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PREFACE

The object of the present volume is to set forth in some detail the
present status of the problem of analyzing and interpreting that very
extensive set of data known as economic time series. This perplexing
problem has engaged the attention of economists and statisticians for
many years, but the extraordinary intensity with which it has been
attacked during the past decade attests the importance which it has
for modern economic development.

Since its beginning the laboratory of the Cowles Commission for
Research in Economics has had as a major interest the investigation
of the nature and action of stock price series. In the course of this
investigation a number of interesting but difficult probiems were en-
countered concerning the nature of economic time series in general,
and the relation of these series to the basic postulates of economic
theory in particular. To most of these questions only partial answers
were discovered in the literature and in many cases these answers
were not accompanied by careful statistical analyses. Therefore, it
seemed to the author that a systematic treatise on the nature of eco-
nomic series might fill a present need.

To one who works with statistical data it soon becomes apparent
that the conclusions derived at the end of a process of analysis are
intimately related to the postulates which underlie the tools employed
in the investigation. The employment of a linear trend for the refer-
ence of residuals, or the graduation of a series of production data by

"means of the logistic curve, implies economic assumptions which must
be carefully defined and subjected to realistic criticism. That is to
say, conclusions mathematically derived are no better than the postu-
lates upon which they rest. Hence it has seemed necessary to make a
careful re-examination of the various mathematical devices which
have been used in the study of economic data in order to appraise
their weakness and their strength, and to define the range of their
validity. '

There is a perpetual fascination in economiec time series, derived
not only from their immense importance in the lives of all of us, but
also from their statistical nature. Differing from the series encoun-
tered in the experiments of physical science, every economie time se-
ries possesses a large random element. But the series themseives are
not random, in spite of some popular belief to the contrary, nor are
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THE ANALYSIS OF ECONOMIC TIME SERIES

they sufficiently regular to satisfy most mathematical postulates.
Hence, in many instances, the analysis must proceed from a descrip-
tion of the differences between random series and series that are not
random. Correlations take the place of functions and serial relation-
ships replace the more familiar functional equations of the exact
sciences.

In the course of preparing so extensive a manuscript the author
has become indebted to many people. Foremost among these is Mr.
Alfred Cowles, president of the Cowles Commission, who for nearly a
decade has liberally supported a scientific laboraiory devoted to the
investigation of problems in economic theory and economic statistics.
His personal interest in these investigations and his own scien-
tific contributions to the subject have been a source of inspiration
and satisfaction to the author.

From Mr. Dickson H. Leavens, managing editor of Econometrica
and research associate of the Cowles Commission, the author has re-
ceived services toc numerous to mention, Mr. Leavens assumed full
editorial supervision of the manuscript and the planning of the charts
is to be credited entirely to him.

During the preparation of the book the author received many
suggestions from Dr. C. F. Roos, former research director of the
Cowles Commission, and from Professor T. 0. Yntema, the present
research director. Their broad knowledge of economic problems was
placed generously at his disposal.

A special debt of thanks is also due Professor Gerhard Tintner
of Iowa State College, who read the entire proof carefully and offered
many valuable suggestions. His exceptionally wide acquaintance with
economic and statistical literature, especially that of KEuropean
schools, has made his criticism of great value.

To Mr. Herbert E. Jones, research associate of the Cowles Com-
mission, the author is indebted for a number of essential contributions
to the book. Mr. Jones undertook a thorough investigation of prob-
lemns relating to the theory and application of serial correlation. In
particular, he studied the properties of random series and then ap-
plied his analysis to the problem of determining the nature of the
structural elements in economic time series. Much of the material in
Chapters 3 and 4 is derived from his studies.

Throughout the long and arduous calculations presented at many
places in the book the laboratory staff of the Cowles Commission has
played an indispensable role. The brunt of this work has been assumed
by Mr. Forrest Danson, research associate of the Cowles Commission
and director of the computing laboratory. The author is especially
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indebted to him. In this phase of the work numerous computations
were made by Miss Emma Manning, Miss Anne M. Lescisin, Mr. Ed-
ward Morris, and Mrs. Martha Belschner Swanson. Miss Kathryn
Withers did the arduous work of inking and lettering the charts and
Miss Mary Jo Lawley helped in preparing the manuscript for the
printer.

To the great experience of Professor Irving Fisher in monetary
theory and to the statistical studies of Mr. Carl Snyder on economic
trends and the theory of prices the anthor owes a special debt. From
conversations with Professor Ragnar Frisch of Oslo, Norway, and
from his writings, more particularly his studies of harmonic analysis,
confluence analysis, and the dynamics of cycles, the author has derived
many valuable suggestions. Professor J. W. Angell of Columbia Uni-
versity very kindly supplied the author with monetary data which
would otherwise have been inaccessible to him.

The author would also like to acknowledge his appreciation of
the critical advice received from Dy. John Smith, research associate of
the Cowles Commission, who has brought to bear upon the analysis a
broad knowledge of statistical sampling. His criticism has been par-
ticularly valuable in connection with some of the material in Chapter
5. From other colleagutes in the research staff of the Cowles Commis-
sion many helpful suggestions have been received. Professor Francis
McIntyre, Dr. Abraham Wald, Dr. Edward N. Chapman, and the late
Mr. W. F. C. Nelson all brought unique experience to bear upon cer-
tain aspects cf the problem.

During the preparation of the book a series of conferences on eco-
nomic problems was held in Colorado Springs under the auspices of
the Cowles Commission. Some 200 lectures were given at these con-
ferences and the author received many valuable suggestions both from
the lectures and from informal conferences with the speakers. The
effects of this unusual experience will be noted in many parts of the
book.

The appraisal of the author’s debt would not be complete without
mention also of the help received in two other statistical laboratories,
one at Indiana University and the other at Northwestern University.
In the operation of these laboratories the author has been particularly
indebted to Dean Fernandus Payne of Indiana University and to Pro-
fessor E. J. Moulton of Northwestern University, both of whom have
taken a personal interest in the work. In both laboratories many of
the author’s students contributed generously of their time. Colleagues
in the departments of both physics and astronomy gave generously of
their information at various stages of the writing of the manuscript.
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Finally, but not least, the author must acknowledge his debt to
the Principia Press and to its editor, Professor J. R. Kantor, who has
extended in every way his cordial co-operation. The manuscript has
been put into type and printed by the Dentan Printing Company of
Colorado Springs, who have met 2ll the unusual requests incidental to
the production of a mathematical and statistical treatise with unfail-
ing cheerfulness.

From these acknowledgments it will be apparent that the present
work is in many respects a collaborative effort. Such virtues as the
work may have are to be shared by those who have been mentioned
here; unfortunately, the responsibility for the errors must be assumed
only by the author himself.

H. T. Davis.
Northwestern University
Evanston, lilinois
November, 1941
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CHAPTER 1

HISTORY OF THE PROBLEM
1. Time Sertes

Perhaps one of the most difficult and one of the most impor-
tant problems confronting the science of econometrics is that of the
analysis and the interpretation of time series. By a time series we
shall mean a series of data observed successively in time. Such a se-
ries we may represent for purposes of discussion in the following
sequence:

(1) YisYesYs, s Yy, U,
For convenience, we may abbreviate this sequence by writing
(2) Y —=—Y:» t:1r2’31"';N'

In the development of the subject which we contemplate, the
items of the time series will generally refer to economic data, although
the arguments, for the most part, can be applied equally well to time
sequences studied in the analysis of physical, biological, psychological,
and other like phenomena. In economics the items in the time series
are usually observations made monthly, quarterly, or yearly, although
some series such as the Dow-Jones stock-market averages are given
daily, hourly, and even at intervals as short as 20 minutes. When the
items are sufficiently closely spaced, it is usually convenient to em-
ploy the functional notation

| y=y(l) _
instead of series (2), the variable ¢ being assumed continuous over
some basic interval, {, = { = &£, .

Much of the present literature on the subject of economic time
series is to be found classified under the generic title of “the theory
of business cycles,” where the term business cycle is generally as-
sumed to mean the more or less periodic alterations of business be-
tween prosperity and depression,

2. Astronomical Time Series

Historically the investigation of time series began with the as-
tronomers and it will be well for us to keep this fact in mind as we
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2 THE ANALYSIS OF ECONOMIC TIME SERIES

proceed. Their problem and that of the economists are essentially
the same and the methods which they have employed in untangling
the complex motions and interactions of the heavenly bodies contain
much that is illuminating in an analysis of the complicated behaviour
of economic series,

The astronomers, however, were much more fortunate than the
economists in one very important matter. The structure of their se-
ries as it applied to planetary motion was determined by one or two
dominating causes. The motions of the planets were influenced mainly
by the excessive mass of the sun and secondarily by the mass of
Jupiter. Thus, assuming that the mass of the earth is unity, the
masses of the sun and the other planets are in the following ratios:
Sun, 332,000; Jupiter, 318.4; Saturn, 95.2; Neptune, 16.9; Uranus,
14.6; Venus, 0.876; Mars, 0.108; Mercury, 0.037. Yet, in spite of this
unusual dominance of the sun, one mathematical equation in the set
which determines the motion of the moon reaches the incredible
length of 170 pages. The economists may learn patience from the as-
tronomers, who have needed three centuries to attain the control
which they now have over the elements of their time series. One
should also observe that there is no complete agreement zbout the
masses of the sun and the planets as given above and estimates of
values vary considerably.

1t is well known that the problem of three bodies, that is to say,
the determination of the motions of three bedies moving under their
mutunal gravitational influzences, has never been completely solved.
Hence, the general problems of four, five, or more bodies is almost
hopelessly difficult. But when one dominating influence exists, such as
the dominance of the mass of the sun over the masses of the planets,
then the approximation to a complete solution is relatively accurate.
It is for this reason, and this alone, that the astronomers have gained
so complete a mastery over their time series. Because of this fact, the
probable errors in their solutions have been so greatly reduced that
an anomaly as small as 40 seconds of arc per century in the precession
of the perihelion of Mercury is within the limits of their precision.

The astronomers have had also a second great factor in their
favor, namely the possibility of formulating an a priori theory which
would explain many of their phenomena, and, by extrapolation, lead
to accurate prediction. This theory was due to Sir Isaac Newton
(1642-1727) and was called Newton’s theory of universal gravitation.
The history of its formulation is worth our attention. After the ad-
mirable collection of data relating to the motion of the planets had
been made by Tycho Brahe (1546-1601), these data were statistically
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analyzed by Johannes Kepler (1571-1630). Because of the dominat-
ing influence of the sun, as we have previously pointed out, Kepler
was able to formulate his three famous laws of planetary motion, The
first of these stated that the planets move in elliptical orbits with
the sun at the focus; the second that the line which connects the planet
with the sun sweeps out equal areas in equal times; the third that the
cubes of the mean distances of any two planets from the sun are to
each other as the squares of their periods of revolution about the sun.
It was Newton’s great achievement to show that these laws are con-
sequences of the proposition that two bodies attract one another with
a force which varies directly with their masses and inversely as the
square of the distance between them.

The following quotation from Harold Hotelling bears pertinently
upon this important aspect of the problem of time series:

Sir Isaac Newton set a bad example for statisticians in his mode of estab-
lishing the relation which has been the admired model of scientific achievement
for two centuries and a half. Were the solar system subject to a complicated set
of unknown forces of as great an order of magnitude as the sun’s attraction—
such a set, for example, as may exist in a nebula or near a multiple star—New-
ton could not have established gravitation by means of Kepler's laws, which deal
with an orbit as a whole. A statistical method would have been necessary; New-
ton would have been obliged to study the curvature of paths and the acceleration
at various points by means of the second differences of the coordinates of the
planets’ positions, and then to investigate the correlation between the accelera-
tion, thus determined, of one bedy toward another and the distance between the
two. :
A great historic methoed of scientific discovery has thus arisen from an
astronomical accident. If only our tyrannical sun were smaller, the family of
planets would enjoy some of the chaos of democratic societies, and the astronomer
would be closer to the statistician. Science would have arisen later and statisties
earlier. Those astronomers who still feel a suspicion of quackery about statis-
tical methods, particularly correlation, may reflect on how narrowly their own
science missed having to wait for these very methods before emerging from the
embryonic stage.

A feature of Newton’s law of gravitation more suitable for emulation by stat-
isticians than its mede of discovery is the determination of the constants. Of
the various constants appearing in the integrated equations of motion, not all
are of equal importance, and not 2ll are determined finally from the same data.
The constants of integration which determine the eccentricity, size and position
of the orbit and the times at which the planet passes perihelion are of distinctly
less interest than the constants which appear in the differential equation. Of
the three latter, the masses of the {wo bodies are of small importance comgpared
with the value of the universal constant of gravitation. In general the con-
stants in a differential equation expressing a physical law have a different status
from constants of integration, which may change as a result of perturbations.!

1 “Differential Equations Subject to Error and Population Estimates,” Jour-
nal of the American Statistical Assoctation, Vol. 22, 1927, pp. 287-288.
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The astronomers themselves have from time to time experienced
the same pitfalls which await the unwary statistician who attempts
generalizations from insufficient data. Kepler himself associated the
distances of the planets from the sun with certain geometrical con-
structions based upon the five regular geometrical solids. He conclud-
ed that the knowledge of the planetary system as it existed in his day
was closed since only five regular solids existed and these were neces-
sary and sufficient for his cosmology. The discovery of Uranus in
1781 completely destroyved his system. An even more noted example
is found in “Bode’s law,” due originally to Johann D. Titus of Witten-
berg, but given prominence in 1772 by Johann E. Bode (1747-1826).
Bode's law states that the relative distances of the planets from the
sun, the earth being at unit distance, are determined as follows: write
down a series of 4’s, to these add successively the numbers 0, 3, 6,
12, 24, 48, 96, ete., and finally divide by 10. This interesting statis-
tical observation preceded the discovery of Uranus in 1781, which
fitted nicely into the scheme, and called attention to the gap at 2.8,
which led to the discovery of the asteroid Ceres at the proper distance.
But unfortunately the discovery of Neptune at 30 instead of 39 and
Pluto at 40 instead of 77 destroyed the validity of the law. What was
needed was some unifying principle from which Bode’s law could be
deduced as a special case. The explanation of the relative positions
of the planets remains today an unsolved and perhaps unsolvable prob-
lem of astronomy.

3. Economic Time Series

The time series most interesting to the economists do not have
the happy circumstances which attend the time series of the astrono-
mers. One factor does not, in general, dominate an economic series,
but there exists on the contrary a complex of faetors of approxi-
mately equal weights which affects their behavior., These factors are
usually interrelated and this interrelation for the most part cannot
be determined a priori. At the present stage of economic science the
range of the validity of economic laws must be tested and defined by
the analysis of statistical data. The conclusions, therefore, must be
hedged by probabilities as to their causal significance. With the
example of Bode's law before us, we must state the degree of this
validity most warily.

In order to have a point of departure for a statement of the prob-
lem presented by economic time series, let us consider the graphical
represeniation of data given in Figure 1. These data represent the
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Cowles Commission—Standard Statistics index of.industrial stock
prices from 1871 to 1940. For our present purpose there are four
ohservations to be made about this time series.

INDEX : INDEX
220 220
200 - 200
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(1]
1871 1880 1890 1000 1910 1920 1930 1940
Fieure 1.—CowLEs COMMISSION-STANDARD STATISTICS INDUSTRIAL
STOCK PRICE INDEX, 1926 — 100.

In the first place we observe that the series has a secular trend,
that is to say, there has been a persistent tendency for stock prices
to advance throughout the period under observation. This tendency,
called by Carl Snyder the inertia of economic series, is not always
positive, nor is it always represented by a straight line, Thus, if we
examine the trend of wholesale commodity prices (see Figure 2)
from the period of the Civil War to the period of the panic of the
early nineties, we should find a steady decline in the time series
which would be accurately described by a straight line with a nega-
tive slope. On the contrary, the time series which describes the growth
of automobile production in the United States from 1908 to 1929 (see
Figure 4) shows an advance that cannot be adequately described by
a straight-line trend. The logistic curve, which has been widely used
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to discuss the growth of population, is both theoretically and prac-
tically adapted to the description of the secular characteristies of the
automobile production series. This point will be more adequately
treated at another place.

The second point to be observed is the existence of numerous
small erratic movements in the items of the series., The series does
not appear to advance smoothly, and there is sufficient random mo-
tion in the differences between successive items to make month-by-
month forecasting, without other evidence, a matter of much difficulty.
The determination of the magnitude of this erratic element and the
attainment of some reasonable explanation of its cause comprise two
of the important aspects of the problem of economic time series.

If one will examine carefully the structure of the time series for
the period prior to the beginning of the great bull market which cul-
minated in 1929, he will observe that the series has a tendency to a
more or less regular periodicity, That is to say, the series tends to
oscillate in a fairly constant manner about a linear secular trend, and
the time between successive peaks and successive lows does not show
abnormal variation from a constant value of approximately 40
months. One of the cutstanding problems presented to the statistician
by economic time series Tesults from this observation. Is this ten-
dency to oscillation a fundamental characteristic of certain economic
time series? Can it be accurately described by means of elementary
harmonics such as those represented by series of sines and cosines?
If the phenomenon is real in the sense that it can be expected to per-
sist from one long period to another, then what a priori reason can
be given for its existence? The theory of business cycles, which has
been so intensively developed in recent times, has attempted to give
a critical examination of these perplexing problems.

The fourth observation which we should make of the industrial
stock price series exhibited in Figure 1 relates to the end of the in-
terval, Here we note a sudden and remarkable effacement of the
structures which we observed in the earlier part of the series. A
huge peak arises abruptly from the line of trend and this is followed
by an abnormal depression, which is, in turn, succeeded by a second,
but lower peak. It might almost be believed that one observed in the
series the evidence of an elastic dynamical system, oscillating with
its characteristic period under a succession of small erratic shocks,
to which there had suddenly been delivered a tremendous blow. Such
abnormal displacements of the elements of economic time series are
called economic erises, and a great deal of attention has been paid to
them by economic theorists. We might, perhaps, for purposes of de-
geription, define as a crisis in an economic series any variation which
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exceeds three times the standard deviation of the previous residuals
of the series from an established trend.

Ragnar Frisch has commented as follows on this dynamical as-
pect of economic series:

The majority of the economic oscillations which we encounter seem to be
explained most plausibly as free oscillations. In many cases they seem to be pro-
duced by the fact that certain exterior impulses hit the economic mechanism and
thereby initiate more or less regular oscillations.

The most important feature of the free oscillations is that the length of the
cycles and the tendency toward dampening are determined by the intrinsic strue-
ture of the swinging system, while the intensity (the amplitude} of the fluctua-
tions is determined primarily by the exterior impulse. An impertant consequence
of this is that a more or less regular fluctuation may be produced by a cause
which operates irregularly. There need not be any synchronism between the
initiating force or forces and the movement of the swinging system. This fact
has frequently been overlooked in economic cycle analysis.?

It is perhaps worth our while to dwell 2 moment upon this in-
triguing speculation. 1f this dynamical aspect of economic time se-
ries may be regarded as having some validity, particularly since the
production of real wealth such as coal, iron, electricity, wheat, etc.
lies at the heart of the economic system, then it would be reasonable
to employ in the analysis of time series those same mathematical
models which have been so efficacious in the domains of engineering
and physics. We shall see later as we develop our theme, that certain
aspects of our analysis are indeed drawn from these more exact sci-
entific disciplines; and thus, perhaps, the divergencies which develop
because of the presence of the erratic element may be a fair measure
of the psychic element often referred to as human variability, which
exhibits so conspicuous a presence in the vagaries of the time series
of economics, and is so conspicuously absent from the data of physi-
cal science.

4. Types of Time Series

One cannot go far in the study of economic time series before he
observes that he is dealing with many types of these series, which
differ widely from one another. Among several great classes two are
conspicuous, the first being what we may characterize as the class of
price series, and the second as the class of production series. An ex-
ample of the former is the index of industrial stocks which we dis-
cussed in the preceding section; an example of the latter is the pro-
duction of pig iron. It is obvious, however, that all economic time
series cannot be included in one or the other of thése classes, as we

2 “Propagation Problims and Impulse Problems in Dynamic Economies,”
from Economic Essays in Honor of Gustev Cassel, London, 1933, p. 171.
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see from the existence of indexes of inventories, of unemployment, of
the ratic of stock dividends to stock prices, ete,

However, by far the largest number of time series which are of
interest to the economist are connected in one way or another with
production and price. The theory of index numbers, to the develop-
ment of which the notable treatise on The Making of Index Numbers
by Irving Fisher, published in 1922, contributed greatly, was de-
vised to represent the time series of economics in suitable form for
analytical treatment. This subject is now so generally known {o the
economist and the statistician that we shall not attempt a résumé of
it in this book.?

The study of economic time series, particularly those series which
relate to the price and the production of the same commodity X, has
afforded considerable ingight into the nature of the relationships called
supply and demand. A vast literature has accumulated around the
concepts invoked by these relationships and the idea of curves of sup-
ply and curves of demand has been familiar to economists since the
days of Augustin Cournot (1801-1877). In his classical treatise en-
titled Recherches sur les principes mathématiques de la théorie des
richesses published in Paris in 1838 Cournot developed the concept of
a curve of demand intersected by a curve of supply, the point of inter-
section determining the selling price of the commodity under con-
sideration. '

It will be clear that the actual determination of curves of supply
and demand must present unusual problems to the statistician. For
this computation he should have under observation a set of ideal com-
munities in which the price of a given commodity differed widely and
for which the ensuing demand was known. Such an ideal statistical
situation obviously cannot be attained, particularly when modern
methods of transportation and communication tend to keep prices
within reasonably uniform limits. How, then, can he hope to deter-
mine approximations to the static supply and demand curves, which
occupy so important a position in economic theories that follow the
tradition of the schools of Léon Walras (1834-1910) and Alfred Mar-
shall (1842-1924) 7

3 The theory of index numbers ig still a lively subject of investigation. For
recent developments in this field, particularly as they relate to the economic sig-
nificance of index numbers, the reader is referred to R. Frisch, “Annual Survey
of General Economic Theory: The Problem of Index Numbers,” Econometrica,
Vol, 4, 1926, pp. 1-38.

+1n order to see the dominance of this concept in Marshallian thought one
may refer to Marshall’s treatise, Principles of Economics (8th edition), London
1936, Book III, Chapter 1V, “The Elasticity of Wants,” and II1 of his “Mathe-

matical Appendix.”
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In order to derive his curves of supply and demand the statisti-
cian has only the time series of price and production. From these
dynamic data he must derive a static curve of demand with a nega-
tive tangent and a static curve of supply with a tangent of the other
sign. He is like the stranger in Aesop’s fable, who must blow cold
with his breath to cool his porridge and then blow hot to warm his
hands.

It is a curious fact that the first attempt to construct a statisti-
cal demand curve was not made until 1914, when R. A. Lehfeldt pub-
lished a paper on the demand for wheat® and H. L. Moore produced
a number of interesting curves in his book on Economic Cycles: Their
Law and Cause.® In his introduction Lehfeldt commented on the sit-
uation as follows:

The writer can remember, as a student, meeting with the “entropy” as a
mysterious abstraction, enshrined in the writings of Lord Kelvin and others, but
which no one dreamed of vulgarizing by the attachment of numericzl values,
Now every engineer’s pocket-book contains tables of the entropy of different sub-
stances, and that most useful quantity is made available to the vulgar.

Elasticity of demand, or of supply, as defined in theoretical writings on eco-
nomics is an equally important quantity; but when, after hearing about curves
of demand, the student comes with the question, “How are these curves obtained?”
one has to confess that they are not obtained, but rest in the limbo of abstrac-

tions. It would seem, therefore, that the roughest attempt to measure a co-
efficient of elasticity would be better than none, and would serve to make the

concept of more real use.

The difficulties which are inherent in this problem will be dis-
cussed later in the book. It is sufficient here to show that the deter-
mination and interpretation of supply and demand curves, together
with all the problems associated with them, may be looked at from
the point of view of the theory of time series. It should be pointed
out, however, that the determination of supply and demand curves
can also be made by means of the data derived from a study of family
budgets. An extensive review of the various theories which apply in
this situation will be found in Chapter 8 of The Theory and Measure-
ment of Demand by Henry Schultz. The reader will also find an ac-
count in Family Expenditure by R. G. D. Allen and A. L. Bowley.

