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Abstract. We consider a multiproduct monopoly pricing model. We
provide sufficient conditions under which the optimal mechanism can be
implemented via upgrade pricing—a menu of product bundles that are
nested in the strong set order. Our approach exploits duality methods to
identify conditions on the distribution of consumer types under which (a)
each product is purchased by the same set of buyers as under separate
monopoly pricing (though the transfers can be different), and (b) these
sets are nested.

We exhibit two distinct sets of sufficient conditions. The first set of
conditions weakens the monotonicity requirement of types and virtual
values but maintains a regularity assumption, i.e., that the product-by-
product revenue curves are single-peaked. The second set of conditions
establishes the optimality of upgrade pricing for type spaces with mono-
tone marginal rates of substitution (MRS)—the relative preference ratios
for any two products are monotone across types. The monotone MRS
condition allows us to relax the earlier regularity assumption.

Under both sets of conditions, we fully characterize the product bun-
dles and prices that form the optimal upgrade pricing menu. Finally, we
show that, if the consumer’s types are monotone, the seller can equiva-
lently post a vector of single-item prices: upgrade pricing and separate
pricing are equivalent.

Keywords: Revenue maximization · Mechanism design · Strong
duality · Upgrade pricing

1 Introduction

1.1 Motivation and Results

Pricing multiple goods with market power is a canonical problem in the theory of
mechanism design. It is also a challenge of growing importance and complexity
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2 D. Bergemann et al.

for online retailers and service providers, such as Amazon and Netflix. Both in
theory and in practice, designing the optimal mixed bundling mechanism, (i.e.,
pricing every subset of products) becomes exceedingly complex in the presence
of a large number of goods.

A natural question is then whether simpler pricing schemes are optimal under
suitable demand conditions. A simple, commonly used mechanism consists of
upgrade pricing, whereby the available options are ranked by set inclusion, i.e.,
some goods are only available as add-ons, Ellison (2005). For example, many
online streaming services use a tiered subscription model, whereby users can
pay to upgrade to a “premium package”—a subscription with a larger selection
of the provider’s content relative to the “basic package”, Philips (2017).

In this paper, we obtain sufficient conditions under which upgrade pricing
maximizes the seller’s revenue. Our approach consists of first identifying condi-
tions under which the consumer’s types can be ordered in terms of their absolute
or relative willingness to pay for the seller’s goods, and then ranking the goods
themselves by the profitability of selling them to larger sets of consumer types.
Our sufficient conditions not only establish the optimality of some upgrade pric-
ing menu: they also show that the optimal bundles are deterministic, and they
reveal the order in which they are ranked in the menu. That is, we identify all
the nested bundles that appear in the seller’s menu, and the profit-maximizing
price for each one.

Our results consist of two distinct sets of conditions. The first set of conditions
(Theorem 1) illustrates the essence upgrade pricing optimality in what we label
as “regular” settings. While these conditions are reminiscent of regularity in
one dimension, they are in fact weaker than the monotonicity of the buyer’s
multidimensional types and of the (item by item) Myersonian virtual values.
What we require is for the consumer’s types to be ranked in such a way that the
virtual values for each item are negative over an initial and positive over a final
segment. Furthermore, we require any consumer with a positive virtual value for
an item to also have a larger value for that item, relative to any type with a
negative virtual value. At the optimal prices, the lowest type buying each good is
indifferent between buying it and not buying it. Finally, the sets of types buying
each item are nested under the weak monotonicity property, which implies the
optimal allocation can be implemented via upgrade pricing.

The second set of conditions (Theorem 2) describes our best attempt at
extending our approach to non-regular distribution of types. In order to further
weaken the regularity requirement, we restrict attention to type spaces for which
the relative preference ratios for any two goods are monotone across types. An
example of ordered relative preferences is if higher types have a stronger prefer-
ence for good 2 over good 1. We refer to such a condition as “monotone marginal
rates of substitution” (monotone MRS).

The intuition for our two results can be grasped by considering the demand
functions for each good separately. Under monotonicity and monotone MRS, the
optimal monopoly prices for each of the goods are ranked. In the special case
where the Myersonian virtual values for our ordered types
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The Optimality of Upgrade Pricing 3

φk
i = θk

i −
1− Fi

fi

(
θk

i+1 − θk
i

)

are also monotone for each item k, the first set of conditions applies.
When virtual values are not monotone, however, they can cross zero more

than once. In that case, the result still holds, but the proof requires the right
ironing procedure. Our ironing procedure relaxes the standard approach of
Myerson (1981) and the literature up to Haghpanah and Hartline (2020). Specifi-
cally, we do not iron with the goal of monotone virtual values, which corresponds
to a concave revenue curve. Rather we iron towards single-crossing virtual values
which leads to a quasiconcave revenue curve. We then use the structure implied
by monotone MRS to derive a dual certificate of optimality.

