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Abstract

We present new results on the identifiability of a class of nonseparable
nonparametric simultaneous equations models introduced by Matzkin
(2008). These models combine exclusion restrictions with a requirement
that each structural error enter through a “residual index.” Our iden-
tification results encompass a variety of special cases allowing tradeoffs
between the exogenous variation required of instruments and restric-
tions on the joint density of structural errors. Among these special
cases are results avoiding any density restriction and results allowing
instruments with arbitrarily small support.
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1 Introduction

Economic theory typically produces systems of equations characterizing the
outcomes observable to empirical researchers. The classical supply and de-
mand model is a canonical example, but systems of simultaneous equations
arise in a wide range of economic settings in which multiple agents interact or
a single agent makes multiple interrelated choices. The identifiability of simul-
taneous equations models is therefore an important question for a wide range
of topics in empirical economics. Here we consider nonparametric identifica-
tion in a class of nonseparable simultaneous equations models with a “residual
index” structure introduced by Matzkin (2008). Our results generalize those
obtained previously for this and related models in Matzkin (2008, 2015) and
in Berry and Haile (2011, 2014a). Special cases of our results reveal a variety
of available tradeoffs between requirements on the support of instruments and
restrictions on the joint density of structural errors.

Early work on (parametric) identification treated systems of simultane-
ous equations as a primary focus. Prominent examples include many con-
tributions to Koopmans (1950) and Hood and Koopmans (1953), as well as
Fisher’s (1966) monograph.1 Nonparametric identification, on the other hand,
has remained a significant challenge. Despite substantial recent interest in
identification of nonparametric economic models with endogenous regressors
and nonseparable errors, there remain remarkably few such results for fully
simultaneous systems.

A general representation of a nonparametric simultaneous equations model
(more general than we will allow) is given by

mj(Y, Z, U) = 0 j = 1, . . . , J (1)

where J ≥ 2, Y = (Y1, . . . , YJ) ∈ RJ are the endogenous variables, U =
(U1, . . . , UJ) ∈ RJ are the structural errors, and Z is a set of exogenous con-
ditioning variables. Assuming m is invertible in U ,2 this system of equations
can be written in “residual” form

Uj = ρj(Y, Z) j = 1, . . . , J. (2)

Identification of such models was considered by Brown (1983), Roehrig (1988),
Brown and Matzkin (1998), and Brown and Wegkamp (2002). However, a

1With the title, The Identification Problem in Econometrics, Fisher focused exclusively
on simultaneous models, explaining (p. vii) “Because the simultaneous equation context
is by far the most important one in which the identification problem is encountered, the
treatment is restricted to that context.”

2See, e.g., Palais (1959), Gale and Nikaido (1965), and Berry, Gandhi, and Haile (2013)
for conditions that can be used to show invertibility in different contexts.
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claim made in Brown (1983) and relied upon by the others implied that tradi-
tional exclusion restrictions would identify the model when U is independent
of Z. Benkard and Berry (2006) showed that this claim is incorrect, leaving
uncertain the nonparametric identifiability of fully simultaneous models.

Completeness conditions (Lehmann and Scheffe (1950, 1955)) offer one pos-
sible approach, and in Berry and Haile (2014a) we showed how identification
arguments in Newey and Powell (2003) or Chernozhukov and Hansen (2005)
can be adapted to an example of the class of models considered below.3 How-
ever, independent of general concerns one might have with the interpretability
of completeness conditions, this approach may be particularly unsatisfactory
in a simultaneous equations setting. A simultaneous equations model already
specifies the structure generating the joint distribution of the endogenous vari-
ables, exogenous variables, and structural errors. A high-level assumption like
completeness implicitly places further restrictions on the model, although the
nature of these restrictions is typically unclear.4

Much recent work has focused on systems of equations with a triangular
(recursive) structure (see, e.g., Chesher (2003), Imbens and Newey (2009), and
Torgovitzky (2015)). A two-equation version of the triangular model takes the
form

Y1 = m1(Y2, Z, U1)

Y2 = m2(Z,X,U2)

where U2 is a scalar error entering m2 monotonically and X is an exogenous
observable excluded from the first equation. This structure often arises in a
program evaluation setting, where Y2 might denote a non-random treatment
and Y1 an outcome of interest. To contrast this model with a fully simultane-
ous system, suppose Y1 represents the quantity sold of a good and that Y2 is its
price. If the first equation is the structural demand equation, the second equa-
tion would be the reduced form for price, with X as a supply shifter excluded
from demand. However, in a supply and demand context (as in many other si-
multaneous equations settings) the triangular structure is difficult to reconcile
with economic theory: typically both the demand error and the supply error
will enter the reduced form for price. One obtains the triangular model only
when the two structural errors monotonically enter the reduced form for price
through a single index.5 This is an index assumption quite different from the

3Identification results for nonparametric regression models are not directly applicable be-
cause the structural functions mj take multiple structural errors as arguments. Nonetheless,
the extensions are straightforward. See also Chiappori and Komunjer (2009b), which shows
identification in a related model by combining completeness conditions with arguments that
exploit the classic change of variables approach.

4Recent work on this issue includes D’Haultfoeuille (2011) and Andrews (2011).

5Examples of simultaneous models that do reduce to a triangular system can be found
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residual index structure we consider. Blundell and Matzkin (2014) provide a
necessary and sufficient condition for a simultaneous model to reduce to the
triangular model, pointing out that this condition is quite restrictive.

An important breakthrough in this literature came in Matzkin (2008),
which considered a model of the form

mj(Y, Z, δ) = 0 j = 1, . . . , J

where δ = (δ1 (Z,X1, U1) , . . . , δJ (Z,XJ , UJ))′ is a vector of indices

δj (Z,Xj, Uj) = gj (Z,Xj) + Uj. (3)

Here X = (X1, . . . , XJ) ∈ RJ are observed exogenous observables (instru-
ments) specific to each equation, and each gj (Z,Xj) is strictly increasing in
Xj. This formulation respects traditional exclusion restrictions in that Xj is
excluded from equations k 6= j (e.g., there is a “demand shifter” that enters
only the demand equation). However, it restricts the more general model (1)
by requiring Xj and Uj to enter the nonparametric function mj through a
“residual index” δj (Z,Xj, Uj). Given invertibility of m (now in δ), the analog
of (2) is δj (Z,Xj, Uj) = rj (Y, Z), j = 1, . . . , J , or equivalently,6

rj (Y, Z) = gj (Z,Xj) + Uj j = 1, . . . , J. (4)

In Berry and Haile (2014b) we show how this structure arises in a variety
of important economic applications, including the classic simultaneous equa-
tions framework (e.g., classical supply and demand or macro models, mod-
els of peer effects), models of imperfectly competitive differentiated products
markets, and models of input choices by a profit-maximizing firm faced with
factor-specific productivity shocks. Matzkin (2008) showed that this model is
identified when U is independent of X, (g1 (X1 Z) , . . . , gJ (XJ , Z)) has large
support conditional on Z, and the joint density of U satisfies certain global
restrictions.7 This was, to our knowledge, the first result demonstrating identi-
fication in a fully simultaneous nonparametric model with nonseparable errors.

in Benkard and Berry (2006), Blundell and Matzkin (2014), and Torgovitzky (2010).

6This model can be interpreted as a generalization of the transformation model to a si-
multaneous system. The usual (single-equation) semiparametric transformation model (e.g.,
Horowitz (1996)) takes the form t (Y ) = Zβ + U , where Y ∈ R, U ∈ R, and the unknown
transformation function t is strictly increasing. Besides replacing Zβ with g (Z,X), (4)
generalizes this model by dropping the requirement of a monotonic transformation function
and, more fundamental, allowing a vector of outcomes Y to enter each unknown transfor-
mation function. Chiappori and Komunjer (2009a) considers a nonparametric version of the
single-equation transformation model. See also Berry and Haile (2009).

7Matzkin (2008) applied a new characterization of observational equivalence to prove
identification in several special cases, including a linear simultaneous equations model, a
single equation model, a triangular (recursive) model, and a fully simultaneous nonpara-
metric model (her “supply and demand” example) of the form (4).
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Matzkin (2015) provides additional results and estimation strategies for a ver-
sion of the model in which each residual index function gj (Z,Xj) is linear
conditional on Z (see also Matzkin (2010); Berry and Haile (2011, 2014a)).