5. Economic Crises and Their Significance

In discussing the four significant characteristics of the industrial
stock price series given in Figure 1, attention was ecalled to the re-
markable peak which arose abruptly from ‘the trend prior to 1929 and

5 “The Elasticity of Demand for Wheat,” Economic Journal, Vol. 24, 1914,

pp. 212-217.
¢ New York, 1914, viii 4+ 149 pp. In particular, Chapters 4 and 5.
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which has established such excessive perturbations in the successive
parts of the series. Since this erisis is a typical phenomencn of eco-
nomic time series and since the spectacular character of such events
early attracted the attention of students, it will not be out of place
to sketch the history of a few of them and to comment on their sig-
nificance in the general theory of time series.

Historically, economic crises were regarded as unfortunate epi-
sodes, which destroyed the rhythm of ideal states of equilibrium. Al-
though their disruptive influence was recognized, these crises were
unwelcomed events which tended to disturb the “normal” state of a
smocothly organized social order.

Although minor crises are common events in the history of eco-
nomics, crises as severe as that of 1929 are exceedingly rare, occur-
ring, perhaps, on the average of once a century. The first of these
speculative catastrophes of which we have any definite record was the
tulip mania, which gripped Holland between the years 1634 to 1637
and which impoverished that state for about half a century thereafter.

Tulips were introduced into Holland toward the end of the six-
teenth century and slowly gained favor with horticulturists, who be-
gan to vie with one another in the development of rare types of the
flower. Just where the mania really started is still 4 matter of debate,
some evidence having been found to indicate that disputes over tulips
began as early as 1611. Munting in his book Beschrijven der Kruyden
says that the origin of the mania was in France where the nobility,
particularly in Paris, paid as high as several thousand fiorins for a
single flower.

The tulip mania was a speculation in tulip bulbs, which reached
the same fantastic heights as those attained in later years by specu-
lations in stocks. It is difficult, without adequate statistical data, to
chart the course and magnitude of the speculative fever, but the fol-
lowing data, which interpret the payment for one “Viceroy” tulip in
terms of commodities, furnish excellent evidence as to the extraor-
dinary character of the speculation:’

Cominoditiea Value in Florinas Commodities Value in Flurins—

2 loads of wheat 448 4 barrels of beer 32
4 loads of rye 568 2 barrels of butter 192
4 fat oxen 480 1000 pounds of cheese 120
8 fat pigs 240 1 complete bed 100
12 fat sheep 120 1 suit of clothes 80
2 hogsheads of wine T0 1‘ silver beaker 60

' Total 2600

* The author is indebted for this account to an excellent article by W. S.
Murray, “The Introduction of the Tulip, and the Tulipmania,” Journal of the
Royal Horticultural Society, Vol. 85, 1909-10, pp. 18-30.
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Another example is a bookkeeper’s entry:

Sold to N. N. a “Semper Augustus,” weighing 123 azen,® for the sum of 4600
florins. Above this sum a new and well made carriage and two dapple grey horses
and all accessories, to be delivered within four weeks, the money to be paid im-
mediately.

The following schedule of some of the prices paid as given by
Munting is also illuminating:

59 azen Admiral Liefkens 1015 florins
214 * Van der Eyck 1620
523 Grebha 1485 ¢
106 “ Schilder 1615 ¢
200 Semper Augustus 5500 ¢
410 Vieeroy 3000 “
1000 Gouda 3600 ¢

One of the best commentaries on the period was a picture en-
titled: “Flora’s Fool’s Cap, or Representations of the wonderful year
1637, when one fool hatched another; the people were rich without
property, and wise without understanding.”

When the inevitable deflation of the speculation finally occurred
in 1637 liquidations took place around five to ten per cent of the spec-
ulative values.

Nearly a century after the tulip mania we find occurring simul-
taneously the two great speculations of England and France. The
first of these is called the South Sea Bubble and the second the Mis-
sissippi Scheme, or the Mississippi Bubble. '

The South Sea Bubble originated with the incorporation of the
South Sea Company in 1711, which was granted a monopoly of the
British trade with South America and the Pacific Islands. After a
very successful beginning the company offered in 1719 fo assume the
national debt of £51,300,000 and to pay £3,500,000 for the privilege.
The scheme back of this offer was to persuade the annuitants of the
state to exchange their holdings for South Sea stock at a high pre-
mium and thus to amortize the debt with a comparatively small issue
of stock. The company would still get interest from the government
of about £1,500,000. In competition with the Bank of England the
company raised its offer to £7,567,000 and this was accepted in 1720,

The speculative boom started immediately thereafter, In a few
weeks half the annuitants had exchanged their government securities
for the stock of the company and a tremendous inflation of values
resulted. The stock of the company was quoted at 1284 at the begin-
ning of the year, but by June it reached 890 and by July the dizzy
height of 1000. The maximum quotation seems to have been 1050 on

& One gram is slightly more than 20 azen.
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June 24, but by July 31 it was still quoted at 230. In August the re-
cession began and from a quotation of 830 on August 18 it had fallen
to 150 by September 25. A short recovery raised the level to 200 on
November 10, but by November 28 it had reached 135. Thus in the
course of a single year the finances of the government had been badly
shaken and many thousands of people ruined. It is interesting to
note that not alone are the foolish and the greedy engulfed-in these
terrifyving maelstroms of speculation. It is a matter of record that
the eminently wise Sir Isaac Newton lost £20,000 in the South Sea
Bubble. Extenuating circumstances have been argued in his behalf
to show that he was not carried away by the madness of the period;
he was nevertheless a victim of it.*

The Mississippi scheme, which ran its course simultaneously in
France, centered around the romantic figure of John Law (1671-
1729), a Scotch financier., On May 20, 1716 Law was authorized to
establish a Banque générale, later converted into the Banque royale,
in France with a capitalization of 6,000,000 livres, divided into 1200
shares. The bank was empowered to issue demand notes payable in
the money mentioned on the day of issue and in April of the follow-
ing year the government decreed that these notes would be received
in payment of taxes. The popularity of the notes was immediate and
the issue soon increased tenfold. The Mississippi scheme was then
inaugurated with the founding of the Compagnie de le Louisiane ou
d’Occident to exploif the riches of the Province of Louisiana and the
country bordering on the Mississippi. This company later absorbed
the Compagnics des Indes Orientales et de la Chine and assumed the
name of the Compagwic des Indes. The first issue of 200,000 shares
was made at 500 livres, but this issue was subsequently supplemented
by other issues at 550 livres, 1000 livres, and finally 5000 livres.
Back of this extraordinary inflation was the assumption of Law
that scarcity of money restricts commerce and that this scarcity
can be remedied by the issue of paper currency against physical prop-
erties. These physical properties were represented in his project by
the unlimited wealth presumed to exist in the undeveloped lands along
the Mississippi. Since these lands were pictured as being of untold
value it seemed only logical that an almost unlimited currency could
be issued against them. This in turn elevated their nominal value,
which permitted a new currency, and so the fatal spiral continued.

The speculation reached its climax in November, 1719 when six
shares of stock of the royal bank were sold for 10,000 livres. But soon
a reaction set in and the desire of speculators grew to convert these

9 See L. T. More, Isaae Newton, A Biography, New York. 1934, pp. 651—655.
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paper holdings into the more tangible form of specie. Three wagons
were required to remove the metal demanded by Prince de Conti for
his paper holdings. The death blow to the scheme was dealt in May,
1720 when a decree was issued by the government with the intent of
gradually reducing the notes of the bank to half their value. Panic
ensued and by September a single gold mark purchased 1800 livres
in bank notes, which had been valued ten months before at 160,000
livres in specie.’® '

Proceeding to the beginning of the nineteenth century, when
more accurate statistical data exist for the measurement of these
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financial cataclysms, we observe that the century begins with a com-
modity inflation. Figure 2 shows the index of wholesale commodity
prices for the United States from 1797 to the present time. Three
inflationary peaks are observed in the data, all possessing more or less
the same characteristic patterns. This is exactly what would be ex-
pected since they were all the results of wars. We also note that the
three maxima occur at intervals of approximately fifty years, the
exact dates being November, 1814, August, 1864, and May, 1920. The
intervals are thus 49 years and 9 months and 55 years and 2 months:
respectively.

This observation, based upon the tenuous example of just three

19 An excellent account of this inflation together with tables of index num-
bers of prices and wapges will be found in E. J. Hamilton, “Prices and Wages at
Paris under John Law’s System,” Quarterly Journal of Economics, Vol. 51, 1936,

pp. 42-70. Also “Prices and Wages in Southern France under John Law’s Sys-
tem,” Economic History (Supplement}, 1937, pp. 441-461.
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inflations, has led to the assumption of a fifty-year cycle in prices.
This assumption rests upon the hypothesis that great upheavals tend
to occur at regular intervals of fifty years, since 25 years are neces-
sary for the deflation of the last and 25 years more to build up eco-
nomic strength for the next. Some additional evidence for chis view
is furnished by Sir William Beveridge’s periodogram of wheat prices
in England, an account of which will be given later in the book. But
perhaps the most interesting indirect support of the hypothesis is
found in the dates of the three Punic wars, These wars were waged be-
tween the ancient powers of Rome and Carthage. Here we see two
dominant nations struggling for supremacy and we may presume that
their economies were essentially closed within the territories over
which they held sovereignty. That is to say, there apparently existed
no third element which might interfere with the natural processes of
inflation and deflation within their respective boundaries. The dates of
the three wars were 264-241 B.C., 218-201 B.C., and 149-146 B.C. If
we presume that the last date in each case was approximately the date
of maximum inflation in prices, then the intervals of the cycle would
be 40 and 55 years respectively, a fair agreement with the intervals in
the cycles of the past century and a half.?>

We may conclude from all of this that economies from time to
time experience great inflationary movements which, after running
their course, end in sudden and devastating depressions. These criti-
cal periods fortunately are fairly rare events occurring probably not
more often than once or twice a century. '

1i0s The theory of long cycles in economic time series has been extensively dis-
cussed by N. D. Kondratieff in his paper, “The Long Waves in Economic¢ Life,”
Review of Ecanomw Statistics, Vol. 17, 1935, pp. 105-115, a translation of an ar-
ticle published in the Archiv fiir Sozmlwwsenschaft und Sozialpolitik, Vol. 56,
1926, pp. 573-609. Kondratieff reaches the conclusion that “on the basis of the
mvmlable data, the existence of long waves of cyclical character i3 very probable.”
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6. The Problem of Trends

The problem of defining the trend of an economic series is one
of the most difficult matters which we encounter on the threshold of
an analysis of economic time series. By a trend, or as it is more com-
monly called, a secular trend, we mean that characteristic of the series
which tends to extend consistently throughout the entire period.

Wesley C. Mitchell in his treatise on business cycles appraises
the present status of the problem as follows:

Secular trends of time series have been computed mainly by men who were
concerned to get rid of them. Just as economic theorists have paid slight atten-
tion to the “other things” in their problems which they suppose to “remain the
same,” so the economic statisticians have paid slight attention to their trends
beyond converting them into horizontal lines., Hence little is yet known about
the trends themselves, their characteristics, similarities, and differences. Even
their relations to cyelical fluctuations have been little econsidered. Here lies in
obscurity a heap of problems, waiting for properly equipped investigators to
exploit.11

To Car] Snyder, as we shall show in a later chapter of the book,
the trend is the dominating characteristic of most economic time
series. For him the minor jiggles of the series are but inconsequential
vagaries, the importance of which are entirely submerged in the secu-
lar sweep of economic development. Thus he says:

The picture that these measyres [the per capita growth of preduction and
trade in the United States from about 1800 to 1929 . . . varying but little from
an average of about 2.8 per cent per annum . . . | gives is that of an amazingly
even rate ¢f growth not merely from generation to generation but actually of each
separate decennium throughout the last century. As if there was at work a kind
of momentum or inertia that sweeps on in spite of ali obstacles.12

This macroscopic view of the problem of time series tends to
minimize the importance of cyclical variations and perhaps denies
validity to investigations which focus on the finer structure of the
time movements, This view also emphasizes the need for a closer
scrutiny of what we shall mean by the term secular trend itself. Thus
the data from which Snyder draws his conclusions are time series a
century in length. Perhaps, indeed, he is examining only one-quarter
of an economic cyele four centuries in length and economists, analyz-
ing- the series of industrial production a century hence, may have a

1t Buginess Cycles, The Problem and Its Setting, New York, 1927, xxii +
489 pp.; in particular, pp. 212-213.

12 “The Concepts of Momentum and Inertia in Eeconomics,” Chapter £ in
Stabilization of Er:ployment, Edited by C. F. Roos, Bloomington, Ind., 1933, Pp.

76-T7. See also, Capitalism the Creator, New York, 1940, xii + 473 pp., which
amplifies the inertial theory.
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totally different concept of the pattern. Thus, if one examines the
temporal data which show the annual change in the dominance of the
Roman people, he will find a secular increase until about the period
of Augustus followed by two centuries of prosperity, and then a slow-
ly accelerating decline until the end of the empire. This is graphically
portrayed in Figure 3.'%

If one wished to examine all economic time series from the point
of view of the theory of cycles, he might défine trends as portions of
harmonic ares with periods greater than the length of the data under
analysis. It is, indeed, significant that the elements of a pericdogram
are essentially independent of secular trends and that the mathemati-
cal investigation of shorf cycles may be pursued without first remov-
ing the trends from the data.

In general, economists have considered four types of trend lines.
The first of these is the straight-line trend with the data graphed to
an arithmetic scale. This is the true linear trend. Its use may be
justified, lacking a priori evidence in favor of a different trend, on
the basis of simplicity. Ingenious and simple methods have been de-
vised for fitting it to the data. Residuals from it may be easily cal-
culated; their standard deviations may be computed and their corre-
lations with other residuals found without calculating other constants
than the variance and the zeroth and first moments of the raw data.

Extrapolation with linear trends is more common than with
other types of trends. For most economic data the slope of the trend
is small and unrealistic values do not appear for reasonable extensions
of the line. The probable errors of the two parameters a and b in the
trend

y=a+bt,

are known and the limitations of an extrapolation based upon them
can be computed, as we shall show later in the book. An extensive in-
vestigation of this point was undertaken by the laboratory of the
Cowles Commission. This experiment, which will be more carefully
analyzed later, consisted in the examination of the trends fitted to 100
years of rail stock prices, the period being from 1831 to 1930. A
trend of 20 years {1831-1850) was first fitted to the data and then
extrapolated for four years as a forecast. A similar period of four
years was then deleted from the beginning of the series and the actual
data from 1851 to 1854 were added to determine a new trend. This

. 122 This point of view has been expressed by G. U, Yule in his paper, “Why

Do We Sometimes Get Nonsense Correlations between Time Series?”’ Journal of
the Roynl Statistical Society, Vol. 89, 1926, pp. 1-64.
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process was continued throughout the entire century, 21 forecasts of
secular trends being thus recorded. The resulting 21 determinations
of the parameters ¢ and b are perhaps the only data in existence
which throw light upon the nature of the actual distributions of these
parameters in realistic economic time series. Since the interpretation
of results is extensively developed in another part of the book, it will
suffice here to state that the distribution of the differences in ¢ and b
from trend to trend, that is to say, the distribution of 4a and 45,
vielded the following values:

For da: A =3.3201, +=5.4362, Skewness=10.0364, £, =1.8992,
For A4b: A =0.008199, ¢ = 0,143544, Skewness = —0.0184, §.—2.4644.

The small values of 8., which for normal distributions should
equal 3, indicate an excessive disturbance in the trends and one must
conclude that the use of linear trends throughout the entire period of
100 years was not warranted without further hypothesis. This ex-
ample throws vivid light upon the question of why the “normal” lines
of one period are not the normal lines for a second and, perhaps, con-
tiguous period.

The second favorite trend of statisticians is a straight line fitted
to data which are graphed on a logarithmic scale. Unless warily used
this is a dangerous trend to employ, particularly if it is to be extra-
polated for any distance or used as the criterion for a normal period.
The reason for this is apparent when we write the linear expression

logwwy—=a+bt,
in the form
y—A4e®, where 4=10°, B= (log. 10)b.

The expression on the right of this equation is called the expo-
nential function, or the function of compound interest. For positive
values of B, the quantity increases with rapidly increasing accelera-
tion, and even a moderate extrapolation can lead to completely un-
realistic values, -

A third trend is the so-called logistic, or curve of growth, which
was given currency in the biological and population studies of Ray-
mond Pearl and L. J. Reed.?® The logistic curve appears to have been

15 The use of this curve in population studies is to be found in the following
papers by Pearl and Reed: “On the Rate of Growth of the Population of the
United States since 1780 and its Mathematical Representation,” Proc. Nat. Acad-
emy of Science, Vol. 6, 1920, pp. 275-288; “On the Mathematical Theory of Popu-
lation Growths,” Metron, Vel. 3, 1922, pp. 6-19; “The Probable Error of Certain

Constants of the Population Growth Curve,” American Journal of Hygiene, 1924,
An extensive account is given in Chapter 24, Studies in Human Biology, by Ray- -
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employed as early as 1844 by P. F. Verhulst,™* but its application in
economics is subsequent to the work of Pearl and Reed. The most ex-
tensive use of this curve as a trend for production data has been made
by S. S. Kuznets,'* who fitted logistics to some 50 or more series such
as the production of wheat, corn, potatoes, cotton, pig iren, Portland
cement, coal, copper, lead, etc. He also studied by this means the
growth of bank clearings in New York City, Boston, Chicago, and
Philadeiphia, the growth of railroads, and the tonnage cleared from
various countries. Modern industrial development, which, as one sees
from the conclusions of Snyder, has progressed so uniformly over the
past century, has furnished series admirably adapted to graduation
by means of the logistic curve.

The logistic curve seems to be especially well designed for the
description of the growth of new industries, for population studies,
and for production series which depend upon the growth of popula-
tion itself. The curve has been subjected to numerous biological tests
such as the growth of bacterial culture’® and the growth of a popula-
tion of drosophila (fruit flies) under controlled experimental con-
ditions.”” The unusual success of this curve in such varied fields
of application has suggested that the basis of this success may be
found in the fact that the law of formation of a chemical substance
by autocatalysis may in some instances be described by the logistic.?
Whether this relationship is merely an analogy or a real connection
of chemical processes with the process of biclogieal growth is still
unknown. An admirable account of the present status of the prob-
lem is to be found in Lotka’s Elements of Physical Biology, Chapter 7.

The characteristics of the logistic curve which make it so attraec-
tive to the statisticians who examine modern production data are re-

mond Pearl, Baltimore, 1924. A comprehensive article is also due to H. Hotelling:
“Infferential Equations Subject to Error, and Population Estimates,” Journal of
the Amer. Statistical Association, Vol. 22, 1927, pp. 283-314. The errors of fore-
casting from the curve have been estimated by H. Schultz in “The Standard
Error of a Forecast from a Curve,” Journal of the American Siatistical Associa-
tion, Vol. 25, 1930, pp. 139-185. See also, E. B. Wilson (with Ruth R. Puffer),
“Least Squares and Laws of Population Growth,” Proceedings of the American
Academy of Arts and Sciences, Vol. 68, 1933, pp. 2856-382; Victor S. von Szeliski,
“Population Growth Due to Immigration and Natural Increase,” Human Biology,
February, 1936, pp. 25-37. :

14 Mem. Acad. Roy. Bruxelles, Vol. 18, 1844, p. 1; Vol. 20, 18486, p. 1.

15 Secular Movements in Production and Prices, Boston, 1930, xxiv -+ 536 pp.

18 H, G. Thornton, Annals of Applied Biology, 1922, p. 265,

7" R. Pear] and 8. L. Parker, American Naturalist, Vol. 55, 1921, p. 503; Vol.
56, 1922, p. 403.

12 Bee T. B. Robertson, Archiv fir die Entwickelungsmechanik der Organ-
temen, Vol. 25, 1907, p. 4; Voi. 26, 1908, p. 108. Also The Chemical Basis of
Growth and Senescence, 1923; W. Ostwald, Die zeitlichen Eigenschaften der
Entunckelungsvorgange, Leipzig, 1908.
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vealed in the graph shown in Figure 4, which gives the logistic fitted
to the data for automobile production in the United States. As one
sees from the graph, the logistic curve may be regarded as a transi-
tion trend line intermediate between a lower initial level and an upper
stable level. In such a transition curve there must necessarily be a
point of inflection, where the rate of incremse of production begins
to decline. In the example, this point was midway between 1920 and
1921,
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FIGURE 4.—PRODUCTION OF PASSENGER AUTOMOBILES IN THE UNITED STATES
(12-MoNTH MOVING AVERAGE), FITTED WITH LOGISTIC

The existence of an upper asymptote, the line of maturity, is the
distinguishing feature of the logistic which makes it superior to the
pure exponential function in applications to economic time series. In
the example, the data used for fitting the logistic were taken for the
years from 1913 to 1927 and the curve was then extrapolated to 1938.
The range chosen, since it included the critical inflection point, was
probably sufficient for attaining some extrapolation validity. A gross
overproduction in 1929 was indicated by the trend and a gross under-
production was similarly shown for the period from 1930 to 193b.
Although, as we shall show when we make a more critical examina-
tion of the curve later in the book, the extrapolation over so long a
period with so short a base is not statistically valid, it is a matter of
some interest to note that the forecasted normal production was again
attained by 1937.

The curve itself is represented by the formula

k

Yo 1T be=
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and numerous methods have been devised for determining the three
essential parameters., The values of the upper and lower asymptotes
are given by the lines ¥y = 0 and ¥y = % . The point of inflection is de-
fined by the co-ordinates ¢ = + (log. b) /e,y = 3k.

The differential equation of the logistic, namely

d
df ay—py*,

where a and § are positive constants, shows that the growth of y is
stimulated directly by the magnitude of y, but that it is checked by a
factor proportional to the square of y.

The logistic curve is closely related to the older Gompertz curve,

y=ka”, b<1,

which was used by Benjamin Gompertz to graduate the data of the
mortality table. The logistic curve, perhaps, derives some theoretical
validity from the arguments used by Gompertz in his original paper
presented to the Royal Society in 1825. There Gompertz assumed
“that death may be the consequence of two generally coexisting
causes; the one, chance, without previous disposition to death or de-
terioration; the other, a deterioration, or increased inability to with-
stand destruction.” Regarding the second cause Gompertz then pro-
posed to consider the effect of supposing that “the average exhaustion
of a man’s power to avoid death to be such that at the end of equal
infinitely small intervals of time he lost equal portions of his remain-
ing power to oppose destruction which he had at the commencement
of these intervals.”

If I: represents the number out of a given initial population that
are alive at age xz, then the probability of death in the interval ¢ is
given by — (L., — L) /L, or when ¢ is an infinitesimal, by — dl,/1, .
This, by the Gompertz assumption, is equal to B b* dx , where B a,nd
b are constants to be determined from the data. We thus obtain the
equation —dl,/l. = B b dx, which yields, on integration, the Gom-
pertz curve.

it is of interest to note that if Gompertz had formulated his as-
sumptions as to the probability of death in the form —dl/l, =
(A + B b*)dx, where A represents the constant probability due to
chance and affecting all ages alike, and B b° is the chance due to in-
creaging inability to avoid destruction, then the equation for I, would
have assumed the form

l.=krar.
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This formula is due to Makeham, who proposed it in 1860.
In appraising the general value of the logistic and Gompertz
trends in production data Kuznets reaches the following conelusion:

The simple logistic and Gompertz curves, mostly the former, deseribe well
the long-time movements of growing industries, and, with certain modifications,
those of declining industries. . ..

The significance of [this] conclusion should be made clear to prevent over-
valuation. The good description of the series yielded by the logistic and Gom-
pertz curves should not lead one to infer that they are the only ones that yield
such description, that they embody the law of growth and are for that or for
some other reason the superior forecasting curves. In forming a good descrip-
tion of the long-time movements, these curves only corroborate the general as-
sumption concerning the decline in the percentage rate of industrial growth
(within specific industries) and lend some weight to the hypothesis which makes
this decline a function of the level attained and of a finite limit. The conclusion
of the statistical analysis supports therefore only a limited historical generaliza-
tion. But the specific constants arrived at in the process of fitting have in them-
selves scarcely any forecasting value, nor are the forms of the equations to be
treated as expressions of “a law of growth.”z0

A. F. Burns in his study Production Trends in the United States
Since 1870% has challenged the use of the logistic curve as a complete
description of the growth and decline of industry and has replaced it
by the exponential

(1) y:ea+bt+ct1.