Under either set of conditions, each good is purchased by the same set of
buyers that would buy it if that were the seller’s only product. We further show
(Theorem 3) that, if the consumer’s types are (not weakly) monotone, the seller
can equivalently post the vector of single-item monopoly prices—i.e., bundling
is redundant. For example, in the case of two goods sold separately, monotone
type spaces mean that no consumer type will buy good 2 without also buying
good 1. More generally, the seller benefits from restricting the set of bundles
the consumer can purchase through a proper menu of options with the upgrade
property. However, examples also show that implementability through separate
pricing is neither necessary nor sufficient for the optimality of upgrade pricing.

1.2 Related Literature

First and foremost, our paper contributes to the economics literature on product
bundling. The profitability of mixed bundling relative to separate pricing was
first examined by Adams and Yellen (1976), and further generalized by McAfee
et al. (1989). More recently, a number of contributions have studied the optimal
selling mechanisms in the case of two or three goods, and derived conditions for
the optimality of pure bundling (see, for example, Manelli and Vincent (2006)
and Pavlov (2011)). Daskalakis et al. (2017) use duality methods to character-
ize the solution of the multiproduct monopolist’s problem, and show how the
optimal mechanism may involve a continuum of lotteries over items. Bikhchan-
dani and Mishra (2020) derive conditions under which the optimal mechanism is
deterministic when the buyer’s utility is not necessarily additive. Finally, Ghili
(2021) establishes conditions for the optimality of pure bundling when buyers’
values are interdependent. Relative to all these papers, we focus on a specific
class of simple mechanisms, which includes pure bundling as a special case.

Hart and Nisan (2017) and Babaioff et al. (2014) also study the properties
of simpler schemes. The former derives a lower bound on the revenue obtained
from separate item pricing. The latter obtains an upper bound on the revenue
of the optimal mechanism, relative to the better of pure bundling and separate
pricing.

In the context of nonlinear pricing, Wilson (1993) suggested a “demand pro-
file” approach that determines the price of each incremental unit by treating it as
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4 D. Bergemann et al.

separate market. This approach is particularly attractive in settings where there
is a natural ordering over the items. This in particular is the case when there
is a homogeneous good that is offered in various quantities, such as in energy
markets for electricity or water. This approach naturally generates a sequence of
upgrade prices. The demand profile approach, and in particular the incremen-
tal pricing rule implied by it, does not always yield an optimal mechanism as
consumers may wish to obtain earlier units in order to obtain the later units.
Thus, a contribution of the current paper is to determine when upgrade pricing
is exactly optimal and then to find the upgrade prices as solutions to the global
revenue maximization problem rather than the incremental item problem. Other
papers make assumptions that make sure that a demand profile-type approach
yields an optimal mechanism. In Johnson and Myatt (2003), buyers have unit
demand and sellers offer different varieties of a single good. The approach in
their paper is to assume a quality ranking on the varieties and to solve for the
upgrade prices—the additional payments required to buy a better variety. The
survey of the nonlinear pricing literature by Armstrong (2016) covers related
approaches that optimize upgrades separately.

Our formulation of the dual problem follows Cai et al. (2016), who present a
general duality approach to Bayesian mechanism design. Cai et al. (2016) formu-
late virtual valuations in terms of dual variables, state the weak and the strong
duality results, and use them to establish lower bounds for relative performance
of simple mechanisms. An important contribution by Haghpanah and Hartline
(2020) exploits the duality machinery to provide sufficient conditions for the
exact optimality of a specific, simple mechanism—pure bundling—consisting of
offering a maximal bundle at a posted price. Under their sufficient conditions,
the dual variables can be recovered from a single-dimensional problem in which
the seller is restricted to bundle all items together.

We follow the approach of Haghpanah and Hartline (2020) by leveraging the
duality approach to provide sufficient conditions for the optimality of a particu-
lar class of mechanisms. Haghpanah and Hartline (2020) gave a characterization
of the optimality of the grand bundle, we provide a characterization for upgrade
pricing. As upgrade pricing allows multiple bundles to be present in the menu, we
cannot assign the dual variables by solving a one-dimensional problem. Instead,
we develop a novel ironing algorithm that generates these variables by ironing
different item’s revenue curves for different types. Under our sufficient conditions,
the so-constructed virtual surplus is maximized by an element-wise monotone
allocation that can be implemented by upgrade pricing; by complementary slack-
ness, this certifies the optimality of upgrade pricing. Because pure bundling is
one instance of upgrade pricing, our conditions differ from those of Haghpanah
and Hartline (2020).

Our ironing differs from existing ironing approaches using duality and tackles
a more general problem. In comparison to Haghpanah and Hartline (2020), we
prove optimality for mechanisms with menu size surpassing two. Fiat et al. (2016)
studies a two-parameter model, and uses an ironing approach that leads from
the revenue curves to their concave closure. Devanur et al. (2020) generalizes
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The Optimality of Upgrade Pricing 5

Fiat et al. (2016) to more general orders on the second parameter. Our approach
tackles optimality for an arbitrary finite number of items and varies the ironing
procedure. On a technical level, our ironing procedure yields quasi-concave ironed
revenue curves, whereas the ironed revenue curves in Haghpanah and Hartline
(2020); Fiat et al. (2016); Devanur et al. (2020) are concave.

