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Abstract

We consider identification in a class of nonseparable nonparametric simultaneous equa-
tions models introduced by Matzkin (2008). These models combine standard exclusion
restrictions with a requirement that each structural error enter through a “residual
index” function. We provide constructive proofs of identification under several sets
of conditions, demonstrating some of the available tradeoffs between conditions on
the support of the instruments, restrictions on the joint distribution of the structural
errors, and restrictions on the form of the residual index function.
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1 Introduction

Economic theory typically produces systems of equations that characterize equilibrium out-

comes that might be observable to empirical researchers. The classical supply and demand

framework is the most familiar of such models, but systems of simultaneous equations arise

in a wide variety of contexts in which multiple agents interact or a single agent makes inter-

related choices. The identifiability of such models is therefore a fundamental question for

a wide range of topics in empirical economics. Early work on identification treated systems

of simultaneous equations as a primary focus.1 For example, Fisher’s (1966) monograph,

entitled The Identification Problem in Econometrics, considered only identification of simul-

taneous equations models with the explanation (p. vii), “Because the simultaneous equation

context is by far the most important one in which the identification problem is encountered,

the treatment is restricted to that context.”2

Although there has been substantial recent interest in the identification of nonparametric

economic models that feature endogenous regressors and nonseparable errors, there remain

remarkably few results for fully simultaneous systems. A general nonparametric simultane-

ous equations model can be written

mj(Y, Z, U) = 0 j = 1, . . . , J (1)

where J ≥ 2, Y = (Y1, . . . , YJ) ∈ RJ are the endogenous variables, U = (U1, . . . , UJ) ∈ RJ

are the structural errors, and Z is a vector of exogenous variables. Assuming m is invertible

in U ,3 this system of equations can be written in its “residual”form

Uj = ρj(Y, Z) j = 1, . . . , J. (2)

1Many prominent examples can be found in Cowles Commission Monograph 10 and Cowles Foundation
Monograph 14.

2See also the discussion in Manski (1995).
3See, e.g., Palais (1959), Gale and Nikaido (1965), and Berry, Gandhi, and Haile (2013) for conditions

that can be used to show invertibility in different contexts.
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Unfortunately, there are no known identification results for this fully general model, and

most recent work has considered a triangular restriction of (1) that rules out many important

economic applications.

In this paper we consider identification in a class of fully simultaneous models introduced

by Matzkin (2008). These models take the form

mj(Y, Z, δ) = 0 j = 1, . . . , J.

where δ = (δ1 (Z,X1, U1) , . . . , δJ (Z,XJ , UJ))′ and

δj (Z,Xj, Uj) = gj (Z,Xj) + Uj. (3)

Here X = (X1, . . . , XJ) ∈ RJ are observed exogenous variables specific to each equation and

each gj (Z,Xj) is assumed to be strictly increasing in Xj.

This formulation respects traditional exclusion restrictions in that Xj is excluded from

equations k 6= j (e.g., a “demand shifter” enters only the demand equation). However, it

restricts (1) by requiring Xj and Uj to enter through a “residual index”δj (Z,Xj, Uj). If we

again assume invertibility of m (now in δ– see the examples below), we obtain the analog of

(2),

δj (Z,Xj, Uj) = rj (Y, Z)j j = 1, . . . , J

or, equivalently,

rj (Y, Z) = gj (Z,Xj) + Uj j = 1, . . . , J. (4)

Below we provide several examples of important economic applications in which this structure

can arise.

Matzkin (2008, section 4.2) considered a two-equation model of the form (4) and showed

that it is identified whenX has large support and the joint density of U satisfies certain shape

restrictions.4 Matzkin (2010) develops an estimation approach for such models, focusing

4Precise statements of these restrictions and other technical conditions are given below.
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on the case in which each function δj is linear in Xj (with coeffi cient normalized to 1),

and provides some additional identification results.5 We provide a further investigation of

identification in this class of models under several alternative sets of conditions.

We begin with the model and assumptions of Matzkin (2008). Matzkin’s analysis relied

substantial new machinery– primarily, a new characterization of observational equivalence–

and proved identification by contradiction. We start by showing neither is necessary: we

offer a constructive proof using a standard change-of-variables technique. We also show that

the model is overidentified. We then move to the main contribution of the paper, which

focuses on the case in which gj (Z,Xj) is linear in Xj (as in Matzkin (2010)). We show

that in this case there is a range of suffi cient conditions that trade off assumptions on the

support of X and restrictions on the joint density of U . We first show that Matzkin’s (2008,

2010) large support assumption can be dropped if one modifies the density restriction. In

fact, for a large class of density functions, the support of X can be arbitrarily small. We

then show that one can also go to the opposite extreme: if one retains the large support

assumption, all restrictions on the joint density can be dropped. Finally, we explore an

alternative rank condition for which we lack suffi cient conditions on primitives, but whose

satisfaction is verifiable.