It should be noted, however, that the general logistic, obtained by
replacing et by a polynomial, essentially includes equation (1) for
sufficiently large values of ¢. The general logistic is able to describe
any phenomenon at least as well as equation (1).

Burns’ argument against the use of the logistic follows:

It is difficult, therefore, to find any sound rational basis for the notion that
industries grow until they approximate some maximum size and then maintain
a stationary position for an indefinite period, Nor is the notion at all supported
by experience: the production records of our industries practically never evi-
dence a plateau at the apex: once an industry has ceased to advance, it rarely
remains at a stationary level for any length of time, but rather soon embarks
on a career of decadence. It is possible, of course, to formulate a “law of decline,”
give it expression in a “senescence curve,” splice this curve on to a “growth
curve” at the apex, and in this way achieve a complete description of an indus-
try’s development, But such procedure is arbitrary, even unsound if it pre-sup-
poses a break in the underlying causation, and it invelves an inelezgant mode of

19 For an account of these matters see the Institute of Actuaries Text Book,
Part 2, by George King, First edition, London, 1887; in particular, Chapter 6.

20 Qp, eil., pp. 197-198.

21 New York, 1934, xxxii 4 363 pp; see, in particular, Chapter 4.
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mathematical expression. Both analysis and history require that if a “law of
growth” of industries is to be formulated, it should be sufficiently general to
subsume the periods of both advance and decline.21»

A fourth type of trend favored by statisticians is a moving aver-
age; that is to say, the trend values are computed from the data values
by means of the formula

A
2 Wa Lisa
2=-A

(2) Yo=""7T """,
W,
$==A

where W, is a weight function. Usually W, is a constant or the bi-
nomial coefficient W, = ,»C)., . The parameter i of the moving aver-
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FIGURE 5.—8ERIES OF RANDOM ITEMS (——————) SMOOTHED BY A MOVING

AVERAGE (————) OF TWELVE UNITs.

age is generally chosen sufficiently large to remove minor variations
in the data. The quantity 21 + 1 is called the length of the moving av-
erage and should be chosen equal to, or some multiple of, the periodic
movement which is to be removed from the data. Thus seasonal varia-
tion can be eliminated by a moving average of 12 months.

It is clear that for continuous data, ¥ (¢), the equivalent of for-
mula (2) may be written

_JAW ) 2(tts)ds SRR W(r—t) 2(r) dr
FAWeyds = T AW(s) ds

(3) y(t)

21a Ibid., pp. 170-171.
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The moving average has several interesting advantages. It pos-
wesses a useful simplicity and can be employed with great advantage
in smoothing difference series derived from economic series. Its length
may be adjusted to remove certain cycles, such, for example as sea-
sonal variation, without essentially interfering with others. The mov-
ing average has been employed advantageously in the technique of the
variate difference method to remove from the data the erratic element
suggested by that method. The accompanying graph, Figure 5, shows
how a series of random elements may be smoothed by the use of mov-
Ing averages,

It is obvious that numerous other trends might be defined, but
the four which we have described above are by far the most common
ones in use in the study of economic time series. A natural extension
of the linear trend is found in polynomial trends of higher degree.
The parabola

y=a +bt+ctt

has been occasionally employed and examples may be found where
the more general polynomial

y=0, +a,t+at*+a -+ +a,t

has been used for a trend. Such trends, however, must be employed
with great caution and usually only in those cases where they are
justified by some a priori consideration. Lacking such a priori va-
lidity, one will find extrapolations based upon them an unsound sta-
tistical procedure. A theory of the standard error of polynomial
trends is helpful as a guide to one's judgment in this connection. Un-
fortunately such standard errors show that the region of uncertainty
for polynomials of higher degree than the first opens up almost ex-
plosively at the end of the period of the known data and extrapolation
is automatically limited. An extensive account of the theory of the
standard error of trends was published in 1929 by H. Working and
H. Hotelling.?? A novel extension of these ideas to the standard error
of a forecast from a curve was made the next year by the late Henry
Schultz,” who applied certain concepts of K. F. Gauss to the interpre-
tation of economic time series. This problem will be more fully dis-
cussed in a later chapter of the book.

If the object of the investigator is merely to determme a trend

22 “Apphcatmns of the Theory of Error to the Interpretation of Trends,”
Proceedings of the American Statistical Association, Vol. 24, 1929, pp. 73-85.

21 “The Standard Error of a Forecast from a Curve,” Journal of the Ameri-
can Statistical Association, Vol. 25, 1930, pp. 13%-185.
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for the purpose of describing the historical movement of the series,
then one criterion which is employed by some writers in the use of
polynomials is to determine the degree of the curve such that the
residuals from it form a normal distribution. This determination,
unfortunately, is not unique and should be regarded as a necessary
rather than a sufficient condition. An interesting example of this is
furnished by the data on rail stock prices between 1859-1878. The
residuals from a straight-line trend fitted to the series showed 2 strong
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FIGURE 6.—INDEX OF RAIL STOCK PRICES WITH LINEAR (a) AND CUBIC
(b) TreENDs FITTED.
This graph shows how the use of a polynomial trend has reduced the distribution
of the deviations to a2 normal form.

tendency to a U-shaped distribution, as one may observe from the
graph in Figure 6. The use of a polynomial trend immediately reduces
this distribution to normal form.

7. The Evidence for Cycles

In the analysis of empirical data in any branch of science, the
search 1s necessarily for relations which may exist between two or
more of the measurable quantities which are the object of the investi-
gation. These relationships, if they exist and are to be recognized
as valid, must exhibit themselves in more or less well-defined patterns.
But this is not enough to give them general recognition. The patterns
must persist. If they are discovered in one set of experiments, then
they must also be discovered in a second and independent set of ex-
periments performed under identieal conditions. In the case of time se-
ries, the patterns discovered in cne period must again exhibit them-
selves in another, or else valid reasons be advanced for their efface-
ment. But even this eriterion of continuity is not sufficient to establish
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laws of science, The final stage is to give a priori arguments for the
existence of the patterns; that is to say, to explain the nature of the
phenomena which have been discovered from the data. It is probably
needless to add that in emerging seiences such as that which is the ob-
ject of this book it is not always possible to give full validity to the
relationships discovered or suspected. The laws of economics are for
the most part only specious probabilities whose truth must be forti-
fied by more data and further analysis.

To illustrate this point we might consider one of the most inter-
esting discoveries made by V. Pareto in his exploration of economic
data. Before the time of Pareto, or for that matter, for as long as
history gives us evidence, it has been observed that there have existed
in every commonwealth classes of varying degrees of wealth., The
poorest class has always far ouinumbered the richest and at times,
as in the period of the French Revolution (1789-1795), or in that of
the more recent Russian Revolution (1917-1919), the misery of the
masses has found expression in widespread conflagration. The ques-
tion proposed by Pareto was essentially this: Does there exist a fixed
pattern, or norm, for the distribution of income in stable economies?
That is to say, given the N inhabitants of a country and a scale of
income measured by z, does there exist a function ¢(z) such that
N ¢(x) gives the distribution of incomes? It was a prime empirical
discovery that there does exist such a function, which is perhaps in-
dependent of nations, political philosophies, and periods of time. This
proposition will be subjected to statistical review in a later chapter.
But can we say that the observation of Pareto is a law of economics?
Although a liberal interpretation of the evidence discovered fo date
seems to point to the truth of Pareto’s proposition, it would be rash
to affirm that this is a law of economies until a priori reasons have
been advanced to show why Pareto’s function must characterize the
distribution. .

In economie time series the most plausible structure to be as-
sumed is that of trend, particulariy in an increasing economy where
biological growth functions appear to have validity. We have already
explored these possibilities. And next to trends, the most probable
structure to be investigated would be that of cycles, that is to say, the
more or less regular variations about established trends. Naturally
these movements would not be entirely uniform, since the vagaries
of human conduct might be expected to alter both their amplitudes
and their periods. But if a genuine cycle is to be observed, this varia-
tion should lie within well-defined limits of statistical error.

In a later chapter of the book we shall discuss in more complete
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detail the evidence for the assumption of cyclical variation. It will
he sufficient here to indicate the present status of the problem.

The first cause of cyclical variation would naturally be found in
the seasons of the year. Many economic series exhibit this seasonal
fluctuation, while others show little if any variation from this cause.
Agricultural production and most industries which depend essentially
upon agricultural production will show substantial seasonal variation.

As an example we might consider the index of freight-car load-
ings. When crops are moving in the fall, loadings reach their peak.
In any year there will be a rapid decline in loadings in November and
December. The index number for this time series will always end the
year below the annual average, while the index for August, Septem-
ber, and October will be above. This seasonal factor, having thus
been observed for a number of years, must always be discounted in
estimating the general status of business by means of this index.
Since freight-car loadings are found to correlate highly with indus-
trial production, this index is watched with interest by those desirous
of knowing the condition of the country’s economy. The normal sea-
sonal decline in the late fall and the corresponding seasonal rise in
the late summer, as we have already stated, must accordingly be dis-
counted in estimating the normal trend of business,

But undue emphasis must not be placed upon the season factor
since this variation is frequently a relatively unimportant part of the
total variation of economic time series. For such comparative pur-
poses it is convenient to have some measure of cyclical variation,
whether this be scason or otherwise, and this measure is found in the
concept of the energy of the series. The measure of energy, which
we shall designate by the letter E, will be explained later. It is suf-
ficient at present to know that in the index of freight-car loadings
over the period from 1919 to 1932 the energy attributable to the sea-
sonal factor was just 11.87 per cent of the total energy observed in
the variation of the scries. The remainder was concentrated in the
trend and in the erratic element and, perhaps, in other longer or
shorter cyeclical movements. '

A second pattern which has been generally observed in econcmic
time series is that of the 34-year cycle, frequently referred to as the
40-month cycle, since its definition is not sharp and it may vary from
36 to 48 months. The evidence for the existence of this cycle is quite
clear, although the explanation of its cause is not yet entirely satis-
factory. In a later chapter in the book we shall give at length the evi-
dence for the existence of the cycle. It is sufficient for the present
exposition to note that for the period from 1897 to 1914, the energy
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of this eycle in the prices of industrial stocks was as large as 48 per
cent after the trend had been removed and that for the period from
1914 to 1924 the energy inereased to 74 per cent. In the disruptive
cconomy of the bull market the 40-month pattern was largely effaced
in stock price series, although it was still discernible in production
data. In their noteworthy book entitled Business Annals, W. L.
Thorp and W, C. Mitchell reached the conclusion that in the 127 vears
of business which they analyzed there had been 32 cycles with an
average length of not quite four vears. This cycle appears to be a
phenomenon of American business, since the corresponding European
cycle is somewhat longer with an average length of five years.>®

A third eycle with a more or less statistical validity is that of
nine or ten years, The reasons for this cycle are as obscure as those
which cause the 40-month cycle and the statistical evidence is not
quite so clear. The analysis of American industrial activity from 1830
to 1930 shows that 17.36 per cent of the variation is concentrated
around 9 years. A very comprehensive analysis of monthly data by
E. B. Wilson over the period from 1790 to 1929 confirms the existence
of this concentration although the energy in the period from 1790 to
1859 appears to be divided between two periods of 90 and 120 months
respectively.?* A more comprehensive analysis of this phenomenon
will be given later. Further confirmation of the reality of the 9-year
cycle is found in work by B. Greenstein on business failures between
1867 and 1932.

The building ecycle, which appears to fluctuate between fifteen
and twenty years, is a fourth pattern that deserves serious considera-
tion. Nearly every production series shows the influence of this cycle
and at times it has been the dominating characteristic of the move-
ment of business and industrial production in general. Such, indeed,
was the case in the period around 1929 when the logistic growth of
automobiles was nearing completion.

A fifth phenomenon of great interest is found in the 50-year war
cycle, which is found particularly in the index of commodity prices.
Unfortunately our data do not penetrate far enough into the past to
confirm with high probability this strange and important pattern. Its
origin probably lies hidden somewhere in human psychology and its
relationship to the average duration of human life. The energy of
this movement is as great as 59.28 per cent in an analysis of Ameri-
can price data from 1830 to 1930 and would be certainly as great or

z3e Empirical evidence for this will be found in G. Tintner, Prices in the
Trade Cycle, Vienna, 1935, pp. 46-47.

24 Wilson, himself, was skeptical as to the validity of the 9-year cycle. His
arguments will be given in Chapter 7.
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greater if the analysis had extended through the inflationary period
of the Napoleonic wars. The energy of this cycle in Sauverbeck’s in-
dex numbers of general wholesale prices in England from 1818 to
1913 is not less than 24 per cent and the analysis of wheat prices in
Europe from 1500 to 1869 by Sir William H. Beveridge shows some
concentration of energy in the neighborhood of 50 years,

In an analysis of data pertaining to the trade. cycles of France,
England, Germany, and the Tnited States, N. ID. Kondratieff in the
article referred to in Section 5 has reached the conclusion that long
waves of an essentially’ cyclical character exist as 2 permanent pat-
tern in economie time series. He thus says that the long cyeles “are a
very important and essential factor in economic development, a fac-
tor the effects of which can be found in all the prineipal fields of
social and economic life,”

The purposes of this introduction have probably been served by
this brief comment on the problem of determining the periodic be-
havior of economic time series. We shall turn now to a short exam-
ination of some of the methods which have proved most useful in
such investigations.

8. Harmonic Analysis

It ig natural in the discussion of cyclical phenomena in economic
time series that one should turn to the theories which have been so
successfully employved by the astronomers and the physicists for more
than a century.

The problem of harmonic analysis, by which we mean the prob-
lem of discovering the constituent periodicities which enter into the
construction of a given series of data arranged in a time sequence,
begins probably with a memoir published by J. L. Lagrange (1736-
1813) in 1772.%

Although it was known to Leonhard Euler (1707-1783) that an
analytie function could be represented by means of a series of sines
and cosines, namely, by the series

(1) y(t) =3 A, + 3 A, cos(nat/a)

+3B.sin(nat/a) , —a=t=a,

the full significance of this development and its application to applied

25 “Recherches sur la manitdre de former des tables des plandtes,” Oeuvres,
Vol. 6, pp. 505-627; “Sur les interpolations,” Qeuvres, Vol. 7, pp. 535-553, in
particular, pp. 541 et seq.
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problems was not realized until the epoch-making work of J4. B. J.
Fourier (1768-1830). The treatise in which these results are incor-
pornted is the celebrated Théorie analytique de la chaleuwr, which is
e of the classics of mathematieal physics.

The constants, 4, and B, , are computed from the formal integra-
tions

zl.r-:% j:'y(s) cos{(nans/a) ds, B":% f:y(s) sin{nas/a) ds.

The period of the harmonic term
A,cos(rnnt/a) +B,sin(nat/a)

in 2a./n and the amplitude is the quantity B, = v 4.2 + B.*. The peri-
il

2¢ 2a¢ 20 2a 2a
'l—t 'E‘: ?s I‘y "ty n:"'

nre said to form a Fourier sequence.

In the study of economic time series the interest is not in fitting a
Fourier series to the data, which we assume is distributed over the
range —a@ = t = a, but rather in determining the exact or approxi-
mate periods which the time series may possess. This is not exactly
cquivalent to the determination of the dominating coefficients in se-
ries (1), but rather to the determination of the period in the sequence

1,2,3,4,5,.--,a,

which we shall-designate as the arithmetic sequence.

It is clear that the Fourier sequence does not include the values
of the arithmetic sequence, and a harmonic which belongs to some
value of the latter sequence may actually fail of detection from ob-
servation of the magnitudes of R, , even though it is rigorously repre-
sented by the sum of the harmonic terms of the Fourier sequence. It
has been proved by H. H. Turner, however, that if an isolated period
rxists between any two periods of the Fourier sequence, then the
signs of A and B will change from one period to the next.” The great
advantage of the Fourier sequence, however, resides in the fact that
the following sum holds for this sequence:

R+ R2+E# +Rz2+--- =20,
where o is the variance of the data function y{(%).

z6 . H. Turner, “On the Expression of Sunspot Periodicity as a Fourier
Sequence,” Monthly Notices of the Royal Astronomical Society, Vol. 73, Supyple-
ment, 1913, pp. T15-T1T.
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Several methods have been developed for the harmonic analysis
of statistical data. The method of Lagrange, of which mention has
already been made, has been extended by J. B. Dale.?". The essence of
this method is found in the solution of an algebraic equation of de-
gree equal to the number of periods. A scheme for estimating this
number is included in the theory.

A useful method of harmonic analysis is due to 8. Oppenheim
who applied it with considerable success to the problem of periodic
behavior in earth magnetism.®

Assuming that the phenomenon under discussion can be expressed
by an equation of the form

y=C+ Acosk(t—1t,) - Bsink(t—t,),

we are led to the equivalent differential equation

d*y _
If the series representing ¥ is written in the form, ¥, , %, -+, ¥n »
then the second derivative can be computed from the formuia
dy 1 1,,.,1 1 1
e (§F— L 55— 8+ Jo— )
g =@ T T e 3T )

where d is the breadth of the class interval and the quantities 8,*" are
the central differences of even order.?® The values of € and k are then
found by means of the theory of least squares. ‘

This method has been extended to higher cases by F. Hopfner.*
He begins with the equation

2n 2n-2,
(2) ‘fitm+P,,d’tnf F ot Py —C) =0,

where the coefficients P, are assumed to be real and greater than
Zero.

27 J. B. Dale, “The Resolution of a Compound Periodic Function into Simple
Periodic Functlons,” Monthly Notices of the Royal Astronomical Society, Vol.
74, 1913-14, pp. 628648,

2 8. Oppenheim, “Uecber die Bestimmung der Periode einer penodlschen
Erscheinung nebst Anwendung auf die Theorie des Erdmagnetismus,” Silzungs-
berichte der K. Akademie der Wissenschafien, Wien, Vol. 118 (2a), 1909, pp.
823-848.

28 See E. T. Whittaker and G. Robinson, The Caleulus of Observations, Lon-
don, 1924, p. 64.

30 “Jeber die praktlsche Verwendbarkeit einer neuen Methode zur Auffin-
dung der Periode einer periodischen Erscheinung,” Sitzungsberichte der K. Akad-
emie der Wissenschaften, Wien, Vol. 119 (2a), 1910, pp. 351-370.
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This equation has for its solution the function

y=C + 3, et

=n
where the quantities r, are the roots of the equation
h T —Pori 2 4 Pyt — P =0,

The coefficients of (2) are determined from the data by the meth-
ol of least squares. Hopfner makes an essential contribution when he
shows that the method is applicable only when the interval, d, of the
uhrervations is less than i,, where 1, is the smallest frequency ob-
nerved in the data, that is, that d < 2 a/r,, where 7, is the largest root
of equation (3).

The most widely used method of harmonic analysis, however, is
that which employs the idea of periodogram. This term was intro-
duced by Sir Arthur Schuster (1851-1934), who developed his theory
in a number of papers and applied it successfully in the study of sun-
spots, the periodicity of earthquakes, terrestrial magnetism, ete.

A periodogram is the graph of either y = R, or y = R.?, where
R is computed over either the Fourier or the arithmetic sequence. The
theory of Schuster has been somewhat modified by E. T. Whittaker
and G. Robinson, who constructed their periodogram from values of
the eorrelation ratio as it relates to each value of the arithmetic se-
(quence.’? :

The significance of the Schuster periodogram has been exten-
sively debated. Schuster himself gave a method for testing the reality
of a period revealed by his analysis. This criterion was significantly
modified by Sir Gilbert Walker in 19143 R. A. Fisher gave a some-
what different approach to the problem of significance in 1929,*¢ and

91 “On Interference Phenomena,” Philesophical Magazine, Vol. 37 (5), 1894,
pp. 509-545; “On Lunar and Solar Periodicities of Earthquakes,” Proceedings of
tlfe Royal Soe. of London, Vol. 61 (A), 1897, pp. 455-465; “On Hidden Periodic-
ities,” Terrestrial Magnetiem, Vol. 3, 1898, p. 13; “The Periodogram of Magnetic
Declination,” Tramsactions of the Cambridge Philosophical Soec,, Vol. 1B, 1900, pp.
107-135; The Theory of Optics, London, 1904; “The Periodogram and its Optical
Analogy,” Proceedings of the Royal Soc. of London, Vol. 77 (A}, 1906}’?‘1). 136
140; “On the Periodicities of Sunspots,” Philosophical Transactions of Royal
Soe. of London, Vol. 206 (A), 1906, pp. 69-100.

82 The Calculus of Observations, London, 1924, Chapter 13, See also Albert
Edgle, Fourier’s Theorem and Harmonic Analysis, London, 1925, Chapter 8.

33 Indien Met. Memaoirs, Vol. 21, 1914; “On Periodicity,” rt. Journal B
Met. Soc., Vol. 51, 1925, pp. 337-346; Memoirs of the Royal Met. Soc. of London,
Vol, 1, No. 9, 1927; Vol. 3, Ne. 25, 1930; Monthly Weather Review, Vol. 59, 1931,
pp. 277-278; Proceedings of the kcyal Sec. of London, Vol. 1831 (A), 1931, pp.
b18-532.

34 “Tegts of Significance in Harmonic Analysis,” Proc. Royal Soe. of London,
Vol. 125 (A), 1929, pp. 54-B9.
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J. Bartels, employing concepts involved in the theory of the “random
walk” problem of Karl Pearson,® gave still another test.*® Some of
these theories will be extensively discussed in Chapter 5 of this book.

Excellent summaries and examples ililustrating the determina-
tion of significant periods in statistical data have been given by E. B.
Wilson, B. Greenstein, D. Brunt, and K. Stumpff.*” The last has given
an extensive bibliography of the subject.

In a paper of great analytical ingenuity, Norbert Wiener intro-
duced the idea of an integrated periodogram.®® Wiener's method be-
gan with the definition of the lag-correlation function

T{t)=1im-—1-fu'y(t+s)?i(s)d3,
== 2q J g

which may be shown to exist for a large class of functions. Then the
integrated periodogram of ¥ (t) is defined to be the function

2 o sin ut
R(u):;f r(ty 2ot
0

If y(s8) is defined by the series
y{(s) = § (A, cos 1,5 + B, sin 4,8) ,
then it follows that

r(t) =1 S Ry cos At .

Consequently, noting the integral
, A>u,

, A=u,
y A<u,

o0 o L
P(u) ng smtu cos Atdt=
n 1

Pt

we get

. % %A Mathematical Theory of Random Migration,” {Mathematical Contriby
twg%;o the Theory of Evolution, 15), London, 1906; also Neture, Vol. 72, 190¢
p- .

35 “Random Fluctuations, Persistence, and Quasi-Persistence in Geophysiez
and Cosmical Periodicities,” Terrestrial Magnetism, Vol. 40, 1955, pp. 1-60.

37 E. B. Wilson, “The Periodogram of Business Activity,” Quarterly Jouwrnc
of Economics, Vol. 48, 1934, pp. 375—417; B. Greenstein: “Periodogram Analysi
with Special Application to Business Failures,” Ecenometrica, Vol. 3, 1935, p1
170-198; D. Brunt, The Combination of Observations, Second edition, Cambridg:
1931; K. Stumpfl, Grundlagen und Methoden der Periodenforschung, Berlir
1937, vii 4 832 pp.

88 “GGeneralized Harmonic Analysis,” Actea Mathematica, Vol. 55, 1930, pj
117-258,
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B(u) =33 R.*.
n=1

R (u) is thus a nondecreasing function, which makes abrupt
jumps in the neighborhood of the periods. The magnitude of these
jumps determines the significance of the period and measures the
energy in the spectrum of the function under analysis.

