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1 Introduction 

Much of the theory of mechanism design with quasilinear utility can be developed from a 
linear programming perspective, with duality-based arguments taking center stage (Vohra, 
2011). The fundamental duality of linear programming also plays a central role in the theory 
of matching models with quasilinear (transferable) utility, from the theory’s inception in 
Shapley and Shubik (1972) to the more recent adoption of optimal transport methods (cf. 
Galichon, 2016) based on the Kantorovich duality for infinite dimensional linear programs 
(Villani, 2009). 

In the context of matching problems with transferable utility (in their guise as optimal 
transportation problems) it is well understood that the linear programming duality gives 
rise to a second layer of duality relationships: stable outcomes in such models are composed 
of optimal assignments (obtained as the solution to a primal linear programming problem) 
together with optimal utility profiles (obtained as the solution to the dual linear programming 
problem), with the utility profiles being generalized conjugate duals of each other and the 
optimal assignment being drawn from the argmax correspondence of the maximization 
problems inducing this duality (Galichon, 2016, Chapter 7). Generalized conjugate duality 
also plays a prominent role in mechanism design with quasilinear utility, giving (for instance) 
rise to the characterization of implementable assignments in Rochet (1987). This is no 
coincidence: as Carlier (2003) has shown, testing for the implementability of a given 
assignment is equivalent to checking whether the assignment solves an optimal transportation 
problem (cf. Galichon, 2016, Section 9.6.2). 

Models based on quasilinear utility are ill-suited for mechanism design problems in which 
the stakes are sufficiently large to make income effects or risk aversion salient (Mirrlees, 1971; 
Stiglitz, 1977), and are also ill-suited for matching problems in which—either because of 
income effects or because of the structure of the underlying bilateral relationship—utility is 
imperfectly transferable (Legros and Newman, 2007; Chiappori and Salanié, 2016; Chiappori, 
2017; Galichon, Kominers, and Weber, 2016). 

This paper studies implementation without invoking quasilinearity. In so doing, we lose 
access to the linear programming duality. Nonetheless, we find that much of the conjugate 
duality structure and the link between matching problems and implementation problems 
remains. 
The first part of the paper, Sections 2 and 3, introduces a pair of “implementation 

maps” and shows that they satisfy a duality relationship, known as a Galois connection 
(Birkhoff, 1995, p. 124), which is a more abstract version of the generalized conjugate duality 
relationship from the quasilinear case. Implementable utility profiles are abstract conjugate 
duals of each other, and implementable assignments are drawn from the corresponding 
argmax correspondence. 

The second part of the paper, Sections 4 to 6, illustrates the potential application of our 
results by developing an “abstract duality” approach to two-sided matching problems and 
adverse-selection principal-agent problems. 

Section 4 examines stable outcomes in two-sided matching models. We show that a profile 
is implementable if and only if it corresponds to a stable match in a naturally corresponding 
matching model. We then leverage familiar existence results for matching models with 
a finite number of agents in order to obtain an existence result for more general models. 
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We also derive lattice results for sets of stable utility profiles from the underlying duality 
structure. 
Section 5 turns to adverse-selection principal-agent models. Our first finding is an 

existence result. The important step here is that we can formulate the principal’s problem as 
a nonlinear pricing problem in which the principle maximizes over the set of implementable 
tariffs. We next show that, unlike the quasilinear case, the solution to the principal’s problem 
may leave slack in the participation constraint for every type of agent. We explore two 
sufficient conditions for a solution to entail a binding participation constraint. One is a 
strong implementability condition that captures the essential implication of quasilinearity in 
a more general form, and the other is a private values condition on the principal’s payoff. In 
both cases, the argument exploits the lattice structure of the set of implementable utility 
profiles. 
Section 6 considers the special case in which a single-crossing condition holds and type 

spaces are one dimensional. We show that there exists a unique stable match that is positively 
assortative. With our duality results in place, the proof is a straightforward generalization 
of the one which yields the existence of a unique solution to the optimal transport problem 
under supermodularity conditions. It then follows almost immediately from the parallels 
between matching and principal-agent models that an assignment is implementable if and 
only if it is increasing, just as in the quasilinear case. 

Implementation 

2.1 Basic Ingredients 

The basic ingredients of our model are two sets, X and Y , and a function φ : X × Y × R → R. 
We offer two interpretations of these ingredients. 

Matching model. X and Y are the possible types of two disjoint sets of agents that we 
refer to as buyers (X) and sellers (Y ). The function φ specifies the utility frontier describing 
the feasible utilities that can be realized in a match between buyer type x and seller type 
y. That is, u = φ(x, y, v) is the maximal utility buyer type x can obtain when matched 
with seller type y and providing utility v to the seller. We complete the specification of a 
two-sided matching model in Section 4 by specifying distributions and reservation utilities 
for the buyer and seller types. 

Principal-agent model. X is a set of possible types for an agent, Y is a set of possible 
decisions to be taken by the agent, and u = φ(x, y, v) is the utility of an agent of type x, 
who takes decision y and provides monetary transfer v to a principal. We complete the 
specification of an adverse-selection principal-agent model in Section 5 by specifying a utility 
function for the principal, her beliefs over the agent’s types, and reservation utilities for the 
agent’s types. 

In the following we will often refer to φ as the generating function as it plays the same 
role in our analysis as the generating function of a duality plays in Penot (2010). 
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Assumption 1. The sets X and Y are compact subsets of metric spaces. The function 
φ : X × Y × R → R is continuous, strictly decreasing in its third argument, and satisfies the 
full range condition φ(x, y, R) = R for all (x, y) ∈ X × Y . 

The conditions on the generating function in Assumption 1 are satisfied if φ is quasilinear, 
that is, there exists a continuous function f : X × Y → R such that φ(x, y, v) = f(x, y) − v. 
Our main interest is in generating functions that are not quasilinear. 
In the context of the matching model, the assumption that φ is strictly decreasing 

excludes the case of nontransferable utility introduced in Gale and Shapley (1962), in which 
there is no possibility for compensatory transfers between a pair of matched agents. If the 
generating function is quasilinear, we have perfectly transferable utility as considered in 
Shapley and Shubik (1972), with Assumption 1 also allowing for imperfectly transferable 
utility as in Demange and Gale (1985).1 Legros and Newman (2007, Section 5), Nöldeke and 
Samuelson (2015, Section 2), and Galichon, Kominers, and Weber (2016, Section 3) present 
economic examples giving rise to non-quasilinear generating functions in matching models. 
In the principal-agent model, strict monotonicity of φ in its third argument squares with the 
interpretation of v as a monetary transfer, while going beyond the case in which the agent’s 
utility function is quasilinear in the monetary transfer v by allowing for income effects. The 
importance of doing so in models of optimal nonlinear pricing has been emphasised in Wilson 
(1993, Chapter 7). 

The essential implication of the full range condition in Assumption 1 is that (for example) 
for any agent type x and decisions y and ỹ, there are transfers under which the agent prefers 
decision y, as well as transfers under which the agent prefers decision ỹ. Demange and Gale 
(1985, Section 3) discuss the full range condition in the context of the matching model. In the 
principal-agent model the condition ensures that the taxation principle is applicable without 
taking recourse to tariffs specifying infinite transfers (cf. Remark 1). All of our analysis goes 
through if A and B are open intervals in R and the generating function φ : X × Y × A → B 
satisfies the counterpart to Assumption 1 with φ(x, y, A) = B. 

2.2 The Inverse Generating Function 

Assumption 1 ensures that for all x ∈ X, y ∈ Y and u ∈ R, there is a unique value v ∈ R 
satisfying u = φ(x, y, v), so that the inverse generating function ψ : Y × X × R → R specified 
as the solution to 

u = φ(x, y, ψ(y, x, u)) (1) 

is well-defined and satisfies the “reverse” inverse relationship 

v = ψ(y, x, φ(x, y, v)). (2) 

The inverse generating function inherits the properties of the generating function stated 
in Assumption 1: ψ is continuous, strictly decreasing in its third argument, and satisfies 
ψ(y, x, R) = R for all (y, x) ∈ Y × X. (The straightforward verification is in Appendix 

1Our terms for the case distinction between perfectly transferable, imperfectly transferable, and nontrans-
ferable follow (for example) Chade, Eeckhout, and Smith (2017) and Nöldeke and Samuelson (2015). Other 
authors (e.g. Legros and Newman, 2007) use the term nontransferable utility whenever utility is not perfectly 
transferable. 
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B.1.) Throughout the following, we freely make use of the compactness of X and Y and 
the properties of the generating function φ and its inverse ψ without explicitly referring to 
Assumption 1 or the argument in Appendix B.1. 

In the context of the matching model the interpretation of ψ is analogous to the one 
given for φ: the utility v = ψ(y, x, u) is the maximal utility a seller type y can obtain when 
matched with a buyer type x and providing utility u to the buyer.2 In the principal-agent 
model ψ identifies the largest transfer an agent of type x can pay for the decision y while 
obtaining utility level u. In either context, as indicated by (1)–(2), the inverse generating 
function contains the same information about preferences as the generating function. 

2.3 Profiles, Assignments, and Implementability 

Let B(X) denote the set of bounded functions from X to R and let B(Y ) denote the set 
of bounded functions from Y to R. We refer to u ∈ B(X) and v ∈ B(Y ) as profiles. We 
endow B(X) and B(Y ) with the supremum norm, denoted by k · k in both cases, making 
them complete metric spaces for the induced metric. We order B(X) and B(Y ) with the 
pointwise partial order inherited from the standard order ≥ on R. For simplicity, we also 
denote these pointwise partial orders on B(X) and B(Y ) by ≥. The join u ∨ u0 and meet 

0u ∧ u0 are respectively the pointwise maximum and minimum of the profiles u and u . With 
these operations the sets B(X) and B(Y )) are conditionally complete lattices.3 

Let Y X denote the set of functions from X to Y and let XY be the set of functions 
from Y to X. Any function y ∈ Y X and any function x ∈ XY will be referred to as an 
assignment. 
We say that (u, y) ∈ B(X) × Y X is implementable if there exists a profile v ∈ B(Y ) 

y∈Y 

that implements (u, y), meaning that the conditions 

y(x) ∈ Yv(x) := argmax 
y∈Y 

φ(x, y, v(y)) (3) 

u(x) = max φ(x, y, v(y)) (4) 

hold for all x ∈ X (which, obviously, implies that the argmax correspondence Yv : X � Y 
defined in (3) is nonempty-valued). Similarly, (v, x) ∈ B(Y ) × XY is implementable if there 
exists a profile u ∈ B(X) implementing (v, x), meaning that for all y ∈ Y , 

x(y) ∈ Xu(y) := argmax ψ(y, x, u(x)) (5) 
x∈X 

v(y) = max ψ(y, x, u(x)). (6) 
x∈X 

We also say that a profile v implements the profile u (assignment y) if there exists y 
(there exists u) such that v implements (u, y). We use the analogous terms for a profile 

2Observe that in the definition of ψ the order of the first two arguments has been exchanged, so that in 
the matching model for both φ and ψ the first argument gives the type of the agent whose maximal utility 
is specified and the second argument gives the type of his or her partner. In the quasilinear case we have 
ψ(y, x, u) = g(y, x) − u, where g(y, x) = f(x, y) holds for all (x, y) ∈ X × Y . 

3A lattice is conditionally complete if every nonempty subset that is bounded has both an infimum and 
a supremum. Here and throughout the following we simply refer to a set of profiles in B(X) or B(Y ) as 
being bounded without distinguishing between boundedness in order and boundedness in norm as these two 
notions are equivalent in our setting. 
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u implementing the profile v and assignment x. Profiles and assignments are said to 
be implementable if there exists a profile implementing them. We let I(X) and I(Y ) 
denote the sets of implementable profiles, so that (for example) I(X) = {u ∈ B(X)|∃v ∈ 
B(Y ) s. t. (4) holds}. 
In the matching model u is a utility profile for buyers, whereas v is a utility profile 

for sellers. An assignment y specifies for each buyer type x a seller type y = y(x) with 
whom x matches; the interpretation of an assignment x is analogous.4 The utility profile 
v implements (u, y) if every buyer type x finds it optimal to select seller type y(x) as a 
partner and by doing so obtains the utility u(x), given that sellers have to be provided with 
the utility profile v. The interpretation of conditions (5)–(6) is analogous. 
In the principal-agent model u specifies a utility level for each agent type, whereas an 

assignment y specifies a decision for each agent type. The profile v is a non-linear tariff 
offered by the principal to the agent, with v(y) specifying the transfer to the principal at 
which any type of agent can purchase decision y. Such a tariff implements the pair (u, y) 
if all agent types find it optimal to choose the decisions specified in y when faced with 
the tariff v, and u is the resulting rent function. We may think of a type assignment x as 
specifying for each decision y an agent type x(y) to whom the principal wants to sell decision 
y, as in Nöldeke and Samuelson (2007). Though the interpretation of a rent function u 
implementing a pair (v, x) is less obvious in the principal-agent model, Section 5 shows that 
the notion of an implementable tariff can nonetheless be helpful. 

Remark 1 (Implementability and Direct Mechanisms). In defining implementability we have 
taken a nonlinear pricing (rather than a direct mechanism) approach and, in addition, have 
required the profiles u and v to be both bounded. The taxation principle (e.g., Guesnerie 
and Laffont, 1984; Rochet, 1985) is applicable in our setting and ensures that there is no loss 
of generality in using a nonlinear pricing approach when studying principal-agent models. 
What is less obvious is that the restriction to bounded profiles is innocent, but this follows 
from Assumption 1.5 Appendix B.2 verifies this claim. 

2.4 Strongly Implementable Assignments 

We say that a profile u ∈ B(X) satisfies the initial condition (x0, u0) ∈ X × R if u(x0) = u0 

holds and say that an assignment y ∈ Y X is strongly implementable if for all initial conditions 
(x0, u0) there exists u such that (u, y) is implementable and u satisfies the initial condition. 
Similarly, a profile v ∈ B(Y ) satisfies the initial condition (y0, v0) ∈ Y × R if v(y0) = v0 

holds and an assignment x ∈ XY is strongly implementable if for all initial conditions (y0, v0) 
there exists v such that (v, x) is implementable and v satisfies the initial condition. An 
assignment is thus strongly implementable if it can be implemented while pegging the utility 
level of an arbitrary agent at an arbitrary level. 

4Note that the definition of an assignment does not incorporate any notion of feasibility (e.g., an assignment 
x could specify that all types of the seller match with the same type of buyer). In the matching context an 
assignment is sometimes referred to as a pre-matching (Adachi, 2000) or a semi-matching (Lawler, 2001). 

5In the absence of the full range condition from Assumption 1 this conclusion may fail. To see this, it 
suffices to consider a direct mechanism in which type x obtains utility u from choosing y, but there exists y 0 

such that limv→∞ φ(x, y 0 , v) > u. Then, no matter what transfer v(y 0) ∈ R is specified, type x will prefer to 
choose y 0 rather than y. 
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With a quasilinear generating function every implementable assignment is strongly 
implementable, so that the distinction between these two concepts is moot. This follows 
from the translational invariance of the incentive constraints under quasilinearity: u(x) = 
f(x, y(x))−v(y(x)) = maxy∈Y [f(x, y) − v(y)] implies u(x)−t = f(x, y(x))−(v(y(x))+t) = 
maxy∈Y [f(x, y) − (v(y) + t)] for all x ∈ X and t ∈ R, so that by choosing the constant t 
appropriately a tariff v implementing an assignment y can be adjusted to satisfy any given 
initial condition while continuing to implement y (with an analogous argument applying to 
implementable x ∈ XY ). 
In general, the implementability of an assignment does not imply its strong imple-

mentability. This causes some salient differences between the quasilinear and the general 
case. For example, if every implementable profile is strongly implementable, then—just 
as in the quasilinear case—the participation constraint must be binding for some type of 
agent in a solution to the principal-agent model (Proposition 10), whereas this property 
may fail otherwise (see the example in Appendix C.2). Remark 2 and Section 6.2 identify 
circumstances in which all implementable profiles are strongly implementable, ensuring 
that an important structural property of the quasilinear case is preserved, even though the 
generating function is not quasilinear. 

Remark 2 (A Sufficient Condition for Strong Implementability). Appendix B.3 shows that 
every implementable assignment is strongly implementable if the generating function satisfies 

0 0[φ(x, y, v) − φ(x, y , v 0)] = [φ(x, y, v̂) − φ(x, y , v̂0)] 

=⇒ (7) 
0 0 0 0 0 0[φ(x , y, v) − φ(x , y , v 0)] = [φ(x , y, v̂) − φ(x , y , v̂0)] 

0 0for any x, x , y and y0 and any v, v0, v̂ and v̂ . 
Condition (7) imposes a restriction across types, demanding that whatever change in 

tariff is required to preserve all utility differences for one type will also preserve all utility 
differences for any other type. Condition (7) holds, of course, if the characteristic function 
is quasilinear. More generally, it is satisfied if the characteristic function takes the form 
φ(x, y, v) = f(x, y) − h(y, v). 
We note that in the context of the principal-agent model condition (7) embodies no 

restriction on the preferences of a single agent type x over (y, v) pairs beyond the weak 
regularity properties from Assumption 1, and hence allows arbitrary income effects. This is 
in contrast to the quasilinear case, which implies the absence of income effects. 

Duality 

In this section we characterize implementable profiles and assignments. Section 3.1 introduces 
a pair of functions between sets of profiles that we refer to as implementation maps, and 
shows that these maps are a Galois connection between the sets of profiles B(X) and B(Y ). 
Equivalently, these maps are dualities that are dual to each other. Section 3.2 uses the 
structure of the implementation maps to characterize implementable profiles. Building on 
these results, Section 3.3 characterizes implementable assignments and Section 3.4 establishes 
some key properties of sets of implementable profiles. 
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3.1 Implementation Maps 

Consider any profile v ∈ B(Y ). As X and Y are compact and φ is continuous, setting 
u(x) = supy∈Y φ(x, y, v(y)) for all x ∈ X results in a bounded profile u ∈ B(X). Together 
with a similar argument for v(y) = supx∈X ψ(y, x, u(x)), this ensures that the implementation 
maps Φ : B(Y ) → B(X) and Ψ : B(X) → B(Y ) obtained by setting 

Φv(x) = sup φ(x, y, v(y)) ∀x ∈ X (8) 
y∈Y 

Ψu(y) = sup ψ(y, x, u(x)) ∀y ∈ Y (9) 
x∈X 

are well-defined. Appendix A.1 proves that these maps are also reasonably well-behaved: 

Lemma 1. Let Assumption 1 hold. The implementation maps Φ : B(Y ) → B(X) and 
Ψ : B(X) → B(Y ) are continuous and map bounded sets into bounded sets. 

We next show that Φ and Ψ are a Galois connection (Birkhoff, 1995, p. 124) between 
the sets B(X) and B(Y ). That is, 

u ≥ Φv ⇐⇒ v ≥ Ψu (10) 

holds for all u ∈ B(X) and v ∈ B(Y ).6 Equivalently, the implementation maps are dualities 
that are dual to each other, where a duality is a map between two partially ordered sets 
with the property that for any subset of the domain which has an infimum, the image of 
the infimum of that set is the supremum of its image (Penot, 2010, Definition 1), and the 
implementation maps are dual to each other if 

Φv = inf{u|v ≥ Ψu} and Ψu = inf{v|u ≥ Φv} 

holds for all u ∈ B(X) and v ∈ B(Y ).7 

Proposition 1. Let Assumption 1 hold. The implementation maps Φ and Ψ are a Galois 
connection or, equivalently, are dualities that are dual to each other. 

Proof. To obtain (10) and hence the claim that Φ and Ψ are a Galois connection observe: 

u ≥ Φv ⇐⇒ u(x) ≥ sup φ(x, y, v(y)) for all x ∈ X 
y∈Y 

⇐⇒ u(x) ≥ φ(x, y, v(y)) for all x ∈ X and y ∈ Y 

⇐⇒ ψ(y, x, u(x)) ≤ v(y) for all x ∈ X and y ∈ Y 

⇐⇒ v(y) ≥ sup ψ(y, x, u(x)) for all y ∈ Y 
x∈X 

⇐⇒ v ≥ Ψu, 

6There is an alternative definition of a Galois connection in which the second inequality in (10) is reversed 
(Davey and Priestley, 2002, Chapter 7). 

7Singer (1997, Definition 5.1) defines a duality as a map between complete lattices with the property that 
the image of the infimum of any set is the supremum of the image of that set. Penot’s definition provides the 
obvious generalization to the situation under consideration here in which B(X) and B(Y ) are lattices, but 
are not complete. The notion of maps dual to each other is similarly adapted from Singer (1997, Definition 
5.2). 
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where the first equivalence holds by the definition of Φv in (8), the second is from the 
definition of the supremum, the third uses (2) and that the inverse generating function ψ is 
strictly decreasing in its third argument, the fourth is by the definition of the supremum, 
and the fifth holds by the definition of Ψu in (9). 

The result that Φ and Ψ are a Galois connection if and only if they are dualities that are 
dual to each other is standard for maps between complete lattices (Singer, 1997, Theorem 
5.4). Appendix A.2 contains a proof, building on Corollary 1 below, adapted to our setting 
in which the lattices B(X) and B(Y ) are not complete. 

To interpret the result that Φ and Ψ are a Galois connection consider the matching 
context. Suppose we have a pair of profiles u and v such that each buyer x ∈ X is content 
to obtain u(x) rather than matching with any seller y ∈ Y and providing that seller with 
utility v(y), that is, the inequality u ≥ Φv holds. It is then intuitive that every seller y ∈ Y 
would similarly weakly prefer to obtain utility v(y) to matching with any buyer x ∈ X who 
insists on receiving utility u(x), that is, the inequality v ≥ Ψu holds. Reversing the roles of 
buyers and sellers in this explanation motivates the other direction of the equivalence in 
(10). 

The statements in the following corollary are standard implications of the fact that Φ 
and Ψ are a Galois connection. Our terms for these follow Davey and Priestley (2002, p. 
159); for completeness Appendix A.2 provides a proof. 

Corollary 1. Let Assumption 1 hold. The implementation maps Φ and Ψ 
[1.1] satisfy the cancellation rule, that is, for all u ∈ B(X) and v ∈ B(Y ): 

v ≥ ΨΦv and u ≥ ΦΨu; (11) 

[1.2] are order reversing, that is, for all u1, u2 ∈ B(X) and v1, v2 ∈ B(Y ): 

v1 ≥ v2 =⇒ Φv1 ≤ Φv2 and u1 ≥ u2 =⇒ Ψu1 ≤ Ψu2; (12) 

[1.3] satisfy the semi-inverse rule, that is, for all u ∈ B(X) and v ∈ B(Y ): 

ΨΦΨu = Ψu and ΦΨΦv = Φv. (13) 

To provide some interpretation for (11)–(13) we focus on the first statement in each case 
and consider the principal-agent model. The order-reversal property (Corollary 1.2) asserts 
that all agent types are better off when the prices specified by the tariff are low rather than 
high. Intuitively, the tariff ΨΦv appearing in the cancellation rule (Corollary 1.1) specifies 
for each decision y ∈ Y the highest payment such that some agent type x can achieve the 
same utility from choosing y as from maximizing against the tariff v (i.e., Φv(x)), thereby 
making ΨΦv an “envelope tariff.”8 The assertion of the cancellation rule then is that the 
envelope tariff ΨΦv obtained from the tariff v specifies payments no higher than the original 
tariff v. Finally, the semi-inverse rule (Corollary 1.3) indicates that the inequality from the 

8In convex analysis, the counterpart of ΨΦv is referred to as the convex envelope of v, and is the greatest 
convex minorant of v (Galichon, 2016, Proposition D.12). An analogous property holds here. First, from the 
cancellation property, ΨΦv is a minorant of v. Second, consider u satisfying Ψu ≤ v. Applying the order 
reversal property twice yields ΨΦΨu ≤ ΨΦv and therefore, from the semi-inverse rule Ψu ≤ ΨΦv. 
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cancellation rule turns into an equality when the original tariff v is given by Ψu, and hence 
specifies the highest payments for which, for any decision y, some agent type x can achieve 
utility u(x) by choosing decision y. 

Remark 3 (Quasilinearity and Generalized Conjugate Duality). In the quasilinear case the 
definitions of the implementation maps in (8) and (9) reduce to 

Φv(x) = sup [f(x, y) − v(y)] 
y∈Y 

Ψu(y) = sup [g(y, x) − u(x)] , 
x∈X 

where g(y, x) = f(x, y) holds for all (x, y) ∈ X × Y (cf. footnote 2). In this case Φv 
is a familiar object, namely the f -conjugate of v, and Ψu is the g-conjugate of u (cf. 
Ekeland, 2010, Section 3.2). The properties noted in Corollary 1 generalize corresponding 
properties from the theory of (generalized) conjugate duality. Indeed, the cancellation 
property (Corollary 1.1) corresponds to the statement that the biconjugate of any function 
is smaller than the function itself and the semi-inverse rule (Corollary 1.3) corresponds 
to the statement that a conjugate function is its own biconjugate. These are well-known 
implications of conjugate duality (cf. Ekeland, 2010, Section 3.4). Martinez-Legaz and Singer 
(1990, 1995) offer additional illustrations of how results for abstract dualities specialize to 
familiar results from conjugate duality when the generating function is quasilinear. 

3.2 Implementable Profiles 

Comparing the implementation condition (4) and the definition of the implementation map 
Φ in (8) it is clear that v ∈ B(Y ) implements u ∈ B(X) if and only if u = Φv holds and, in 
addition, the suprema in (8) are attained for all x ∈ X, that is, the argmax correspondence 
Yv defined in (3) is nonempty-valued. Consequently, the set of implementable profiles I(X) 
is contained in the image ΦB(Y ) of the implementation map Φ. Similarly, I(Y ) ⊆ ΨB(X) 
holds. 
The following proposition shows that the reverse set inclusions also hold. Hence, the 

images of the implementation maps are precisely the sets of implementable profiles. In the 
course of proving this result, it is straightforward to also show that every implementable 
profile is continuous.9 Let C(X) ⊆ B(X) denote the set of continuous (and hence necessarily 
bounded, since X is compact) functions from X to R, with C(Y ) analogous. Appendix A.3 
shows: 

Proposition 2. Let Assumption 1 hold. A profile is implementable if and only if it is 
in the image of the relevant implementation map. Further, every implementable profile is 
continuous. That is, 

I(X) = ΦB(Y ) ⊆ C(X) and I(Y ) = ΨB(X) ⊆ C(Y ). (14) 

The first step in the proof of Proposition 2 shows that every lower semicontinuous 
profile implements its image under the relevant implementation map and that this image is 

9Weibull (1989) has obtained related results in an optimal taxation model with one-dimensional types 
and decisions. 
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continuous. The proof is then completed by showing that the image of any profile under the 
relevant implementation map is the same as the image of its lower semicontinuous hull. 
As a direct implication of Berge’s maximum theorem, the continuity of implementable 

profiles and of the generating function ensures that the argmax correspondences associated 
with implementable profiles are well-behaved. In particular, as the argmax correspondences 
are nonempty-valued, implementable profiles implement their images under the relevant 
implementation map: 

Corollary 2. Let Assumption 1 hold. If v ∈ I(Y ), then the argmax correspondence Yv 

is nonempty-valued and compact-valued and upper hemicontinuous and v implements Φv. 
Analogously, if u ∈ I(X), then the argmax correspondence Xu is nonempty-valued and 
compact-valued and upper hemicontinuous and u implements Ψu. 

Combining Proposition 2 with the semi-inverse rule from Corollary 1.3 yields a charac-
terization of implementable profiles: 

Proposition 3. Let Assumption 1 hold. 
[3.1] u ∈ B(X) is implementable if and only if u = ΦΨu. 
[3.2] v ∈ B(Y ) is implementable if and only if v = ΨΦv. 

Proof. We prove Proposition 3.1; 3.2 is analogous. 
If u = ΦΨu, then obviously u ∈ ΦB(X) and hence (by Proposition 2) u ∈ I(Y ). 

Conversely, if u is implementable, then there exists v ∈ B(Y ) such that u = Φv, and hence 
(by Corollary 1.3) we have u = ΦΨu. 

For any Galois connection, the counterparts to the fixed point conditions u = ΦΨu and 
v = ΨΦv characterize the images of the constituent maps (Singer, 1997, Corollary 5.6). 
Proposition 2 allows us to strengthen this result from a characterization of the images of 
the implementation maps (which we are not interested in as such) to a characterization of 
implementable profiles. 
The following is a straightforward implication of Corollary 2 and Proposition 3: 

Corollary 3. Let Assumption 1 hold. 
[3.1] Suppose the profile u ∈ B(X) is implementable. Then u implements and is 

implemented by v = Ψu. Further, Ψu is the only profile in I(Y ) implementing u. 
[3.2] Suppose the profile v ∈ B(Y ) is implementable. Then v implements and is 

implemented by u = Φv. Further, Φv is the only profile in I(X) implementing v. 

Proof. We prove Corollary 3.1; 3.2 is analogous. 
Let u ∈ I(X). By Corollary 2, u implements v = Ψu. Hence, v is implementable and 

by Corollary 2 in turn implements Φv, which by Proposition 3.1 is identical to u. Hence, u 
not only implements v = Ψu but is also implemented by it. 
Suppose u = Φv holds for some implementable profiles u and v. Applying the imple-

mentation map Ψ to both sides of this equality yields Ψu = ΨΦv. As v is implementable, 
we also have ΨΦv = v from Proposition 3.2. Combining the two preceding equalities implies 
v = Ψu, so that Ψu is the only implementable profile implementing u. 
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u v 

B(X) B(Y) 

I(X) I(Y) 

Ψ 

Ψ 

Φ 

Φ 

(homeomorphism) 

u implements v=Ψu 

v implements u=Φv 

Figure 1: Illustration of the implementation maps. The implementation map Φ maps the set 
of bounded profiles B(Y ) onto the set of implementable profiles I(X) (and Ψ maps the set 
of bounded profiles B(X) onto the set of implementable profiles I(Y )). The maps Φ and Ψ 
are continuous inverse bijections on the sets of implementable profiles I(X) and I(Y ) with 
profiles u and v in these sets satisfying u = Φv ⇐⇒ v = Ψu and implementing each other. 

Corollary 3 indicates that 
u = Φv ⇐⇒ v = Ψu (15) 

holds for all implementable profiles u ∈ I(X) and v ∈ I(Y ) with these profiles implementing 
each other if and only if the equivalent statements in (15) hold. In particular, the continuous 
implementation maps Φ and Ψ are inverse bijections between the sets of implementable 
profiles I(X) and I(Y ) and thus (since they are continuous, by Lemma 1) homeomorphisms 
between these sets. Figure 1 illustrates these observations in the context provided by 
Proposition 2. 

Corollary 3 shows that all implementable profiles can be implemented by implementable 
profiles. The following result shows that implementable profiles also suffice to implement 
all implementable assignments. The straightforward proof in Appendix A.4 relies on the 
cancellation property (Corollary 1.1). 

Corollary 4. Let Assumption 1 hold. 
[4.1] If (u, y) ∈ B(X) × Y X is implementable, then y is implemented by Φu. 
[4.2] If (v, x) ∈ B(Y ) × XY is implementable, then x is implemented by Φv. 

Remark 4 (Implementable Profiles in the Quasilinear Case). Following up on Remark 3, we 
note that in the quasilinear case Proposition 3 is the statement that a profile is implementable 
if and only if it is its own generalized biconjugate (Ekeland, 2010, Corollary 12). Taken 
together Corollaries 3.1 and 4.1 indicate for the quasilinear case that a profile-assignment 
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pair (u, y) is implementable if and only if it is implemented by the generalized conjugate of 
u. As discussed in Basov (2006, p. 136 and p. 142) the latter result is the essence of the 
implementability criterion for the quasilinear case provided by Carlier (2002, Proposition 1). 

3.3 Implementable Assignments 

Given any pair of profiles (u, v) let 

Γu,v = {(x, y) ∈ X × Y | u(x) = φ(x, y, v(y))} (16) 

= {(x, y) ∈ X × Y | v(y) = ψ(y, x, u(x))}, 

where the second equality holds by definition of the inverse generating function ψ. If v 
implements u, then Γu,v coincides with the graph of the argmax correspondence Yv defined 
in (3), i.e., {(x, y) ∈ X × Y |u(x) = y∈Y φ(x, ˜ y))} = {(x, y) ∈ X × Y | u(x) =max˜ y, v(˜
φ(x, y, v(y))} = Γu,v. Similarly, if u implements v, the equality in the second line indicates 
that Γu,v coincides with the graph of the argmax correspondence Xu defined in (5). For 
the special case in which the profiles u and v implement each other, the graphs of both Xu 

and Yv thus coincide with Γu,v. This proves: 

Lemma 2. Let Assumption 1 hold and suppose that u and v implement each other. The 
argmax correspondences Xu and Yv are inverses and their graphs coincide with Γu,v, i.e., 
they satisfy 

x̂ ∈ Xu(ŷ) ⇐⇒ ŷ ∈ Yv(x̂) ⇐⇒ (x̂, ŷ) ∈ Γu,v. (17) 

Lemma 2 indicates that the inverse relationship (15) between profiles that implement 
each other extends to the argmax correspondences associated with these two profiles.10 

Making use of Corollaries 3 and 4 this observation leads to the following characterization of 
implementable assignments. 

Proposition 4. Let Assumption 1 hold. 
[4.1] An assignment y ∈ Y X is implementable if and only if there exist profiles u ∈ B(X) 

and v ∈ B(Y ) that implement each other with Γu,v containing the graph of y, i.e., 

(x, y(x)) ∈ Γu,v for all x ∈ X. 

[4.2] An assignment x ∈ XY is implementable if and only if there exist profiles u ∈ B(X) 
and v ∈ B(Y ) that implement each other with Γu,v containing the graph of x, i.e., 

(x(y), y) ∈ Γu,v for all y ∈ Y. 

10The counterpart of Lemma 2 in the quasilinear case is the following: if u and v are each others’ conjugates, 
then the graphs of both of their subdifferentials coincide with the set of points for which equality holds in 
the Fenchel inequality (cf. Ekeland, 2010, Corollary 13). 
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Proof. We prove Proposition 4.1; 4.2 is analogous. First, suppose the profiles u and v 
implement each other and let y ∈ Y X satisfy (x, y(x)) ∈ Γu,v for all x ∈ X. Then it follows 
from (17) in Lemma 2 that for all x ∈ X, we have y(x) ∈ Yv(x). Hence v implements y (cf. 
(3)) and y is therefore implementable. Conversely, suppose that y ∈ Y X is implementable, 
so that there exists u such that (u, y) is implementable. Let v = Ψu. Then, from Corollary 
3.1 u and v implement each other and from Corollary 4.1 v implements (u, y). From (3), 
we then have that for all x ∈ X, y(x) ∈ Yv. Using Lemma 2, it then follows that for all 
x ∈ X, we have (x, y(x)) ∈ Γu,v, finishing the proof. 

Remark 5 (Implementable Assignments and Strong Implementability). In the quasilinear 
case an assignment is implementable if and only if it is cyclically monotone (Rochet, 1987, 
Theorem 1). Importantly, and in contrast to the characterization result in Proposition 4, 
cyclical monotonicity is a condition on assignments that does not involve any profiles and 
therefore can be verified directly.11 In general, the existence of implementable assignments 
that are not strongly implementable precludes any hope to verify the implementability of an 
assignment without considering the associated profiles. On the other hand, if it is known 
that all implementable assignments are strongly implementable, a sharper characterization 
of implementable assignments might be possible. Section 6 provides an illustration. 

Remark 6 (Another Characterization of Implementable Profiles). Proposition 4 charac-
terizes implementable assignments in terms of the argmax correspondences Xu and Yv. 
Implementable profiles can be characterized in a analogous way. Appendix B.4 shows: 

u ∈ I(X) ⇐⇒ Xu is nonempty − valued and onto, 

v ∈ I(Y ) ⇐⇒ Yv is nonempty − valued and onto. 

3.4 Sets of Implementable Profiles 

We use Uy to denote the subset of implementable profiles I(X) for which (u, y) is imple-
mentable and define Vx analogously: 

Uy = {u ∈ I(X) : (u, y) is implementable}, 
Vx = {v ∈ I(Y ) : (v, x) is implementable}. 

We will sometimes refer to these sets as the set of profiles compatible with y, resp. with x. 

3.4.1 Metric Structure 

The following corollary establishes properties of sets of implementable profiles that play a 
key role throughout our study of matching and principal-agent models. 

11In essence, Rochet’s proof of his Theorem 1 shows how to construct u and v satisfying the sufficient 
conditions in Proposition 4 if the assignment is cyclical monotone, and also shows that doing so is impossible 
if cyclical monotonicity fails. 
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Corollary 5. Let Assumption 1 hold. Then, 
[5.1] I(X) is closed and so is Uy for all y ∈ Y X . 
[5.2] If U ⊂ I(X) is bounded, then it is equicontinuous. 
[5.3] If U ⊂ I(X) is closed and bounded, then it is compact. 

Analogously, I(Y ) and Vx are closed, if V ⊂ I(Y ) is bounded, then it is equicontinuous, and 
if it is closed and bounded, then it is compact. 

Appendix A.5 contains the proof. First, we invoke Corollary 3 to show that for any 
converging sequence of profiles in (for example) I(X), there exists a converging sequence of 
profiles in I(Y ) that implement the former sequence. It then follows from the continuity 
of the implementation map Φ (Lemma 1) that the limit of the latter sequence implements 
the limit of the former sequence, allowing us to conclude that I(X) is closed. An analogous 
argument shows that Uy is closed. Next, we use Lemma 1 and Corollary 3 to show that any 
bounded set U ⊂ I(X) is implemented by a bounded set V of profiles (namely the image 
of the set U under the implementation map Ψ). This ensures that the continuous function 
φ (Proposition 2) is uniformly continuous on the relevant domain. An application of the 
incentive constraints then gives equicontinuity. Finally, Corollary 5.3 follows from Corollary 
5.2 by applying the Arzela-Ascoli theorem. 

3.4.2 Order Structure 

As the implementation maps are dualities (Proposition 1) the sets of implementable profiles 
are join semi-sublattices of the lattices of profiles: If, say, v1 implements u1 and v2 implements 
u2, then we have u1 = Φv1 and u2 = Φv2. Because Φ is a duality, Φ(v1 ∧ v2) = u1 ∨ u2 

follows immediately. Proposition 2 ensures that u1 ∨ u2 is not only in the image of the 
implementation map Φ but is indeed implementable. 

Even when the generating function is quasilinear, the meet of two implementable profiles 
may not be implementable. In such a case, the sets of implementable profiles are not 
sublattices of the lattices of profiles. Appendix C.1 provides a simple example illustrating 
this. 
There are, however, interesting subsets of implementable profiles that are sublattices. 

The most prominent example are the sets of stable profiles in a matching model that we 
will investigate in Section 4. Here we give two preliminary results that consider the sets of 
implementable profiles that are compatible with a given assignment. 

Lemma 3. Let Assumption 1 hold. The set Uy is a sublattice of B(X) for all implementable 
y ∈ Y X and the set Vx is a sublattice of B(Y ) for all implementable x ∈ XY . 

The proof of Lemma 3, which considers the set Uy (the other case is analogous) is in 
Appendix A.6. The essence of the argument is that if, say, y ∈ Y is optimal for an agent 
type x ∈ X when faced with the tariff v1 and also optimal when faced with the tariff v2, 
then y remains an optimal choice for x both when faced with the tariff v1 ∧ v2 and when 
faced with the tariff v1 ∨ v2. Consequently, when v1 implements (u1, y) and v2 implements 
(u2, y), then v1 ∧ v2 implements (u1 ∨ u2, y) and v1 ∨ v2 implements (u1 ∧ u2, y). 

Next, we consider sets of profiles that are compatible with a given implementable 
assignment and in addition satisfy a participation constraint. For example, consider the 
set {u ∈ Uy | u ≥ u} for some continuous profile u. As the intersection of the sublattice 
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Uy (Lemma 3) and the sublattice of profiles satisfying u ≥ u, this set is also a sublattice. 
In the quasilinear case it is not difficult to see that this sublattice (i) is nonempty and (ii) 
has a minimum element, say u ∗, for which the participation constraint is binding, that is, 
u ∗(x) = u(x) holds for some x ∈ X. The proof of the following result (in Appendix A.7) 
shows that these two additional properties do not require quasilinearity but hold under the 
weaker condition that the assignment under consideration is strongly implementable. 

Lemma 4. Let Assumption 1 hold and let u ∈ C(X) and v ∈ C(Y ). 
[4.1] If y ∈ Y X is strongly implementable, then the sublattice {u ∈ Uy | u ≥ u} has a 

∗minimum element u and this minimum element satisfies u ∗(x) = u(x) for some x ∈ X. 
[4.2] If x ∈ XY is strongly implementable, then the sublattice {v ∈ Vx | v ≥ v} has a 

∗minimum element v and this minimum element satisfies v ∗(y) = v(y) for some y ∈ Y . 

The main difficulty in establishing Lemma 4.1 (the other case is analogous) is to exclude 
∗the possibility that the minimum element u is strictly greater than u for all x ∈ X. We 

resolve this difficulty by exploiting the lattice structure observed in Lemma 3 and the 
assumption of strong implementability to construct an increasing sequence of profiles in Uy 

that satisfy u(x) = u(x) for some x ∈ X (but may violate the participation constraint) and 
then show (using Corollary 5) that this sequence has a limit that satisfies the participation 

12constraint for all x ∈ X and satisfies it with equality for some x ∈ X. 

4 Stability in Matching Models 

This section applies the results from Section 3 to study stable outcomes in two-sided matching 
models. Section 4.1 introduces the matching model and defines the stability notions—stable 
outcomes and pairwise stable outcomes—that we consider. The notion of a pairwise stable 
outcome, which abstracts from participation constraints, is important because such outcomes 
can be characterized in terms of a pair of profiles implementing each other together with 
the argmax correspondences associated with these profiles. Section 4.2 develops this link. 
Section 4.3 then exploits it to show how familiar results for the existence of stable outcomes 
in matching models with a finite number of agents can be combined with our duality results 
to obtain, via a limiting argument, the existence of stable outcomes in matching models with 
an infinity of types. The role of the implementation duality in this argument is analogous 
to the role of (generalized) conjugate duality in McCann’s proof (McCann, 1995) of the 
Kantorovich duality for optimal transport problems (see also Villani, 2009, Chapter 5).13 

12In the quasilinear case a much simpler argument will do: Suppose u ∗ (x) > u(x) holds for all x ∈ X. As 
u has been assumed to be continuous, u ∗ is continuous by Proposition 2, and X is compact, there then exists 
� > 0 such that u ∗ (x) − � ≥ u(x) holds for all x ∈ X. In the quasilinear case the profile given by u ∗ (x) − � is 
an element of Uy , contradicting the minimality of u ∗ . 
13Previously, Gretsky, Ostroy, and Zame (1992) have used tools from optimal transport to establish 

existence of stable outcomes in matching models with perfectly transferable (quasilinear) utility. Kaneko and 
Wooders (1986, 1996) establish an existence result for a class of infinite cooperative games which includes 
matching models with both perfectly and imperfectly transferable utility as special cases, but to do so 
resort to a notion of approximate feasibility. In work contemporaneous to ours, Greinecker and Kah (2018) 
obtain the existence of stable outcomes for a broad class of matching problems (including problems with 
nontransferable utility) with an infinity of types, using tools quite different from the ones we employ. 
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The main result in Section 4.4 is Proposition 8, which establishes that the sets of stable 
profiles are complete sublattices of the sets of profiles, thereby generalizing a corresponding 
result for matching models with a finite number of agents (Demange and Gale, 1985). 

4.1 The Matching Model 

To obtain a matching model, we add to our basic ingredients (X, Y, φ) a pair of finite 
non-zero Borel measures µ on X and ν on Y , describing the distribution of agent types on 
each side of the market, and a pair of continuous reservation utility profiles u : X → R and 
v : Y → R, describing the utilities agents achieve when remaining unmatched. A matching 
model is then a collection (X, Y, φ, µ, ν, u, v). 

4.1.1 Matches and Outcomes 

We follow the optimal transportation literature (Villani, 2009; Galichon, 2016) and Gretsky, 
Ostroy, and Zame (1992) in using a measure λ on X×Y to describe who is matched with whom 
and who remains unmatched. Formally, a match for a matching model (X, Y, φ, µ, ν, u, v) is 
a Borel measure λ on X × Y satisfying the conditions 

λX (X̃) := λ(X̃ × Y ) ≤ µ(X̃) (18) 

λY (Ỹ ) := λ(X × Ỹ ) ≤ ν(Ỹ ) (19) 

for all measurable X̃ ⊆ X and Ỹ ⊆ Y . We interpret λ(X̃ × Ỹ ) as identifying the mass of 
˜buyers from X who are matched with sellers from Ỹ . Condition (18) indicates that the mass 

of buyers with types in X̃, given by the marginal measure λX (X̃), who are matched to some 
seller cannot exceed the mass of these buyers, with mass µ(X̃) − λX (X̃) ≥ 0 of the agents 

˜in the set X remaining unmatched. The interpretation of condition (19) is analogous. 
An outcome is a triple (λ, u, v) consisting of a match λ and a pair of utility profiles 

u ∈ B(X) and v ∈ B(Y ) satisfying the (dual) feasibility conditions 

u(x) = φ(x, y, v(y)) and v(y) = ψ(y, x, u(x)) ∀(x, y) ∈ supp(λ) (20) 

for matched agents and the feasibility conditions 

u(x) = u(x) ∀x ∈ supp(µ − λX ) (21) 

v(y) = v(y) ∀y ∈ supp(ν − λY ) (22) 

for unmatched agents.14 These feasibility conditions require that matched pairs receive 
utilities that can be generated in their matches and unmatched agents obtain their reservation 
utilities. Observe that we require feasibility for all types in the supports of µ and ν. This is 
in contrast to the approximate feasibility notion employed in Kaneko and Wooders (1986, 
1996). 