All our proofs are constructive; i.e., they provide a mapping from the observables to

the functions that characterize the model. Constructive proofs can make clear how observ-

able variation reveals the economic primitives of interest. They may also suggest possible

estimation approaches, although that is a topic we leave for future work.

Prior Results for Nonparametric Simultaneous Equations Brown (1983), Roehrig

(1988), Brown and Matzkin (1998), and Brown and Wegkamp (2002) have previously con-

sidered identification of simultaneous equations models, assuming one structural error per

equation and focusing on cases where the structural model (1) can be inverted to solve for

the “residual equation”(2). A claim made in Brown (1983) and relied upon by the others

5In Matzkin (2010) the index structure and restriction gj (Xj) = Xj follow from Assumption 3.2 (see also
equation T.3.1).
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implied that traditional exclusion restrictions would identify the model when U is indepen-

dent of Z. Benkard and Berry (2006) showed that this claim is incorrect, leaving uncertain

the nonparametric identifiability of fully simultaneous models.

A major breakthrough in this literature was Matzkin (2008).6 For models of the form (2)

with U independent of Z, Matzkin (2008) provided a new characterization of observational

equivalence and showed how this could be used to prove identification in several special

cases. These included a linear simultaneous equations model, a single equation model, a

triangular (recursive) model, and a fully simultaneous nonparametric model (her “supply

and demand”example) of the form (4) with J = 2. The last of these easily generalizes

to J > 2. To our knowledge this was the first result demonstrating identification in a

fully simultaneous nonparametric model with nonseparable errors. More recently, Matzkin

(2010), while focused on estimation, has included constructive identification results for a

model that could be extended to that we consider. Like us, she considers identification

using a combination of restrictions on the support of X and on the joint density fU .

Relation to Transformation Models The model (4) considered here can be interpreted

as a generalization of the transformation model to a system of simultaneous equations. The

usual (single-equation) semiparametric transformation model (e.g., Horowitz (1996)) takes

the form

t (Yj) = Zjβ + Uj (5)

where Yi ∈ R, Ui ∈ R, and the unknown transformation function t is strictly increasing. In

addition to replacing Zjβ with gj (Z,Xj),7 (4) generalizes (5) by dropping the requirement of

a monotonic transformation function and, more fundamental, allowing a vector of outcomes

Y to enter each unknown transformation function.

6See also Matzkin (2007).
7A recent paper by Chiappori and Komunjer (2009) considers a nonparametric version of the single-

equation transformation model. See also the related paper by Berry and Haile (2009).
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Relation to Triangular Models Much recent work has focused on models with a tri-

angular (recursive) structure (see, e.g., Chesher (2003), Imbens and Newey (2009), and

Torgovitsky (2010)). A two-equation version of the triangular model is

Y1 = m1(Y2, Z,X1, U1)

Y2 = m2(Z,X1, X2, U2)

with U2 a scalar monotonic error and with X2 excluded from the first equation. In a supply

and demand system, for example, Y1 might be the quantity of the good, with Y2 being

its price. The first equation would be the structural demand equation, in which case the

second equation would be the reduced-form equation for price, with X2 as a supply shifter

excluded from demand. However, in a supply and demand context– as in many other

traditional simultaneous equations settings– the triangular structure is diffi cult to reconcile

with economic theory. Typically both the demand error and the supply error will enter the

reduced form for price. Thus, one obtains a triangular model only in the special case that

the two structural errors monotonically enter the reduced form for price through a single

index.

The triangular framework therefore requires that at least one of the reduced-form equa-

tions feature a monotone index of the all original structural errors. This is an index as-

sumption that is simply different from the index restriction of the model we consider. Our

structure arises naturally from a fully simultaneous structural model with a nonseparable

residual index; the triangular model will be generated by other kinds of restrictions on the

functional form of simultaneous equations models. Examples of simultaneous models that

do reduce to a triangular system can be found in Benkard and Berry (2006), Blundell and

Matzkin (2010) and Torgovitsky (2010). Blundell and Matzkin (2010) have recently provided

a necessary and suffi cient condition for the simultaneous model to reduce to the triangular

model, pointing out that this condition is quite restrictive.
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Outline We begin with some motivating examples in section 2. Section 3 then completes

the setup of the model. Our main results are presented in sections 4 through 6, followed by

our exploration of a rank condition in section 7.

2 Examples

Example 1. Consider a nonparametric version of the classical simultaneous equations model,

where the structural equations are given by

Yj = Γj (Y−j, Z,Xj, Uj) j = 1, . . . , J.