Wiener generalized his method so that it might be applied to the
relationships between several functions. Thus we may replace r(i)
hy

ri; (1) :_1}_}'251& f“ yi(s) y;(s + 1) ds,

-a

nnd B (u)by

sin ut

dt .
t

R;;(u) :g f 73, (f)
a 0
The matrix ||E:; (%) ]! is called by Wiener the coherence matriz
since it “determines the spectra of all possible linear combinations of
w, (8, ---, y. (£).” Practical application of the method of Wiener has
been made by G, W. Kenrick.®®
The idea of studying the harmonic behavior of time series by
means of their autocorrelations apparently originated with H. H,
Clayton in 1917, who used the method in a meteorological study.*® A
similar application was made in 1927 by Dinsmore Alter, who recog-
nized the importance of the method in the analysis of time series and
gave considerable currency to correlation pericdograms.

9. The Advantages and Limitations of Harmonic Analysis

We have seen from the discussion of the preceding section that
Fourier series provide us with a very powerful tool for exploring the
harmonic structure of economic time series. The theory may be seen
to be one of great generality since a series that is entirely erratic can
he completely represented by a Fourier series provided a sufficiently
large number of terms is used. This, of course, is not a unique char-
acteristic of Fourier series, since many other orthogonal systems have
the same properties.

39 “The Analysis of Irregular Motions with Applications to the Energy-fre-
quency Spectrum of Static and of Telegraph Signals,” Philosophical Magnzine,
Vol. 7, Series 7, 1929, pp. 176-196. ]

40 «“Fffect of Short Period Variation of Solar Radiation on the Earth’s At-
mozphere,” Smithsonian Miscellaneous Collections, Vol. 68, No. 3, 1917.

41 %A Group.or Correlation Periodogram, with Application to the Rainfall
of the British Isles,” Monthly Weather Revicw, Vol. 55, 1927, pp. 263-266.
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One of the principal advantages enjoyed by the methed of Four-
ier series is that it furnishes us with an accurate measure of the
amount of the total movement of the series which may be concentrat-
ed in one of the harmonies. The magnitude of the ratio

R*(T)
E(T)= 5
where R*(T) = A*(T) + B*(T) and o* is the variance of the data,
determines the amount of variation which may be attributed to the
harmonic of period T'. The quantity E (T) is called the energy of the
harmonic. If two periods, T and 7", belong to the Fourier sequence,
then their energies are strictly additive and the sum is the energy of
the two harmonics.

Moreover, by means of the energy of one or more harmonics we
may estimate the change in the variance of the data if these harmon-
ics are removed, that is to say, if the data are corrected for them.
Thus if ¢* is the variance of the original data, .2 the new variance,
and ¥ E, the total energy of the n harmonics which are to be removed,
then the relationship between the two variances is given by the equa-
tion

= (1 _EE,,) o,

This equation is strietly true if the harmonics belong to the
Fourier sequence, but only approximately so otherwise since the ener-
gies associated with periods that do not belong to the Fourier se-
quence are not additive,

While the magnitude of the energy in any harmonic or series of
harmonics is an important measure of the statistical significance of
the periods, it is frequently necessary to express this significance in
terms of probabilities. Such is the case where the energy observed
is small.

We have mentioned in the preceding section the existence of such
measures and the underlying theory of them will be developed in a
lIater chapter. One may note, however, that they are attained by com-
paring the observed distribution of energies with that to be expected
from a series of random values. The probability of obtaining by
chance a given harmonic of energy E (T) is expressed in terms of a
parameter k(T) = iN E(T), that is, P = P(k).

Thus in the example of the seasonal factor in freight-car load-
ings discussed in Section 7, the number of items in the data was 168,
and % was accordingly equal to 10.07. It will. be shown later that
P(10.07) for N = 168 is approximately 0.004, which means that so
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large an energy would be found in a component of a random series
only four times in a thousand. This probability would have been in-
creased if the data had first been corrected for trend. Hence, lacking
a priori reason for the existence of the seasonal factor, we should
still have been able to attribute high significance to the reality of
the phenomenon.,

One of the principal objections advanced to the use of harmonic
analysis in economic data is that the cycles are necessarily very ir-
regular and hence that periodic, or almost periodic, movements ob-
served in one era may fail to appear in another. Even though they
may appear their amplitudes will usually alter and the lengths of their
periods change. Hotelling has raised the following criticism along
these lines:

.. . we might suspect that each crisis was to be regarded as a distinctive event,
with its own oscillations, which were not part of a long-continuing oscillation em-
bracing them all. In these circumstances harmonic analysis of a long economic
series resembled harmonic analysis of a man's temperature since his birth, There
would be a sharp increase and decrease, with possible oscillations, each time he

got a disease; but these would not combine sériatim to give something discernibie
by means of any of the periodograms.?

The objection raised by Hotelling is certainly valid. There is the
strongest evidence to show that periods change from one era to an-
other and that significant amplitudes observed in one section of the
data fail to appear in another. The periodogram is sometimes foo
rigid as we have described it in the preceding section to reveal the
nature of these changes. Its energies are only the average energies
found in the whole of the data. Thus Sir Arthur Schuster’s periodo-
gram of sun spots from 1750 to 1900 revealed a period of high sig-
nificance at T = 11.25 years. But the data from 1750 to 1826 showed
that the major energy was concentrated in periods of 9.25 and 13.75
years, while the data from 1826 to 1900 reaffirmed the significance
of the period shown by the complete periodogram. Even more inter-
esting from our point of view is the history of the 40-month cycle in
stock price data. The periodogram of the Cowles Commission All
Stocks index (1880-1896) shows a period with energy equal to 0.27
at T = 35; the Dow-Jones averages of industrial stock prices reveal
that the period has now advanced to T == 41 and the energy to 0.48 in
the subsequent data from 1897 to 1913. In the next era from 1914 to
1924 the period has dropped back to 38, while the energy has in-
creased to 0.74. And finally the entire structure is effaced in the dis-
ruptive events which developed during and after the great bull mar-

42 Feonomelrica, Vol, 1, 1933, p. 435.
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ket of 1929, 1t is an interesting question to ask whether or not the
pattern of the 40-month cycle will emerge after the disturbances of
the great speculation have subsided.

10. The Erratic-Shock Theory of Economic Time Series

If one assumes that the periods observed in many economic time
series are real and permanent patterns, effaced at times by unusual
events, but recurring again when the effects of the disturbances have
died away, then it is necessary to account for them. Those who ap-
proach the problem with a training in mechanics are wont to view
these oscillations, irregular and varying as they may appear, as evi-
dences of something akin to the vibrations characteristic of elastic
solids. A taut string, plucked at the center, will vibrate in a pattern
which depends wholly upon the elastic forces to which it is subjected.
Weighted at different points with beads, it will oscillate in another
manner, but always according to the inherent elasticities and the in-
ertial properties of the loaded string. Can an economic time series
be regarded from this point of view, where the elastic constants are
more or less permanent characteristics of the economic system itself?

This question has been answered by different people in different
ways. Harold Hotelling in a brilliant essay has assumed that “the-
ories of the business cycle fall into two classes, considering respec-
tively what are called in mechanics free and forced oscillations.”*?

Forced oscillations, which depend upon forces external to the
system itself, must have origins which are noneconomic. Hotelling
cites as such possible origins the theory of H. L. Moore, which at-
tempted to explain the variation in prices and production by the
changes in phase of the planet Venus. Another such theory is that
of sunspots, which are assumed to cause disturbances in terrestrial
phenomena and hence to react upon the economic system. About such
external theories Hotelling makes the comment:

The trouble with all such thearies is the tenuousness, in the light of physics,
of the long chain of causation which they are forced to postulate. Even if 2 sta-
tistical test should yield a very high correlation, the odds thus established in
favor of such an hypothesis would have to be heavily discounted on account of its
strong a pricri improbability.

In contrast to forced oscillations we find the theory of free oscil-
lations, which depends only upon the internal structure of the sys-
tem. Thus Hotelling cites the case where the high price of hogs and

13 “Differential Equations Subject to Error, and Population Estimates,”
Journal of the American Statistical Association, 1927, pp. 283-314.
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the low price of corn lead to overproduction in the first instance and
underproduction in the second. This in turn reverses the price struc-
ture and cyclical fluctuations ensue, The causes of variations are here
apparent and for this reason any observed correlations derive more
significance than those which may have appeared in an attempt to
test the theory of forced oscillations. Hotelling cites the variations
due to monetary conditions as another example of the free variety.

One objection which can be raised against this general point of
view is found in the fact that the variations in economic series do not
damp out. In the case of the plucked string there is a constant de-
crease in the deviations from the equilibrium position and in time the
string will come {o rest. This is fundamentally true for all elastic
systems which are not constantly supplied with new energy from
some source external to themselves. It must certainly be true also
for an economic time series, if this is to be explained on any satis-
factory mechanical basis.

The double observation that economic series appear to be quite
errati¢ and yet in many cases tend to eonform to a somewhat irregu-
lar cyclical pattern which does not damp out over long periods of
time has led to the theory that the energy which maintains the move-
ment is derived from a series of erratic shocks imposed from time to
time upon the system. Thus says Ragnar Frisch about this possi-
bility:

There are several alternative ways in which one may approach the impulse
problem and try to reconcile the results of the determinate dynamic analysis with
the facts. One way which I believe is particularly fruitful and promising is to
study what would become of the solution of a determinate dynamic system if it
were exposed to a stream of erratic shocks that constantly upsets the continuous
evolution, and by so doing introduces into the gystem the energy necessary to main-
tain the swings. If fully worked out, I believe that this idea will give an inter-
esting synthesis between the stochastical point of view and the point of view of
rigidly determined dynamical laws,+4

The origin of this interesting idea is attributed by Frisch to Knut
Wicksell. We quote Frisch on this historical point:

Knut Wicksell seems to be the first who has been definitely aware of the two
types of problems in economic cyele analysis — the propagation problem and the
impulse problem—and also the first who has formulated explicitly the theory
that the source of energy which maintains the economie cyeles is erratic shocks.
He conceived more or less definitely of the economic system as being pushed
along irregularly, jerkingly. New innovations and exploitations do not come regu-
larly he says. But, on the other hand, these irregular jerks may cause more or

# “Propagation Problems and Impulse Problems in Dynamic Economics,”
in E¢onomic Essays in Honour of Gustav Cassel, 1933, pp. 197-198. -
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less regular cyclical movements. He illustrates it by one of those perfectly simple
and yet profound illustrations: “If you hit a woeeden rockingliorse with a club
the movement of the horse will be very different to that of the club.”

Wicksell’s idea on this matter was Iater taken up by Johan Akerman, who in
his doctorial dissertationt’ discussed the fact that small fluctuations may be able
to generate larger ones. He used, among others, the analogy of a stream of water
flowing in an uneven river bed. The irregularities of the river bed will cause
waves on the surface. The irregularities of the river bed illustrate in Akerman's
theory the seasonal fluctuations; these seasonals, he maintains, create the longer
eycles. Unfortunately Akerman combined these ideas with the idea of a syn-
chronism between the shorter fluctuations and the longer ones. He tried, for
instance-—in my opinion in vain—to prove that there always goes an exact num-
ber of seasonal fluetuations to each minor business cyele. This latter idea is, to
my mind, very misleading. Tt is also, as one will readily recognize, in direct op-
position to Wicksell’s profound remark about the rocking-horse.

The erratic-shock theory was made the basis of a penetrating
analysis of the nature of the periodicity observed in sunspot data by
G. U. Yule. *¢ His approach to the subject was through the mechanism
of serial correlations and the relationships between the original data
and their second differences. A more careful survey of his results
will be given later in this book. A similar idea was independently ad-
vanced by E. Slutzky, who exhibited a striking similarity between an
index of English business for 1855-1877 and a series formed from the
10-term moving average of a series of random numbers.”” Slutzky’s
graph is exhibited below in Figure 7. _

From 3 series of ingenious statistical experiments Slutzky arrived
at the following general observations: “The summation of random
causes generates a cyclical series which tends to imitate for a number
of cycles a harmonic series of a relatively small number of sine curves.
After a more or less considerable number of periods every regime
becomes disarranged, the transition to another regime occurring some-
times rather gradually, sometimes more or less abruptly, around cer-
tain critical points.”

Yule’s point of view, which started from a consideration of just
what information one can derive from a Schuster periodogram, merits
further comment. His principal interest is in the nature of errors
which a statistical series with sinusoidal characteristics may be pre-
sumed to have. We quote his observations as follows:

45 Det ekonomiska livets rytmik, Lund, 1928.

46.“0n a Method of Investigating Periodicities in Disturbed Series, with spe-
cial reference to Wolfer's Sunspot Numbers,” Philosophical Trensactions of the
Royal Society, Vol. 226 (A}, 1927, pp. 267-298.

47 “The Summation of Random Causes as the Source of Cyclic Processes,”
Econometrion, Vol. 5, 1937, pp. 105-146; originally printed in Russian in

Problems of Economic Conditions, edited by The Conjuncture Institute, Moskva
(Moscow), Vol. 8, No. 1, 1927,
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The left-hand and lower scales refer to the Business Index; the right-hand and
upper scales to the Random Series.

If we take & curve representing a simple harmonie function of the time and
superpose on the ordinates smell random errors, the only effect is to make the
graph somewhat irregular, leaving the suggestion of periodicity still quite clear
to the eye . . , If the errors are increased in magnitude . . ., the graph becomes
more irregular, the suggestion of periodicity more obscure, and we have only
sufficiently to incresse the “errors” to mask completely any appearance of period-
icity. But, however large the errors, periodogram analysis is applicable to such
a curve, and, given a sufficient number of periods, should yield a close approxi-
mation to the period and amplitude of the underlying harmonic function,

When periodogram analysis is applied to data respecting any physical phe-
nomenon in the expectation of eliciting one or more true periodicities, there is
usually, as it seems to me, a tendency to start from the initial hypothesis that the
periodicity or periodicities are masked solely by such more or less random super-
posed fluctuations — fluctuations which do not in any way disturb the steady
course of the underlying periodic function or functions. It is true that the periodo-
gram itself will indicate the truth or otherwise of the hypothesis made, but there
seems no reason for agsuming it to be the hypothesis most likely a priori.

If we observe at short equal intervals of time the departure of a simple har-
monic pendulum from its position of rest, errors of obgervation will cause super-
posed fluctuations of the kind supposed . . . But by improvement of apparatus and
antomatic methods of recording, let us say, errors of observation are practically
eliminated. The recording apparatus is left to itself, and unfortunately boys get
into the room and start pelting the pendulum with peas, sometimes from ome
side and sometimes from the other. The motion is now affected, not by superposed
fluctuations but by true disturbances, and the effect on the graph will be of an
entirely different kind. The graph wili remain surprisingly smooth, but amplitude
and phase will vary continuously.
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The second assumption attracted the attention of Ragnar Frisch
who devised a method, based upon operators, of harmonically analyz-
ing a series so as to detect these changes in phase and amplitudes® It
is possible also to attain results similar to those of Frisch by a slight
modification of Schuster's periodogram analysis. These statistical de-
tails will be considered in another chapter.

The concept of a “business cycle of varying length” has been at-
tacked by various statisticians. The question of the “degrees of free-
dom” to be allowed in the deseription of a time series is obviously in-
volved. Any set of orthogonal functions which has the closure prop-
erty can be combined linearly to describe within any specified error
the components of any economic time series. But if the allowed error
is sufficiently small a large number of functions may be required and
the number of degrees of freedom will be large. Does the concept of a
changing harmonic analysis remove this difficulty, or does it merely
disguise the fact that an essentially large number of degrees of free-
dom has been employed?

Hotelling, who has been one of the critics of the method, would
argue as follows. Let us consider the function

2n

(1) y=A(t) cos[—m)—t+a(t)] .

where A (1), a.(t), and T (%) all vary independently of one another. It
is clear that by a proper choice of the three functions an enormous
variation from a simple sinusoid could be effected, let us say, from the
exact harmonic obtained by replacing the three variable functions by
their mean values. Obviously a changing harmonic of type (1) would
have many degrees of freedom under certain choices of the arbitrary
functions and the definition of what we meant by degrees of freedom
would depend upon the nature of the variations themselves.

But if A(#), a(t}, and T (t) vary within a narrow range a har-
monic analysis of ¥ would reveal the average values of these functions.
Hotelling holds that such is a legitimate use of this powerful tool,
but he warns that “harmonic analysis and the periodogram are not
suited either to detect or to use in predicting any tendency to free
vibration which is subject to serious disturbance. To detect vibratory
tendencies in a time series we must study the correlation of short-
term changes of the variable with the magnitude of the variable.”#

#8 “Changing Harmonics and Other Genera] Types of Components in Empiri-
cal Series,” Skandimavisk Alktunrictidslrift, 1928, pp. 220-236.

¢ “Tyifferential Equations Subject to Frror, and Population Estimates,” Jour-

121905 of the American Statistical Association, 1927, pp. 283-314; in particular, p.
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That is to say, in Hotelling’s view, the relationship between y,
¥, and ¥” is the important measure of time series. He calls attention,
however, to the fact that in random series the correlation coefficient
between ¥y and y” is —2/v/6 = —0.816 (see Chapter 4, Section 4), a
large correlation, so one must be cautious in relying solely upon this
relationship. He summarizes with the remark: “The conelusion seems
inescapable that the relative importance of free oscillations and mere
random wiggles is fairly measured by the coefficient of correlation
between a series and its second differences, and that the period may
be determined from the regression equation.”s
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F1GURE 8.—SINE CURVE PLUS RANDOM SERIES: (a) WHEN RANDOM COMPONENT
1S OF SMALL AMPLITUDE; (b) WHEN RANDOM COMPONENT IS OF LARGE AMPLITUDE.

It is instructive to observe graphically the difference between
the two types of disturbances discussed by Yule, the first a regular
sinusoidal wave upon which has been superimposed a set of random
fluctuations, the second a sinusocidal curve that has been disturbed by
impulses which may change not only the amplitude, but the phase and
the period also.

The first type of disturbance is graphically represented in Figure
8, taken from Yule, which shows the ordinates of a true sine curve to
which have been added the elements of a random series. In curve (a)
the magnitude of the random series is small with respect to the ampli-
tude of the sine curve; in curve (b) the magnitude of the random
series is large. But even in the second case the regularity of the
movement has not been completely masked and a harmonic analysis
of the elements will immediately reveal the existence of the harmonic.

50 Ibid., p. 291,
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In order to illustrate the second type of disturbance a simple
experiment was performed by the Cowles Commission. A galvanom-
eter was set up and by means of a system of weights was constrained
to oscillate in three separate periods. These were in the ratio 22: 43:
62, to simulate the three periods observed in the Dow-Jones industrial
averages. A series of erratic impulses, irregularly spaced and of a
magnitude about equal to the momentum of the galvanometer, was
then imposed upon the system and motion pictures were taken of the
ensuing deflections.
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FiGURE 9.—GALVANOMETER OSCILLATIONS: (a) FREE;
(b) UNDER ERRATIC IMPULSES.

Figure 9 shows the free oscillations, measured from a mean of
91.2, for the period 22, together with the actual deflections observed
after erratic impulses were imposed on the motion. It is ¢clear that the
magnitude of the impulses was sufficient to cause a large disturbance
in the normal swing. Although the phase did not appear to have been
changed, the periodogram given later in the book shows that about
29.2 per cent of the energy was moved into a period of 66 units, an-
other 20.22 per cent into a period of 34 units, while only 8.30 per cent
remained in the original cycle of period 22 units. It is thus clear that
such a set of impuises would largely mask the elastic structure of
the system and the true period could not be ascertained by a simple
inspection of the periodogram.
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11. Historical Summary of Application of Harmonic Analysis

In former sections we have reviewed somewhat cursorily the
trend of reflection about the nature of economic time series and the
type of analysis that might be necessary to untangle the structural
from the erratic in them. The physicist who has applied so success-
fully the theory of harmonics to the flow of heat in solids, the conduc-
tion of electricity in wires, the vibration of drum heads, and the like,
is beset by no such problems as those which confront the meteorologist
and the economist. His erratic element is usually of the order of his
precision of measurement. Mathematical theory and observation
agree to within an insignificant penumbra of uncertainty, which can
be reduced at will by merely sharpening the tools of observation. But
not so with those whose data consisted of empirical measurements
which were subject to unknown errors of such size as to modify not
only the amplitudes and the phases of the motion, but even the periods -
themselves,

In a later chapter some of these series will be subjected to har-
monic analysis and the difficulties specifically pointed out. It will be
sufficient here to mention one or two of these studies, which have come
to play an important part in directing the speculation about the na-
ture of economic time series,

The first and one of the most important of these investigations
was the periodogram of Wolfer’s sunspot numbers, constructed by Sir
Arthur Schuster (1851-1934) in 1906. The mystery of sunspots has
plagued the astronomers for many years. Their origin and meaning,
their creles, and their varying amplitude, constitute a subject for
perennial speculation. Sir William Herschel thought to find in them
the cause of variation in terrestrial crops and hence the secret of
fluctuations in business.” This led William Stanley Jevons many years
later to explore the possibility of explaining crises and depressions in
terms of solar variations, a possibility which has never been com-
pletely discredited because of a persistent correlation.

The interest for economics in sunspots seems, however, to lie in
another direction. In these data we have a phenomenon, expressed as
a time series, for which no a priori explanation is universally accepted
by the astronomers. That the phenomenon is periodic is unquestion-
able, but there remains doubt as to the nature of the periodicity. Hence
the data on sunspots provide an almost perfect example upon which to
test methods of periodogram analysis, which might be applicable to

51 “QObgervations Tending to Investigate the Nature of the Sun,” Phil, Trans-
actions of Royal Soc. of London, 1801, pp. 265-318,
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the more variable and less regularly periodic phenomena of economics.

Thus the periodogram of sunspots given by Sir Arthur Schuster
is highly instructive to the economist. For the entire period analyzed
by Schuster, 1750-1900, sbout 35 per cent of the total variation is ac-
counted for by a single period of 11.25 years. But in the first half of
the period (1750-1826), the importance of this period is entirely lost
and we find a concentration of energy occurring at T = 9.25 years and
T=18.75 years. But in the second half of the period (1826-1900)
nearly 85 per cent of the variation is found in the 11-year component.
What is the cause of this variation? How great is the erratic element?
Is the phenomenon itself a regular movement disturbed by random
impulses, or is it a regular movement to which random variations have
been added? As we have seen in the last section, these questions led
Yule to reinvestigate the sunspot periodogram from the instructive
. point of view of what a periodogram might reveal in a series disturbed
by erratic impulses.

One of the most ambitious periodograms ever constructed is that
due to Sir William Beveridge, who published his results in 1922, This
was a harmonic analysis of wheat prices in western Europe over a
range of approximately 300 years from 1545 to 1845.52 The resuits of
this study will be given later in this book.

The economists were perhaps first introduced to periodogram
analysis by H. L. Moore, whose classical study on Economic Cycles:
Their Law and Cause, published in 1914, contained an account of
Fourier series and a periodogram of rainfall in the Ohio valley.

In Chapter 7 an extensive account will be given of the results of
these and numerous other periodograms which have been made of
economic time series since these clasgical memoirs first appeared.
Thus, it will be sufficient here merely to refer to the following remark
of Lord Kelvin:

The first thing that in my opinion cught to be done towards making the
observations useful for scientific purposes is to perform that kind of more perfect
averaging which is afforded by the harmonic analysis. There is a certain amount
of averaging dome, but that ig chiefly daily averages, with monthly averages, and
yearly averages; but the more perfect averaging of the harmonic analysis would
give the level of the variation of the phenomenon.s?

12. The Theory of Business Cycles

The theory of the business eycle, a term applied to the more or

52 “Wheat Prices and Rainfall in Western Europe,” Journal of the Royal
Statistical Society, Vol. 85, 1922, pp. 412-459.

58 From testimony given by Lord Kelvin before the Meteorological Committee
of the Royal Society, 1876.
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less periodic alternations of business between prosperity and depres-
sion, was hecessarily a product of the present century. On the one
hand it required the need of a competent theory of index numbers and
more adequate statistical techniques, and on the other hand, a broader
knowledge of the various series, the composite variation of which
might be regarded as a measure of the fluctuations in business itself.
Both of these needs have been supplied in recent years. )

The theory of business cycles probably should be regarded as
having had its origin in the notable work of J. C. L. de Sismondi
(1775-1842) entitled the Nouveaux principes d'économie politique,
published in 1819. This treatise called attention to the importance of
the study of commercial crises and advanced some of the theories con-
cerning them which have been incorporated into modern explanations
of these events,.