Our results also feed into a literature specifying optimal finite mechanisms
for multi-dimensional types. (Daskalakis et al. 2017, section 7) for example char-
acterizes the optimal mechanisms for the two-good monopolist problem if the
optimal mechanism has a particular structure. While Daskalakis et al. (2017)
requires that the region of the type space that is not allocated any item is
not adjacent to all regions getting specific constant allocations, upgrade pricing
mechanisms consistently break this requirement.

1.3 Structure of the Paper

The model is introduced in Sect. 2. The first set of sufficient condition is presented
in Sect. 3. In Sect. 4, we present our results for monotone MRS type spaces. In
Sect. 5, we discuss the relationship between separate pricing and upgrade pricing.
We conclude in Sect. 6.

2 Model

We consider a standard multiple-good monopoly setting. There is a single seller
of d ≥ 1 goods and a single buyer. The seller’s marginal costs of production
are normalized to zero. The buyer’s utility function is additive across goods. We
refer to the vector of marginal utilities θi ∈ R

d as the buyer’s type. Therefore,
the utility of buyer type θi from the consumption vector q ∈ [0, 1]d is given by

U(θi, q) =
d∑

k=1

θk
i qk.

We also adopt the shorthand notation 〈θi, q〉 :=
∑d

k=1 θk
i qk. As a convention,

we denote types by subscripts and items by superscripts. The buyer’s utility is
quasi-linear in transfers and her outside option is also normalized to zero.

The buyer knows her type. From the seller’s perspective, the buyer’s type is
distributed over a finite set Θ ⊆ R

d
+, with |Θ| = n, according to the distribution

f ∈ Δ(Θ). For any positive integer n, we adopt the convention that [n] :=
{1, 2, . . . , n}, and we index types by i ∈ [n]. We let fi := f(θi) and denote the
cumulative distribution sequence by Fi =

∑i
j=1 fj , i ∈ [n].

The seller aims to maximize revenue. By the revelation principle, we can
focus on direct mechanisms (q, t) = (qi, ti)i∈{0}∪[n]. These mechanisms can be
interpreted as menus with n+1 items so that item i delivers consumption vector
qi at price ti and item (q0, t0) := (0, 0) captures the buyer’s outside option.

We call a menu upgrade pricing if {q0, q1, . . . , qn} can be ordered in the
component-wise partial order on R

d given by q ≤ q′ ⇔ ∀k ∈ [d] : qk ≤ (q′)k. Our
main goal is to provide conditions under which upgrade pricing maximizes the
seller’s revenue among all direct mechanisms.
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6 D. Bergemann et al.

3 Optimal Mechanisms for Regular Distributions

We will make prominent use of the (partial) Lagrangian duality-based certificate
of optimality used by Cai et al. (2016). We state the underlying duality result
to fix notation.

3.1 Duality

In what follows, we will associate with λji the Lagrange multiplier of the incen-
tive compatibility constraint of type θj deviating to type θi, j ∈ [n], i ∈ {0}∪ [n]:

〈qj , θj〉 − tj ≥ 〈qi, θj〉 − ti.

We note that the incentive constraints corresponding to λj0, j ∈ [n] are type
j’s individual rationality constraints. As a main tool in our analysis, we define
the multi-dimensional virtual values associated with Lagrange multipliers λ ∈
R

n × R
n+1 as

φλ
i := θi − 1

fi

n∑

j=1

λji(θj − θi). (1)

Lemma 1. A mechanism (qi, ti)i∈{0}∪[n] maximizes revenue if and only if there
exist multipliers λji, j ∈ [n], i ∈ {0} ∪ [n] such that

1. λji ≥ 0 (Non-Negativity)
2. (qi)i∈[n] optimizes max(qi)i∈[n]∈[0,1]n

∑n
i=1 fi〈qi · φλ

i 〉 (Virtual Welfare Maxi-
mization)

3. fi =
∑n

j=0 λij −
∑n

j=1 λji for all i ∈ [n] (Feasibility of Flow)
4. λji(〈qj , θj〉−tj−〈qi, θj〉−ti) = 0 for all j ∈ [n], i ∈ {0}∪ [n] (Complementary

Slackness)
5. There are transfers t such that (q, t) is incentive compatible and individually

rational (Implementability)

We call the dual variables λji, j ∈ [n], i ∈ [n] ∪ {0} flows from type j to
type i whenever they are non-negative and satisfy Lemma 1 item 3. This name is
inspired by flow conservation constraints from the maximum flow and minimum
cost flow problem in discrete mathematics (Korte and Vygen 2011).

The proof of this lemma is contained in the full version of this paper
Bergemann et al. (2021a).

3.2 A Sufficient Condition for Regular Distributions

Our first set of sufficient conditions for upgrade pricing optimality consists of a
weak monotonicity condition and a regularity condition.

We call a type distribution F weakly monotone with cutoffs i1, i2, . . . , id ∈ [n]
if for any i, j ∈ [n] and k ∈ {1, 2, . . . , d},

i ≤ ik ≤ j =⇒ θk
i ≤ θk

j .
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The Optimality of Upgrade Pricing 7

Note that weak monotonicity is strictly weaker than monotonicity: for each item,
only order comparisons with respect to a cutoff type need to hold, whereas types
above or below the cutoff can be arbitrarily ordered.

Similarly, a type distribution F is regular with respect to cutoffs
i1, i2, . . . , id ∈ [n] if for any i, j ∈ [n] and k ∈ {1, 2, . . . , d},

i ≤ ik ≤ j =⇒ φk
i ≤ 0 ≤ φk

j , (2)

where φi denotes the initial d-dimensional virtual values

φi := θi − 1− Fi

fi
(θi+1 − θi). (3)

The initial d-dimensional virtual values can be seen as multi-dimensional versions
of the virtual values in Myerson (1981).

We say that a type distribution F is compatibly weakly monotone and regular
if it is both weakly monotone and regular with respect to the same set of cutoffs.
When such cutoffs ik exist, they are essentially unique except between contiguous
types of vanishing virtual value φk

i and monotone types θk
i , i ∈ [n], k ∈ [d].

Subfigure 1a illustrates a type distribution with this property.
Our regularity condition can be equivalently stated in terms of the pseudo-

revenues
Rk

i := (1− Fi−1)θk
i . (4)

Subfigure 1c depicts pseudo-revenues. We call (4) pseudo-revenue because, with-
out an assumption that the values are monotone with respect to the component-
wise partial order, the pseudo-revenue does not correspond to the revenue from
sales of item k at a posted price of θk

i . In particular, because we have

Rk
i −Rk

i+1

fi
=

(1− Fi−1)θk
i − (1− Fi)θk

i+1

fi

=
fiθ

k
i − (1− Fi)(θk

i+1 − θk
i )

fi
= θk

i −
1− Fi

fi
(θk

i+1 − θk
i ) = φk

i , (5)

imposing regularity with respect to the cutoffs ik is equivalent to requiring that
Rk

i is single-peaked with peak ik. While pseudo-revenues do not have immediate
economic meaning, they are an important technical tool, in particular for our
analysis of non-regular distributions in Sect. 4.

Theorem 1. If the type distribution F is compatibly weakly monotone and regu-
lar with respect to cutoffs (ik)k∈[d], then upgrade pricing is optimal. In particular,
the following mechanism is optimal:

qk
i :=

{
1 i ≥ ik

0 else.
, i ∈ [n], k ∈ [d]. (6)
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8 D. Bergemann et al.

Fig. 1. Types, virtual values and pseudo-revenues for type space Θ = {(9/128,
27/64), (1/4, 3/2), (1/2, 2), (1, 1)} and type distribution f = (7/16, 3/16, 1/8, 1/4). The opti-
mal mechanism sells good 2 at a price of 1 and good 1 as an upgrade, also at a price
of 1. All types except θ1 buy good 2, and only type θ4 buys good 1.

Proof of Theorem 1. Define the dual variables

λ̂ji =

{
1− Fi if j = i + 1
0 else.

(7)

Observe that, by definition, λ̂ induces the initial virtual values, φi = φλ̂
i .

We check the properties of Lemma 1. Virtual welfare maximization,
Condition 2, follows from

qk
i = 1

(6)⇐⇒ Rk
i ≥ Rk

i+1

(5)⇐⇒ φk
i ≥ 0.

For flow preservation, Condition 3, observe that

n∑

j=1

λ̂ij −
n∑

j=0

λ̂ji = 1− Fi−1 − (1− Fi) = fi.

The mechanism is implementable, Condition 5, by assumption of compatible
weak monotonicity and regularity.

Finally, we need to check that complementary slackness (Condition 4) holds.
Observe that λ̂ij > 0 implies j = i − 1. Hence, all types must be indifferent
between their allocation and payment and the allocation and payment of the
next lower type. If the next lower type has the same allocation and payment,
this is clearly satisfied. Otherwise, this is the first type buying an upgrade. If
this type were not indifferent between buying it and not buying it, the price of
the upgrade could be raised, and the revenue increased, without affecting other
types’ incentives. Thus, this type must be indifferent between their allocation
(and payment) and the next lower type’s allocation. �

A
ut

ho
r 

Pr
oo

f



The Optimality of Upgrade Pricing 9

Our assumptions of regularity and weak monotonicity relax the monotonicity
of types and Myersonian virtual values by allowing for permutations above and
below the monopoly price. These assumptions nonetheless require that the set
of types that buy each object remains an upper selection, and conversely the set
of types that do not buy remains a lower selection. The intuition for why this
works is similar to the idea that the monopoly price does not depend on the
valuations of types that are not marginally buying, just as long as they do not
become marginal buyers.

These assumptions depend on the fixed order of types we have introduced
in the model. Thus, if there exists an order that satisfies these assumptions,
upgrade pricing is optimal. Furthermore, multiple orders of types might satisfy
the theorem’s conditions for a given type distribution F . In this case, the theorem
can be used to certify optimality of mechanism (6), based on the different orders.
As optimality of a mechanism for a distribution F does not depend on the order
on types, the revenue of (6) must be the same for all orders with which the
conditions of Theorem 1 are satisfied.

Our next set of conditions imposes similar requirements, strengthened appro-
priately to allow for non-regular type distributions, which require ironing.

4 Optimal Mechanisms for Non-regular Distributions

We now establish the optimality of an upgrade pricing mechanism in settings
without regularity. The weaker sufficient conditions will replace the regularity
condition and will allow for ironing to be part of the optimal mechanism. The
new sufficient conditions will serve to allow us to perform the ironing procedure
item-by-item, and limit the interaction of constraints across items. We say that
a type space Θ has monotone marginal rates of substitution if

1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ l ≤ d =⇒ θl
i

θk
i

≤ θl
j

θk
j

.

for any i, j ∈ [n], l, k ∈ [d].
Recall that pseudo-revenue is given by Rk

i = (1− Fi)θk
i .

We call a scalar sequence (Ri)i∈[n], quasi-concave if there is a cutoff i′ ∈ [n]
such that i′ ≤ i ≤ j or j ≤ i ≤ i′ implies Ri ≥ Rj . We call the point-wise
smallest quasi-concave sequence that point-wise dominates (Ri)i∈[n] its quasi-
concave closure and denote it by (Ri)i∈[n].

A
ut

ho
r 

Pr
oo

f



10 D. Bergemann et al.

Fig. 2. Type space and pseudo-revenues for type space Θ = {(57/64, 1), (1, 5/4),
(2, 3), (9/4, 5)} and type distribution f = (3/8, 1/4, 1/8, 1/4). The optimal mechanism sells
good 1 at a price of 57/64, and good 2 as an upgrade at a price of 5. All types buy good
1, and only type θ4 buys good 2.

We will make regular use of the sequence (R
k

i )i∈[n], the quasi-concave closure
of the pseudo-revenue for item k.

To allow for our construction of a dual certificate of optimality, we need
additional assumptions. These will be formulated in terms of candidate ironing
intervals. For a pseudo-revenue R, we call a set of contiguous types I ⊆ [n] with

R
k

i 
= Rk
i (8)

for all i ∈ I such that there is no superset of contiguous types I ′ ⊇ I such that
(8) holds for all i ∈ I ′, a candidate ironing interval for item k. (With slight
abuse of language, we refer to discrete sets of contiguous types as intervals.)
Every item k may have several candidate ironing intervals, and every type can
be contained in a candidate ironing interval for different items.

We relax the regularity assumption on pseudo-revenues Rk
i . Instead of assum-

ing regularity, i.e. Rk
i to be single-peaked with peak ik, we assume two properties

that are in combination weaker than regularity. We call a type distribution F
mostly regular if for some cutoffs ik ∈ arg maxi∈[n] R

k
i and any i such that

ik < i ≤ ik+1, the following hold:

1. (No partial overlap) If I is a candidate ironing interval of item k and J is a
candidate ironing interval of item k + 1, then either I ∩ J = ∅ and there is
i ∈ [n] such that I < i < J or J < i < I, or one of I, J is a subset of the
other excluding its endpoints.

2. (No ironing on neighboring maxima) For any ironing candidate interval I of
item k, ik, ik+1 /∈ I.

3. (Not too shuffled) For any candidate ironing interval I ⊆ {ik + 1, ik +
2, . . . , ik+1 − 1} and i ∈ I,

θk+1
min I ≤ θk+1

i θk
max I ≤ θk

max I+1

Finally, we call a distribution compatibly weakly monotone and mostly regular
if it is weakly monotone and mostly regular with respect to the same cutoffs ik,
k ∈ [d].
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The Optimality of Upgrade Pricing 11

Note that monotone MRS by itself is not a restrictive assumption. For exam-
ple, in two dimensions, every type set can be ordered in order of monotone MRS.
In combination with compatible weak monotonicity and mostly regularity, this
assumption becomes stronger.

Subfigure 2a shows the type space of a compatibly weakly monotone and
mostly regular type distribution, and Subfig. 2b its pseudo-revenues.

Fig. 3. Failure of no overlap: {2, 3} is a candidate ironing interval for item 2, {3, 4} is
a candidate ironing interval for item 1.