Examples include classical supply and demand models or models of peer effects. The residual

index structure is imposed by requiring

Γj (Y−j, Z,Xj, Uj) = γj (Y−j, Z, δj (Z,Xj, Uj)) ∀j

where δj (Z,Xj, Uj) = gj (Z,Xj) + Uj. This model features nonseparable structural errors

but requires them to enter the nonseparable nonparametric function Γj through the index

δj (Z,Xj, Uj). If each function γj is invertible (e.g., strictly increasing) in δj (Z,Xj, Uj) then

one obtains (4) from the inverted structural equations by letting rj = γ−1
j . Identification of

the functions rj and gj implies identification of Γj.

Example 2. Consider a nonparametric version of the Berry, Levinsohn, and Pakes (1995)

model of differentiated products markets. Market shares of each product j in market t are

given by

Sjt = σj (Pt, g (Xt) + ξt) (6)

where g (Xt) = (g1 (X1t) · · · gJ (XJt))
′, Pt ∈ RJ are the prices of products 1, . . . , J , Xt ∈ RJ

is a vector of product characteristics (all other observables have been conditioned out), and

ξt ∈ RJ is a vector of unobserved characteristics associated with each product j and market t.

6



Prices are determined through oligopoly competition, yielding a reduced form pricing equation

Pjt = πj (Xt, g (Xt) + ξt, h(Zt) + ηt) j = 1, . . . , J (7)

where Zt ∈ RJ is a vector of observed cost shifters associated with each product (other

observed cost shifters have been conditioned out), and ηt ∈ RJ is a vector of unobserved cost

shifters. Parallel to the demand model, h takes the form h (Zt) = (h1 (Z1t) · · · hJ (ZJt))
′,

with each hj strictly increasing. Berry and Haile (2013) show that this structure follows from

a nonparametric random utility model of demand and standard oligopoly models of supply

under appropriate residual index restrictions on preferences and costs. Unlike Example 1,

here the structural equations specify each endogenous variable (Sjt or Pjt) as a function of

multiple structural errors. Nonetheless, Berry, Gandhi, and Haile (2013) and Berry and

Haile (2013) show that the system can be inverted, yielding a 2J × 2J system of equations

gj (Xjt) + ξjt = σ−1
j (St, Pt)

hj (Zjt) + ηjt = π−1
j (St, Pt)

where St = (S1t, . . . , SJt), Pt = (P1t, . . . , PJt). This system takes the form of (4). Berry

and Haile (2013) show that identification of the unknown functions in this system implies

identification of demand, marginal costs, all structural errors, and the reduced form for

equilibrium prices.

Example 3. Consider identification of a production function in the presence of unobserved

shocks to the marginal product of each input. Output is given by Q = F (Y, U), where Y ∈ RJ

is a vector of inputs and U ∈ RJ is a vector of unobserved factor-specific productivity shocks.

Let P and W denote the (exogenous) prices of the output and inputs, respectively. The

observables are (Q,P,W, Y ). With this structure, input demand is determined by a system

of first-order conditions

p
∂F (y, u)

∂yj
= wj j = 1, . . . , J (8)
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whose solution can be written

yj = ηj (p, w, u) j = 1, . . . , J.

Observe that the reduced form for each Yj depends on the entire vector of shocks U . The index

structure can be imposed by assuming that each structural error Uj enters as a multiplicative

shock to the marginal product of the associated input, i.e.,

∂F (y, u)

∂yj
= fj (y)uj

for some function fj. The first-order conditions (8) then take the form (after taking logs)

ln (fj (y)) = ln

(
wj
p

)
− ln (uj) j = 1, . . . , J.

which have the form of our model (4). The results below will imply identification of the

functions fj and, therefore, the realizations of each Uj. Since Q is observed, this implies

identification of the production function F .

3 Model

3.1 Setup

The observables are (Y,X,Z). The exogenous observables Z, while important in applications,

add no complications to the analysis of identification. Thus, from now on we drop Z from

the notation. All assumptions and results should be interpreted to hold conditional on a

given value of Z.

Stacking the equations in (4), we then consider the model

r (Y ) = g (X) + U (9)
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where g (X) = (g1 (X1) , . . . , gJ (XJ))′. We let X = int(supp(X)) and Y = int(supp (Y )).

We maintain the following assumptions on the model throughout.

Assumption 1. (a) g is differentiable, with ∂gj (xj) /∂xj > 0 for all j, xj;

(b) r is one-to-one on Y, differentiable on Y, and has nonsingular Jacobian matrix

J(y) =


∂r1(y)
∂y1

. . . ∂r1(y)
∂yJ

...
. . .

...

∂rJ (y)
∂y1

. . . ∂rJ (y)
∂yJ


for y ∈ Y;

(c) U is independent of X and has positive joint density function fU on RJ .