This problem, however, struck little fire in the scientific mind
until the era of William Stanley Jevons nearly a half century later,
when the awakening of modern commerce and the increasing tempo
of industrial activity began to make insistent demands for a better
understanding of economic phenomena. The publication of Clement
Juglar’s Des crises commerciales et de leur retour périodique in 1860
furnished new evidence for the roughly periodic character of business
activity and called attention to the need for statistical data and their
analygis. Philosophical treatises such as the Inquiry into the Nature
and Causes of the Wealth of Nations (1776) by Adam Smith (1723—
1790) or the Principles of Political Economy (1848) by John Stuart
Mill (1806-1873) could not supply the need for empirical evidence.

It must not be assumed that the author disparages works of
speculation. Far from it! But the highest form of speculation is that
which is guided by the facts of the world. The great superiority of
. Newton’s cosmology ever that of René Descartes was due to the fact
~ that the former’s speculation, in contrast to that of the latter, was
based upon the tables of Tycho Brahe and the statistical discoveries of
Johannes Kepler. Works of speculation written in advance of the ac-
cumulation of data often serve to focus attention upon the variables
- to be examined. It is for this reason that the remarkable work of
A. A, Cournot (1801-1877) entitled Recherches sur les principes
" mathématiques de la théorie des richesses {1838) deserves particular
- attention. Therein one finds careful definitions of those functions and
 concepts which must be subjected ultimately to the scrutiny of data.
~ Modern economics may perhaps be dated from the time when the

contents of Cournot’s volume struck fire in the minds of W. S. Jevons
(1835-1882), Téon Walras (1834-1910), F. Y. Edgeworth (1845-
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1926), V. Pareto (1848-1923), A. Marshall (1842-1924), and others
of that time. Attention was finally focused upon the measurable ele-
ments and, since the first work of these writers, there has been a
remarkable increase in the accumulation and analysis of statistical
material bearing upon the phenomena of economics. ,

The modern theory of business cycles may perhaps be dated from
the publication in 1862 of W. S. Jevons’ work entitled On the Study
of Periodic Commercial Fluctuations. Jevons was the father of index
numbers. He wrote on secular trend and seasonal variations. His
analysis of British prices over a long period of years gave new .con-
cepts to the movement of business and suggested many problems, the
solution of which has become the goal of modern statistical methods.
The work of Jevons was materially forwarded by Edgeworth.

The invention of correlation analysis by Sir Francis Galton (1822-
1911) in the last quarter of the nineteenth century and its develop-
ment through the heroic labors of Karl Pearson (1857-1936) placed
a new and powerful tool into the hands of statistical analysists. There-
fore, “by the time writers upon business cycles began to make sys-
tematic use of statistics—say in the decade beginning in 1900—they
could utilize many methods already developed by mathematicians, an-
thropometrists, biologists, and economists, and many data already col-
lected by public and private agencies.”*

The problem of secular trend was discussed in 1884 by J. H.
Poynting, and in 1901 by R. H. Hooker. The use of correlation was
invoked to discuss the relationship between residuals from frends and
an extensive investigation was undertaken by numerous people to in-
terpret the significance of the results. An account of the history of
this problem will be given in Section 14.

In 1914 H. L. Moore published his stimulating study on Economic
Cycles: Their Law and Cause in which harmonic analysis and correla-
tions were freely employed. In 1915 Warren M. Persons made the
first of his business barometers and in 1917 began his work at Har-
vard on business cycles, which has exerted so wide an influence both
at home and abroad.

The World War stimulated the collection of statistics; from the
probiems presented by that great struggle it became apparent that
the complex economic system of the twentieth century could not be
properly understood without a much better knowledge of the past
behavior of prices, production, wages, money, and other fundamental
constituents of the business cycle. These series have been assembled

8¢ Wesley C. Mitchell, Buginegs Cycles, New York, 1928, p. 199,
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with bewildering rapidity. Whereas in 1900 only the most meager
data existed for an understanding of the behavior of economic vari-
ables in the nineteenth century, we now possess some series going
back as far as the Middle Ages. A reasonably complete understand-
ing of economic variation in the nineteenth century is now possible,
and most of the variables have been defined for the twentieth. The
work of Carl Snyder on nineteenth-century trends, the data assembled
by the Cleveland Trust Company under the direction of Col. Leonard
Ayres, recent knowledge about prices in Spain in the fifteenth and
sixteenth centuries resulting from the heroic labors of E. J. Hamil-
ton, common-stock indexes from 1871 published by Alfred Cowles,
the price studies of G. F. Warren and F. A, Pearson, the index of
rail stock prices of F. R. Macaulay, the numerous new series fur-
nished by the Standard Statistics Company, the heroic exploration of
early European prices made under the direction of Sir William Bev-
eridge and E. F. Gay,* together with the data assembled by numer-
ous government agencies both at home and abroad, constitute an im-
pressive volume of material for the digestion of the economist.

In the analysis of this great body of data one of the principal
problems is to find the interactions between different variables. Thus,
the periodic advances and declines in industrial production about a
“normal” trend should reflect their influence upon the price of stocks.
The volume of bank clearings, variations in the rate of interest, the
price of wholesale commodities, ete., should all exhibit common inter-
actions significant in interpreting the business cycle. The principal
tool for this analysis is found in the theory of multiple regressions.

But here some delicate problems are introduced, Which shall be
the independent variables and which the dependent variable? How
shall the errors of estimate be determined? What is the magnitude
of the erratic elements in the variables considered? The difficulties
in the situation can be explained by a simple example. Thus, let us
suppose that we have a table of data which gives the values: (1) of
z, the displacements of a swinging pendulum bob from its point of
equilibrium; (2) of y, the velocity of the displacements expressed as
the first derivative of z; and (8) of 2, the acceleration of the dis-
placements expressed as the second derivative of z. If the data are
observations, a small erratic element will exist in all these measure-
ments. Which of the three variables shall be considered as the depen-
dent variable? If either z or z is assumed to have this preference,
then the resulting regression will accurately describe the motion. But

55 Bee, for example, M, J. Elsas, Umrisz einer Geschichte der Preise und
Léhne in Deutschland, Vol. 1, Leiden, 1936, 808 pp.
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if ¥ is chosen, no answer is possible since we know that in the regres-
sion equation the coefficient of ¥ is nearly zero, unless large frictional
forces are present. In ordinary statistical procedure it is difficult to
recoghize the presence of such a statistical zero among the coefficients, '
unless something is actually known about the size of the errors in the
measurements.

Ragnar Frisch has invented a rather complicated technique for
dealing with this problem of linear dependence, a method which he
has called confluence analysis In this analysis each variable is
treated as having equal errors. Another method, called the method
of factor analysis, is due to the psychologists, under the leadership of
L. L. Thurstone.>” who had encountered the same difficulty as that of
the economist in attempting to separate his factors in psychological
studies. The problem has also been discussed by H. Hotelling,*® C. F.
Roos,” H. E. Jones;*® and others. An extfensive account of the diffi-
culties will be found in a work by T. Koopmans on Linear Regression
Analysis of Economic Time Series,®* who surveys the various points
of view and includes an account of the weighted regression of M. J.
van Uven.

In a recent monograph John H, Smith has made a comprehensive
survey of the problem of the statistical deflation of an economic se-
ries, by which is meant “the process of adjusting a sertes for the
effects of one or more variables which affect it.”%* In this study spe-
cial attention is devoted to the problem of the specification of a uni-
verse and of conditions of sampling for the data of economic time
series.

To the writer it seems impossible by straight statistical methods
to angswer the question of linear dependence between economie vari-
ables. Knowledge must necessarily be introduced from outside of the
data themselves. This knowledge must give some estimate of the er-
rors of the respective varidtes, and should yield an a priori presump-
tion as to the dependence of one of the variables upon the others.

55 Statistical Confluence Analy.sm by Meang of Complete Regression Systems,
Oazlo, 1934, 192 pp. Bee also “Correlation and Scatter in Statistical Variables,”
Nordie Statistical Journal, Vol. 1, 1929, pp. 26-102.

57 The Vectors of Mind, Chlcago, 1035. See also, “Multiple Factor Analysis,”
Psychological Eeview, Vol. 38, 1931, pp. 406427,

58 “Analysis of a Complex of Statistical Variables into Principal Components,”
Journal of Ed, chhnloqy. Vol. 24, 1933, pp. 417-441, 498-520,

59 A General Invariant Criterion of Fit for Lines and Planes where All
Variates Are Subject to Error,” Mctren, Vol. 13, 1937, pp. 3-20.

se #“The Nature of Regression Funetions in the Correlation Analys:s of Time
Series,” Eeonometrica, Vol. 5, 1937, pp. 305-325.

¢t Haarlem, 1936, 132 pp. ‘

s1a Statigtical Deﬂatwn in the Analysis of FEconemic Series, A dissertation
uistributed by the University of Chieago Libraries, 1941, vi + 123 pp,
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Otherwise any deduction must be regarded as possessing the same in-
ferential value as if it were derived from an inverse probability
judgment.

18. Mathematical Attempts to Account for Cycles

Once it is decided that cycles of a regular and permanent pat-
tern actually exist in one or more economic series, it becomes a matter
of importance to account for their existence. This means essentially
that a system of dynamics must be established. Several notable at-
tempts have been made in this direction.

We must observe first that the evidence of the periodogram in-
dicates that no cycle of a reasonably permanent form accounts for a
large percentage of the energy of the observed variation. Thus, the
well-defined 40-month component contains, for any extensive range
of the variable, a total of not more than half the energy of the motion.
Hence no simple mechanism can expect to give more than a partial
explanation ; but any complex mechanism is likely to become too com-
plicated both mathematically and statistically. Such, for example, is
the criticism of the equilibrium theory of Léon Walras, which ac-
counts presumably for the entire mechanism of production, but which
must be formulated for any real economy in terms of thousands of
equatlons

In an attempt to find some unifying principle for the g"reat
complex of price and production factors which make up the economic
system, one turns as always to the model of physics. This science was
fortunate in having among its founders men who asked the question:
“What does nature minimize?’ The following metaphyswal specula-
tion of Leonhard Euler contained within it the principle of least ac-
tion, which was to prove in later years to be the most cherished prin-
ciple of physics:

As the construction of the universe is the most perfect possible, being the
handiwork of an all-wise Maker, nothing can be met in the world in which some
maximal or minimal property is not displayed. There is, consequently, no doubt
but that all the effects of the world can be derived by the method of maxima and
minima from their final causes as well as from their efficient ones.5?

It is also natural to ask for the phenomena of economics: ‘“‘Does
there exist also a maximizing or a minimizing principle on which the
dynamics of time series may be founded?” The answer to this ques-
tion is still obscure, but an intriguing suggestion has been offered by

62 Methodus inveniendi lineas curvas, maximi minimive proprictate gaudentes,
Lausanne, 1744, p. 245,
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G. C.. Evans and C. F. Roos.%® This suggestion is merely the simple
proposition that the elements of the economic system adjust them-
selves so that profits may be maximized. This principle may be formu-
lated somewhat as follows: Let us assume that the profits IT over
a period of time from ¢ = ¢, to £ = £, are given by the integral

a n= :’{py——o(u)] at,

where p is the price, ¥ the demand, and @ (%) the cost of manufactur-
ing and marketing u units. Then the principle of maximum profifs
asgerts that the variable elements in this integral are to be -so ad-
justed that the integral assumes its largest possible value, in the
language of the calculus of variations, it is necessary that the first
variation of IT shall be zero; that is,

=0,

There are great analytical and statistical difficulties in the way
of testing the validity of this principle. In equation (1) it has been
formulated for a single commodity and a smgle price, but obviously
it must be extended to take account of the variation in all commod-
ities and all prices. Cost functions are carefully guarded by manu-
facturing corporations and their nature can only be inferred from
profits and production data. The character of price variation with
variable demand is also imperfectly known.

Simplifying assumptions such as the propositions (1) that demand
varies linearly with price and the rate of change of price, that is,

y(t) =ap' (t) + fp(t) +v;

and (2) that cost is a quadratic function of the number of units pro-
duced lead tq a linear differential equation of the second order in
price. If the parameters are properly chosen this équation will ac-
count for sinusoidal oscillations in price. The further assumption that

o8 See, for example, G. C. Evans, “A Simple Theory of Competition,” Ameri-
can Mathematical Monthly, Vol. 29, 1922, pp- 371-880; “Dynamics of Monopoly,”
ibid., Vol 31, 1924, pp. T7-83; Matk-ematwal Introduction to. Eeconomics, New
York 1930, x1 + 177 pp., in partlcular, Chapter 15 and AXpendlx II. See also
C. Roos: Mathematlcal Theory of Competition,” American Journal of
'Mathematws, Vol 57, 1925, pp. 163-175; “A Dynamical 'l”heor{l of Economies,”
Journal of Political Ecommy, Vol. 35 192‘7, PP. 632—656 “A Mathematical Theory
of  Depreciation and -Replacement,” Amnca.n Journal of Mathematics, Vol. 50,
1928, 147-157; “The Problem of Depreciation in the Calculus of Variations, #
Bulletgn of The American Math. Soe., March-April, 1928; “Fluctuations and Edo-
nomic Crises,” Journal of Political Ecomrmy, Vol. 38, 1930, pp. 501-522: “Theo-
_retical- Studies of Demand;” Econometrica, Vol. 2,1934, pp. 78-90; Dynamic Eco-
nomics, Bloomington, Ind., 1934, xvi 4 275 pp.
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demand also varies with a factor external to the price system itself
leads to a linear differential equation of second order with an impulse
function for its second term. The general character of this impulse
function affords the possibility of accounting for many of the func-
tional as well as erratic characteristics of price series. A more exten-
sive account of the possibilities inherent in this method will be given
later in the book.

There are many who decry the principle of maximum profits. It
seems a sordid and egocentric maxim for mankind to follow. The
collectivist theory would replace it by the principle of maximum pro-
duction and maximum distribution of the things produced. Others
would apply the doctrine of hedonism and maximize human satisfac-
tion, measured, perhaps, by the utility function of Jevons or the
ophelimity of Pareto. But unfortunately science can only observe and
interpret. It cannot change the nature of its objects of investigation.
The physicist, perhaps, was disappointed when he found that nature
did not choose to conserve energy, but rather to minimize the much
more subtle quantity which we call action. So also, perhaps, the per-
versity of human nature has established the profit motive as the dom-
inating principle of all enduring economic systems.

Another very suggestive method of accounting mathematically
for cycles in the fundamental economic series is found in what has
been called the macrodynamic theory. This term, suggested by Rag-
nar Frisch, is applied to those “processes connected with the func-
tioning of the economic system as a whole, disregarding the details
of disproportionate development of special parts of that system.”

The essential assumption of this theory is that the lag between
the orders for goods and their subsequent delivery plays a funda-
mental role in the creation of cyclical variation in economic series.
The theory, as formulated by M. Kalecki in 1933, leads to a mixed
difference-differential equation of the form

w(t) +tau(t—a) +bu(t) =0.

Since the mathematical and statistical details of this method are
difficult to describe, we shall postpone discussion until a later chap-
ter. The possibilities of the method have been explored by Frisch,
J. Tinbergen, and others. Tinbergen gave a comprehensive survey
of this and other methods in 1935.% The preliminary success of this
approach to the problem of economic variation affords great promise

¢4 “Annual Survey: Suggestions on Quantitative Business Cycle Theory,”
Eoonometrica, Vol. 3, 1935, pp. 241-308.
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provided the necessity of including too many factors does not lead
to too much mathematical and statistical complexity.

14. Historical Summary of the Theory of Serial Correlation

The idea associated with the name serial correlation apparently
had its origin in a paper by the British physicist J. H. Poynting, who
attempted to ascertain the relationships between the movements of
wheat prices in England, France, and Bengal and of cotton and silk
imports into Great Britain.®® While Poynting did not actually com-
pute a serial correlation his analysis attracted attention to the prob-
lem of the interaction of economic time series and the inevitable use
of correlations in the study of such relationships. Poynting’s method
consisted mainly in a use of moving averages to smooth out random
fluctuations and a comparison of the residuals with respect to com-
mon harmonic terms.

The first actual use of serial correlations seems to have been
made by R. H. Hooker, who studied by means of them the relation-
ship between the British marriage rate and the index of trade.®

In order to clarify the history let us first define a serial correla-
tion. Thus, let us consider two variates {x,} and {y:}, which, for sim-
plicity of exposition, we shall assume have zero means and unit vari-
ances. Then their serial correlation can be written in the simple form

1 N
T === XX Y
N = 4 y +t 8
where £ may be positive or negative. It is sometimes more convenient
to define the correlation in the continuous form

2a

rt) =L J,Gx(s) y(s+1) ds .

It is customary to call the serial correlation of a variate with it-
self an aufocorrelation. When the variates are different we shall
speak of the correlation as a log correlation.

The first movement in the use of the new function was in the de-
velopment of the variate difference method of time-series analysis.
This method assumes that the elements of a time series consist of two

654 A Comparison of the Fluctuations in the Price of Wheat and in the Cot-
ton and Silk Imports into Great Britain,” Journal of the Royal Statistical Seciety,
Vol, 47, 1884, pp. 34-64,

88 “Correlation of the Marriage-Rate with Trade,” Journal of the Royal Sta-
tistical Society, Vol. 64, 1901, pp. 485492,
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parts, one containing the structural part and the other the random or
stochastic (aleatory) variation. Thus we might write

=& g,

where &; is the structural part and &; is the random variation.

Now it was soon observed that if the differences of increasmng
order are taken of the elements of a time series, the corresponding
variances, when properly defined, diminish to a certain limiting value.
This limiting variance is assumed to be the variance of the erratic
element, and hence the nature of &; can be inferred from the order of
the difference which first yields this value. A more extensive account
of this method will be given later in the book.

The variate difference methoed was a fruitful field for the devel-
opment of the caleulus of serial correlation. Thus an extensive con-
troversy developed over “Student’s” sweeping theorem published in
1914 which asserted that

. if we wish to eliminate variability due to position in time or space and to
determine whether there is any correlation between the residual variations, all
that has to be done is to correlate the 1st, 2nd, 8rd, - - , nth differences between
successive values of the other variable. When the correlation between the two
nth differences is equal to that between the two (n-+1)th differences, this value
gives the cor-elation required.s?

Unfortunately for the generality of the theorem, several restric-
tive hypotheses were necessary. Although the correlation of the two
variates {x,} and {¥:} was assumed different from zero, their respec-
tive antocorrelations as well as their serial correlations were assumed
to vanish. Moreover, the time element entered into each variate as a
polynomial of the nth dezree.

The possibilities suggested by this analysis were developed vari-
ously by Beatrice M. Cave and Karl Pearson,® Oscar Anderson,™
Warren M. Persons,”® G. U, Yule,” and others. The most extensive

57 “The Elimination of Spurious Correlation Due to Position in Time or
Space,” Biomelriia, Vol 10, 1914, pp. 179-180.

88 “Numerieal Tllustrations of the Variate Difference Correlation Method,”
Biomeltrika, Voi. 10, 1914, pp. 340 et seq.

89 “Nochmals iiber die ‘Elimination of Spurious Correlation Due to Position
in Time and Space,’” Biometrika, Vol, 10, 1914, pp. 269 et seq.: “Ueber ein neues
Verfahren bei Anwendung der Variate Difference Methode,” Biometrika, Vol. 15,
1923, pp. 134 et seq.; “Ueber die Anwendung der Differenzenmethode (Variate
Diifference Method) bei Reihenzusgleichungen, Stabilititsuntersuchungen und
Korrelatiochsmessungen,” Part 1, Biometrika, Vol 18, pp. 293 et seq., Part 2,
ibid., Vol. 19, 1927, pp. 53 ef seq.

0 “0On the Variate Difference Correlation Method and Curve Fitting,” Quar-
terly Publications of the American Statistical Society, Vol. 15, 1917, pp. 602-642.

7140n the Time-Correlation Problem, with Especial Reference to the Variate-
Difference Correlation Method,” Journal of the Royal Statistical Soctety, Vol. 84,
1921, pp. 497-526.
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account of the theory is to be found in the researches of Anderson,
which eulminated in a volume entitled Die Korrelationsrechnung in
der Konjunkturforschung, published in 1929. An extensive applica-
tion of the methods of the variate difference calculus to economic data
has been made by Gerhard Tintner in a work entitled Prices in the
Trade Cycle.” Tintner has also prepared an account of the method
in English with tables facilitating its application.™

The use of serial correlations as a means of comparing the inter-
actions of economic variables was soon recognized. Thus we find H.
L. Moore in 1914 computing the lag correlation between the yield per
acre of crops and the production of pig iron. By this means he
reached the conclusion * . . . that the cycles in the yield per acre of
crops are intimately related to the cycles in the activity of industry,
and that it takes between one and two years for good or bad crops to
produce the maximum effect upon the activity of the pig-iron indus-
try.”™ Warren Persons in his study of the variate difference method
previously referred to made extensive use of serial correlation in
studying the relationship between 21 American economic time series,
and this method strongly colored his views with regard to the con-
struction of a businéss barometer.” He summarized his technique of
analyzing time series in a paper published in 1922, which contained
his well-known example of the lag between the production of pig iron
and the interest rate on 60- to 90—day commercial paper.”

These studies were followed by a series of papers by G. U. Yule,
which may be gaid to have founded the calculus of serial correlations.
The first of these was the critique of the variate difference method to
which reference has already been made; the second was Yule's classi-
cal answer to the question: “Why do we sometimes get nonsense
correlations between time series?”;™ the third was an investigation
of the periodicities in Wolfer’s sunspot numbers, the point of view of
which was discussed in Section 10. These papers furnished the stimu-
lus for a number of investigations among which may be mentioned
the work of Slutzky on “the summation of random causes as the

T2 : an .
Heft 4??&?}%‘;&“””” der Fronkfurier Gesellschaft filr 'Komunkturfmchung,

73 Viennsa, 1985, xif + 208 pp. + two sets of phs. .

14 The Variate Difference Method, Cowles g:ammission Monograph No. b,
Bloomington, 1940, 175 pp.

16 E'conomic Cyoles: Their Law and Couse, New York, 1914, p. 110, '

18 “Construction of & Business Barometer Based upon Annual Data,” Ameri-
can Eoonomic Review, Vol. 6, 1916, pp. 739-769. . .

1+ uCorpelation of Time Seriea.” Journal of the Amerioan Statistical Associa-
tion, Vol. 18, 1922-28, pp. 718-726; republished ag C%l:ipter 10 in the Handbook of
Mathematical

Statigtics, edited by H. L. Rietz, Cambridge, Mass., 1924,
-18 Journal of the Royal Statistical Sooiety, Vol. 89, 1926, pp. 1-84.
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source of cyclic processes,”™ the theory of changing harmonics of
Ragnar Frisch,* a paper by Sir Gilbert Walker on the relationship of
periodogram analysis to serial correlations,® and a recent extensive
work by Herman Wold entitled A Study in the Analysis of Stationary
Time Series.®*

The point of view of Yule which seems to have had the greatest
influence may be briefly summarized as follows: Let us assume a mo-
tion defined by the difference equation

(1) Au(t) +pu(t+1) =¢(t +2h),

where we employ the notation du(t) =u(t + h) — u(t), p = 4 sin’s,
8=nah/T,and ¢(t) is an impressed force defined by erratic impulses.
The solution of this equation can be shown to have the form

sin 4s

() u(t)-—Asm-——(t—l-z) +o (1) +

¢{t—h)

;ln68¢(t—2h) + sis

¢(t—38h) +-

Now Yule observed that if the impressed force was defined by a
set of small erratic fluctuations, the simple harmonic motion repre-
sented by the first term of the right-hand member of (2) was dis-
turbed. But the disturbed motion was not erratic and the resulting
graph (see Chapter 3, Section 7) preserved its sinusoidal appear-
ance. Yule was also struck by the fact that even though the harmonic
term were entirely removed, “the graph would present to the eye an
appearance hardly different from that of the” complete series. This
case, said Yule, “would correspond to that of a pendulum initially at
rest, but started into movement by the disturbances.”