We provide new identification results for the model (4) and discuss spe-
cial cases with varying demands on the instruments and the joint density of
structural errors. A key result provides a general sufficient condition for iden-
tification of the functions gj. A special case demonstrates that such identifi-
cation holds under a mild local density restriction, even when the instruments
X have arbitrarily small support. Once each gj (Z,Xj) is known, identifi-
cation of the model follows as in the special case of a linear residual index
function. To exploit this fact, we review and extend identification results for
the model with a linear residual index. We show that under Matzkin’s (2008)
large support condition, identification of the linear index model holds without
any restriction on the joint density. At an opposite extreme, we show that
even when the instruments have arbitrarily small support, failure of identi-
fication requires strong restrictions on the joint density. Combined with our
results on the identification of the index functions gj(Z,Xj), these results then
demonstrate identification of the full nonlinear index model (4) under a wide
variety of support and density conditions. Importantly, these results include
the first identification conditions for the nonlinear index model that do not
require large support for X.

We begin by completing the model setup in section 2. A brief preview of
results follows in section 3. In section 4 we provide conditions for identification
of the index functions gj. Section 5 then considers alternative sets of sufficient
conditions for identification of the linear index model. Finally, these results
are combined in section 6 to yield identification of the full nonlinear index
model. Along the way we point out that our primary sufficient conditions for
identification are verifiable—i.e., their satisfaction or failure is identified—and
that the maintained assumptions defining the model are falsifiable.

2 The Model

2.1 Setup

The observables are (Y,X,Z), with X ∈ RJ , Y ∈ RJ , and J ≥ 2. The exoge-
nous observables Z are important in applications but add no complications to
the analysis of identification. Thus, from now on we condition on an arbitrary
value of Z and drop it from the notation. As usual, this treats Z in a fully
flexible way, and all assumptions should be interpreted to hold conditional on
Z. Stacking the equations in (4), we then consider the model

r (Y ) = g (X) + U (5)

4



where r (Y ) = (r1 (Y ) , . . . , rJ (Y ))′, g (X) = (g1 (X1) , . . . , gJ (XJ))′, and r
maps a set Y⊂RJ onto the support of (g (X) + U). We let X =int(supp (X)).

Assumption 1. (i) X is nonempty; (ii) g is continuously differentiable, with
∂gj (xj) /∂xj > 0 for all j, xj; (iii) U is independent of X and has continuously
differentiable joint density f that is positive on RJ ; (iv) r is injective, twice

differentiable, and for all y ∈ Y has nonsingular Jacobian matrix J(y) = ∂r(y)
∂y

.

Part (i) rules out discrete instruments. Part (ii) combines an important
monotonicity restriction with a differentiability requirement imposed for con-
venience. The primary role of parts (iii) and (iv) is to allow us to attack the
identification problem using a standard change of variables approach (see, e.g.,
Koopmans, Rubin, and Leipnik (1950)), relating the joint density of observ-
ables to that of the structural errors. In particular, letting φ(·|X) denote the
joint density of Y conditional on X, we have

φ(y|x) = f(r(y)− g(x)) |J (y)| . (6)

In addition, we have the following lemma.

Lemma 1. Under Assumption 1, (a) ∀y ∈ Y, supp(X|Y = y) =supp(X); (b)
∀x ∈ X, supp(Y |X = x) =supp(Y ); and (c) Y is open and connected.

Proof. See Appendix B.

With this result, below we treat φ(y|x) as known for all x ∈ X and y ∈ Y.

2.2 Normalizations

We impose three standard normalizations.8 First, observe that all relationships
between (Y,X, U) would be unchanged if for some constant κj, gj (Xj) were
replaced by gj (Xj) + κj while rj (Y ) were replaced by rj (Y ) + κj. Thus, with-
out loss, for an arbitrary point ẏ ∈ Y and an arbitrary vector τ = (τ1, . . . , τJ)
we set

rj (ẏ) = τj ∀j. (7)

Similarly since, even with (7), (5) would be unchanged if, for every j, gj (Xj)
were replaced by gj (Xj) + κj for some constant κj while Uj were replaced by
Uj − κj, we set

gj (ẋj) = ẋj ∀j. (8)

8We follow Horowitz (2009, pp. 215–216), who makes equivalent normalizations in his
semiparametric single-equation version of our model. His exclusion of an intercept is the
implicit analog of our location normalization (8). Alternatively we could follow Matzkin
(2008), who makes no normalizations in her supply and demand example and shows only
that the derivatives of r and g are identified up to scale.

5



This fixes the location of each Uj, but we must still choose its scale.9 In
particular, since (5) would continue to hold if both sides were multiplied by
a nonzero constant, we normalize the scale of each Uj by taking an arbitrary
ẋ ∈ X and setting

∂gj (ẋj)

∂xj
= 1 ∀j. (9)

Finally, given (8), we will find a convenient choice of τ (recall (7)) to be
τj = ẋ, so that

rj (ẏ)− gj (ẋj) = 0 ∀j. (10)

2.3 Identifiability, Verifiability, and Falsifiability

Before proceeding, we must define some key terminology. Following Hurwicz
(1950) and Koopmans and Reiersol (1950), a structure S is a data generat-
ing process, i.e., a set of probabilistic or functional relationships between the
observable and latent variables that implies (generates) a joint distribution of
the observables. Let S denote the set of all structures. The true structure is
denoted S0 ∈ S. A hypothesis is any nonempty subset of S. We say that a
hypothesis H is true if S0 ∈ H.10

A structural feature θ (S0) is a functional of the true structure S0. As usual,
we say that θ (S0) is identified (or identifiable) under the hypothesis H if θ (S0)
is uniquely determined within the set {θ (S) : S ∈ H} by the joint distribution
of observables. The primary structural features of interest in our setting are
the functions r, f , and g. However, we will also be interested in binary features
indicating whether key hypotheses hold. Given a maintained hypothesis M,
we will say that a hypothesis H ⊂M is verifiable if the indicator 1 {S0 ∈ H}
is identified under M. Thus, when a hypothesis is verifiable, its satisfaction
or failure is an identified feature.11 We show below that our primary sufficient
conditions for identification—those beyond the model setup and maintained
regularity conditions—are verifiable.

We also consider the weaker and more familiar notion of falsifiability.Let
PH denote the set of probability distributions (for the observables) generated

9Typically the location and scale of the unobservables can be set arbitrarily without
loss. However, there may be applications in which the location or scale of Uj has economic
meaning. With this caveat, we follow the longstanding convention in the literature and refer
to these restrictions as normalizations.

10Hurwicz (1950) and Koopmans and Reiersol (1950) call any strict subset of S a model,
although some authors will make distinctions between the notions of “model,” “identifying
assumptions,” or “overidentifying assumptions.” All of these notions are nested by our term
hypothesis.

11We are not aware of prior formal use of the notion of verifiability in the economet-
rics literature although, as our definition makes clear, this is merely a particular case of
identifiability.
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by structures in H. Given a maintained hypothesis M, we say that H ⊂M
is falsifiable if PH 6= PM. Thus, as usual, a hypothesis is falsifiable when
it implies a restriction on the observables. We show below that important
maintained hypotheses of our model are falsifiable. A model that is falsifiable
is sometimes said to be testable or to imply testable restrictions. We avoid
this terminology because, just as identification does not imply existence of a
consistent estimator, falsifiability (or verifiability) does not imply existence of a
satisfactory statistical test. We leave all matters of estimation and hypothesis
testing for future work.

3 Preview of Results

We begin by previewing important special cases of the results developed below.
One is the result given in the pathbreaking work of Matzkin (2008), obtained
below as Corollary 4.

Proposition 1. Let g (X) = RJ and suppose that there exists u0 ∈ RJ such

that
∂f(u0)
∂uj

= 0 for all j. Suppose further that for each j and every uj ∈ R
there exists û(uj) ∈ RJ satisfying ûj(uj) = uj and such that

∂f(û(uj))

∂uj
= 0

while
∣∣∣∂f(û(uj))∂uk

∣∣∣ > 0 for all k 6= j. Then g is identified on X, and r and f are

identified.

Neither the large support condition nor density restriction of Proposition
1 is required, however. We illustrate this with two alternative results. Both
utilize a mild regularity condition on the joint density f , requiring that it
have an isolated local minimum or maximum. To make this precise (taking
the case of a local max for simplicity), for c ∈ R and Σ ⊂ RJ we define the
upper contour sets of the restriction of f to Σ:

A (c; Σ) = {u ∈ Σ : f (u) ≥ c} . (11)

Condition 1. For some compact connected set S ⊂ RJ with nonempty inte-
rior, there exists c ∈ R such that (i) A (c;S) ⊂int(S), and (ii) the restriction
of f to A (c;S) attains a maximum c > c at its unique critical value.