The following result documents two useful implications of Assumption 1.

Lemma 1. Under Assumption 1, (i) ∀y ∈ Y, supp(X|Y = y) =supp(X); and (ii) ∀x ∈ X ,

supp(Y |X = x) =supp(Y ).

Proof. Both claims follow immediately from (9) and the assumption that U is independent

of X with support RJ . �

For some results we will strengthen the smoothness assumption on r, allowing us to

exploit the following result.

Lemma 2. Let Assumption 1 hold and suppose that r ∈ C1. Then Y is path-connected.

Proof. Because r is one-to-one, continuously differentiable, and has nonzero Jacobian de-

terminant, it has a continuous inverse r−1 on Y such that Y = r−1 (g(X) + U). Since

supp(U |X) = RJ , the result follows from the fact that the image of a path-connected set

(here RJ) under a continuous mapping is path-connected. �
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3.2 Normalizations

We impose three standard normalizations.8 First, observe that all relationships between

(Y,X, U) would be unchanged if for some constant κj, gj (Xj) were replaced by gj (Xj) + κj

while rj (Y ) is replaced by rj (Y ) + κj. Thus, without loss, for an arbitrary y0 ∈ Y we set

rj
(
y0
)

= 0 ∀j. (10)

Given this restriction, we still require normalizations on the location and scale of the unob-

servables Uj, as usual.9 Since (9) would continue to hold if both sides were multiplied by a

nonzero constant, we normalize the scale of Uj by taking an arbitrary x0 ∈ X and setting

∂gj
(
x0
j

)
∂xj

= 1 ∀j. (11)

And since (9) would be unchanged if gj (Xj) were replaced by gj (Xj) + κj for some constant

κj while Uj is replaced by Uj − κj, we fix the location of Uj by setting

gj
(
x0
j

)
= 0 ∀j. (12)

3.3 Change of Variables

All of our arguments below start with the standard strategy of relating the joint distribution

(or density) of observables to the that of the unobservables U .10 Let φ (y, x) denote the

(observable) conditional density of Y |X evaluated at y ∈ Y, x ∈ X . This density exists

8We follow Horowitz (1982, p. 168-169), who makes equivalent normalizations in his semiparametric
single-equation version of our model. Alternatively we could follow Matzkin (2008), who makes no normal-
izations in her supply and demand example, instead showing that the derivatives of r and g are identified
up to scale.

9Often these restrictions are without loss as well, although one can imagine applications in which the
location and/or scale of Uj has economic meaning.
10See, e.g., Koopmans (1945) and Hurwicz (1950).

10



under the conditions above and can be expressed as

φ (y, x) = fU (r (y)− g(x)) |J(y)| (13)

or, equivalently

lnφ (y, x) = ln fU (r (y)− g(x)) + ln |J(y)| . (14)

We treat φ (y, x) as known for all x ∈ X , y ∈ Y .

4 A Constructive Proof of Matzkin’s Result

We begin by providing a constructive proof of the identification result in Matzkin (2008,

section 4.2). This relies on additional regularity conditions, as well as conditions on the

support of g(X) and on the joint density fU .11

Assumption 2. fU is differentiable, and r is twice differentiable.

Assumption 3. supp(g (X)) = RJ .

Assumption 4. ∃ū ∈ RJ such that ∂fU (ū)
∂uj

= 0 ∀j.

Assumption 5. For all j and almost all ûj ∈ R, ∃ û−j ∈ RJ−1 such that for û = (ûj, û−j) ,

∂fU (û)
∂uj

6= 0 and ∂fU (û)
∂uk

= 0 ∀k 6= j.

Theorem 1. Under Assumptions 1—5, the model (r, g, fU) is identified.

11We allow J > 2 although this does not change the argument, as observed by Matzkin (2010). Our
Assumption 5 is weaker than its analog in Matzkin (2008), which uses the quantifier “for all ûj”instead of
“for almost all ûj .” We interpret the weaker version as implicit in Matzkin (2008). The stronger version
would rule out many standard densities, including multivariate normals. Matzkin (2010), by imposing the
additional restriction gj (xj) = xj∀j, allows one to replace “for almost all ûj”with “for some ûj”with only
minor adjustment to the proof. The same is true of our proof. The regularity conditions we employ here
slightly weaken those assumed in Matzkin (2008, 2010).
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Proof. Differentiating (14), we obtain

∂ lnφ (y, x)

∂xj
= −∂ ln fU (r (y)− g(x))

∂uj

∂gj (xj)

∂xj
(15)

∂ lnφ (y, x)

∂yk
=

∑
j

∂ ln fU (r (y)− g(x))

∂uj

∂rj (y)

∂yk
+
∂ ln |J(y)|

∂yk
. (16)

Substituting (15) into (16) gives

∂ lnφ (y, x)

∂yk
=
∑
j

−∂ lnφ (y, x)

∂xj

∂rj (y) /∂yk
∂gj (xj) /dxj

+
∂ ln |J(y)|

∂yk
. (17)

For every y ∈ Y, Assumptions 3 and 4 imply that there exists x̄ (y) such that

∂fU (r (y)− g (x̄ (y)))

∂uj
= 0 ∀j.