Sir Gilbert Walker -connected the analysis of Yule with that of
gerial correlation in the following manner: If a motion is defined by
the general linear difference equation

3) u(t) =g, u(t—1) + g u(t—2) ++-- + gy u(t—s) + ¢(1),

where the g; are constants and ¢(¢) is an impressed force defined by
random impulses, then the serial-correlation function of the solution
is defined by the difference equation

(4) r@y=g.r(f—1) + g.r{#—2) +..- + g, r(t—a).

™ See Section 10. )

®0 Log, ¢it., Section 10.

& “On’ Pericdicity in Series of Related Terms,” Proceedings of the Reyal So-
oiety of London, Vol. 181 (A), 1931, pp. 518-532.

8z Jppsala, 1988, viii + 214 pp.
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Walker then employed the graph of 7(¢), which is much smooth-
er in general than the graph of % (¢), to determine the natural periods
of the original series. He illustrated his method by applying it to the
quarterly values of pressure at Port Darwin, Australia, a key center
of world weather.

Wold in his work referred to above makes a very complete and
systematic investigation of the relationships between () and r (%)
as given by (3) and (4). To equations of type (3) he gives the name
stochastic difference equations. He emphasizes the important propo-
sition that while »{¢) can be inferred from (3), the inference is not
reversible and one cannot then infer (8) from (4). This conclusivn
is in agreement with the analysis of the author given in Section 3 of
Chapter 3, where the problem of inverse lag correlation is considered.
Many primary series can have the same serial-correlation function
and from this it can be inferred that they are harmonically equiva-
lent. But even when they are harmonically equivalent, they may not
be the same for this reason, since thev may possess continuous spec-
tra of different intensities, Wold’s book gives several illuminating
examples of the pitfalls inherent in this method of analysis.

15. The Analysis of Random Series

It will be clear from the foregoing discussion that the nature of
random series should constitute an essential chapter in the analysis
of time series. By such a series we mean one whose autocorrelation
funection is zero, within statistical limits, for every positive and nega-
tive lag.

Although the nature of such series had been investigated as early
25 1906 by C. Goutereau in studying the variability of temperature,®
the first systematic theory of random numbers was made by G. U.
Yule in his analysis of nonsense correlations published in 1926, Here
we learn for the first time that when random numbers are subjected
to certain kinds of linear operations, the resulting series are no longer
random. Thus, for example, the autocorrelation funetion of the nth
differences of random series is equal to (—1)? ,,.Cui/enC, , where ,.C,
is a binomial coefficient. Moving averages of random numbers yield
sigmificant serial correlations; and more surprising yet, successive
accumulations of random series rapidly converge into a perfect sinu-
soid of period equal to'the length of the series itself.

82 “Qur Ia variabilité de la température,” Annuaire de la See. Mét. de France,
Vol, 54, 1906, pp. 122-127; summarized by E. W. Woolard in Menthly Weather
Review, Vol. 498, 1921, pp. 132-133.
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Such discoveries led E. Slutsky, as we have previously observed,
{0 the development of his thesis that the summation of random causes
may be the source of cyclic processes in economic time series. This
author stated an interesting result which he called the “sinusoidal
limit theorem.” Applied to random series, it yvields the following re-
sult: From the elements of a random series {x;}, we form a new se-
ries by n iterated summations by 2, followed by the forming of the
mth differences; then if m/n is kept constant, the difference series
will tend to a sine curve of period T = 2a/(are cos r,), Where
r. = (1—-m/n) /(1+m/n), as n tends toward infinity.*

The theory of runs is closely related to the theory of random se-
ries and has been developed by those interested in the nature of time
series. Investigations of particular interest in this field have been
made by L. Besson,? 1. Bortkiewicz,* and Herbert E. Jones.®” The
last, in particular, has developed a systematic formulation o. the
problem and, together with Ailfred Cowles, has applied the theory to
an interpretation of the movements of the stock market.

The theory of runs is concerned with the direction of changes in
time series, that is to say, with the signs of the first differences. Ob-
viously these first differences may be plus, minus, or zero. A run is
then defined as a sequence of like signs and its length is the number
of like signs, zero generally being regarded as having the sign of the
preceding difference. A reversel, as contrasted with a sequence, oc-
curs when 2 plus sign is followed by a negative, or vice versa. The
ratio of sequences to reversals is defined by the fraction

_E(S)

where E{S) is the expected number of sequences and E(R} is the
expected number of reversals. For a random series it can be shown
that p = 1, while for a cumulated random series p = 1.

The principal problems of the theory of runs are (1) to deter-
mine the ratio of sequences to reversals for different types of series;
{2} to determine the distribution of the expectation E(R); and (3)
to determine the standard errors of the distribution. For example,

8 Shitsky, op. eit., pp. 130-131, pp. 142145,

85 1. Besson, “On the Comparison of Meteorological Data with Results of
Chance,” translated and abridged by E. W. Woolard, Menthly Weather Review,
Vol. 48, 1920, pp. B9-94,

8¢ I,, Bortkiewicz, Die Iterationen, Berlin, 1917, p. 83.

87 H, E, Jones, “The Theory of Runs as Applied to Time Series,” in Cowles
Commission, Report of Third Annual Research Conference - - - 1937, pp. 33-36.

8t Alfred Cowles, 3rd and H. E. Jones, “Some a Posteriori Probabilities in
8tock Market Action,” Econometrica, Vol. 5, 1937, pp. 280-294.
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Jones has shown that oge, = (2n—4)'/3 for random series and
exry = (n—2)/2 for cumulated random series, where n is the num-
ber of observations. A more extensive account of this theory will be
given later in the book,

Another direction in which the theory of random series has
moved is that of the definition of functions of random variables, Thus
let & be a random, or stochastical variable, which is characterized
wholly by its cumulative distribution function, F(u). That is to say,
F(u) defines the probability that £ is less than or equal to % . If then,
¥ (t) is a given function, what meaning can be assigned to the symbol
¥(£) ? The basis of this new analysis is to assume that the expected
value of y(&), designated by E[y(£)], is given by

Ely(&)] =f°°y(u) dF (u).

This theory is developed in extenso by H. Cramer in his book en-
titled Random Variables and Probability Distributions, published in
1937.* The application of the propositions thus developed to the the-
ory of time series has been made by H. Wold in his work on stationary
time series previously referred to.

Closely related to the idea of the random variable is the earlier
problem of the random walk first proposed by Karl Pearson in 1905.°°
This problem he states as follows:

A man starts from a point O and walks a distance ! in a straight line; he
then turns through any angle whatever and walks a distance [ in a second straight
line. He repeats this process n times. I require the probability that after these n
stretches he is at a distance between » and (# 4 dr) from his starting point, O.

The expected distance after n repetitions, E[L(n)], is merely
lyn. If we designate this value by M, then the desired probability
is merely ¢(7) dr, where the frequency function is given by

—-2r -
() =gremm

Since random variation is found in many phenomena interesting
to the physicist, as in the case of the Brownian movement of small
particles; to meteorologists, as in vagaries of the weather; to astron-
omers, as in the light variations of variable stars; there has been
agsembled a large collection of special problems in the theory of prob-
ability which belong essentially to this field. It would be too far re-

" Canibridge, 1987.
% “The Random Walk,” Nature, Vol. 72, 1905, p. 204.
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moved from our immediate objectives, however, to do more than to
indicate, the existence of such problems.

16, The Present Status of the Problem

In the preceding sections of this chapter we have traced the de-
velopment of the theories about the nature of economic time serjes.
The problem, it will be observed from the historical references,. is
relatively new in science. The theory of statistics as it applied to fre-
quency distributions had reached a high state of development by the
beginning of the twentieth century; the problem of time series was
scarcely formulated and even the data which it was to interpret were
not available in abundance until after the world war.

The problem of single time series, as it has presented itself above,
is concerned with three things: first, the determination of a trend;
second, the discovery and interpretation of cyclical movements in the
residuals; third, the determination of the magnitude of the erratic
element in the data.

This preliminary problem, once solved, leads immediately into
the more complex one of discovering valid interactions of one time
series with another. Upon the discovery of such relationships the
hope of establishing a firm science of economies inevitably rests. From
them there will come ultimately the power of prediction, which is the
final test of any mature science.

The problems of economic time series are still far from a solu-
tion. But only by careful tests and frequent rescrutiny of both sta-
tistical methods and basic theories can one hope to make progress in
the development of this difficult science.



CHAPTER 2

THE TECHNIQUE OF HARMONIC ANALYSIS
1, Harmonic Analysis'

We have shown in the first chapter the interest which has been
taken by mathematical economists in the theory and application of
methods of harmonic analysis since the work of H. L. Moore, Sir Wil-
liam Beveridge, and others exhibited its potential usefulness in the
analysis of economic time series. The underlying concepts of har-
menic analysis, however, present many problems of a difficult mathe-
matical nature and there is not yet a uniformity of opinion regarding
the interpretation and the significance of results obtained by these
methods. Hence, it would seem no% only useful, but quite necessary,
to make a careful examination of the assumptions which underlie the
basic formulas of the theory, This analysis has been undertaken in
the present chapter.,

In the beginning it will be useful to examine certain mathemati-
cal models in order better to appreciate the exact contents of the theo-
rems which we propose to use in exploring the harmonic constituents
of economic time series. The relationship between the method of
Fourier and the method of Schuster will be carefully studied. More-
over, since systems of orthogonal functions other than those which
appear in Fourier series have been used by certain econometrists in
the study of trends and the correlation of the residuals from these
trends, it will be useful to indicate the nature of this generalization
and the assumptions which underlie it. Considerable misapprehen-
sion upon this point seems to exist as has recently been pointed out
by C. F. Roos.!

No attempt will be made in this chapter to discuss the signif-
icance of results obiained by harmonic analysis. This fundamental
problem is intimately connected with the concept of the degrees of
freedom possessed by a time series. It is necessary, therefore, to defer
discussion of the question of significance until a later chapter where
the problem of the freedom of the oscillation may be more success-
fully attacked.

18ee C. ¥. Roos, Dynamic Economics, Bloomington, 1934, Appendix I, PP-
246-250,

—60 —
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2. Fourier Series

The problem of Fourier series is that of representing a function,
either continuous or with a definite number of finite discontinuities
us exhibited by a set of discrete data, by means of a series of funda-
mental harmonics.

By a htrmonic we mean a term of the form

¢ . 2
y—A cos?—;—;— + B sm-—# ,
an expression which may also be written in the form
— 2at
y= VAT F B cos (_.Tﬁ——»a) ,
where @ = are tan B/A .
4 ¥
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FI6URE 10— GRAPHICAL REPRESENTATION OF THE HARMONIC TERM :
y == 0 cos(271/12) - 8 sin (27t/12) == 10 cos [ (27E/12) —a] ,
where a = 58° 8 —= 0.3019 radians.

The value T is called the period of the harmonie, the reeiprocal,
1/T, the frequency, the quantity v 4* + B? the amplitude, and a the
phase angle. We shall sometimes refer to A and B as the eomponents
of the harmonic. Figure 10 shows a typical harmonic term.

A series of the form

(1) y = 1A, + Ascos{at/a) + A. cos(2at/a) + 4, cos(Snt/a) + ...
+ B, sin(at/a} + B.sin{2at/a) + B;sin{3at/a) +..-

is called a Fourier series.
The principal theorem of Fourier series may be stated with suf-
ficient generality for the analysis of economic time series as follows:

If 7 (1) is a single-valued function which has a derivative through-
out the interval —~a = t = a except for a finite number of points at
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which it has finite discontinuities, and for other values of ¢ is defined
by the equation
f(t+2a) =f(¢),

then F(t) can be represented by means of the Fourier series 1),
where the coefficients are determined from the infegrals

(2) A.=%£f(s) cos(nas/a) ds ; B,.=% _Ef(s) sin (nns/a) ds .

The Fourier series gives the value
lim ${f(t +e) +f(t—¢€)].
&=y

For a proof of this theorem, the reader is referred to standard
treatments of the subject.? The theorem has been stated for much
more general types of functions than those which occur in the analy-
gis of statistical data.

Aj an example of the application of the theorem, let us consider the Fourier
representation of the following function:

14+¢t/A, for-—A=t=0;
(8) )y =11—t/n, for 0St=);
0 , for—a=t=—\, ASit=Za.

This function is represented graphically in Figure 11.

Y Y
o ] 1.0
4
; B
0.5 e R AN NI NPT W P Y
0 7 1 1 \ a
—a - 0 +7 ‘o -1 0 LA
FIGURE 11.—CONTINUOUS FUNCTION FI1GURE 12.—FOURIER APFROXIMATIONS
WwWIiTH DISCONTINUITIES IN OF CONTINUOUS FUNCTION,
DERIVATIVE. {a) First approximation,

(b) Second approximation.

Sinee the function is symmetric about the origin, no sine terms will appear
in its Fourier expansion. Employing formulas (2) for the computation of the

1 See E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, 2nd
edition, 1915, pp. 167-169. For modern generalizations see A. Zygmund, T’nw—
nometrical Series, Warsaw, 1935, 381 pp.
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coefficients of the series, and adopting the convenient abbreviations

1
FI?\/G’ ﬁzanwﬂl
we get
1 o . i
A, = f f(t) cos(nmi/a) di = n(sin?p/B2), A,=u.
aJ_ :

The series representing the function is thus

4 = gin*(%nT nwt
(4) ft)=%p+— 3 ¢ #)cos .
T2 e n? a

If 4 =— 1, we have as a special case the series

F(8) =% + o [ oo 4 > cos ot 4~ eos ot -]
= —f{cos—+—-cos— +—cos—+ -] .
{ w2 a 9 a 25 a

The sum of the first n terms of this series is ecalled the nth approximation to
the funetion. Successive approximations are given in Figure 12,

Later in our discussion of serial correlation funections, it will be important
tu refer again to this special example. We shall, therefore, consider one other
special case, namely the one for which x4 == 1/3.

Substituting in formula (1) the values obtained from formulas (2), we ob-
tain the following explicit expansion:

1 12 = gin?(n7/6) nt
ty=—=+=2x cos
6 mz, n? e
1+ [ 4 27rt+4 3t + 3 4“ﬂ‘t+ 1 bt
=— + — [eos ~— + - cO8 ~— 4 — CO§ — €08 —— + — c08 —
6 2 @ 16 25
1 Tart 3 8 4 97t 3 107t 1 11wt
+ — co§ — 4+ — 08 — 4 — 08 — F+ — —_— e —cos ——

e o cos
49 [ 64 a 81 a 100 o 121 a

+ 1 137t 4 3 14wt + 4 167t 4]
— 008 —— - —— 608 —— + — 605 —— -} ++ - ],
169 a 146 a 225 a

A few of the approximation curves are shown in Figure 13. One of the in-
teresting observations te be made about this example is that the Fourier series
approximates zero over two-thirds of the range. In order to accomplish this ap-
proximation, however, it is necessary to use a considerably larger number of
terms of the expansion than in the first example.

In the applications which we contemplate it has seemed degira-
able to define the Fourier coefficients in the symmetrie form given in
formulas (2). In much of the numerical work in harmoniec analysis,
however, the data are given over the range of 0 £ t = 2a, in which
case the Fourier coeficients assume the form

1

2 nat 1 f” nat
= ¢ = dt, B,=- ;
(5) A - J: g (1) cos = di B ad g{(t) sin = dt ,
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FIGURE 13.—FOURIER APPROXIMATION OF A FUNCTION.
(a) First approximation, (¢} Third approximation,
(b) Second approximation, (d) Fourth approximation.
where ‘
g(t) =f(t —a).

This formulation is particularly advantageous when the data are
given in discrete form. Thus, if we have the data /., f2, fa, -, fn,
it is usually convenient to define the Fourier coefficients in the form

2 7z 2nat 2nat
(6) An“‘“ﬁtg ficos N ] B —‘—N—Ef:sln-—h-r—-
whick are seen to be equivalent to A", and B, in (5).

The relationship between A, , B', and 4., B., as defined by for-

mulas (2), is seen to be one of sign only. That is to say, we have

(7) A,=cosnndA’,, B,=cosnnb,.

This is readily proved by making in the integrals of (2) the
transformation s =% — a . We thus obtain

f f(t—a) cos na

2a
By _cosmzf Ff(t—a) sin na

__cosnn

A, = dt—cosnnA..,

t
dt =cosnaB,.

3. The Theorems of Bessel and Parseval and Their Significance

We next introduce two theorems associated with the Fourier co-
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efficients, which have special significance in the statistics of trends.
These are the so-called inequality of Bessel and the theorem of Par-
seval, the first of which we have already described in the first chapter.

In order to derive the first of these, let us assume that a function
f(t) has been approximated by the first N harmonics of a Fourier
series, that is,

¥ ant | X
(1 F(£) >3 Ao+ 3 Agoos 2L 1+ S B, sin P
f=1 11 n=1 @
where the symbol ® means “is approximated by.”

Let us now represent the right-hand member of (1) by f.(t) and
consider the integral of the square of the residual, that is,

I——j [F(¢) —fa(t)]2dt= fﬂ [F2(t) —27() fu(t) +fa2(2)] dt.
Taking account of the well-known integrals

f“smg—:ismw—-dt— rcosm-—- os-———dt—(}, m¥*n,

1f —-dtz—f os‘—dtu-
¢ t
fsmmﬂtho 31it—dt—(),

for all integral values of m and n, and observing the definitions (2)
of Section 2, we readily obtain the following value for the integral I:

2

=i f“f’(t)dt-—- (‘%A0’+R12 +R2=+R3’ T +RN3)’
RJ:AJ.{.B;_

Moreover, since the integrand of the integral is positive or zero,
the integral itself is positive or zero, and we thus obtain the Bessel
inequality for Fourier coefficients:

(3) ;A.,=+Rl=+Rg=+Rs=+--.+R,,=§é f'fs(t)dt.

It has been proved that the sign of equality will hold for all
functions f(?) of integrable square, provided N = = . This property
of the complete Fourier sequence is known as the closure property.

Several interesting statistical conclusions may be derived from
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the Bessel inequality. The first of these is the statement that the vari-
ance, o*, of the function f(£) is expressible in terms of the Fourier co-
efficients according to the following formula:

(4) uz=§§(A,,z+3,=)=g§R,.=.

This is easily proved by noting that the arithmetic average of
f(t) is equal to $4,. Hence we have

= f [F(t) — (3 A)] dt=33 (4.2 + B) =4S Ra.
2“’ -a n=1 n=1
Similarly we may prove that if f,(¢) is the right-hand member
of (1), then the variance, ¢, , of the residual function

At=f(t) — fa(D),
is given by

(5) ol =41=4% (R%. + B + B2y +- ).

This is easily proved by noting that the average of A4(¢) is zero.
Hence its variance is equal to 1I, and, from the closure property of
the Fourier sequence, this quantity may be identified immediately
with half the sum of the squares of the coefficients with subsecripts
greater than N .

In illustration, consider the first example given in Section 2. By formula
(4) of Section 2 and by expansion (4) of Section 3, we at once obtain for the
variance

8 o gim(%nw 1 1

ot 5 ( n):_“___#2 R

74“2 A=l 74 3 4

If we set # — 1/3, and evaluate the first nine coefficients of (4), we shall
obtain

1
52:;[ (0.30396) 2 -- (0.22797)2 4 (0.13510)2 4 - - + (0.015011) 2]

'

= 0.08325,

a value which is to be compared with the exact variance of 0.08333. It is thus
clear that nine terms (note that one is zero) of the Fourier expansion give a
very close fit to the original funetion. We may, in fact, say that there exists an
equivalence of 0.08325/0.8333 or 99.9¢ per cent between the fumetion and the
first nine terms of its Fourier representation.

The theorem of Parseval is associated with the Fourier coef-
ficients of two functions f(£) and g (¢). Thus let us suppose thaf both

3 For this reduction see the author’s Tables of the Higher Mathematical
Functions; Vol. 2, 1935, pp. 18-19.
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satisfy the conditions of the theorem of Section 2 and that their Four-
ier coeflicients are respectively:

F(t) :4A:,,A,,A,,4;,--;By,B,,B;,--;
g(f) 1 0,1, 85,85, 5 by, by, by,ee-s
Parseval’s theorem then states the following equivalence:

2o st=3400,+ 5 4,0, + 3 Bob.

This result is derived as an immediate conclusion from the in-
tegrals given in (2) above.

The theorem of Parseval has its interest for us in connection
with the correlation of the two functions f(t) and g(¢). Thus, desig-
nating the correlation coefficient by #,, the standard deviations by
o7 and g, , and noting (4), we immediately derive

1 o
2 U®—14100@) ~ alét

ot Oy

Tre=

(6)

\/E(A * + Bo?) XE(G«F+62)

It should be noted that if f(£) and g (¢) are reduced by subtrac{-
ing from each function the first N harmonic terms, then the correla-
tion between the residuals is obtained from formula (6) by summing
from N+1 instead of from 1.

4. The Technique of Harmonic Analysis

Harmonic analysis is essentially the technique of determining
the principal harmonic elements of a given function or set of data.
Let us first examine the problem from the point of view of the

Fourier series
(1) F) =14 +34, cosT+EB,. cos ™2,
where, as before, the coefficients are determined by the integrals

@) A,.'=(%-J::f(8) cos 22 s , ané f;f(s) sin 22 g .
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The quantity
Rz A2+ B,
==t

will be called the energy of the nth harmonic term.* The period of the

nth harmonic is obviously equal to T =2a/7n; hence, the energy may

be regarded as a function which depends upon the period. This de-
pendence we can represent by writing

E=R(T), 0<T<2a.

The graph of this function is called a periodogram. Obviously
the periodogram constructed from the coefficients of a Fourier series
is determined only for the periods

= 2¢ 2¢ 2a¢ 2a 2a
1’'2°'83°'¢4 " "y

This array of periods, as we have said in the first chapter, is
called the Fourier sequence. A periodogram constructed over this
sequence has the advantage that the sum of the squares of the ordi-
nates equals twice the variance of f(s), that is,

(3) B+ R2+R:+ R*+...=2¢%.

Since, however, the problem of harmonic analysis is to determine
the dominating harmonics in a series of data or in a given function,
the periods of which may not belong to the Fourier sequence, it is
generally desirable to compute the periodogram over the arithmetic
sequence: r—1,2,3,4,---,¢a

In order to understand better the nature of a periodogram, let
us construct one for the typical harmonic f(¢) = A sin (kt + B).

An easy -calculation of A, and B, yields

A=A sinﬁ[S’n(ka+""" + Sinlka — na) ]

ka + na ka — na

_ sin{fe — na) _ sin(ke + na)
B,.——Acosﬁ[ g Ta F nm ].

4 Strictly speaking, the total energy of a physical system represented by the
Fourier series (1) is equal to

1 -]
E:ECnAﬂz_}_-‘:Cﬂan »
n-1
where the C, are weighting factors determined from the physical conditions of
the problem,
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(rom which we derive
sin?(ka + nn)  sin*(ka — nn)
{ka + nn)? (ka — nn)*

sin(ka + na) sin(ka — nn)
ka® — nint .

R"2:A2|:

— 2cos 28

If we make the abbreviations & = 2»/P and n = 2a/T , then the
value of E? can be expressed in terms of the period, P, of the har-
monic and of the trial period T :

Az rsin? 2n(a/P 4+ a/T) sin*2a(a/P -~ a/T
4 Rz(T)ZE{ (/P + a/T)¢ (u/P—a/T)/z)
sin 2ala/P + a/T) sin 2n{a/P —a/T)
(a/P)* = (a/T)* } |
For purposes of discussion, it will be convenient to make the fur-
ther abbreviation a/P=u, a/T =+. Then R*(T) can be written

— 2 cos 28

A® rsin®*2a(p + 7) sin? 2a{y — 1)
5 2 _—
A [ TESE (=)
: . : _
—2c0s2f sin 2z (u Jua;) Su,l, 2a(u— ) }
)

It is clear that the dominating term in this expression is the
function
sin? 2n(u — 7)

(u—?2 7
which has its maximum value of 42 when r = u. For this limit (5)
assumes the following value:

{6)

lim R? (+) :A2+A2|:sin:‘4ny_ cos2fsindny J
T 16 u® a® 2un

Since, in general, x > 1, the second term of this expression will
be small compared with the first and R2(r) will have a maximum
value in the neighborhood of r = u«. This is the fundamental idea
which underlies the use of periodogram analysis in the discovery of
hidden periodicities.