Condition 1 requires that if we “zoom in” to a sufficiently small neighbor-
hood of a local max (first to S, then further to an upper contour set of f on
the restricted domain S), the local max is the only local critical value. Using
this mild restriction, we obtain the following results.

Proposition 2. Let Assumption 1 and Condition 1 hold, and suppose that
g (X) = RJ . Then g is identified on X, and r and f are identified.
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Proposition 3. Let Assumption 1 and Condition 1 hold and suppose that X
is connected. Then if ∂2 ln f (u) /∂u∂u′ is nonsingular almost everywhere, g is
identified on X, and r and f are identified.

Proposition 2 shows that Matzkin’s global density restriction can be re-
placed with Condition 1. Proposition 3 shows that identification can be ob-
tained even with arbitrarily small support for X under relatively mild density
restrictions.12 Further, Condition 1 is (like Matzkin’s assumptions) merely an
example of a sufficient condition for the “rectangle regularity” condition on
f developed below. We show that when rectangle regularity holds, failure of
identification requires strong restrictions on the joint density f .

4 Identification of the Index Functions

We begin by considering identification of the index functions gj. Differentiating
(6) yields

∂ lnφ(y|x)

∂xj
= −∂ ln f(r(y)− g(x))

∂uj

∂gj(xj)

∂xj
(12)

and
∂ lnφ(y|x)

∂yk
=
∑
j

∂ ln f(r(y)− g(x))

∂uj

∂rj(y)

∂yk
+
∂ ln |J(y)|

∂yk
. (13)

Together (12) and (13) imply

∂ lnφ(y|x)

∂yk
= −

∑
j

∂ lnφ(y|x)

∂xj

∂rj(y)/∂yk
∂gj(xj)/∂xj

+
∂ ln |J(y)|

∂yk
. (14)

Our approach builds on an insight in Matzkin (2008), exploiting critical
values of f and “tangencies” to its level sets to isolate the unknowns in (14).
We first introduce a general sufficient condition that we call “rectangle reg-
ularity.” This is followed by discussion of special cases that are more easily
interpretable. Finally, we demonstrate identification of each function gj under
rectangle regularity.

4.1 Rectangle Regularity

We begin with some definitions.

Definition 1. A J-dimensional rectangle is a Cartesian product of J nonempty
open intervals.

12These two results are special cases of, respectively, Corollaries 5 and 6 in section 6
below.
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Definition 2. Let M ≡ ×Jj=1

(
mj,mj

)
and N ≡ ×Jj=1

(
nj, nj

)
denote two

J-dimensional rectangles. M is smaller than N if mj −mj ≤ nj − nj for all
j.

Definition 3. Given a J-dimensional rectangle U ≡ ×Jj=1

(
uj, uj

)
, the joint

density f is regular on U if (i) there exists u∗ ∈ U such that ∂f(u∗)
∂uj

= 0 for

all j; and (ii) for all j and almost all u′j ∈
(
uj, uj

)
, there exists û

(
u′j
)
∈ U

satisfying
ûj
(
u′j
)

= u′j

∂f(û(u′j))

∂uj
6= 0 and

∂f(û(u′j))

∂uk
= 0 ∀k 6= j.

Definitions 1 and 2 are standard and provided here only to avoid ambiguity.
Definition 3 introduces a particular notion of regularity for the density f . It
requires that f have a critical value u∗ in a rectangular neighborhood U in
which the level sets of f are “nice” in a sense defined by part (ii). There,
û(u′j) has a geometric interpretation as a point of tangency between a level

set of f and the (J − 1)-dimensional plane
{
u ∈ RJ : uj = u′j

}
. Part (ii) of

Definition 3 requires such a tangency within the rectangle U in each dimension
j.

Figure 1 illustrates an example in which J = 2 and u∗ is a local extremum.
There, within a neighborhood of u∗ the level sets of f (or ln f) are connected,
smooth, and strictly increasing toward u∗. Therefore, each level set is hor-
izontal at (at least) one point above u∗ and one point below u∗. Similarly,
each level set is vertical at least once each to the right and to the left of u∗.
There are many J-dimensional rectangles on which the illustrated density is
regular. One such rectangle is defined in the figure using a single level set.
The upper limit u2 is defined by the topmost horizontal tangency to this level
set, while u1 is defined by the rightmost vertical tangency, and so forth. For
each u′1 ∈ (u1, u1), the point û2(u

′
1) is the value of U2 at a tangency between

the vertical line U1 = u′1 and a level set of f closer to u∗ than that defining
U . Since level sets within U are smooth, the tangency cannot be at a corner
of the rectangle U ; therefore, u2 < û2(u

′
1) < u2, implying (u′1, û2(u

′
1)) ∈ U .
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Figure 1: The solid curves are the level sets of a bivariate density (or log-density)

with a “regular” hill leading up to a local maximum at u∗, but with a less useful

shape in other areas. For each u′1 ∈ (u1, u1) the point û2(u
′
1) is the value of U2 at a

tangency between the vertical line U1 = u′1 and a level set.

u2

u1

u2

u1u′1

û2(u′1)

u∗

u1

u
2

x2(x)

x1(x)

x2(x)

x1(x)

X (x)

x

x1

x
2

Figure 2: For arbitrary x ∈ X , the rectangle U ≡ (u1, u1) × (u2, u2) in Figure 2

is mapped to a rectangle X (x) by first defining y∗ to satisfy rj(y
∗) = gj(xj) + u∗j

for all j, then defining x(x) and x(x) by rj (y∗) = gj
(
xj(x)

)
+ uj = gj (xj(x)) + uj ,

thereby satisfying (15). 10



The following is our primary condition allowing identification of the index
functions gj.

Assumption 2 (“Rectangle Regularity”). For all x ∈ X there is a J-dimensional
rectangle X (x) = ×j

(
xj (x) , xj (x)

)
⊂ X containing x such that for (i) some

u∗ such that ∂f (u∗) /∂uj = 0 for all j and (ii) uj (x) and uj (x) defined by

uj (x) = u∗j + gj (xj)− gj (xj (x))

uj (x) = u∗j + gj (xj)− gj
(
xj (x)

)
,

(15)

f is regular on U (x) = ×j
(
uj (x) , uj (x)

)
.

Assumption 2 requires, for each x, that f be regular on a rectangular
neighborhood around a critical point u∗ that maps through (5) to a rectangular
neighborhood in X around x. Because X is open, there exists a rectangle in
X around every point x ∈ X. Further, when X includes any rectangle M, it
also includes all smaller rectangles X ⊂M. Thus, since g (X ) is a rectangle
whenever X is, as long as f is regular on some rectangle that is not too big
relative to the support of X around x, the set X (x) required by Assumption
2 is guaranteed to exist. Figure 2 illustrates, taking an arbitrary point x and
the rectangle U = (u1, u1) × (u2, u2) in Figure 1 and mapping them to the
rectangle X (x).

Observe that although we write uj (x) and uj (x) in (15), the same rectangle

×j
(
uj, uj

)
may be used to construct X (x) for many (even all) values of x.

This is because for every x ∈ X there must exist y∗ (x) ∈ Y such that

r (y∗ (x)) = g (x) + u∗, (16)

allowing construction of the rectangle ×j
(
xj (x) , xj (x)

)
from (15) with a sin-

gle critical value u∗ and with uj (x) = uj and uj (x) = uj for all x and j (see
Figure 2). Thus, Assumption 2 can be satisfied with limited variation in X,
even if f has a single critical value.

Although Assumption 2 involves a condition on the joint distribution of
latent variables, the following result (proved in Appendix B) shows that it is
equivalent to a condition on observables.

Remark 1. Assumption 2 is verifiable.

4.2 Sufficient Conditions for Rectangle Regularity

Here we provide two alternative sufficient conditions for Assumption 2 that
are more easily interpreted. The first combines large support for X with
regularity of f on RJ . This corresponds to the combination of conditions used
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by Matzkin (2008).13 The second allows arbitrarily small support for X and
requires regularity only in sufficiently small rectangular neighborhoods around
a critical point u∗. Outside such neighborhoods, f is unrestricted.