Conversely, Fig. 3 shows an instance of a distribution over a monotone MRS
type space that is not mostly regular. In particular, this example fails the first
condition, because it involves overlapping candidate ironing intervals. We will
use our assumptions to construct dual variables (λij)i,j∈[n] by ironing pseudo-
revenues for each item. In our proof that there is an optimal mechanism with
an upgrade pricing allocation, we will use monotone MRS to show that for each
type, ironing is only needed for two items, the lowest item in the MRS order that
the type bought, and the highest item in the MRS order that she didn’t buy.
We will use the first two conditions of mostly regularity to show that from these
two items, we can select a single item to iron at a time, while not changing the
other item’s virtual values in a way that will break virtual welfare maximization
of the allocation. As in Theorem 1, weak monotonicity ensures implementability
of an upgrade pricing allocation, i.e., the existence of a price vector (ti)i∈[n] such
that the mechanism (q, t) is incentive compatible and individually rational. To
allow for our ironing procedure to work, we also need a mild requirement on the
monotonicity of types beyond weak monotonicity. While weak monotonicity was
a requirement that could be formulated item-by-item, this requirement links the
type order of neighboring items.

Theorem 2. Let Θ have monotone marginal rates of substitution. If the type
distribution F is compatibly weakly monotone and mostly regular with respect
to cutoffs (ik)k∈[d], then upgrade pricing is optimal. In particular, the following
mechanism is optimal:

qk
i :=

{
1 i ≥ ik

0 else,
i ∈ [n], k ∈ [d]. (9)
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12 D. Bergemann et al.

Note that the allocation (9) is the allocation that arises from separate
monopoly pricing.1

To prove Theorem 2, we will construct a sequence of flows λi from i = n
down to i = 1, starting with λ̂, the initial flow that induces Myersonian multi-
dimensional virtual values. Given a definition of pseudo-revenue implied by a
flow, our Ironing Algorithm will, for each type i and for at least one item k,
iron to match induced pseudo-revenue with the quasi-concave closure of multi-
dimensional Myersonian pseudo-revenue, R

k

i . This is illustrated in Fig. 4.
The main steps in this proof are to show that the ironing is well-defined in

that such implied pseudo-revenue is attainable with a non-negative and feasible
flow (Lemma 6 and Lemma 4, respectively). The most technical part of the proof
consists of showing that the Ironing Algorithm produces dual variables that max-
imize virtual welfare (Lemma 3 and Lemma 7 (a)), and satisfy complementary
slackness (Lemma 7 (b)).

Our first lemma is a main structural tool to link different items’ virtual
values and is tightly connected to monotone MRS. For k ∈ [d], i ∈ [n], and flow
λ, denote the normalized virtual value by

νλ,k
i :=

φk,λ
i

θk
i

.

The property that we will use repeatedly is that νλ,k
i has the same sign as φλ,k

i .
We call a flow downward if λji > 0 for i, j ∈ [n] implies that j > i.

Lemma 2. Let Θ have monotone MRS. For any non-negative downward flow
λ, νλ,k

i ≥ νλ,l
i for any 1 ≤ k ≤ l ≤ d and i ∈ [n].

Proof. It follows from definitions and monotone marginal rates of substitution
that

φλ,k
i

θk
i

=
θk

i − 1
fi

∑n
j=1 λji(θk

j − θk
i )

θk
i

= 1 +
1
fi

n∑

j=i

λji − 1
fi

n∑

j=i

λji

θk
j

θk
i

≥ 1 +
1
fi

n∑

j=i

λji − 1
fi

n∑

j=i

λji

θl
j

θl
i

=
θl

i − 1
fi

∑n
j=1 λji(θl

j − θl
i)

θl
i

=
φλ,l

i

θl
i

.

�
The next Lemma shows that virtual welfare maximization reduces to virtual

welfare maximization for the neighboring items, i.e., the last item that a type
buys and the first item that a type does not buy—with respect to the MRS
order.

1 In Sect. 5, we further explore the relationship between upgrade pricing and separate
pricing, by showing conditions under which the allocation (9) can be implemented
by a vector of single-item prices.
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Lemma 3. Assume Θ has monotone MRS and mostly regular and that there
exists a non-negative downward flow λ such that for any i ∈ [n] such that ik ≤
i ≤ ik+1, we have φλ,k

i ≥ 0 and φλ,k+1
i ≤ 0. Then, the allocation in (9) maximizes

virtual welfare.

Proof. Fix i ∈ [n] such that ik ≤ i ≤ ik+1. Note that as φλ,k
i and νλ,k

i are positive
multiples of each other, Lemma 2 implies the implications

φλ,k+1
i ≤ 0 =⇒ φλ,l

i ≤ 0, l ≥ k + 1

φλ,k
i ≥ 0 =⇒ φλ,l

i ≥ 0, l < k.

Therefore, the assumption implies that φλ,l
i ≤ 0 for any l > k and φλ,l

i ≥ 0 for
any l ≤ k, which ensures virtual welfare maximization of (9). �

For k = 0 and k = d this Lemma reduces virtual welfare maximization for all
items, and ironing for all items, to virtual welfare maximization for the first resp.
last item. Finding a flow that maximizes virtual welfare reduces to ironing the
(one-dimensional) virtual values φ1

i and φd
i . For types i ≤ i1 and i ≥ id, we can

hence use techniques from one-dimensional ironing and iron the pseudo-revenue
to its concave closure in a discrete variant of Myerson (1981)’s procedure. From
now, our discussion therefore focuses on k ∈ [d − 1] and i ∈ [ik + 1, ik+1], i.e.
types where an ironing that ensures virtual welfare maximization for both item
k and item k + 1 is needed.

The following algorithm will make use of λ̂ as defined in (7), the initial flow
and of a generalization of the pseudo-revenue. The pseudo-revenue associated to
a flow λ, Rλ,k

i is

Rλ,k
i =

n∑

j=i

fjφ
λ,k
j .

This generalization is intuitive, as virtual values are, as in (5), slopes of pseudo-
revenues

Rλ,k
i −Rλ,k

i+1

fi
=

∑n
j=i fjφ

λ,k
j −∑n

j=i+1 fjφ
λ,k
j

fi
= φλ,k

i . (10)

Our algorithm will adjust a flow by raising one point in a revenue sequence at
a time, from right to left. We will prove that this will yield slopes of revenue
sequences—i.e. virtual values—which have the correct sign for virtual welfare
maximization of (9). This is non-trivial, as pseudo-revenues for different items
might not move in the same direction when dual variables are changed.
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14 D. Bergemann et al.

λ← λ̂;
for i = n to 1 do

Let γi ∈ [0, 1] be maximal such that for

λ′
ji ← γiλji, ∀j : n > j > i

λ′
j(i−1) ← λj(i−1) + (1− γi)λji, ∀j : n > j > i

λ′
i(i−1) ← λi(i−1) − (1− γi)

n∑

i′=i

λi′i,

(11)

R
λ′,κ(i)
i = R

κ(i)

i holds;
λ← λ′;

Return λ′;
Algorithm: Ironing, parameterized by an ironing mapping κ : [n]→ [d]

The flow (11) was used earlier in Haghpanah and Hartline (2020). An impor-
tant difference is that Haghpanah and Hartline (2020) choose γi to iron the
revenue sequence of the grand bundle to the concave closure of pseudo-revenue.
Instead, we iron to the quasi -concave closure of (their equivalent of) pseudo-
revenue of an item κ(i). The parameter γi can be found as solution to a system
of linear equations. We show that a solution γi ∈ [0, 1] exists in Lemma 6.

We first observe that the Ironing Algorithm outputs a flow which is non-
negative and feasible. The proofs of the next two statements are in the full
version of this paper Bergemann et al. (2021a).

Lemma 4. The output of the Ironing Algorithm is a flow, i.e. non-negative and
satisfies flow preservation, Lemma 1 Item 3.

Next observe that in the Ironing Algorithm, iteration i changes the revenue
(for any item k) only for type i. Hence, our ironing algorithm raises pseudo-
revenue for one type at a time.

Lemma 5. For any iteration i, Rλ′,k
j = Rλ,k

j for any j 
= i. In particular,

φλ′,k
j = φλ,k

j for j /∈ {i− 1, i}.
Before showing that γi in the algorithm always exists, we define the ironing

function κ(i).
By no ironing on neighboring maxima, each candidate ironing interval I must

be contained in an interval {ik, ik +1, . . . , ik+1}. By this condition, in addition to
no partial overlap, for each type i, there is a unique inclusion maximal candidate
among the candidate ironing intervals for items k and k + 1. We let κ(i) denote
the item this interval is a candidate ironing interval for. If i is not part of any
ironing interval, we set κ(i) arbitrarily in {k, k+1}. We call κ(i) the ironed item
for type i and piece-wise constant intervals of κ ironing intervals.

Lemma 6. Assume that F is mostly regular. Then, for each i ∈ [n], γi such that
R

λi(γi),κ(i)
i = R

κ(i)

i exists. In particular, the Ironing Algorithm is well-defined.
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The Optimality of Upgrade Pricing 15

Proof. We prove this statement by induction from i = n down to 1. Let i ∈ [n]
and assume that R

λ,κ(i)
i+1 = R

λ,κ(i)

i+1 . If i is not part of an ironing interval, then

by definition of ironing intervals and Lemma 5, Rλ,k
i = R

λ,k

i , and the induction

step is trivial by choosing γi = 1, yielding R
λ′(1),k
i = R

λ′(1),k
i . Otherwise, i is in

an ironing interval. Let κ(i) = k. By no partial overlap, if i + 1 is part of an
ironing interval, it must be part of the same ironing interval, in particular must
have been ironed for item k. Hence, by the induction hypothesis, Rλ,k

i+1 = R
λ,k

i+1.
Denote

φ
k

i =
R

k

i −R
k

i+1

fi

the slope of the quasi-concave closure of pseudo-revenue of item k at type i. By
definition of the quasi-concave closure, the slope of the revenue curve must be
non-positive,

φ
k

i ≤ 0.

As all types are non-negative, we get that

φk
i ≤ 0 ≤ θk

i = φ
λ′(0),k
i . (12)

Again by Lemma 5, R
k

i+1 = R
λ′(0),k
i+1 . Therefore

R
k

i = fiφk
i + R

k

i+1 = fiφk
i + R

λ′(0),k
i+1

≤ fiφ
λ′(0),k
i + R

λ′(0),k
i+1 = R

λi(0),k
i .

In particular, R
k

i ≤ R
λi(0),k
i .

Also, by Lemma 5 and the definition of the quasi-concave closure, R
λ′(1),k
i =

Rλ,k
i ≤ R

k

i . As γ �→ R
λ′(γ),k
i is a continuous function, the existence of the desired

γ ∈ [0, 1] follows from the Intermediate Value Theorem. ��

Fig. 4. Ironing of virtual values and corresponding pseudo-revenues.

The last lemma before the proof of Theorem 2 shows that the output of
the algorithm satisfies complementary slackness and the condition of Lemma 3,
which is sufficient for virtual welfare maximization.
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16 D. Bergemann et al.

Lemma 7. Assume that Θ is has monotone MRS, and that F is mostly regular.
Then, q maximizes virtual welfare and satisfies the requirements of Lemma 3 with
respect to λ′, the output of the Ironing Algorithm.

The proof of this statement is in the full version of this paper Bergemann et
al. (2021a). Having this result, we are ready to finish the proof of Theorem 2.

Proof of Theorem 2. Implementability follows from weak monotonicity and the
definition of the optimal mechanism, (9). Non-negativity and feasibility of flow
are properties of the Ironing Algorithm shown in Lemma 4. Virtual welfare
maximization and complementary slackness have been shown in Lemma 7. ��

5 Upgrade Pricing and Separate Pricing

In both Theorem 1 and Theorem 2, we established the optimality of an upgrade
pricing mechanism that yields the same allocation as separate (item by item)
monopoly pricing, though not necessarily the same transfers. We will show in
this section that, under monotonicity with respect to the component-wise par-
tial order, separate pricing and upgrades become equivalent—upgrade pricing is
redundant.

We say that the type space Θ is monotone if θk
i ≤ θk

j for any i < j ∈ [n] and
k ∈ [d].

We call a mechanism separate pricing if a type separately chooses whether to
buy each item k at a price pk. Formally, a mechanism satisfies separate pricing
if it can be written as:

qk
i =

{
1 θk

i ≥ pk

0 else,
ti =

d∑

k=1

pk1qk
i =1.

Theorem 3. If the type space Θ is monotone, then the outcome of any upgrade
pricing mechanism can be implemented via separate pricing, and conversely.
When the type space is not monotone, neither implication needs to hold.

The proof of this statement is in the complete version of the paper Bergemann et
al. (2021a). Whenever an upgrade pricing mechanism implements the allocation
of optimal separate pricing, each marginal type θk is indifferent by construction
between the two consecutive bundles bk−1 and bk. Theorem 3 then implies that
the outcome of this mechanism can be implemented by the separate monopoly
prices.

Corollary 1. If Θ is monotone, q is an allocation of an optimal upgrade pricing
mechanism, and q is the allocation of separate monopoly pricing, then separate
monopoly pricing is optimal.

Adding a monotonicity condition to both of our main theorems, Theorem 1
and Theorem 2, we hence obtain two sets of sufficient conditions under which
separate monopoly pricing is optimal.
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Corollary 2. If Θ is monotone and F is regular, separate monopoly pricing is
optimal.

Corollary 3. If Θ is monotone and has a monotone marginal rates of substitu-
tion, and F is mostly regular, then separate monopoly pricing is optimal.

6 Conclusion

It is a common practice for a seller to offer bundles of products or services
that are ordered in a way that more expensive bundles contain all items from
less expensive bundles as well as some extra items. In this paper, we provide
sufficient conditions under which such “upgrade pricing” schemes are exactly
optimal for a monopolist seller.

There are several ways in which the current analysis could be extended.
First, our conditions could be relaxed to account for richer type spaces and type
distributions, such as a continuum of types in the d-dimensional space. One
natural extension can be obtained immediately: assume that a type distribution
can be split into several type cohorts, in fact quantized type space, such that
each type cohort satisfies the conditions of our theorems. Our results imply that
the optimal mechanisms in each respective cohort are upgrade pricing. In this
respect, Bergemann et al. (2021b) show that in nonlinear pricing problems, the
revenue of the continuous type space is generally well approximated by a finite
quantized type space.

Second, our sufficient conditions for the optimality of upgrade pricing may be
complemented by necessary conditions. In doing so, one may want to distinguish
between conditions on type distributions and type spaces. For example, one may
ask which type spaces guarantee that upgrade pricing is optimal irrespective of
the type distribution.

Finally, throughout the paper we highlight the interplay between optimality
of different pricing schemes: bundling, upgrade pricing, and separate sales. It
would be instructive to provide a more complete characterization of the cases in
which one of these schemes strictly outperforms another. AQ1
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