Since (6) is the dominating term of R2(:), it is clear that this
function will also have minima in the neighborhood of the value of -
which makes (6) zero. Such zero values are obtained from the equa-
Lion
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2 (‘u - ‘r} -m,
where m is an integer, or, in terms of T,
(7) T=P/(1—3Pm/a).

In order to find the breadth of the peak arcund the maximum or-
dinate of the periodogram, we compute from formula (7) the values
corresponding to m = 1 and m = —1 and form their difference 4.
We thus get

(8 \=P/(1—4%P/a), T,=P/(1+4P/a);
and hence the approximate breadth of the peak is found to be

P
e[1— }(P/a)?]

Thus if a series of 300 items contained periods of 12, 25, 44, and
60 units, the periodogram would reveal four peaks, the widths of
which would be respectively 1, 4, 13, and 26 units. It is obvious that
very little interference would be encountered in such a periodogram.
If, however, the series contained only 200 items, then some interfer-
ence might be expected between the peaks corresponding to the peri-
ods 44 and 60, since the widths would be respectively 21 and 44 units.

If the breadth of the peak, 4, can be accurately determined from
the periodogram, it is clear that the value of the period can be deter-
mined from formula (9). Thus we should have

4 (P/a)?

@ 1- X (P/a)*’

Hence, solving for P, we get

(9) A=7T,-T,= ~P.(P/a) .

(10) p=q |_(4/%)

NT+3(d/a) "

In our later application of harmonic analysis to economic time
series it will be convenient to have a standard symbol for the energy
attributable to a single harmonic term or to a set of them.

Consequently, we shall say that the energy associated with a
single period T will be

R (T)

E(T) =S5,

and for a set of # harmonic terms,
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= R«(T,)
2ot )

From Bessel's theorem cited in the preceding section, it is clear
that the variance, ¢,2, of the series after n terms have been removed
is given by the formula

(12) =1 -3 E,.)e.
Similarly, the theorem of Parseval enables us to define the mu-
tual energy of two series, f(t) and g(?), in terms of their correlation

coeflicient, We shall define the mutual energy of the two series, name-
ly E;;, by the formula

(11) ZEN‘_

2 (Anayn + Boba) —
20{0-,, — Tfg +

If the two series are reduced by n common harmonics, then we
have the reduced mutual energy, E*;, , equal to the reduced correlation
coefficient, +*;, .

This relationship may be put in terms of the original correlation
coefficient, 7, , and the two corresponding energies, E; and E, , if we
employ the abbreviation

(13) B =

S (A + Bibe)
(14) ry = .
2ap041y,

In terms of this notation, it follows readily that the reduced mu-
tual energy hecomes

Trg{l — 7))
V(1—-E)(1—-E)
These formulas are exact if the energies are computed strictly

over the periods of the Fourier sequence; otherwise, they are only
approximate and must be applied with caution.

(15) E'yy=1'ty=

5. A Mathematical Example

As u simple illustration of the application of the theory of the last section
and in order to study the characteristics of a pure harmomc term, let us con-
sider the analysis of the function

2wt T
=1 i -— - )
¥ (){)sm(43 +4),

over an assumed range of length 2a — 204.

Employing formula (5) of the preceding section, and noting that cos 2 8 =0,
we see that we can write
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B2 () 106\ 2 [ sin227(z 4+ 7) gin2 27 (g ~— 7)
T) =— _— N

(2"" (k4 7)2 (g —r7)2
where 4 =— a/P = 102/43 — 2.37209. It will be more convenient, however, to
represent K2 as a function of fractions of half the range, so we replace 7 by 1/x,

where x — T/a.
Hence we consider the function

sin? 27 (2.37209 4 1/x)  sin? 27 (2.37209 — 1/zx)
(2.37209 4 1/%)2 (237209 — 1/2) 2

The two phase components, A, and B, , the sum of whose squares is B?, may
be written in terms of the variable x as follows:

00 | 1 sin 27 (2.37209 + 1/x) sin 27 (2.37209 — 1/x)
A(x):-z—wsm--:r =1,

R2(x) == 253.3030 [

4 (237209 - 1/x) (2.37209 — 1/=z)
100 1 sin 27 (2.37209 — 1/x) sin 2% (2.87209 4 1/z}
B(z) =——cos—7 — -,
Dar 4 [ {2.37209 — 1/z) (2.37209 + 1/2)

The values of A(x), B{x), E2(x), and R(x) are given in the following
table and the values of R(x) are graphicaily represented in Figure 14.

& Alr} B(z) R3(r) Riz) T l A(z) B(z) ! R2(z) Ri{x)
0.10 —N.4072 —1.7170 | 3.1139 1.76 | 0.56 23.6283 19.9219 956.1787 | 80.91
0.18 0.3700 —0.2362 | 0.1899 0.44 || 0.51 16.7263 12,2189 429.0372 | 20.7M1
0.20 —2.00R1 —4.2083 21,7254 4.66 | 0,52 8.6245 7.1567 125.6004 ) 11.21
0.2222 2.6287 4.98G7 31.7772 6.64 || 0.63 4.7805 —0.4963 23.0996 4.81
0.25 —6.5390 --9.0A20 125.241% | 11.19 || 0.54 —0.113% —b.3713 28.8638 5.37
0.27 B.1222 £.4242 [ 107.2406 10.36 | 0.55 —4.,2491 —9.2479 103.5785 10.18
(.2857 5.8036 AAHA2 107.0102 10.34 | 0.57 -—10.3309 . —14.2237 309.0411 17.68
0.30 —4.7181 —-0.9269 J 22,1196 4.81 || 0.60 —14.0884 | —15.4362 436.6184 | 20.80
0.31 —11.6418 - 9arz 222.4163 14.91 [ 0.81 —15.0668 | —15.4696 466.3170 21.59
0.32 ~—14.9072 - 14,9R22 448.6%09 | 21.14 | 0.52 --15.0649 | —14.6333 488.1680 20.93
0.23 —13.1324 | - 15.4300 | 412.6408 | 20.34 | 0.63 —14.7164 ; —13.2820 392.9840 | 19.82
0.8338 | —11.3963 | —14.4119p 337.6667 | 18.37 1§ 0.64 —14.0808 | —-11.7962 337.3957 | 18.37
0.34 -—6,3630 — 10, 26RG 146.9319 12.08 0.5 —13.2131 —10.1459 277.6253 16.66
8.356 4.1106 00430 18.5R31 4.31 || 0.86 —12,1618 —8.3938 218.3653 14,78
0.36 17.2589 13.7263 4188,2636 | 22.06 ) 0.6687 |—11.3831 —T7.1983 1813906 | 18.47
0.37 30,7717 28.7620 | 1774.2019 | 42.12 | 0.70 —6.9670 —1.3322 50.1746 7.08
n.38 43,3457 412423 | 3748.7462 | 61.23 | 0.M1 —5.5858 0.2784 31.0656 5.57
.39 R3.8T17 BA.GhNG 5999.1382 7745 || 0.72 —4.191§ 1.7788 20.7336 4.56
0.£0 61,6805 650067 | R0R0.3551 | 89.61 f 0.73 —3.16808 2.8468 18.0930 4.25
011 66,4898 708276 | 0437.4424 | 97.15 | 0.75 —0.3070 6.5306 30.6818 5.54
0.42 68,1667 729013 | 9961.2985 | 99.81 | 0.76 0.8685 6.5125 43.1669 6.57
n.43 67.4681 720027 © 9736.3333 | 98.67 | 0.77 1.9706 7.3584 58.0293 7.62
0.44 64.2892 AR.1146 l A7T72.7000 | 93.66 || (.80 4.8044 9.1172 106.2056 | 10.31
0.45 69,3435 €2.0705 | 7375.5163 | 86.88 | .85 7.9153 9.8209 159.1021 | 12.61
0.48 B3.0989 54.51056 | 5790.AATB | 76.10 § 0.90 9.2441 B.5631 158.7801 | 12.60
.47 46.0172 46.0100 ’ 4234.65028 | 6507 | 0.95 9.2271 §.2331 123.8909 | 11.14
0.48 88.5224 87.1268 | 2862,3003 ' £3.60 | 1.00 8.3078 3.5024 81.2868 9.02
O 49 80.9623 28.3089 . 17600678 | £1.96 | 2.00 —7.1489 —1.5069 53.3775 731

We note that the Fourier sequence is given by the values r — 2.00, 1.00,
0.6667, 0.50, 0.40, 0.333, 0.2857, 0.25, 0.2222, 0.20, etc. Forming the sum of the
R2(x) for these values, we obtain R?(x) = 9924.8978.

Hence, since 202— 2(1%A2) — 10,000, we see that 99.25 per cent of the
energy ia accounted for by these ten coefficients.

An inspection of the graph of R(x) clearly shows the existence of the period
at x = 43/102 = 0.4216. One should particularly note the existence of the minor
maxima on either side of the major peak. This is a characteristic feature of all
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»eriodograms and one must be careful not to interpret these minor “shadows” of
he real period as being evidences of other periedicities.

Rix) R{x}

100 100
B0 / 80
- -y
€0 - &0

40 ‘ 40
o e ] * g
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

FRACTIONS OF PERIOD
FIGURE 14.—PERIODOGRAM OF SIMPLE HARMONIC,

if in formulas (8) of the preceding section we divide hoth sides by e and
invert the resulting equations, then we obtain as the minimum points of the
periodogram the values
a 1

1
A = =0.6342,
T. #— % 1.87209
a

1
T, = — = =

T, w4+ % 287209
The difference, A = z, — x, = 0.1860, gives the breadth of the peak. Since
the two minimum points are clearly indicated on the graph at approximately 0.53
and 0.35, we could readily obtain an excellent approximation of the period x if it
were actually unknown. Thus, employing formula (10) of the preceding seetion,
we get A/a =— 0,62 — 0.835 — 0.18, and henee obtain as the desired approximation

x=P/a— VO.I8/ (1 + 0.045) = V0.1722:= 0.415.

The error is observed to be only 0.007. -

In order to iliustrate the effect of interference in a periodogram we shall
congider the periodograms of the two functions

-

=0.8482.

. 2wt 7 o f2mt
(n) y=50$1n(5-5—5+z)+100sm(4—3+2),

. f2mt 7 . femt o
:_(b) y:50mn(ﬁ+z)+50sm(_4_8.+z),

pver an assumed range of length 2a — 204.
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We note that for the first component in each function we have 4 — 102/35.7
== 2.85714, and hence its interference band would extend from «, == 1/{x + 0.5)
== 0.2979 to x, — 1/ (g — 0.5) = 0.4242. This range seriously overlaps the inter-
ference band of the second component which, as we have previously calculated,
extends from 0.3482 to 0.5342, The values of the periodograms of (a) and (b}
are computed from the phase funections A (2) and B(x), which are equal to the
sums of the phase functions of each component separately. These values are
given below and the periodograms are represented in Figure 18.

Periodogrem Values for Function (a) Periodogram Values for Function (b)
z R(zx) z R{z) E] RB{zx) r Rz}
.80 2.11 0.40 1907.01 0.30 0.52 0.40 62.21
0.31 1.43 041 106.48 0.31 B8.46 0.41 67.92
.32 8.39 0.42 102.26 9.32 18.96 642 5237
0.33 14.76 0.43 95.63 0.28 80.67 G.48 46.36
0.24 35.97 0.44 86.76 0.34 41.82 0.44 39.93
.35 £3.10 .46 76.47 0.36 561.54 0.46 33.54
0.26 70.21 0.48 65.46 0.36 69.24 0.46 27.41
0.37 84.62 0.47 54.25 0.37 63.57 0.47 25172
0.38 96.09 0.48 43.32 .38 65.48 0.48 16.68
0.39 10%.62 0.49 33.01 0.39 $4.89 0.49 12.04
0.60 8.14

Although the graph of R(x} in each figure resembles the peak of a genuine
period, it is clear that the peak is much too broad to have been derived from a
single harmonic. This example illustrates the importance of checking the theo-
retical breadth of any peak suspected to have arisen from a single component.

Rix) R
150 75

100 50

25

0.4 05 0.3 0.4
FI1GURE 15.—PERIODOGRAMS SHOWING THE EFFECT OF INTERFERENCE
BETWEEN COMPONENTS.

In this figure the difference between the periods is small.

Part (a) shows the periodogram of a function with two components of peri-
ods equal respectively to 0.35¢ and 0.42a and with amplitudes equal respectively
to 50 and 100. The dotted lines are the periodograms of the two components.

Part (b) shows the periodogram of a function with two components of peri-
ods equal respectively to 0.35¢ and 0.42e but with equal amplitudes of 50. The
dotted lines are the periodograms of the two components.
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6. The Effect of a Linear Trend in Harmonic Analysis

Since many time series may be approximately described by
means of a set of harmonic terms and a linear trend, it is important
to know how the trend affects the components of the harmonic terms.

In order to investigate this problem we shall assume that a series
of data in the interval —a = { = ¢ has the trend

1) Y=Y+ mt.

Let us assume further that upon analysis the series has been
found to have also a harmonic term of the form

t .
(2) h(t) = A(T) cos%+B(T) sm_z_;ﬁ,
where A(T) and B(T) are values obtained from the periodogram.

We now expand y in a Fourier series in the interval —a = ¢ = a,

and thus obtain
_ 2ma . at 1 . 2at 1 . 3at
(3) y-—yo+—;“m[sln-a,— §SlnT+-§SlnT "']-

Now if in k{(t) the period 7 belongs to the Fourier sequence,
that is, if there is an integer n such that n = 2a/T , then the corre-
sponding term in (3) must have been included in the periodogram
value B(T). Hence the coeflicient of sin{(2at/T) which belongs to the
true harmonic, independent of the trend, must be B(T) diminished
by that part due to the trend.

Since the influence of the trend upon the harmonic is the term

2ma 1 mT
o e e
we obtain as the true harmonic the function
it t
B (8) = A(T) cos 22 + B/ (T) sin 22,
T T
where we abbreviate
mT
(4) B'(TYy=B(T) + (-1)* —-

- If ¢? is the variance of the original series, then the variance o2
of the series reduced by the trend and the harmonic term will be

(5 o2 = o = ar® — oy,
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where ¢7° is the variance due to the trend and ¢, that due to the har-
monic term.
We have already shown above that

e’ =3[A*(T) + B*(T)] .

For the trend we have

(6) 0‘7'2:‘:1_' :,1: 1+§2-+'3—2-

3

4m*a? [ 1 1 +“_J__m=a,2

If the series is defined over the interval 0 = ¢ = 2¢ instead of the
interval —a = { = a, then the only modification in the above analysis
is merely that B (T) as given in (4) is replaced by

(N B (T) =B(T) +-"‘;{.

Obviously in application the period T will not always belong to
the Fourier sequence. In this case the analysis just given will yield
cnly an approximation to the reduced variance ¢.%.

An application of this theory wili be found in the second example
of the next section.

The analysis given here for the correction of the harmonie com-
ponents for lincar trend can easily be extended to include corrections
for parabolic and higher polynomial trends.

Thus, if the trend is the parahola

y=1y, + mt + pit?,

and the data are given over the interval —a = { = a, then the origi-
nal values of A(T) and B(T) must be replaced by the following:

(8) _
A'(T) =AT) - (- LY*pT*/at, B"(T)=B(T) + (=1)*mT/n.
Similarly, if the data are given over the interval 0 = £ = 2a,
and if the origin of the parabola is at ¢ = ¢ with respect to this range,
then the harmonic components 4 (T) and B{T) are replaced by
(9)
A'(TY=A(T) —pT*/n2, B"(T)=B(T) + (m +2ap) T/n.

Applications of these corrections will be found in Sections 24 and
26 of Chapter 7.
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7. Applications to Economic Time Series

Since most economiec data are given in discrete form, it will be
desirable to formulate the technique of harmonic analysis somewhat
differently. Thus, let us assume that the data are arranged as a set
of equally spaced items:

Time | ¢ t, t, .-ty
Data ¥ ¥, Yg ¥y

where ¢,,; — ¢, is constant.

Then the amplitude of the periodogram correSpondmg to the trial
period T is given by the function

(1) R=R(T),
where we write
(2) R:(T) = A*(T) + B*(T),
I N'
A(T) == zy,cosE"Ti, B(T)——%Ey,mn%ﬁ

Here the quantity N’ is chosen equal to the largest multiple of T in
the total frequency N. That is, N' == pT, where p is an infeger.
The practical procedure is to arrange the data as follows:

i/} Y= Us Y e Yr
Yra Yrez Yrss Yria e Yar
(8) Yerar Yersa Yorss Ysrss =0 Ysr
Yot Yipvir2 Yoevra Yoeora ~ Yy
Sums: M, M, M, M, e My

The functions A (T) and B(T) are then computed as the sums

g r 2t 2t

As an example let us consider the evaluation of R(T) for the following data
jhich give the monthly averages of freight-car loadings for the period 1919-1932.
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MONTHLY AND ANNUAL AVERAGES OF MEAN WEEKLY FREIGHT-CAR LOADINGS
(unit, 1,000 cars)

Year Jan, Feb. Mar. Apr. May Jume July Aug. Sept. Oct. Nov. Dec.| Annual
Averages
1919 728 887 697 T1b 769 309 858 892 960 967 807 768 808
192¢ 820 776€ 848 781 862 860 201 968 965 1006 884. 723 862
1921 706 683 692 706 157 765 751 810 841 929 761 688 767
1922 702 766 826 723 787 842 326 BTT 986 992 944 838 838
1923 846 842 917 941 975 1011 986 1041 03T 1078 978 826 966
1824 858 90B 916 876 895 906 894 974 1037 1001 975 847 231
1825 921 906 924 941 968 289 986 1080 1074 1107 1024 888 984
1926 9283 919 969 958 1037 1028 1048 1104 1148 1206 1068  9td 1026
1927 946 966 1002 976 1024 999 979 1062 1097 1115 956 834 995
1928 862 897 951 985 1002 9B5 986 1058 1117 1176 1061 BB3 993
1929 893 942 962 996 1051 1062 2038 1117 1135 11686 978 836 1014
3530 837 876 883 912 914 930 895 438 931 950 798 680 879
18381 719 710 736 752 740 748 738 741 737 7590 666 B&§ 716
1932 5687 B61 B6R  BG6T 522 491 483 525 77 634 649 485 543
Av. 809 816 848 837 878 887 £84 942 971 1013 BB 767 878

The items in the series are first arranged in horizontal rows for each value
of T, taking T — 5, 6, 7, --- , 26, The sums are then found for each column.
Thus for T — 15, one gets the following arrangement:

Colurans 1 2 3 4 [ 6 ki 8 9 10 11 12 13 14 16
728 687 697 716 TE9 BO9 88 B9Z 960 967 BOT 6B B0 776 B48

781 862 860 901 968 968 1006 8B4 723 706 683 692 7706 76T 766

Values 761 B0 841 920 761 6B3 T0Z 66 826 723 TBT B42 826 877 935
of the 992 944 838 845 B42 917 941 975 1011 986 1041 1037 1073 978 8§26
Monthly 858 008 916 B76 B9E 906 894 974 1087 1091 976 B4T 921 906 924
Averages 0941 963 989 986 1080 1074 1107 1024 883 923 919 969 958 1037 1028
| 1048 1104 1148 1205 1068 904 946 956 1002 975 1024 999 979 1062 1091

1116 956 834 862 897 951 936 1002 985 986 1058 1117 1176 1061 883

Bog 942 962 996 1051 1052 1038 1117 1135 1169 978 836 83T 876 832

912 914 930 8¢5 938 931 950 798 "680 TI9 TI0 736 752 740 748

788 T4T 78 159 666 G55 667 G661 5656 G5T 522 401 483  &26 577

Sums: (M) ]| 9708 9842 9752 9968 9914 9761 9943 9948 9512 9801 90604 9322 9634 9504 9514

We observe that of the 168 items of the data only 165 are used in the above
array. That is to say, N = 168, while N' — 11 X 15 == 165,

R(T) RT)
80 80
60 60
40 A 40
20 / J 20
L~
Q Tlo
0 5 10 15 20 25 30

FicurE 16.—PERIODOGRAM OF FREIGHT-CAR LOADINGS.



THE TECHNIQUE OF HARMONIC ANALYSIS 79

Proceeding in this manner 21 arrangements of the data are made and the
sums are recorded as in the accompanying table.

PERIODOGRAM ANALYSIS, FREIGHT-CAR LoADINGS, 1919-1032

Values of M: corresponding to the periods T
Columns ] [ 7 8 g 10 11 12 13 14 15

1 28962 28606 21228 18667 16312 14430 13235 11826 10820 10721 9708
2 20107 24619 21234 18800 16031 14417 13079 11426 10891 10486 9542
3 20234 25482 20933 18121 16393 14366 13205 11887 10651 10623 9752
4 29374 25892 21171 17849 160BT 14262 13256 11717 10768 10532 9968
] 29229 24731 20986 18557 16069 14196 13179 12203 10742 10622 9914
]
T
8
)

23154 20036 19127 16128 14010 18399 12416 10853 10759 9751
21087 18573 15719 14199 13414 12369 10972 10618 0943
17800 15555 14385 18367 13193 11056 10507 9948

16027 14587 13385 13595 10967 10447 9812

10 . 14457 13278 14176 10891 10648 980l
11 13109 12438 10760 10402 9504
12 10739 10793 10364 8322
1 10904 10475 9524
14 10468 6594
T 9514
a)e 412 2739 301 1327 ®3a®  &77 336 3437 405 395 646
Iyl 0.B959 6.1273 0.7942 29066 1.5967 1.0161 0.7198 6.1082 0.6936 0.7184 1.2178

Values of M: corresponding fo tl-u: perl;d;i‘
Columns i 16 17 18 18 20 21 22 23 24 26 26

9047 8022 3041 7334 7264 7261 6266 G5BT  BST 5346  b4B6
9160 8191 8300 7216 7440 7076  BRIS 6465  5T24 5325 5434
i 8805 8245 8731 7206 7085 6947 6317 6246 5929 6463 5307
! 8789 8334  B4IT 7888 6816 7033 6328 6085 6026 5666 5338
9083 8463 8041 7233 70B4 T019 6319 5914 8274  §BS6 L3186

9398 8242 7680 7206 7185 6827 6397 5960 6373 5768 65394
9159 8186 7892 7073 7086 7080 6533 6202 6336 5603 5466
8788  B121 8065 7245 TOTL  T103 6620 6268 6748  B506 5431
9088 B2E4 8418 7286 7373 7060 6548 6500 6881 5403 5445
9248 8230  827r U211 T50T 7250 6518 6637 714 6257 5439

1

2

3

4

1

6

7

B

9

10
11 8743  H1627 TTIL 7266 7166 7098 6295 6624 6169 G130 5379
12 8685 B164 T662  TBOT 6977 Y060 6314 6519 6379  EIB6 5434
13 8397 7995 7670 TAT® 7281 T4  630% 6540  BE6D 5391 5506
14
15
16
17

18
19
20

9095 BO12 8028 7413 T446 7023 6821 6326 b702 5394 5364
8366 B139 8448 7275 7111 6864 E367 6221 5958 5418 G467

8527 8026 7827 7281 6R25 6798 6295 BaGG 6691 5462 5344
8314 7486  TIG66 7118 €974 6445 5772 6019 5765 5420

T609 T266 7314 6804 6359 5780 6042 5780 5426

7432 T214 6017 6356 5990 6038 5761 5459

6950 7068 6354 G116 6444 5664 6507

21 6984 6735 6247 6714 5442 5625
22 6237 6419 7052 5419 6622
k- ] 6466 6279 6313 5462
24 5360 5211 5381
25 5245 5359
4 5399
{A) ! 871 468 1245 397 691 463 333 8656 1764 T26 318
Xu/o 1.5846 0.70836 2.2144 0.5937 1.2244 0.B166 0.6235 1.7028 38.1320 1.3212 0.4442

* The values A& are obiained by subtracting in each column the smallest value from the largest
mlue. The figures in bold face designate these values. The items Xu/0, are the standard devia-
of the colamns divided by the standard deviation of the original series, namely, 0 = 154.5.
an explanation, see the next section.
These columns of M, are now multiplied successively by cos(2wt/T) and
(2mt/T),t—=1,2,8, -+, T, summed, and multiplied by 2/N’ to obtsain the
ues of A(T) and B(T) as given in formula (3). From these the values of
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~ R2(T) and R(T) are finally computed as the elements of the periodogram. The
results of these computations are then tabulated as follows:

PERIODOGRAM OF FREIGHT-CAR LoADINGS, 19191932
A=287842, o0=—154.50, 02=—23870.2441, 20?2 —47,740.4882

N A(T) B{(T) R & T N A(T) B(T) R B

T
5 | 165 0.6904 | — 5.6644 32.44B6 | 5.70 16 | 160 | —10.8471 10.0918 ' 219.5032 | 14.82
6 [ 168 | —40.1310 | —28.8168 | 2177.6869 | 46.67 17 | 163 |— 60280 11,6832 | 161.7665 | 12.72
T ) 168 0.5472 1.3761 19.4501 ; 4.4l 18 ) 16Z |- 1.7398 18.9862 | 862.2730 | 19.06
8 | 168 4.0634 | — 5.7846 49.9728 ¢ 7.07 18 1 152 | 3.7B6L =~ 7.1347 66.2379 | 8.08
8 | 162 | — 6.48B63 12,7100 | 2036147 [14.27 26 | 160 ]— 5.6139 [-— 3.1933 417138 | 6.46
10 | 160 11,7245 3.0838 [ 146.8498 |12.12 21 | 168 |— T.0285 6.8883 96.1626 | 0.81
11§ 166 : — 4.1354 |— T.7980 77.9098 | B.83 22 | 154 | —10.4692 4.4186 | 129,127% | 11.36
12 | 168 | —25.0916 |—70.9743 | 5666.9430 | 75.28 23 | 161 | —11.4128 13.5179 | 312.9748 | 17.69
13 | 156 | — 3.6037 [— T.0614 61.9981 | 7.87 24 | 168 1.1808 18,8861 | B58.0776 {18.92
14 | 168 { — 4.2986 71276 T8.1916 | 8.84 26 | 150 1.7146 |— 2.1002 7.8505 | 2.1
16 | 186 | —14.1744 14.6379 | 415.1840 )20.38 26 | 166 | — 1.30756 |— 6.7452 47.2076 | 8.87

The values of R(T) are graphically represented in Figure 16,
which clearly shows the existence of periods at T = 6 and T = 12.
Since these two periods belong to the Fourier sequence, the per cent
of the total energy of the data contained in these periods may be
exactly computed from the formula

R2(6) + R2(12)

Per cent of energy = [ J =16.43% .