From (15) and ∂gj(xj)

∂xj
> 0,

∂fU (r (y)− g (x))

∂uj
= 0 iff

∂ lnφ (y, x)

∂xj
= 0. (18)

Since ∂ lnφ(y,x)
∂xj

is known for all y ∈ Y , x ∈ X , x̄ (y) may be treated as known for all y ∈ Y.

Further, by (16),
∂ lnφ (y, x̄ (y))

∂yk
=
∂ ln |J(y)|

∂yk

so we can rewrite (17) as

∂ lnφ (y, x)

∂yk
− ∂ lnφ (y, x̄ (y))

∂yk
=
∑
j

−∂ lnφ (y, x)

∂xj

∂rj (y) /∂yk
∂gj (xj) /∂xj

. (19)

Take an arbitrary (j, xj) and observe that with (18) and U |= X, Assumptions 3 and 5 imply
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that for almost all y there exists x̂j (y, xj) ∈ X such that x̂jj (y, xj) = xj and

∂ lnφ (y, x̂j (y, xj))

∂xj
6= 0 (20)

∂ lnφ (y, x̂j (y, xj))

∂xk
= 0 ∀k 6= j. (21)

Since the derivatives ∂ lnφ(y,x)
∂x`

are observed for all y ∈ Y , x ∈ X , the points x̂j (y, xj) can be

treated as known. Taking xj = x0
j , (11), (19) and (21) yield

∂ lnφ
(
y, x̂j

(
y, x0

j

))
∂yk

− ∂ lnφ (y, x̄ (y))

∂yk
= −

∂ lnφ
(
y, x̂j

(
y, x0

j

))
∂xj

∂rj (y)

∂yk
k = 1, . . . , J.

By (20) and continuity of ∂rj(y)

∂yk
, these equations identify ∂rj(y)

∂yk
for all j, k, and y ∈ Y. Now

fix Y at an arbitrary value ỹ ∈ Y. For any j and xj 6= x0
j , (19) and (21) yield

∂ lnφ (ỹ, x̂j (ỹ, xj))

∂yk
− ∂ lnφ (ỹ, x̄ (ỹ))

∂yk
= −∂ lnφ (ỹ, x̂j (y, xj))

∂xj

∂rj (ỹ) /∂yk
∂gj (xj) /dxj

k = 1, . . . , J.

(22)

By (20), (22) uniquely determines ∂gj (xj) /dxj as long as the known value
∂rj(ỹ)

∂yk
is nonzero

for some k. This is guaranteed by the maintained assumption |J(y)| 6= 0 ∀y ∈ Y. Thus,
∂gj(x)

∂xj
is identified for all j and x ∈ X . With the boundary conditions (10) and (12) and

Lemma 2, we then obtain identification of the functions gj and rj. Identification of fu then

follows from (9). �

The argument also makes clear that the model is overidentified, since the choice of ỹ

before (22) was arbitrary.

Remark 1. Under Assumptions 1—5, the model is testable.

Proof. Solving (22) for ∂gj (xj) /dxj at ỹ = y′ and at ỹ = y′′, we obtain the overidentifying

restrictions

∂ lnφ(y′,x̂j(y′,xj))
∂xj

∂rj(y
′)

∂yk

∂ lnφ(y′,x̂j(y′,xj))
∂yk

− ∂ lnφ(y′,x̄(y′))
∂yk

=

∂ lnφ(y′′,x̂j(y′′,xj))
∂xj

∂rj(y
′′)

∂yk

∂ lnφ(y′′,x̂j(y′′,xj))
∂yk

− ∂ lnφ(y′′,x̄(y′′))
∂yk

13



for all j, k, xj and y′, y′′ ∈ Y. �

5 Identification without Large Support

In this section and the next, we impose linearity of each function gj.

Assumption 6. gj (xj) = xjβj ∀j, xj.

With Assumption 6 we are still free to make the scale normalization (11); thus, without

further loss we set βj = 1 ∀j. The restricted model we consider here is then identical to

that studied in Matzkin (2010).

We drop Assumptions 2—5 and instead assume the following.12

Assumption 7. r ∈ C1.

Assumption 8. X is nonempty.

Assumption 9. (i) fU is twice differentiable; and (ii) for almost all y ∈ Y there exists

x∗ (y) ∈ X such that the matrix ∂2 ln fU (r(y)−g(x∗(y)))
∂u∂u′ is nonsingular.

Assumption 7 weakens the smoothness condition on r required for Theorem 1. As-

sumption 8 replaces the large support assumption with a requirement that the support have

nonempty interior. Assumption 9 requires that the log density have nonsingular Hessian

matrix at points u∗ = r(y)− x reachable through the support of X. A strong suffi cient con-

dition is that ∂2 ln fU (u) /∂u∂u′ be nonsingular almost everywhere; in that case, the support

of X can be arbitrarily small. This suffi cient condition for Assumption 9 is satisfied by many

standard joint probability distributions. For example, it holds under when ∂2 ln fU (u)
∂u∂u′ is neg-

ative definite almost everywhere– a property of the multivariate normal (see the Appendix)

12For a twice differentiable function Ψ on RJ , we use the notation ∂2Ψ(z)
∂z∂z′ to denote the matrix

∂2Ψ(z)
∂z1∂z1

· · · ∂2Ψ(z)
∂zJ∂z1

...
. . .

...
∂2Ψ(z)
∂z1∂zJ

· · · ∂2Ψ(z)
∂zJ∂zJ

 .
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and many other log-concave densities (see, e.g., Bagnoli and Bergstrom (2005) and Cule,

Samworth, and Stewart (2010)). Examples of densities that violate this suffi cient condition

for Assumption 9 are those with flat (uniform) or log-linear (exponential) regions.

Theorem 2. Under Assumptions 1 and 6—9, the model (r, fU) is identified.

Proof. Differentiation of (14) with respect to xj and then yk gives (after setting gj (xj) = xj)

∂2 lnφ (y, x)

∂xj∂yk
=
∑
`

−∂
2 ln fu (r (y)− x)

∂uj∂u`

∂r` (y)

∂yk
∀y, x, k, `. (23)

Differentiating (14) with respect to xj and then x` gives

∂2 lnφ (y, x)

∂xj∂x`
=
∂2 ln fu (r (y)− x)

∂uj∂u`

so that (23) can be rewritten

∂2 lnφ (y, x)

∂xj∂yk
=
∑
`

−∂
2 lnφ (y, x)

∂xj∂x`

∂r` (y)

∂yk
∀y, x, k, `.

In matrix form, this yields

A (x, y) = B (x, y) J (y)

where A (x, y) = ∂2 lnφ(y,x)
∂x∂y′ , B (x, y) = −∂2 lnφ(y,x)

∂x∂x′ . A (x, y) and B (x, y) are known for all

x ∈ X , y ∈ Y. Assumption 9 ensures that for almost all y, B (x, y) is invertible at a point

x = x∗ (y), giving identification of J (y) and, thus, ∂rj(y)

∂yk
for all j, k, y ∈ Y. Identification of

r (y) then follows as in Theorem 1, using the boundary condition (10).Identification of fU

then follows from the equations Uj = rj(Y )−Xj. �

This result offers a trade-off between assumptions on the support of X and restrictions

on the density fU . At one extreme, Assumption 9 holds with arbitrarily small support for X

when ∂2 ln fU (u) /∂u∂u′ is nonsingular almost everywhere (see the discussion above). At the

opposite extreme, with large support for X, Assumption 9 holds when there is a single point

u∗ at which ∂2 ln fU (u∗)
∂u∂u′ is nonsingular. Between these extremes are cases in which ∂2 ln fU (u)

∂u∂u′ is
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nonsingular in a neighborhood (or set of neighborhoods) that can be reached for any value

of Y through the available variation in X.

6 Identification without Density Restrictions

Maintaining the assumed linearity of each function gj, the trade-off illustrated above can be

taken to the opposite extreme: under the large support condition of Matzkin (2008) there is

no need for a restriction on the joint density fU .13

Theorem 3. Under Assumptions 1, 3, and 6, the model (r, fu) is identified.

Proof. Recall that we have normalized βj = 1 ∀j without loss. Since

∫ ∞
−∞
· · ·
∫ ∞
−∞

fU (r (y)− x) dx = 1,

from (13) we obtain

fU (r (y)− x) =
φ (y, x)∫∞

−∞ · · ·
∫∞
−∞ φ (y, t) dt

.

Thus the value of fU (r (y)− x) is uniquely determined by the observables for all x ∈ RJ ,

y ∈ Y. Since ∫
x̃j≥xj ,x̃−j

fU (r (y)− x̂) dx̂ = FUj (rj (y)− xj) (24)

the value of FUj (rj (y)− xj) is identified for x ∈ RJ , y ∈ Y. By the normalization (11),

FUj
(
rj
(
y0
)
− x0

j

)
= FUj (0) .

For any y ∈ Y we can then find the value o
x (y) such that FUj

(
rj (y)− o

x (y)
)

= FUj (0),which

reveals rj (y) =
o
x (y). This identifies each function rj on the support of Y .Identification of

fU then follows from the equations Uj = rj (Y )−Xj. �

13The argument used to show Theorem 3 was first used by Berry and Haile (2013) in combination with
additional assumptions and arguments to demonstrate identification in models of differentiated products
demand and supply.

16



7 A Rank Condition

Here we explore an alternative invertibility condition that is suffi cient for identification and

may allow additional trade-offs between the support of X and the properties of the joint

density fU . Like the classical rank condition for linear models (or completeness conditions

for nonparametric models– e.g., Newey and Powell (2003) or Chernozhukov and Hansen

(2005)) the condition we obtain is not easily derived from primitives, but failure of this

condition is testable.

For simplicity, we restrict attention here to the case J = 2. Fix Y = y and consider

seven values of X,

x0 = (x0
1, x

0
2) , x2 = (x′1, x

0
2) ,

x1 = (x0
1, x
′
2) , x3 = (x′1, x

′
2) , x5 = (x′′1, x

′
2) ,

x4 = (x′1, x
′′
2) , x6 = (x′′1, x

′′
2)

(25)

where x0 is as in (11), and x′′j 6= x′j 6= x0
j . For ` ∈ {0, 1, . . . , 6}, rewrite (17) as

A`k = B`1
∂r1 (y) /∂yk

∂g1

(
x`1
)
/∂x1

+B`2
∂r2 (y) /∂yk

∂g2

(
x`2
)
/∂x2

+
∂

∂yk
|J (y)| k = 1, 2 (26)

where

A`k =
∂ lnφ

(
y, x`

)
∂yk

B`j =
∂ lnφ

(
y, x`

)
∂xj

.

A`k and B`j are known. Stacking the equations (26) obtained at all `, we obtain a system

of fourteen linear equations in the fourteen unknowns

∂rj (y) /∂yk
∂gj (xj) /∂xj

j, k = 1, 2; xj ∈
(
x0
j , x
′
j, x
′′
j

)
(27)

∂

∂yk
|J (y)| k = 1, 2.
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These unknowns are identified if the 14 ×14 matrix

B01 0 B02 0 0 0 0 0 0 0 0 0 1 0

0 B01 0 B02 0 0 0 0 0 0 0 0 0 1

0 0 B12 0 B11 0 0 0 0 0 0 0 1 0

0 0 0 B12 0 B11 0 0 0 0 0 0 0 1

B21 0 0 0 0 0 B22 0 0 0 0 0 1 0

0 B21 0 0 0 0 0 B22 0 0 0 0 0 1

0 0 0 0 B31 0 B32 0 0 0 0 0 1 0

0 0 0 0 0 B31 0 B32 0 0 0 0 0 1

0 0 0 0 B41 0 0 0 0 0 B42 0 1 0

0 0 0 0 0 B41 0 0 0 0 0 B42 0 1

0 0 0 0 0 0 B52 0 B51 0 0 0 1 0

0 0 0 0 0 0 0 B52 0 B51 0 0 0 1

0 0 0 0 0 0 0 0 B61 0 B62 0 1 0

0 0 0 0 0 0 0 0 0 B61 0 B62 0 1



(28)

representing the known coeffi cients of the linear system (26) has full rank. This holds iff the

determinant

(B12B31B42B51B22B01 −B12B31B62B51B22B01 −B12B31B42B61B22B01 (29)

+B21B02B42B61B52B31 +B42B61B52B31B12B01 −B42B61B52B31B12B21

+B12B51B62B41B22B01 −B21B02B11B32B42B51 +B21B02B11B32B62B51

−B21B02B32B51B62B41 −B32B51B62B41B12B01 +B32B51B62B41B12B21

−B21B02B11B42B61B52 +B21B02B11B32B42B61)2

is nonzero. With (17) and our normalizations, knowledge of ∂|J(y)|
∂yk

and ∂rj(y)/∂yk

∂gj(x0j)/∂xj
for all y,
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j, and k leads to identification of the model following the arguments above. Thus, we can

state the following proposition.

Proposition 4. Let Assumption 1 hold and suppose that for almost all y ∈ Y there exist

points x0, x1, . . . , x6 with the structure (25) such that x` ∈supp(X|Y = y) ∀` = 0, 1, . . . , 6,

and such that (29) is nonzero. Then the model (r, g, fU) is identified.

Our approach here exploits linearity of the system (26) in the ratios ∂rj(y)/∂yk

∂gj(x`j)/∂xj
in order

to provide a rank condition that is suffi cient for identification, despite the highly nonlinear

model. Two observations should be made, however. One is that we have not used all the

information available from the seven values of X; in particular, we used only ∂
∂yk
|J (y)| and

∂rj(y)/∂yk

∂gj(x0j)/∂xj
at each y, j,k to identify the model, yet the values of ∂rj(y)/∂yk

∂gj(x`j)/∂xj
for ` 6= 0 are also

directly obtained by solving (26). This provides a set of overidentifying restrictions and

suggests that it may be possible to obtain identification under weaker conditions. Second,

at each value of y the 14 linear unknowns in (27) are determined by just 10 unknown values

∂rj (y)

∂yk
j, k = 1, 2

∂gj (xj) /∂xj j = 1, 2; xj ∈
(
x′j, x

′′
j

)
∂

∂yk
|J (y)| k = 1, 2.

Although conditions for invertibility of a nonlinear system are much more diffi cult to obtain,

this again suggests overidentification, at least in some cases.

8 Conclusion

Simultaneous equations models play an important role in many economic applications. Un-

fortunately, identification results for simultaneous equations models have been limited almost

exclusively to parametric models or to settings admitting a recursive structure.

We have examined the identifiability of a class of nonparametric nonseparable simultane-

ous equations models with a residual index structure first explored by Matzkin (2008). The
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model incorporates standard exclusion restrictions and a requirement that each structural

error enter the system through an index that also depends on the corresponding instrument.

This is a significant restriction, but one that allows substantial generalization of standard

functional form restrictions in a variety of economic contexts. With this structure, nonpara-

metric identification can be obtained in a fully simultaneous system despite the challenges

pointed out by Benkard and Berry (2006). Indeed, we have provided constructive proofs of

identification for this model under several alternative sets of suffi cient conditions, illustrating

trade-offs between the assumptions one places on the support of instruments, on the joint

density of the structural errors, and on the form of the residual index.

Appendix: The Multivariate Normal

Matzkin (2010) includes two new identification result (Theorems 4.1 and 4.2) that do not

require large support for X. Like our Theorem 2, these results require a combination of

support and density restrictions, with the required support dependent on the true density.

We show here that with multivariate normal errors, the density restriction we use in

Theorem 2 is satisfied by the normal. In fact, the normal satisfies a much stronger condition

that allows Theorem 2 to deliver identification when X has arbitrarily small support. In

contrast, with a multivariate normal, Matzkin’s density requirements fail regardless of the

support of X.

Matzkin’s (2010) results concern a simplified version of the model with only 2 equations

and an instrument in only one equation:

U1 = r1 (Y )

U2 = r2 (Y ) +X.

We discuss her conditions for identification of this model, not those one might use to extend

her argument to the full model.
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Matzkin’s density condition for her Theorem 4.1 is the following:

Assumption 4.5. The density, fU of (U1, U2) is such that for all u1, there exists at least

one value u∗2 (u1) such that
∂2 log fU (u1, u

∗
2 (u1))

∂u2∂u2

= 0.

At any such value
∂2 log fU(u1,u∗2(u1))

∂u1∂u2
6= 0.

For her Theorem 4.2, a different combination of density and support conditions is used.

The density restriction is:

Assumption 4.5′. The density, fU of (U1, U2) is such that for all u1, there exist distinct

values u∗2 (u1) and u∗∗2 (u1) such that

∂ log fU (u1, u
∗
2 (u1))

∂u2

=
∂ log fU (u1, u

∗∗
2 (u1))

∂u2

= 0.

At any such values,
∂ log fU(u1,u∗2(u1))

∂u1
6= ∂ log fU(u1,u∗∗2 (u1))

∂u1
.

It is immediate that this latter condition fails when fU is a multivariate normal density

where, given any u1 there is a unique u2 such that
∂ log fU (u1,u2)

∂u2
= 0 (the unique maximizer

of the likelihood for U2 given U1 = u1). Thus we consider only her Assumption 4.5 below.

Suppose

fU (u) = (2π)−
J
2 |Σ|

1
2 exp

[
−1

2
(u− µ)′Σ−1 (u− µ)

]
where Σ is a nonsingular covariance matrix. This implies

∂2 log fU (u)

∂u∂u′
= −Σ−1.

Remark 2. There is no point u ∈ RJ at which ∂2 log fU (u)
∂uj∂uj

= 0 for any j. Thus, Assumption

4.5 fails.

Remark 3. Since −Σ−1 has inverse −Σ, our Assumption 9 holds.
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Note also that since Σ is a nonsingular covariance matrix, it is positive definite. This

means that ∂2 log fU (u)
∂u∂u′ is everywhere negative definite. As noted in the text, this allows

Theorem 2 to deliver identification with arbitrarily small support for X.
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