14By specifying an outcome in terms of utility profiles we are imposing the equal treatment property that 
all agents of the same type receive the same utility level. Greinecker and Kah (2018) demonstrate that this is 
an innocent simplification under Assumption 1. Similarly, by requiring the equalities in (20) we are imposing 
efficiency within each match rather than obtaining this as an implication of stability. 
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4.1.2 Stable Outcomes 

An outcome for a matching model is stable if it satisfies the participation constraints 

u(x) ≥ u(x) ∀x ∈ supp(ν) (23) 

v(y) ≥ v(y) ∀y ∈ supp(µ) (24) 

and the (dual) incentive constraints 

u(x) ≥ φ(x, y, v(y)) and v(y) ≥ ψ(y, x, u(x)) ∀(x, y) ∈ supp(ν) × supp(µ). (25) 

A match or profile will be called stable if it is part of a stable outcome. 
The stability conditions require that, as indicated by (23)–(24), no matched agent in the 

support of one of the type distributions would rather be unmatched, and, as indicated by 
(25), no pair of agents in the supports of the type distributions can achieve strictly higher 
utilities by matching with each other than by sticking to the outcome under consideration. 
Conditions (20)–(25) impose no constraints whatsoever on types that do not appear in 

the supports of the type distributions. Further, (25) does not preclude the possibility that 
some type x in the support of µ might prefer to match with a type outside of the support 
of ν (and vice versa). In essence, we are thus treating types that lie outside the supports 
of the type-distributions as being non-existent in the definition of stable outcomes. We 
could exclude such types from the model by assuming that µ and ν have full support, but 
retaining them allows us to consider finite-support matching models. 

The matching model (X, Y, φ, µ, ν, u, v) has finite support if there exists (x1, . . . , xm) ∈ 
Xm and (y1, . . . , yn) ∈ Y n such that the measures µ and ν on X and Y satisfy 

m nX X 
µ(X̃) = δxi (X̃) and ν(Ỹ ) = δyi (Ỹ ) 

i=1 j=1 

for all measurable X̃ ⊆ X and measurable Ỹ ⊆ Y , where m and n are natural numbers and 
δx (and similarly δy) is the Dirac measure on X assigning mass 1 to x. 

The import of such models for our analysis is that they can be interpreted as matching 
models with a finite number of agents, with known results about stable outcomes carrying 
over from matching models with a finite number of agents to finite-support matching models. 
In particular, every finite-support matching model satisfying Assumption 1 has a stable 
outcome. See Appendix B.5 for details. 

4.1.3 Pairwise Stable Outcomes in Balanced Matching Models 

We say that a matching model is balanced if µ(X) = ν(Y ) holds, so that the masses of 
buyers and sellers are identical. A match λ for a balanced matching model is full if the 
inequalities in (18) and (19) hold as equalities, 

λ(X̃ × Y ) = µ(X̃) (26) 

λ(X × Ỹ ) = ν(Ỹ ) (27) 

for all measurable X̃ ⊆ X and Ỹ ⊆ Y , indicating that there are no unmatched agents. An 
outcome (λ, u, v) for a balanced matching model is full if it features a full match. For any 
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full match the feasibility conditions (21) and (22) are vacuous (because supp(µ − λX ) = 
supp(ν − λY ) = ∅), so that an outcome is full if and only if it satisfies (20), (26), and (27). 
In line with our definition of profiles u or v satisfying an initial condition (cf. Section 
2.4), we say that a full outcome (λ, u, v) for a balanced matching model (X, Y, φ, µ, ν, u, v) 
satisfies initial condition (x0, u0) ∈ X × R if u(x0) = u0, and satisfies initial condition 
(y0, v0) ∈ Y × R if v(y0) = v0. 

A full outcome is pairwise stable if it satisfies the incentive constraints (25). A pairwise 
stable outcome is stable if and only if it also satisfies the participation constraints (23) and 
(24). Note that full matches and full outcomes exist only for balanced matching models and 
that whenever we call an outcome, match, or profile pairwise stable, it is implied that it is 
part of a full outcome. 

Our definition of a full match for a balanced matching model is identical to the definition 
of a transportation (or transference) plan in the literature on optimal transport. This allows 
us to borrow results from this literature when analysing full matches and full outcomes. For 
instance, it is well-known that (under our maintained compactness assumption on X and 
Y ) the set of full matches is compact in the topology of weak convergence of measures (cf. 
Villani, 2009, p. 45). 

4.1.4 Deterministic Matches 

In many economic applications it is natural to focus on full matches that can be described 
in terms of assignments, thereby identifying for all agent types on one side of the matching 
market a unique type on the other side with whom they are matched. This is captured by 
the notion of a deterministic match—corresponding to the notion of a deterministic coupling 
or transport map in the optimal transportation literature (Villani, 2009, p.6)—defined in 
the following.15 

We say that a measure λ on the set X × Y is deterministic and denote it by λy if there 
exists a measurable assignment y such that 

˜λ(X̃ × Ỹ ) = µ({x ∈ X|y(x) ∈ Ỹ }) (28) 

˜for measurable X ⊆ X and Ỹ ⊆ Y . If such a deterministic measure λ is a full match in the 
balanced matching model (X, Y, φ, µ, ν, u, v), then it is a deterministic match. 
If λy is a deterministic match then the assignment y must be measure preserving (and 

hence necessarily measurable), i.e., ν(Ỹ ) = µ(y−1(Ỹ )) must hold for all measurable Ỹ ⊆ Y . 
In general, pairwise stable deterministic matches do not exist in balanced matching 

models, even when the generating function is quasilinear and the existence of measure-
preserving assignments is assured (e.g. when µ is atomless).16 

15We focus on assignments y ∈ Y X with all our definitions and observations carrying over to assignments 
x ∈ XY in the obvious way. 
16Villani (2009, Example 4.9) provides a simple example for an optimal-transport problem (with both µ 

and ν atomless) which has no deterministic solution. This example is easily modified to demonstrate the 
non-existence of pairwise stable deterministic matches. See also Gretsky, Ostroy, and Zame (1992) for an 
extended discussion of related existence questions in the context of a two-sided matching model and an 
argument which, when transferred to our setting, suggests that it is possible to interpret any of the full 
matches we consider as measure-preserving bijections between suitably enlarged measure spaces. Greinecker 
and Kah (2018) pursue such a construction. 
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4.2 Connecting Implementability and Pairwise Stability 

With a quasilinear generating function φ(x, y, v) = f(x, y) − v a full match is pairwise stable R 
if and only if it maximizes the surplus X×Y f(x, y)dλ(x, y) over the set of full matches. 
Standard results from the optimal transport literature then imply that a full match λ is 
pairwise stable if and only if its support is contained in Γu,v for a pair of profiles (u, v) 
implementing each other, and that for such a pair of profiles the full outcome (λ, u, v) is a 
pairwise stable outcome (cf. Galichon, 2016, Chapters 6 and 7). These results carry over to 
the our case: 

Proposition 5. Let Assumptions 1 hold and let the matching model (X, Y, φ, µ, ν, u, v) be 
balanced. 

[5.1] If λ is a full match, then (λ, u, v) is a full outcome if and only if supp(λ) ⊆ Γu,v. 
[5.2] If (λ, u, v) is a full outcome and (i) u implements v or (ii) v implements u, then 

(λ, u, v) is pairwise stable. 
[5.3] If (λ, u, v) is a pairwise stable outcome, then there exists profiles ũ and ṽ with the 

properties that (i) ũ(x) = u(x) on the support of µ and ṽ(y) = v(y) on the support of ν, (ii) 
(λ, ũ, ṽ) is a pairwise stable outcome for (X, Y, φ, µ, ν, u, v), and (iii) ũ and ṽ implement 
each other. 

Proof. [5.1] If λ is a full match, then (20) is necessary and sufficient for (λ, u, v) to 
be a full outcome. By definition of Γu,v (see (16)), condition (20) holds if and only if 
supp(λ) ⊆ Γu,v. 
[5.2] If (λ, u, v) is a full outcome, then (20), (26) and (27) hold. Therefore, (25), which 

holds if v implements u or v implements u, is sufficient for (λ, u, v) to be pairwise stable. 
[5.3] See Appendix A.8. 

If the type measures µ and ν both have full support, Proposition 5.3 reduces to the statement 
that the profiles u and v in every pairwise stable outcome (λ, u, v) implement each other 
(which in this case is immediate from (20) and (25)). Otherwise Proposition 5.3 indicates 
that the profiles ũ and ṽ in any pairwise stable outcome can be adjusted outside the supports 
of µ and ν in such a way that the suitably adjusted profiles implement each other. In either 
case, in conjunction with the first two parts of the proposition, we obtain the conclusion 
that a full match λ is pairwise stable if and only if it satisfies supp(λ) ⊆ Γu,v for a pair of 
profiles implementing each other. 
For a deterministic match λy with implementable y, it is not difficult to show (using 

Proposition 4) that supp(λy) ⊆ Γu,v holds for profiles u and v implementing each other, 
so that Proposition 5 implies that λy is a pairwise stable match. Obtaining a converse 
statement involves dealing with some technical complications, arising out of the fact that 
supp(λy) ⊆ Γu,v does not necessarily imply that the graph of y is contained in Γu,v. We 
tackle these complications in Appendix A.9, thereby proving: 

Lemma 5. Let Assumption 1 hold, let the matching model (X, Y, φ, µ, ν, u, v) be balanced, 
and let λ be a deterministic match. Then λ is pairwise stable if and only if there exists an 
implementable y ∈ Y X such that λ = λy holds. 
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4.3 Existence of (Pairwise) Stable Outcomes 

We begin by exploiting our duality results to establish the existence of pairwise stable 
outcomes in balanced matching models satisfying arbitrary initial conditions. Appendix 
A.10 proves: 

Proposition 6. Let Assumption 1 hold and let the matching model (X, Y, φ, µ, ν, u, v) be 
balanced. Then for every initial condition (y0, v0) (and similarly for every initial condition 
(x0, u0)), there exists a pairwise stable outcome (λ, u, v) satisfying v(y0) = v0 in which u 
and v implement each other. 

The proof of Proposition 6 begins by considering balanced finite-support matching models 
with at most n types of buyers and at most n types of sellers. We exploit Lemma 3 in 
Demange and Gale (1985) to show that such a finite-support matching model has a pairwise 
stable outcome (λn, un, vn) satisfying the given initial condition. In addition, Proposition 5.3 
ensures that we can take the profiles (un, vn) to implement each other. We next construct a 
sequence of such finite-support balanced matching models for which the associated measures 
µn and νn converge weakly to the target measures µ and ν. Prokhorov’s theorem implies that 
the sequence of measures (λn)∞ 

n=1 has a subsequence converging weakly to a full match λ∗ . 
Using the fact that the initial condition holds along the sequences to show that the sequences 
of profiles (un)n

∞ 
=1 and (vn)n

∞ 
=1 are bounded, it becomes a straightforward consequence of 

∗our duality results that these sequences have subsequences converging to profiles u and 
∗ ∗ v implementing each other and that, further, (λ∗ , u , v ∗) is a pairwise stable outcome for 
(X, Y, φ, µ, ν, u, v) satisfying the initial condition. This gives us the desired result. 

To go from the existence result for pairwise stable outcomes in balanced matching 
models in Proposition 6 to an existence result for stable outcomes in any matching model 
(X, Y, φ, µ, ν, u, v) satisfying Assumption 1, we consider an augmented matching model. As 
in a similar construction in Chiappori, McCann, and Nesheim (2010), in this augmented 
model the type spaces differ from X and Y by the addition of dummy types x0 and y0 

on each side of the market. Adding the dummy types x0 and y0 transforms the original 
matching model into a balanced matching model in which (i) being unmatched in the original 
model corresponds to being matched with a dummy agent in the augmented matching model, 
(ii) for an appropriate choice of initial condition, a pairwise stable outcome in the augmented 
model corresponds to a stable outcome in the original model, and (iii) Assumption 1 holds for 
the augmented model. Given these properties of the augmented matching model, Proposition 
6 implies the existence of a stable outcome for the matching model (X, Y, φ, µ, ν, u, v). The 
proof of the following result, in Appendix A.11, shows how to construct an augmented 
matching model with the requisite properties. 

Corollary 6. Let Assumption 1 hold. There exists a stable outcome (λ, u, v) for the 
matching model (X, Y, φ, µ, ν, u, v). 

4.4 Lattice Structure of (Pairwise) Stable Profiles 

The main result of this section is Proposition 8, which establishes that the sets of stable 
profiles are complete sublattices of the sets of bounded profiles. As in Section 4.3, we first 
establish lattice results for pairwise stable outcomes. These lattice results for pairwise stable 
outcomes will also be of independent use when we turn to the principal-agent model. 
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The following assumption simplifies the exposition by ensuring (from Proposition 5.3) 
that in every pairwise stable outcome (λ, u, v), the profiles u and v implement each other.17 

Assumption 2. The type measures µ and ν have full support. 

4.4.1 The Lattice of Pairwise Stable Profiles 

Let 

U = {u ∈ B(X) | (λ, u, v) is pairwise stable for some full match λ and v ∈ B(Y )}
V = {v ∈ B(Y ) | (λ, u, v) is pairwise stable for some full match λ and u ∈ B(X)} 

denote the sets of pairwise stable profiles in a balanced matching model. From Proposition 
6 the sets U and V are nonempty if Assumption 1 holds. The following result shows that 
they are also closed sublattices (of B(X), resp. of B(Y )). 

Proposition 7. Let Assumptions 1 and 2 hold and let the matching model (X, Y, φ, µ, ν, u, v) 
be balanced. The sets U and V of pairwise stable profiles are closed sublattices. 

Appendix A.12 contains the proof. The idea behind the proof that U and V are sublattices 
is the same as the one behind the Decomposition Lemma in Demange and Gale (1985, 
Lemma 1): Given two pairwise stable outcomes (λ1, u1, v1) and (λ2, u2, v2) we show that 
both X and Y can be partitioned into two sets each, say X into X1 and X2 and Y into 
Y1 and Y2, such that both λ1 and λ2 match buyer types from X1 with seller types in Y1 

and buyer types in X2 with seller types in Y2. Further, when faced with v1 ∧ v2, all buyers 
in X1 prefer to be matched as under λ1, whereas the reverse preference holds for buyers 
in X2. Constructing a measure λ3 on X × Y by matching the types in X1 and Y1 as 
under λ1 and the types in X2 and Y2 as under λ2 then yields a pairwise stable outcome 
(λ3, u1 ∨ u2, v1 ∧ v2). An analogous argument establishes the existence of a full match λ4 

such that (λ4, u1 ∧ u2, v1 ∨ v2) is a pairwise stable outcome. The existence of the pairwise 
stable outcomes (λ3, u1 ∨ u2, v1 ∧ v2) and (λ4, u1 ∧ u2, v1 ∨ v2) implies that both U and V 
are sublattices. The closedness claim in the statement of the proposition follows from the 
same arguments we have used in the proof of Proposition 6 to establish that the limit of the 
pairwise stable outcomes in the approximating finite-support matching models considered 
there is pairwise stable. 
The proof of Proposition 7 would be much simpler if we could assume that all pairs 

(u1, v1) and (u2, v2) of stable profiles are compatible with the same stable match λ. 18 In that 
case an argument analogous to that of Lemma 3 would yield that U and V are sublattices. 
However, as illustrated by Roth and Sotomayor (1990, Example 9.6, p. 225) and Quint 

17Without Assumption 2, the argument would require an additional step, adjusting a pair of profiles (u, v) 
outside the supports of µ and ν to ensure they implement each other, as in the proof of Proposition 5.3. 
18This is trivially true if there is a unique stable match, as is the case under a strict single crossing condition 

(Proposition 12 in Section 6). It is also true with a quasilinear generating function, as with transferable utility 
all stable profiles are compatible with the same stable match; see Roth and Sotomayor (1990, Corollary 8.7, 
p. 207) for finite matching models and Gretsky, Ostroy, and Zame (1999), who also use this fact to establish 
a counterpart to our Proposition 8 below (Gretsky, Ostroy, and Zame, 1999, Proposition 5), for a model with 
an infinity of types. 
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(1994, Example 6.1, p. 612), this is generally not the case if the generating function is not 
quasilinear. 

Recall that Lemma 4 in Section 3.4.2 has established that the set of profiles Uy compatible 
with a given strongly implementable assignment y satisfying a participation constraint has a 
minimum element in which the participation constraint is binding for some type. The only 
properties of Uy used in the proof or Lemma 4 were that the set Uy is a closed (Corollary 5.1) 
sublattice (Lemma 3) of implementable profiles containing a profile for every possible initial 
condition (by strong implementability). The set of pairwise stable profiles U satisfies the 
same properties: it is a closed (Proposition 6) sublattice (Proposition 7) of implementable 
profiles (Proposition 5.2) with the set {u ∈ U | u(x) = u(x)} nonempty for all x ∈ X 
(Proposition 6). Therefore, the following counterpart to Lemma 4 holds for the sets of 
pairwise stable profiles (with the proof being identical): 

Corollary 7. Let Assumptions 1 and 2 hold and let (X, Y, φ, µ, ν, u, v) be a balanced 
matching model. Then the set of pairwise stable buyer profiles satisfying the participation 

∗constraint u(x) ≥ u(x) for all x ∈ X has a minimum element u satisfying u ∗(x) = u(x) for 
some x ∈ X. Similarly, the set of pairwise stable seller profiles satisfying the participation 

∗constraints v(y) ≥ v(y) for all y ∈ Y has a minimum element v satisfying v ∗(y) = v(y) 
for some y ∈ Y . 

4.4.2 The Lattice of Stable Profiles 

The connection between pairwise stability in balanced matching models and stability in 
arbitrary matching models underlying the proof of Corollary 6 in Section 4.3 allows us to 
extend our results about the lattice structure of pairwise stable profiles to results about the 
lattice structure of stable profiles. 
First, we use Proposition 7 to show that the sets of stable buyer and seller profiles are 

complete sublattices. Appendix A.13 proves: 

Proposition 8. Let Assumptions 1 and 2 hold. The sets of stable seller profiles and stable 
buyer profiles of the matching model (X, Y, φ, µ, ν, u, v) are complete sublattices. 

Second, we use Corollary 7 to establish a counterpart to Lemma 3 in Demange and Gale 
(1985), asserting that in a balanced matching model both the minimum buyer stable profile 
∗ ∗ u and the minimum seller stable profile v feature binding participation constraints.19 

Corollary 8. Let Assumptions 1 and 2 hold and let (X, Y, φ, µ, ν, u, v) be a balanced 
∗matching model. Then the minimum stable buyer profile u satisfies u ∗(x) = u(x) for some 

∗ x ∈ X and the minimum stable seller profile v satisfies v ∗(y) = v(y) for some y ∈ Y . 

19In an unbalanced matching model (satisfying µ(X) 6= ν(Y )) it is trivially the case that in every outcome 
there are unmatched agents on the “long side” of the market. By the feasibility conditions (21)–(22) such 
unmatched agents receive their reservation utility, so that either the minimum buyer stable profile u ∗ or the 
minimum seller stable profile v ∗ features a binding participation constraint. In particular, if µ(X) > ν(Y ), 
then there exists x ∈ X satisfying u ∗ (x) = u(x) and, similarly, if µ(X) < ν(Y ), then there exists y ∈ Y 

∗ ∗ ∗ satisfying v (y) = v(y). Note the existence of u and v is ensured because the sets of stable profiles are 
complete sublattices (Proposition 8). 
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Proof. The claim is immediate from the feasibility conditions (21)–(22) unless all stable 
outcomes are fully matched. We therefore suppose this to be the case. The set of stable 
outcomes then coincides with the set of pairwise stable outcomes (λ, u, v), satisfying the 
participation constraints u ≥ u and v ≥ v. Recalling that for any pairwise stable outcome 
(λ, u, v) the profiles u and v implement each other (Assumption 2 and Proposition 5.3), 

∗ ∗the result then follows from Corollary 7, provided that the profiles u and v appearing in 
∗ ∗the statement of that corollary satisfy Ψu ≥ v and Φv ≥ u. Because the implementation 

maps are order reserving, these conditions must be satisfied (as otherwise the set of stable 
profiles would be empty). 

5 Optimal Outcomes in Principal-Agent Models 

This section applies our characterization of implementable profiles and assignments to 
adverse-selection principal-agent models. Section 5.1 formulates the principal’s problem 
as choosing a measure λ on X × Y , as well as a rent function u and a tariff v, subject 
to incentive and participation constraints. This formulation allows us to interpret triples 
(λ, u, v) satisfying the incentive constraints in the principal’s problem as pairwise stable 
outcomes in a balanced matching model. 

Section 5.2 reformulates the principal’s problem as a nonlinear pricing problem in which 
the principal maximizes over a set of tariffs, and then uses this reformulation to establish 
that the principal’s problem has a solution. Moreover, it has a solution in which the 
measure λ chosen by the principal is deterministic and thus corresponds to the choice of an 
optimal assignment. Our duality results play a central role in this existence argument, with 
Corollaries 3.1 and 4.1 ensuring that we can model the principal as choosing an implementable 
tariff, and Corollary 5 ensuring that the resulting feasible set is compact.20 

In general, the agent’s participation constraint may fail to bind in a solution to the 
principal’s problem.21 Section 5.3 shows that this cannot happen if every implementable 
profile is strongly implementable or if the principal’s utility function exhibits private values. 
The first result is consistent with our view of strong implementability as a useful generalization 
of quasilinearity, while the second makes essential use of the connections to the matching 
model. 
20Obtaining compactness of the feasible set (and the requisite continuity properties of the principal’s 

objective function) is the main difficulty in the existence proofs in Kahn (1993), Carlier (2001), and Carlier 
(2002), who consider special cases of the principal-agent model in which the agent’s utility function is 
quasilinear. Using the structure resulting from the imposition of a single crossing condition when X and 
Y are intervals, Jullien (2000) provides a straightforward existence argument which uses Helly’s selection 
theorem in lieu of compactness arguments. Working without quasilinearity, the existence proofs in Page 
(1991, 1992, 1997) and Balder (1996) impose compactness as an assumption on the set of feasible contracts. 
Allowing for stochastic contracts, Kadan, Reny, and Swinkels (2017) obtain a very general existence result 
for principal-agent models with both adverse selection and moral hazard using tools rather different from 
the ones we employ. We explain in Appendices D.2 and D.3 how our approach can be extended to allow for 
stochastic contracts and moral hazard. 
21Appendix C.1 provides an example. 
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5.1 The Principal-Agent Model 

To obtain a principal-agent model, we add to our basic ingredients (X, Y, φ) a function 
π : X × Y × R → R describing the principal’s utility of receiving payment v from agent type 
x who takes decision y, a finite Borel measure µ on the set X describing the distribution of 
agent types, and a continuous profile u : X → R describing the agent’s reservation utilities. 
A principal-agent model is then a collection (X, Y, φ, µ, π, u). 

Assumption 3. The function π is continuous, strictly increasing in its third argument, and 
satisfies π(x, y, R) = R for all (x, y) ∈ X × Y . The type measure µ has full support. 

Let M be the set of Borel measures on X × Y whose marginal distribution on the set X 
equals µ. We formulate the principal’s problem as choosing a triple (λ, u, v) consisting of a 
measure λ ∈ M, a utility profile u ∈ B(X), and a tariff v ∈ B(Y ) to maximize Z Z 

π(x, y, v(y))dλ(x, y) (29) 
X Y 

subject to the feasibility constraints 

v implements u 

supp(λ) ⊆ Γu,v 

u ≥ u. 

If λ is a deterministic measure λy (cf. (28)), then the first two constraints in this 
maximization problem are the standard incentive constraints, requiring that (i) u is the 
rent function that results when each agent type maximizes against the tariff v and (ii) all 
agent types x are assigned to one of their optimal decisions y(x) ∈ Yv(x). Intuitively, for 
measures λ ∈ M that are not deterministic, the second of these conditions is weakened to 
allow the principal to randomize over the set of decisions that are optimal for the agent. 

The principal’s expected utility in (29) is well-defined for any feasible (λ, u, v): Because 
supp(λ) ⊆ Γu,v, we have v(y) = ψ(y, x, u(x)) for all (x, y) ∈ supp(λ), and hence Z Z Z Z 

π(x, y, v(y))dλ(x, y) = π(x, y, ψ(y, x, u(x)))dλ(x, y), (30) 
X Y X Y 

where the latter integral is well-defined because π, ψ, and the implementable profile u are 
continuous (the last of these by Proposition 2). A useful implication is that the principal’s 
payoff can be written in terms of only the measure λ and rent function u, implying that any 
two feasible outcomes (λ, u, v) and (λ, u, ṽ) give the same payoff to the principal. 

Remark 7 (Pairwise Stability and Feasibility in the Principal’s Problem). Consider a 
triple (λ, u, v) that satisfies the incentive constraints in the principal’s problem, that is, v 
implements u and supp(λ) ⊆ Γu,v. Define the measure ν on Y by setting ν(Ỹ ) = λY (Ỹ ) 
for all measurable Ỹ ⊂ Y and specify an arbitrary continuous reservation utility profile v. 
Then λ is a full match for the balanced matching problem (X, Y, φ, µ, ν, u, v). Further it 
is immediate from Proposition 5 that (λ, u, v) is pairwise stable in this balanced matching 
problem. Vive versa, if (λ, u, v) is pairwise stable for a matching problem (X, Y, φ, µ, ν, u, v) 
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in which µ has full support, then (λ, u, v) satisfies the incentive constraints in any principal-
agent model (X, Y, φ, µ, π, u) in which π has the properties from Assumption 3. See Carlier 
(2003, Theorem 2) and, more recently, Dworczak and Zhang (2017) for related observations 
in the quasilinear case. 

5.2 Existence of a Solution to the Principal’s Problem 

To obtain our existence result, we begin by transforming the principal’s problem into a 
nonlinear pricing problem over the set of implementable tariffs v ∈ I(Y ). Towards this end, 
define the function F : I(Y ) × M → R by Z Z 

F (v, λ) = π(x, y, v(y))dλ(x, y) (31) 
X Y 

and define the correspondence G : I(Y ) → M by 

G(v) = {λ ∈ M : supp(λ) ⊆ ΓΦv,v}. (32) 

Also, for v ∈ I(Y ) let 
Π(v) = max F (v, λ). (33) 

λ∈G(v) 

Observe that F (v, λ) is nothing but the objective function of the principal’s problem specified 
in (29). The heuristic interpretation of (33) therefore is that Π(v) specifies the maximal 
payoff the principal can obtain by probabilistically assigning agents to decision that are 
optimal for them when facing the implementable tariff v (i.e., by choosing λ ∈ G(v)). 
Appendix A.14 shows that this problem has a solution for every implementable tariff, so 
that the function Π : I(Y ) → R is well-defined. Further, it shows: 

Lemma 6. Let Assumptions 1 and 3 hold. The function Π : I(Y ) → R is upper semicon-
∗tinuous. If v solves 

max Π(v), (34) 
{v∈I(Y ):v≤Ψu} 

∗then there exists λ∗ ∈ G(v ∗) such that the triple (λ∗ , Φv , v ∗) solves the principal’s problem. 

The first step in the proof of Lemma 6 uses Corollaries 3.1 and 4.1 to show that replacing 
an arbitrary tariff v in a feasible triple (λ, u, v) with the implementable tariff Ψu results in 
another feasible triple. Doing so leaves the principal’s expected payoff unchanged (cf. (30)). 
This allows us to reduce the principal’s problem to the choice of an implementable tariff v and 
an associated measure λ ∈ G(v), with the agent’s utility profile given by the rent function 
u = Φv. The continuity of implementable profiles v (Proposition 2) and the compactness 
of the set of measures M (by Prokhorov’s theorem) then ensure that the function F and 
the correspondence G are sufficiently well-behaved to imply the upper semicontinuity of 
the function Π. Maximizing this function subject to the constraint that the associated rent 
function Φv satisfies the participation constraints Φv ≥ u, which we rewrite as v ≤ Ψu, 

∗then yields an optimal tariff v that, together with the associated measure λ∗ and induced 
∗rent function u = Φv ∗, solves the principal’s problem. 

To show the existence of a solution to the principal’s problem it remains to show that 
the nonlinear pricing problem (34) in the statement of Lemma 6 has a solution. To do so, we 
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begin by observing that the feasible set of the nonlinear pricing problem is bounded above by 
Ψu. While there is no corresponding lower bound in the formulation of the nonlinear pricing 
problem, it is intuitive that a suitable lower bound can be imposed without impinging on 
the value of the principal’s maximization problem. We can thereby restrict the choice set in 
the nonlinear pricing problem to a closed and bounded set of tariffs. Moreover, and crucially, 
the maximization in (34) is over a set of implementable profiles, and we have established in 
Corollary 5.3 that closed and bounded sets of implementable profiles are compact. As Π 
is upper semicontinuous (Lemma 6), an application of Weierstrass’ extreme value theorem 
then yields the existence of a solution to the nonlinear pricing problem. Appendix A.15 
shows, in addition, that the measure in the associated solution to the principal’s problem 
can be “purified” to obtain a solution to the principal’s problem featuring a deterministic 
match: 

Proposition 9. Let Assumptions 1 and 3 hold. Then there exists a solution (λ, u, v) to the 
principal’s problem in which u and v implement each other and λ is deterministic. 

5.3 Is the Participation Constraint Binding? 

As the principal must respect the agent’s participation constraint when choosing an optimal 
tariff, we have u ≥ u in any solution (λ, u, v) to the principal’s problem. Here we ask 
whether the agent’s participation constraint must be binding in the sense that there exists 
some x ∈ X satisfying u(x) = u(x).22 

If all implementable assignments y are strongly implementable, then the answer is 
straightforward from the lattice result in Lemma 4. Appendix A.16 shows: 

Proposition 10. Let Assumptions 1 and 3 hold. If every implementable assignment y is 
strongly implementable, then the participation constraint is binding in any solution to the 
principal’s problem. 

In the absence of strong implementability, the conclusion of Proposition 10 may fail. 
Appendix C.2 provides an example illustrating this. In this example it is optimal for the 
principal to implement an assignment that is not strongly implementable and to leave strictly 
positive rents to all agent types. 

The example in Appendix C.2 features common values in the sense that the principal cares 
directly about which type of the agent obtains which decision. Our next result demonstrates 
that no such example can be constructed if the principal-agent model has private values, 
i.e., the principal’s payoff function π does not depend on x and can thus be rewritten as 
π̂ : Y × R → R: 

Proposition 11. Let Assumptions 1 and 3 hold and let the principal-agent model have 
private values. Then in any solution to the principal’s problem, the participation constraint 
is binding for some type of agent. 

Appendix A.17 contains the proof. The key idea is that any (λ, u, v) which is feasible in 
the principal’s problem corresponds to a pairwise stable outcome satisfying the participation 

22Throughout the following discussion we impose Assumption 3 and, therefore, suppose that the principal’s 
utility is strictly increasing in the transfer received from the agent. As noted in Guesnerie and Laffont (1984), 
there is no reason to suppose that the participation constraint should be binding if this assumption fails. 
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constraint u ≥ u in a suitably constructed balanced matching model (cf. Remark 7). We 
can then apply the result in Corollary 8 to obtain a minimum (in the set of buyer profiles) 
pairwise stable outcome, in which the participation constraint binds for some type of buyer. 
The principal can implement this outcome, which features the same induced distribution ν 
over decisions as the one that we started from. The private-values assumption ensures that 
this leads to a strictly higher payoff for the principal than any feasible outcome in which the 
participation constraint is not binding. 

6 Single Crossing 

For unidimensional principal-agent models in which the agent’s utility function is quasilinear, 
assuming the agent’s willingness to pay to be strictly supermodular leads to a sharp charac-
terization of implementable assignments: an assignment is implementable (and therefore 
strongly implementable, Section 2.4) if and only if it is increasing (Rochet (1987), also see 
Vohra (2011, Theorem 4.2.5)). Similarly, for unidimensional matching models with perfectly 
transferable utility, assuming that the surplus function is strictly supermodular implies that 
all stable full matches feature positive assortative matching (Becker, 1973). 
In this section we show that these results carry over to our setting with imperfectly 

transferable utility. The only change required is to replace the assumption of strict super-
modularity with the assumption that the generating function satisfies a strict single crossing 
condition.23 

Assumption 4. The sets X and Y are compact intervals in R. The generating function φ 
satisfies the strict single crossing condition: 

φ(x1, y2, v2) ≥ φ(x1, y1, v1) =⇒ φ(x2, y2, v2) > φ(x2, y1, v1) (35) 

for all x1 < x2 ∈ X, y1 < y2 ∈ Y , and v1, v2 ∈ R. 

A quasilinear generating function φ(x, y, v) = f(x, y) − v satisfies the strict single crossing 
condition if and only if f(x, y) is strictly supermodular.24 

We begin by considering matching models satisfying Assumption 4 and then show 
how the results obtained for this case can be leveraged into a corresponding result for 
implementable assignments. Our results generalize previous results for principal-agent 
models without quasilinear preferences by Guesnerie and Laffont (1984) and for matching 
models with imperfectly transferable utility by Legros and Newman (2007). The former 
impose a smoothness condition on the generating function and restrict attention to piecewise 
continuously differentiable assignments. The latter consider a model with a finite number of 
agents and show that their generalized increasing differences condition, which is equivalent 
to our strict single crossing condition, ensures that stable matches are positive assortative. 

23We could equivalently define strict single crossing in terms of the inverse generating function ψ. 
24Under quasilinearity, the strict single crossing condition (35) becomes 

f(x1, y2) − f(x1, y1) ≥ v2 − v1 =⇒ f(x2, y2) − f (x2, y1) > v2 − v1. 

This is obviously implied by the strict supermodularity condition f(x2, y2) − f(x2, y1) > f(x1, y2) − f (x1, y1), 
while choosing v2 − v1 = f(x1, y2) − f(x1, y1) ensures that strict single crossing implies supermodularity. 
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6.1 Positive Assortative Matching 

We consider balanced matching models (X, Y, φ, µ, ν, u, v) satisfying Assumptions 1 and 4. 
Given that X and Y are compact intervals in the reals it will be convenient to identify the 
measures µ, ν, and λ with their distribution functions, denoted by Fµ, Gν , and Hλ. Let λ∗ 

be the unique full match satisfying 

Hλ∗ (x, y) = min{Fµ(x), Gν (y)} for all (x, y) ∈ X × Y. (36) 

Following Galichon (2016, Chapter 4) we refer to λ∗ as the positive assortative match. 
When both Fµ and Gν are continuous and strictly increasing, the positive assortative 

match is obtained by matching each agent with his or her uniquely determined counterpart 
on the other side who has the same “rank” in the type distribution (as determined by the 
quantile functions F −1 and G−1). Note that, in general, the positive assortative match need 
not be deterministic but will be so when µ is atomless (Galichon, 2016, Lemma 4.2). This 
provides us with the condition in the following proposition ensuring that the pairwise stable 
match is not only unique but also deterministic. 

Proposition 12. Let Assumptions 1 and 4 hold and the matching model (X, Y, φ, µ, ν, u, v) 
be balanced. Then the positive assortative match λ∗ is the unique pairwise stable match for 
all initial conditions (x0, u0). Further, if µ is absolutely continuous with respect to Lebesgue 
measure, then λ∗ is deterministic. 

Proof. Proposition 6 ensures that there exists a pairwise stable outcome (λ, u, v) with u 
and v implementing each other and satisfying u(x0) = u0. 
Suppose Γu,v is comonotonic, that is, for (x1, y1) and (x2, y2) ∈ Γu,v we have x2 > 

x1 =⇒ y2 ≥ y1 and y2 > y1 =⇒ x2 ≥ x1. Proposition 5.1 then implies that supp(λ) is 
comonotonic. From Theorem 3 in Dhaene, Denuit, Goovaerts, Kaas, and Vyncke (2002), 
λ then satisfies (36) and therefore is the positive assortative match λ∗ . If µ is absolutely 
continuous with respect to Lebesgue measure, then Fµ is continuous and λ∗ is deterministic 
(Galichon, 2016, Lemma 4.2). 

It remains to verify that the strict single crossing condition (35) in Assumption 4 implies 
that Γu,v is comonotonic. It suffices to show that there does not exist (x1, y1), (x2, y2) ∈ Γu,v 

satisfying x2 > x1 and y1 > y2. To show this, observe that (because v implements u) from 
Lemma 2 we have that (x1, y1), (x2, y2) ∈ Γu,v implies 

φ(x1, y1, v(y1)) ≥ φ(x1, y2, v(y2)) 

φ(x2, y2, v(y2)) ≥ φ(x2, y1, v(y1)). 

With x2 > x1 and y1 > y2, the first of these inequalities and (35) imply φ(x2, y1, v(y1)) > 
φ(x2, y2, v(y2)), contradicting the second inequality. 

Extending Proposition 12 to show that the unique pairwise stable match λ∗ is also the 
unique stable match requires the existence of a pairwise stable outcome (λ∗ , u, v) satisfying 
the participation constraints u ≥ u and v ≥ v. This isn’t guaranteed. For an extreme 
counterexample, it may be that there is no pair of agents capable of generating individually 
rational payoffs (that is, u(x) > φ(x, y, v(y)) holds for all (x, y)), obviously implying that 
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in the unique stable outcome all agents are unmatched. Suppose, however, that for all 
(x, y) ∈ X × Y , we have 

u(x) < φ(x, y, v(y)) (37) 

and consider a stable outcome (λ, u, v). If there were unmatched types in Y (that is, 
supp(ν − λY ) 6 ∅), then we could conclude from (22) that there exists ˆ= y ∈ supp(ν) such 
that v(ŷ) = v(ŷ) holds. Using (25) and (37) this implies u(x) > u(x) for all x ∈ supp(µ), 
which in turn implies (from (21)) that there exist no unmatched types in X (that is, 
supp(µ − λX ) = ∅). As in a balanced match there are no matches featuring a strictly positive 
measure of unmatched agents on one side but not on the other, we may thus conclude that 
λ is a full match. As every stable outcome featuring a full match is also pairwise stable, 
Proposition 12 then implies: 

Corollary 9. Let Assumptions 1 and 4 hold, let the matching model (X, Y, φ, µ, ν, u, v) 
be balanced and let (37) hold. Then the positive assortative match λ∗ is the unique stable 
match. 

Similar arguments, though with more tedious notation, show that if Assumptions 1 and 
4 hold, then in any stable match, all matched agents are matched positive assortatively. 

6.2 Increasing Assignments 

It is a familiar result that implementable assignments must be increasing if a strict single 
crossing condition holds (e.g., Fudenberg and Tirole, 1991, Theorem 7.2 ). Therefore, the 
main challenge in proving the following result is to show that every increasing assignment 
can be implemented with any initial condition. To obtain this, we build on Proposition 12 
to show that for every increasing assignment the deterministic match associated with it can 
arise as the unique pairwise stable match in a suitably defined matching model. 

Proposition 13. Let Assumptions 1 and 4 hold. Then an assignment y is implementable 
if and only if it is increasing. In addition, every implementable assignment is strongly 
implementable. 

Proof. Suppose the assignment y is implementable. Then there exist u and v implementing 
each other such that (x, y(x)) ∈ Γu,v holds for all x ∈ X (Proposition 4.1). Because Γu,v is 
comonotonic (cf. the proof of Proposition 12), this implies that y is increasing. 

Fix an increasing assignment y and an initial condition (x0, u0). We construct a balanced 
matching model (X, Y, φ, µ, ν, u, v): Let µ be Lebesgue measure on the Borel sets of X, 
and let ν be the pushforward of µ through y (which is well-defined because an increasing 
function y is measurable). The reservation utilities u and v will play no role, and so we can 
take u ≡ 0 ≡ v. 

Let λ∗ denote the positive assortative match for the matching model (X, Y, φ, µ, ν, u, v). 
From Proposition 12, λ∗ is deterministic. The construction of ν ensures λ∗ = λy. Applying 
Proposition 12, we obtain that there exists (u, v) such that (λy, u, v) is a pairwise stable 
outcome with u(x0) = u0. From Proposition 6 we may take u and v to implement each 
other. 

29 



We complete the argument by showing that v implements (u, y). It suffices to show 
that for every x ∈ X, (x, y(x)) ∈ Γu,v (Proposition 4). From Proposition 5.1, we have 
supp(λy) ⊆ Γu,v. Fix a value x ∈ X. If y is continuous at x, then we immediately have 

˜(x, y(x)) ∈ supp(λy) (since otherwise λy(X̃ × Y ) = 0 for some neighborhood X of x, a 
contradiction). If y is not continuous at x, then the increasing function y must take an 
upward jump at x, and we have (x, y(x)) ∈ [limx̃%x y(x), limx̃&x y(x)] ⊆ Γu,v. The final 
inclusion follows from the facts that for each y0 ∈ [limx̃%x y(x), limx̃&x y(x)] there exists 

0x0 ∈ X such that (x , y0) ∈ Γu,v (because, from Lemma 2, Γu,v coincides with the graph of 
the argmax-correspondence Yv, which is nonempty-valued) and that Γu,v is comonotonic 
(cf. the proof of Proposition 12), which implies x0 = x. 

Recall from Section 2.4 that in the absence of quasilinearity an assignment may be imple-
mentable without being strongly implementable. Proposition 13 shows that strict single 
crossing precludes this possibility. It follows that strict single crossing is a sufficient condi-
tion for the participation constraint to bind in any solution to the principal-agent model 
(Proposition 10). 

Remark 8 (Single Crossing vs. Strict Single Crossing). Say that the generating function 
satisfies the single crossing condition if the final inequality in (35) is weak. Under this 
weaker condition there may be (pairwise) stable matches that are different from the positive 
assortative match λ∗ and non-increasing assignments may be implementable (as can be 
easily see by considering the trivial quasilinear example in which the generating function 
is given by φ(x, y, v) = −v). However, under otherwise identical assumptions it remains 
true that (i) in a balanced matching model the positive assortative match λ∗ is pairwise 
stable for all initial conditions, (ii) every balanced matching model satisfying condition (37) 
has a stable outcome featuring the match λ∗, and (iii) every increasing assignment y is 
strongly implementable. Proving this is more tedious under single crossing than under strict 
single crossing as an extra step is required in the proof of Proposition 12 to show that the 
support of λ∗ is contained in Γu,v for every pairwise stable outcome (λ, u, v) with u and v 
implementing each other. 

7 Discussion 

We have introduced and studied a duality relationship that provides a characterization of 
implementable profiles and assignments suitable for adverse-selection principal-agent models 
and two-sided matching models. This has allowed us to extend results previously developed 
for the quasilinear case, and to clarify the logic behind these results. 

Throughout our analysis we have eschewed smoothness assumptions, as these play no role 
for the duality structure and are not required for the existence and characterization results 
pursued here. However, much of the power of conjugate duality stems from the inherent 
smoothness properties of convex functions, and many of the more useful implications of 
generalized conjugate duality for the quasilinear case—ranging from the familiar integral 
representation of implementable utility profiles (e.g. Myerson, 1979) to results asserting 
the uniqueness and determinateness of stable matchings (e.g. Chiappori, McCann, and 
Nesheim, 2010)—require smoothness conditions. Adding such conditions to our Assumption 
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1 opens the possibility to investigate questions that go beyond those addressed in this paper. 
For instance, McCann and Zhang (2017) use the implementation duality to show how the 
conditions from Figalli, Kim, and McCann (2011), under which the principal’s problem can 
be reduced to a convex maximization program, can be extended to the non-quasilinear case. 

A number of extensions suggest themselves. First, much is known about the structure of 
the set of stable outcomes in matching models with a finite number of agents (Roth and 
Sotomayor, 1990, Chapter 9), including connectedness and comparative static properties, 
that one might want to extend to our setting. Second, Appendix D.1 extends the principal-
agent model to allow exclusion. For much the same reasons that the participation constraint 
may not bind in a solution to the principal’s problem (Section 5.3 ), we find that the principal 
may prefer to pay agents for nonparticipation. Third, Appendices D.2 and D.3 explain 
how our analysis can be extended to include stochastic contracts and moral hazard in the 
principal-agent model. In the course of these extensions, we note that our compactness 
assumption on Y is sometimes restrictive because it is natural to allow for unbounded Y . 
Similarly, the assumption that the type space X is compact is violated in some applications 
in finance (such as Glosten, 1989) in which normally distributed types are considered.25 

The implementation relationships studied here also appear in economic contexts different 
from the ones we have considered, with possible applications ranging from the characterization 
of hedonic pricing equilibria (cf. Chiappori, McCann, and Nesheim, 2010, in the quasilinear 
case) to the development of new econometric techniques for discrete-choice random-utility 
models (Bonnet, Galichon, and Shum, 2017). Finally, while Galois connections have played 
little role in economic theory so far, their appearance in the study of information aggregation 
(under the guise of a residual mapping) in Chambers and Miller (2011) and in the study of 
preference aggregation (Monjardet, 1978, 2007), suggest that further applications may by 
found in other areas. 

Appendix A: Proofs 

A.1 Proof of Lemma 1 

First, we prove the continuity of Ψ : B(X) → B(Y ). The argument for the continuity of 
Φ : B(Y ) → B(X) is analogous. 

Fix u ∈ B(X) and ε > 0. We have to establish that there exists δ > 0 such that 

kũ− uk < δ =⇒ kΨũ− Ψuk < ε. 

Let (the following expressions are well-defined because u is bounded) z̄ = supx∈X u(x)+1, 
z = infx∈X u(x) − 1, and Z = [z, z̄] ⊂ R. For every δ ∈ (0, 1) and x ∈ X, we then have 

kũ− uk < δ =⇒ ũ(x) ∈ Z. 