2 g? ’
THOUSANDS OF - THOUSANDS OF
?zgg PERWEEK CARS PER \':gg
N A p AN A NN o
m A N A V484 \/v’\ 1.,
Vo'l \-f'-\ ]
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iy \vama MY \ “\M 1
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FIGURE 17.—FREIGHT-CAR LoADINGS
Upper curve: Monthly averages of mean weekly loadings, showing seasonal
variations; Lower curve: Same with 6- and 12-month cycles removed.
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Figure 17 shows the relative unimportance of seasonal varia-
tions in comparison with secular moves. The lower curve shows graph-
ically the effect of removing the 6- and 12-month cycles from the
original data represented in the upper curve. The residuals, Y., are
computed from the formula

i t
Yi=y. — [A(G) cos%t—-i—B(G) sin-z%-

2at . 2t
4 A(12) cos—l-é-— + B(12) sin TQ_] ’

where { assumes the values 1, 2, 3, .-, 168.

A second example of the application of harmonic analysis to economic time
series will illustrate how a periodogram may be interpreted. The data chosen are
the monthly averages of the Cowles Commission All Stocks index from 1880 to
1896. The arithmetic average, variance, and total rnumber of items are respec-
tively A — 40.71, o2 — 21.8830, and N — 204.

R R(T)
5 E
4 ~ -~ 4
ﬁ! \\j -
3 ,r/ 3
L
/J'
F _’_A i 2
1 £\ 1

i} .-\/\J 1 1 1 1\’ Fl L —_Tjo

] 10 20 30 40 50 50 70 80

FIGURE 18.—PERIODOGRAM OF COWLES COMMISSION ALL STOCKEs INDEX, 1880-1896.

An inspection of the periodogram, Figure 18, reveals two principal periods,
one at T —235 and the other at T—=¢62. The values of the harmonic components
for these periods are given respectively by 4 (35) — --1.6127, B(35) =—1.9801,
and A(62) =—3.2710, B(62) — 2.0969. From these we compute E?(35) —
6.5216 and B2 (62} == 15.0964. Neither T — 35 nor T = 62 belongs to the Fourier
sequence although the former is within one unit of T — 34 and the other 6 units
from T == 68, both of which belong to the sequence. However, we may assume that
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formula (11) of Section 4 helds approximately and hence we can make the follow-
ing estimate of the energy of the movement in the series which is accounted for
by the two harmonics:

_ R2(35) + R2(62)

202

E =— (.4939 ,

Since the components of the energy are not strictly additive, this estimate
should be compared with the energy of the adjoining harmoenies of the Fourier
sequence. This energy is equal to E(34) 4 E(68) = 0.4047. Hence from 40 to
49 per cent of the total movement of the series is accounted for by these har-
monics.

We note from the graph of the series, however, that there exists a slight
secular trend in the data. This trend is represented by the equation

(8) ¥ — 45.9403 — 0.052325¢ ,

where the origin is at the first item of the data and ¢ is months.

Since the slope of the trend is not great, we see from the discussion in Seetion
6 that the harmonic analysis is not seriously affected by it. Hence a good fit to
the data should be expected from the function

{6)
2art 2wt 2%t 27t
g =y (t) + A(35)cos o 4 B(35)sin o + A (62)cos —— -+ B(62)sin o ,
a5 35 62 62

where (1) is the trend given by (5).
The values as computed from (6) are recorded below as follows:

t 1] ot ¥ t ¥, t ]
0 41.1 51 42.9 103 38.3 156 42.0
3 42.9 56 39.8 107 37.9 159 40.8
7 45.8 59 37.9 111 38.3 163 37.4
11 483 ! €3 87.2 115 38.6 167 34.2
15 94 | &7 38.2 119 38.3 3! 32.2
19§ 4981} o7t 46 123 3.5 175 31.8
23 | 417 [ 75 3.8 127 36.5 179 32.8
27 | 46.0 79 56.4 131 36.1 133 34.4
31 451 a3 99 135 36.8 187 36.1
35 | 44T 27 471 139 a8.7 191 86.2
39 4.7 91 41.9 143 41.2 195 36.0
43 48 | 95 42,2 147 43.4 199 35.6
47 438 © 99 30.7 15% 44.3 204 | 365

The graphical representation of equation (6) is shown in Figure
19. The variance of the residuals as computed from the values in the
table just given is found to equal 6.7942, which indicates that the
trend and the two harmonic terms together have accounted for ap-
proximately

E=100[1— (6.7942/21.8830)] = 69%

of the total variation. _
It is illuminating to estimate the residual variance if the refine-

ments suggested by Sectivn 6 are employed to take account of the
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FIGURE 19.—HARMONIC REPRESENTATION OF COWLES COMMISSION
ALL STOoCKS INDEX, 1880-1896.
(a) Straight-line trend,
(b) Fourier approximation.

effect of the trend upon the components of the harmonic terms. Em-
ploying formula (7) of Section 6, we see that EF(34) and B (62) must
be replaced by

B'(34) == 1.9801 — 0.5829 = 1.3972,
B'(62) — 2.0969 — 1.0325 = 1.0644 .

Hence the variance of the harmonic term is 7.0999, and since the
variance of the trend is 9.6352, the residual variance will be approxi-
mately ‘

0,> == 21.8830 — 9.6352 — 7.0999 = 5.1479 .

A similar computation, using the values for the harmonics
T — 34 and T = 68, gives as the expected variance the values o,* =
6.5815. The true variance lies between these two estimates. Hence
the maximum estimate of the per cent of energy that can be accounted
for by the trend and the two harmonics, using the smaller of the two
figures just given, is 76 per cent, an increase of only 7 per cent over
the estimate attained by neglecting the correction for the trend.

8. Other Methods of Harmonic Analysts

Several methods of harmonic analysis have been suggested by
various writers, and some of these have already been mentioned in
the first chapter. It will be useful to describe four of these in some-
what greater detail,
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The Whittaker-Robinson Periodogram. An interesting and use-
ful periodogram has been devised by E. T. Whittaker and G. Robin-
son based upon the variations in the sequence M, , M,, ---, M,y given
in (3) of the preceding section. Thus they replace the ordinates of
the Schuster periodogram by the square root of the following ratio:

l.'!yz T
ey =220

where o)2(T) is the variance of the sequence of the mean values of
the M’s corresponding to the period T, and ¢® is the variance of the
data.

The theory of this method is as follows: Let us assume that the
elements of the data may be written

y. = Asin(2nt/P) + B,,

where B, is a part which does not contain the period P and is not
correlated with it. The variance of the data is then given by

=3 A4+ o,

where o5 is the variance of the elements BE; .
Similarly we find

. paT
(p-1)T SIN ——————— _
M,=A'Ssin2a(t+n)/P+Co=A4 — > sin["‘“ @ I)aT]
= sin’-'l-,-

where C, is the sum of the elements B, .
The variance of the values M, is computed from

sin*-i’ﬂ—T

TM=142

7 + 0’0’ )
sin ——
P
where o2 is the variance of the elements C, .

We now compute 5?(T), noting that p* ¢u? = 3 M?, and thus ob-
tain
3 (A /p)2{sin? (paT/P) /sin(zT/P)] + o*/p*
% A2 4 gt *

Since o is of the order of p «s*, it is clear that »* will remain
small, when p is large, provided P is different from 7, but that it will

7(T) =

+C.,
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tend to increase sharply when P is close to T in value. This maximum
may be shown actually to equal

_ YA+ op?/p
1A+ o5z

In the first periodogram of the preceding section the values of
Y M/o have been recorded and from these the Whittaker-Robinson
periodogram can be constructed immediately. One notes the large
values for 7 = 6 and T = 12, results in complete agreement with
those obtained from the Schuster periodogram.

Method of Maximum Differences. When a preliminary survey of
8 set of data is desired, this survey may be accomplished with a mini-
mum of computation in the following manner:

A table of the values of M, is ﬁrst constructed and the following
differences then computed:

4(T)=M(T) —m(T),

where M (T) is the largest value of M, corresponding to ¢t = T and
m (T) is the smallest value of M,;. The fluctuations of A(7T) will in
many cases reveal the essential period in the data if such a period
exists, This method is crude, however, and should be applied with
caution. No measure of the statistical significance of differences be-
tween the various values of 4(7) has been devised.

The values of these differences have been computed for the data
on freight-car loadings given in Section 7. The large values observed
at T = 6 and T = 12 again accord with the findings of the Schuster
periodogram.

Approximate Schuster Periodogram. An approximation to the
Schuster periodogram can be attained by a simple device, which very
much reduces the labor of computation necessary when the technique
of the Schuster periodogram is applied to a set of data of any length.

Let us note that the function S(t) as defined by the graph (a) in
Figure 20 is represented by the following Fourier series:

4[.2::# 1.6mt 1.10::t+_]

Max *(T) =

S(8) =Z|sin— +gsin o + gsin
Similarly, the function C(t) as defined by the graph (b) is repre-
sented by the Fourier series

4[ 2t 1 6at 1 10at ]

C(t)=; cos-?,-"gcos-?,—+gc -.—i'.—-——...
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FIGURE 20.—STEP FUNCTION WITH FIRST FOURIER APFPROXIMATION.
(a) 0Odd function represented by sines,
(b) Even function represented by cosines.

Hence we see that to a first approximation sin{2at/T) may be
replaced by S(?) and cos(2s/T) may be replaced by C(¢) in formu-
las (2) of Section 4. We should thus have

am =2 [correa, Bry=21 {5 1) 05,

and the approximate Schuster pertodogram is given by

R(T) = vA(TY ¥ B (T) .

The advantage of this method is found in the obvious simplicity
of the calculations. The errors, however, may be considerable,

Applying this method to the data on car loadings as given in
Section 7, we readily compute 4 (12) = —33.6412, B(12) —= —50.9199,
and hence obtain R (12) = 61.0292. These values may be compared
with their Schuster equivalents, namely, 4 (12) = —25.0916, B(12)
= —70.9743 , and R(12) = 75.28.

The Method of Serial Correlations. Still another method of har-
monic analysis is found in the use of serial correlations. Since, how-
ever, the next chapter is devoted to this subject, we shall postpone
discussion of this method and its implications until a more adequate
treatment can be given, .
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9. The Exact Determination of the Period.

By means of what has been called the secondary analysis of the
periodogram it is possible to determine with considerable accuracy
the value of a period indicated by the periodogram itself.

This determination is made from the analysis of the components
A, and B, for some period T in the neighborhood of the true period
P, Let us assume that the harmonic term indicated by a peak of the
periodogram is actually

2nt
Y sin(—-+ 8,

and let T be some convenient trial period in the neighborhood of P.
Preferably T should belong to the Fourier sequence, since it is then
an exact multiple of the range 2a, although this is not a necessary re-
quirement. Now let the range be divided into p intervals of length
mT , that is, into the intervals (0, mT), (mT, 2mT), (2mT, 3mT),
-, [(@—=1)ymT, pmT], where pmT = 2a . In case the series is short,
or if T is large, the value of m may conveniently be assumed to equal 1.

We now consider the rth interval, [ (r—1)mT, rmT7], and com-
pute for it the corresponding constants, A, and B,. These are found
to be

™mT
A,—_—;an-f Asin(—2§+ﬁ) cos-2—;§ds

a2r—1)ymT
arn ),

(r-1)ymT

_ 4 PT mTC
S T "S[

1 Ea

ey

]
ds

2ns
A sin(hﬁw -+ ) sin
(r-1}m7T
A Pz in mT in a(2r—1ymT n
am =Pz oS ! P b }
From these values we then compute the tangent of the phase
constant ¢, , that is,

_B,_—P a(2r—1ymT
tan(!)r'—:‘:—‘-q‘,—tan [—-——P————— =+ ﬁ] N

Since, by assumption, T is close to P we may replace P/T by 1
and hence may write

tan ¢, = — tan [n(zr—n 3’%31+ 8 ]
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mT
tan ¢=tan[2.nmr —n(2r—1) T+ § ] :
From this equation we obtain the important result that

v = 2mar — (_2r—1)1n}TT+ﬁ.

The change in phase from one interval to the next is thus found
to be
a= ¢, — ¢y =2Mn — 2n(mT/P).
Solving this for P we then obtain

(1) p=__.?a_.
1—2m.n

Hence, if the phase change from group to group is known, we ¢an
determine the value of the period P from this formula.

As an example we shall consider the periodogram of the constructed sine-
cosine series as given in Chapter 7. In order to determine aceunrately the period
observed between the limits T — 38 and T — 52, the values of the components
are determined for the trial period T — 50, since this belongs to the Fourier ge-
quence of the 300 itemsa constituting the data.

Since the trial period is large, m is chosen equal to 1. The following table
of the phase constants is then computed by letting r range from 1 to 6:

r 44(T) B, (T) tan $r ¢+ (in degrees) ¢+ (in 27 radians)
1 1.2972 —19,7696 ~-—15.2402 278 48’ 0.7604
2 —138.0164 —14.9048 1.1451 228° 52 0.6367
| —14,6208 — 08678 0.0508 188* 24/ 0.5094
4 — 9.9284 11.5280 — 1,1811 130* 44’ 0.3631
[ 0.1418 27,1724 101.8960 89 42/ 0.2492
[ 1 12.8028 17.6884 1.3996 54° 277 0.1512

Fitting a straight line to r and ¢, (in 27 radians) we obtain the equation
@, = 0.8800 — 0.1243 r.

The linear character of the phase is clearly observed in Figure 21.
Substituting the slope value @ — —0.1243(27) in formula (1), we obtain
as the value of P

P =50/ (1.1248) = 44.47.

Since by construction the period was actually exactly equal to 44.00, this
agreement i seen to be excellent, particularly if we observe that T/P — 1.14.
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FIGURE 21, —INTERVAL CHANGE OF PHASE.

10. Orthogonal Functions

The ideas which we have developed in preceding sections with
respect to harmonic analysis are generalized in many ways by the
theory of orthogonal functions, a class of functions which includes
the sine and cosine as special cases. The use of orthogonal functions
has become very important in many phases of statistics. The fact that
linear combinations of them are frequently used as trends in the study
of economic data amply justifies the inclusion of a description of their
properties in a volume devoted to time geries.®

Suppose that we are given a set of functions

U‘.I(t)y Uﬂ(t); Us(t),"', Un(t)s“' »

which are defined over some interval ¢ = ¢t = b . If there exists a funec-
tion F' (1), positive over the given interval, such that

b
(1) f F(8) Us(¥) Us(3) dt=0, i#j,
then the functions are said to be orthogonal to one another.® The

5 For a discussion of some of the dangers inherent in the blind use of linear
combinations of orthogonal functions, see C. F. Roos, Dynomic Eeonomics, Bloom-
mgton, Ind., 1934, Appendix I. For a comprehensive treatise on the methods of
fitting various systems of functions to statistical data the reader is referred to
M. Sasuly, Trend Analysis of Statistics, Washington, D.C., 1934, xiii + 421 pp.

8 The origin of the word orthogonal (rectangular) may be ageertained from
the following geometrical considerastion. Let A and B be two lines emanating
from a common origin, with direction cosines equal respectively to (X, X, Ag)
and (s,, 8, #;}. Then the cosine of the angle ¢, between A and B, iz given by

]
cogd— Z A, fb, .
n=1

If A is perpendicular (erthogonal) to B, then 8§ — % 7, and we have the
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function F () is called a weight function and may be chosen equal to
1 without loss of generality, since we need merely define our orthog-
onal set as

Vl(t)l V?(t)l Vs(t):"‘: V,.(t),"',

where V,(t) = vF () U.(¢). There is some advantage however, in
introducing F(¢) explicitly.

The most common orthogonal functions are: (a) the trigono-
metric functions; (b) the Legendre polynomials; (¢) the Hermite poly-
nomials; (d) the Laguerre polynomials; (e) the Bessel functions;
(f) the Tchebycheff polynomials.

For ready reference these well-known sets of functions are listed
here:

e mart nTt
(a) fsin sin—dt==0, m#n,
a a
_a
¢ nt
fsin"——dt:a
a
mrt nwt
(a") fcos cos—-—dE_O m#*n,
nmre
fcosz——o't_a,
a
-
1
(b) f P ) P (t)dt=0, m+#=n,
-1

1
f Prtydt=2/(2n +1),
-1
where P, (t), the Legendre polynomials, are given as follows:

1 1
P(ty==1, P (t)=t, Pi(t)zé(.‘%iz—l), Pa(t)_—_z-(sts—-Bt),

orthogonality condition
3
2 A b, =0
n=1

' We also note the following biorthogonal relationship:

¢ mit nt .

f sin cos — di =0, for all integral valuesof mandn .

a a
-
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1 1
P,(t) :§(35t¢——30t2 +3), Pyt :§(63t5—-70t3 + 15t} ,---,

P, (t) = (2n)! [tﬂ _ n{n—1) nee n(n—1) (n—2) (n—3) it .":’
2r(nl)2 2(2n—1) 2-4(2n~-1) (2n--3) iy
w 1
{c) f —e-it*h (¢) R, (L) dE=—=0, m=z#£n,
vaw

-0

"l innagt) dt=n1,
o Var

where ki, {t), the Hermite polynomials, are given as follows:
Ro(t) =1, h(t)==t, h(t)=t2—1, h(t)=t3—38t,
h () =t+—682 + 8, R ()=t —1045 4 15¢,---,

Ry (8) =tr — "‘"2—1) P o) (:—42) (—3), ,

A second form of the Hermite polynomials is in common use, connected with
k. (t) by the relation
hy(ty=2-in H (t/VZ), H_(t)=2"k (VZ1).
For H,(t) we have the following orthogonality conditions:

fme-t’Hm(t) H, (1) dt=0, m+#n,

-]

-]
f e# H2(t) dt =27 n! V7.
-t
Values of H,(t) are given explicitly as follows:
Hy(t)y=1, H,(t)=2t, H,(t)=4t2—2, H,(t)=8t5—12t,
H, (t) — 16t — 482 4 12, H_(t) ==82t5 — 18045 4- 120¢,-- -,

B s 3 TEERERT et

H (1) = (2t} —
(d) fwe—‘Lm(t) L, (t)ydt=0, m#%mn,
4]

-
f et L 2(t)dt=1,
[}

where L, (t), the Laguerre polynomials, are given as follows:
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Ly(t) =1, L,(t)=—t+1, L,(t)==(t2—4t 4 2)/2!,
L,(t) = (—t3 + 9t2— 18t 4 6) /8!,
L (£) = (16 —16£3 4 72t2 — 96 -} 24) /4!,
Lg(t) = (—t5 + 25¢+ — 20082 + 6002 — 600 + 120) /5!, -,
Loty =~ — T gmes T
n2(n—1)2(n—2)2
3!

tn-3 - ..._n]]/n! .
(e) fat Jﬂ(ﬂmt)‘,n (s, t)ydt—0, m¥En,
1}

f LT ) dt= % B[ 2 (k,a) + I3 (48],
(]

where J,(x} and J,(x) are respectively the Besasel functions Vof first and second
order. The set of values {x,} i3 determined from either

Jo(ra) =0, or J,(sa)=0.

11
T, (2) T,(t) dt=0, m%n,
@ fvr:ri "

-1

11
f —— T,2(t) dt =7/2m1,
. vi—ta

where T' (t) are the Tchebycheff polynomials defined as follows:
1 3
T =1, Ty()=t, T(t)=t—, T()=B—=t,

T, (t) = t¢ t2+1 T, (t) —t5 5ta+5t--
e 8" 7T 4 16

n(n—38) e n{n—4} (n—5) n

]
2¢. 21 26. 31 oo

T, () = tn— ez

22.1
Functions are also orthogonal with respect to summation, that
is to say, the integral (1) may be replaced by the sum

]
2) ZF(E) Un(t) Ua(t) =0, m#n.
t=a
In the discrete data of economic time series it is, in fact, more
usual to employ functions which are orthogonal with respeet to sum-
mation rather than those orthogonal over some continuous range. It
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should be noted, however, that such functions can be included in the
previous theory by means of Stielljes integrals.t
By a Stieltjes integral we mean an integral of the form

I= f"f(x) dv (z),

which is defined as the limit of the sum
Iy=f(t) [v(x,) —v(a)] + F(t) [v{z) — v(x.}]
+ .-+ fty) ['U(b) - TJ(QCN_;)] '

where v(z) is a function of limited variation in (a,b) and ¢, is some
value in the interval z, — 2,,. If »(x) is constant, except for a
finite number of discontinuities of positive saltus {S;}, at the points
&, &, -, Ea, then I is equal to the sum

I=8,f(&) +8:7(&) + -+ Suf(&n).

Hence, introducing a step function »(f) of the kind just de-
scribed with a unit saltus at each integer, we can write (2) in the
integral form

be(t) Un(t) Un(t) dv(t) =0, m+*n.

A few of the functions which are orthogonal with respect to summation are
recorded below. The first set includes the sine and cosine functions, the second
set the Gram polynomials (the analogue of the Legendre polynomials for discrete
summation), the third set the discrete Hermite polynomials. The pertinent for-
mulas follow:

w1 2w 2mT if neither k—m nor k-+m is divisible by =,
(2)® ‘Ensmjtsm—;—t:“: or if both are divisible by n.

E'lsinzziwtz an, if 2k is not divisible by =n.

$=0 n

w1 2T  2mT if k—m is divisible by » and k+m iz not

:E sin — t sin — t—1in, divisible by = ;

=0

=—34n, if k—m is not divisible by # and k+m is di-
vigible by n .

& The definition of such inteprals is due to T.-J. Stieltjes (1856—1894), “Re-
cherches sur les fractions continues,” Annales de la Faculté des Seiences de Tou-
louse, