θ1 = (1/6, 1/6, 4/6), θ2 = (1/2, 1/2, 0), and θ3 = (1/2, 0, 1/2),

which are all equally likely. In the relaxed problem, the monopolist sells the fully informative

experiment to types θ2 and θ3. Type θ1 is offered the partially informative experiment

E(θ1) s1 s2 s3

ω1 1/2 0 1/2

ω2 0 1 0

ω3 0 0 1

,

and the seller’s revenues are equal to 5/12. However, if type θ2 purchased experiment E(θ1),

he would choose action a1 when observing signal s3. In the solution to the full problem, which

we can construct by a guess-and-verify approach, the optimal experiment E(θ1) consists of

E(θ1) s1 s2 s3

ω1 1/2 0 1/2

ω2 1/2 1/2 0

ω3 0 0 1

, (45)

which yields revenues of 1/3, i.e., revenues are strictly lower in the relaxed program.

B.2 More Actions than States

We consider a setting with two types, and we relax the assumption of matching state-action

payoffs. In particular, we consider the following example with two types, two states, and

three actions. The data buyer’s payoff is given by

u (ω, a) a1 a2 a3

ω1 1 0 4/5

ω2 0 1 4/5

.

Thus, action ai is the optimal action in state ωi, but action a3 provides a lower bound on

the payoffs that is uniform across states– an insurance action. Let the two types be given

by θL = (1/10, 9/10) and θH = (6/10, 4/10). As the results of Proposition 3 do not rely
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on matching payoffs, we know type θH receives full information, E(θH) = E, his incentive

constraint binds, and the participation constraint of type θL binds.

For the case γ , Pr
(
θ = θH

)
= 3/4, an optimal menu contains the experiment

E(θL) s1 s2 s3

ω1 1/3 2/15 8/15

ω2 0 4/5 1/5

(46)

at a price t(θL) = 1/25 and the experiment E at a price t(θH) = 1/5. The optimal menu is

illustrated in Figure 10.

Figure 10: Optimal Menu

This menu has the following notable properties: (i) the seller extracts all the surplus from

both types; (ii) type θL follows the recommendation of every signal in E(θL); (iii) type θH , if

purchasing experiment E(θL), is indifferent between action a2 and action a3 when observing

signal s2 as well as between a1 and a3 when observing signal s3; and (iv) the optimal profits

are strictly lower than those in the relaxed problem.

Indeed, ignoring the off-path obedience constraints, the optimal menu is discriminatory,

and the seller extracts all the rents by offering the experiment

E(θL) s1 s2

ω1 2/5 3/5

ω2 0 1

(47)

at a price t(θL) = 1/25 and the experiment E at a price t(θH) = 2/5.

In the full problem, the seller cannot turn experiment E(θL) in (46) into the more in-

formative one in (47). If she did, buyer type θH would choose action a3 after deviating
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and observing signal s2.27 In other words, the seller extracts the surplus, but at the cost of

additional distortion– notably, there is no “1”entry in (46).

Interestingly, action a3 may not be induced in an optimal menu yet still restrict the

seller. Indeed, if we modify the above example by setting γ = 2/3, an optimal menu can be

calculated to contain the experiment

E(θL) s1 s2

ω1 5/6 1/6

ω2 0 1

(48)

at a price t(θL) = 1/12 and the experiment E at a price of t(θH) = 11/60 < 1/5 = V
(
θH , E

)
.

As before, type θH is indifferent between a2 and a3 after deviating to E(θL) and observing

s2. Contrary to our earlier examples, the high type makes positive rents despite the seller’s

discriminatory menu offering.

To emphasize, action a3 is not chosen in an optimal menu by either type, yet it looms large

and prevents the seller from extracting the full surplus. In particular, the seller would like to

reduce π11 in order to relax the high type’s incentive constraint and increase tH . However,

by doing so she would induce type θH to choose action a3 after s2. This means that the high

type’s marginal benefit from a probability shift from π11 to π12 is θ
H
1 (−1 + 4/5) = −3/25,

while the corresponding marginal change in price tL is −θL1 = −1/10. Therefore, tH can only

increase at rate 1/50, which is not profitable for the seller when the fraction of high types

is γ = 2/3. If both types were instead required to follow the signals’recommendations, the

high type’s misreporting value would change at rate −θH1 = −3/5, allowing the seller to

increase tH at the profitable rate of 1/2. The kink in the “exchange rate”when the high

type is indifferent among several actions prevents the seller from making the modification.

To reinforce the point, maintain the assumption γ = 2/3 but exclude action a3 from the

set of available actions. The optimal menu is again given by the experiment in (47), which

is now less informative than (48), but allows the seller to extract all the rents.