As ψ is continuous, it is uniformly continuous on the compact set X × Y × Z. Hence, there 
exists δ ∈ (0, 1) and ε0 ∈ (0, ε) such that 

kũ− uk < δ =⇒| ψ(y, x, ũ(x)) − ψ(y, x, u(x)) |< ε0 

25In the quasilinear case Bardsley (2017) provides an illuminating duality-based analysis of principal-agent 
models that avoids compactness assumptions. 
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for all x ∈ X and y ∈ Y . We also have 

| ψ(y, x, ũ(x)) − ψ(y, x, u(x)) |< ε0 ����sup ψ(y, x, ũ(x)) − sup ψ(y, x, u(x)) 

for all x ∈ X and y ∈ Y =⇒ 

≤ ε0 < ε, 

����sup 
y∈Y x∈X x∈X 

which gives kΨũ− Ψuk < ε, as desired. 
Second, let V ⊂ B(Y ) be bounded, ensuring the existence of a compact interval Z ⊂ R 

such that v(Y ) ⊂ Z holds for all v ∈ V . We then have Φv(x) ∈ [min(x,y,v)∈X×Y ×Z φ(x, y, v), 
max(x,y,v)∈X×Y ×Z φ(x, y, v)] for all x ∈ X and v ∈ V , ensuring that ΦV ⊂ B(X) is bounded. 
The argument for Ψ is analogous. 

A.2 Proof of Corollary 1 and Completion of the Proof of Proposition 1 

We first use the defining property of a Galois connection (10) to establish (11)–(13) in the 
statement of Corollary 1.26 In each case we prove one of the two statements; the other 
statement follows by an analogous argument. First, for any v ∈ B(Y ) we trivially have 
Φv ≥ Φv, so that setting u = Φv in (10) yields (11). Second, let v1 ≥ v2. By (11) we have 
v2 ≥ ΨΦv2 and thus v1 ≥ ΨΦv2. Applying (10) with v = v1 and u = Φv2 then gives the 
consequent of (12). Third, (11) gives v ≥ ΨΦv. Applying (12) with v1 = v and v2 = ΨΦv 
to this inequality yields ΦΨΦv ≥ Φv. To establish the reverse inequality and hence (13), 
notice that for every v ∈ B(Y ) we have ΨΦv ≥ ΨΦv, so that using ΨΦv in place of v and 
Φv in place of u in (10) yields the reverse inequality Φv ≥ ΦΨΦv. 

We next show that (10) implies that Φ and Ψ are dualities that are dual to each other. 
To confirm that Φ is a duality (with Ψ analogous), let v be the infimum of some 

set V ⊂ B(Y ). Corollary 1.2 implies that Φv then is an upper bound of ΦV. Let u 
be any upper bound of ΦV. By (10) we then have v ≥ Ψu for all v ∈ V, implying 
v ≥ Ψu. Applying (10) again, this yields u ≥ Φv, showing that Φv is the supremum of 
ΦV. To see that Φ and Ψ are dual, note that (10) implies {u|v ≥ Ψu} = {u|u ≥ Φv}, 
so that inf{u|v ≥ Ψu} = inf{u|u ≥ Φv} = Φv. An analogous argument establishes 
Ψu = inf{v|u ≥ Φv}. 

Finally, we argue that dualities that are dual to one another constitute a Galois connection. 
The proof is straightforward (cf. Singer, 1997, p. 179): Let u ≥ Φv. Then Ψu ≤ ΨΦv ≤ 
inf{ṽ|Φṽ ≤ Φv} ≤ v, where the first inequality follows from the order-reversing property 
of the duality Ψ, the second inequality follows from the fact that Ψ and Φ are dual, and 
the final inequality from the definition of the infimum. This gives one of the implications of 
(10); the other is analogous. 

A.3 Proof of Proposition 2 

It is immediate from the definitions that I(X) ⊆ ΦB(Y ). Hence, to establish the first 
statement in (14) we need to show that the image Φv of any profile v ∈ B(Y ) is implementable 
and continuous. The remaining statement in (14) follows by an analogous argument. 

26As noted in Birkhoff (1995, Section 5.8), the properties stated in (11)–(12) are in fact equivalent to (10) 
and are sometimes taken to be the definition of a Galois connection (e.g., Singer, 1997, Definition 5.3 and 
Remark 5.6). See also the original definition of a Galois connection in Ore (1944). 
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Given any profile v ∈ B(Y ), let sv = supy∈Y v(y) denote its supremum and iv = 
infy∈Y v(y) its infimum. These are finite because v is bounded. Let Ev = {(y, v) ∈ Y × R |
v ≥ v(y)} denote the epigraph of v, and let Zv = {(y, v) ∈ Y × R | sv ≥ v ≥ v(y)}. Observe 
that the set Zv ⊂ Ev is bounded, contains the graph of v and is contained in [iv, sv] × Y , 
which is a compact set (because Y is compact). 

We now proceed in two steps. 

Step 1: Consider v ∈ B(Y ) that is lower semicontinuous. Then its epigraph Ev is closed and 
so is Zv. As Zv is contained in the compact set [iv, sv] × Y it follows that Zv is compact. 
As the generating function φ is continuous, a solution to the problem 

max φ(x, y, v) (A.1) 
(y,v)∈Zv 

thus exists for all x ∈ X by Weierstrass’ extreme value theorem. As φ is continuous and Zv 

is compact, it follows from Berge’s maximum theorem (Ok, 2007, p. 306) that the profile 
u ∈ B(X) defined by u(x) = max(y,v)∈Zv φ(x, y, v) for all x ∈ X is continuous. 
As the graph of v is contained in Zv, and φ is strictly decreasing in its third argument, 

any solution to (A.1) lies on the graph of v, implying that for every x ∈ X, there exists 
y(x) ∈ Y such that 

max φ(x, y, v) = φ(x, y(x), v(y(x))) 
(y,v)∈Zv 

holds. This ensures that the suprema in the definition of Φv are attained and that v 
implements Φv = u. 

Step 2: It remains to consider the case in which v ∈ B(Y ) is not lower semicontinuous. Let 
v̄ be the lower semicontinuous hull of v, i.e., the greatest element of the family of lower 
semicontinuous functions from Y to R majorized by v. (The existence of v̄ is assured, cf. 
Penot (2013, Proposition 1.21).) As v is bounded, so is v̄, i.e., we have v̄ ∈ B(Y ). From the 
previous step, the profile v̄ implements Φv̄, which is continuous. It remains to show that 
Φv̄ = Φv holds. Because the epigraph Ev̄ of v̄ is the closure of the epigraph Ev of v (Penot, 
2013, Proposition 1.21), we have that Zv̄ is the closure of Zv. Therefore, 

sup φ(x, y, v) = max φ(x, y, v) 
(y,v)∈Zv̄(y,v)∈Zv 

and thus (because φ is decreasing in its third argument) we have supy∈Y φ(x, y, v(y)) = 
maxy∈Y φ(x, y, v̄(y)) for all x ∈ X, which is the desired result. 

A.4 Proof of Corollary 4 

We prove Corollary 4.1; 4.2 is analogous. 
If (u, y) is implementable there exists ṽ ∈ B(Y ) implementing it, thus satisfying u = Φṽ, 

from which we obtain Ψu = ΨΦṽ. From the first inequality in (11) in Corollary 1.1, we 
have ṽ ≥ ΨΦṽ and thus ṽ ≥ Ψu. Now suppose that Ψu does not implement y. Because 
Ψu implements u (Corollary 3.1) there exists (x̂, ŷ) ∈ X × Y such that 

u(x̂) = φ(ˆ y, Ψu(ˆ x, y(ˆ x))) ≥ φ(ˆ x), ˜ x))),x, ˆ y)) > φ(ˆ x), Ψu(y(ˆ x, y(ˆ v(y(ˆ
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where the last inequality uses ṽ ≥ Ψu and the assumption that φ is decreasing in its third 
argument. But because ṽ implements (u, y) we also have 

u(x̂) = φ(x̂, y(x̂)), ṽ(y(x̂))), 

resulting in a contradiction which finishes the proof. 

A.5 Proof of Corollary 5. 

We prove statements [5.1]–[5.3], with the proofs of the corresponding statements for I(Y ) 
being analogous. 

∗)∞ 

∗ 
[5.1] Consider a sequence (un n=1 of profiles in I(X) converging to some u ∈ B(X). 

We want to show that u is implementable. For all n ∈ N, let vn = Ψun. Because Ψ is 
∗ ∗continuous (Lemma 1), the sequence (vn)∞ 

n=1 converges to v = Ψu . Corollary 3.1 implies 
that vn implements un, so that we have un = Φvn for all n ∈ N . Taking limits on both 

∗ ∗sides of this equation and using the continuity of Φ (Lemma 1), we obtain u = Φv . From 
Proposition 2 this establishes the implementability of u ∗, and hence that I(X) is closed. 
Next, suppose that the sequence (un)

∞ 
n=1 is in Uy ⊂ I(X). With the same construction of 

the sequence (vn n=1 as above, Corollary 4.1 then implies that vn implements y for all n, so )∞ 

that 
φ(x, y(x), vn(y(x)) ≥ φ(x, y, vn(y)) 

∗)∞ 

its pointwise convergence to the same limit and φ is continuous, the above inequalities imply 
holds for all x ∈ X, y ∈ Y and n ∈ N. As the (uniform) convergence of (vn n=1 to v implies 

φ(x, y(x), v ∗ (y(x)) ≥ φ(x, y, v ∗ (y)) 

∗ ∗for all x ∈ X and y ∈ Y . Therefore, v implements y. As v also implements u ∗, this 
∗establishes u ∈ Uy. 

[5.2] Let U ⊂ I(X) be bounded. Fix ε > 0. To show equicontinuity of U , we establish 
that there exists δ > 0 such that 

kx̂− xk < δ =⇒ ku(x̂) − u(x)k < ε (A.2) 

for all x̂, x ∈ X and u ∈ U . 
Because U is bounded, so is V = ΨU (Lemma 1). We may then choose v < v̄ ∈ R such 

that v ∈ V implies v ≤ v(y) ≤ v̄ for all y ∈ Y . Because φ is continuous, it is uniformly 
continuous on the compact set X × Y × [v, v̄]. Consequently, there exists δ > 0 such that 

kx̂− xk < δ =⇒ kφ(x̂, y, v) − φ(x, y, v)k < ε (A.3) 

for all (y, v) ∈ Y × [v, v̄]. Fix such a δ and let kx̂− xk < δ hold. 
Consider any u ∈ U . From Corollary 3, the profile v = Ψu ∈ V implements u. Let 

ỹ ∈ Yv(x) and ŷ ∈ Yv(x̂). We then have 

u(x) =φ(x, ˜ y)) ≥ φ(x, ˆ y)),y, v(˜ y, v(ˆ

u(x̂) =φ(ˆ y, v(ˆ x, ˜ y)),x, ˆ y)) ≥ φ(ˆ y, v(˜
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implying 

ε > φ(x̂, ˆ y)) − φ(x, ˆ y)) ≥ u(ˆ x, ˜ y)) − φ(x, ˜ y)) > −ε,y, v(ˆ y, v(ˆ x) − u(x) ≥ φ(ˆ y, v(˜ y, v(˜

where the outer inequalities are from (A.3) and the fact that v ≤ v(y) ≤ v̄ holds for all 
y ∈ Y . Consequently, we have ku(x̂) − u(x)k < ε, thus establishing (A.2). 
[5.3] This follows from Corollary 5.2 and an application of the Arzela-Ascoli theorem 

(Ok, 2007, p. 264). 

A.6 Proof of Lemma 3 

We prove the first statement in the lemma; the second is analogous. 
Fix an implementable y ∈ Y X and consider u1, u2 ∈ Uy. Let v1 implement (u1, y) and 

v2 implement (u2, y). For any x ∈ X, we then have 

u1(x) = φ(x, y(x), v1(y(x))) (A.4) 

u2(x) = φ(x, y(x), v2(y(x))). (A.5) 

From (A.4) and (A.5) it is immediate that 

u1(x) ∨ u2(x) = φ(x, y(x), v1(y(x)) ∧ v2(y(x))) (A.6) 

holds for all x ∈ X. Combined with the equality Φ(v1 ∧ v2) = u1 ∨ u2 (cf. the first paragraph 
of Section 3.4.2), (A.6) shows that v1 ∧ v2 implements (u1 ∨ u2, y). Hence, u1 ∨ u2 ∈ Uy. 
From (A.4) and (A.5) it is also immediate that 

u1(x) ∧ u2(x) = φ(x, y(x), v1(y(x)) ∨ v2(y(x))) (A.7) 

holds for all x ∈ X. From the implementation condition (4) we further have φ(x, y, v1(y)) ≤ 
u1(x) and φ(x, y, v2(y)) ≤ u2(x) for all (x, y) ∈ X ×Y , so that u1(x)∧u2(x) ≥ φ(x, y, v1(y)∨ 
v2(y)) holds for all x and y. Combined with (A.7), this shows that v1 ∨ v2 implements 
(u1 ∧ u2, y). Hence, u1 ∧ u2 ∈ Uy. 

A.7 Proof of Lemma 4 

We prove Lemma 4.1; the proof for Lemma 4.2 is analogous. 
Let U ⊂ I(X) be a closed sublattice of B(X) for which 

Ux = {u ∈ U|u(x) = u(x)}. 

is nonempty for all x ∈ X. For the current proof, the important observation is that if 
y ∈ Y X is strongly implementable, then one such set is Uy, which is a subset of I(X) (by 
definition), closed (Corollary 5.1), and, by Lemma 3, a sublattice of B(X), with the strong 
implementability of y ensuring that {u ∈ Uy|u(x) = u(x)} is nonempty for all x ∈ X. 
Let 

S = {u ∈ U | u ≥ u}. 
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We proceed in two steps. The first step establishes that there exists û ∈ S satisfying 
û(x) = u(x) for some x ∈ X. The second step then completes the argument by showing 
that S has a minimum element. 

Step 1: Pick an arbitrary x0 ∈ X and u0 ∈ Ux0 . We construct a sequence (xn n=1 in X and)∞ 

an associated sequence (un n=1 of profiles in U, satisfying un ∈ Uxn for all n, by the following )∞ 

recursion: Given (xn−1, un−1) with un−1 ∈ Uxn−1 , let xn ∈ arg minx∈X [un−1(x) − u(x)]. 
Because both un−1 (as an implementable profile, Proposition 2) and u (by assumption) 
are continuous and X is compact, such an xn exists. Pick any ûn ∈ Uxn . Define un = 
un−1 ∨ ûn. Because U is a sublattice, we then have un ∈ U. Because un−1 ∈ Uxn−1 implies 
minx∈X [un−1(x) − u(x)] ≤ 0, we further have un(xn) = u(xn), implying un ∈ Uxn . 

The sequence (un n=1 is increasing by construction. It is also bounded above.27 Therefore,)∞ 

it is bounded and thus equicontinuous (Corollary 5.2). Hence, (un n=1, which is a sequence )∞ 

in the closed set U, has a limit point û ∈ U. Because û ∈ U ⊂ I(X) is implementable, it is 
continuous (Proposition 2). 
Because X is compact, the sequence (xn n=1 has a converging subsequence, denoted )∞ 

∗by xnk , with limit x ∈ X. As (un)
∞ is a sequence of continuous functions converging n=1 

uniformly to the continuous function û we have 

∗ )lim unk (xnk ) = û(x 
k→∞ 

(A.8) 

lim ∗ ).unk−1 (xnk ) = û(x 
k→∞ 

(A.9) 

As un(xn) = u(xn) holds for all n and u is continuous, (A.8) implies 

û(x ∗ ) = u(x ∗ ). (A.10) 

By construction of the sequence (xn)∞ 
n=1 we have 

un−1(x) − u(x) ≥ un−1(xn) − u(xn) 

for all x ∈ X and n ≥ 1. Taking limits for the sequence nk we thus obtain 

û(x) − u(x) ≥ ˆ ∗ )u(x ∗ ) − u(x 

e(ˆ

for all x ∈ X, where we have used the continuity of u and (A.9) to obtain the right side of 
the inequality. Taking account of (A.10) this implies 

û(x) ≥ u(x) (A.11) 

for all x ∈ X. Combining (A.10) and (A.11), we have established the desired result. 

Step 2: As S contains û satisfying û(x) = u(x) for some x ∈ X, it is immediate that a 
∗minimum element u of S must satisfy u ∗(x) = u(x) for the same x ∈ X. It remains to 

show that such a minimum element exists. 
27By continuity of ψ and of the profile u, the profile v ∈ B(Y ) given by v(y) = minx∈X ψ(y, x, u(x)) 

for all y ∈ Y is well-defined. For any profile v ∈ B(Y ) satisfying v(ŷ) < v y) for some ŷ ∈ Y , we have e 

φ(x, y, ˆ v(ŷ)) > u(x) for all x ∈ X by construction. For such v, u eΦv thus satisfies u(x) > u(x) for all 
x ∈ X, implying that u is not in ∪x∈X Ux. By the order reversal property of the implementation map Φ it 
follows that u = Φv is an upper bound for ∪x∈X Ux and therefore an upper bound for (un)

∞ 
n=1. 

= 

e 
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Given any ū ∈ S, let Sū = {u ∈ U} | ū ≥ u ≥ u}. 
nonempty. Further, it is bounded. As the intersection of two closed sets, the set Sū

contains ū and hence is 
is closed 

The set S¯

a closed and bounded subset of I(X), it is compact (Corollary 5.3) and thus a complete 

u

being 

sublattice of B(X).28 ∗, which clearly The complete sublattice S¯
is also the minimum element of S. 

A.8 Proof of Proposition 5.3 

Let (λ, u, v) be a pairwise stable outcome for the balanced matching model (X, Y, φ, µ, ν, u, v). 
Let X ⊆ X and Y ⊆ Y be the supports of µ and ν. Noticing that supp(λ) ⊆ X × Y holds, 
every pair of profiles ũ and ṽ that satisfy ũ = u on X and ṽ = v on Y satisfy (20) and 
(25), implying that for any such pair (λ, ũ, ṽ) is a pairwise stable outcome. It thus suffices 
to construct a pair of profiles satisfying ũ = u on X and ṽ = v on Y that implement each 
other. 

u

Because λ is a full match, for every x ∈ X there exists y ∈ Y with (x, y) ∈ supp(λ). 
(Otherwise we would have λX (X̃) = 0 for some neighborhood X̃ of x, a contradiction.) By 
(20) and (25) this implies that the restriction of the profile v to Y implements the restriction 
of the profile u to X , that is, 

u(x) = max φ(x, y, v(y)), ∀x ∈ X . 
y∈Y 

Similarly, for every y ∈ Y there must exist x ∈ X with (x, y) ∈ supp(λ), so that (20) and 
(25) imply that restriction of u to X implements the restriction of v to Y: 

v(y) = max ψ(y, x, u(x)), ∀y ∈ Y. 
x∈X 

Now define the profile ũ ∈ B(X) by 

ũ(x) = max φ(x, y, v(y)). 
y∈Y 

This profile satisfies ũ = u on X (because the restriction of v to Y implements the restriction 
of u to X ). Further, it is implementable. Indeed, because v is bounded, any profile v̂ ∈ B(Y ) 
of the form 

(
v(y) if y ∈ Y 

v̂(y) = 
v̆ otherwise 

with sufficiently large v̆ implements ũ. Now, let ṽ = Ψ ũ. As ũ is implementable, we then 
have that ũ and ṽ implement each other (Corollary 3.1). It remains to show that ṽ = v 
holds on Y. This follows upon noting that (i) ũ = u on X implies ṽ ≥ v on Y (because 
the restriction of u to X implements the restriction of v to Y) and (ii) we have ṽ = ΨΦv̂, 

28The set Sū is compact in the norm topology. A lattice is complete if and only if it is compact in 
the interval topology (Birkhoff, 1995, p. 250, Theorem 20). Compactness in the norm topology implies 
compactness in the interval topology, as any set open under the latter is also open under the former. 

has a minimum element u 

and as an intersection of two sublattices of B(X), it is a sublattice. With the set Sū
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which implies (from Corollary 1.1) v̂ ≥ ṽ and therefore, because v̂ = v on Y, also implies 
the inequality v ≥ ṽ on Y. 

A.9 Proof of Lemma 5 

Suppose λ is a deterministic match satisfying λ = λy for an implementable y. From 
Proposition 4.1, the implementability of y implies that there exists u and v implementing 
each other such that the graph of y is contained in Γu,v. As the argmax correspondence 
Yv is upper hemicontinuous (Corollary 2), its graph is closed. Hence, Γu,v, which coincides 
with the graph of Yv (Lemma 2), also contains the closure of the graph of y. Moreover, the 
closure of the graph of y contains the support of λy (otherwise, there is a point (x, y) with 
a neighborhood that does not intersect the graph of y and which receives positive measure 
under λy, a contradiction to the definition of λy in (28)). We thus have supp(λ) ⊆ Γu,v, 
implying that λ is pairwise stable (Propositions 5.1 and 5.2). 
Conversely, suppose the deterministic match λ is pairwise stable. From Proposition 

5.3 the pairwise stability of λ implies that there exist (u, v) implementing each other such 
that supp(λ) ⊆ Γu,v. By Proposition 4.1 it remains to show that there exists a measurable 
assignment y with graph contained in Γu,v satisfying λy = λ. By definition of a deterministic 
match, there exists a measurable assignment y0 such that λ = λy0 holds. If the graph of 

0y0 is contained in the support of λ, then we are done upon setting y = y . It remains to 
consider the case that the graph of y0 is not contained in the support of λ. 

We construct the assignment y. Let X denote the support of µ. First, we note that λy0 
does not depend on the specification of y0 outside the support of µ. In addition, we can 

29define the assignment y on X \X so that (x, y(x)) ∈ Γu,v holds for all x ∈ X \X . Now let 
˜ ˜X = {x ∈ X | (x, y0(x)) 6∈ supp(λ)}. The set X is negligible (that is, contained in a subset 
of X with measure zero) by definition of λy0 . Hence, we can complete the specification 
of y by taking y to equal a measurable selection from Yv (cf. footnote 29) (and hence 
(x, y(x)) ∈ Γu,v) on a subset of X that contains X̃ and has measure zero, and taking y to 
equal y0 (and hence (x, y(x)) ∈ supp(λ) ⊆ Γu,v) on the remainder of X̃. This construction 
ensures that the graph of y is contained in Γu,v. It follows immediately from the definitions 
of λy and λy0 that we further have λy = λy0 . As λy0 = λ holds by assumption, this implies 
λy = λ, finishing the proof. 

A.10 Proof of Proposition 6 

Let (X, Y, φ, µ, ν, u, v) be a balanced matching problem satisfying Assumption 1. Since this 
matching model is balanced, nothing is lost (and some convenience is gained) by taking µ 
and ν to be probability measures, which we hereafter maintain. 
Let (x1, . . . , xn) ∈ Xn and (y1, . . . , yn) ∈ Y n satisfy y1 = y0, where y0 ∈ Y is the agent 

appearing as part of the initial condition (y0, v0) in the statement of the Proposition. Define 

29As we have noted earlier in this proof, the correspondence Yv has a closed graph, ensuring that it 
is weakly measurable (Aliprantis and Border, 2006, Theorem 18.20 and Lemma 18.2), and hence has a 
measurable selection (Aliprantis and Border, 2006, Theorem 18.13) ỹ. Take y to equal ỹ on X \ X . 
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a measure µn on X by 
n

n 
k=1 

˜for measurable X ⊆ X and define the measure νn on Y similarly by 

n

X

X 

(X̃) = 
1 

(X̃),δxk (A.12)µn

(Ỹ ) = 
1 

δyk (Ỹ )νn (A.13) 
n 

k=1 

for all measurable Ỹ ⊆ Y . 

Lemma 7. Let Assumption 1 hold. The matching model (X, Y, φ, µn, νn, u, v) has a pairwise 
stable outcome (λn, un, vn) with profiles un and vn that implement each other and that 
satisfy vn(y0) = v0. 

Proof of Lemma 7 We first construct an auxiliary balanced finite-support matching 
model (X, Y, φ, n · µn, n · νn, u, v) satisfying Assumption 1 by (i) multiplying the measures µn 

( ) =x u, e 
u

by n (so as to convert them into counting measures) and (ii) replacing the reservation 
utility profiles u and v by reservation utility profiles 

eeand νn 

∀x ∈ X 

and 

v(y) =e
(
v0 if y = y0 

u otherwise, 

where u is sufficiently small as to ensure φ(x, y, u) > φ(x, y0, v0) > u for all x ∈ X and 
y ∈ Y . 

Consider the matching model with a finite number of agents associated with (X, Y, φ, n · 
µn, n ·νn, u, v) (cf. Appendix B.5). By construction of u and v, the inequalities φ(xi, yj , u) > eeeeφ(xi, y0, v0) > u hold for all i, j ∈ {1, . . . , n}. Because there are an equal number of buyers 
and sellers, these inequalities ensure that there are no unmatched agents in a stable outcome 
and similarly preclude the possibility that any seller with yk 6= y0 obtains her reservation 
utility in a stable outcome. Hence, it follows from Lemma 3 in Demange and Gale (1985) 
that this matching model with a finite number of agents has a stable outcome in which all 
buyers and sellers are matched and sellers with yk = y0 obtain their reservation utility. This 
implies (cf. Appendix B.5) that the finite-support matching model (X, Y, φ, n ·µn, n · νn, u, v) 
has a fully matched stable outcome (λ̂n, un, vn

ee 
) satisfying the initial condition v(y0) = v0. 

As any fully matched stable outcome is also pairwise stable and the pairwise stability 
conditions do not depend on the reservation utility profiles, the outcome (λ̂n, un, vn) is also 
pairwise stable for the finite-support matching model (X, Y, φ, n · µn, n · νn, u, v). Letting 

ˆλn = λn/n, it is obvious that (λn, un, vn) is a pairwise stable outcome for the matching 
model (X, Y, φ, µn, νn, u, v). Finally, from Proposition 5.3 we may assume that un and 
vn implement each other, giving a pairwise stable outcome (λn, un, vn) satisfying all the 
conditions from the statement of the lemma. 
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Let (xn)∞ and (yn)∞ 
n=1 be sequences in X and Y with y1 = y0 and such that the probability n1 

measures µn and νn defined in (A.12)–(A.13) converge weakly to µ, respectively ν. The 
existence of such sequences is assured: for example, if all but x1 and y1 are obtained by 
taking sequences of independent random draws from the probability measures µ and ν, then 
with probability one we obtain sequences of measures µn and νn that converge weakly (as 
n →∞) to the measures µ and ν (Villani, 2009, p. 64). For each n, the matching model 
(X, Y, φ, µn, νn, u, v) has a pairwise stable outcome (λn, un, vn) satisfying the properties 
in the statement of Lemma 7. Let (λn, un, vn)∞ be a sequence of such outcomes. Then=1 
following lemma establishes that this sequence has a limit point, which is the pairwise stable 
outcome we seek. 

)∞Lemma 8. Let Assumption 1 hold. The sequence (λn, un, vn n=1 has a subsequence converg-
ing (weakly in the case of the measures λn, and in norm for the profiles) to a pairwise stable 

∗ outcome (λ∗ , u , v ∗) of the matching model (X, Y, φ, µ, ν, u, v) that satisfies v ∗(y0) = v0. 

Proof of Lemma 8 Because each of the probability measures λn is defined on the compact 
(and hence separable) metric space X × Y , the collection {λn}∞ 

n=1 is tight, and Prokhorov’s 
theorem (Shiryaev, 1996, p. 318) ensures that there is a subsequence of (λn)∞ 

n=1 converging 
weakly to a probability measure λ∗ on X × Y . Further, as each λn is a full match, so is λ∗ , 
that is, conditions (26)–(27) are preserved in the limit (Villani, 2009, p.64). For convenience 
of notation, we assume that the sequence (λn n=1 itself converges to λ

∗ .)∞ 

We show below that the sequences (un n=1 and (vn n=1 are bounded. )∞ )∞ 

Because {un}∞ and {vn}∞ are sets of implementable profiles, Corollary 5.2 then n=1 n=1 
ensures that both of these sets are equicontinuous and the Ascoli theorem (Kelley, 1955, 
p. 233) ensures that they have compact closures, and hence (un, vn)∞ 

n=1 has a subsequence 
(which, for notational convenience, we take to be the sequence itself) converging to some 

∗limit (u , v ∗). As the sets of implementable profiles are closed (Corollary 5.1) it follows that 
∗ ∗ u and v are implementable. Further, the arguments in the proof of Corollary 5.1 show 

∗that (u , v ∗) implement each other. As vn(y0) = v0 holds for all n, we obtain v ∗(y0) = v0. 
In light of Proposition 5 the desired result then follows provided that supp(λ∗) ⊆ Γu ∗ ,v ∗ 

holds, that is, we need to establish 

u ∗ (x) = φ(x, y, v ∗ (y)) 

)∞ 

for every (x, y) in the support of λ∗, there is a sequence (xn, yn)∞ 
n=1, with each (xn, yn) in 

the support of λn, converging to (x, y). For each n and each (xn, yn) ∈ supp(λn), we have 

for all (x, y) ∈ supp(λ∗). The weak convergence of the sequence (λn n=1 to λ
∗ ensures that 

un(xn) = φ(xn, yn, vn(yn)). 

)∞ )∞ 

∗ 
The convergence of the equicontinuous sequences (un n=1 and (vn n=1 of continuous profiles 
to the continuous profiles (u , v ∗) then gives the result. 
It remains to establish boundedness of the sequences (un)

∞ and (vn)∞ To do so, n=1 n=1. 
we first recall that in the pairwise stable outcome (λn, un, vn) of the nth matching model, 
the profiles un and vn implement each other and (because y1 = y0) satisfy vn(y1) = v0. 
Hence, for each x and n, we have un(x) ≥ φ(x, y1, v0), providing a lower bound for (un)

∞ 
n=1. 
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Similarly, we note that some buyer x is matched with seller y1. The ability of any seller to 
match with buyer x puts a lower bound on vn. We cannot be sure which buyer is involved 
in such a match, but we know that the buyer in question receives utility φ(x, y1, v0), and so 
we have 

vn(y) ≥ min ψ(y, x, φ(x, y1, v0)), 
x∈X 

providing a lower bound for (vn)∞ By the order reversal property of the implementation n=1. 
maps (Corollary 1.2) the lower bound on (un)n

∞ 
=1 provides an upper bound on (vn)n

∞ 
=1 and 

the lower bound on (vn)∞ provides an upper bound on (un)
∞ Hence, the sequences n=1 n=1. 

(un n=1 and (vn n=1 are bounded, finishing the proof. )∞ )∞ 

This completes the proof of Proposition 6. 

A.11 Proof of Corollary 6 

Fix a matching model (X, Y, φ, µ, ν, u, v) satisfying Assumption 1. We construct an aug-
mented matching model (X0, Y0, φ0, µ0, ν0, u0, v0) as follows. 
First, we augment the type spaces X and Y by adding dummy types x0 and y0, where 

x0 and y0 are elements of the metric spaces containing X and Y but are not contained in X 
or Y . We let X0 = X ∪ {x0} and Y0 = Y ∪ {y0}. 
Second, the reservation utility profiles u0 and v0 duplicate u on X and v on Y , with 

u(x0) = v(y0) = 0. 
Third, we let the generating function φ0 equal φ on X × Y × R, and then extend φ0 to 

X0 × Y0 × R by defining 

φ0(x, y0, v) = u(x) − v 

φ0(x0, y, v) = v(y) − v 

φ0(x0, y0, v) = − v. 

We let ψ0 denote the inverse generating function associated with φ0. Note that ψ0 satisfies 
ψ0(y, x0, u) = v(y) − u, indicating that any type of seller y receives her reservation utility 
v(y) when matching with a buyer x0 who receives her reservation utility u0(x0) = 0, thus 
mirroring the utility obtained by a buyer of any type x who matches with y0. 

Fourth, we let the measure µ0 duplicate µ on the set X, and attach mass ν(Y )+ 1 to the 
isolated point x0. Similarly, the measure ν0 duplicates ν on the set Y , and attaches mass 
µ(X) + 1 to the isolated point y0. Note that µ0(X0) = ν0(Y0) = 1+ µ(X) + ν(Y ) holds, and 
so the matching model (X0, Y0, φ0, µ0, ν0, u0, v0) is balanced. 

The augmented matching model (X0, Y0, φ0, µ0, ν0, u0, v0) features continuous reservation 
utility profiles and satisfies Assumption 1: the sets X0 and Y0 are compact because X and 
Y are so, and the generating function φ0 satisfies the full range condition and is continuous 
because the profiles u and v used in the construction of the extension of φ are (by assumption) 
continuous. 
With any full match λ0 for (X0, Y0, φ0, µ0, ν0, u0, v0) we associate the match λ for 

(X, Y, φ, µ, ν, u, v) obtained by restricting λ0 to X × Y . Vice versa, we can extend any match 
λ for (X, Y, φ, µ, ν, u, v) to a full match λ0 for (X0, Y0, φ0, µ0, ν0, u0, v0) by assigning the 
masses of unmatched agents to the dummy agents and matching the remaining masses of the 
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dummy agents with each other. That is, we associate with λ the uniquely defined measure 
λ0 satisfying 

λ0(X̃ × {y0}) = µ(X̃) − λX (X̃) 

λ0({x0} × Ỹ ) = ν(Ỹ ) − λY (Ỹ ) 

for all measurable X̃ ⊆ X and Ỹ ⊆ Y , and 

λ0({x0} × {y0}) = 1 + λ(X × Y ). 

We say that a full outcome (λ, u0, v0) for (X0, Y0, φ0, µ0, ν0, u0, v0) and an outcome (λ, u, v) 
for (X, Y, φ, µ, ν, u, v) are associated if (i) λ0 and λ are associated, (ii) u is the restriction 
of u0 to X, and (iii) v is the restriction of v0 to Y . 
Because the augmented matching model (X0, Y0, φ0, µ0, ν0, u0, v0) is balanced, we can 

invoke Proposition 6 to conclude that it has a pairwise stable outcome (λ0, u0, v0) satisfying 
u0(x0) = 0. The proof is then completed by the “if” direction of the following lemma. (The 
“only-if” direction of the lemma will be required in the proof of the subsequent Proposition 
8.) 

Lemma 9. Let the matching model (X, Y, φ, µ, ν, u, v) satisfy Assumption 1. Then (λ, u, v) 
is a stable outcome of (X, Y, φ, µ, ν, u, v) if and only if it is associated with a pairwise stable 
outcome (λ0, u0, v0), satisfying u(x0) = 0, of the augmented matching model 
(X0, Y0, φ0, µ0, ν0, u0, v0). 

Proof of Lemma 9. Suppose the outcome (λ0, u0, v0) is a pairwise stable outcome of the 
augmented matching model (X0, Y0, φ0, µ0, ν0, u0, v0) with u(x0) = 0 and let (λ, u, v) be the 
associated outcome of (X, Y, φ, µ, ν, u, v). The measures µ0 and ν0 have been constructed so 
that λ0(x0, y0) = 1 + λ0(X × Y ) > 0 holds for the full match λ0 in the augmented matching 
model. Together with the equality u(x0) = 0, the feasibility condition (20) for types (x0, y0) 
in the augmented matching model then implies v0(y0) = 0. For any type x ∈ supp(µ), (25) 
in the augmented matching model then implies u(x) ≥ φ0(x, y0, 0) = u(x) and similarly 
v(y) ≥ ψ0(y, x0, 0) = v(y) for all y ∈ supp(ν). Thus, the participation constraints (23)– 
(24) in the associated outcome (λ, u, y) for the matching model hold. Next, the incentive 
constraints (25) in the augmented matching model, 

u0(x) ≥ φ0(x, y, v(y)) ∀(x, y) ∈ supp(ν0) × supp(µ0), 

imply 
u(x) ≥ φ(x, y, v(y)) ∀(x, y) ∈ supp(ν) × supp(µ), 

which are the incentive constraints in the matching model. It remains to check the feasibility 
conditions (20)–(22) to infer that (λ, u, v) is a stable outcome of (X, Y, φ, µ, ν, u, v). As λ 
and λ0 coincide on X × Y , the feasibility conditions for the augmented matching model 
immediately imply u(x) = φ(x, y, v(y)) for all (x, y) in the support of λ, which is (20). We 
then need only show that buyers x in the support of µ − λX and sellers y in the support of 
µ − λY receive their reservation utilities. For such types, we have that (x, y0) and (y, x0) are 
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in the support of λ0, so that (recalling the equalities u0(x0) = v0(y0) = 0 and the definition 
of φ0), the feasibility condition 

u0(x) = φ(x, y, v0(y)), ∀(x, y) ∈ supp(λ0) 

for the augmented matching model imply u(x) = u(x) and v(y) = v(y), which is the desired 
result. 
Conversely, suppose the outcome (λ, u, v) is a stable outcome of the matching model 

(X, Y, φ, µ, ν, u, v). Let the profiles u0 ∈ B(X0) and v0 ∈ B(Y0) agree with u and v on X 
and Y and satisfy u0(x0) = 0 and v0(x0) = 0. Let λ0 be the augmented match associated 
with λ. It suffices to show that (λ0, u0, v0) is a pairwise stable outcome of the matching model 
(X0, Y0, φ0, µ0, ν0, u0, v0). The equalities u0(x0) = 0 and v0(y0) = 0 hold by construction. 
Feasibility and the conditions for pairwise stability follow from the feasibility and stability 
conditions for (λ, u, v) in the matching model (X, Y, φ, µ, ν, u, v) via arguments analogous 
to those establishing the previous direction. 

This completes the proof of Corollary 6. 

A.12 Proof of Proposition 7. 

Let (λ1, u1, v1) and (λ2, u2, v2) be pairwise stable outcomes. Because the type measures µ 
and ν have full support (Assumption 2), Proposition 5.3 then implies that u1 and v1 as well 
as u2 and v2 implement each other. 

To show that U and V are sublattices of B(X) and B(Y ), it suffices to show that there 
exist full matches λ3 and λ4 such that (λ3, u1 ∨ u2, v1 ∧ v2) and (λ4, u1 ∧ u2, v1 ∨ v2) are 
pairwise stable outcomes. The conditions for the pairwise stability of these two outcomes 
differ from each other only by a reversal of the role of the buyer profiles and the seller 
profiles, so that we may focus on the first of these, namely the existence of a full match λ3 

such that (λ3, u1 ∨ u2, v1 ∧ v2) is a pairwise stable outcome. 
Because v1 implements u1 and v2 implements u2, it is immediate from the fact that the 

implementation maps are dualities (Proposition 1) that v1 ∧ v2 implements u1 ∨ u2 (cf. the 
discussion at the beginning of Section 3.4.2). Hence, from Propositions 5.1 and 5.2 it suffices 
to construct a full match λ3 with supp(λ3) ⊆ Γu1∨u2,v1∧v2 to obtain the desired pairwise 
stable outcome (λ3, u1 ∨ u2, v1 ∧ v2). 

To simplify notation throughout the following, let u3 = u1 ∨ u2 and v3 = v1 ∧ v2. Using 
this notation, we may rewrite the condition supp(λ3) ⊆ Γu1∨u2,v1∧v2 as 

(x, y) ∈ supp(λ3) =⇒ u3(x) = φ(x, y, v3(y)). (A.14) 

Our task is to construct a full match λ3 satisfying (A.14). To do so, we define 

Y1 = {y ∈ Y : v1(y) < v2(y)} and X1 = {x ∈ X : Yv2 (x) ∩ Y1 6= ∅}. 

Let X2 = X \ X1 and Y2 = Y \ Y1 denote the complements of X1 and Y1. 

S tep 1: The sets X1, X2, Y1, and Y2 are measurable. 
That Y1 ⊆ Y is measurable is immediate from the continuity of the implementable 

assignments v1 and v2 (Proposition 2), which ensures that Y1 is open in Y . The argmax 
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correspondence Yv2 has a closed graph (Corollary 2) and hence is weakly measurable 
(Aliprantis and Border, 2006, Theorem 18.20 and Lemma 18.2). Hence, the pre-image of the 
open set Y1 under Yv2 , namely X1, is measurable. As the complements of measurable sets, 
X2 and Y2 are also measurable. 

S tep 2: The measures λ1 and λ2 are both concentrated on (X1 × Y1) ∪ (X2 × Y2). 
Recall that v2 and u2 implement each other. By definition of X1 and Lemma 2, we thus 

have that Γu2,v2 and X2 × Y1 do not intersect each other. Because supp(λ2) is contained in 
Γu2,v2 (Proposition 5.1) it follows that the support of λ2 does not intersect X2 × Y1 so that 

λ2(X2 × Y1) = 0 (A.15) 

holds. Because λ2 is a full match, (A.15) implies λ2(X1 × Y1) = ν(Y1). Consequently, we 
have 

µ(X1) ≥ λ2(X1 × Y1) = ν(Y1), (A.16) 

where the inequality obtains because λ2 is a match. 
Next, we have 

λ1(X1 × Y2) = 0. (A.17) 

To establish this, consider any x0 ∈ X1. By definition of X1, there exists y0 ∈ Y1 such that 
0 0 0u2(x

0) = φ(x , y , v2(y0)) ≥ φ(x , y, v2(y)), with the inequality holding for all y ∈ Y . As 
v1(y

0) < v2(y0) holds (because y0 ∈ Y1) and v1 implements u1 we obtain 

0 0 0 0 0 u1(x 0) ≥ φ(x , y , v1(y 0)) > φ(x , y , v2(y 0)) ≥ φ(x , y, v2(y)) 

0for all y ∈ Y . As v1(y) ≥ v2(y) holds for all y ∈ Y2 this implies u1(x0) > φ(x , y, v1(y)) 
for all y ∈ Y2. As (λ1, u1, v1) is pairwise stable, this implies that there does not exist 
(x, y) ∈ X1 × Y2 contained in the support of λ1, establishing (A.17). 

Because λ1 is a match, we have ν(Y1) ≥ λ1(X1 ×Y1). Using Assumption 2, (A.17) implies 
λ1(X1 × Y1) = µ(X1), and hence we have 

ν(Y1) ≥ λ1(X1 × Y1) = µ(X1). (A.18) 

Combining (A.16) and (A.18) yields 

λ1(X1 × Y1) = λ2(X1 × Y1) = µ(X1) = ν(Y1). 

Because λ1 and λ2 are matches, this in turn implies λ1(X2 × Y1) = 0 and λ2(X1 × Y2) = 0, 
finishing the argument for this step. 

S tep 3: Completion of the proof that U and V are sublattices. 
By Step 1, setting 

λ3(X̃ × Ỹ ) = λ1((X̃ ∩ X1) × (Ỹ ∩ Y1)) + λ2((X̃ ∩ X2) × (Ỹ ∩ Y2)) 

for all measurable Ỹ ⊆ Y and X̃ ⊆ X defines a measure on X × Y . By Step 2, λ3 is a full 
match. It remains to show (A.14). To obtain this we show first that u3(x) = φ(x, y, v3(y) 
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holds on a subset of X × Y on which λ3 is concentrated and then use a continuity argument 
to extend the result to the support of λ3. 
By construction, λ3 is concentrated on (X1 × Y1) ∪ (X2 × Y2). It is therefore also 

concentrated on the union of supp(λ3) ∩ (X1 × Y1) and supp(λ3) ∩ (X × Y2), where X is any 
measurable subset of X2 satisfying λ3(X × Y2) = λ3(X2 × Y2). 

0 0Consider (x , y0) ∈ supp(λ3) ∩ (X1 × Y1). By construction of λ3 we then have (x , y0) ∈ 
0 0supp(λ1), implying u1(x0) = φ(x , y , v1(y0)). As y0 ∈ Y1, we have v1(y0) = v3(y0). As 

x0 ∈ X1, the argument that we have used to establish (A.17) in Step 2 yields u1(x0) > u2(x0) 
and thus u3(x0) = u1(x0), establishing (A.14) for the case under consideration. 
Let 

X = {x ∈ X2 | Yv1 6(x) ∩ Y2 = ∅.} 
0We show λ3(X × Y2) = λ3(X2 × Y2) and than consider (x , y0) ∈ supp(λ3) ∩ (X × Y2). 

An argument akin to the one used in Step 1 of the proof shows that X is measurable.30 By 
definition of X , (x, y) ∈ (X2 \X )×Y2 implies (x, y) 6∈ supp(λ1), so that λ1((X2 \X )×Y2) = 0 
holds. Because λ1 is a full match, this in turn implies λ1((X2 \ X ) × Y1) = µ(X2 \ X ) with 
λ1(X2 ×Y1) = 0 (cf. Step 2 of the proof) then implying µ(X2 \X ) = 0, yielding µ(X ) = µ(X2). 
As λ3(X ×Y2) = µ(X ) and λ3(X2 ×Y2) = µ(X2) holds, this establishes the requisite property 
λ3(X × Y2) = λ3(X2 × Y2). 

0 0 0By construction of λ3 we then have (x , y0) ∈ supp(λ2), implying u2(x0) = φ(x , y , v2(y0)). 
As y0 ∈ Y2, we have v3(y0) = v2(y0), so that it remains to establish u2(x0) ≥ u1(x0) to obtain 
(A.14) for the case under consideration. Suppose to the contrary that u1(x0) > u2(x0) holds. 

0As v2(y) ≤ v1(y) holds on Y2 this implies u1(x0) > φ(x , y, v1(y)) for all y ∈ Y2, which 
contradicts x0 ∈ X . 

0Finally, consider any (x , y0) ∈ supp(λ3). As λ3 is concentrated on the union of supp(λ3)∩ 
(X1 × Y1) and supp(λ3) ∩ (X × Y2), there exists a sequence (xn, yn n=1 in this union which )∞ 

0converges to (x , y0). As shown above u3(xn) = φ(xn, yn, v3(yn)) holds for all n in this 
0sequence. As φ, v3 and u3 are all continuous, the convergence of (xn, yn)∞ to (x , y0)n=1 

0 0implies u3(x0) = φ(x , y , v3(y0)), which is the desired result. 

It remains to show that the set of pairwise stable outcomes for the matching model 
(X, Y, φ, µ, ν, u, v) is closed. Let (λk, uk, vk)∞ be a sequence of pairwise stable outcomes k=1 

∗for the matching model (X, Y, φ, µ, ν, u, v) converging to (λ∗ , u , v ∗). Using the assumption 
that µ and ν have full support, Proposition 5 implies that (uk, vk) implement each other 
for all k. The same arguments as in the proof of Lemma 8 (in Appendix A.10) then imply 

∗that (λ∗ , u , v ∗) is a pairwise stable outcome for (X, Y, φ, µ, ν, u, v). 

A.13 Proof of Proposition 8 

We establish that the set of stable buyer profiles of the matching model (X, Y, φ, µ, ν, u, v), 
denoted by Us in the following, is a complete sublattice of B(X); the argument for the case 
of stable seller profiles is analogous. 

30As the complement of the open set Y1, the set Y2 is closed with Theorem 17.20 in Aliprantis and Border 
(2006) then ensuring that {x ∈ X | Yv1 (x) ∩ Y2 =6 ∅} is measurable. As the intersection of this set with the 
measurable set X2, the set X is measurable. 
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From Lemma 9 in the proof of Corollary 6 (Appendix A.11) an outcome (λ, u, v) is 
stable in the matching model (X, Y, φ, µ, ν, u, v) if and only if the associated full outcome 
(λ0, u0, v0) is a pairwise stable outcome satisfying the initial condition u0(x0) = 0 in the 
augmented matching model (X0, Y0, φ0, µ0, ν0, u0, v0). Denote the set of pairwise stable 
buyer profiles satisfying the initial condition u0(x0) = 0 in the augmented matching model 
by Ua. With the obvious notational convention for the profile (u0(x0), u) of the augmented 
matching model, we then have (u0(x0), u) ∈ Ua if and only if both u0(x0) = 0 and u ∈ Us 

hold. It is then immediate that Us is a complete sublattice of B(X) if Ua is a complete 
sublattice of B(X0). 

To show that Ua, which is nonempty by Proposition 6, is a complete sublattice of B(X0), 
we first observe that Ua is the intersection of two closed sublattices of B(X0), namely the 
set of pairwise stable buyer profiles of the augmented matching model (which is closed by 
Proposition 6 and a sublattice by Proposition 7) and the set of profiles u0 ∈ B(X0) satisfying 
u0(x0) = 0 (which is obviously a sublattice and closed). Hence, Ua is a closed sublattice 
of B(X0). Further, the closed sublattice Ua is bounded, with the profile u0 providing a 
lower bound and the profile Φv0 providing an upper bound. Hence (Corollary 5.3), Ua is a 
compact sublattice and therefore (by the same argument as in the proof of Lemma 4, cf. 
footnote 28 in Appendix A.7) complete. 

A.14 Proof of Lemma 6 

Step 1: We first argue that it is without loss of generality to restrict the principal’s choice 
set to implementable tariffs: Let (λ, u, v) ∈ M × B(X) × B(Y ) be any triple satisfying the 
constraints in the principal’s maximization problem defined in Section 5.1. Consider the 
triple (λ, u, Ψu). The tariff Ψu is implementable and implements u (Corollary 3.1) and, 
further, implements any selection from Yv (Corollary 4.1), so that Yv(x) ⊆ YΨu(x) holds 
for all x ∈ X. Consequently, we have supp(λ) ⊆ Γu,v ⊆ Γu,Ψu, ensuring that the triple 
(λ, u, Ψu) is feasible in the principal’s problem. As we have noted in the text following 
equation (30), the feasibility of (λ, u, Ψu) implies that it results in the same expected payoff 
as (λ, u, v). 

Step 2: From Step 1 we can restrict attention to (λ, u, v) ∈ M × B(X) × I(Y ) when 
considering the principal’s problem. As v ∈ I(Y ) implements u ∈ B(Y ) if and only if 
u = Φv, we can eliminate the first constraint from the principal’s problem and substitute 
this equality in the remaining constraints. The resulting problem is: 

Z Z 
max π(x, y, v(y))dλ(x, y) 

v∈I(Y ),λ∈M X Y 

s.t. supp(λ) ⊆ ΓΦv,v and Φv ≥ u. 

Because implementable profiles are continuous (Proposition 2), the objective function in 
this problem is well-defined for all v ∈ I(Y ) and λ ∈ M. Using (i) the definition of F (v, λ) 
in (31), (ii) observing that the constraint supp(λ) ⊆ ΓΦv,v is equivalent to λ ∈ G(v), where 
G(v) is defined in (32), and (iii) using the order reversal property of the implementation 
maps (Corollary 1.2) to transform the constraint Φv ≥ u into v ≤ Ψu, we may rewrite the 
above problem as 
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� � 

max max F (v, λ) . 
{v∈I(Y ):v≤Ψu} λ∈G(v) 

Step 3: Let (vn)∞ converge in norm to v and let (λn)∞ converge weakly to λ. Letn=1 n=1 
µ(X) = η = λ(X × Y ) > 0. Then for any ε > 0, we can find N such that for all n ≥ N , we 
have Z Z 

F (v, λ) − 2εη = π(x, y, v(y))dλ(x, y) − 2εη 
X YZ Z 

≤ π(x, y, v(y))dλn(x, y) − εη 
X YZ Z 

= (π(x, y, v(y)) − ε)dλn(x, y) 
X YZ Z 

≤ π(x, y, vn(y))dλn(x, y) 
X YZ Z 

≤ (π(x, y, v(y)) + ε)dλn(x, y) 
X YZ Z 

= π(x, y, v(y))dλn(x, y) + εη 
X YZ Z 

≤ π(x, y, v(y))dλ(x, y) + 2εη 
X Y 

= F (v, λ) + 2εη. 

The two central inequalities follow from the convergence of (vn)∞ 
n=1, and the two remaining 

inequalities from the convergence of (λn)∞ Combining the middle and outside two n=1. 
terms, we have F (v, λ) − 2εη ≤ F (vn, λn) ≤ F (v, λ) + 2εη. Hence, the function F (v, λ) is 
continuous. 

Step 4: For v ∈ I(Y ), the correspondence G(v) defined in (32) is nonempty-valued and 
compact-valued and upper hemicontinuous. To show that G(v) is nonempty-valued, let y 
be a measurable selection (cf. footnote 29 in Appendix A.9) from Yv and let λy be the 
associated deterministic measure (cf. (28)). As v and Φv implement each other, the same 
argument as in the first paragraph of the proof of Lemma 5 yields that the support of λy is 
contained in ΓΦv,v. Hence, G(v) is nonempty-valued. 
To obtain the other two properties, define the function H : X × Y × I(Y ) → R by 

H(x, y, v) = φ(x, y, v(y)) − Φv(x). Notice that H is continuous because φ and Φ are 
(Lemma 1). In addition, H(x, y, v) ≤ 0, with equality if and only if (x, y) ∈ ΓΦv,v. Now 
consider the maximization problem maxλ∈M Ĥ(v, λ), where Ĥ : I(Y ) × M → R is defined R R

ˆ ˆby H(v, λ) = H(x, y, v)dλ(x, y). For any v, we have H(v, λ) ≤ 0, with equality if and X Y 
only if supp(λ) ∈ ΓΦv,v. The argmax correspondence for this maximization problem thus 
is G(v). We have noted that H(x, y, v) is continuous and hence so is Ĥ(v, λ). The set M 
is compact by Prokhorov’s theorem (Shiryaev, 1996, p. 318). An application of Berge’s 
maximum theorem (Ok, 2007, p. 306) then ensures that G(v) is compact-valued and upper 
hemicontinuous. 
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Step 5: Fix v ∈ I(Y ) and consider the problem appearing in (33): 

Π(v) = max F (v, λ). 
λ∈G(v) 

We have shown in Step 3 that F (v, λ) is continuous and in Step 4 that G(v) is nonempty-
valued and compact-valued. Therefore, Weierstrass’ extreme value theorem ensures that this 
problem has a solution so that the function Π : I(Y ) → R is well-defined. Further, because 
the correspondence G is also upper hemicontinuous (Step 4), Berge’s maximum theorem 
(Ok, 2007, p. 306) ensures that Π is upper semicontinuous. 

∗Step 6: Let v solve the problem 

max Π(v) 
{v∈I(Y ): v≤Ψu} 

and let λ∗ be an element of arg maxλ∈G(v ∗) F (v ∗, λ). Then it is immediate from (33) that 
(v ∗, λ∗) solves the problem � � 

max max F (v, λ) . 
{v∈I(Y ):v≤Ψu} λ∈G(v) 

∗As noted in Step 2, this implies that (λ∗ , Φv , v ∗) solves the principal’s problem when the 
∗principal is restricted to v ∈ I(Y ). Step 1 then ensures that the triple (λ∗ , Φv , v ∗) solves 

the principal’s problem. 

A.15 Proof of Proposition 9 

We proceed in two steps, first establishing the existence of a solution v to the nonlinear 
pricing problem (34) and then showing that in the associated solution (λ, Φv, v) to the 
principal’s problem, the measure λ can be taken to be deterministic. 

Step 1: We first show that we can restrict attention to a bounded set of tariffs. To simplify 
notation, let v = Ψu denote the upper bound for the feasible set in the nonlinear pricing 
problem. By Proposition 2, we have v ∈ I(Y ), so that Π(v) is well-defined. To obtain a 
lower bound, let v† ∈ R be such that for all (x, y) ∈ X × Y 

π(x, y, v †) < Π(v). (A.19) 

The existence of such a v† is ensured because π satisfies the full range condition in Assumption 
3 and X and Y are compact. By Assumption 1, there also exists v ∈ R such that, for all 
(x, y) in X × Y and v ≤ v, we have 

φ(x, y, v) > max φ(x, ˆ †).y, v (A.20) 
ŷ∈Y 

Inequality (A.20) ensures that for any tariff v ∈ I(Y ) with the property that v(y) ≤ v holds 
for some y ∈ Y , we have that (ˆ y) ∈ ΓΦv,v y) < v† . From (A.19), this ensures x, ˆ implies v(ˆ
that F (v, λ) < Π(v) holds for all λ ∈ G(v), implying that Π(v) < Π(v) holds for any such 
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tariff. Hence, Π(v) ≥ Π(v) implies v(y) ≥ v for all y ∈ Y and there thus exists a tariff 
v ∈ I(Y ) such that Π(v) ≥ Π(v) implies v ≥ v. 
Clearly, we have v ≤ v. Thus, the order interval [v, v] = {v ∈ B(Y )|v ≤ v ≤ v} is a 

nonempty, closed, and bounded subset of B(Y ). As I(Y ) is also closed (Corollary 5.1), it 
follows that V = [v, v] ∩ I(Y ) is a closed and bounded subset of I(Y ). By Corollary 5.3 
V is therefore compact. As v is an element of both V and I(Y ) this set is also nonempty. 
As Π is upper semicontinuous (Lemma 6), Weierstrass’ extreme value theorem for upper 
semicontinuous functions (Ok, 2007, p.234) then implies that the problem 

max Π(v) 
{v∈I(Y ): v≤v≤v} 

∗has a solution v . We obviously have Π(v ∗) ≥ Π(v) and hence Π(v ∗) ≥ Π(v) for all v ∈ I(Y ) 
∗satisfying v ≤ v = Ψu, ensuring that v solves the nonlinear pricing problem (34). 

Step 2: Let (λ, u, v) be feasible in the principal’s problem with v ∈ I(Y ). We first observe 
that maxy∈Yv (x) π(x, y, v(y)) is a measurable function of x and that there exists a measurable 

∗assignment y solving this maximization problem for all x. This follows from Aliprantis and 
Border (2006, Theorem 18.19) upon observing that (i) the function (x, y) → π(x, y, v(y)) 
is continuous on its domain X × Y (from Proposition 2 and Assumption 3) and thus a 
Caratheodory function and (ii) the properties of the correspondence Yv noted in Corollary 
2 imply that this correspondence has a closed graph, ensuring that it is weakly measurable 
(Aliprantis and Border, 2006, Theorem 18.20 and Lemma 18.2). 

We can then write Z Z 
F (v, λ) = π(x, y, v(y))dλ(x, y) 

X YZ �Z � 

= π(x, y, v(y))dλ(y | x) dµ(x) 
X YZ 

≤ max π(x, y, v(y))dµ(x) 
y∈Yv (x)XZ 

= π(x, y ∗ (x), v(y ∗ (x)))dµ(x) 
X 

= F (v, λy ∗ ), 

where the equality in the second line follows from the disintegration theorem (Chang and 
Pollard, 1997, Theorem 1), with λ(· | x) being the disintegration measure on {x} × Y for 
each x ∈ X. The inequality holds because the support of λ(· | x) is contained in Yv(x) 

∗for µ-almost all x ∈ X. The equality on the penultimate line is by definition of y . As 
(λy ∗ , u, v) is feasible in the principal’s problem and this problem has a solution, the inequality 
F (v, λ) ≤ F (v, λy ∗ ) implies that the principal’s problem has a deterministic solution. 

A.16 Proof of Proposition 10 

Suppose (λ, u, v) solves the principal’s problem with u(x) > u(x) for all x ∈ X. From 
Proposition 9 there exists a deterministic match λy, such that (λy, u, v) is also a solution to 
the principal’s problem. By the same argument as the one proving Lemma 5, we can take y 
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to be implementable and therefore (by assumption) to be strongly implementable. From 
∗ ∗ ∗Lemma 4 there thus exists a profile u such that (u , y) is implementable, u ≥ u ≥ u 

∗holds, and there exists x ∈ X such that u(x) > u ∗(x) for some x ∈ X. As both u and u 
are implementable (and therefore continuous by Proposition 2) the set X = {x ∈ X | u(x) > 
u ∗(x)} is measurable. Because µ has full support, we have µ(X ) > 0. 

∗ ∗ ∗ ∗Now, let v = Ψu . Then v implements (u , y) (Corollaries 3.1 and 4.1) and the triple 
∗(λy, u , v ∗) is therefore feasible in the principal’s problem We also have that the principal 

∗obtains a strictly higher expected payoff from (λy, u , v ∗) than from (λy, u, v), contradicting 
the optimality of (λy, u, v): Z Z Z Z 

π(x, y, v(y))dλy(x, y) = π(x, y, ψ(y, x, u(x)))dλy(x, y) 
X Y X YZ Z Z Z 

< π(x, y, ψ(y, x, u ∗ (x)))dλy(x, y) = π(x, y, v ∗ (y))dλy(x, y), 
X Y X Y 

where the equalities follow as in (30) and the strict inequality holds because µ(X ) > 0, ψ is 
strictly decreasing in its third argument, and π is strictly increasing in its third argument. 

A.17 Proof of Proposition 11 

Suppose (λ, u, v) is a solution to the principal’s problem with u(x) > u(x) for all x ∈ X. 
Then as we have noted in Remark 7, (λ, u, v) is a pairwise stable outcome of the matching 
model (X, Y, φ, µ, ν, u, v), where ν is the marginal measure λY of λ on Y and v : Y → R 
is an arbitrary continuous function. Let Y be the support of ν. It exposes the logic of the 
argument most clearly by first proceeding under the assumption that Y = Y . 
The assumption Y = Y ensures that the matching model (X, Y, φ, µ, ν, u, v) satisfies 

Assumption 2, so that this matching model has a pairwise stable outcome (λ,ˆ û, v̂) satisfying 
u ≥ û ≥ u, with the first inequality holding strictly for some x ∈ X (Corollary 8). Because 
û and v̂ implement each other (Proposition 5.3) and the implementation maps are order 
reversing inverse bijections (cf. (15)), we thus obtain v ≤ v̂ with strict inequality for some 
y ∈ Y . From the continuity of the two profiles v and v̂ (Proposition 2) and the assumption 
that ν has full support, we thus obtain 

ν({y : v(y) < v̂(y)}) > 0. (A.21) 

We can now write Z Z 
F (v, λ) = π(x, y, v(y))dλ(x, y) 

X YZ 
= π̂(y, v(y))dν(y) 

YZ 
< π̂(y, v̂(y))dν(y) 

YZ Z 
= π(x, y, v̂(y))dλ̂(x, y) 

X Y 

ˆ= F (v̂, λ), 
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where the two inner equalities are from the private-values assumption and the inequality 
follows from (A.21) because π̂ is strictly increasing in its second argument (Assumption 3). 
We thus obtain F (v, λ) < F (v̂, λ, ˆ v) is feasible in the principal’s problem, this λ̂). As (ˆ u, ˆ
contradicts the optimality of (λ, u, v). 
If Y is a strict subset of Y , then the above argument is not directly applicable because 

the matching model (X, Y, φ, µ, ν, u, v) violates the full support condition in Assumption 2. 
It is, however, straightforward to establish a “restriction lemma” (similar in spirit to the 
extension result of Proposition 5.3) showing that if (λ, u, v) is a pairwise stable outcome of 
the matching model (X, Y, φ, µ, ν, u, v), then (λ, u, v) can be restricted to give a pairwise 
stable outcome of the matching model derived from (X, Y, φ, µ, ν, u, v) by restricting the 
sets X and Y to the supports X and Y of µ and ν. This latter model satisfies Assumption 
2, allowing us to repeat the argument above (and in particular to apply Corollary 8). The 
conclusion of this argument is that the principal can secure a higher payoff than under 
(λ, u, v), even if restricted to assigning only decisions in Y to the agents. 

Appendix B: Details Omitted from the Paper 

B.1 Properties of the Inverse Generating Function in Section 2.2 

That ψ is strictly decreasing in its third argument for all (y, x) ∈ Y × X is immediate from 
(1) and the corresponding property of the generating function φ stated in Assumption 1. 
Because φ is defined on X × Y × R, we have ψ(y, x, R) = R for all (y, x) ∈ Y × X. Except 
for a permutation of the arguments, the epigraph (hypograph) of φ coincides with the 
hypograph (epigraph) of ψ. As a function into the real numbers is continuous if and only if 
its epigraph and hypograph are closed (Ferrera, 2014, Proposition 1.14, p. 5), continuity of 
φ is equivalent to continuity of ψ. 

B.2 Details for Remark 1 

Let RX be the set of functions from X to R. Then (u, y) ∈ RX × Y X (note that here u is 
not required to be bounded) is implementable by an incentive compatible direct mechanism 
if there exists t ∈ RX such that the feasibility conditions u(x) = φ(x, y(x), t(x)) and the 
incentive compatibility conditions φ(x, y(x), t(x)) ≥ φ(x, y(x̂), t(x̂)) hold for all x, x̂ ∈ X. 
Similarly, letting RY be the set of functions from Y to R, we may define (v, x) ∈ RY × XY 

to be implementable by an incentive compatible direct mechanism if there exists t ∈ RY 

such that v(y) = ψ(y, x(y), t(y)) and ψ(y, x(y), t(y)) ≥ ψ(y, x(ŷ), t(ŷ)) hold for all y, ŷ ∈ Y . 

Lemma 10. Let Assumption 1 hold. 
[10.1] (u, y) ∈ RX × Y X is implementable by an incentive compatible direct mechanism 

if and only if u ∈ B(X) and there exists v ∈ B(Y ) implementing (u, y). 
[10.2] (v, x) ∈ RY × XY is implementable by an incentive compatible direct mechanism 

if and only if v ∈ B(Y ) and there exists u ∈ B(X) implementing (v, x). 

Proof of Lemma 10. We prove Lemma 10.1; the proof of Lemma 10.2 is analogous. 
It is immediate from the revelation principle that if (u, y) ∈ B(X) × Y X is implemented 

by v ∈ B(Y ) then (u, y) is implementable by an incentive compatible direct mechanism. 
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Indeed, upon setting t(x) = v(y(x)) for all x ∈ X, conditions (3) and (4) imply u(x) = 
φ(x, y(x), t(x)) ≥ φ(x, y(x̂), t(x̂)) for all x, x̂ ∈ X. 

Conversely, suppose that (u, y) ∈ RX × Y X is implementable by an incentive compatible 
direct mechanism, so that there exists t ∈ RX such that 

u(x) = φ(x, y(x), t(x)) ≥ φ(x, y(x̂), t(x̂)) (B.1) 

t(x) = ψ(y(x), x, u(x)) ≥ ψ(y(x), x,ˆ u(x̂)) (B.2) 

hold for all x, x̂ ∈ X. The equality in (B.2) follows from the equality in (B.1) because φ and 
ψ are inverse and the inequality in (B.2) follows from (B.1) upon reversing the roles of x 
and x̂ in the inequality u(x) ≥ φ(x, y(x̂), t(x̂)) and using, again, that φ and ψ are inverse. 
First, we establish that u is bounded. Fix x̂ ∈ X. The inequality in (B.1) ensures that 

for all x ∈ X, 

u(x) ≥ φ(x, y(x̂), t(x̂)) ≥ min φ(x̃, y(x̂), t(x̂)) =: u ∈ R, 
x̃∈X 

where the minimum u exists because X is compact and φ continuous. Next, using (B.2) we 
have 

t(x) ≥ ψ(y(x), x,ˆ u(x̂)) ≥ min x, u(ˆψ(y, ˆ x)) =: t ∈ R, 
y∈Y 

for all x ∈ X, where the minimum t exists because Y is compact and ψ continuous. Using 
the equality in (B.1) and that φ is strictly decreasing in its third argument, we then have, 
for all x ∈ X, 

u(x) = φ(x, y(x), t(x)) ≤ φ(x, y(x), t) ≤ max x, ˜φ(˜ y, t) =: u ∈ R, 
x̃∈X,ỹ∈Y 

where the maximum u exists because X and Y are compact and φ continuous. We thus 
have u ≤ u(x) ≤ u for all x ∈ X, which implies u ∈ B(X). From the equality in (B.2), t is 
bounded, too. 
Second, we show there exists v ∈ B(Y ) implementing (u, y). We can fix a value v ∈ R 

such that φ(x, y, v) ≤ u holds for all (x, y) ∈ X × Y . Now let � 
t(x) if y = y(x) for some x ∈ X 

v(y) = 
v otherwise. 

If there exist x, x̂ ∈ X and y ∈ Y with y = y(x) = y(x̂), then the incentive constraints 
in (B.1) imply t(x) = t(x̂). Therefore v(y) is well-defined for all y ∈ Y and, because t is 
bounded, we have v ∈ B(Y ). Finally, using (B.1), it is immediate from the construction of 
v that we have 

u(x) = φ(x, y(x), v(y(x))) ≥ φ(x, y, v(y)) 

for all (x, y) ∈ X × Y , so that v implements (u, y). 

B.3 Details for Remark 2 

To verify that (7) implies the strong implementability of every implementable assignment, 
we first consider an implementable assignment y ∈ Y X . Because y is implementable there 
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exists v ∈ B(Y ) such that y(x) ∈ Yv(x) holds for all x ∈ X. Fix any x0 ∈ X. Because v 
implements y it is immediate that y is implementable with initial condition (x0, u0), where 
u0 = φ(x0, y(x0), v(y(x0))). Using Assumption 1, for any t0 ∈ R we can find a uniquely 
determined profile v̂ such that 

φ(x0, y, v(y)) − φ(x0, y, v̂(y)) = t0, ∀y ∈ Y. (B.3) 

The optimal decisions of type x0 when maximizing against the tariff v are then identical to the 
optimal decisions when maximizing against v̂. Further, the same holds for any other type x1 ∈ 
X, since (B.3) and (7) ensure that there exists t1 such that φ(x1, y, v(y))−φ(x1, y, v̂(y)) = t1 

holds for all y ∈ Y . Therefore, if the generating function satisfies (7), then Yv(x) = Yv̂(x) 
holds for all x ∈ X, so that v̂ implements y with initial condition (x0, u0 − t0). As both x0 

and t0 were arbitrary, this shows that y is strongly implementable. 
Second, consider an implementable assignment x ∈ XY . Then there exists u ∈ B(X) 

such that x(y) ∈ Xu(y) holds for all y ∈ Y . We first show that for any (x0, t0) ∈ X × R 
there exists û ∈ B(X) satisfying Xû(y) = Xu(y) for all y ∈ Y and u(x0) − û(x0) = t0. To 
do so, we make use of results from Section 3. We may suppose without loss of generality 
that the profile u implementing x is itself implementable (Corollary 4.2), so that the profile 
v implemented by u also implements u (Corollary 3.2). Applying Lemma 2, we then have 
that the graphs of both Yv and Xu coincide with Γu,v (with the latter defined in (16)). 
Now consider v̂ as constructed in the first step above. Using condition (7), we then have 
Yv = Yv̂. Because v is implementable, this equality of the argmax-correspondences implies 
that v̂ is also implementable (Remark 6). Applying Corollary 3.1, the profile û implemented 
by v̂ also implements v̂. Applying Lemma 2 again, it follows that Xû coincides with Xu. 
Then the equality u(x0) − û(x0) = t0 follows directly from the construction of v̂. 

To complete the argument, choose (y0, v0) and let x0 = x(y0). Then u implements (v, x) 
with v(y0) = ψ(y0, x0, u(x0)). In addition, for any t0, û implements (v̂, x) with v̂(y0) = 
ψ(y0, x0, û(x0)) = ψ(y0, x0, u(x0 −t0)). As t0 ranges through R, so does ψ(y0, x0, u(x0)−t0), 
giving the result. 

B.4 Details for Remark 6 

We prove 
v ∈ I(Y ) ⇐⇒ Yv is nonempty − valued and onto; (B.4) 

the proof of the other equivalence is analogous. 
First, suppose the profile v ∈ B(Y ) is implementable. Then v implements and is 

implemented by u = Φv (Corollary 3), implying that both Xu and Yv are nonempty-valued. 
Further, from Lemma 2 the correspondences are inverses of each other, and hence must be 
onto. 
Second, suppose that Yv is nonempty-valued and onto. Then v implements u = Φv 

(because Yv is nonempty-valued) and for any given ŷ ∈ Y there exists x̂ ∈ X such that 
u(x̂) = φ(ˆ y, v(ˆ is onto), which is equivalent to v(ˆ y, ˆ x)).x, ˆ y)) holds (because Yv y) = ψ(ˆ x, u(ˆ
As v implements u we have u(x) ≥ φ(x, ˆ y)) for all x ∈ X, which is equivalent to y, v(ˆ
v(ŷ) ≥ ψ(ˆ Combining the equality and the inequality for v(ˆy, x, u(x)) for all x ∈ X. y) we 
have v(ŷ) = maxx∈X φ(ˆ y ∈ Y , it follows that u implements y, x, u(x)). As this holds for all ˆ
v, so that v is implementable. 
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B.5 Details for the Finite Support Matching Models in Section 4.1.2 

With every finite-support matching model (X, Y, φ, µ, ν, u, v) satisfying Assumption 1 we 
associate a matching model with a finite number of agents as follows: there are finite sets of 
buyers I = {1, . . . ,m} and sellers J = {1, . . . , n}. Buyer i has type xi ∈ X and seller j has 
type yj ∈ Y . Reservation utilities are given by ui = u(x1) for buyer i ∈ I and vj = v(yj ) for 
seller j ∈ J . The utility frontier available to pair of matched agents (i, j) ∈ I × J is given 
by φ(xi, yj , v). 
The standard definition of a match for such a matching model with a finite number 

of agents (see, for instance, Roth and Sotomayor (1990, Definition 9.1)) is equivalent 
to specifying a measure ρ on I × J that satisfies ρ(i, j) ∈ {0, 1} for all (i, j) ∈ I × J ,P P 

ρ(i, j) ≤ 1 for all i ∈ I, and ρ(i, j) ≤ 1 for all j ∈ J . A stable outcome then j∈J i=I 
consists of such a match and a specification of utility profiles (u1, . . . , un) and (v1, . . . , vn) 
satisfying the natural counterparts to our feasibility and stability conditions (e.g. (20) 
becomes ui = φ(xi, yj , vj ) for all (i, j) satisfying ρ(i, j) = 1 and (25) becomes ui ≥ φ(xi, yj , vj ) 
for all (i, j) ∈ I × J). 
Every stable outcome for a matching model with a finite number of agents satisfies the 

equal treatment property (i.e., xi = xi0 implies ui = ui0 and yj = yj0 implies vj = vj0 ) if the 
characteristic function describing the utility frontier available to a pair of matched agents 
satisfies our Assumption 1. This allows us to identify stable outcomes for the matching model 
with a finite number of agents with stable outcomes for our finite-support matching model. 
Specifically, let X = {x ∈ X | x = xi for some i ∈ I} and Y = {y ∈ Y | y = yj for some j ∈ 
J} denote the supports of the type distributions in the finite-support matching model. For 
x ∈ X let I(x) = {i ∈ I | xi = x} and for y ∈ Y let J(y) = {j ∈ J | yj = y}. Consider now 
a stable outcome (ρ, u1, . . . , um, v1, . . . , vn) for the matching model with a finite number of 
agents. Let ũ and ṽ be arbitrary profiles in B(X) and B(Y ). Given that equal treatment 
holds, setting (

ui 
u(x) = 

ũ 

if x ∈ I(x) 

otherwise 

and (
vj

v(y) = 
ṽ 

if y ∈ J(y) 

otherwise 

gives two well-defined profiles u ∈ B(X) and v ∈ B(Y ). Let the measure λ have support 
contained in X × Y and on this set be given by X X 

λ(x, y) = ρ(i, j). 
i∈I(x) j∈J(y) 

With these definitions, it is straightforward to verify that (λ, u, v) is a stable outcome for 
the finite-support matching model. 
It is well-known that stable outcomes for a matching model with a finite number of 

agents exist if the characteristic function describing the utility frontier available to a pair of 
matched agents satisfies our Assumption 1 (Roth and Sotomayor, 1990, Section 9.4). Hence, 
we may conclude that every finite-support matching model satisfying Assumption 1 has a 
stable outcome. 

54 



Appendix C: Examples 

C.1 Example 1: The Set of Implementable Profiles is not a Sublattice 

Let X = {1, 2, 3} and Y = {1, 2} and let the generating function be the quasilinear function 
given by 

φ(x, 1, v) = 1 − v, 

φ(x, 2, v) = 2 + x − v 

for x ∈ X. The inverse generating function then is 

ψ(1, x, u) = 1 − u, 

ψ(2, x, u) = 2 + x − u. 

The profiles u1 = (1, 1, 1) and u2 = (0, 1, 2) are both implementable (v1 = (0, 4) 
implements u1 and v2 = (1, 3) implements u2). The profile u1 ∧u2 = (0, 1, 1), however, is not 
implementable. Hence, I(X) is not a sublattice of B(X). To establish that u1 ∧u2 = (0, 1, 1) 
is not implementable, it suffices to note (Remark 6) that X(0,1,1) is not onto: x = 1 is 
the unique maximizer of ψ(1, x, u(x)) and x = 3 is the unique maximizer of ψ(2, x, u(x)). 
(Alternatively, we may note that Ψ(0, 1, 1) = (0, 4) = v1. As v1 implements u1 = (1, 1, 1), 
we obtain ΦΨ(0, 1, 1) 6 (0, 1, 1) with Proposition 3.1 then implying that (0, 1, 1) is not = 
implementable.) 

C.2 Example 2: The Participation Constraint is not Binding in a Solution 
to the Principal’s Problem 

Let X = {1, 2} and Y = {1, 2} and let the generating function be given by 

φ(1, 1, v) = 3 − 2v 

φ(1, 2, v) = 2 − v 
3 1 

φ(2, 1, v) = − v 
2 2 

φ(2, 2, v) = 2 − v. 

Let µ(1) = µ(2) = 1/2 and u(1) = u(2) = 0. Then Assumptions 1 and 3 hold for any 
specification of the principal’s utility function π which is strictly increasing and continuous in 
v and satisfies the full-range condition. Throughout the following we focus on deterministic 
measures, which we may identify with the corresponding assignment y = (y(1), y(2)). 

Figure 2 illustrates the set of profiles v = (v(1), v(2)) and, for each such profile, identifies 
the assignment(s) y = (y(1), y(2)) implemented by that profile. The two lines, identifying 
profiles that make either x = 1 or x = 2 indifferent between the two elements of Y , form 
the boundaries of four closed (and hence overlapping on the boundaries) regions, whose 
union is the set B(Y ) of profiles v. All assignments y ∈ Y X are implementable, but only 
the constant assignments y = (1, 1) and y = (2, 2) are strongly implementable. 

The set of implementable tariffs I(Y ) is the (blue and orange, or dark and light) shaded 
area in Figure 2, including the boundaries. This is immediate from Remark 6 upon observing 
that these tariffs are the ones implementing assignments that are onto Y . 
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Figure 2: Illustration of the assignments y implemented by various profiles v, the set I(Y ) 
of implementable profiles (colored or shaded areas, including the boundary) and the feasible 
set for the principal’s nonlinear pricing problem (the portion of the shaded areas for which 
v(2) ≤ 2) in Example 2. The profile v̂ = (1, 1) is both the smallest profile implementing 
y = (2, 1) and the largest profile implementing y = (1, 2). As a consequence, neither of these 
two assignments is strongly implementable. The principal’s optimum implements y = (1, 2) 
while leaving both participation constraints slack. 

All tariffs with v(2) ≤ 2 satisfy Φv ≥ u, whereas tariffs in the shaded area of Figure 
2 with v(2) > 2 lead to a violation of agent 1’s participation constraint. Hence, the set 
{v ∈ I(Y ) : v ≥ Ψu} appearing in the nonlinear pricing problem (34) is given by that 
portion of the shaded area in Figure 2 for which v(2) ≤ 2. 

As the principal’s utility function is strictly increasing in the payment v, there are only 
four candidates for a deterministic solution to the principal’s problem: she could implement 
either y = (2, 2) or y = (2, 1) by choosing v = (3, 2), she could implement y = (1, 1) by 
choosing (1.5, 2), or she could implement y = (1, 2) by choosing v = (1, 1). Now, suppose 
the principal’s utility function is 

π(1, 1, v) = v + 5 

π(1, 2, v) = v 

π(2, 1, v) = v 

π(2, 2, v) = v + 5. 

Then it is a straightforward calculation that among those four candidates, choosing v = (1, 1) 
to implement y = (1, 2) maximizes the principal’s expected utility. The resulting utility 
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profile for the agent is u = (1, 1), so that the participation constraint for neither agent type 
binds in the unique solution to the principal’s problem. 
This example features common values, in the sense that the principal cares directly 

about which type of the agent obtains which decision. This is an essential ingredient in the 
construction of the example: In the absence of such common values any change in tariff that 
changes the implemented assignment from y = (1, 2) to y = (2, 1) affects the principal’s 
utility only through the change in tariff, ensuring that the principal would welcome the 
attendant increase in tariff from implementing y = (2, 1) with the tariff v = (3, 2) rather 
than implementing y = (1, 2) with the tariff v = (1, 1). 

Appendix D: Extensions 

D.1 Exclusion in the Principal-Agent Model 

Our formulation of the principal-agent model in Section 5.1 does not include an explicit 
outside option for the agent; rather it simply insists that the principal must respect the 
agent’s participation constraint. It is clear, though, that in the presence of an outside option 
the principal may sometimes prefer to exclude some agent type(s) by designing a tariff 
that induces them to choose their outside option (Jullien, 2000). Here we show how to 
incorporate the possibility of exclusion into our model, explain why this leaves our existence 
result (Proposition 9) unchanged, and demonstrate that in the absence of quasilinearity or 
private values the principal might sometimes find it advantageous to “bribe” some type of 
the agent to be excluded. 
To model the agent’s outside option, we follow a strategy analogous to that used 

to incorporate non-participation in the matching model. Given a principal-agent model 
(X, Y, φ, µ, π, u) satisfying Assumptions 1 and 3, we let Y0 = Y ∪ {y0}, where the outside 
option y0 is in the metric space containing Y , but is not contained in Y , and extend the 
definition of the generating function φ to a function φ0 on X × Y0 × R satisfying Assumption 
1 and 

φ0(x, y0, 0) = u(x). (D.1) 

Hence, in the absence of a transfer (v = 0), agent types choosing the outside option y0 

receive their reservation utility u(x). Similarly, we extend the definition of the principal’s 
utility function π to a function π0 on X × Y0 × R satisfying Assumption 3 and 

π0(x, y0, v) = π(v) 

for some function π : R → R, with π(0) then specifying the principal’s utility from not 
trading. 
We will refer to (X, Y0, φ0, µ, π0, u) as the principal-agent model with exclusion. Be-

cause we have supposed that Assumptions 1 and 3 carry over from (X, Y, φ, µ, π, u) to 
(X, Y0, φ0, µ, π0, u), it is immediate from Proposition 9 that the principal-agent model with 
exclusion has a solution (λ, u, v) in which u and v implement each other. Further, because 
any such solution respects the participation constraint u ≥ u, it satisfies the constraint that 
the principal cannot charge the agent for choosing the outside option.31 

31Using the obvious notation for the inverse generating function and the implementation map in the model 
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Corollary 10. Let Assumptions 1 and 3 hold. The principal-agent model with exclusion 
has a solution (λ, u, v) satisfying v(y0) ≤ 0. 

Provided that the participation constraint binds for some type of agent in a solution to 
the principal-agent model with exclusion, we must have v(y0) = 0, and hence no agent is 
paid for nonparticipation. As the extension of the principal’s payoff function to Y0 preserves 
private values, this will be the case whenever the underlying principal-agent model satisfies 
the private value condition. Similarly, whenever the agent’s utility function in the underlying 
principal-agent model is quasilinear and the specification of φ0(x, y0, v) is also quasilinear 
(i.e., we have φ0(x, y0, v) = u(x) − v), then the principal-agent model with exclusion will 
satisfy quasilinearity. As in Jullien’s quasilinear model of exclusion there is then no loss of 
generality to restrict the principal to tariffs satisfying v(y0) = 0 (Jullien, 2000, footnote 7).32 

If the participation constraint does not hold with equality for any agent type in a solution 
to the principal-agent model with exclusion, then such a solution might satisfy v(y0) < 0. 
There are two ways in which this might come about. The first possibility is that no type of 
the agent is excluded, but, as in Example 2 (in Appendix C.2), all types of the agent obtain 
strictly higher utility than their reservation utility. In this case, the optimal (u, y) can also 
be implemented by a (non-implementable) tariff v satisfying v(y0) = 0. The second, more 
interesting, case is that some excluded type receives the strictly positive payment −v(y0) as 
a reward for not taking up any of the decisions in Y . The following example illustrates this 
can indeed occur. 

Example 3. Let X = {1, 2}, let Y = {1}, and let µ(1) = µ(2) = 1/2. There are thus two 
equally likely types of agents, and the principal has the option of either assigning decision 1 
to an agent (hereafter “interacting with the agent”) or excluding the agent by making him 
choose the outside option y0 = 0. 
The agents’ utilities are given by 

1 
φ0(1, 1, v) = 1 − v φ0(1, 0, v) = − v 

2 
φ0(2, 1, v) = 2 − v φ0(2, 0, v) = −2v, 

and hence u(1) = u(2) = 0. The principal’s utility is given by 

π0(1, 1, v) = b + v π0(1, 0, v) = v 

π0(2, 1, v) = v − c π0(2, 0, v0) = v, 

so that π = 0. The parameter b > 0 is a benefit the principal obtains from interacting with 
an agent of type 1 and c > 0 is a corresponding cost of interacting with an agent of type 2. 
Now suppose that the principal’s optimum involves interacting with agent 1 and excluding 
agent 2, as will be the case whenever both b and c are sufficiently large. Then the optimal 
tariff is v(1) = 2/3 = −v(0). Hence, the principal pays agent 2 to not participate. 

with exclusion, the formal argument is this: If u and v implement each other, the participation constraint 
implies v ≤ Ψ0u. Therefore, we have v(y0) ≤ ψ0(y0, x, u(x)) for all x ∈ X. From (D.1), the right side of the 
latter inequality is equal to zero. 
32Strong implementability of the optimal decision function in the principal-agent model (without exclusion) 

does not imply that the participation constraint holds as an equality in the principal-agent model with 
exclusion. Example 3 below (with only one decision in the absence of exclusion, so that strong implementability 
is immediate) provides an illustration. 
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D.2 Stochastic Contracts in the Principal-Agent Model 

In the principal-agent model with quasilinear utility it is well-known that the principal 
may benefit from offering stochastic rather then deterministic contracts to screen different 
agent types (cf. Strausz, 2006, for extensive discussion). In general, a stochastic contract 
corresponds to an incentive compatible direct mechanism which specifies, for every type of 
the agent, a lottery over transfers and decisions. To explain how stochastic contracts can be 
embedded in our model, it will be easier to begin with the case in which transfers are taken 
to be deterministic. 
Fix a principal-agent model (X, Y, φ, µ, ν, π, u) satisfying Assumptions 1 and 3 and let 

ΔY be the set of probability measures over the set Y , with typical element ζ. We equip the 
set ΔY with the topology of weak convergence, and note that ΔY is then a compact metric 
space (with the Prokhorov metric). 
We can then extend the definitions of the payoff functions by taking the appropriate 

expectations: Z 
φΔ(x, ζ, v) = φ(x, y, v)dζ(y) 

YZ 
πΔ(x, ζ, v) = π(x, y, v)dζ(y), 

Y 

thereby obtaining a principal-agent model (X, ΔY, φΔ, µ, πΔ, u) in which the set of possible 
decisions is given by ΔY rather than Y and a tariff assigns a transfer to every probability 

33measure ζ ∈ ΔY rather than to every decision y. In this model, our version of the taxation 
principle (Remark 1) as well as all the results from Section 5 continue to hold. 

33We have already noted that ΔY is a compact metric space. It is obvious that φΔ and πΔ inherit the 
requisite monotonicity properties and the full range condition from φ and π. Consider continuity. From 
the definition of weak convergence and the fact that for fixed x and v, the function φ(x, y, v) : Y → R is 
continuous on a compact set, we can conclude that if the sequence (ζn)∞ 

n=1 converges (weakly) to the limit ζ, 
then ZZ 

φ(x, y, v)dζn(y) → φ(x, y, v)dζ(y). (D.2) 
Y Y 

This in turn implies that φΔ is continuous: Suppose we have a sequence (xn, ζn, vn)∞ 
n=1 converging to (x, ζ, v) 

(pointwise in the first and third arguments, and in the sense of weak convergence in the second). Notice that 
∞ 
n=1 is contained in a compact subset R̃ of R.the set {vn}

such that, for all n ≥ N , 
Then for any ε, there exists a sufficiently large N 

���� ���� ZZ 
φ(xn, y, vn)dζn(y) − φ(x, y, v)dζ(y) 

Y Y���� ����+ 

���� ZZ 
φ(x, y, v)dζn(y) − φ(x, y, v)dζ(y) 

���� Z Z 
≤ φ(xn, y, vn)dζn(y) − φ(x, y, v)dζn(y) 

Y Y 

(φ(xn, y, vn) − φ(x, y, v)dζn(y)) 

Y Y 

ε 
���� ����Z 

≤ + 
2Y 

ε ε 
Z 

≤ dζn(y) + 
2 2Y 

≤ ε, 

where the first appearance of ε/2 follows from (D.2) and the second follows from the uniform continuity of 
the function φ on the compact set X × Y × R̃. A similar argument applies to establish continuity of πΔ. 
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If both φ and π are quasilinear, then the restriction to deterministic transfers is without 
loss of generality, as both the agent’s and the principal’s preferences only depend on the 
expected transfer. In the general case this is not so, raising the question whether we can 
incorporate stochastic transfers in our model. That we can do so is not immediately obvious 
because the duality theory developed in Sections 2 and 3 hinges on a tariff being a map into 
the real numbers. However, while doing so would be redundant for deterministic contracts, 
there is nothing in the formal structure of the model which prevents us from supposing 
that decisions y include the specification of a monetary transfer.34 Therefore, the same 
construction that we have described above—replacing the set Y by the set ΔY —allows us to 
introduce stochastic transfers into the model with the only salient restriction being that any 
randomization over payments that comes on top of the deterministic transfer v is restricted 
to a compact set of probability distributions. 

D.3 Moral Hazard in the Principal-Agent Model 

We have considered adverse-selection principal-agent models. Following Myerson (1982), 
Laffont and Tirole (1993), Laffont and Martimort (2002, Section 7.1), Kadan, Reny, and 
Swinkels (2017) and others, one might extend the model to encompass moral hazard. The 
recipe for incorporating moral hazard is similar to that for stochastic contracts. We offer a 
simple illustration. 
Suppose the agent must choose an effort level e ∈ [0, 1] that induces a probability mass 

function f(z, e) with support on the finite set Z, from which an output z is realized. The 
principal cannot observe the agent’s effort. Once again, we can view the agent as choosing 
a decision y and paying a transfer v(y) to the principal. A decision y now is a function 
w : Z → [w, w] identifying, for each output level z, the wage w(z) ∈ [w, w] paid by the 
principal to the agent if output z is realized. The agent’s utility from wage w, output z, effort 
level e and transfer v is given by u(x, e, w − v), while the principal’s utility is z − (w − v). 
The set X is again a compact set of agent types. We take the set Y to be the set of 

functions w : Z → [w, w]. Then we let X 
φ(x, w, v) = max u(x, e, w(z) − v)f(z, e). 

e∈[0,1] 
z∈Z 

We let E(x, w) be the set of maximizers of this problem, and let the principal’s utility be X 
π(x, w, v) = max (z − (w(z) − v))f(z, e). 

e∈E(x,w) 
z∈Z 

Assuming that u and f are continuous, it follows from Berge’s maximum theorem that 
φ is continuous, and hence Assumption 1 is satisfied. The function π(x, w, v) is upper 

34For example, let q ∈ [0, q̄] be the quantity of some good. Ordinarily, we would take Y = [0, q̄] and then 
suppose that a monopolistic seller (the principal) with utility function π(x, q, v) designs a tariff specifying 
payments v(q) for all possible quantities that a consumer (the agent) with preferences described by the utility 
function φ(x, q, v) might want to buy. Instead, we may take Ŷ = [0, q̄]× [0, t] and suppose that the seller prices ¯

bundles (q, t) ∈ Y , consisting of a quantity q of the good and a rebate t ∈ [0, t] that the consumer receives ¯

if he buys the bundle (q, t) at price v(q, t). Setting φ̂(x, y, v) = φ(x, q, v − t) and π̂(x, y, v) = π(x, q, v − t) 
for y = (q, t) then yields a principal-agent model (X, ˆ φ, µ, ˆY , ˆ π, u) that satisfies Assumption 1 and 3 if the 
original model (X, Y, φ, µ, π, u) does so and describes the same underlying economic environment. 
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semicontinuous. We would again have Assumptions 1 and 3 satisfied, except that the 
function π is only semicontinuous. However, this suffices for an argument analogous to that 
of Section 5. 
One might want to generalize this illustration in many ways, including allowing an 

infinite set of possible outputs and relaxing the bounds on the function w. Our results will 
apply as long as attention is restricted to circumstances in which the set Y can reasonably 
be taken to be compact. 
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	Introduction 
	Introduction 
	Much of the theory of mechanism design with quasilinear utility can be developed from a linear programming perspective, with duality-based arguments taking center stage (Vohra, 2011). The fundamental duality of linear programming also plays a central role in the theory of matching models with quasilinear (transferable) utility, from the theory’s inception in Shapley and Shubik (1972) to the more recent adoption of optimal transport methods (cf. 
	Galichon, 2016) based on the Kantorovich duality for inﬁnite dimensional linear programs (Villani, 2009). 
	In the context of matching problems with transferable utility (in their guise as optimal transportation problems) it is well understood that the linear programming duality gives rise to a second layer of duality relationships: stable outcomes in such models are composed of optimal assignments (obtained as the solution to a primal linear programming problem) together with optimal utility proﬁles (obtained as the solution to the dual linear programming problem), with the utility proﬁles being generalized conj
	Models based on quasilinear utility are ill-suited for mechanism design problems in which the stakes are suﬃciently large to make income eﬀects or risk aversion salient (Mirrlees, 1971; Stiglitz, 1977), and are also ill-suited for matching problems in which—either because of income eﬀects or because of the structure of the underlying bilateral relationship—utility is imperfectly transferable (Legros and Newman, 2007; Chiappori and Salani´e, 2016; Chiappori, 2017; Galichon, Kominers, and Weber, 2016). 
	This paper studies implementation without invoking quasilinearity. In so doing, we lose access to the linear programming duality. Nonetheless, we ﬁnd that much of the conjugate duality structure and the link between matching problems and implementation problems remains. 
	The ﬁrst part of the paper, Sections 2 and 3, introduces a pair of “implementation maps” and shows that they satisfy a duality relationship, known as a Galois connection (Birkhoﬀ, 1995, p. 124), which is a more abstract version of the generalized conjugate duality relationship from the quasilinear case. Implementable utility proﬁles are abstract conjugate duals of each other, and implementable assignments are drawn from the corresponding argmax correspondence. 
	The second part of the paper, Sections 4 to 6, illustrates the potential application of our results by developing an “abstract duality” approach to two-sided matching problems and adverse-selection principal-agent problems. 
	Section 4 examines stable outcomes in two-sided matching models. We show that a proﬁle is implementable if and only if it corresponds to a stable match in a naturally corresponding matching model. We then leverage familiar existence results for matching models with a ﬁnite number of agents in order to obtain an existence result for more general models. 
	We also derive lattice results for sets of stable utility proﬁles from the underlying duality structure. 
	Section 5 turns to adverse-selection principal-agent models. Our ﬁrst ﬁnding is an existence result. The important step here is that we can formulate the principal’s problem as a nonlinear pricing problem in which the principle maximizes over the set of implementable tariﬀs. We next show that, unlike the quasilinear case, the solution to the principal’s problem may leave slack in the participation constraint for every type of agent. We explore two suﬃcient conditions for a solution to entail a binding parti
	Section 6 considers the special case in which a single-crossing condition holds and type spaces are one dimensional. We show that there exists a unique stable match that is positively assortative. With our duality results in place, the proof is a straightforward generalization of the one which yields the existence of a unique solution to the optimal transport problem under supermodularity conditions. It then follows almost immediately from the parallels between matching and principal-agent models that an as

	Implementation 
	Implementation 
	2.1 Basic Ingredients 
	2.1 Basic Ingredients 
	The basic ingredients of our model are two sets, X and Y , and a function φ : X × Y × R → R. We oﬀer two interpretations of these ingredients. 
	Matching model. X and Y are the possible types of two disjoint sets of agents that we refer to as buyers (X) and sellers (Y ). The function φ speciﬁes the utility frontier describing the feasible utilities that can be realized in a match between buyer type x and seller type 
	y. That is, u = φ(x, y, v) is the maximal utility buyer type x can obtain when matched with seller type y and providing utility v to the seller. We complete the speciﬁcation of a two-sided matching model in Section 4 by specifying distributions and reservation utilities for the buyer and seller types. 
	Principal-agent model. X is a set of possible types for an agent, Y is a set of possible decisions to be taken by the agent, and u = φ(x, y, v) is the utility of an agent of type x, who takes decision y and provides monetary transfer v to a principal. We complete the speciﬁcation of an adverse-selection principal-agent model in Section 5 by specifying a utility function for the principal, her beliefs over the agent’s types, and reservation utilities for the agent’s types. 
	In the following we will often refer to φ as the generating function as it plays the same role in our analysis as the generating function of a duality plays in Penot (2010). 
	Assumption 1. The sets X and Y are compact subsets of metric spaces. The function 
	φ : X × Y × R → R is continuous, strictly decreasing in its third argument, and satisﬁes the 
	full range condition φ(x, y, R)= R for all (x, y) ∈ X × Y . 
	The conditions on the generating function in Assumption 1 are satisﬁed if φ is quasilinear, that is, there exists a continuous function f : X × Y → R such that φ(x, y, v)= f(x, y) − v. Our main interest is in generating functions that are not quasilinear. 
	In the context of the matching model, the assumption that φ is strictly decreasing excludes the case of nontransferable utility introduced in Gale and Shapley (1962), in which there is no possibility for compensatory transfers between a pair of matched agents. If the generating function is quasilinear, we have perfectly transferable utility as considered in Shapley and Shubik (1972), with Assumption 1 also allowing for imperfectly transferable utility as in Demange and Gale (1985).Legros and Newman (2007, S
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	The essential implication of the full range condition in Assumption 1 is that (for example) for any agent type x and decisions y and y˜, there are transfers under which the agent prefers decision y, as well as transfers under which the agent prefers decision y˜. Demange and Gale (1985, Section 3) discuss the full range condition in the context of the matching model. In the principal-agent model the condition ensures that the taxation principle is applicable without taking recourse to tariﬀs specifying inﬁni

	2.2 The Inverse Generating Function 
	2.2 The Inverse Generating Function 
	Assumption 1 ensures that for all x ∈ X, y ∈ Y and u ∈ R, there is a unique value v ∈ R satisfying u = φ(x, y, v), so that the inverse generating function ψ : Y × X × R → R speciﬁed 
	as the solution to 
	as the solution to 
	as the solution to 

	u = φ(x, y, ψ(y, x, u)) 
	u = φ(x, y, ψ(y, x, u)) 
	(1) 

	is well-deﬁned and satisﬁes the “reverse” inverse relationship 
	is well-deﬁned and satisﬁes the “reverse” inverse relationship 

	TR
	v = ψ(y, x, φ(x, y, v)). 
	(2) 


	The inverse generating function inherits the properties of the generating function stated in Assumption 1: ψ is continuous, strictly decreasing in its third argument, and satisﬁes ψ(y, x, R)= R for all (y, x) ∈ Y × X. (The straightforward veriﬁcation is in Appendix 
	Our terms for the case distinction between perfectly transferable, imperfectly transferable, and nontransferable follow (for example) Chade, Eeckhout, and Smith (2017) and N¨oldeke and Samuelson (2015). Other authors (e.g. Legros and Newman, 2007) use the term nontransferable utility whenever utility is not perfectly transferable. 
	1
	-

	B.1.) Throughout the following, we freely make use of the compactness of X and Y and the properties of the generating function φ and its inverse ψ without explicitly referring to Assumption 1 or the argument in Appendix B.1. 
	In the context of the matching model the interpretation of ψ is analogous to the one given for φ: the utility v = ψ(y, x, u) is the maximal utility a seller type y can obtain when matched with a buyer type x and providing utility u to the buyer.In the principal-agent model ψ identiﬁes the largest transfer an agent of type x can pay for the decision y while obtaining utility level u. In either context, as indicated by (1)–(2), the inverse generating function contains the same information about preferences as
	2 


	2.3 Proﬁles, Assignments, and Implementability 
	2.3 Proﬁles, Assignments, and Implementability 
	Let B(X) denote the set of bounded functions from X to R and let B(Y ) denote the set of bounded functions from Y to R. We refer to u ∈ B(X) and v ∈ B(Y ) as proﬁles. We endow B(X) and B(Y ) with the supremum norm, denoted by k·k in both cases, making them complete metric spaces for the induced metric. We order B(X) and B(Y ) with the pointwise partial order inherited from the standard order ≥ on R. For simplicity, we also denote these pointwise partial orders on B(X) and B(Y ) by ≥. The join u ∨ uand meet 
	0 

	0
	u ∧ uare respectively the pointwise maximum and minimum of the proﬁles u and u. With these operations the sets B(X) and B(Y )) are conditionally complete lattices.
	0 
	3 

	Let Y denote the set of functions from X to Y and let Xbe the set of functions from Y to X. Any function y ∈ Y and any function x ∈ Xwill be referred to as an assignment. 
	X 
	Y 
	X 
	Y 

	We say that (u, y) ∈ B(X) × Y is implementable if there exists a proﬁle v ∈ B(Y ) 
	X 

	y∈Y 
	that implements (u, y), meaning that the conditions 
	that implements (u, y), meaning that the conditions 
	that implements (u, y), meaning that the conditions 

	y(x) ∈ Yv(x) := argmax y∈Y 
	y(x) ∈ Yv(x) := argmax y∈Y 
	φ(x, y, v(y)) 
	(3) 

	u(x) = max φ(x, y, v(y)) 
	u(x) = max φ(x, y, v(y)) 
	(4) 


	hold for all x ∈ X (which, obviously, implies that the argmax correspondence Yv : X . Y deﬁned in (3) is nonempty-valued). Similarly, (v, x) ∈ B(Y ) × Xis implementable if there exists a proﬁle u ∈ B(X) implementing (v, x), meaning that for all y ∈ Y , 
	Y 

	x(y) ∈ Xu(y) := argmax ψ(y, x, u(x)) (5) 
	x∈X 
	v(y) = max ψ(y, x, u(x)). (6) 
	x∈X 
	We also say that a proﬁle v implements the proﬁle u (assignment y) if there exists y (there exists u) such that v implements (u, y). We use the analogous terms for a proﬁle 
	Observe that in the deﬁnition of ψ the order of the ﬁrst two arguments has been exchanged, so that in the matching model for both φ and ψ the ﬁrst argument gives the type of the agent whose maximal utility is speciﬁed and the second argument gives the type of his or her partner. In the quasilinear case we have ψ(y, x, u)= g(y, x) − u, where g(y, x)= f(x, y) holds for all (x, y) ∈ X × Y . 
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	A lattice is conditionally complete if every nonempty subset that is bounded has both an inﬁmum and a supremum. Here and throughout the following we simply refer to a set of proﬁles in B(X) or B(Y ) as being bounded without distinguishing between boundedness in order and boundedness in norm as these two notions are equivalent in our setting. 
	3

	u implementing the proﬁle v and assignment x. Proﬁles and assignments are said to be implementable if there exists a proﬁle implementing them. We let I(X) and I(Y ) denote the sets of implementable proﬁles, so that (for example) I(X)= {u ∈ B(X)|∃v ∈ B(Y )s. t. (4) holds}. 
	In the matching model u is a utility proﬁle for buyers, whereas v is a utility proﬁle for sellers. An assignment y speciﬁes for each buyer type x a seller type y = y(x) with whom x matches; the interpretation of an assignment x is analogous.The utility proﬁle v implements (u, y) if every buyer type x ﬁnds it optimal to select seller type y(x) as a partner and by doing so obtains the utility u(x), given that sellers have to be provided with the utility proﬁle v. The interpretation of conditions (5)–(6) is an
	4 

	In the principal-agent model u speciﬁes a utility level for each agent type, whereas an assignment y speciﬁes a decision for each agent type. The proﬁle v is a non-linear tariﬀ oﬀered by the principal to the agent, with v(y) specifying the transfer to the principal at which any type of agent can purchase decision y. Such a tariﬀ implements the pair (u, y) if all agent types ﬁnd it optimal to choose the decisions speciﬁed in y when faced with the tariﬀ v, and u is the resulting rent function. We may think of
	Remark 1 (Implementability and Direct Mechanisms). In deﬁning implementability we have taken a nonlinear pricing (rather than a direct mechanism) approach and, in addition, have required the proﬁles u and v to be both bounded. The taxation principle (e.g., Guesnerie and Laﬀont, 1984; Rochet, 1985) is applicable in our setting and ensures that there is no loss of generality in using a nonlinear pricing approach when studying principal-agent models. What is less obvious is that the restriction to bounded proﬁ
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	2.4 Strongly Implementable Assignments 
	2.4 Strongly Implementable Assignments 
	We say that a proﬁle u ∈ B(X) satisﬁes the initial condition (x0,u0) ∈ X × R if u(x0)= u0 holds and say that an assignment y ∈ Y is strongly implementable if for all initial conditions (x0,u0) there exists u such that (u, y) is implementable and u satisﬁes the initial condition. Similarly, a proﬁle v ∈ B(Y ) satisﬁes the initial condition (y0,v0) ∈ Y × R if v(y0)= v0 holds and an assignment x ∈ Xis strongly implementable if for all initial conditions (y0,v0) there exists v such that (v, x) is implementable 
	X 
	Y 

	level of an arbitrary agent at an arbitrary level. 
	Note that the deﬁnition of an assignment does not incorporate any notion of feasibility (e.g., an assignment x could specify that all types of the seller match with the same type of buyer). In the matching context an assignment is sometimes referred to as a pre-matching (Adachi, 2000) or a semi-matching (Lawler, 2001). 
	4

	In the absence of the full range condition from Assumption 1 this conclusion may fail. To see this, it suﬃces to consider a direct mechanism in which type x obtains utility u from choosing y, but there exists y such that limv→∞ φ(x, y ,v) >u. Then, no matter what transfer v(y ) ∈ R is speciﬁed, type x will prefer to choose y rather than y. 
	5
	0 
	0 
	0
	0 

	With a quasilinear generating function every implementable assignment is strongly implementable, so that the distinction between these two concepts is moot. This follows from the translational invariance of the incentive constraints under quasilinearity: u(x)= f(x, y(x))−v(y(x)) = maxy∈Y [f(x, y) − v(y)] implies u(x)−t = f(x, y(x))−(v(y(x))+t)= maxy∈Y [f(x, y) − (v(y)+ t)] for all x ∈ X and t ∈ R, so that by choosing the constant t appropriately a tariﬀ v implementing an assignment y can be adjusted to sati
	Y 

	In general, the implementability of an assignment does not imply its strong implementability. This causes some salient diﬀerences between the quasilinear and the general case. For example, if every implementable proﬁle is strongly implementable, then—just as in the quasilinear case—the participation constraint must be binding for some type of agent in a solution to the principal-agent model (Proposition 10), whereas this property may fail otherwise (see the example in Appendix C.2). Remark 2 and Section 6.2
	-

	Remark 2 (A Suﬃcient Condition for Strong Implementability). Appendix B.3 shows that every implementable assignment is strongly implementable if the generating function satisﬁes 
	00
	[φ(x, y, v) − φ(x,y ,v )] = [φ(x, y, vˆ) − φ(x,y ,vˆ)] 
	0
	0

	=⇒ (7) 
	0 000 00
	[φ(x ,y,v) − φ(x ,y ,v )] = [φ(x ,y, vˆ) − φ(x ,y ,vˆ)] 00
	0
	0

	for any x, x, y and yand any v, v,ˆv and ˆv. 
	0 
	0

	Condition (7) imposes a restriction across types, demanding that whatever change in tariﬀ is required to preserve all utility diﬀerences for one type will also preserve all utility diﬀerences for any other type. Condition (7) holds, of course, if the characteristic function is quasilinear. More generally, it is satisﬁed if the characteristic function takes the form φ(x, y, v)= f(x, y) − h(y, v). 
	We note that in the context of the principal-agent model condition (7) embodies no restriction on the preferences of a single agent type x over (y, v) pairs beyond the weak regularity properties from Assumption 1, and hence allows arbitrary income eﬀects. This is in contrast to the quasilinear case, which implies the absence of income eﬀects. 


	Duality 
	Duality 
	In this section we characterize implementable proﬁles and assignments. Section 3.1 introduces a pair of functions between sets of proﬁles that we refer to as implementation maps, and shows that these maps are a Galois connection between the sets of proﬁles B(X) and B(Y ). Equivalently, these maps are dualities that are dual to each other. Section 3.2 uses the structure of the implementation maps to characterize implementable proﬁles. Building on these results, Section 3.3 characterizes implementable assignm
	3.1 Implementation Maps 
	3.1 Implementation Maps 
	Consider any proﬁle v ∈ B(Y ). As X and Y are compact and φ is continuous, setting u(x) = supφ(x, y, v(y)) for all x ∈ X results in a bounded proﬁle u ∈ B(X). Together with a similar argument for v(y) = supψ(y, x, u(x)), this ensures that the implementation 
	y∈Y 
	x∈X 

	maps Φ : B(Y ) → B(X) and Ψ : B(X) → B(Y ) obtained by setting 
	maps Φ : B(Y ) → B(X) and Ψ : B(X) → B(Y ) obtained by setting 
	maps Φ : B(Y ) → B(X) and Ψ : B(X) → B(Y ) obtained by setting 

	Φv(x) = sup φ(x, y, v(y)) 
	Φv(x) = sup φ(x, y, v(y)) 
	∀x ∈ X 
	(8) 

	y∈Y 
	y∈Y 

	Ψu(y) = sup ψ(y, x, u(x)) 
	Ψu(y) = sup ψ(y, x, u(x)) 
	∀y ∈ Y 
	(9) 

	x∈X 
	x∈X 


	are well-deﬁned. Appendix A.1 proves that these maps are also reasonably well-behaved: 
	Lemma 1. Let Assumption 1 hold. The implementation maps Φ: B(Y ) → B(X) and Ψ: B(X) → B(Y ) are continuous and map bounded sets into bounded sets. 
	We next show that Φ and Ψ are a Galois connection (Birkhoﬀ, 1995, p. 124) between the sets B(X) and B(Y ). That is, 
	u ≥ Φv ⇐⇒ v ≥ Ψu (10) 
	holds for all u ∈ B(X) and v ∈ B(Y ).Equivalently, the implementation maps are dualities that are dual to each other, where a duality is a map between two partially ordered sets with the property that for any subset of the domain which has an inﬁmum, the image of the inﬁmum of that set is the supremum of its image (Penot, 2010, Deﬁnition 1), and the implementation maps are dual to each other if 
	6 

	Φv = inf{u|v ≥ Ψu} and Ψu = inf{v|u ≥ Φv} 
	holds for all u ∈ B(X) and v ∈ B(Y ).
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	Proposition 1. Let Assumption 1 hold. The implementation maps Φ and Ψ are a Galois connection or, equivalently, are dualities that are dual to each other. 
	Proof. To obtain (10) and hence the claim that Φ and Ψ are a Galois connection observe: 
	u ≥ Φv ⇐⇒ u(x) ≥ sup φ(x, y, v(y)) for all x ∈ X 
	y∈Y ⇐⇒ u(x) ≥ φ(x, y, v(y)) for all x ∈ X and y ∈ Y ⇐⇒ ψ(y, x, u(x)) ≤ v(y) for all x ∈ X and y ∈ Y ⇐⇒ v(y) ≥ sup ψ(y, x, u(x)) for all y ∈ Y 
	x∈X 
	⇐⇒ v ≥ Ψu, 
	There is an alternative deﬁnition of a Galois connection in which the second inequality in (10) is reversed (Davey and Priestley, 2002, Chapter 7). 
	6

	Singer (1997, Deﬁnition 5.1) deﬁnes a duality as a map between complete lattices with the property that the image of the inﬁmum of any set is the supremum of the image of that set. Penot’s deﬁnition provides the obvious generalization to the situation under consideration here in which B(X) and B(Y ) are lattices, but are not complete. The notion of maps dual to each other is similarly adapted from Singer (1997, Deﬁnition 5.2). 
	7

	where the ﬁrst equivalence holds by the deﬁnition of Φv in (8), the second is from the deﬁnition of the supremum, the third uses (2) and that the inverse generating function ψ is strictly decreasing in its third argument, the fourth is by the deﬁnition of the supremum, and the ﬁfth holds by the deﬁnition of Ψu in (9). 
	The result that Φ and Ψ are a Galois connection if and only if they are dualities that are dual to each other is standard for maps between complete lattices (Singer, 1997, Theorem 5.4). Appendix A.2 contains a proof, building on Corollary 1 below, adapted to our setting in which the lattices B(X) and B(Y ) are not complete. 
	To interpret the result that Φ and Ψ are a Galois connection consider the matching context. Suppose we have a pair of proﬁles u and v such that each buyer x ∈ X is content to obtain u(x) rather than matching with any seller y ∈ Y and providing that seller with utility v(y), that is, the inequality u ≥ Φv holds. It is then intuitive that every seller y ∈ Y would similarly weakly prefer to obtain utility v(y) to matching with any buyer x ∈ X who insists on receiving utility u(x), that is, the inequality v ≥ Ψ
	The statements in the following corollary are standard implications of the fact that Φ and Ψ are a Galois connection. Our terms for these follow Davey and Priestley (2002, p. 
	159); for completeness Appendix A.2 provides a proof. 
	159); for completeness Appendix A.2 provides a proof. 
	159); for completeness Appendix A.2 provides a proof. 

	Corollary 1. Let Assumption 1 hold. The implementation maps Φ and Ψ 
	Corollary 1. Let Assumption 1 hold. The implementation maps Φ and Ψ 

	[1.1] satisfy the cancellation rule, that is, for all u ∈ B(X) and v ∈ B(Y ): 
	[1.1] satisfy the cancellation rule, that is, for all u ∈ B(X) and v ∈ B(Y ): 

	v ≥ ΨΦv and u ≥ ΦΨu; 
	v ≥ ΨΦv and u ≥ ΦΨu; 
	(11) 

	[1.2] are order reversing, that is, for all u1, u2 ∈ B(X) and v1, v2 ∈ B(Y ): 
	[1.2] are order reversing, that is, for all u1, u2 ∈ B(X) and v1, v2 ∈ B(Y ): 

	v1 ≥ v2 =⇒ Φv1 ≤ Φv2 
	v1 ≥ v2 =⇒ Φv1 ≤ Φv2 
	and 
	u1 ≥ u2 =⇒ Ψu1 ≤ Ψu2; 
	(12) 

	[1.3] satisfy the semi-inverse rule, that is, for all u ∈ B(X) and v ∈ B(Y ): 
	[1.3] satisfy the semi-inverse rule, that is, for all u ∈ B(X) and v ∈ B(Y ): 

	ΨΦΨu = Ψu and ΦΨΦv = Φv. 
	ΨΦΨu = Ψu and ΦΨΦv = Φv. 
	(13) 


	To provide some interpretation for (11)–(13) we focus on the ﬁrst statement in each case and consider the principal-agent model. The order-reversal property (Corollary 1.2) asserts that all agent types are better oﬀ when the prices speciﬁed by the tariﬀ are low rather than high. Intuitively, the tariﬀ ΨΦv appearing in the cancellation rule (Corollary 1.1) speciﬁes for each decision y ∈ Y the highest payment such that some agent type x can achieve the same utility from choosing y as from maximizing against t
	8 

	In convex analysis, the counterpart of ΨΦv is referred to as the convex envelope of v, and is the greatest convex minorant of v (Galichon, 2016, Proposition D.12). An analogous property holds here. First, from the cancellation property, ΨΦv is a minorant of v. Second, consider u satisfying Ψu ≤ v. Applying the order reversal property twice yields ΨΦΨu ≤ ΨΦv and therefore, from the semi-inverse rule Ψu ≤ ΨΦv. 
	8

	cancellation rule turns into an equality when the original tariﬀ v is given by Ψu, and hence 
	speciﬁes the highest payments for which, for any decision y, some agent type x can achieve 
	utility u(x) by choosing decision y. 
	Remark 3 (Quasilinearity and Generalized Conjugate Duality). In the quasilinear case the 
	deﬁnitions of the implementation maps in (8) and (9) reduce to 
	Φv(x) = sup [f(x, y) − v(y)] 
	y∈Y 
	Ψu(y)= sup[g(y, x) − u(x)] , 
	x∈X 
	where g(y, x)= f(x, y) holds for all (x, y) ∈ X × Y (cf. footnote 2). In this case Φv is a familiar object, namely the f-conjugate of v, and Ψu is the g-conjugate of u (cf. Ekeland, 2010, Section 3.2). The properties noted in Corollary 1 generalize corresponding properties from the theory of (generalized) conjugate duality. Indeed, the cancellation property (Corollary 1.1) corresponds to the statement that the biconjugate of any function is smaller than the function itself and the semi-inverse rule (Corolla
	familiar results from conjugate duality when the generating function is quasilinear. 

	3.2 Implementable Proﬁles 
	3.2 Implementable Proﬁles 
	Comparing the implementation condition (4) and the deﬁnition of the implementation map Φ in (8) it is clear that v ∈ B(Y ) implements u ∈ B(X) if and only if u =Φv holds and, in addition, the suprema in (8) are attained for all x ∈ X, that is, the argmax correspondence Yv deﬁned in (3) is nonempty-valued. Consequently, the set of implementable proﬁles I(X) is contained in the image ΦB(Y ) of the implementation map Φ. Similarly, I(Y ) ⊆ ΨB(X) holds. 
	The following proposition shows that the reverse set inclusions also hold. Hence, the images of the implementation maps are precisely the sets of implementable proﬁles. In the course of proving this result, it is straightforward to also show that every implementable proﬁle is continuous.Let C(X) ⊆ B(X) denote the set of continuous (and hence necessarily bounded, since X is compact) functions from X to R, with C(Y ) analogous. Appendix A.3 shows: 
	9 

	Proposition 2. Let Assumption 1 hold. A proﬁle is implementable if and only if it is in the image of the relevant implementation map. Further, every implementable proﬁle is continuous. That is, 
	I(X)=ΦB(Y ) ⊆ C(X) and I(Y )=ΨB(X) ⊆ C(Y ). (14) 
	The ﬁrst step in the proof of Proposition 2 shows that every lower semicontinuous proﬁle implements its image under the relevant implementation map and that this image is 
	Weibull (1989) has obtained related results in an optimal taxation model with one-dimensional types and decisions. 
	9

	continuous. The proof is then completed by showing that the image of any proﬁle under the 
	relevant implementation map is the same as the image of its lower semicontinuous hull. 
	As a direct implication of Berge’s maximum theorem, the continuity of implementable proﬁles and of the generating function ensures that the argmax correspondences associated with implementable proﬁles are well-behaved. In particular, as the argmax correspondences are nonempty-valued, implementable proﬁles implement their images under the relevant implementation map: 
	Corollary 2. Let Assumption 1 hold. If v ∈ I(Y ), then the argmax correspondence Yv is nonempty-valued and compact-valued and upper hemicontinuous and v implements Φv. Analogously, if u ∈ I(X), then the argmax correspondence Xu is nonempty-valued and compact-valued and upper hemicontinuous and u implements Ψu. 
	Combining Proposition 2 with the semi-inverse rule from Corollary 1.3 yields a characterization of implementable proﬁles: 
	-

	Proposition 3. Let Assumption 1 hold. 
	[3.1] u ∈ B(X) is implementable if and only if u = ΦΨu. 
	[3.2] v ∈ B(Y ) is implementable if and only if v = ΨΦv. 
	Proof. We prove Proposition 3.1; 3.2 is analogous. 
	If u = ΦΨu, then obviously u ∈ ΦB(X) and hence (by Proposition 2) u ∈ I(Y ). Conversely, if u is implementable, then there exists v ∈ B(Y ) such that u =Φv, and hence (by Corollary 1.3) we have u = ΦΨu. 
	For any Galois connection, the counterparts to the ﬁxed point conditions u = ΦΨu and v = ΨΦv characterize the images of the constituent maps (Singer, 1997, Corollary 5.6). Proposition 2 allows us to strengthen this result from a characterization of the images of the implementation maps (which we are not interested in as such) to a characterization of implementable proﬁles. 
	The following is a straightforward implication of Corollary 2 and Proposition 3: 
	Corollary 3. Let Assumption 1 hold. 
	[3.1] Suppose the proﬁle u ∈ B(X) is implementable. Then u implements and is implemented by v =Ψu. Further, Ψu is the only proﬁle in I(Y ) implementing u. 
	[3.2] Suppose the proﬁle v ∈ B(Y ) is implementable. Then v implements and is implemented by u =Φv. Further, Φv is the only proﬁle in I(X) implementing v. 
	Proof. We prove Corollary 3.1; 3.2 is analogous. 
	Let u ∈ I(X). By Corollary 2, u implements v =Ψu. Hence, v is implementable and by Corollary 2 in turn implements Φv, which by Proposition 3.1 is identical to u. Hence, u not only implements v =Ψu but is also implemented by it. 
	Suppose u =Φv holds for some implementable proﬁles u and v. Applying the implementation map Ψ to both sides of this equality yields Ψu = ΨΦv. As v is implementable, we also have ΨΦv = v from Proposition 3.2. Combining the two preceding equalities implies v =Ψu, so that Ψu is the only implementable proﬁle implementing u. 
	-

	Artifact
	Figure 1: Illustration of the implementation maps. The implementation map Φ maps the set of bounded proﬁles B(Y ) onto the set of implementable proﬁles I(X) (and Ψ maps the set of bounded proﬁles B(X) onto the set of implementable proﬁles I(Y )). The maps Φ and Ψ are continuous inverse bijections on the sets of implementable proﬁles I(X) and I(Y ) with proﬁles u and v in these sets satisfying u =Φv ⇐⇒ v =Ψu and implementing each other. 
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	Remark 4 (Implementable Proﬁles in the Quasilinear Case). Following up on Remark 3, we note that in the quasilinear case Proposition 3 is the statement that a proﬁle is implementable if and only if it is its own generalized biconjugate (Ekeland, 2010, Corollary 12). Taken together Corollaries 3.1 and 4.1 indicate for the quasilinear case that a proﬁle-assignment 
	Remark 4 (Implementable Proﬁles in the Quasilinear Case). Following up on Remark 3, we note that in the quasilinear case Proposition 3 is the statement that a proﬁle is implementable if and only if it is its own generalized biconjugate (Ekeland, 2010, Corollary 12). Taken together Corollaries 3.1 and 4.1 indicate for the quasilinear case that a proﬁle-assignment 
	pair (u, y) is implementable if and only if it is implemented by the generalized conjugate of 

	u. As discussed in Basov (2006, p. 136 and p. 142) the latter result is the essence of the implementability criterion for the quasilinear case provided by Carlier (2002, Proposition 1). 

	3.3 Implementable Assignments 
	3.3 Implementable Assignments 
	Given any pair of proﬁles (u, v) let 
	Γu,v = {(x, y) ∈ X × Y | u(x)= φ(x, y, v(y))} (16) = {(x, y) ∈ X × Y | v(y)= ψ(y, x, u(x))}, 
	where the second equality holds by deﬁnition of the inverse generating function ψ. If v implements u, then Γu,v coincides with the graph of the argmax correspondence Yv deﬁned in (3), i.e., {(x, y) ∈ X × Y |u(x)= y∈Y φ(x, ˜y))} = {(x, y) ∈ X × Y | u(x)=
	max˜y, v(˜φ(x, y, v(y))} =Γu,v. Similarly, if u implements v, the equality in the second line indicates that Γu,v coincides with the graph of the argmax correspondence Xu deﬁned in (5). For the special case in which the proﬁles u and v implement each other, the graphs of both Xu and Yv thus coincide with Γu,v. This proves: 
	Lemma 2. Let Assumption 1 hold and suppose that u and v implement each other. The argmax correspondences Xu and Yv are inverses and their graphs coincide with Γu,v, i.e., they satisfy 
	xˆ∈ Xu(ˆy) ⇐⇒ yˆ∈ Yv(ˆx) ⇐⇒ (ˆx, yˆ) ∈ Γu,v. (17) 
	Lemma 2 indicates that the inverse relationship (15) between proﬁles that implement Making use of Corollaries 3 and 4 this observation leads to the following characterization of implementable assignments. 
	each other extends to the argmax correspondences associated with these two proﬁles.
	10 

	Proposition 4. Let Assumption 1 hold. 
	[4.1] An assignment y ∈ Y is implementable if and only if there exist proﬁles u ∈ B(X) and v ∈ B(Y ) that implement each other with Γu,v containing the graph of y, i.e., 
	X 

	(x, y(x)) ∈ Γu,v for all x ∈ X. 
	[4.2] An assignment x ∈ Xis implementable if and only if there exist proﬁles u ∈ B(X) and v ∈ B(Y ) that implement each other with Γu,v containing the graph of x, i.e., 
	Y 

	(x(y),y) ∈ Γu,v for all y ∈ Y. 
	The counterpart of Lemma 2 in the quasilinear case is the following: if u and v are each others’ conjugates, then the graphs of both of their subdiﬀerentials coincide with the set of points for which equality holds in the Fenchel inequality (cf. Ekeland, 2010, Corollary 13). 
	10

	Proof. We prove Proposition 4.1; 4.2 is analogous. First, suppose the proﬁles u and v implement each other and let y ∈ Y satisfy (x, y(x)) ∈ Γu,v for all x ∈ X. Then it follows from (17) in Lemma 2 that for all x ∈ X, we have y(x) ∈ Yv(x). Hence v implements y (cf. (3)) and y is therefore implementable. Conversely, suppose that y ∈ Y is implementable, so that there exists u such that (u, y) is implementable. Let v =Ψu. Then, from Corollary 
	X 
	X 

	3.1 u and v implement each other and from Corollary 4.1 v implements (u, y). From (3), we then have that for all x ∈ X, y(x) ∈ Yv. Using Lemma 2, it then follows that for all x ∈ X, we have (x, y(x)) ∈ Γu,v, ﬁnishing the proof. 
	Remark 5 (Implementable Assignments and Strong Implementability). In the quasilinear case an assignment is implementable if and only if it is cyclically monotone (Rochet, 1987, Theorem 1). Importantly, and in contrast to the characterization result in Proposition 4, cyclical monotonicity is a condition on assignments that does not involve any proﬁles and In general, the existence of implementable assignments that are not strongly implementable precludes any hope to verify the implementability of an assignme
	therefore can be veriﬁed directly.
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	Remark 6 (Another Characterization of Implementable Proﬁles). Proposition 4 characterizes implementable assignments in terms of the argmax correspondences Xu and Yv. Implementable proﬁles can be characterized in a analogous way. Appendix B.4 shows: 
	-

	u ∈ I(X) ⇐⇒ Xu is nonempty − valued and onto, v ∈ I(Y ) ⇐⇒ Yv is nonempty − valued and onto. 

	3.4 Sets of Implementable Proﬁles 
	3.4 Sets of Implementable Proﬁles 
	We use Uy to denote the subset of implementable proﬁles I(X) for which (u, y) is implementable and deﬁne Vx analogously: 
	-

	Uy = {u ∈ I(X):(u, y) is implementable}, 
	Vx = {v ∈ I(Y ):(v, x) is implementable}. 
	We will sometimes refer to these sets as the set of proﬁles compatible with y, resp. with x. 
	3.4.1 Metric Structure 
	3.4.1 Metric Structure 
	The following corollary establishes properties of sets of implementable proﬁles that play a key role throughout our study of matching and principal-agent models. 
	rem 1 shows how to construct u and v satisfying the suﬃcient conditions in Proposition 4 if the assignment is cyclical monotone, and also shows that doing so is impossible if cyclical monotonicity fails. 
	11
	In essence, Rochet’s proof of his Theo

	Corollary 5. Let Assumption 1 hold. Then, 
	[5.1] I(X) is closed and so is Uy for all y ∈ Y . 
	X 

	[5.2] If U⊂ I(X) is bounded, then it is equicontinuous. 
	[5.3] If U⊂ I(X) is closed and bounded, then it is compact. Analogously, I(Y ) and Vx are closed, if V⊂ I(Y ) is bounded, then it is equicontinuous, and if it is closed and bounded, then it is compact. 
	Appendix A.5 contains the proof. First, we invoke Corollary 3 to show that for any converging sequence of proﬁles in (for example) I(X), there exists a converging sequence of proﬁles in I(Y ) that implement the former sequence. It then follows from the continuity of the implementation map Φ (Lemma 1) that the limit of the latter sequence implements the limit of the former sequence, allowing us to conclude that I(X) is closed. An analogous argument shows that Uy is closed. Next, we use Lemma 1 and Corollary 
	5.2 by applying the Arzela-Ascoli theorem. 

	3.4.2 Order Structure 
	3.4.2 Order Structure 
	As the implementation maps are dualities (Proposition 1) the sets of implementable proﬁles are join semi-sublattices of the lattices of proﬁles: If, say, v1 implements u1 and v2 implements u2, then we have u1 =Φv1 and u2 =Φv2. Because Φ is a duality, Φ(v1 ∧ v2)= u1 ∨ u2 follows immediately. Proposition 2 ensures that u1 ∨ u2 is not only in the image of the implementation map Φ but is indeed implementable. 
	Even when the generating function is quasilinear, the meet of two implementable proﬁles may not be implementable. In such a case, the sets of implementable proﬁles are not sublattices of the lattices of proﬁles. Appendix C.1 provides a simple example illustrating this. 
	There are, however, interesting subsets of implementable proﬁles that are sublattices. The most prominent example are the sets of stable proﬁles in a matching model that we will investigate in Section 4. Here we give two preliminary results that consider the sets of implementable proﬁles that are compatible with a given assignment. 
	Lemma 3. Let Assumption 1 hold. The set Uy is a sublattice of B(X) for all implementable y ∈ Y and the set Vx is a sublattice of B(Y ) for all implementable x ∈ X. 
	X 
	Y 

	The proof of Lemma 3, which considers the set Uy (the other case is analogous) is in Appendix A.6. The essence of the argument is that if, say, y ∈ Y is optimal for an agent type x ∈ X when faced with the tariﬀ v1 and also optimal when faced with the tariﬀ v2, then y remains an optimal choice for x both when faced with the tariﬀ v1 ∧ v2 and when faced with the tariﬀ v1 ∨ v2. Consequently, when v1 implements (u1, y) and v2 implements (u2, y), then v1 ∧ v2 implements (u1 ∨ u2, y) and v1 ∨ v2 implements (u1 ∧ 
	Next, we consider sets of proﬁles that are compatible with a given implementable assignment and in addition satisfy a participation constraint. For example, consider the set {u ∈Uy | u ≥ } for some continuous proﬁle . As the intersection of the sublattice 
	Next, we consider sets of proﬁles that are compatible with a given implementable assignment and in addition satisfy a participation constraint. For example, consider the set {u ∈Uy | u ≥ } for some continuous proﬁle . As the intersection of the sublattice 
	u
	u

	Uy (Lemma 3) and the sublattice of proﬁles satisfying u ≥ , this set is also a sublattice. In the quasilinear case it is not diﬃcult to see that this sublattice (i) is nonempty and (ii) has a minimum element, say u , for which the participation constraint is binding, that is, u (x)= (x) holds for some x ∈ X. The proof of the following result (in Appendix A.7) shows that these two additional properties do not require quasilinearity but hold under the weaker condition that the assignment under consideration i
	u
	∗
	∗
	u


	Lemma 4. Let Assumption 1 hold and let ∈ C(X) and ∈ C(Y ). 
	u 
	v 

	[4.1] If y ∈ Y is strongly implementable, then the sublattice {u ∈Uy | u ≥ } has a 
	X 
	u

	∗
	minimum element u and this minimum element satisﬁes u (x)= u(x) for some x ∈ X. 
	∗

	[4.2] If x ∈ Xis strongly implementable, then the sublattice {v ∈Vx | v ≥ } has a 
	Y 
	v

	∗
	minimum element v and this minimum element satisﬁes v (y)= v(y) for some y ∈ Y . 
	∗

	The main diﬃculty in establishing Lemma 4.1 (the other case is analogous) is to exclude 
	∗
	the possibility that the minimum element u is strictly greater than for all x ∈ X. We resolve this diﬃculty by exploiting the lattice structure observed in Lemma 3 and the assumption of strong implementability to construct an increasing sequence of proﬁles in Uy that satisfy u(x)= (x) for some x ∈ X (but may violate the participation constraint) and then show (using Corollary 5) that this sequence has a limit that satisﬁes the participation 
	u 
	u

	12
	constraint for all x ∈ X and satisﬁes it with equality for some x ∈ X. 



	4 Stability in Matching Models 
	4 Stability in Matching Models 
	This section applies the results from Section 3 to study stable outcomes in two-sided matching models. Section 4.1 introduces the matching model and deﬁnes the stability notions—stable outcomes and pairwise stable outcomes—that we consider. The notion of a pairwise stable outcome, which abstracts from participation constraints, is important because such outcomes can be characterized in terms of a pair of proﬁles implementing each other together with the argmax correspondences associated with these proﬁles. 
	13 

	argument will do: Suppose u (x) > (x) holds for all x ∈ X. As has been assumed to be continuous, u is continuous by Proposition 2, and X is compact, there then exists .> 0 such that u (x) − . ≥ (x) holds for all x ∈ X. In the quasilinear case the proﬁle given by u (x) − . is an element of Uy , contradicting the minimality of u . 
	12
	In the quasilinear case a much simpler 
	∗ 
	u
	u 
	∗ 
	∗ 
	u
	∗ 
	∗ 

	Previously, Gretsky, Ostroy, and Zame (1992) have used tools from optimal transport to establish existence of stable outcomes in matching models with perfectly transferable (quasilinear) utility. Kaneko and Wooders (1986, 1996) establish an existence result for a class of inﬁnite cooperative games which includes matching models with both perfectly and imperfectly transferable utility as special cases, but to do so resort to a notion of approximate feasibility. In work contemporaneous to ours, Greinecker and
	13

	The main result in Section 4.4 is Proposition 8, which establishes that the sets of stable proﬁles are complete sublattices of the sets of proﬁles, thereby generalizing a corresponding result for matching models with a ﬁnite number of agents (Demange and Gale, 1985). 
	4.1 The Matching Model 
	4.1 The Matching Model 
	To obtain a matching model, we add to our basic ingredients (X, Y, φ) a pair of ﬁnite non-zero Borel measures µ on X and ν on Y , describing the distribution of agent types on each side of the market, and a pair of continuous reservation utility proﬁles : X → R and 
	u 

	: Y → R, describing the utilities agents achieve when remaining unmatched. A matching model is then a collection (X, Y, φ, µ, ν, , ). 
	v 
	u
	v

	4.1.1 Matches and Outcomes 
	4.1.1 Matches and Outcomes 
	We follow the optimal transportation literature (Villani, 2009; Galichon, 2016) and Gretsky, Ostroy, and Zame (1992) in using a measure λ on X×Y to describe who is matched with whom and who remains unmatched. Formally, a match for a matching model (X, Y, φ, µ, ν, , ) is a Borel measure λ on X × Y satisfying the conditions 
	u
	v

	λX (X) := λ(X× Y ) ≤ µ(X) (18) 
	˜
	˜
	˜

	λY (Y) := λ(X × Y) ≤ ν(Y) (19) 
	˜
	˜
	˜

	for all measurable X⊆ X and Y⊆ Y . We interpret λ(X× Y) as identifying the mass of ˜
	˜
	˜
	˜
	˜

	buyers from X who are matched with sellers from Y. Condition (18) indicates that the mass of buyers with types in X, given by the marginal measure λX (X), who are matched to some seller cannot exceed the mass of these buyers, with mass µ(X) − λX (X) ≥ 0 of the agents 
	˜
	˜
	˜
	˜
	˜

	˜
	in the set X remaining unmatched. The interpretation of condition (19) is analogous. An outcome is a triple (λ, u, v) consisting of a match λ and a pair of utility proﬁles u ∈ B(X) and v ∈ B(Y ) satisfying the (dual) feasibility conditions 
	u(x)= φ(x, y, v(y)) and v(y)= ψ(y, x, u(x)) ∀(x, y) ∈ supp(λ) (20) 
	for matched agents and the feasibility conditions 
	u(x)= (x) ∀x ∈ supp(µ − λX ) (21) 
	u

	v(y)= (y) ∀y ∈ supp(ν − λY ) (22) 
	v

	These feasibility conditions require that matched pairs receive utilities that can be generated in their matches and unmatched agents obtain their reservation utilities. Observe that we require feasibility for all types in the supports of µ and ν. This is in contrast to the approximate feasibility notion employed in Kaneko and Wooders (1986, 1996). 
	for unmatched agents.
	14 

	By specifying an outcome in terms of utility proﬁles we are imposing the equal treatment property that all agents of the same type receive the same utility level. Greinecker and Kah (2018) demonstrate that this is an innocent simpliﬁcation under Assumption 1. Similarly, by requiring the equalities in (20) we are imposing eﬃciency within each match rather than obtaining this as an implication of stability. 
	14


	4.1.2 Stable Outcomes 
	4.1.2 Stable Outcomes 
	An outcome for a matching model is stable if it satisﬁes the participation constraints 
	u(x) 
	u(x) 
	u(x) 
	≥ u(x) 
	∀x ∈ supp(ν) 
	(23) 

	v(y) 
	v(y) 
	≥ v(y) 
	∀y ∈ supp(µ) 
	(24) 

	and the (dual) incentive constraints 
	and the (dual) incentive constraints 

	u(x) ≥ φ(x, y, v(y)) 
	u(x) ≥ φ(x, y, v(y)) 
	and 
	v(y) ≥ ψ(y, x, u(x)) 
	∀(x, y) ∈ supp(ν) × supp(µ). 
	(25) 

	A match or proﬁle will be called stable if it is part of a stable outcome. 
	A match or proﬁle will be called stable if it is part of a stable outcome. 


	The stability conditions require that, as indicated by (23)–(24), no matched agent in the support of one of the type distributions would rather be unmatched, and, as indicated by (25), no pair of agents in the supports of the type distributions can achieve strictly higher utilities by matching with each other than by sticking to the outcome under consideration. 
	Conditions (20)–(25) impose no constraints whatsoever on types that do not appear in the supports of the type distributions. Further, (25) does not preclude the possibility that some type x in the support of µ might prefer to match with a type outside of the support of ν (and vice versa). In essence, we are thus treating types that lie outside the supports of the type-distributions as being non-existent in the deﬁnition of stable outcomes. We could exclude such types from the model by assuming that µ and ν 
	The matching model (X, Y, φ, µ, ν, , ) has ﬁnite support if there exists (x1,...,xm) ∈ Xand (y1,...,yn) ∈ Y such that the measures µ and ν on X and Y satisfy 
	u
	v
	m 
	n 

	mn
	XX 
	µ(X) = δx(X) and ν(Y) = δy(Y) i=1 j=1 
	˜
	i 
	˜
	˜
	i 
	˜

	for all measurable X⊆ X and measurable Y⊆ Y , where m and n are natural numbers and δx (and similarly δy) is the Dirac measure on X assigning mass 1 to x. 
	˜
	˜

	The import of such models for our analysis is that they can be interpreted as matching models with a ﬁnite number of agents, with known results about stable outcomes carrying over from matching models with a ﬁnite number of agents to ﬁnite-support matching models. In particular, every ﬁnite-support matching model satisfying Assumption 1 has a stable outcome. See Appendix B.5 for details. 

	4.1.3 Pairwise Stable Outcomes in Balanced Matching Models 
	4.1.3 Pairwise Stable Outcomes in Balanced Matching Models 
	We say that a matching model is balanced if µ(X)= ν(Y ) holds, so that the masses of buyers and sellers are identical. A match λ for a balanced matching model is full if the inequalities in (18) and (19) hold as equalities, 
	λ(X× Y )= µ(X) (26) 
	˜
	˜

	λ(X × Y) = ν(Y) (27) 
	˜
	˜

	for all measurable X⊆ X and Y⊆ Y , indicating that there are no unmatched agents. An outcome (λ, u, v) for a balanced matching model is full if it features a full match. For any 
	for all measurable X⊆ X and Y⊆ Y , indicating that there are no unmatched agents. An outcome (λ, u, v) for a balanced matching model is full if it features a full match. For any 
	˜
	˜

	full match the feasibility conditions (21) and (22) are vacuous (because supp(µ − λX )= supp(ν − λY )= ∅), so that an outcome is full if and only if it satisﬁes (20), (26), and (27). In line with our deﬁnition of proﬁles u or v satisfying an initial condition (cf. Section 2.4), we say that a full outcome (λ, u, v) for a balanced matching model (X, Y, φ, µ, ν, , ) 
	u
	v


	satisﬁes initial condition (x0,u0) ∈ X × R if u(x0)= u0, and satisﬁes initial condition (y0,v0) ∈ Y × R if v(y0)= v0. 
	A full outcome is pairwise stable if it satisﬁes the incentive constraints (25). A pairwise stable outcome is stable if and only if it also satisﬁes the participation constraints (23) and (24). Note that full matches and full outcomes exist only for balanced matching models and that whenever we call an outcome, match, or proﬁle pairwise stable, it is implied that it is part of a full outcome. 
	Our deﬁnition of a full match for a balanced matching model is identical to the deﬁnition of a transportation (or transference) plan in the literature on optimal transport. This allows us to borrow results from this literature when analysing full matches and full outcomes. For instance, it is well-known that (under our maintained compactness assumption on X and 
	Y ) the set of full matches is compact in the topology of weak convergence of measures (cf. Villani, 2009, p. 45). 

	4.1.4 Deterministic Matches 
	4.1.4 Deterministic Matches 
	In many economic applications it is natural to focus on full matches that can be described in terms of assignments, thereby identifying for all agent types on one side of the matching market a unique type on the other side with whom they are matched. This is captured by the notion of a deterministic match—corresponding to the notion of a deterministic coupling or transport map in the optimal transportation literature (Villani, 2009, p.6)—deﬁned in 
	the following.
	15 

	We say that a measure λ on the set X × Y is deterministic and denote it by λy if there exists a measurable assignment y such that 
	˜
	λ(X× Y) = µ({x ∈ X|y(x) ∈ Y}) (28) 
	˜
	˜
	˜

	˜
	for measurable X ⊆ X and Y⊆ Y . If such a deterministic measure λ is a full match in the balanced matching model (X, Y, φ, µ, ν, , ), then it is a deterministic match. If λy is a deterministic match then the assignment y must be measure preserving (and hence necessarily measurable), i.e., ν(Y) = µ(y(Y)) must hold for all measurable Y⊆ Y . 
	˜
	u
	v
	˜
	−1
	˜
	˜

	In general, pairwise stable deterministic matches do not exist in balanced matching models, even when the generating function is quasilinear and the existence of measure-preserving assignments is assured (e.g. when µ 
	is atomless).
	16 

	We focus on assignments y ∈ Y with all our deﬁnitions and observations carrying over to assignments x ∈ Xin the obvious way. 
	15
	X 
	Y 

	Villani (2009, Example 4.9) provides a simple example for an optimal-transport problem (with both µ and ν atomless) which has no deterministic solution. This example is easily modiﬁed to demonstrate the non-existence of pairwise stable deterministic matches. See also Gretsky, Ostroy, and Zame (1992) for an extended discussion of related existence questions in the context of a two-sided matching model and an argument which, when transferred to our setting, suggests that it is possible to interpret any of the
	16



	4.2 Connecting Implementability and Pairwise Stability 
	4.2 Connecting Implementability and Pairwise Stability 
	With a quasilinear generating function φ(x, y, v)= f(x, y) − v a full match is pairwise stable 
	R 
	if and only if it maximizes the surplus f(x, y)dλ(x, y) over the set of full matches. Standard results from the optimal transport literature then imply that a full match λ is pairwise stable if and only if its support is contained in Γu,v for a pair of proﬁles (u, v) implementing each other, and that for such a pair of proﬁles the full outcome (λ, u, v) is a pairwise stable outcome (cf. Galichon, 2016, Chapters 6 and 7). These results carry over to the our case: 
	X×Y 

	Proposition 5. Let Assumptions 1 hold and let the matching model (X, Y, φ, µ, ν, , ) be balanced. 
	u
	v

	[5.1] If λ is a full match, then (λ, u, v) is a full outcome if and only if supp(λ) ⊆ Γu,v. 
	[5.2] If (λ, u, v) is a full outcome and (i) u implements v or (ii) v implements u, then (λ, u, v) is pairwise stable. 
	[5.3] If (λ, u, v) is a pairwise stable outcome, then there exists proﬁles u˜and v˜with the properties that (i) u˜(x)= u(x) on the support of µ and v˜(y)= v(y) on the support of ν,(ii) (λ, u˜, v˜) is a pairwise stable outcome for (X, Y, φ, µ, ν, , ), and (iii) u˜and v˜implement each other. 
	u
	v

	Proof. [5.1] If λ is a full match, then (20) is necessary and suﬃcient for (λ, u, v) to be a full outcome. By deﬁnition of Γu,v (see (16)), condition (20) holds if and only if supp(λ) ⊆ Γu,v. 
	[5.2] If (λ, u, v) is a full outcome, then (20), (26) and (27) hold. Therefore, (25), which holds if v implements u or v implements u, is suﬃcient for (λ, u, v) to be pairwise stable. 
	[5.3] See Appendix A.8. 
	If the type measures µ and ν both have full support, Proposition 5.3 reduces to the statement that the proﬁles u and v in every pairwise stable outcome (λ, u, v) implement each other (which in this case is immediate from (20) and (25)). Otherwise Proposition 5.3 indicates that the proﬁles u˜and v˜in any pairwise stable outcome can be adjusted outside the supports of µ and ν in such a way that the suitably adjusted proﬁles implement each other. In either case, in conjunction with the ﬁrst two parts of the pr
	For a deterministic match λy with implementable y, it is not diﬃcult to show (using Proposition 4) that supp(λy) ⊆ Γu,v holds for proﬁles u and v implementing each other, so that Proposition 5 implies that λy is a pairwise stable match. Obtaining a converse statement involves dealing with some technical complications, arising out of the fact that supp(λy) ⊆ Γu,v does not necessarily imply that the graph of y is contained in Γu,v. We tackle these complications in Appendix A.9, thereby proving: 
	Lemma 5. Let Assumption 1 hold, let the matching model (X, Y, φ, µ, ν, , ) be balanced, and let λ be a deterministic match. Then λ is pairwise stable if and only if there exists an implementable y ∈ Y such that λ = λy holds. 
	u
	v
	X 


	4.3 Existence of (Pairwise) Stable Outcomes 
	4.3 Existence of (Pairwise) Stable Outcomes 
	We begin by exploiting our duality results to establish the existence of pairwise stable outcomes in balanced matching models satisfying arbitrary initial conditions. Appendix 
	A.10 proves: 
	Proposition 6. Let Assumption 1 hold and let the matching model (X, Y, φ, µ, ν, , ) be balanced. Then for every initial condition (y0,v0) (and similarly for every initial condition (x0,u0)), there exists a pairwise stable outcome (λ, u, v) satisfying v(y0)= v0 in which u and v implement each other. 
	u
	v

	The proof of Proposition 6 begins by considering balanced ﬁnite-support matching models with at most n types of buyers and at most n types of sellers. We exploit Lemma 3 in Demange and Gale (1985) to show that such a ﬁnite-support matching model has a pairwise stable outcome (λn, un, vn) satisfying the given initial condition. In addition, Proposition 5.3 ensures that we can take the proﬁles (un, vn) to implement each other. We next construct a sequence of such ﬁnite-support balanced matching models for whi
	∞ 
	n=1 
	∗ 
	n
	∞ 
	=1 
	n
	∞ 
	=1 

	∗
	our duality results that these sequences have subsequences converging to proﬁles u and 
	∗∗ 
	v implementing each other and that, further, (λ, u , v ) is a pairwise stable outcome for (X, Y, φ, µ, ν, , ) satisfying the initial condition. This gives us the desired result. 
	∗ 
	∗
	u
	v

	To go from the existence result for pairwise stable outcomes in balanced matching models in Proposition 6 to an existence result for stable outcomes in any matching model (X, Y, φ, µ, ν, , ) satisfying Assumption 1, we consider an augmented matching model. As in a similar construction in Chiappori, McCann, and Nesheim (2010), in this augmented model the type spaces diﬀer from X and Y by the addition of dummy types x0 and y0 on each side of the market. Adding the dummy types x0 and y0 transforms the original
	u
	v

	(ii) for an appropriate choice of initial condition, a pairwise stable outcome in the augmented model corresponds to a stable outcome in the original model, and (iii) Assumption 1 holds for the augmented model. Given these properties of the augmented matching model, Proposition 6 implies the existence of a stable outcome for the matching model (X, Y, φ, µ, ν, , ). The proof of the following result, in Appendix A.11, shows how to construct an augmented matching model with the requisite properties. 
	u
	v

	Corollary 6. Let Assumption 1 hold. There exists a stable outcome (λ, u, v) for the 
	matching model (X, Y, φ, µ, ν, , ). 
	u
	v


	4.4 Lattice Structure of (Pairwise) Stable Proﬁles 
	4.4 Lattice Structure of (Pairwise) Stable Proﬁles 
	The main result of this section is Proposition 8, which establishes that the sets of stable proﬁles are complete sublattices of the sets of bounded proﬁles. As in Section 4.3, we ﬁrst establish lattice results for pairwise stable outcomes. These lattice results for pairwise stable outcomes will also be of independent use when we turn to the principal-agent model. 
	The following assumption simpliﬁes the exposition by ensuring (from Proposition 5.3) that in every pairwise stable outcome (λ, u, v), the proﬁles u and v 
	implement each other.
	17 

	Assumption 2. The type measures µ and ν have full support. 
	4.4.1 The Lattice of Pairwise Stable Proﬁles 
	4.4.1 The Lattice of Pairwise Stable Proﬁles 
	Let 
	U = {u ∈ B(X) | (λ, u, v) is pairwise stable for some full match λ and v ∈ B(Y )}
	V = {v ∈ B(Y ) | (λ, u, v) is pairwise stable for some full match λ and u ∈ B(X)} 
	denote the sets of pairwise stable proﬁles in a balanced matching model. From Proposition 6 the sets U and V are nonempty if Assumption 1 holds. The following result shows that they are also closed sublattices (of B(X), resp. of B(Y )). 
	Proposition 7. Let Assumptions 1 and 2 hold and let the matching model (X, Y, φ, µ, ν, , ) be balanced. The sets U and V of pairwise stable proﬁles are closed sublattices. 
	u
	v

	Appendix A.12 contains the proof. The idea behind the proof that U and V are sublattices is the same as the one behind the Decomposition Lemma in Demange and Gale (1985, Lemma 1): Given two pairwise stable outcomes (λ1, u1, v1) and (λ2, u2, v2) we show that both X and Y can be partitioned into two sets each, say X into X1 and X2 and Y into Y1 and Y2, such that both λ1 and λ2 match buyer types from X1 with seller types in Y1 and buyer types in X2 with seller types in Y2. Further, when faced with v1 ∧ v2, all
	The proof of Proposition 7 would be much simpler if we could assume that all pairs (u1, v1) and (u2, v2) of stable proﬁles are compatible with the same stable match λ. In that case an argument analogous to that of Lemma 3 would yield that U and V are sublattices. However, as illustrated by Roth and Sotomayor (1990, Example 9.6, p. 225) and Quint 
	18 

	Without Assumption 2, the argument would require an additional step, adjusting a pair of proﬁles (u, v) outside the supports of µ and ν to ensure they implement each other, as in the proof of Proposition 5.3. 
	17

	This is trivially true if there is a unique stable match, as is the case under a strict single crossing condition (Proposition 12 in Section 6). It is also true with a quasilinear generating function, as with transferable utility all stable proﬁles are compatible with the same stable match; see Roth and Sotomayor (1990, Corollary 8.7, 
	18

	p. 207) for ﬁnite matching models and Gretsky, Ostroy, and Zame (1999), who also use this fact to establish a counterpart to our Proposition 8 below (Gretsky, Ostroy, and Zame, 1999, Proposition 5), for a model with an inﬁnity of types. 
	(1994, Example 6.1, p. 612), this is generally not the case if the generating function is not quasilinear. 
	Recall that Lemma 4 in Section 3.4.2 has established that the set of proﬁles Uy compatible with a given strongly implementable assignment y satisfying a participation constraint has a minimum element in which the participation constraint is binding for some type. The only properties of Uy used in the proof or Lemma 4 were that the set Uy is a closed (Corollary 5.1) sublattice (Lemma 3) of implementable proﬁles containing a proﬁle for every possible initial condition (by strong implementability). The set of 
	u

	Corollary 7. Let Assumptions 1 and 2 hold and let (X, Y, φ, µ, ν, , ) be a balanced matching model. Then the set of pairwise stable buyer proﬁles satisfying the participation 
	u
	v

	∗
	constraint u(x) ≥ (x) for all x ∈ X has a minimum element u satisfying u (x)= (x) for some x ∈ X. Similarly, the set of pairwise stable seller proﬁles satisfying the participation 
	u
	∗
	u

	∗
	constraints v(y) ≥ (y) for all y ∈ Y has a minimum element v satisfying v (y)= (y) for some y ∈ Y . 
	v
	∗
	v


	4.4.2 The Lattice of Stable Proﬁles 
	4.4.2 The Lattice of Stable Proﬁles 
	The connection between pairwise stability in balanced matching models and stability in arbitrary matching models underlying the proof of Corollary 6 in Section 4.3 allows us to extend our results about the lattice structure of pairwise stable proﬁles to results about the lattice structure of stable proﬁles. 
	First, we use Proposition 7 to show that the sets of stable buyer and seller proﬁles are complete sublattices. Appendix A.13 proves: 
	Proposition 8. Let Assumptions 1 and 2 hold. The sets of stable seller proﬁles and stable buyer proﬁles of the matching model (X, Y, φ, µ, ν, , ) are complete sublattices. 
	u
	v

	Second, we use Corollary 7 to establish a counterpart to Lemma 3 in Demange and Gale (1985), asserting that in a balanced matching model both the minimum buyer stable proﬁle 
	∗∗ 
	∗∗ 

	u and the minimum seller stable proﬁle v 
	feature binding participation constraints.
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	Corollary 8. Let Assumptions 1 and 2 hold and let (X, Y, φ, µ, ν, , ) be a balanced 
	u
	v

	∗
	∗

	matching model. Then the minimum stable buyer proﬁle u satisﬁes u (x)= (x) for some 
	∗
	u

	∗ 
	∗ 

	x ∈ X and the minimum stable seller proﬁle v satisﬁes v (y)= (y) for some y ∈ Y . 
	∗
	v

	In an unbalanced matching model (satisfying µ(X) 6
	19

	= ν(Y )) it is trivially the case that in every outcome there are unmatched agents on the “long side” of the market. By the feasibility conditions (21)–(22) such unmatched agents receive their reservation utility, so that either the minimum buyer stable proﬁle u or the minimum seller stable proﬁle v features a binding participation constraint. In particular, if µ(X) >ν(Y ), then there exists x ∈ X satisfying u (x)= (x) and, similarly, if µ(X) <ν(Y ), then there exists y ∈ Y 
	∗ 
	∗ 
	∗ 
	u

	∗ ∗∗ 
	∗ ∗∗ 

	satisfying v (y)= (y). Note the existence of u and v is ensured because the sets of stable proﬁles are complete sublattices (Proposition 8). 
	v

	Proof. The claim is immediate from the feasibility conditions (21)–(22) unless all stable outcomes are fully matched. We therefore suppose this to be the case. The set of stable outcomes then coincides with the set of pairwise stable outcomes (λ, u, v), satisfying the participation constraints u ≥ and v ≥ . Recalling that for any pairwise stable outcome (λ, u, v) the proﬁles u and v implement each other (Assumption 2 and Proposition 5.3), 
	u 
	v

	∗∗
	the result then follows from Corollary 7, provided that the proﬁles u and v appearing in 
	∗∗
	the statement of that corollary satisfy Ψu ≥ and Φv ≥ . Because the implementation 
	v 
	u

	maps are order reserving, these conditions must be satisﬁed (as otherwise the set of stable 
	proﬁles would be empty). 



	5 Optimal Outcomes in Principal-Agent Models 
	5 Optimal Outcomes in Principal-Agent Models 
	This section applies our characterization of implementable proﬁles and assignments to adverse-selection principal-agent models. Section 5.1 formulates the principal’s problem as choosing a measure λ on X × Y , as well as a rent function u and a tariﬀ v, subject to incentive and participation constraints. This formulation allows us to interpret triples (λ, u, v) satisfying the incentive constraints in the principal’s problem as pairwise stable outcomes in a balanced matching model. 
	Section 5.2 reformulates the principal’s problem as a nonlinear pricing problem in which the principal maximizes over a set of tariﬀs, and then uses this reformulation to establish that the principal’s problem has a solution. Moreover, it has a solution in which the measure λ chosen by the principal is deterministic and thus corresponds to the choice of an optimal assignment. Our duality results play a central role in this existence argument, with Corollaries 3.1 and 4.1 ensuring that we can model the princ
	tariﬀ, and Corollary 5 ensuring that the resulting feasible set is compact.
	20 

	In general, the agent’s participation constraint may fail to bind in a solution to the Section 5.3 shows that this cannot happen if every implementable proﬁle is strongly implementable or if the principal’s utility function exhibits private values. The ﬁrst result is consistent with our view of strong implementability as a useful generalization of quasilinearity, while the second makes essential use of the connections to the matching model. 
	principal’s problem.
	21 

	set (and the requisite continuity properties of the principal’s objective function) is the main diﬃculty in the existence proofs in Kahn (1993), Carlier (2001), and Carlier (2002), who consider special cases of the principal-agent model in which the agent’s utility function is quasilinear. Using the structure resulting from the imposition of a single crossing condition when X and Y are intervals, Jullien (2000) provides a straightforward existence argument which uses Helly’s selection theorem in lieu of com
	20
	Obtaining compactness of the feasible 

	Appendix C.1 provides an example. 
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	5.1 The Principal-Agent Model 
	5.1 The Principal-Agent Model 
	To obtain a principal-agent model, we add to our basic ingredients (X, Y, φ) a function π : X × Y × R → R describing the principal’s utility of receiving payment v from agent type x who takes decision y, a ﬁnite Borel measure µ on the set X describing the distribution of agent types, and a continuous proﬁle : X → R describing the agent’s reservation utilities. A principal-agent model is then a collection (X, Y, φ, µ, π, ). 
	u 
	u

	Assumption 3. The function π is continuous, strictly increasing in its third argument, and satisﬁes π(x, y, R)= R for all (x, y) ∈ X × Y . The type measure µ has full support. 
	Let M be the set of Borel measures on X × Y whose marginal distribution on the set X equals µ. We formulate the principal’s problem as choosing a triple (λ, u, v) consisting of a measure λ ∈ M, a utility proﬁle u ∈ B(X), and a tariﬀ v ∈ B(Y ) to maximize 
	ZZ 
	π(x, y, v(y))dλ(x, y) (29) 
	XY 
	subject to the feasibility constraints 
	v implements u 
	supp(λ) ⊆ Γu,v 
	u ≥ . 
	u

	If λ is a deterministic measure λy (cf. (28)), then the ﬁrst two constraints in this maximization problem are the standard incentive constraints, requiring that (i) u is the rent function that results when each agent type maximizes against the tariﬀ v and (ii) all agent types x are assigned to one of their optimal decisions y(x) ∈ Yv(x). Intuitively, for measures λ ∈ M that are not deterministic, the second of these conditions is weakened to allow the principal to randomize over the set of decisions that ar
	The principal’s expected utility in (29) is well-deﬁned for any feasible (λ, u, v): Because supp(λ) ⊆ Γu,v, we have v(y)= ψ(y, x, u(x)) for all (x, y) ∈ supp(λ), and hence 
	ZZ ZZ 
	π(x, y, v(y))dλ(x, y)= π(x, y, ψ(y, x, u(x)))dλ(x, y), (30) 
	XY XY 
	where the latter integral is well-deﬁned because π, ψ, and the implementable proﬁle u are continuous (the last of these by Proposition 2). A useful implication is that the principal’s payoﬀ can be written in terms of only the measure λ and rent function u, implying that any two feasible outcomes (λ, u, v) and (λ, u, v˜) give the same payoﬀ to the principal. 
	Remark 7 (Pairwise Stability and Feasibility in the Principal’s Problem). Consider a triple (λ, u, v) that satisﬁes the incentive constraints in the principal’s problem, that is, v implements u and supp(λ) ⊆ Γu,v. Deﬁne the measure ν on Y by setting ν(Y) = λY (Y) for all measurable Y⊂ Y and specify an arbitrary continuous reservation utility proﬁle . Then λ is a full match for the balanced matching problem (X, Y, φ, µ, ν, , ). Further it is immediate from Proposition 5 that (λ, u, v) is pairwise stable in t
	Remark 7 (Pairwise Stability and Feasibility in the Principal’s Problem). Consider a triple (λ, u, v) that satisﬁes the incentive constraints in the principal’s problem, that is, v implements u and supp(λ) ⊆ Γu,v. Deﬁne the measure ν on Y by setting ν(Y) = λY (Y) for all measurable Y⊂ Y and specify an arbitrary continuous reservation utility proﬁle . Then λ is a full match for the balanced matching problem (X, Y, φ, µ, ν, , ). Further it is immediate from Proposition 5 that (λ, u, v) is pairwise stable in t
	˜
	˜
	˜
	v
	u
	v
	u
	v

	in which µ has full support, then (λ, u, v) satisﬁes the incentive constraints in any principal-agent model (X, Y, φ, µ, π, ) in which π has the properties from Assumption 3. See Carlier (2003, Theorem 2) and, more recently, Dworczak and Zhang (2017) for related observations in the quasilinear case. 
	u



	5.2 Existence of a Solution to the Principal’s Problem 
	5.2 Existence of a Solution to the Principal’s Problem 
	To obtain our existence result, we begin by transforming the principal’s problem into a nonlinear pricing problem over the set of implementable tariﬀs v ∈ I(Y ). Towards this end, deﬁne the function F : I(Y ) × M → R by 
	ZZ 
	F (v,λ)= π(x, y, v(y))dλ(x, y) (31) 
	XY 
	and deﬁne the correspondence G : I(Y ) → M by 
	G(v)= {λ ∈ M : supp(λ) ⊆ ΓΦv,v}. (32) 
	Also, for v ∈ I(Y ) let Π(v) = max F (v,λ). (33) 
	λ∈G(v) 
	Observe that F (v,λ) is nothing but the objective function of the principal’s problem speciﬁed in (29). The heuristic interpretation of (33) therefore is that Π(v) speciﬁes the maximal payoﬀ the principal can obtain by probabilistically assigning agents to decision that are optimal for them when facing the implementable tariﬀ v (i.e., by choosing λ ∈ G(v)). Appendix A.14 shows that this problem has a solution for every implementable tariﬀ, so that the function Π : I(Y ) → R is well-deﬁned. Further, it shows
	Lemma 6. Let Assumptions 1 and 3 hold. The function Π: I(Y ) → R is upper semicon-
	∗
	tinuous. If v solves max Π(v), (34) 
	{v∈I(Y ):v≤Ψ} ∗
	u

	then there exists λ∈ G(v ) such that the triple (λ, Φv , v ) solves the principal’s problem. 
	∗ 
	∗
	∗ 
	∗

	The ﬁrst step in the proof of Lemma 6 uses Corollaries 3.1 and 4.1 to show that replacing an arbitrary tariﬀ v in a feasible triple (λ, u, v) with the implementable tariﬀ Ψu results in another feasible triple. Doing so leaves the principal’s expected payoﬀ unchanged (cf. (30)). This allows us to reduce the principal’s problem to the choice of an implementable tariﬀ v and an associated measure λ ∈ G(v), with the agent’s utility proﬁle given by the rent function u =Φv. The continuity of implementable proﬁles 
	u
	u

	∗
	∗

	then yields an optimal tariﬀ v that, together with the associated measure λand induced 
	∗ 

	∗
	∗

	rent function u =Φv , solves the principal’s problem. To show the existence of a solution to the principal’s problem it remains to show that the nonlinear pricing problem (34) in the statement of Lemma 6 has a solution. To do so, we 
	∗

	begin by observing that the feasible set of the nonlinear pricing problem is bounded above by Ψ. While there is no corresponding lower bound in the formulation of the nonlinear pricing problem, it is intuitive that a suitable lower bound can be imposed without impinging on the value of the principal’s maximization problem. We can thereby restrict the choice set in the nonlinear pricing problem to a closed and bounded set of tariﬀs. Moreover, and crucially, the maximization in (34) is over a set of implement
	u

	Proposition 9. Let Assumptions 1 and 3 hold. Then there exists a solution (λ, u, v) to the principal’s problem in which u and v implement each other and λ is deterministic. 

	5.3 Is the Participation Constraint Binding? 
	5.3 Is the Participation Constraint Binding? 
	As the principal must respect the agent’s participation constraint when choosing an optimal tariﬀ, we have u ≥ in any solution (λ, u, v) to the principal’s problem. Here we ask whether the agent’s participation constraint must be binding in the sense that there exists some x ∈ X satisfying u(x)= (x).
	u 
	u
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	If all implementable assignments y are strongly implementable, then the answer is straightforward from the lattice result in Lemma 4. Appendix A.16 shows: 
	Proposition 10. Let Assumptions 1 and 3 hold. If every implementable assignment y is strongly implementable, then the participation constraint is binding in any solution to the principal’s problem. 
	In the absence of strong implementability, the conclusion of Proposition 10 may fail. Appendix C.2 provides an example illustrating this. In this example it is optimal for the principal to implement an assignment that is not strongly implementable and to leave strictly positive rents to all agent types. 
	The example in Appendix C.2 features common values in the sense that the principal cares directly about which type of the agent obtains which decision. Our next result demonstrates that no such example can be constructed if the principal-agent model has private values, i.e., the principal’s payoﬀ function π does not depend on x and can thus be rewritten as πˆ: Y × R → R: 
	Proposition 11. Let Assumptions 1 and 3 hold and let the principal-agent model have private values. Then in any solution to the principal’s problem, the participation constraint is binding for some type of agent. 
	Appendix A.17 contains the proof. The key idea is that any (λ, u, v) which is feasible in the principal’s problem corresponds to a pairwise stable outcome satisfying the participation 
	impose Assumption 3 and, therefore, suppose that the principal’s utility is strictly increasing in the transfer received from the agent. As noted in Guesnerie and Laﬀont (1984), there is no reason to suppose that the participation constraint should be binding if this assumption fails. 
	22
	Throughout the following discussion we 

	constraint u ≥ in a suitably constructed balanced matching model (cf. Remark 7). We can then apply the result in Corollary 8 to obtain a minimum (in the set of buyer proﬁles) pairwise stable outcome, in which the participation constraint binds for some type of buyer. The principal can implement this outcome, which features the same induced distribution ν over decisions as the one that we started from. The private-values assumption ensures that this leads to a strictly higher payoﬀ for the principal than any
	u 



	6 Single Crossing 
	6 Single Crossing 
	For unidimensional principal-agent models in which the agent’s utility function is quasilinear, assuming the agent’s willingness to pay to be strictly supermodular leads to a sharp characterization of implementable assignments: an assignment is implementable (and therefore strongly implementable, Section 2.4) if and only if it is increasing (Rochet (1987), also see Vohra (2011, Theorem 4.2.5)). Similarly, for unidimensional matching models with perfectly transferable utility, assuming that the surplus funct
	-

	In this section we show that these results carry over to our setting with imperfectly transferable utility. The only change required is to replace the assumption of strict super-modularity with the assumption that the generating function satisﬁes a strict single crossing 
	condition.
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	Assumption 4. The sets X and Y are compact intervals in R. The generating function φ satisﬁes the strict single crossing condition: 
	φ(x1,y2,v2) ≥ φ(x1,y1,v1)=⇒ φ(x2,y2,v2) >φ(x2,y1,v1) (35) 
	for all x1 <x2 ∈ X, y1 <y2 ∈ Y , and v1,v2 ∈ R. 
	A quasilinear generating function φ(x, y, v)= f(x, y) − v satisﬁes the strict single crossing condition if and only if f(x, y
	) is strictly supermodular.
	24 

	We begin by considering matching models satisfying Assumption 4 and then show how the results obtained for this case can be leveraged into a corresponding result for implementable assignments. Our results generalize previous results for principal-agent models without quasilinear preferences by Guesnerie and Laﬀont (1984) and for matching models with imperfectly transferable utility by Legros and Newman (2007). The former impose a smoothness condition on the generating function and restrict attention to piec
	We could equivalently deﬁne strict single crossing in terms of the inverse generating function ψ. Under quasilinearity, the strict single crossing condition (35) becomes 
	23
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	f(x1,y2) − f(x1,y1) ≥ v2 − v1 =⇒ f(x2,y2) − f (x2,y1) >v2 − v1. 
	This is obviously implied by the strict supermodularity condition f(x2,y2) − f(x2,y1) >f(x1,y2) − f (x1,y1), while choosing v2 − v1 = f(x1,y2) − f(x1,y1) ensures that strict single crossing implies supermodularity. 
	6.1 Positive Assortative Matching 
	6.1 Positive Assortative Matching 
	We consider balanced matching models (X, Y, φ, µ, ν, , ) satisfying Assumptions 1 and 4. Given that X and Y are compact intervals in the reals it will be convenient to identify the measures µ, ν, and λ with their distribution functions, denoted by Fµ, Gν , and Hλ. Let λbe the unique full match satisfying 
	u
	v
	∗ 

	Hλ∗ (x, y) = min{Fµ(x),Gν (y)} for all (x, y) ∈ X × Y. (36) 
	Following Galichon (2016, Chapter 4) we refer to λas the positive assortative match. 
	∗ 

	When both Fµ and Gν are continuous and strictly increasing, the positive assortative match is obtained by matching each agent with his or her uniquely determined counterpart on the other side who has the same “rank” in the type distribution (as determined by the quantile functions F and G). Note that, in general, the positive assortative match need not be deterministic but will be so when µ is atomless (Galichon, 2016, Lemma 4.2). This provides us with the condition in the following proposition ensuring tha
	−1 
	−1

	Proposition 12. Let Assumptions 1 and 4 hold and the matching model (X, Y, φ, µ, ν, , ) be balanced. Then the positive assortative match λis the unique pairwise stable match for all initial conditions (x0,u0). Further, if µ is absolutely continuous with respect to Lebesgue measure, then λis deterministic. 
	u
	v
	∗ 
	∗ 

	Proof. Proposition 6 ensures that there exists a pairwise stable outcome (λ, u, v) with u 
	and v implementing each other and satisfying u(x0)= u0. 
	Suppose Γu,v is comonotonic, that is, for (x1,y1) and (x2,y2) ∈ Γu,v we have x2 > x1 =⇒ y2 ≥ y1 and y2 >y1 =⇒ x2 ≥ x1. Proposition 5.1 then implies that supp(λ) is comonotonic. From Theorem 3 in Dhaene, Denuit, Goovaerts, Kaas, and Vyncke (2002), λ then satisﬁes (36) and therefore is the positive assortative match λ. If µ is absolutely continuous with respect to Lebesgue measure, then Fµ is continuous and λis deterministic (Galichon, 2016, Lemma 4.2). 
	∗ 
	∗ 

	It remains to verify that the strict single crossing condition (35) in Assumption 4 implies that Γu,v is comonotonic. It suﬃces to show that there does not exist (x1,y1), (x2,y2) ∈ Γu,v satisfying x2 >x1 and y1 >y2. To show this, observe that (because v implements u) from Lemma 2 we have that (x1,y1), (x2,y2) ∈ Γu,v implies 
	φ(x1,y1, v(y1)) ≥ φ(x1,y2, v(y2)) φ(x2,y2, v(y2)) ≥ φ(x2,y1, v(y1)). 
	With x2 >x1 and y1 >y2, the ﬁrst of these inequalities and (35) imply φ(x2,y1, v(y1)) > φ(x2,y2, v(y2)), contradicting the second inequality. 
	Extending Proposition 12 to show that the unique pairwise stable match λis also the unique stable match requires the existence of a pairwise stable outcome (λ, u, v) satisfying the participation constraints u ≥ and v ≥ . This isn’t guaranteed. For an extreme counterexample, it may be that there is no pair of agents capable of generating individually rational payoﬀs (that is, (x) >φ(x, y, (y)) holds for all (x, y)), obviously implying that 
	∗ 
	∗ 
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	v
	u
	v

	in the unique stable outcome all agents are unmatched. Suppose, however, that for all (x, y) ∈ X × Y , we have (x) <φ(x, y, (y)) (37) 
	u
	v

	and consider a stable outcome (λ, u, v). If there were unmatched types in Y (that is, supp(ν − λY ) 6∅), then we could conclude from (22) that there exists ˆ
	= y ∈ supp(ν) such that v(yˆ) = (yˆ) holds. Using (25) and (37) this implies u(x) > (x) for all x ∈ supp(µ), which in turn implies (from (21)) that there exist no unmatched types in X (that is, supp(µ − λX )= ∅). As in a balanced match there are no matches featuring a strictly positive measure of unmatched agents on one side but not on the other, we may thus conclude that λ is a full match. As every stable outcome featuring a full match is also pairwise stable, Proposition 12 then implies: 
	v
	u

	Corollary 9. Let Assumptions 1 and 4 hold, let the matching model (X, Y, φ, µ, ν, , ) be balanced and let (37) hold. Then the positive assortative match λis the unique stable match. 
	u
	v
	∗ 

	Similar arguments, though with more tedious notation, show that if Assumptions 1 and 4 hold, then in any stable match, all matched agents are matched positive assortatively. 

	6.2 Increasing Assignments 
	6.2 Increasing Assignments 
	It is a familiar result that implementable assignments must be increasing if a strict single crossing condition holds (e.g., Fudenberg and Tirole, 1991, Theorem 7.2 ). Therefore, the main challenge in proving the following result is to show that every increasing assignment can be implemented with any initial condition. To obtain this, we build on Proposition 12 to show that for every increasing assignment the deterministic match associated with it can arise as the unique pairwise stable match in a suitably 
	Proposition 13. Let Assumptions 1 and 4 hold. Then an assignment y is implementable if and only if it is increasing. In addition, every implementable assignment is strongly implementable. 
	Proof. Suppose the assignment y is implementable. Then there exist u and v implementing each other such that (x, y(x)) ∈ Γu,v holds for all x ∈ X (Proposition 4.1). Because Γu,v is comonotonic (cf. the proof of Proposition 12), this implies that y is increasing. 
	Fix an increasing assignment y and an initial condition (x0,u0). We construct a balanced matching model (X, Y, φ, µ, ν, , ): Let µ be Lebesgue measure on the Borel sets of X, and let ν be the pushforward of µ through y (which is well-deﬁned because an increasing function y is measurable). The reservation utilities and will play no role, and so we can take ≡ 0 ≡ . 
	u
	v
	u 
	v 
	u 
	v

	Let λdenote the positive assortative match for the matching model (X, Y, φ, µ, ν, , ). From Proposition 12, λis deterministic. The construction of ν ensures λ= λy. Applying Proposition 12, we obtain that there exists (u, v) such that (λy, u, v) is a pairwise stable outcome with u(x0)= u0. From Proposition 6 we may take u and v to implement each other. 
	∗ 
	u
	v
	∗ 
	∗ 

	We complete the argument by showing that v implements (u, y). It suﬃces to show that for every x ∈ X,(x, y(x)) ∈ Γu,v (Proposition 4). From Proposition 5.1, we have supp(λy) ⊆ Γu,v. Fix a value x ∈ X. If y is continuous at x, then we immediately have 
	˜
	(x, y(x)) ∈ supp(λy) (since otherwise λy(X× Y ) = 0 for some neighborhood X of x,a contradiction). If y is not continuous at x, then the increasing function y must take an upward jump at x, and we have (x, y(x)) ∈ [limx˜%x y(x), limx˜&x y(x)] ⊆ Γu,v. The ﬁnal inclusion follows from the facts that for each y∈ [limx˜%x y(x), limx˜&x y(x)] there exists 
	˜
	0 

	0
	x∈ X such that (x,y) ∈ Γu,v (because, from Lemma 2, Γu,v coincides with the graph of 
	0 
	0

	the argmax-correspondence Yv, which is nonempty-valued) and that Γu,v is comonotonic (cf. the proof of Proposition 12), which implies x= x. 
	0 

	Recall from Section 2.4 that in the absence of quasilinearity an assignment may be imple
	-

	mentable without being strongly implementable. Proposition 13 shows that strict single 
	crossing precludes this possibility. It follows that strict single crossing is a suﬃcient condi
	-

	tion for the participation constraint to bind in any solution to the principal-agent model (Proposition 10). 
	Remark 8 (Single Crossing vs. Strict Single Crossing). Say that the generating function satisﬁes the single crossing condition if the ﬁnal inequality in (35) is weak. Under this weaker condition there may be (pairwise) stable matches that are diﬀerent from the positive assortative match λand non-increasing assignments may be implementable (as can be easily see by considering the trivial quasilinear example in which the generating function is given by φ(x, y, v)= −v). However, under otherwise identical assum
	∗ 
	∗ 
	∗
	∗ 



	7 Discussion 
	7 Discussion 
	We have introduced and studied a duality relationship that provides a characterization of implementable proﬁles and assignments suitable for adverse-selection principal-agent models and two-sided matching models. This has allowed us to extend results previously developed for the quasilinear case, and to clarify the logic behind these results. 
	Throughout our analysis we have eschewed smoothness assumptions, as these play no role for the duality structure and are not required for the existence and characterization results pursued here. However, much of the power of conjugate duality stems from the inherent smoothness properties of convex functions, and many of the more useful implications of generalized conjugate duality for the quasilinear case—ranging from the familiar integral representation of implementable utility proﬁles (e.g. Myerson, 1979)
	Throughout our analysis we have eschewed smoothness assumptions, as these play no role for the duality structure and are not required for the existence and characterization results pursued here. However, much of the power of conjugate duality stems from the inherent smoothness properties of convex functions, and many of the more useful implications of generalized conjugate duality for the quasilinear case—ranging from the familiar integral representation of implementable utility proﬁles (e.g. Myerson, 1979)
	1 opens the possibility to investigate questions that go beyond those addressed in this paper. For instance, McCann and Zhang (2017) use the implementation duality to show how the conditions from Figalli, Kim, and McCann (2011), under which the principal’s problem can be reduced to a convex maximization program, can be extended to the non-quasilinear case. 

	A number of extensions suggest themselves. First, much is known about the structure of the set of stable outcomes in matching models with a ﬁnite number of agents (Roth and Sotomayor, 1990, Chapter 9), including connectedness and comparative static properties, that one might want to extend to our setting. Second, Appendix D.1 extends the principal-agent model to allow exclusion. For much the same reasons that the participation constraint may not bind in a solution to the principal’s problem (Section 5.3 ), 
	in ﬁnance (such as Glosten, 1989) in which normally distributed types are considered.
	25 

	The implementation relationships studied here also appear in economic contexts diﬀerent from the ones we have considered, with possible applications ranging from the characterization of hedonic pricing equilibria (cf. Chiappori, McCann, and Nesheim, 2010, in the quasilinear case) to the development of new econometric techniques for discrete-choice random-utility models (Bonnet, Galichon, and Shum, 2017). Finally, while Galois connections have played little role in economic theory so far, their appearance in

	Appendix A: Proofs 
	Appendix A: Proofs 
	A.1 Proof of Lemma 1 
	A.1 Proof of Lemma 1 
	First, we prove the continuity of Ψ : B(X) → B(Y ). The argument for the continuity of Φ: B(Y ) → B(X) is analogous. Fix u ∈ B(X) and ε> 0. We have to establish that there exists δ> 0 such that 
	ku˜− uk <δ =⇒kΨu˜− Ψuk < ε. 
	Let (the following expressions are well-deﬁned because u is bounded) z¯= supu(x)+1, = infx∈X u(x) − 1, and Z =[, z¯] ⊂ R. For every δ ∈ (0, 1) and x ∈ X, we then have 
	x∈X 
	z 
	z

	ku˜− uk <δ =⇒ u˜(x) ∈ Z. 
	As ψ is continuous, it is uniformly continuous on the compact set X × Y × Z. Hence, there exists δ ∈ (0, 1) and ε∈ (0,ε) such that 
	0 

	ku˜− uk <δ =⇒| ψ(y, x, u˜(x)) − ψ(y, x, u(x)) |<ε
	0 

	In the quasilinear case Bardsley (2017) provides an illuminating duality-based analysis of principal-agent models that avoids compactness assumptions. 
	25

	for all x ∈ X and y ∈ Y . We also have 
	| ψ(y, x, u˜(x)) − ψ(y, x, u(x)) |<ε
	0 

	....
	sup 
	ψ(y, x, u˜(x)) − sup ψ(y, x, u(x)) 
	for all x ∈ X and y ∈ Y =⇒ ≤ ε< ε, 
	0 

	....
	sup 
	y∈Yx∈Xx∈X 
	which gives kΨu˜− Ψuk <ε, as desired. 
	Second, let V⊂ B(Y ) be bounded, ensuring the existence of a compact interval Z ⊂ R such that v(Y ) ⊂ Z holds for all v ∈V. We then have Φv(x) ∈ [minφ(x, y, v), maxφ(x, y, v)] for all x ∈ X and v ∈V, ensuring that ΦV⊂ B(X) is bounded. The argument for Ψ is analogous. 
	(x,y,v)∈X×Y ×Z 
	(x,y,v)∈X×Y ×Z 


	A.2 Proof of Corollary 1 and Completion of the Proof of Proposition 1 
	A.2 Proof of Corollary 1 and Completion of the Proof of Proposition 1 
	We ﬁrst use the deﬁning property of a Galois connection (10) to establish (11)–(13) in the statement of Corollary 1.In each case we prove one of the two statements; the other statement follows by an analogous argument. First, for any v ∈ B(Y ) we trivially have Φv ≥ Φv, so that setting u =Φv in (10) yields (11). Second, let v1 ≥ v2. By (11) we have v2 ≥ ΨΦv2 and thus v1 ≥ ΨΦv2. Applying (10) with v = v1 and u =Φv2 then gives the consequent of (12). Third, (11) gives v ≥ ΨΦv. Applying (12) with v1 = v and v2
	26 

	We next show that (10) implies that Φ and Ψ are dualities that are dual to each other. 
	To conﬁrm that Φ is a duality (with Ψ analogous), let be the inﬁmum of some set V⊂ B(Y ). Corollary 1.2 implies that Φthen is an upper bound of ΦV. Let be any upper bound of ΦV. By (10) we then have v ≥ Ψfor all v ∈V, implying ≥ Ψ. Applying (10) again, this yields ≥ Φ, showing that Φis the supremum of ΦV. To see that Φ and Ψ are dual, note that (10) implies {u|v ≥ Ψu} = {u|u ≥ Φv}, so that inf{u|v ≥ Ψu} = inf{u|u ≥ Φv} =Φv. An analogous argument establishes Ψu = inf{v|u ≥ Φv}. 
	v 
	v 
	u 
	u 
	v 
	u
	u 
	v
	v 

	Finally, we argue that dualities that are dual to one another constitute a Galois connection. The proof is straightforward (cf. Singer, 1997, p. 179): Let u ≥ Φv. Then Ψu ≤ ΨΦv ≤ inf{v˜|Φv˜≤ Φv}≤ v, where the ﬁrst inequality follows from the order-reversing property of the duality Ψ, the second inequality follows from the fact that Ψ and Φ are dual, and the ﬁnal inequality from the deﬁnition of the inﬁmum. This gives one of the implications of (10); the other is analogous. 

	A.3 Proof of Proposition 2 
	A.3 Proof of Proposition 2 
	It is immediate from the deﬁnitions that I(X) ⊆ ΦB(Y ). Hence, to establish the ﬁrst statement in (14) we need to show that the image Φv of any proﬁle v ∈ B(Y ) is implementable and continuous. The remaining statement in (14) follows by an analogous argument. 
	), the properties stated in (11)–(12) are in fact equivalent to (10) and are sometimes taken to be the deﬁnition of a Galois connection (e.g., Singer, 1997, Deﬁnition 5.3 and Remark 5.6). See also the original deﬁnition of a Galois connection in Ore (1944). 
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	As noted in Birkhoﬀ (1995, Section 5.8

	Given any proﬁle v ∈ B(Y ), let sv = supv(y) denote its supremum and iv = infy∈Y v(y) its inﬁmum. These are ﬁnite because v is bounded. Let Ev = {(y, v) ∈ Y × R |v ≥ v(y)} denote the epigraph of v, and let Zv = {(y, v) ∈ Y × R | sv ≥ v ≥ v(y)}. Observe that the set Zv ⊂ Ev is bounded, contains the graph of v and is contained in [iv,sv] × Y , which is a compact set (because Y is compact). 
	y∈Y 

	We now proceed in two steps. 
	Step 1: Consider v ∈ B(Y ) that is lower semicontinuous. Then its epigraph Ev is closed and so is Zv. As Zv is contained in the compact set [iv,sv] × Y it follows that Zv is compact. As the generating function φ is continuous, a solution to the problem 
	max φ(x, y, v) (A.1) 
	(y,v)∈Zv 
	thus exists for all x ∈ X by Weierstrass’ extreme value theorem. As φ is continuous and Zv is compact, it follows from Berge’s maximum theorem (Ok, 2007, p. 306) that the proﬁle u ∈ B(X) deﬁned by u(x) = maxφ(x, y, v) for all x ∈ X is continuous. 
	(y,v)∈Z
	v 

	As the graph of v is contained in Zv, and φ is strictly decreasing in its third argument, any solution to (A.1) lies on the graph of v, implying that for every x ∈ X, there exists y(x) ∈ Y such that 
	max φ(x, y, v)= φ(x, y(x), v(y(x))) 
	(y,v)∈Zv 
	holds. This ensures that the suprema in the deﬁnition of Φv are attained and that v implements Φv = u. 
	Step 2: It remains to consider the case in which v ∈ B(Y ) is not lower semicontinuous. Let v¯be the lower semicontinuous hull of v, i.e., the greatest element of the family of lower semicontinuous functions from Y to R majorized by v. (The existence of v¯is assured, cf. Penot (2013, Proposition 1.21).) As v is bounded, so is v¯, i.e., we have v¯∈ B(Y ). From the previous step, the proﬁle v¯implements Φv¯, which is continuous. It remains to show that Φv¯=Φv holds. Because the epigraph Ev¯of v¯is the closure
	sup φ(x, y, v) = max φ(x, y, v) 
	(y,v)∈Zv¯
	(y,v)∈Zv 
	and thus (because φ is decreasing in its third argument) we have supφ(x, y, v(y)) = maxy∈Y φ(x, y, v¯(y)) for all x ∈ X, which is the desired result. 
	y∈Y 


	A.4 Proof of Corollary 4 
	A.4 Proof of Corollary 4 
	We prove Corollary 4.1; 4.2 is analogous. 
	If (u, y) is implementable there exists v˜∈ B(Y ) implementing it, thus satisfying u =Φv˜, from which we obtain Ψu = ΨΦv˜. From the ﬁrst inequality in (11) in Corollary 1.1, we have v˜≥ ΨΦv˜and thus v˜≥ Ψu. Now suppose that Ψu does not implement y. Because Ψu implements u (Corollary 3.1) there exists (ˆx, yˆ) ∈ X × Y such that 
	u(ˆx)= φ(ˆy, Ψu(ˆx, y(ˆx))) ≥ φ(ˆx), ˜x))),
	x, ˆy)) >φ(ˆx), Ψu(y(ˆx, y(ˆv(y(ˆ
	where the last inequality uses v˜≥ Ψu and the assumption that φ is decreasing in its third argument. But because v˜implements (u, y) we also have 
	u(ˆx)= φ(ˆx, y(ˆx)), v˜(y(ˆx))), 
	resulting in a contradiction which ﬁnishes the proof. 

	A.5 Proof of Corollary 5. 
	A.5 Proof of Corollary 5. 
	We prove statements [5.1]–[5.3], with the proofs of the corresponding statements for I(Y ) being analogous. 
	∗
	)∞ ∗ 
	[5.1] Consider a sequence (unof proﬁles in I(X) converging to some u ∈ B(X). 
	n=1 

	We want to show that u is implementable. For all n ∈ N, let vn =Ψun. Because Ψ is 
	∗∗
	continuous (Lemma 1), the sequence (vn)converges to v =Ψu . Corollary 3.1 implies that vn implements un, so that we have un =Φvn for all n ∈ N. Taking limits on both 
	∞ 
	n=1 

	∗∗
	sides of this equation and using the continuity of Φ (Lemma 1), we obtain u =Φv . From Proposition 2 this establishes the implementability of u , and hence that I(X) is closed. Next, suppose that the sequence (un)is in Uy ⊂ I(X). With the same construction of the sequence (vnas above, Corollary 4.1 then implies that vn implements y for all n, so 
	∗
	∞ 
	n=1 
	n=1 

	)∞ that φ(x, y(x), vn(y(x)) ≥ φ(x, y, vn(y)) 
	∗
	)∞ its pointwise convergence to the same limit and φ is continuous, the above inequalities imply 
	)∞ its pointwise convergence to the same limit and φ is continuous, the above inequalities imply 
	holds for all x ∈ X, y ∈ Y and n ∈ N. As the (uniform) convergence of (vnto v implies 
	n=1 


	φ(x, y(x), v (y(x)) ≥ φ(x, y, v (y)) 
	∗ 
	∗ 

	∗∗
	for all x ∈ X and y ∈ Y . Therefore, v implements y. As v also implements u , this 
	∗

	∗
	establishes u ∈Uy. 
	[5.2] Let U⊂ I(X) be bounded. Fix ε> 0. To show equicontinuity of U, we establish that there exists δ> 0 such that 
	kxˆ− xk <δ =⇒ku(ˆx) − u(x)k <ε (A.2) 
	for all ˆx, x ∈ X and u ∈U. 
	Because U is bounded, so is V =ΨU (Lemma 1). We may then choose <v¯∈ R such that v ∈V implies ≤ v(y) ≤ v¯for all y ∈ Y . Because φ is continuous, it is uniformly continuous on the compact set X × Y × [, v¯]. Consequently, there exists δ> 0 such that 
	v
	v 
	v

	kxˆ− xk <δ =⇒kφ(ˆx, y, v) − φ(x, y, v)k <ε (A.3) 
	for all (y, v) ∈ Y × [, v¯]. Fix such a δ and let kxˆ− xk <δ hold. Consider any u ∈U. From Corollary 3, the proﬁle v =Ψu ∈V implements u. Let y˜∈ Yv(x) and ˆy ∈ Yv(ˆx). We then have 
	v

	u(x)=φ(x, ˜y)) ≥ φ(x, ˆy)),
	y, v(˜y, v(ˆu(ˆx)=φ(ˆy, v(ˆx, ˜y)),
	x, ˆy)) ≥ φ(ˆy, v(˜
	implying 
	ε>φ(ˆx, ˆy)) − φ(x, ˆy)) ≥ u(ˆx, ˜y)) − φ(x, ˜y)) > −ε,
	y, v(ˆy, v(ˆx) − u(x) ≥ φ(ˆy, v(˜y, v(˜
	where the outer inequalities are from (A.3) and the fact that ≤ v(y) ≤ v¯holds for all y ∈ Y . Consequently, we have ku(ˆx) − u(x)k <ε, thus establishing (A.2). 
	v 

	[5.3] This follows from Corollary 5.2 and an application of the Arzela-Ascoli theorem (Ok, 2007, p. 264). 

	A.6 Proof of Lemma 3 
	A.6 Proof of Lemma 3 
	We prove the ﬁrst statement in the lemma; the second is analogous. Fix an implementable y ∈ Y and consider u1, u2 ∈Uy. Let v1 implement (u1, y) and 
	X 

	v2 implement (u2, y). For any x ∈ X, we then have 
	v2 implement (u2, y). For any x ∈ X, we then have 
	v2 implement (u2, y). For any x ∈ X, we then have 

	u1(x) = φ(x, y(x), v1(y(x))) 
	u1(x) = φ(x, y(x), v1(y(x))) 
	(A.4) 

	u2(x) = φ(x, y(x), v2(y(x))). 
	u2(x) = φ(x, y(x), v2(y(x))). 
	(A.5) 

	From (A.4) and (A.5) it is immediate that 
	From (A.4) and (A.5) it is immediate that 

	u1(x) ∨ u2(x) = φ(x, y(x), v1(y(x)) ∧ v2(y(x))) 
	u1(x) ∨ u2(x) = φ(x, y(x), v1(y(x)) ∧ v2(y(x))) 
	(A.6) 


	holds for all x ∈ X. Combined with the equality Φ(v1 ∧ v2)= u1 ∨ u2 (cf. the ﬁrst paragraph of Section 3.4.2), (A.6) shows that v1 ∧ v2 implements (u1 ∨ u2, y). Hence, u1 ∨ u2 ∈Uy. From (A.4) and (A.5) it is also immediate that 
	u1(x) ∧ u2(x)= φ(x, y(x), v1(y(x)) ∨ v2(y(x))) (A.7) 
	holds for all x ∈ X. From the implementation condition (4) we further have φ(x, y, v1(y)) ≤ u1(x) and φ(x, y, v2(y)) ≤ u2(x) for all (x, y) ∈ X ×Y , so that u1(x)∧u2(x) ≥ φ(x, y, v1(y)∨ v2(y)) holds for all x and y. Combined with (A.7), this shows that v1 ∨ v2 implements (u1 ∧ u2, y). Hence, u1 ∧ u2 ∈Uy. 

	A.7 Proof of Lemma 4 
	A.7 Proof of Lemma 4 
	We prove Lemma 4.1; the proof for Lemma 4.2 is analogous. Let U ⊂ I(X) be a closed sublattice of B(X) for which 
	Ux = {u ∈ U|u(x)= (x)}. 
	u

	is nonempty for all x ∈ X. For the current proof, the important observation is that if y ∈ Y is strongly implementable, then one such set is Uy, which is a subset of I(X) (by deﬁnition), closed (Corollary 5.1), and, by Lemma 3, a sublattice of B(X), with the strong implementability of y ensuring that {u ∈Uy|u(x)= (x)} is nonempty for all x ∈ X. 
	X 
	u

	Let 
	S = {u ∈ U | u ≥ }. 
	u

	We proceed in two steps. The ﬁrst step establishes that there exists uˆ∈ S satisfying uˆ(x)= (x) for some x ∈ X. The second step then completes the argument by showing that S has a minimum element. 
	u

	Step 1: Pick an arbitrary x0 ∈ X and u0 ∈ Ux. We construct a sequence (xnin X and
	0 
	n=1 

	)∞ an associated sequence (unof proﬁles in U, satisfying un ∈ Uxfor all n, by the following 
	n=1 
	n 

	)∞ recursion: Given (xn−1, un−1) with un−1 ∈ Ux, let xn ∈ arg minx∈X [un−1(x) − (x)]. Because both un−1 (as an implementable proﬁle, Proposition 2) and (by assumption) are continuous and X is compact, such an xn exists. Pick any uˆn ∈ Ux. Deﬁne un = un−1 ∨ uˆn. Because U is a sublattice, we then have un ∈ U. Because un−1 ∈ Uximplies minx∈X [un−1(x) − (x)] ≤ 0, we further have un(xn)= (xn), implying un ∈ Ux. The sequence (unTherefore,
	n−1 
	u
	u 
	n 
	n−1 
	u
	u
	n 
	n=1 
	is increasing by construction. It is also bounded above.
	27 

	)∞ it is bounded and thus equicontinuous (Corollary 5.2). Hence, (un, which is a sequence 
	n=1

	)∞ in the closed set U, has a limit point uˆ∈ U. Because uˆ∈ U ⊂ I(X) is implementable, it is continuous (Proposition 2). Because X is compact, the sequence (xnhas a converging subsequence, denoted 
	n=1 

	)∞ ∗
	by xn, with limit x ∈ X. As(un)is a sequence of continuous functions converging 
	k 
	∞ 

	n=1 
	uniformly to the continuous function ˆu we have 
	uniformly to the continuous function ˆu we have 
	uniformly to the continuous function ˆu we have 

	∗ )lim unk (xnk ) = ˆu(x k→∞ 
	∗ )lim unk (xnk ) = ˆu(x k→∞ 
	(A.8) 

	lim ∗ ).unk−1 (xnk ) = ˆu(x k→∞ 
	lim ∗ ).unk−1 (xnk ) = ˆu(x k→∞ 
	(A.9) 

	As un(xn) = u(xn) holds for all n and u is continuous, (A.8) implies 
	As un(xn) = u(xn) holds for all n and u is continuous, (A.8) implies 

	ˆu(x ∗ ) = u(x ∗ ). 
	ˆu(x ∗ ) = u(x ∗ ). 
	(A.10) 

	By construction of the sequence (xn)∞ n=1 we have 
	By construction of the sequence (xn)∞ n=1 we have 

	un−1(x) − u(x) ≥ un−1(xn) − u(xn) 
	un−1(x) − u(x) ≥ un−1(xn) − u(xn) 

	for all x ∈ X and n ≥ 1. Taking limits for the sequence nk we thus obtain 
	for all x ∈ X and n ≥ 1. Taking limits for the sequence nk we thus obtain 

	ˆu(x) − u(x) ≥ ˆ∗ )u(x ∗ ) − u(x 
	ˆu(x) − u(x) ≥ ˆ∗ )u(x ∗ ) − u(x 


	eˆ
	(

	for all x ∈ X, where we have used the continuity of and (A.9) to obtain the right side of the inequality. Taking account of (A.10) this implies uˆ(x) ≥ (x) (A.11) for all x ∈ X. Combining (A.10) and (A.11), we have established the desired result. 
	u 
	u

	Step 2: As S contains uˆsatisfying uˆ(x)= (x) for some x ∈ X, it is immediate that a 
	u

	∗
	∗

	minimum element u of S must satisfy u (x)= (x) for the same x ∈ X. It remains to show that such a minimum element exists. 
	∗
	u

	By continuity of ψ and of the proﬁle , the proﬁle v ∈ B(Y ) given by v(y) = minx∈X ψ(y, x, (x)) 
	27
	u
	u

	for all y ∈ Y 
	is well-deﬁned. 
	is well-deﬁned. 
	is well-deﬁned. 
	For any proﬁle v ∈ B(Y ) satisfying v(yˆ) < v 

	y) for some yˆ∈ Y , we have 

	e 
	φ(x, y, ˆv(yˆ)) > (x) for all x ∈ X by construction. For such v, u 
	u

	e
	Φv thus satisﬁes u(x) > u(x) for all x ∈ X, implying that u is not in ∪x∈X Ux. By the order reversal property of the implementation map Φ it follows that =Φv is an upper bound for ∪x∈X Ux and therefore an upper bound for (un)
	u 
	∞ 

	n=1. 
	= 
	e 
	Given any 
	u¯∈ S, let S¯
	u 
	= {u ∈ U}| u¯≥ u ≥ }. nonempty. Further, it is bounded. As the intersection of two closed sets, the set S¯
	u

	u
	contains 
	u¯and hence is 
	is closed 
	The set S¯a closed and bounded subset of I(X), it is compact (Corollary 5.3) and thus a complete 
	u
	being 
	sublattice of B(X).
	sublattice of B(X).
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	, which clearly 
	∗


	The complete sublattice S¯is also the minimum element of S. 

	A.8 Proof of Proposition 5.3 
	A.8 Proof of Proposition 5.3 
	Let (λ, u, v) be a pairwise stable outcome for the balanced matching model (X, Y, φ, µ, ν, , ). Let X⊆ X and Y⊆ Y be the supports of µ and ν. Noticing that supp(λ) ⊆X ×Y holds, every pair of proﬁles u˜and v˜that satisfy u˜= u on X and v˜= v on Y satisfy (20) and (25), implying that for any such pair (λ, u˜, v˜) is a pairwise stable outcome. It thus suﬃces to construct a pair of proﬁles satisfying u˜= u on X and v˜= v on Y that implement each 
	u
	v

	other. 
	u
	Because λ is a full match, for every x ∈X there exists y ∈Y with (x, y) ∈ supp(λ). (Otherwise we would have λX (X) = 0 for some neighborhood Xof x, a contradiction.) By 
	˜
	˜

	(20) and (25) this implies that the restriction of the proﬁle v to Y implements the restriction of the proﬁle u to X , that is, 
	u(x) = max φ(x, y, v(y)), ∀x ∈X . 
	y∈Y 
	Similarly, for every y ∈Y there must exist x ∈X with (x, y) ∈ supp(λ), so that (20) and 
	(25) imply that restriction of u to X implements the restriction of v to Y: 
	v(y) = max ψ(y, x, u(x)), ∀y ∈Y. 
	x∈X 
	Now deﬁne the proﬁle u˜∈ B(X) by 
	u˜(x) = max φ(x, y, v(y)). 
	y∈Y 
	This proﬁle satisﬁes u˜= u on X (because the restriction of v to Y implements the restriction of u to X ). Further, it is implementable. Indeed, because v is bounded, any proﬁle vˆ∈ B(Y ) of the form 
	(
	v(y) if y ∈Y 
	v(y) if y ∈Y 
	v(y) if y ∈Y 
	vˆ(y)= 

	v˘otherwise 

	with suﬃciently large v˘implements u˜. Now, let v˜=Ψ u˜. As u˜is implementable, we then have that u˜and v˜implement each other (Corollary 3.1). It remains to show that v˜= v holds on Y. This follows upon noting that (i) u˜= u on X implies v˜≥ v on Y (because the restriction of u to X implements the restriction of v to Y) and (ii) we have v˜= ΨΦvˆ, 
	The set Su¯is compact in the norm topology. A lattice is complete if and only if it is compact in the interval topology (Birkhoﬀ, 1995, p. 250, Theorem 20). Compactness in the norm topology implies compactness in the interval topology, as any set open under the latter is also open under the former. 
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	has a minimum element u 
	andasanintersectionoftwosublatticesof 
	B
	(
	X
	),itisasublattice.Withtheset 
	S
	¯
	u

	which implies (from Corollary 1.1) vˆ≥ v˜and therefore, because vˆ= v on Y, also implies the inequality v ≥ v˜on Y. 

	A.9 Proof of Lemma 5 
	A.9 Proof of Lemma 5 
	Suppose λ is a deterministic match satisfying λ = λy for an implementable y. From Proposition 4.1, the implementability of y implies that there exists u and v implementing each other such that the graph of y is contained in Γu,v. As the argmax correspondence Yv is upper hemicontinuous (Corollary 2), its graph is closed. Hence, Γu,v, which coincides with the graph of Yv (Lemma 2), also contains the closure of the graph of y. Moreover, the closure of the graph of y contains the support of λy (otherwise, there
	Conversely, suppose the deterministic match λ is pairwise stable. From Proposition 
	5.3 the pairwise stability of λ implies that there exist (u, v) implementing each other such that supp(λ) ⊆ Γu,v. By Proposition 4.1 it remains to show that there exists a measurable assignment y with graph contained in Γu,v satisfying λy = λ. By deﬁnition of a deterministic match, there exists a measurable assignment ysuch that λ = λy0 holds. If the graph of 
	0 

	0
	yis contained in the support of λ, then we are done upon setting y = y. It remains to consider the case that the graph of yis not contained in the support of λ. We construct the assignment y. Let X denote the support of µ. First, we note that λy0 does not depend on the speciﬁcation of youtside the support of µ. In addition, we can 
	0 
	0 
	0 

	29
	deﬁne the assignment y on X \X so that (x, y(x)) ∈ Γu,v holds for all x ∈ X \X . Now let ˜˜
	X = {x ∈X | (x, y(x)) 6∈ supp(λ)}. The set X is negligible (that is, contained in a subset of X with measure zero) by deﬁnition of λy0 . Hence, we can complete the speciﬁcation of y by taking y to equal a measurable selection from Yv (cf. footnote 29) (and hence (x, y(x)) ∈ Γu,v) on a subset of X that contains Xand has measure zero, and taking y to equal y(and hence (x, y(x)) ∈ supp(λ) ⊆ Γu,v) on the remainder of X. This construction ensures that the graph of y is contained in Γu,v. It follows immediately f
	0
	˜
	0 
	˜


	A.10 Proof of Proposition 6 
	A.10 Proof of Proposition 6 
	Let (X, Y, φ, µ, ν, , ) be a balanced matching problem satisfying Assumption 1. Since this matching model is balanced, nothing is lost (and some convenience is gained) by taking µ and ν to be probability measures, which we hereafter maintain. 
	u
	v

	Let (x1,...,xn) ∈ Xand (y1,...,yn) ∈ Y satisfy y1 = y0, where y0 ∈ Y is the agent appearing as part of the initial condition (y0,v0) in the statement of the Proposition. Deﬁne 
	n 
	n 

	f, the correspondence Yv has a closed graph, ensuring that it is weakly measurable (Aliprantis and Border, 2006, Theorem 18.20 and Lemma 18.2), and hence has a measurable selection (Aliprantis and Border, 2006, Theorem 18.13) y˜. Take y to equal y˜on X \X . 
	29
	As we have noted earlier in this proo

	a measure µn on X by 
	n
	n 
	k=1 
	˜
	for measurable X ⊆ X and deﬁne the measure νn on Y similarly by 
	n
	XX 
	(X)= 
	˜
	1 

	(X),
	˜

	δxk 
	(A.12)
	µn
	(Y)= 
	˜
	1 

	δyk 
	(Y)
	˜

	νn
	(A.13) 
	n 
	k=1 
	for all measurable Y⊆ Y . 
	˜

	Lemma 7. Let Assumption 1 hold. The matching model (X, Y, φ, µn,νn, , ) has a pairwise stable outcome (λn, un, vn) with proﬁles un and vn that implement each other and that satisfy vn(y0)= v0. 
	u
	v

	Proof of Lemma 7 We ﬁrst construct an auxiliary balanced ﬁnite-support matching model (X, Y, φ, n · µn,n · νn, u, v) satisfying Assumption 1 by (i) multiplying the measures µn 
	)=
	(
	x
	u
	, 
	e 

	u
	by n (so as to convert them into counting measures) and (ii) replacing the reservation utility proﬁles and by reservation utility proﬁles 
	u 
	v 

	ee
	and νn 
	∀x ∈ X 
	and 
	v(y)=
	e
	(
	v0 if y = y0 
	otherwise, 
	u 

	where is suﬃciently small as to ensure φ(x, y, ) >φ(x, y0,v0) >for all x ∈ X and y ∈ Y . Consider the matching model with a ﬁnite number of agents associated with (X, Y, φ, n · µn,n·νn, u, v) (cf. Appendix B.5). By construction of u and v, the inequalities φ(xi,yj ,) > 
	u 
	u
	u 
	u

	e
	e
	ee
	φ(xi,y0,v0) >u hold for all i, j ∈{1,...,n}. Because there are an equal number of buyers and sellers, these inequalities ensure that there are no unmatched agents in a stable outcome and similarly preclude the possibility that any seller with yk 6
	= y0 obtains her reservation utility in a stable outcome. Hence, it follows from Lemma 3 in Demange and Gale (1985) that this matching model with a ﬁnite number of agents has a stable outcome in which all buyers and sellers are matched and sellers with yk = y0 obtain their reservation utility. This implies (cf. Appendix B.5) that the ﬁnite-support matching model (X, Y, φ, n·µn,n · νn, u, v) 
	has a fully matched stable outcome (λn, un, vn
	ˆ

	ee 
	) satisfying the initial condition v(y0)= v0. 
	As any fully matched stable outcome is also pairwise stable and the pairwise stability conditions do not depend on the reservation utility proﬁles, the outcome (λn, un, vn) is also pairwise stable for the ﬁnite-support matching model (X, Y, φ, n · µn,n · νn, , ). Letting 
	ˆ
	u
	v

	ˆ
	λn = λn/n, it is obvious that (λn, un, vn) is a pairwise stable outcome for the matching model (X, Y, φ, µn,νn, , ). Finally, from Proposition 5.3 we may assume that un and vn implement each other, giving a pairwise stable outcome (λn, un, vn) satisfying all the conditions from the statement of the lemma. 
	u
	v

	Let (xn)and (yn)be sequences in X and Y with y1 = y0 and such that the probability 
	∞ 
	∞ 
	n=1 

	n1 measures µn and νn deﬁned in () converge weakly to µ, respectively ν. The existence of such sequences is assured: for example, if all but x1 and y1 are obtained by taking sequences of independent random draws from the probability measures µ and ν, then with probability one we obtain sequences of measures µn and νn that converge weakly (as n →∞) to the measures µ and ν (Villani, 2009, p. 64). For each n, the matching model (X, Y, φ, µn,νn, , ) has a pairwise stable outcome (λn, un, vn) satisfying the prop
	A.12)–(A.13
	u
	v
	∞ 

	n=1 
	following lemma establishes that this sequence has a limit point, which is the pairwise stable outcome we seek. 
	)∞
	Lemma 8. Let Assumption 1 hold. The sequence (λn, un, vnhas a subsequence converg
	n=1 
	-

	ing (weakly in the case of the measures λn, and in norm for the proﬁles) to a pairwise stable 
	∗ 
	outcome (λ, u , v ) of the matching model (X, Y, φ, µ, ν, , ) that satisﬁes v (y0)= v0. 
	∗ 
	∗
	u
	v
	∗

	Proof of Lemma 8 Because each of the probability measures λn is deﬁned on the compact (and hence separable) metric space X × Y , the collection {λn}is tight, and Prokhorov’s theorem (Shiryaev, 1996, p. 318) ensures that there is a subsequence of (λn)converging weakly to a probability measure λon X × Y . Further, as each λn is a full match, so is λ, that is, conditions (26)–(27) are preserved in the limit (Villani, 2009, p.64). For convenience of notation, we assume that the sequence (λnitself converges to λ
	∞ 
	n=1 
	∞ 
	n=1 
	∗ 
	∗ 
	n=1 
	∗ 

	)∞ We show below that the sequences (unand (vnare bounded. 
	n=1 
	n=1 

	)∞ )∞ Because {un}and {vn}are sets of implementable proﬁles, Corollary 5.2 then 
	∞ 
	∞ 

	n=1 n=1 
	ensures that both of these sets are equicontinuous and the Ascoli theorem (Kelley, 1955, 
	p. 233) ensures that they have compact closures, and hence (un, vn)has a subsequence (which, for notational convenience, we take to be the sequence itself) converging to some 
	∞ 
	n=1 

	∗
	limit (u , v ). As the sets of implementable proﬁles are closed (Corollary 5.1) it follows that 
	∗

	∗∗ 
	u and v are implementable. Further, the arguments in the proof of Corollary 5.1 show 
	∗
	that (u , v ) implement each other. As vn(y0)= v0 holds for all n, we obtain v (y0)= v0. In light of Proposition 5 the desired result then follows provided that supp(λ) ⊆ Γu ∗ ,v ∗ holds, that is, we need to establish 
	∗
	∗
	∗

	u (x)= φ(x, y, v (y)) 
	∗ 
	∗ 

	)∞ for every (x, y) in the support of λ, there is a sequence (xn,yn), with each (xn,yn) in the support of λn, converging to (x, y). For each n and each (xn,yn) ∈ supp(λn), we have 
	)∞ for every (x, y) in the support of λ, there is a sequence (xn,yn), with each (xn,yn) in the support of λn, converging to (x, y). For each n and each (xn,yn) ∈ supp(λn), we have 
	∗
	∞ 
	n=1

	for all (x, y) ∈ supp(λ). The weak convergence of the sequence (λnto λensures that 
	∗
	n=1 
	∗ 


	un(xn)= φ(xn,yn, vn(yn)). 
	)∞ )∞ ∗ 
	)∞ )∞ ∗ 

	The convergence of the equicontinuous sequences (unand (vnof continuous proﬁles 
	n=1 
	n=1 

	to the continuous proﬁles (u , v ) then gives the result. It remains to establish boundedness of the sequences (un)and (vn)To do so, 
	∗
	∞ 
	∞ 

	n=1 n=1we ﬁrst recall that in the pairwise stable outcome (λn, un, vn) of the nth matching model, the proﬁles un and vn implement each other and (because y1 = y0) satisfy vn(y1)= v0. Hence, for each x and n, we have un(x) ≥ φ(x, y1,v0), providing a lower bound for (un)
	. 
	∞ 

	n=1
	. 

	Similarly, we note that some buyer x is matched with seller y1. The ability of any seller to match with buyer x puts a lower bound on vn. We cannot be sure which buyer is involved in such a match, but we know that the buyer in question receives utility φ(x, y1,v0), and so we have 
	vn(y) ≥ min ψ(y, x, φ(x, y1,v0)), 
	x∈X 
	providing a lower bound for (vn)By the order reversal property of the implementation 
	∞ 

	n=1maps (Corollary 1.2) the lower bound on (un)provides an upper bound on (vn)and the lower bound on (vn)provides an upper bound on (un)Hence, the sequences 
	. 
	n
	∞ 
	=1 
	n
	∞ 
	=1 
	∞ 
	∞ 

	n=1 n=1(unand (vnare bounded, ﬁnishing the proof. 
	. 
	n=1 
	n=1 

	)∞ )∞ 
	This completes the proof of Proposition 6. 

	A.11 Proof of Corollary 6 
	A.11 Proof of Corollary 6 
	Fix a matching model (X, Y, φ, µ, ν, , ) satisfying Assumption 1. We construct an augmented matching model (X0,Y0,φ0,µ0,ν0, , ) as follows. 
	u
	v
	-
	u
	0
	v
	0

	First, we augment the type spaces X and Y by adding dummy types x0 and y0, where x0 and y0 are elements of the metric spaces containing X and Y but are not contained in X or Y . We let X0 = X ∪{x0} and Y0 = Y ∪{y0}. 
	Second, the reservation utility proﬁles uand duplicate on X and on Y , with (x0)= (y0) = 0. Third, we let the generating function φ0 equal φ on X × Y × R, and then extend φ0 to X0 × Y0 × R by deﬁning 
	0 
	v
	0 
	u 
	v 
	u
	v

	φ0(x, y0,v)= (x) − v 
	u

	φ0(x0, y, v)= (y) − v 
	v

	φ0(x0,y0,v)= − v. 
	We let ψ0 denote the inverse generating function associated with φ0. Note that ψ0 satisﬁes ψ0(y, x0,u)= (y) − u, indicating that any type of seller y receives her reservation utility (y) when matching with a buyer x0 who receives her reservation utility (x0) = 0, thus mirroring the utility obtained by a buyer of any type x who matches with y0. 
	v
	v
	u
	0

	Fourth, we let the measure µ0 duplicate µ on the set X, and attach mass ν(Y )+1 to the isolated point x0. Similarly, the measure ν0 duplicates ν on the set Y , and attaches mass µ(X) + 1 to the isolated point y0. Note that µ0(X0)= ν0(Y0)=1+ µ(X)+ ν(Y ) holds, and so the matching model (X0,Y0,φ0,µ0,ν0, , ) is balanced. 
	u
	0
	v
	0

	The augmented matching model (X0,Y0,φ0,µ0,ν0, , ) features continuous reservation utility proﬁles and satisﬁes Assumption 1: the sets X0 and Y0 are compact because X and Y are so, and the generating function φ0 satisﬁes the full range condition and is continuous because the proﬁles and used in the construction of the extension of φ are (by assumption) continuous. 
	u
	0
	v
	0
	u 
	v 

	With any full match λ0 for (X0,Y0,φ0,µ0,ν0, , ) we associate the match λ for (X, Y, φ, µ, ν, , ) obtained by restricting λ0 to X × Y . Vice versa, we can extend any match λ for (X, Y, φ, µ, ν, , ) to a full match λ0 for (X0,Y0,φ0,µ0,ν0, , ) by assigning the masses of unmatched agents to the dummy agents and matching the remaining masses of the 
	With any full match λ0 for (X0,Y0,φ0,µ0,ν0, , ) we associate the match λ for (X, Y, φ, µ, ν, , ) obtained by restricting λ0 to X × Y . Vice versa, we can extend any match λ for (X, Y, φ, µ, ν, , ) to a full match λ0 for (X0,Y0,φ0,µ0,ν0, , ) by assigning the masses of unmatched agents to the dummy agents and matching the remaining masses of the 
	u
	0
	v
	0
	u
	v
	u
	v
	u
	0
	v
	0

	dummy agents with each other. That is, we associate with λ the uniquely deﬁned measure λ0 satisfying 

	λ0(X×{y0})= µ(X) − λX (X) λ0({x0}× Y) = ν(Y) − λY (Y) 
	˜
	˜
	˜
	˜
	˜
	˜

	for all measurable X⊆ X and Y⊆ Y , and 
	˜
	˜

	λ0({x0}×{y0})=1+ λ(X × Y ). 
	We say that a full outcome (λ, u0, v0) for (X0,Y0,φ0,µ0,ν0, , ) and an outcome (λ, u, v) for (X, Y, φ, µ, ν, , ) are associated if (i) λ0 and λ are associated, (ii) u is the restriction of u0 to X, and (iii) v is the restriction of v0 to Y . 
	u
	0
	v
	0
	u
	v

	Because the augmented matching model (X0,Y0,φ0,µ0,ν0, , ) is balanced, we can invoke Proposition 6 to conclude that it has a pairwise stable outcome (λ0, u0, v0) satisfying u0(x0) = 0. The proof is then completed by the “if” direction of the following lemma. (The “only-if” direction of the lemma will be required in the proof of the subsequent Proposition 8.) 
	u
	0
	v
	0

	Lemma 9. Let the matching model (X, Y, φ, µ, ν, , ) satisfy Assumption 1. Then (λ, u, v) is a stable outcome of (X, Y, φ, µ, ν, , ) if and only if it is associated with a pairwise stable outcome (λ0, u0, v0), satisfying u(x0)=0, of the augmented matching model (X0,Y0,φ0,µ0,ν0, , ). 
	u
	v
	u
	v
	u
	0
	v
	0

	Proof of Lemma 9. Suppose the outcome (λ0, u0, v0) is a pairwise stable outcome of the augmented matching model (X0,Y0,φ0,µ0,ν0, , ) with u(x0) = 0 and let (λ, u, v) be the associated outcome of (X, Y, φ, µ, ν, , ). The measures µ0 and ν0 have been constructed so that λ0(x0,y0)=1+ λ0(X × Y ) > 0 holds for the full match λ0 in the augmented matching model. Together with the equality u(x0) = 0, the feasibility condition (20) for types (x0,y0) in the augmented matching model then implies v0(y0) = 0. For any ty
	u
	0
	v
	0
	u
	v
	u
	v

	(24) in the associated outcome (λ, u, y) for the matching model hold. Next, the incentive constraints (25) in the augmented matching model, 
	Table
	TR
	u0(x) ≥ φ0(x, y, v(y)) 
	∀(x, y) ∈ supp(ν0) × supp(µ0), 

	imply 
	imply 

	TR
	u(x) ≥ φ(x, y, v(y)) 
	∀(x, y) ∈ supp(ν) × supp(µ), 


	which are the incentive constraints in the matching model. It remains to check the feasibility conditions (20)–(22) to infer that (λ, u, v) is a stable outcome of (X, Y, φ, µ, ν, , ). As λ and λ0 coincide on X × Y , the feasibility conditions for the augmented matching model immediately imply u(x)= φ(x, y, v(y)) for all (x, y) in the support of λ, which is (20). We then need only show that buyers x in the support of µ − λX and sellers y in the support of µ − λY receive their reservation utilities. For such 
	which are the incentive constraints in the matching model. It remains to check the feasibility conditions (20)–(22) to infer that (λ, u, v) is a stable outcome of (X, Y, φ, µ, ν, , ). As λ and λ0 coincide on X × Y , the feasibility conditions for the augmented matching model immediately imply u(x)= φ(x, y, v(y)) for all (x, y) in the support of λ, which is (20). We then need only show that buyers x in the support of µ − λX and sellers y in the support of µ − λY receive their reservation utilities. For such 
	u
	v

	in the support of λ0, so that (recalling the equalities u0(x0)= v0(y0) = 0 and the deﬁnition 

	of φ0), the feasibility condition 
	u0(x)= φ(x, y, v0(y)), ∀(x, y) ∈ supp(λ0) 
	for the augmented matching model imply u(x)= (x) and v(y)= (y), which is the desired 
	u
	v

	result. 
	Conversely, suppose the outcome (λ, u, v) is a stable outcome of the matching model (X, Y, φ, µ, ν, , ). Let the proﬁles u0 ∈ B(X0) and v0 ∈ B(Y0) agree with u and v on X and Y and satisfy u0(x0)=0 and v0(x0) = 0. Let λ0 be the augmented match associated with λ. It suﬃces to show that (λ0, u0, v0) is a pairwise stable outcome of the matching model (X0,Y0,φ0,µ0,ν0, , ). The equalities u0(x0)=0 and v0(y0) = 0 hold by construction. Feasibility and the conditions for pairwise stability follow from the feasibili
	u
	v
	u
	0
	v
	0
	u
	v

	This completes the proof of Corollary 6. 

	A.12 Proof of Proposition 7. 
	A.12 Proof of Proposition 7. 
	Let (λ1, u1, v1) and (λ2, u2, v2) be pairwise stable outcomes. Because the type measures µ 
	and ν have full support (Assumption 2), Proposition 5.3 then implies that u1 and v1 as well 
	as u2 and v2 implement each other. 
	To show that U and V are sublattices of B(X) and B(Y ), it suﬃces to show that there exist full matches λ3 and λ4 such that (λ3, u1 ∨ u2, v1 ∧ v2) and (λ4, u1 ∧ u2, v1 ∨ v2) are pairwise stable outcomes. The conditions for the pairwise stability of these two outcomes diﬀer from each other only by a reversal of the role of the buyer proﬁles and the seller proﬁles, so that we may focus on the ﬁrst of these, namely the existence of a full match λ3 such that (λ3, u1 ∨ u2, v1 ∧ v2) is a pairwise stable outcome. 
	Because v1 implements u1 and v2 implements u2, it is immediate from the fact that the implementation maps are dualities (Proposition 1) that v1 ∧ v2 implements u1 ∨ u2 (cf. the discussion at the beginning of Section 3.4.2). Hence, from Propositions 5.1 and 5.2 it suﬃces to construct a full match λ3 with supp(λ3) ⊆ Γu∨u,v∧vto obtain the desired pairwise stable outcome (λ3, u1 ∨ u2, v1 ∧ v2). 
	1
	2
	1
	2 

	To simplify notation throughout the following, let u3 = u1 ∨ u2 and v3 = v1 ∧ v2. Using this notation, we may rewrite the condition supp(λ3) ⊆ Γu∨u,v∧vas 
	1
	2
	1
	2 

	(x, y) ∈ supp(λ3)=⇒ u3(x)= φ(x, y, v3(y)). (A.14) 
	Our task is to construct a full match λ3 satisfying (A.14). To do so, we deﬁne 
	Y1 = {y ∈ Y : v1(y) < v2(y)} and X1 = {x ∈ X : Yv(x) ∩ Y1 6= ∅}. 
	2 

	Let X2 = X \ X1 and Y2 = Y \ Y1 denote the complements of X1 and Y1. 
	Step 1: The sets X1, X2, Y1, and Y2 are measurable. That Y1 ⊆ Y is measurable is immediate from the continuity of the implementable assignments v1 and v2 (Proposition 2), which ensures that Y1 is open in Y . The argmax 
	correspondence Yvhas a closed graph (Corollary 2) and hence is weakly measurable (Aliprantis and Border, 2006, Theorem 18.20 and Lemma 18.2). Hence, the pre-image of the open set Y1 under Yv, namely X1, is measurable. As the complements of measurable sets, X2 and Y2 are also measurable. 
	2 
	2 

	Step 2: The measures λ1 and λ2 are both concentrated on (X1 × Y1) ∪ (X2 × Y2). 
	Recall that v2 and u2 implement each other. By deﬁnition of X1 and Lemma 2, we thus have that Γu,vand X2 × Y1 do not intersect each other. Because supp(λ2) is contained in Γu,v(Proposition 5.1) it follows that the support of λ2 does not intersect X2 × Y1 so that 
	2
	2 
	2
	2 

	λ2(X2 × Y1) = 0 (A.15) 
	holds. Because λ2 is a full match, (A.15) implies λ2(X1 × Y1)= ν(Y1). Consequently, we 
	have 
	have 
	have 

	µ(X1) ≥ λ2(X1 × Y1) = ν(Y1), 
	µ(X1) ≥ λ2(X1 × Y1) = ν(Y1), 
	(A.16) 

	where the inequality obtains because λ2 is a match. 
	where the inequality obtains because λ2 is a match. 