Remark 2. Suppose that g (X) = RJ and that f is regular on RJ . Then
Assumption 2 holds.

Proof. Let X (x) = ×j
(
g−1j (−∞) , g−1j (∞)

)
for all x. Then by (15), U (x) =

RJ , yielding the result. �

Definition 4. f satisfies local rectangle regularity if for every J-dimensional
rectangle M, there exists a smaller J-dimensional rectangle N on which f is
regular.

Remark 3. Suppose that f satisfies local rectangle regularity. Then Assump-
tion 2 holds.

Proof. Take arbitrary x ∈ X. Because X is open, it must contain a rectangle

X̃ (x) 3 x. Taking one such X̃ (x) let M =g
(
X̃ (x)

)
and let N be a smaller

rectangle ×j
(
uj, uj

)
on which f is regular (guaranteed to exist by local rect-

angle regularity). Because f is regular on N , it has a critical point u∗ ∈ N .
Taking such a point u∗, define y∗ (x) by (16). Now define xj (x) and xj (x) for
all j by

rj (y∗ (x)) = gj
(
xj (x)

)
+ uj (17)

rj (y∗ (x)) = gj (xj (x)) + uj. (18)

Let X (x) = ×j
(
xj (x) , xj (x)

)
. Then by (15), (16), (17), and (18), U (x) = N .

Thus f is regular on U (x). �

Neither of these sufficient condition implies the other. If X = RJ , regu-
larity on RJ holds when f is one of many standard densities, including the
multivariate normal. Local rectangle regularity places no requirement on the
support of X and holds for essentially any smooth density f with an isolated
local minimum or maximum (recall Condition 1 from section 3):

Remark 4. Suppose Condition 1 holds. Then f satisfies local rectangle regu-
larity.

13The assumption stated in Matzkin (2008) is actually stronger, equivalent to assuming
regularity of f on RJ but replacing “almost all u′j ∈

(
uj , uj

)
” in the definition of regularity

with “all u′j ∈
(
uj , uj

)
.” The latter is unnecessarily strong and rules out many standard

densities, including the multivariate normal. Throughout we interpret the weaker condition
as that intended by Matzkin (2008).
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Proof. See Appendix A.

The proof requires several steps. However, for the case J = 2, Figure 3
shows level sets of a joint density in a small neighborhood of a critical value u∗

and suggests how the mild requirements of Condition 1 ensure local rectangle
regularity.

u∗

S
A(c;S)

N

u1

u
2

Figure 3: The shaded area is a connected compact set S. The darker sub-

set of S is an upper contour set A(c;S) of the restriction of f to S. The

point u∗ is a local max and the only critical value of f in A(c;S). For any

J-dimensional rectangle M there will exist c0 ≥ c such that (i) the rectangle

N = ×j
(

minu−∈A(c0;S) u
−
j ,maxu+∈A(c0;S) u

+
j

)
(see (A.2) in Appendix A) is smaller

than M and (ii) f is regular on N .

4.3 Identification of the Index Functions

Under rectangle regularity, identification of the index functions gj follows in
three steps. The first exploits a critical value u∗ to pin down derivatives of the
Jacobian determinant at a point y∗ (x) for any x. The second uses tangencies

to identify the ratios
∂gj(x

′
j)/∂xj

∂gj(x0j )/∂xj
for all pairs of points (x0, x′) in a sequence of

overlapping rectangular subsets of X. The final step links these rectangular
neighborhoods so that, using the normalization (9), we can integrate up to the
functions gj, using (8) as boundary conditions.

13



The first step is straightforward. For any x ∈ X, if u∗ is a critical value of
f and y∗ (x) is defined by (16), equation (13) yields

∂ ln |J(y∗ (x))|
∂yk

=
∂ lnφ(y∗ (x) |x)

∂yk
∀k. (19)

For arbitrary x and x′, this allows us to rewrite (14) as∑
j

∂ lnφ(y∗ (x) |x′)
∂xj

∂rj((y
∗ (x))/∂yk

∂gj(x′j)/∂xj
=
∂ lnφ(y∗ (x) |x)

∂yk
− ∂ lnφ((y∗ (x) |x′)

∂yk

(20)

where the only unknowns are the ratios
∂rj(y

∗(x))/∂yk
∂gj(x′j)/∂xj

. Using this result, the

second step is demonstrated in Lemma 2 below. Here we exploit the fact that,
under Assumption 2, as x̂ varies around the arbitrary point x, r (y∗ (x)) − x̂
takes on all values in a rectangular neighborhood of u∗ on which f is regular.

Lemma 2. Let Assumptions 1 and 2 hold. Then for every x ∈ X there exists
a J-dimensional rectangle X (x) 3 x such that for all x0 ∈ X (x)\x and x′ ∈
X (x)\x, the ratio

∂gj(x
′
j)/∂xj

∂gj(x0j)/∂xj

is identified for all j = 1, . . . , J .

Proof. For arbitrary x ∈ X, let u∗ and U (x) = ×j
(
uj, uj

)
be as defined

in Assumption 2.14 Define y∗ by (16). By Assumption 2 there exists X =
×i (xi, xi) ⊂ X (with x ∈ X ) such that

rj(y
∗) = gj(xj) + uj, j = 1, . . . , J (21)

rj(y
∗) = gj(xj) + uj, j = 1, . . . , J (22)

and (recalling (12)) such that for each j and almost every x′j ∈
(
xj, xj

)
there

is a J-vector x̂
(
x
′
j

)
∈ X satisfying

x̂j
(
x′j
)

= x′j

∂ lnφ
(
y∗|x̂(x′j)

)
∂xj

6= 0 and (23)

∂ lnφ
(
y∗|x̂(x′j)

)
∂xk

= 0 ∀k 6= j. (24)

14To simplify notation, we will suppress dependence of y∗, xj , xj , uj , and uj on the arbi-
trary point x.
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Since φ (y|x) and its derivatives are observed for all y ∈ Y, x ∈ X, the point
y∗ is identified, as are the pairs

(
xj, xj

)
and the point x̂

(
x
′
j

)
for any j and

x′j ∈
(
xj, xj

)
.15 Taking arbitrary j, arbitrary x′j ∈

(
xj, xj

)
and the known

vector x̂
(
x
′
j

)
defined above, (20) becomes

∂ lnφ(y∗|x̂(x′j))

∂xj

∂rj(y
∗)/∂yk

∂gj(x′j)/∂xj
=
∂ lnφ(y∗|x)

∂yk
−
∂ lnφ(y∗|x̂(x′j))

∂yk
.

By (23), we may rewrite this as

∂rj(y
∗)/∂yk

∂gj(x′j)/∂xj
=

∂ lnφ(y∗|x)
∂yk

− ∂ lnφ(y∗|x̂(x′j))
∂yk

∂ lnφ(y∗|x̂(x′j))
∂xj

. (25)

Since the right-hand side is known,
∂rj(y

∗)/∂yk
∂gj(x′j)/∂xj

is identified for almost all (and,

by continuity, all) x′j ∈
(
xj, xj

)
. By the same arguments leading up to (25),

but with x0j taking the role of x′j, we obtain

∂rj(y
∗)/∂yk

∂gj(x0j)/∂xj
=

∂ lnφ(y∗|x)
∂yk

− ∂ lnφ(y∗|x̂(x0j ))
∂yk

∂ lnφ(y∗|x̂(x0j ))
∂xj

(26)

yielding identification of
∂rj(y

∗)/∂yk
∂gj(x0j )/∂xj

for all x0j ∈
(
xj, xj

)
. Because the Jacobian

determinant |J (y∗)| is nonzero, ∂rj(y
∗)/∂yk cannot be zero for all k. Thus for

each j there is some k such that the ratio
∂rj(y

∗)/∂yk
∂gj(x0j )/∂xj

/
∂rj(y

∗)/∂yk
∂gj(x′j)/∂xj

is well defined.

This establishes the result.16 �

The final step of the argument will yield the following result.

Theorem 1. Let Assumptions 1 and 2 hold and suppose that X is connected.
Then g is identified on X.

Proof. We first claim that Lemma 2 implies identification of the ratios
∂gj(x

′
j)/∂xj

∂gj(x0j )/∂xj

for all j and any two points x0 and x′ in X. This follows immediately if there is
some x such that X (x) = X . Otherwise, observe that because each rectangle
X (x) guaranteed to exist by Lemma 2 is open, {X (x)}x∈X is an open cover of

15We do not require uniqueness of u∗ or the set U . Rather, we use only the fact that
for a given x there exist both a value y∗ mapping through (27) to a critical point u∗ and a
rectangle around x mapping through (21) and (22) to a rectangle around u∗ on which f is
regular. Through (12), such a y∗ and a rectangle around x are both identified.

16Since the argument can be repeated for any k such that ∂rj(y
∗)/∂yk 6= 0, the ratios of

interest in the lemma may typically be overidentified.
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X. Since X is connected, for any x0 and x′ in X there exists a simple chain
from x0 to x1 consisting of elements (rectangles) from {X (x)}x∈X.17 Since

the ratios
∂gj(x

1
j )/∂xj

∂gj(x2j )/∂xj
are known for all points

(
x1j , x

2
j

)
in each of these rectan-

gles, it follows that the ratios
∂gj(x

′
j)/∂xj

∂gj(x0j )/∂xj
are known for all j. The claim then

follows. Finally, observe that because X is a connected open subset of RJ , X
is path-connected. Taking x0j = ẋj for all j, the conclusion of the Theorem
then follows from the normalization (9) and boundary condition (8). �

5 Identification with a Linear Index

When the functions gj are known, the model (5) reduces to that with a linear
index:18 i.e.,

rj (Y ) = Xj + Uj j = 1, . . . , J. (27)

We use the “linear index model” in (27) primarily to consider identification
of each rj (Y ) conditional on knowledge of the functions gj. The model is of
independent interest as well and has been studied previously in Matzkin (2015)
and, in the context of a differentiated products model, Berry and Haile (2014a).
Below we discuss several alternative sufficient conditions for identification of
the linear index model, including one given previously by Matzkin (2015).
Note that in the linear index model, the change of variables (6) becomes

φ(y|x) = f(r(y)− x) |J (y)| . (28)

5.1 Identification without Density Restrictions

Our first result shows that when the instruments X have large support (e.g.,
Matzkin (2008, 2010)) there is no need to restrict the joint density f . 19 20

Theorem 2. Let Assumption 1 hold and suppose X = RJ . Then in the linear
index model, r and f are identified.

17See, e.g., van Mill (2002), Lemma 1.5.21.

18 Formally, redefine Xj = gj (Xj) and note that the properties of X = int(supp(X))
required by Assumption 1 are preserved.

19Theorem 2 holds under slightly weaker smoothness conditions on f and r than those
requires by Assumption 1.

20The argument used to show Theorem 2 was first used by Berry and Haile (2014a) in
combination with additional assumptions and arguments to demonstrate identification in a
model of differentiated products demand and supply.
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Proof. Since
∫∞
−∞ · · ·

∫∞
−∞ f (r (y)− x) dx = 1, (28) implies

|J (y)| =
∫ ∞
−∞
· · ·
∫ ∞
−∞

φ (y|x) dx

so that (again from (28)) we obtain

f (r (y)− x) =
φ (y|x)∫∞

−∞ · · ·
∫∞
−∞ φ (y|t) dt

.

Thus the value of f (r (y)− x) is uniquely determined by the observables for
all x ∈ RJ and y ∈ Y. Let Fj denote the marginal CDF of Uj. Since∫

x̂j≥xj ,x̂−j

f (r (y)− x̂) dx̂ = Fj (rj (y)− xj) (29)

the value of Fj (rj (y)− xj) is identified for all xj ∈ R and y ∈ Y. By (10),

Fj (rj (ẏ)− ẋj) = Fj (0) . For every y ∈ Y we can then find the value
o
x (y) such

that Fj

(
rj (y)− o

x (y)
)

= Fj (0), which reveals rj (y) =
o
x (y). This identifies

each function rj on Y. Identification of f then follows from (27). �

Thus, given the maintained Assumption 1, large support for X is sufficient
for identification of the model. Because X is observable, this condition is
verifiable.

Remark 5. The condition X = RJ is verifiable.

In addition, although the Jacobian determinant is a functional of r, the
relationship between |J (y)| and r was not imposed in our proof; rather, the
Jacobian determinant was treated as a nuisance parameter to be identified

separately. Thus, the requirement |J(y)| =
∣∣∣∂r(y)∂y

∣∣∣ provides a falsifiable restric-

tion.

Remark 6. Suppose X = RJ . Then the model defined by (27) and Assumption
1 is falsifiable.

5.2 Identification Using First Derivatives

We now explore an alternative approach that exploits restrictions on f . In the
linear index model (12) and (14) become, respectively,

∂ lnφ(y|x)

∂xj
= −∂ ln f(r(y)− x)

∂uj
(30)

and
∂ lnφ(y|x)

∂yk
=
∂ ln |J(y)|

∂yk
−
∑
j

∂ lnφ(y|x)

∂xj

∂rj(y)

∂yk
. (31)
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We rewrite (31) as
ak (x, y) = d (x, y)′ bk (y) (32)

where we define ak (x, y) = ∂ lnφ(y|x)
∂yk

, d (x, y)′ =
(

1,−∂ lnφ(y|x)
∂x1

, . . . ,−∂ lnφ(y|x)
∂xJ

)
,

and bk (y) =
(
∂ ln |J(y)|

∂yk
, ∂r1(y)

∂yk
, . . . , ∂rJ (y)

∂yk

)′
. Here ak (x, y) and d (x, y) are ob-

servable whereas bk (y) involves unknown derivatives of the functions rj. From
(32) it is clear that bk (y) is identified if there exist points x̃ =

(
x̃0, . . . , x̃J

)
,

with each x̃j ∈ X, such that the (J + 1)× (J + 1) matrix

D (x̃, y) ≡

 d (x̃0, y)
′

...

d
(
x̃J , y

)′
 (33)

has full rank.21 This yields the following observation, given previously in
Matzkin (2015).22

Lemma 3. Let Assumption 1 hold. For a given y ∈ Y, suppose there exists
no nonzero vector c = (c0, c1, . . . , cJ)′ such that d (x, y)′ c = 0 ∀x ∈ X. Then
in the linear index model, ∂r(y)/∂yk is identified for all k.

Lemma 3 provides a sufficient condition for identification of ∂r(y)/∂yk at a
point. Using (30), Assumption 3 then documents the rank condition ensuring
identification at all points. As shown in Theorem 3, identification of the model
then follows easily.

Assumption 3. For almost all y ∈ Y there is no c = (c0, c1, . . . , cJ)′ 6= 0 such
that (

1,
∂ ln f(r(y)− x)

∂x1
, . . . ,

∂ ln f(r(y)− x)

∂xJ

)
c = 0 ∀x ∈ X.

Theorem 3. Let Assumptions 1 and 3 hold. Then in the linear index model,
r and f are identified.

Proof. By Lemma 3 and continuity of the derivatives of r, ∂rj(y)/∂yk is
identified for all j, k, and y ∈ Y. Since Y is an open connected subset of RJ ,
every pair of points in Y can be joined by a piecewise smooth (C1) path in
Y.23 With the boundary condition (7) and Lemma 1 (part (c)), identification
of rj (y) for all y and j then follows from the fundamental theorem of calculus
for line integrals. Identification of f then follows from (5). �

21In particular, let Ak (x̃, y) =
(
ak
(
x̃0, y

)
· · · ak

(
x̃J , y

))′
and stack the equations ob-

tained from (32) at each of the points x̃(0), . . . , x̃(J), yielding Ak (x̃, y) = D (x̃, y) bk (y) .

When D (x̃, y) is invertible we obtain the closed-form solution bk (y) = D (x̃, y)
−1
Ak (x̃,y) .

22Although we obtained and presented this result independently, we learned later that
Matzkin had obtained the result earlier in a previously uncirculated draft.

23See, e.g., Giaquinta and Modica (2007), Theorem 6.63.
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5.2.1 Special Cases: Critical Points and Tangencies

Assumption 3 is a verifiable sufficient condition for identification of the linear
index model.24 However, the interpretation of this joint restriction on X and
f is not transparent, leaving the scope of Theorem 3’s applicability unclear.
Here we discuss one approach to obtaining more easily interpretable sufficient
conditions, building (for a second time) on insights in Matzkin (2008, 2010)
involving critical points and tangencies.

Begin with the case J = 2 and suppose that for almost all y ∈ Y there

exist points (x0 (y) , x1 (y) , x2 (y)), each in X, such that
∂ ln f(r(y)−x0(y))

∂uj
= 0 for

all j while

∂ ln f (r(y)− x1 (y))

∂u1
6= 0 =

∂ ln f (r(y)− x1 (y))

∂u2
∂ ln f (r(y)− x2 (y))

∂u2
6= 0.

The point u0 (y) = r(y) − x0 (y) is a critical value of f . The point u1 (y) =
r(y) − x1 (y) is a point of tangency between a level set of f (or ln f ) and
some vertical line. Finally u2(y) = r(y) − x2(y) is any point such that the
derivative of f(u2) with respect to u2 is nonzero (i.e., not also a point of
vertical tangency).

Letting x̃ = (x0 (y) , x1 (y) , x2 (y)) and recalling (30), (33) becomes a tri-
angular matrix

D (x̃, y) =


1 0 0

1
∂ ln f(r(y)−x1(y))

∂u1
0

1
∂ ln f(r(y)−x2(y))

∂u1

∂ ln(r(y)−x2(y))
∂u2


with nonzero diagonal terms, ensuring that Assumption 3 holds. There is, of
course, an analogous construction using a horizontal tangency to a level set of
f instead of a vertical tangency. Generalizing to J ≥ 2 is straightforward and
yields the following result.

Corollary 1. Let Assumption 1 hold and suppose that for almost all y ∈ Y
there exist points

(
x0 (y) , x1 (y) , . . . , xJ (y)

)
in X such that (a) ∂ ln f(r(y) −

x0 (y))/∂uj = 0 for all j, (b) ∂ ln f(r(y) − xj (y))/∂uj 6= 0 for all j, and (c)

24Verifiability follows from the fact that ∂ ln f(r(y)−x)
∂uj

= −∂ lnφ(y|x)
∂xj

and ∂ lnφ(y|x)
∂xj

is ob-

servable. In addition, the model defined by (27) and Assumption 1 is falsifiable under
Assumption 3 (see Appendix B).
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the matrix 
∂ ln f(r(y)−x1(y))

∂u1
· · · ∂ ln f(r(y)−x1(y))

∂uJ
...

. . .
...

∂ ln f(r(y)−xJ (y))
∂u1

· · · ∂ ln f(r(y)−xJ (y))
∂uJ


can be placed in triangular form through simultaneous permutation of rows and
columns. Then in the linear index model, r and f are identified.

Existence of the points
(
x0 (y) , x1 (y) , . . . , xJ (y)

)
required by Corollary

1 still involves a joint requirement on the density f and the support of X.
However, because critical values and tangencies are natural properties of a
density, sufficient conditions in terms of explicit support and density restric-
tions are more easily seen. Corollary 1 requires f to have both a critical value
and a suitable set of tangencies somewhere in the set {r (y) − X} for every
y ∈ Y. When X has large support, Corollary 1 requires existence of only

a single set of points
(
u0, u1, . . . , uJ

)
such that

∂ ln f(u0)
∂uj

= 0 for all j while
∂
∂u

(
ln f(u1), . . . , ln f(uJ)

)′
is triangular.25 In principle, more limited support

for X can also allow identification through Corollary 1, although densities with
the required critical values and tangencies in the set {r (y) − X} for every y
would then be quite special.26

5.3 Identification Using Second Derivatives

The preceding discussion may suggest an overly pessimistic view of identifica-
tion when the instruments X have limited support. By considering conditions
on the second derivatives of f(·), however, we can show that a fairly mild re-
striction on the density f ensures identification of the linear index model even
when X has arbitrarily small support.

25If f has at least one critical point and at least one point of tangency in each dimension,
∂
∂u

(
ln f(u1), . . . , ln f(uJ)

)′
will be diagonal (with nonzero diagonal terms). Combining this

property with a large support condition yields the special case of Corollary 1 given by
Matzkin (2010, Theorem 3.1).

26This contrasts with our use of critical values and tangencies for the rectangle regularity
condition, where a single small neighborhood with an isolated critical value can suffice.
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5.3.1 A General Hessian Condition

Supposing that f is twice differentiable,27 define the second-derivative matrix

Hφ (x, y) =
∂2 lnφ (y|x)

∂x∂x′
=


∂2 lnφ(y|x)

∂x21
· · · ∂2 lnφ(y|x)

∂xJ∂x1
...

. . .
...

∂2 lnφ(y|x)
∂x1∂xJ

· · · ∂2 lnφ(y|x)
∂x2J

 . (34)

Lemma 4. Let f be twice differentiable. For a nonzero vector c = (c0, c1, . . . , cJ)′,

d (x, y)′ c = 0 ∀x ∈ X (35)

if and only if for the nonzero vector c̃ = (c1, . . . , cJ)′

Hφ (x, y) c̃ = 0 ∀x ∈ X. (36)

Proof. Recall that d (x, y)′ =
(

1,−∂ lnφ(y|x)
∂x1

, . . . ,−∂ lnφ(y|x)
∂xJ

)
. Suppose first that

(35) holds for nonzero c = (c0, c1, . . . , cJ). Differentiating (35) with respect to
x yields (36), with c̃ = (c1, . . . , cJ)′. If c0 = 0 then the fact that c 6= 0
implies cj 6= 0 for some j > 0. If c0 6= 0, then because the first component
of d (x, y) is nonzero and d (x, y)′ c = 0, we must have cj 6= 0 for some j > 0.
Thus (36) must hold for some nonzero c̃. Now suppose (36) holds for nonzero

c̃ = (c1, . . . , cJ)′. Take an arbitrary point x0 and let c0 =
∑J

j=1

∂ lnφ(y|x0)
∂xj

cj so

that, for c = (c0, c1, . . . , cJ)′, d (x0, y)
′
c = 0 by construction. Since the first

component of d (x, y) equals 1 for all (x, y), (36) implies that ∂
∂xj

[
d (x, y)′ c

]
=

0 for all j and every x ∈ X. Thus (35) holds for some nonzero c. �

Lemma 4 allows us to provide a sufficient condition for identification in

terms of the Hessian matrices ∂2 ln f(r(y)−x)
∂u∂u′

.

Theorem 4. Let Assumption 1 hold and assume that f is twice differentiable.
Suppose that, for almost all y ∈ Y, there is no nonzero J-vector c̃ such that

∂2 ln f (r (y)− x)

∂u∂u′
c̃ = 0 ∀x ∈ X.

Then in the linear index model r and f are identified.

Proof. From (30), ∂2 lnφ(y|x)
∂xj∂xk

= ∂2 ln f(r(y)−x)
∂uj∂uk

. The result then follows from the

definition (34), Lemma 4, and Theorem 3. �

27Similar arguments apply without this additional differentiability. See Appendix D.
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5.3.2 Special Cases: Nonsingular Hessian

Given Assumption 1, a sufficient condition for application of Theorem 4 is
that for almost all y, ln f (u) have nonsingular Hessian matrix at a point

u ∈ {r(y)− X}. At one extreme, if X = RJ it is sufficient that ∂2 ln f(u)
∂u∂u′

be

invertible at a single point. At an opposite extreme, if ∂2 ln f(u)
∂u∂u′

be nonsingular
almost everywhere, the support of X can be arbitrarily small. We state this
second special case in the following result.

Corollary 2. Let Assumption 1 hold and assume that f is twice differentiable.

If ∂2 ln f(u)
∂u∂u′

is nonsingular almost everywhere, then in the linear index model r
and f are identified.

Nonsingularity of ∂2 ln f(u)
∂u∂u′

almost everywhere holds for many standard joint

probability distributions. A strong sufficient condition is that ∂2 ln f(u)
∂u∂u′

be neg-
ative definite almost everywhere—a property of the multivariate normal and
many other log-concave densities (see, e.g., Bagnoli and Bergstrom (2005) and
Cule, Samworth, and Stewart (2010)). Examples of densities that violate the
requirement of Corollary 2 are those that are flat (uniform) or log-linear (ex-
ponential) on an open set.

In some applications, it may be reasonable to assume that Uj and Uk
are independent for all k 6= j. For example, when estimating a production
function based on observed outputs and (cost-minimizing) inputs, shocks to
the productivity of labor might reasonably be assumed independent of Hicks-

neutral productivity shocks. Under independence, ∂2 ln f(u)
∂u∂u′

is diagonal. The
following result, whose proof is immediate from Theorem 4, shows that this can
allow identification with arbitrarily small X under a relatively mild restriction
on the marginal densities fj.

Corollary 3. Let Assumption 1 hold. Suppose that f (u) =
∏

j fj (uj) for all

u and that, for all j,
∂2 ln fj(uj)

∂u2j
exists and is nonzero almost surely. Then in the

linear index model r and f are identified.

5.3.3 Failure of Identification Requires Strong Restrictions

We pause to emphasize that although Corollaries 2 and 3 provide sufficient

conditions involving nonsingularity of ∂2 ln f(u)
∂u∂u′

, this is not required by Theorem

4. For a given pair (x, y), ∂2 ln f(r(y)−x)
∂u∂u′

is singular if and only if there exists a

nonzero vector c such that ∂2 ln f(r(y)−x)
∂u∂u′

c = 0. However, the sufficient condition
for identification in Theorem 4 fails only when (for values of y with positive
measure) the same vector c solves this equation for every x ∈ X. When this

happens, the columns of ∂2 ln f(r(y)−x)
∂u∂u′

do not merely exhibit linear dependence
at each x: they exhibit the same linear dependence for all x. Thus, even with
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limited support for X, failure of identification requires a strong restriction on
the joint density f .

6 Identification of the Nonlinear Index Model

Together, the results in sections 4 and 5 allow many combinations of sufficient
conditions for identification of (r, f, g) in the full nonlinear index model. We
give three examples, beginning with the identification result for nonparametric
fully simultaneous models given (with different proof) in Matzkin (2008).28

Corollary 4. Let Assumption 1 hold. Suppose that g (X) = RJ and that f is
regular on RJ . Then g is identified on X, and r and f are identified.

Proof. Since g (X) = RJ and each gj has everywhere strictly positive derivative,
g has a continuous inverse g−1 on RJ . Since the image of a path-connected
set under a continuous mapping is path-connected, X = g−1

(
RJ
)

is path-
connected. Thus by Lemma 2 and Theorem 1, g is identified on X. Redefining
X = g(X) (recall footnote 18) we then obtain a linear index model, for which
regularity of f on RJ implies the conditions of Corollary 1. �

The next result shows that if the large support assumption of Corollary 4
is retained, it also suffices that f satisfy local rectangle regularity.

Corollary 5. Let Assumption 1 hold. Suppose that g (X) = RJ and that f
satisfies local rectangle regularity. Then g is identified on X, and r and f are
identified.

Proof. Identification of g on X follows as in the proof of Corollary 4. The
result then follows from Theorem 2. �

Finally, we provide one of the many possible results demonstrating identi-
fication with only limited support for X.

Corollary 6. Let Assumption 1 hold. Suppose that X is connected, f satis-
fies local rectangle regularity, and that ∂2 ln f (u) /∂u∂u′ is nonsingular almost
everywhere. Then g is identified on X, and r and f are identified.

Proof. By Lemma 3 and Theorem 1, g is identified on X. The result then
follows from Corollary 2. �

In each case above, we proved identification of the model by showing that,
once g is known, all is as if we are in the case of a linear residual index. By
the same logic, given identification of g, the falsifiable restrictions derived in
Remarks 6, 8 and 9 imply falsifiable restrictions of the more general model.
The proof of the following remark (given in Appendix B) provides additional
falsifiable restrictions.

28Berry and Haile (2011) also provides a simple constructive proof.

23



Remark 7. Under Assumptions 1 and 2, the model defined by (5) is falsifiable.

7 Conclusion

Building on Matzkin’s (2008, 2015) work, we consider identification in a class
of nonparametric simultaneous equations models that make use of traditional
exclusion restrictions together with a residual index structure. We establish
identification of the nonlinear residual index model under considerably more
general conditions than previously recognized. Special cases of these conditions
admit a range of tradeoffs between the support of the instruments and shape
restrictions on the joint density of unobservables. These include cases in which
the instruments have arbitrarily small support. Our conditions on the support
of instruments and on the shape of the density of unobservables are verifiable,
while the other maintained assumptions of the model are falsifiable.

Together these results demonstrate the robust identifiability that holds in
models with Matzkin’s residual index structure. These results are relevant to
a wide range of applications of simultaneous equations models in economics.
Although we have focused exclusively on identification, our results provide a
more robust foundation for existing estimators and may suggest strategies for
new estimation and testing approaches.
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Appendices

A Proof of Remark 4

Below we let B (u, ε) denote an ε-ball around a point u ∈ RJ . To prove Remark
4 we rely on three lemmas.

Lemma 5. Let S be a connected compact subset of RJ with nonempty inte-
rior, and let h : S → R be a continuous function with upper contour sets
A (c) = {u ∈ S : h (u) ≥ c}. Suppose that for some c < cmax ≡ maxu∈S h(u),
A (c) ⊂int(S). Then A (c) has nonempty interior for all c < cmax.

Proof. Since A (c) ⊂int(S), we must have h (ũ) < cmax for some ũ ∈ S.
Therefore, since the continuous image of a connected set is connected, h (S)
is a nonempty interval. For any c < cmax there must then exist u ∈ S
such that max {c, c} < h(u) < cmax. Since A (c) ⊂int(S), such u lies in
{A (c) ∩ A (c)} ⊂ int(S). Thus, for sufficiently small ε > 0, we have both
B (u, ε) ⊂ S and (by continuity of h) h (û) > c ∀û ∈ B (u, ε). Thus A (c)
contains an open subset of RJ . �

Lemma 6. Let S be a connected compact subset of RJ with nonempty interior,
and let h : S → R be a continuous function with upper contour sets A (c) =
{u ∈ S : h (u) ≥ c}. Suppose that for some c ∈ R, (i) A (c) ⊂int(S) and (ii)
the restriction of h to A (c) attains a maximum c > c at its unique critical
value u∗. Then A is a continuous correspondence on (c, c].

Proof. For all c ∈ (c, c], A (c) contains u∗ and is therefore nonempty. Since S
is compact and h is continuous, A is compact-valued. Suppose upper hemi-
continuity of A fails at some point ĉ ∈ (c, c]. Then there must exist sequences
cn → ĉ and un → u such that un ∈ A (cn) for all n but u /∈ A (ĉ). The latter
requires h (u) < ĉ, since limn→∞ u

n must lie in S. But by continuity of h this
would imply h(un) < cn for sufficiently large n—a contradiction. To show
lower hemi-continuity,29 take arbitrary ĉ ∈ (c, c], û ∈ A (ĉ), and cn → ĉ. If
û = u∗ then û ∈ A (c) for all c ≤ c, so with the constant sequence un = û we
have un ∈ A (cn) for all n and un → û. So now suppose that û 6= u∗. Define a
sequence un by

un = arg min
u∈A(cn)

‖u− û‖ (A.1)

so that un ∈ A (cn) by construction. We now show un → û. Take arbitrary
ε > 0. Since h is continuous and h (û) > c by construction, for sufficiently
small δ > 0 we have B (û, δ) ⊂ A (c). Thus, {B (û, ε) ∩ A (c)} contains an

29This argument is similar to that used to prove Proposition 2 in Honkapohja (1987).
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open set. If h (u) ≤ h (û) for all u in that set, û would be a critical value of
the restriction of h to A (c). Since û is not a critical value, there must exist
uε ∈ {B (û, ε) ∩ A (c)} such that h (uε) > h (û). Since h (û) ≥ ĉ, this implies
h (uε) > ĉ. Recalling that cn → ĉ, for n sufficiently large we then have (by
continuity of h) h (uε) > cn and, therefore, uε ∈ A (cn). So, recalling (A.1),
for n sufficiently large we have ‖un − û‖ ≤ ‖uε − û‖ < ε. �

Lemma 7. Let S be a connected compact subset of RJ with nonempty interior,
and let h : S → R be a continuous function with upper contour sets A (c) =
{u ∈ S : h (u) ≥ c}. Suppose that for some c, (a) A (c) ∈int(S) and (b) the
restriction of h to A (c) attains a maximum c > c at its unique critical value
u∗. Then A (c) is a connected set for all c ∈ (c, c).

Proof. Proceeding by contradiction, suppose that for some c ∈ (c, c) the upper
contour set A (c) is the union of disjoint nonempty open (relative to A (c))
sets A1 and A2. Without loss let u∗ lie in A1. Because A (c) ∈int(S), and h is
continuous, A2 must be a compact subset of RJ . The restriction of h to A2

must therefore attain a maximum u∗∗. But since u∗∗ must lie in the interior
of A (c) , u∗∗ must be a critical value of h on A (c). �

With these preliminary results, we can now prove Remark 4, restated below
for convenience. Recall that for c ∈ R and Σ ⊂ RJ we let A (c; Σ) denote the
upper contour set of the restriction of f to Σ.