B.3 Sequential Design

We show that sequential design of experiments can increase the seller’s revenues in our leading

binary-type example. We focus on the simplest instance of a dynamic protocol, whereby the

seller first releases a free informative experiment to the buyer and then, without observing

27Similarly, one can show that type θH must be indifferent after signal s3 in experiment (46). The argument
here is by contradiction: if he strictly preferred action a3, the seller could make the experiment more valuable
for θL without changing its value for θH ; and if he strictly preferred a1, the seller could rearrange all signals
and relax the incentive-compatibility constraint.
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the realized signal, offers a menu of (experiment, price) pairs from which to choose.

Let Ω = {ω1, ω2}, A = {a1, a2}, and assume uniform match values, i.e.,

u (ωi, aj) = I[i=j].

Consider two equally likely types with interim beliefs θL = 1/8 and θH = 1/4,respectively,

where θ , Pr [ω1].

Because the two types are congruent, an optimal static mechanism (Proposition 4) con-

tains only the fully informative experiment. In the current example, the seller is indifferent

between charging prices t = 1/8 and t = 1/4. In either case, the monopoly profits are

π∗static = 1/8.

Consider the following sequential scheme. First, the seller reveals an outcome of the

following experiment E0 at no cost to the buyer

E0 s1 s2

ω1 1 0

ω2 1/3 2/3

After observing signal s2, the buyer is convinced that the state is ω = ω2, which confirms

his prior, and does not buy further information. After realization s1, however, the buyer’s

beliefs are updated to

θL (s1) = 3/10, θH (s1) = 1/2.

At this point, the seller offers the fully informative experiment at a price t̄ = 3/10.

The key observation is that signal s1 under experiment E0 is more likely be realized for

the high type θH = 1/4 than for the low type θL = 1/8. In particular, the signal distribution

is given by

Pr
[
s1 | θL

]
=

5

12
, Pr

[
s1 | θH

]
=

1

2
.

As a consequence, the monopolist’s profit is given by

π∗dyn , t̄
(
γ Pr

[
s1 | θH

]
+ (1− γ) Pr

[
s1 | θL

])
= 11/80.

Thus, the sequential sale outperforms the static sale in this example, i.e.,

π∗dyn = 11/80 > 1/8 = π∗static.

56

Page 56 of 62



Taking a step back, it is clear that the seller would ideally like to condition payments on

the realized states. In this case, she could charge a payment of 1 upon realization of state

ω1, which is the state less likely for either type. Both types would accept such a contract,

and the seller achieves the first-best profits. As we do not allow for the payments to be

made contingent on the realization of the state, a sequential mechanism essential represents

a costly instrument to (partially) circumvent this restriction.

In essence, the proposed sequential scheme charges a constant price t̄ = 3/10 upon

realization of signal s1. Because the signal is correlated with the state under experiment

E0, it occurs more frequently for the higher type, allowing the seller to effectively price

discriminate without ever giving the buyer a choice of experiment.

Finally, note that the seller could do better within the simple class of mechanisms that

initially release a free experiment, followed by a menu.

Intuitively, as the correlation between state and signal s1 becomes more precise (i.e., as

s1 becomes more informative), the seller’s ability to condition payments on states improves.

Ultimately, however, the seller must balance the ability to correlate payments with the

willingness to pay for supplemental information after observing signal s1 (e.g., the signal

cannot be arbitrarily precise).

To formalize the intuition, consider offering free experiments of the following form

E (x) s1 s2

ω1 1 0

ω2 1− x x

.

These experiments lead to posterior beliefs

θL (x) , Pr
[
s1 | θL

]
=

1

8− 7x
,

θH (x) , Pr
[
s1 | θH

]
=

1

4− 3x
.

These beliefs satisfy the condition 1/2 = γ ≥ θL (x) /θH (x) for all x. Therefore, after

releasing experiment E (x) the seller optimally offers the fully informative experiment Ē at

a price

t̄ (x) = min
{
θL (x) , 1− θH (x)

}
.

Finally, a straightforward calculation reveals that the seller’s profits are maximized by choos-

ing x such that θL (x) < 1/2 < θH (x). In particular, it is optimal for the seller to induce
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the two types to have identical willingness to pay for the full information, i.e.,

θL (x∗) = 1− θH (x∗) .

The optimal experiment has

x∗ = 1− 1/
√

21 ≈ 0.781,

which is larger than x = 2/3, as used in the initial example, and yields profits π∗ = (7 +

2
√

21)/112 ≈ 0.144 that exceed 11/80, as computed above.
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EsŐ, P., and B. Szentes (2007a): “Optimal information disclosure in auctions and the

handicap auction,”Review of Economic Studies, 74(3), 705—731.

59

Page 59 of 62



(2007b): “The price of advice,”Rand Journal of Economics, 38(4), 863—880.

Federal Trade Commission (2014): Data Brokers: a Call for Transparency and Ac-

countability.

Fuchs, W., and A. Skrzypacz (2015): “Government interventions in a dynamic market

with adverse selection,”Journal of Economic Theory, 158, 371—406.

Hörner, J., and A. Skrzypacz (2016): “Selling information,”Journal of Political Econ-

omy, 124(6), 1515—1562.

Johnson, J. P., and D. P. Myatt (2006): “On the Simple Economics of Advertising,

Marketing, and Product Design,”American Economic Review, 96(3), 756—784.

Jullien, B. (2000): “Participation Constraints in Adverse Selection Models,” Journal of

Economic Theory, 93(1), 1—47.

Kamenica, E., and M. Gentzkow (2011): “Bayesian Persuasion,”American Economic

Review, 101(6), 2590—2615.

Koessler, F., and V. Skreta (2016): “Informed seller with taste heterogeneity,”Journal

of Economic Theory, 165, 456—471.

Kolotilin, A., M. Li, T. Mylovanov, and A. Zapechelnyuk (2015): “Persuasion of

a Privately Informed Receiver,”Discussion paper, University of New South Wales.

Krähmer, D., and R. Strausz (2015): “Ex post information rents in sequential screen-

ing,”Games and Economic Behavior, 90, 257—273.

Li, H., and X. Shi (2015): “Discriminatory Information Disclosure,” Discussion paper,

University of British Columbia and University of Toronto.

Lizzeri, A. (1999): “Information revelation and certification intermediaries,”Rand Journal

of Economics, 30(2), 214—231.

Luenberger, D. G. (1969): Optimization by Vector Space Methods. John Wiley & Sons.

Manelli, A. M., and D. R. Vincent (2006): “Bundling as an optimal selling mechanism

for a multiple-good monopolist,”Journal of Economic Theory, 127(1), 1—35.

Myerson, R. (1981): “Optimal Auction Design,”Mathematics of Operations Research, 6,

58—73.

60

Page 60 of 62



(1982): “Optimal Coordination Mechanism in Generalized Principal-Agent Prob-

lems,”Journal of Mathematical Economics, 10, 67—81.

Mylovanov, T., and T. Tröger (2014): “Mechanism Design by an Informed Principal:

Private Values with Transferable Utility,”Review of Economic Studies, 81(4), 1668—1707.

Ottaviani, M., and A. Prat (2001): “The value of public information in monopoly,”

Econometrica, 69(6), 1673—1683.

Pavlov, G. (2011a): “Optimal Mechanism for Selling Two Goods,” The BE Journal of

Theoretical Economics, 11(1), 1—33.

(2011b): “A Property of Solutions to Linear Monopoly Problems,”The B.E. Journal

of Theoretical Economics, 11(1), 1—16.

Pycia, M. (2006): “Stochastic vs Deterministic Mechanisms in Multidimensional Screen-

ing,”Discussion paper, UCLA.

Rayo, L., and I. Segal (2010): “Optimal Information Disclosure,” Journal of Political

Economy, 118(5), 949—987.

Riley, J., and R. Zeckhauser (1983): “Optimal Selling Strategies: When to Haggle,

When to Hold Firm,”Quarterly Journal of Economics, 98, 267—290.

Rochet, J., and J. Thanassoulis (2015): “Stochastic Bundling,”Discussion paper, Uni-

versity of Zürich.

Samuelson, W. (1984): “Bargaining under Asymmetric Information,” Econometrica,

54(4), 995—1005.

Shapiro, C., and H. R. Varian (1999): Information Rules: A Strategic Guide to the

Network Economy. Harvard Business Press.

Stiglitz, J. E. (1977): “Monopoly, Non-Linear Pricing and Imperfect Information: The

Insurance Market,”Review of Economic Studies, 44(3), 407—430.

Toikka, J. (2011): “Ironing without Control,”Journal of Economic Theory, 146(6), 2510—

2526.

61

Page 61 of 62



Disclosure Statement 
 
 
Dirk Bergemann 
 
I gratefully acknowledge the financial support of the National Science Foundation through grant ICES 
1215808. 
 
 
Alessandro Bonatti 
I disclose that I have not received financial support related to this research. 
 
 
Alex Smolin 
I disclose that I have not received financial support related to this research. 
 

Page 62 of 62