	Next, we have 
	Next, we have 

	TR
	λ1(X1 × Y2) = 0. 
	(A.17) 


	To establish this, consider any x∈ X1. By deﬁnition of X1, there exists y∈ Y1 such that 
	0 
	0 

	00 0
	u2(x)= φ(x,y, v2(y)) ≥ φ(x,y, v2(y)), with the inequality holding for all y ∈ Y . As v1(y) < v2(y) holds (because y∈ Y1) and v1 implements u1 we obtain 
	0
	0
	0
	0
	0 

	00 00 0 
	u1(x ) ≥ φ(x ,y , v1(y )) >φ(x ,y , v2(y )) ≥ φ(x ,y, v2(y)) 
	0
	0
	0

	0
	for all y ∈ Y . As v1(y) ≥ v2(y) holds for all y ∈ Y2 this implies u1(x) >φ(x,y, v1(y)) 
	0

	for all y ∈ Y2. As(λ1, u1, v1) is pairwise stable, this implies that there does not exist (x, y) ∈ X1 × Y2 contained in the support of λ1, establishing (A.17). 
	Because λ1 is a match, we have ν(Y1) ≥ λ1(X1 ×Y1). Using Assumption 2, (A.17) implies λ1(X1 × Y1)= µ(X1), and hence we have 
	ν(Y1) ≥ λ1(X1 × Y1)= µ(X1). (A.18) 
	Combining (A.16) and (A.18) yields 
	λ1(X1 × Y1)= λ2(X1 × Y1)= µ(X1)= ν(Y1). 
	Because λ1 and λ2 are matches, this in turn implies λ1(X2 × Y1)=0 and λ2(X1 × Y2) = 0, ﬁnishing the argument for this step. 
	Step 3: Completion of the proof that U and V are sublattices. By Step 1, setting 
	λ3(X× Y) = λ1((X∩ X1) × (Y∩ Y1)) + λ2((X∩ X2) × (Y∩ Y2)) 
	˜
	˜
	˜
	˜
	˜
	˜

	for all measurable Y⊆ Y and X⊆ X deﬁnes a measure on X × Y . By Step 2, λ3 is a full match. It remains to show (A.14). To obtain this we show ﬁrst that u3(x)= φ(x, y, v3(y) 
	˜
	˜

	holds on a subset of X × Y on which λ3 is concentrated and then use a continuity argument to extend the result to the support of λ3. 
	By construction, λ3 is concentrated on (X1 × Y1) ∪ (X2 × Y2). It is therefore also concentrated on the union of supp(λ3) ∩ (X1 × Y1) and supp(λ3) ∩ (X× Y2), where X is any measurable subset of X2 satisfying λ3(X× Y2)= λ3(X2 × Y2). 
	00
	Consider (x,y) ∈ supp(λ3) ∩ (X1 × Y1). By construction of λ3 we then have (x,y) ∈ 
	0
	0

	00
	supp(λ1), implying u1(x)= φ(x,y, v1(y)). As y∈ Y1, we have v1(y)= v3(y). As x∈ X1, the argument that we have used to establish (A.17) in Step 2 yields u1(x) > u2(x) and thus u3(x)= u1(x), establishing (A.14) for the case under consideration. 
	0
	0
	0 
	0
	0
	0 
	0
	0
	0
	0

	Let X = {x ∈ X2 | Yv6
	1 

	(x) ∩ Y2 = ∅.} 
	0
	We show λ3(X× Y2)= λ3(X2 × Y2) and than consider (x,y) ∈ supp(λ3) ∩ (X× Y2). 
	0

	An argument akin to the one used in Step 1 of the proof shows that X By deﬁnition of X ,(x, y) ∈ (X2 \X )×Y2 implies (x, y) 6∈ supp(λ1), so that λ1((X2 \X )×Y2)=0 holds. Because λ1 is a full match, this in turn implies λ1((X2 \X ) × Y1)= µ(X2 \X ) with λ1(X2 ×Y1) = 0 (cf. Step 2 of the proof) then implying µ(X2 \X ) = 0, yielding µ(X )= µ(X2). As λ3(X×Y2)= µ(X ) and λ3(X2 ×Y2)= µ(X2) holds, this establishes the requisite property λ3(X× Y2)= λ3(X2 × Y2). 
	is measurable.
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	000
	By construction of λ3 we then have (x,y) ∈ supp(λ2), implying u2(x)= φ(x,y, v2(y)). As y∈ Y2, we have v3(y)= v2(y), so that it remains to establish u2(x) ≥ u1(x) to obtain 
	0
	0
	0
	0 
	0
	0
	0
	0

	(A.14) for the case under consideration. Suppose to the contrary that u1(x) > u2(x) holds. 
	0
	0

	0
	As v2(y) ≤ v1(y) holds on Y2 this implies u1(x) >φ(x,y, v1(y)) for all y ∈ Y2, which contradicts x∈X . 
	0
	0 

	0
	Finally, consider any (x,y) ∈ supp(λ3). As λ3 is concentrated on the union of supp(λ3)∩ (X1 × Y1) and supp(λ3) ∩ (X× Y2), there exists a sequence (xn,ynin this union which 
	0
	n=1 

	)∞ 0
	converges to (x,y). As shown above u3(xn)= φ(xn,yn, v3(yn)) holds for all n in this 
	0

	0
	sequence. As φ, v3 and u3 are all continuous, the convergence of (xn,yn)to (x,y)
	∞ 
	0

	n=1 
	00
	implies u3(x)= φ(x,y, v3(y)), which is the desired result. 
	0
	0

	It remains to show that the set of pairwise stable outcomes for the matching model (X, Y, φ, µ, ν, , ) is closed. Let (λk, uk, vk)be a sequence of pairwise stable outcomes 
	u
	v
	∞ 

	k=1 
	∗
	for the matching model (X, Y, φ, µ, ν, , ) converging to (λ, u , v ). Using the assumption that µ and ν have full support, Proposition 5 implies that (uk, vk) implement each other for all k. The same arguments as in the proof of Lemma 8 (in Appendix A.10) then imply 
	u
	v
	∗ 
	∗

	∗
	∗

	that (λ, u , v ) is a pairwise stable outcome for (X, Y, φ, µ, ν, , ). 
	∗ 
	∗
	u
	v


	A.13 Proof of Proposition 8 
	A.13 Proof of Proposition 8 
	We establish that the set of stable buyer proﬁles of the matching model (X, Y, φ, µ, ν, , ), denoted by Us in the following, is a complete sublattice of B(X); the argument for the case of stable seller proﬁles is analogous. 
	u
	v

	the set Y2 is closed with Theorem 17.20 in Aliprantis and Border (2006) then ensuring that {x ∈ X | Yv(x) ∩ Y2 =6∅} is measurable. As the intersection of this set with the measurable set X2, the set X is measurable. 
	30
	As the complement of the open set Y1, 
	1 

	From Lemma 9 in the proof of Corollary 6 (Appendix A.11) an outcome (λ, u, v) is stable in the matching model (X, Y, φ, µ, ν, , ) if and only if the associated full outcome (λ0, u0, v0) is a pairwise stable outcome satisfying the initial condition u0(x0) =0 in the augmented matching model (X0,Y0,φ0,µ0,ν0, , ). Denote the set of pairwise stable buyer proﬁles satisfying the initial condition u0(x0) = 0 in the augmented matching model by Ua. With the obvious notational convention for the proﬁle (u0(x0), u) of 
	u
	v
	u
	0
	v
	0

	To show that Ua, which is nonempty by Proposition 6, is a complete sublattice of B(X0), we ﬁrst observe that Ua is the intersection of two closed sublattices of B(X0), namely the set of pairwise stable buyer proﬁles of the augmented matching model (which is closed by Proposition 6 and a sublattice by Proposition 7) and the set of proﬁles u0 ∈ B(X0) satisfying u0(x0) = 0 (which is obviously a sublattice and closed). Hence, Ua is a closed sublattice of B(X0). Further, the closed sublattice Ua is bounded, with
	u
	0 
	v
	0 


	A.14 Proof of Lemma 6 
	A.14 Proof of Lemma 6 
	Step 1: We ﬁrst argue that it is without loss of generality to restrict the principal’s choice set to implementable tariﬀs: Let (λ, u, v) ∈ M × B(X) × B(Y ) be any triple satisfying the constraints in the principal’s maximization problem deﬁned in Section 5.1. Consider the triple (λ, u, Ψu). The tariﬀ Ψu is implementable and implements u (Corollary 3.1) and, further, implements any selection from Yv (Corollary 4.1), so that Yv(x) ⊆ YΨu(x) holds for all x ∈ X. Consequently, we have supp(λ) ⊆ Γu,v ⊆ Γu,Ψu, en
	Step 2: From Step 1 we can restrict attention to (λ, u, v) ∈ M × B(X) × I(Y ) when considering the principal’s problem. As v ∈ I(Y ) implements u ∈ B(Y ) if and only if u =Φv, we can eliminate the ﬁrst constraint from the principal’s problem and substitute this equality in the remaining constraints. The resulting problem is: 
	ZZ 
	max π(x, y, v(y))dλ(x, y) 
	v∈I(Y ),λ∈M 
	XY 
	s.t. supp(λ) ⊆ ΓΦv,v and Φv ≥ . 
	u

	Because implementable proﬁles are continuous (Proposition 2), the objective function in this problem is well-deﬁned for all v ∈ I(Y ) and λ ∈ M. Using (i) the deﬁnition of F (v,λ) in (31), (ii) observing that the constraint supp(λ) ⊆ ΓΦv,v is equivalent to λ ∈ G(v), where G(v) is deﬁned in (32), and (iii) using the order reversal property of the implementation maps (Corollary 1.2) to transform the constraint Φv ≥ into v ≤ Ψ, we may rewrite the above problem as 
	u 
	u

	.. 
	max max F (v,λ) . 
	{v∈I(Y ):v≤Ψ} λ∈G(v) 
	u

	Step 3: Let (vn)converge in norm to v and let (λn)converge weakly to λ. Let
	∞ 
	∞ 

	n=1 n=1 
	µ(X)= η = λ(X × Y ) > 0. Then for any ε> 0, we can ﬁnd N such that for all n ≥ N, we have 
	ZZ 
	F (v,λ) − 2εη = π(x, y, v(y))dλ(x, y) − 2εη 
	XY
	ZZ 
	≤ π(x, y, v(y))dλn(x, y) − εη 
	XY
	ZZ 
	=(π(x, y, v(y)) − ε)dλn(x, y) 
	XY
	ZZ 
	≤ π(x, y, vn(y))dλn(x, y) XY
	ZZ 
	≤ (π(x, y, v(y)) + ε)dλn(x, y) 
	XY
	ZZ 
	= π(x, y, v(y))dλn(x, y)+ εη XY
	ZZ 
	≤ π(x, y, v(y))dλ(x, y)+2εη 
	XY 
	= F (v,λ)+2εη. 
	The two central inequalities follow from the convergence of (vn), and the two remaining inequalities from the convergence of (λn)Combining the middle and outside two 
	∞ 
	n=1
	∞ 

	n=1terms, we have F (v,λ) − 2εη ≤ F (vn,λn) ≤ F (v,λ)+2εη. Hence, the function F (v,λ) is continuous. 
	. 

	Step 4: For v ∈ I(Y ), the correspondence G(v) deﬁned in (32) is nonempty-valued and compact-valued and upper hemicontinuous. To show that G(v) is nonempty-valued, let y be a measurable selection (cf. footnote 29 in Appendix A.9) from Yv and let λy be the associated deterministic measure (cf. (28)). As v and Φv implement each other, the same argument as in the ﬁrst paragraph of the proof of Lemma 5 yields that the support of λy is contained in ΓΦv,v. Hence, G(v) is nonempty-valued. 
	To obtain the other two properties, deﬁne the function H : X × Y × I(Y ) → R by H(x, y, v)= φ(x, y, v(y)) − Φv(x). Notice that H is continuous because φ and Φ are (Lemma 1). In addition, H(x, y, v) ≤ 0, with equality if and only if (x, y) ∈ ΓΦv,v. Now consider the maximization problem maxλ∈M H(v,λ), where H: I(Y ) × M → R is deﬁned 
	ˆ
	ˆ

	RR
	ˆˆ
	by H(v,λ)= H(x, y, v)dλ(x, y). For any v, we have H(v,λ) ≤ 0, with equality if and 
	XY 
	only if supp(λ) ∈ ΓΦv,v. The argmax correspondence for this maximization problem thus is G(v). We have noted that H(x, y, v) is continuous and hence so is H(v,λ). The set M is compact by Prokhorov’s theorem (Shiryaev, 1996, p. 318). An application of Berge’s maximum theorem (Ok, 2007, p. 306) then ensures that G(v) is compact-valued and upper hemicontinuous. 
	ˆ

	Step 5: Fix v ∈ I(Y ) and consider the problem appearing in (33): 
	Π(v) = max F (v,λ). 
	λ∈G(v) 
	We have shown in Step 3 that F (v,λ) is continuous and in Step 4 that G(v) is nonempty-valued and compact-valued. Therefore, Weierstrass’ extreme value theorem ensures that this problem has a solution so that the function Π : I(Y ) → R is well-deﬁned. Further, because the correspondence G is also upper hemicontinuous (Step 4), Berge’s maximum theorem (Ok, 2007, p. 306) ensures that Π is upper semicontinuous. 
	∗
	Step 6: Let v solve the problem 
	max Π(v) 
	{v∈I(Y ): v≤Ψ} 
	u

	and let λbe an element of arg max∗F (v ,λ). Then it is immediate from (33) that (v ,λ) solves the problem 
	∗ 
	λ∈G(v 
	) 
	∗
	∗
	∗

	.. 
	max max F (v,λ) . 
	{v∈I(Y ):v≤Ψ} λ∈G(v) 
	u

	∗
	As noted in Step 2, this implies that (λ, Φv , v ) solves the principal’s problem when the 
	∗ 
	∗

	∗
	principal is restricted to v ∈ I(Y ). Step 1 then ensures that the triple (λ, Φv , v ) solves the principal’s problem. 
	∗ 
	∗


	A.15 Proof of Proposition 9 
	A.15 Proof of Proposition 9 
	We proceed in two steps, ﬁrst establishing the existence of a solution v to the nonlinear pricing problem (34) and then showing that in the associated solution (λ, Φv, v) to the principal’s problem, the measure λ can be taken to be deterministic. 
	Step 1: We ﬁrst show that we can restrict attention to a bounded set of tariﬀs. To simplify notation, let =Ψdenote the upper bound for the feasible set in the nonlinear pricing problem. By Proposition 2, we have ∈ I(Y ), so that Π() is well-deﬁned. To obtain a lower bound, let v∈ R be such that for all (x, y) ∈ X × Y 
	v 
	u 
	v 
	v
	† 

	π(x, y, v ) < Π(). (A.19) 
	†
	v

	The existence of such a vis ensured because π satisﬁes the full range condition in Assumption 3 and X and Y are compact. By Assumption 1, there also exists ∈ R such that, for all (x, y) in X × Y and v ≤ , we have 
	† 
	v 
	v

	φ(x, y, v) > max φ(x, ˆ).
	†

	y, v (A.20) 
	yˆ∈Y 
	Inequality (A.20) ensures that for any tariﬀ v ∈ I(Y ) with the property that v(y) ≤ holds for some y ∈ Y , we have that (ˆy) ∈ ΓΦv,v y) <v. From (A.19), this ensures 
	v 
	† 

	x, ˆimplies v(ˆthat F (v,λ) < Π() holds for all λ ∈ G(v), implying that Π(v) < Π() holds for any such 
	x, ˆimplies v(ˆthat F (v,λ) < Π() holds for all λ ∈ G(v), implying that Π(v) < Π() holds for any such 
	v
	v

	tariﬀ. Hence, Π(v) ≥ Π() implies v(y) ≥ for all y ∈ Y and there thus exists a tariﬀ 
	v
	v 


	∈ I(Y ) such that Π(v) ≥ Π() implies v ≥ . 
	v 
	v
	v

	Clearly, we have ≤ . Thus, the order interval [, ]= {v ∈ B(Y )|≤ v ≤ } is a nonempty, closed, and bounded subset of B(Y ). As I(Y ) is also closed (Corollary 5.1), it follows that V =[, ] ∩ I(Y ) is a closed and bounded subset of I(Y ). By Corollary 5.3 V is therefore compact. As is an element of both V and I(Y ) this set is also nonempty. As Π is upper semicontinuous (Lemma 6), Weierstrass’ extreme value theorem for upper semicontinuous functions (Ok, 2007, p.234) then implies that the problem 
	v 
	v
	v
	v
	v 
	v
	v
	v
	v 

	max Π(v) 
	{v∈I(Y ): ≤v≤} ∗
	v
	v

	has a solution v . We obviously have Π(v ) ≥ Π() and hence Π(v ) ≥ Π(v) for all v ∈ I(Y ) 
	∗
	v
	∗

	∗
	satisfying v ≤ =Ψ, ensuring that v solves the nonlinear pricing problem (34). 
	v 
	u

	Step 2: Let (λ, u, v) be feasible in the principal’s problem with v ∈ I(Y ). We ﬁrst observe that maxπ(x, y, v(y)) is a measurable function of x and that there exists a measurable 
	y∈Y
	v 
	(x) 

	∗
	assignment y solving this maximization problem for all x. This follows from Aliprantis and Border (2006, Theorem 18.19) upon observing that (i) the function (x, y) → π(x, y, v(y)) is continuous on its domain X × Y (from Proposition 2 and Assumption 3) and thus a Caratheodory function and (ii) the properties of the correspondence Yv noted in Corollary 2 imply that this correspondence has a closed graph, ensuring that it is weakly measurable (Aliprantis and Border, 2006, Theorem 18.20 and Lemma 18.2). 
	We can then write 
	ZZ 
	F (v,λ)= π(x, y, v(y))dλ(x, y) 
	XY
	Z.Z . 
	= π(x, y, v(y))dλ(y | x) dµ(x) 
	XY
	Z 
	≤ max π(x, y, v(y))dµ(x) 
	y∈Yv (x)
	y∈Yv (x)
	X

	Z 
	= π(x, y (x), v(y (x)))dµ(x) 
	∗ 
	∗ 

	X 
	= F (v,λy ∗ ), 
	where the equality in the second line follows from the disintegration theorem (Chang and Pollard, 1997, Theorem 1), with λ(·| x) being the disintegration measure on {x}× Y for each x ∈ X. The inequality holds because the support of λ(·| x) is contained in Yv(x) 
	where the equality in the second line follows from the disintegration theorem (Chang and Pollard, 1997, Theorem 1), with λ(·| x) being the disintegration measure on {x}× Y for each x ∈ X. The inequality holds because the support of λ(·| x) is contained in Yv(x) 

	∗
	for µ-almost all x ∈ X. The equality on the penultimate line is by deﬁnition of y . As (λy ∗ , u, v) is feasible in the principal’s problem and this problem has a solution, the inequality 
	F (v,λ) ≤ F (v,λy ∗ ) implies that the principal’s problem has a deterministic solution. 

	A.16 Proof of Proposition 10 
	A.16 Proof of Proposition 10 
	Suppose (λ, u, v) solves the principal’s problem with u(x) > (x) for all x ∈ X. From 
	u

	Proposition 9 there exists a deterministic match λy, such that (λy, u, v) is also a solution to 
	the principal’s problem. By the same argument as the one proving Lemma 5, we can take y 
	the principal’s problem. By the same argument as the one proving Lemma 5, we can take y 
	to be implementable and therefore (by assumption) to be strongly implementable. From 

	∗∗ ∗
	Lemma 4 there thus exists a proﬁle u such that (u , y) is implementable, u ≥ u ≥ 
	u 

	∗
	holds, and there exists x ∈ X such that u(x) > u (x) for some x ∈ X. As both u and u are implementable (and therefore continuous by Proposition 2) the set X = {x ∈ X | u(x) > u (x)} is measurable. Because µ has full support, we have µ(X ) > 0. 
	∗
	∗

	∗∗∗ ∗
	Now, let v =Ψu . Then v implements (u , y) (Corollaries 3.1 and 4.1) and the triple 
	∗
	(λy, u , v ) is therefore feasible in the principal’s problem We also have that the principal 
	∗

	∗
	obtains a strictly higher expected payoﬀ from (λy, u , v ) than from (λy, u, v), contradicting the optimality of (λy, u, v): 
	∗

	ZZ ZZ 
	π(x, y, v(y))dλy(x, y)= π(x, y, ψ(y, x, u(x)))dλy(x, y) 
	XY XY
	ZZ ZZ 
	<π(x, y, ψ(y, x, u (x)))dλy(x, y)= π(x, y, v (y))dλy(x, y), 
	∗ 
	∗ 

	XY XY 
	where the equalities follow as in (30) and the strict inequality holds because µ(X ) > 0, ψ is strictly decreasing in its third argument, and π is strictly increasing in its third argument. 

	A.17 Proof of Proposition 11 
	A.17 Proof of Proposition 11 
	Suppose (λ, u, v) is a solution to the principal’s problem with u(x) > (x) for all x ∈ X. Then as we have noted in Remark 7, (λ, u, v) is a pairwise stable outcome of the matching model (X, Y, φ, µ, ν, , ), where ν is the marginal measure λY of λ on Y and : Y → R is an arbitrary continuous function. Let Y be the support of ν. It exposes the logic of the argument most clearly by ﬁrst proceeding under the assumption that Y = Y . 
	u
	u
	v
	v 

	The assumption Y = Y ensures that the matching model (X, Y, φ, µ, ν, , ) satisﬁes Assumption 2, so that this matching model has a pairwise stable outcome (λ,uˆ, vˆ) satisfying u ≥ uˆ≥ , with the ﬁrst inequality holding strictly for some x ∈ X (Corollary 8). Because uˆand vˆimplement each other (Proposition 5.3) and the implementation maps are order reversing inverse bijections (cf. (15)), we thus obtain v ≤ vˆwith strict inequality for some y ∈ Y . From the continuity of the two proﬁles v and vˆ(Proposition
	u
	v
	ˆ
	u

	ν({y : v(y) < vˆ(y)}) > 0. (A.21) 
	We can now write 
	ZZ 
	F (v,λ)= π(x, y, v(y))dλ(x, y) 
	XY
	Z 
	= πˆ(y, v(y))dν(y) 
	Y
	Z 
	<πˆ(y, vˆ(y))dν(y) 
	Y
	ZZ 
	= π(x, y, vˆ(y))dλ(x, y) 
	ˆ

	XY 
	ˆ
	= F (vˆ,λ), 
	= F (vˆ,λ), 
	where the two inner equalities are from the private-values assumption and the inequality follows from (A.21) because πˆis strictly increasing in its second argument (Assumption 3). We thus obtain F (v,λ) <F (vˆ, λ, ˆv) is feasible in the principal’s problem, this 

	λ). As (u, ˆcontradicts the optimality of (λ, u, v). 
	ˆ
	ˆ

	If Y is a strict subset of Y , then the above argument is not directly applicable because the matching model (X, Y, φ, µ, ν, , ) violates the full support condition in Assumption 2. It is, however, straightforward to establish a “restriction lemma” (similar in spirit to the extension result of Proposition 5.3) showing that if (λ, u, v) is a pairwise stable outcome of the matching model (X, Y, φ, µ, ν, , ), then (λ, u, v) can be restricted to give a pairwise stable outcome of the matching model derived from 
	u
	v
	u
	v
	u
	v



	Appendix B: Details Omitted from the Paper 
	Appendix B: Details Omitted from the Paper 
	B.1 Properties of the Inverse Generating Function in Section 2.2 
	B.1 Properties of the Inverse Generating Function in Section 2.2 
	That ψ is strictly decreasing in its third argument for all (y, x) ∈ Y × X is immediate from 
	(1) and the corresponding property of the generating function φ stated in Assumption 1. Because φ is deﬁned on X × Y × R, we have ψ(y, x, R)= R for all (y, x) ∈ Y × X. Except for a permutation of the arguments, the epigraph (hypograph) of φ coincides with the hypograph (epigraph) of ψ. As a function into the real numbers is continuous if and only if its epigraph and hypograph are closed (Ferrera, 2014, Proposition 1.14, p. 5), continuity of φ is equivalent to continuity of ψ. 

	B.2 Details for Remark 1 
	B.2 Details for Remark 1 
	Let Rbe the set of functions from X to R. Then (u, y) ∈ R× Y (note that here u is not required to be bounded) is implementable by an incentive compatible direct mechanism if there exists t ∈ Rsuch that the feasibility conditions u(x)= φ(x, y(x), t(x)) and the incentive compatibility conditions φ(x, y(x), t(x)) ≥ φ(x, y(xˆ), t(xˆ)) hold for all x, xˆ∈ X. Similarly, letting Rbe the set of functions from Y to R, we may deﬁne (v, x) ∈ R× Xto be implementable by an incentive compatible direct mechanism if there 
	X 
	X 
	X 
	X 
	Y 
	Y 
	Y 
	Y 

	Lemma 10. Let Assumption 1 hold. 
	[10.1] (u, y) ∈ R× Y is implementable by an incentive compatible direct mechanism if and only if u ∈ B(X) and there exists v ∈ B(Y ) implementing (u, y). 
	X 
	X 

	[10.2] (v, x) ∈ R× Xis implementable by an incentive compatible direct mechanism if and only if v ∈ B(Y ) and there exists u ∈ B(X) implementing (v, x). 
	Y 
	Y 

	Proof of Lemma 10. We prove Lemma 10.1; the proof of Lemma 10.2 is analogous. It is immediate from the revelation principle that if (u, y) ∈ B(X) × Y is implemented by v ∈ B(Y ) then (u, y) is implementable by an incentive compatible direct mechanism. 
	X 

	Indeed, upon setting t(x)= v(y(x)) for all x ∈ X, conditions (3) and (4) imply u(x)= φ(x, y(x), t(x)) ≥ φ(x, y(ˆx), t(ˆx)) for all x, xˆ∈ X. Conversely, suppose that (u, y) ∈ R× Y is implementable by an incentive compatible direct mechanism, so that there exists t ∈ Rsuch that 
	X 
	X 
	X 

	u(x)= φ(x, y(x), t(x)) ≥ φ(x, y(ˆx), t(ˆx)) (B.1) t(x)= ψ(y(x), x, u(x)) ≥ ψ(y(x), x,ˆu(ˆx)) (B.2) 
	hold for all x, xˆ∈ X. The equality in (B.2) follows from the equality in (B.1) because φ and ψ are inverse and the inequality in (B.2) follows from (B.1) upon reversing the roles of x and ˆx in the inequality u(x) ≥ φ(x, y(ˆx), t(ˆx)) and using, again, that φ and ψ are inverse. 
	First, we establish that u is bounded. Fix xˆ∈ X. The inequality in (B.1) ensures that for all x ∈ X, 
	u(x) ≥ φ(x, y(ˆx), t(ˆx)) ≥ min φ(˜x, y(ˆx), t(ˆx)) =: ∈ R, 
	u 

	x˜∈X 
	where the minimum exists because X is compact and φ continuous. Next, using (B.2) we have t(x) ≥ ψ(y(x), x,ˆu(ˆx)) ≥ min x, u(ˆ
	u 

	ψ(y, ˆx)) =: ∈ R, 
	t 

	y∈Y 
	for all x ∈ X, where the minimum exists because Y is compact and ψ continuous. Using the equality in (B.1) and that φ is strictly decreasing in its third argument, we then have, for all x ∈ X, 
	t 

	u(x)= φ(x, y(x), t(x)) ≤ φ(x, y(x),) ≤ max x, ˜
	t

	φ(˜y, ) =: ∈ R, 
	t
	u 

	x˜∈X,y˜∈Y 
	where the maximum exists because X and Y are compact and φ continuous. We thus have ≤ u(x) ≤ for all x ∈ X, which implies u ∈ B(X). From the equality in (B.2), t is bounded, too. 
	u 
	u 
	u 

	Second, we show there exists v ∈ B(Y ) implementing (u, y). We can ﬁx a value ∈ R such that φ(x, y, ) ≤ holds for all (x, y) ∈ X × Y . Now let 
	v 
	v
	u 

	. 
	t(x) if y = y(x) for some x ∈ X 
	t(x) if y = y(x) for some x ∈ X 
	t(x) if y = y(x) for some x ∈ X 
	v(y)= 

	otherwise. 
	v 


	If there exist x, xˆ∈ X and y ∈ Y with y = y(x)= y(xˆ), then the incentive constraints in (B.1) imply t(x)= t(xˆ). Therefore v(y) is well-deﬁned for all y ∈ Y and, because t is bounded, we have v ∈ B(Y ). Finally, using (B.1), it is immediate from the construction of v that we have 
	u(x)= φ(x, y(x), v(y(x))) ≥ φ(x, y, v(y)) 
	for all (x, y) ∈ X × Y , so that v implements (u, y). 

	B.3 Details for Remark 2 
	B.3 Details for Remark 2 
	To verify that (7) implies the strong implementability of every implementable assignment, we ﬁrst consider an implementable assignment y ∈ Y . Because y is implementable there 
	To verify that (7) implies the strong implementability of every implementable assignment, we ﬁrst consider an implementable assignment y ∈ Y . Because y is implementable there 
	X 

	exists v ∈ B(Y ) such that y(x) ∈ Yv(x) holds for all x ∈ X. Fix any x0 ∈ X. Because v implements y it is immediate that y is implementable with initial condition (x0,u0), where u0 = φ(x0, y(x0), v(y(x0))). Using Assumption 1, for any t0 ∈ R we can ﬁnd a uniquely determined proﬁle vˆsuch that 

	φ(x0, y, v(y)) − φ(x0, y, vˆ(y)) = t0, ∀y ∈ Y. (B.3) 
	The optimal decisions of type x0 when maximizing against the tariﬀ v are then identical to the optimal decisions when maximizing against vˆ. Further, the same holds for any other type x1 ∈ X, since (B.3) and (7) ensure that there exists t1 such that φ(x1, y, v(y))−φ(x1, y, vˆ(y)) = t1 holds for all y ∈ Y . Therefore, if the generating function satisﬁes (7), then Yv(x)= Yvˆ(x) holds for all x ∈ X, so that vˆimplements y with initial condition (x0,u0 − t0). As both x0 and t0 were arbitrary, this shows that y 
	Second, consider an implementable assignment x ∈ X. Then there exists u ∈ B(X) such that x(y) ∈ Xu(y) holds for all y ∈ Y . We ﬁrst show that for any (x0,t0) ∈ X × R there exists uˆ∈ B(X) satisfying Xuˆ(y)= Xu(y) for all y ∈ Y and u(x0) − uˆ(x0)= t0. To do so, we make use of results from Section 3. We may suppose without loss of generality that the proﬁle u implementing x is itself implementable (Corollary 4.2), so that the proﬁle v implemented by u also implements u (Corollary 3.2). Applying Lemma 2, we th
	Y 

	To complete the argument, choose (y0,v0) and let x0 = x(y0). Then u implements (v, x) with v(y0)= ψ(y0,x0, u(x0)). In addition, for any t0, uˆimplements (vˆ, x) with vˆ(y0)= ψ(y0,x0, uˆ(x0)) = ψ(y0,x0, u(x0 −t0)). As t0 ranges through R, so does ψ(y0,x0, u(x0)−t0), giving the result. 

	B.4 Details for Remark 6 
	B.4 Details for Remark 6 
	We prove v ∈ I(Y ) ⇐⇒ Yv is nonempty − valued and onto; (B.4) 
	the proof of the other equivalence is analogous. 
	First, suppose the proﬁle v ∈ B(Y ) is implementable. Then v implements and is implemented by u =Φv (Corollary 3), implying that both Xu and Yv are nonempty-valued. Further, from Lemma 2 the correspondences are inverses of each other, and hence must be onto. 
	Second, suppose that Yv is nonempty-valued and onto. Then v implements u =Φv (because Yv is nonempty-valued) and for any given yˆ∈ Y there exists xˆ∈ X such that u(xˆ) = φ(ˆy, v(ˆis onto), which is equivalent to v(ˆy, ˆx)).
	x, ˆy)) holds (because Yv y)= ψ(ˆx, u(ˆAs v implements u we have u(x) ≥ φ(x, ˆy)) for all x ∈ X, which is equivalent to 
	y, v(ˆv(yˆ) ≥ ψ(ˆCombining the equality and the inequality for v(ˆ
	y, x, u(x)) for all x ∈ X. y) we have v(yˆ) = maxx∈X φ(ˆy ∈ Y , it follows that u implements 
	y, x, u(x)). As this holds for all ˆv, so that v is implementable. 

	B.5 Details for the Finite Support Matching Models in Section 4.1.2 
	B.5 Details for the Finite Support Matching Models in Section 4.1.2 
	With every ﬁnite-support matching model (X, Y, φ, µ, ν, , ) satisfying Assumption 1 we associate a matching model with a ﬁnite number of agents as follows: there are ﬁnite sets of buyers I = {1,...,m} and sellers J = {1,...,n}. Buyer i has type xi ∈ X and seller j has type yj ∈ Y . Reservation utilities are given by = u(x1) for buyer i ∈ I and v= (yj ) for seller j ∈ J. The utility frontier available to pair of matched agents (i, j) ∈ I × J is given by φ(xi,yj ,v). 
	u
	v
	u
	i 
	j 
	v

	The standard deﬁnition of a match for such a matching model with a ﬁnite number of agents (see, for instance, Roth and Sotomayor (1990, Deﬁnition 9.1)) is equivalent to specifying a measure ρ on I × J that satisﬁes ρ(i, j) ∈{0, 1} for all (i, j) ∈ I × J,
	PP 
	ρ(i, j) ≤ 1 for all i ∈ I, and ρ(i, j) ≤ 1 for all j ∈ J. A stable outcome then 
	j∈Ji=I 
	consists of such a match and a speciﬁcation of utility proﬁles (u1,...,un) and (v1,...,vn) satisfying the natural counterparts to our feasibility and stability conditions (e.g. (20) becomes ui = φ(xi,yj ,vj ) for all (i, j) satisfying ρ(i, j) = 1 and (25) becomes ui ≥ φ(xi,yj ,vj ) for all (i, j) ∈ I × J). 
	Every stable outcome for a matching model with a ﬁnite number of agents satisﬁes the equal treatment property (i.e., xi = xi0 implies ui = ui0 and yj = yj0 implies vj = vj0 ) if the characteristic function describing the utility frontier available to a pair of matched agents satisﬁes our Assumption 1. This allows us to identify stable outcomes for the matching model with a ﬁnite number of agents with stable outcomes for our ﬁnite-support matching model. Speciﬁcally, let X = {x ∈ X | x = xi for some i ∈ I} a
	J} denote the supports of the type distributions in the ﬁnite-support matching model. For x ∈X let I(x)= {i ∈ I | xi = x} and for y ∈Y let J(y)= {j ∈ J | yj = y}. Consider now a stable outcome (ρ, u1,...,um,v1,...,vn) for the matching model with a ﬁnite number of agents. Let u˜and v˜be arbitrary proﬁles in B(X) and B(Y ). Given that equal treatment 
	holds, setting 
	holds, setting 
	holds, setting 
	(ui u(x) = ˜u 
	if x ∈ I(x) otherwise 

	and 
	and 
	(vjv(y) = ˜v 
	if y ∈ J(y) otherwise 


	gives two well-deﬁned proﬁles u ∈ B(X) and v ∈ B(Y ). Let the measure λ have support contained in X ×Y and on this set be given by 
	XX 
	λ(x, y)= ρ(i, j). 
	i∈I(x) j∈J(y) 
	With these deﬁnitions, it is straightforward to verify that (λ, u, v) is a stable outcome for the ﬁnite-support matching model. 
	It is well-known that stable outcomes for a matching model with a ﬁnite number of agents exist if the characteristic function describing the utility frontier available to a pair of matched agents satisﬁes our Assumption 1 (Roth and Sotomayor, 1990, Section 9.4). Hence, we may conclude that every ﬁnite-support matching model satisfying Assumption 1 has a stable outcome. 


	Appendix C: Examples 
	Appendix C: Examples 
	C.1 Example 1: The Set of Implementable Proﬁles is not a Sublattice 
	C.1 Example 1: The Set of Implementable Proﬁles is not a Sublattice 
	Let X = {1, 2, 3} and Y = {1, 2} and let the generating function be the quasilinear function given by 
	φ(x, 1,v)=1 − v, 
	φ(x, 2,v)=2+ x − v 
	for x ∈ X. The inverse generating function then is 
	ψ(1, x, u)=1 − u, 
	ψ(2, x, u)=2+ x − u. 
	The proﬁles u1 = (1, 1, 1) and u2 = (0, 1, 2) are both implementable (v1 = (0, 4) implements u1 and v2 = (1, 3) implements u2). The proﬁle u1 ∧u2 = (0, 1, 1), however, is not implementable. Hence, I(X) is not a sublattice of B(X). To establish that u1 ∧u2 = (0, 1, 1) is not implementable, it suﬃces to note (Remark 6) that Xis not onto: x = 1 is the unique maximizer of ψ(1, x, u(x)) and x = 3 is the unique maximizer of ψ(2, x, u(x)). (Alternatively, we may note that Ψ(0, 1, 1) = (0, 4) = v1. As v1 implements
	(0,1,1) 

	= implementable.) 

	C.2 Example 2: The Participation Constraint is not Binding in a Solution to the Principal’s Problem 
	C.2 Example 2: The Participation Constraint is not Binding in a Solution to the Principal’s Problem 
	Let X = {1, 2} and Y = {1, 2} and let the generating function be given by 
	φ(1, 1, v) 
	φ(1, 1, v) 
	φ(1, 1, v) 
	= 
	3 − 2v 

	φ(1, 2, v) 
	φ(1, 2, v) 
	= 
	2 − v 

	TR
	3 
	1 

	φ(2, 1, v) 
	φ(2, 1, v) 
	= 
	− v 2 2 

	φ(2, 2, v) 
	φ(2, 2, v) 
	= 
	2 − v. 


	Let µ(1) = µ(2) = 1/2 and (1) = (2) = 0. Then Assumptions 1 and 3 hold for any speciﬁcation of the principal’s utility function π which is strictly increasing and continuous in v and satisﬁes the full-range condition. Throughout the following we focus on deterministic measures, which we may identify with the corresponding assignment y =(y(1), y(2)). 
	u
	u

	Figure 2 illustrates the set of proﬁles v =(v(1), v(2)) and, for each such proﬁle, identiﬁes the assignment(s) y =(y(1), y(2)) implemented by that proﬁle. The two lines, identifying proﬁles that make either x =1 or x = 2 indiﬀerent between the two elements of Y , form the boundaries of four closed (and hence overlapping on the boundaries) regions, whose union is the set B(Y ) of proﬁles v. All assignments y ∈ Y are implementable, but only the constant assignments y = (1, 1) and y = (2, 2) are strongly imple
	X 

	The set of implementable tariﬀs I(Y ) is the (blue and orange, or dark and light) shaded area in Figure 2, including the boundaries. This is immediate from Remark 6 upon observing that these tariﬀs are the ones implementing assignments that are onto Y . 
	Artifact
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	P
	StyleSpan
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	P
	P
	proﬁle for the agent is u = (1, 1), so that the participation constraint for neither agent type binds in the unique solution to the principal’s problem. 
	This example features common values, in the sense that the principal cares directly about which type of the agent obtains which decision. This is an essential ingredient in the construction of the example: In the absence of such common values any change in tariﬀ that changes the implemented assignment from y = (1, 2) to y = (2, 1) aﬀects the principal’s utility only through the change in tariﬀ, ensuring that the principal would welcome the attendant increase in tariﬀ from implementing y = (2, 1) with the ta


	Appendix D: Extensions 
	Appendix D: Extensions 
	D.1 Exclusion in the Principal-Agent Model 
	D.1 Exclusion in the Principal-Agent Model 
	Our formulation of the principal-agent model in Section 5.1 does not include an explicit outside option for the agent; rather it simply insists that the principal must respect the agent’s participation constraint. It is clear, though, that in the presence of an outside option the principal may sometimes prefer to exclude some agent type(s) by designing a tariﬀ that induces them to choose their outside option (Jullien, 2000). Here we show how to incorporate the possibility of exclusion into our model, explai
	To model the agent’s outside option, we follow a strategy analogous to that used to incorporate non-participation in the matching model. Given a principal-agent model (X, Y, φ, µ, π, ) satisfying Assumptions 1 and 3, we let Y0 = Y ∪{y0}, where the outside option y0 is in the metric space containing Y , but is not contained in Y , and extend the deﬁnition of the generating function φ to a function φ0 on X × Y0 × R satisfying Assumption 1 and 
	u

	φ0(x, y0, 0) = (x). (D.1) 
	u

	Hence, in the absence of a transfer (v = 0), agent types choosing the outside option y0 receive their reservation utility (x). Similarly, we extend the deﬁnition of the principal’s utility function π to a function π0 on X × Y0 × R satisfying Assumption 3 and 
	u

	π0(x, y0,v)= (v) 
	π

	for some function : R → R, with (0) then specifying the principal’s utility from not trading. 
	π 
	π

	We will refer to (X, Y0,φ0, µ, π0, ) as the principal-agent model with exclusion. Because we have supposed that Assumptions 1 and 3 carry over from (X, Y, φ, µ, π, ) to (X, Y0,φ0, µ, π0, ), it is immediate from Proposition 9 that the principal-agent model with exclusion has a solution (λ, u, v) in which u and v implement each other. Further, because any such solution respects the participation constraint u ≥ , it satisﬁes the constraint that 
	u
	-
	u
	u
	u
	the principal cannot charge the agent for choosing the outside option.
	31 

	Using the obvious notation for the inverse generating function and the implementation map in the model 
	31

	Corollary 10. Let Assumptions 1 and 3 hold. The principal-agent model with exclusion 
	has a solution (λ, u, v) satisfying v(y0) ≤ 0. 
	Provided that the participation constraint binds for some type of agent in a solution to the principal-agent model with exclusion, we must have v(y0) = 0, and hence no agent is paid for nonparticipation. As the extension of the principal’s payoﬀ function to Y0 preserves private values, this will be the case whenever the underlying principal-agent model satisﬁes the private value condition. Similarly, whenever the agent’s utility function in the underlying principal-agent model is quasilinear and the speciﬁc
	u
	32 

	If the participation constraint does not hold with equality for any agent type in a solution to the principal-agent model with exclusion, then such a solution might satisfy v(y0) < 0. There are two ways in which this might come about. The ﬁrst possibility is that no type of the agent is excluded, but, as in Example 2 (in Appendix C.2), all types of the agent obtain strictly higher utility than their reservation utility. In this case, the optimal (u, y) can also be implemented by a (non-implementable) tariﬀ 
	Example 3. Let X = {1, 2}, let Y = {1}, and let µ(1) = µ(2) = 1/2. There are thus two equally likely types of agents, and the principal has the option of either assigning decision 1 to an agent (hereafter “interacting with the agent”) or excluding the agent by making him choose the outside option y0 = 0. 
	The agents’ utilities are given by 
	1 
	φ0(1, 1,v)=1 − vφ0(1, 0,v)= − v 
	2 φ0(2, 1,v)=2 − vφ0(2, 0,v)= −2v, 
	and hence (1) = (2) = 0. The principal’s utility is given by 
	u
	u

	π0(1, 1,v)= b + vπ0(1, 0,v)= v 
	π0(2, 1,v)= v − cπ0(2, 0,v0)= v, 
	so that = 0. The parameter b> 0 is a beneﬁt the principal obtains from interacting with an agent of type 1 and c> 0 is a corresponding cost of interacting with an agent of type 2. Now suppose that the principal’s optimum involves interacting with agent 1 and excluding agent 2, as will be the case whenever both b and c are suﬃciently large. Then the optimal tariﬀ is v(1) = 2/3= −v(0). Hence, the principal pays agent 2 to not participate. 
	π 

	with exclusion, the formal argument is this: If u and v implement each other, the participation constraint implies v ≤ Ψ0. Therefore, we have v(y0) ≤ ψ0(y0, x, (x)) for all x ∈ X. From (D.1), the right side of the latter inequality is equal to zero. 
	u
	u

	Strong implementability of the optimal decision function in the principal-agent model (without exclusion) does not imply that the participation constraint holds as an equality in the principal-agent model with exclusion. Example 3 below (with only one decision in the absence of exclusion, so that strong implementability is immediate) provides an illustration. 
	32


	D.2 Stochastic Contracts in the Principal-Agent Model 
	D.2 Stochastic Contracts in the Principal-Agent Model 
	In the principal-agent model with quasilinear utility it is well-known that the principal may beneﬁt from oﬀering stochastic rather then deterministic contracts to screen diﬀerent agent types (cf. Strausz, 2006, for extensive discussion). In general, a stochastic contract corresponds to an incentive compatible direct mechanism which speciﬁes, for every type of the agent, a lottery over transfers and decisions. To explain how stochastic contracts can be embedded in our model, it will be easier to begin with 
	Fix a principal-agent model (X, Y, φ, µ, ν, π, ) satisfying Assumptions 1 and 3 and let ΔY be the set of probability measures over the set Y , with typical element ζ. We equip the set ΔY with the topology of weak convergence, and note that ΔY is then a compact metric space (with the Prokhorov metric). 
	u

	We can then extend the deﬁnitions of the payoﬀ functions by taking the appropriate expectations: 
	Z 
	φΔ(x, ζ, v)= φ(x, y, v)dζ(y) 
	Y
	Z 
	πΔ(x, ζ, v)= π(x, y, v)dζ(y), 
	Y 
	thereby obtaining a principal-agent model (X, ΔY, φΔ, µ, πΔ, ) in which the set of possible decisions is given by ΔY rather than Y and a tariﬀ assigns a transfer to every probability 
	u

	33
	measure ζ ∈ ΔY rather than to every decision y. In this model, our version of the taxation principle (Remark 1) as well as all the results from Section 5 continue to hold. 
	We have already noted that ΔY is a compact metric space. It is obvious that φΔ and πΔ inherit the requisite monotonicity properties and the full range condition from φ and π. Consider continuity. From the deﬁnition of weak convergence and the fact that for ﬁxed x and v, the function φ(x, y, v): Y → R is 
	33

	continuous on a compact set, we can conclude that if the sequence (ζn)
	∞ 
	n=1 
	converges (weakly) to the limit ζ, 
	then
	Z
	Z 
	φ(x, y, v)dζn(y) → φ(x, y, v)dζ(y). (D.2) 
	YY 
	This in turn implies that φΔ is continuous: Suppose we have a sequence (xn,ζn,vn)
	∞ 
	n=1 
	converging to (x, ζ, v) 
	(pointwise in the ﬁrst and third arguments, and in the sense of weak convergence in the second). Notice that 
	∞ 
	n=1 
	is contained in a compact subset Rof R.
	˜

	the set {vn}such that, for all n ≥ N, 
	Then for any ε, there exists a suﬃciently large N 
	.... 
	.... 
	Z
	Z 
	φ(xn, y, vn)dζn(y) − φ(x, y, v)dζ(y) 
	Y 
	Y 
	Y

	.... 
	....
	+ 
	.... 
	.... 
	Z

	Z 
	φ(x, y, v)dζn
	(y) − 
	φ(x, y, v)dζ(y) 
	.... 
	Z
	Z 
	≤ 
	φ(xn, y, vn)dζn
	(y) − 
	φ(x, y, v)dζn(y) 
	YY 
	(φ(xn, y, vn) − φ(x, y, v)dζn(y)) 
	YY 
	ε 
	.... 
	....
	Z 
	≤ 
	+ 
	2
	Y 
	εε 
	Z 
	≤ dζn(y)+ 
	22
	Y 
	≤ ε, 
	where the ﬁrst appearance of ε/2 follows from (D.2) and the second follows from the uniform continuity of the function φ on the compact set X × Y × R. A similar argument applies to establish continuity of πΔ. 
	˜

	If both φ and π are quasilinear, then the restriction to deterministic transfers is without loss of generality, as both the agent’s and the principal’s preferences only depend on the expected transfer. In the general case this is not so, raising the question whether we can incorporate stochastic transfers in our model. That we can do so is not immediately obvious because the duality theory developed in Sections 2 and 3 hinges on a tariﬀ being a map into the real numbers. However, while doing so would be red
	include the speciﬁcation of a monetary transfer.
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	D.3 Moral Hazard in the Principal-Agent Model 
	D.3 Moral Hazard in the Principal-Agent Model 
	We have considered adverse-selection principal-agent models. Following Myerson (1982), Laﬀont and Tirole (1993), Laﬀont and Martimort (2002, Section 7.1), Kadan, Reny, and Swinkels (2017) and others, one might extend the model to encompass moral hazard. The recipe for incorporating moral hazard is similar to that for stochastic contracts. We oﬀer a simple illustration. 
	Suppose the agent must choose an eﬀort level e ∈ [0, 1] that induces a probability mass function f(z, e) with support on the ﬁnite set Z, from which an output z is realized. The principal cannot observe the agent’s eﬀort. Once again, we can view the agent as choosing a decision y and paying a transfer v(y) to the principal. A decision y now is a function 
	w : Z → [, ] identifying, for each output level z, the wage w(z) ∈ [, ] paid by the principal to the agent if output z is realized. The agent’s utility from wage w, output z, eﬀort level e and transfer v is given by u(x, e, w − v), while the principal’s utility is z − (w − v). 
	w
	w
	w
	w

	The set X is again a compact set of agent types. We take the set Y to be the set of functions w : Z → [, ]. Then we let 
	w
	w

	X 
	φ(x, w,v) = max u(x, e, w(z) − v)f(z, e). 
	e∈[0,1] 
	z∈Z 
	We let E(x, w) be the set of maximizers of this problem, and let the principal’s utility be 
	X 
	π(x, w,v)= max (z − (w(z) − v))f(z, e). 
	e∈E(x,w) 
	z∈Z 
	Assuming that u and f are continuous, it follows from Berge’s maximum theorem that φ is continuous, and hence Assumption 1 is satisﬁed. The function π(x, w,v) is upper 
	For example, let q ∈ [0,q¯] be the quantity of some good. Ordinarily, we would take Y = [0,q¯] and then suppose that a monopolistic seller (the principal) with utility function π(x, q, v) designs a tariﬀ specifying payments v(q) for all possible quantities that a consumer (the agent) with preferences described by the utility function φ(x, q, v) might want to buy. Instead, we may take Y=[0,q¯]×[0,t] and suppose that the seller prices 
	34
	ˆ

	¯bundles (q, t) ∈ Y , consisting of a quantity q of the good and a rebate t ∈ [0,t] that the consumer receives 
	¯if he buys the bundle (q, t) at price v(q, t). Setting φ(x, y, v)= φ(x, q, v − t) and πˆ(x, y, v)= π(x, q, v − t) for y =(q, t) then yields a principal-agent model (X, φ, µ, ˆ
	ˆ
	ˆ

	Y, π, ) that satisﬁes Assumption 1 and 3 if the original model (X, Y, φ, µ, π, ) does so and describes the same underlying economic environment. 
	ˆ
	u
	u

	semicontinuous. We would again have Assumptions 1 and 3 satisﬁed, except that the function π is only semicontinuous. However, this suﬃces for an argument analogous to that of Section 5. 
	One might want to generalize this illustration in many ways, including allowing an inﬁnite set of possible outputs and relaxing the bounds on the function w. Our results will apply as long as attention is restricted to circumstances in which the set Y can reasonably be taken to be compact. 
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