Remark 4. Suppose that Condition 1 holds. Then f satisfies local rectangle
regularity.

Proof. We first show that, for any J-dimensional rectangleM, there exists c0 ∈
(c, c̄) such that A (c0;S) is contained in a J-dimensional rectangle N that is
smaller thanM. Because S is compact and f is continuous, A (c;S) is compact
for all c. Further, by Lemma 6, A (c;S) is a continuous correspondence on
(c, c].30 Thus maxu∈A(c;S) uj and minu∈A(c;S) uj are continuous in c ∈ (c, c],
implying that the function H : (c, c]→ R defined by

H (c) = max
j

max
u+∈A(c;S)
u−∈A(c;S)

u+j − u−j

is continuous. Thus, since H (c) = 0, for some c0 ∈ (c, c) the J-dimensional
rectangle (Lemma 5 ensures that each interval is nonempty)

N = ×j
(

min
u−∈A(c0;S)

u−j , max
u+∈A(c0;S)

u+j

)
(A.2)

is smaller than M. To complete the proof, we show that f is regular on N .
By construction u∗ ∈ A (c0;S) ⊂ N . Now take arbitrary j and any uj 6= u∗j

30In Lemmas 5–7, let A (c) = A (c;S) and let h be the restriction of f to S.
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such that (uj, u−j) ∈ N for some u−j. By Lemma 7 and the definition of N ,
there must also exist ũ−j such that (uj, ũ−j) ∈ A (c0;S). Let û (uj) solve

max
û∈A(c;S): ûj=uj

f (û) .

This solution must lie in A (c0;S) ⊂ N and satisfy the first-order conditions

∂f (û (uj))

uk
= 0 ∀k 6= j.

Since uj 6= u∗j , we have
∂f(û(uj))

uj
6= 0. �

B Other Proofs Omitted from the Text

Proof of Lemma 1. With (5), part (iii) of Assumption 1 immediately implies
(a) and (b). Parts (iii) and (iv) then imply that r has a continuous inverse
r−1 : RJ → RJ . Connectedness of Y follows from the fact that the continuous
image of a connected set (here RJ) is connected. Since r−1 is continuous and
injective and r−1

(
RJ
)

= Y, Brouwer’s invariance of domain theorem implies
that Y is an open subset of RJ . �

Proof of Remark 1. Fix an arbitrary x ∈ X. By (12),

∂φ(y∗ (x) |x)

∂xj
= 0 (B.1)

if and only if, for u∗ = r (y∗ (x)) − g (x), ∂f(u∗)
∂uj

= 0 ∀j. Thus, the existence

of the point u∗ in part (i) is equivalent to existence of y∗ (x) ∈ Y such that
(B.1) holds. This is verifiable. Now observe that for X (x) and U (x) as
defined in Assumption 2,

x ∈ X (x) ⇐⇒ (r (y∗ (x))− g (x)) ∈ U (x) .

Thus, part (ii) holds if and only if there exists a rectangle X (x) =×j
(
xj (x) , xj (x)

)
⊂

X, with x ∈ X (x) such that for all j and almost all xj ∈
(
xj (x) , xj (x)

)
there

exists x̂ (xj) ∈ X (x) satisfying

x̂j (xj) = xj
∂φ(y∗ (x) |x̂ (xj))

∂xj
6= 0

∂φ(y∗ (x) |x̂ (xj))

∂xk
= 0 ∀k 6= j.
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Satisfaction of this condition is determined by the observables, implying that
part (ii) is verifiable. �

Proof of Remark 7. The proof of Lemma 2 began with an arbitrary x ∈ X
and the associated y∗ (x) defined by (16). It was then demonstrated that for
some open rectangle X (x) 3 x the ratios

∂gj(x
′
j)/∂xj

∂gj(x0j)/∂xj

are identified for all j = 1, . . . , J , all x0 ∈ X (x)\x and all x′ ∈ X (x)\x. Let

∂gj(x
′
j)/∂xj

∂gj(x0j)/∂xj
[x]

denote the identified value of
∂gj(x

′
j)/∂xj

∂gj(x0j )/∂xj
. Now take any point x̃ ∈ X (x)\x

and repeat the argument, replacing y∗ (x) with the point y∗∗ (x̃) such that
(assuming the models is correctly specified) r (y∗∗ (x̃)) = g (x̃) + u∗∗ where
∂f (u∗∗) /∂uj = 0 ∀j and f is regular on a rectangle around u∗∗ (u∗∗ may
equal u∗, but this is not required). For some open rectangle X (x̃), this again
leads to identification of the ratios

∂gj(x
′
j)/∂xj

∂gj(x0j)/∂xj

for all j = 1, . . . , J , all x0 ∈ X (x̃)\x̃ and all x′ ∈ X (x̃)\x̃. Let

∂gj(x
′
j)/∂xj

∂gj(x0j)/∂xj
[x̃]

denote the identified value of
∂gj(x

′
j)/∂xj

∂gj(x0j )/∂xj
. Because both x∗ and x̃ are in the

open set X (x), {X (x) ∩ X (x̃)} 6= ∅. Thus we obtain the verifiable restriction

∂gj(x
′
j)/∂xj

∂gj(x0j)/∂xj
[x] =

∂gj(x
′
j)/∂xj

∂gj(x0j)/∂xj
[x̃]

for all j and all pairs (x0, x′) ∈ {X (x) ∩ X (x̃)} . �

C Falsifiability of the Linear Index Model

Here we provide two additional results on falsifiability of the linear index model
when Assumption 3 (or the equivalent Hessian condition given in Lemma 4)
holds. First we point out that Theorem 3 proves separate identification of
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the derivatives {∂r(y)/∂yk}k=1,...,J at all y and the derivatives ∂ ln |J(y)|
∂yk

for all
k. Since knowledge of the former implies knowledge of the latter, under the
assumptions of Theorem 3 we have the falsifiable restrictions

∂

∂yk

∣∣∣∣∣∣∣


∂r1(y)
∂y1

. . . ∂r1(y)
∂yJ

...
. . .

...
∂rJ (y)
∂y1

. . . ∂rJ (y)
∂yJ


∣∣∣∣∣∣∣ =

∂ ln |J(y)|
∂yk

∀k. (C.1)

Remark 8. Under Assumption 3, the model defined by (27) and Assumption
1 is falsifiable.

Under another verifiable condition—that there exist two sets of points sat-
isfying the rank condition of Assumption 3—the maintained assumptions of
the model are falsifiable.

Remark 9. Suppose that, for some y ∈ Y, X contains two sets of points
x̃ =

(
x̃0, . . . , x̃J

)
and ˜̃x =

(
˜̃x0, . . . , ˜̃xJ

)
such that (i) x̃ 6= ˜̃x and (ii) D (x̃, y)

and D
(
˜̃x, y
)

have full rank. Then the model defined by (27) and Assumption

1 is falsifiable.

Proof. By Lemma 3, ∂r(y)/∂yk is identified for all k using only x̃ or only
˜̃x. Letting ∂r(y)/∂yk [x̃] and ∂r(y)/∂yk

[
˜̃x
]

denote the implied values of

∂r(y)/∂yk, we obtain the verifiable restrictions ∂r(y)/∂yk [x̃] = ∂r(y)/∂yk

[
˜̃x
]

for all k. �

D Differenced Derivatives

In section 5.3 we exploited the assumed twice-differentiability of f . It is
straightforward to extend our arguments to cases without this additional dif-
ferentiability by replacing the matrix of second derivatives with differences of
the first derivatives. To see this, suppose that (35) holds for some nonzero c.
This implies that d (y, x)′ c is constant across all x ∈ X; i.e., for any x and x′

in X,
[d (y, x)− d (y, x′)]

′
c = 0.

Since the first component of d (y, x)− d (y, x′) is zero, this is equivalent to the
condition 

∂ lnφ(y|x)
∂x1

− ∂ lnφ(y|x′)
∂x1

...
∂ lnφ(y|x)

∂xJ
− ∂ lnφ(y|x′)

∂xJ


′

c̃ = 0 ∀x ∈ X, x′ ∈ X. (D.1)

Thus, for identification to (possibly) fail there must exist a nonzero vector c̃
satisfying (D.1).
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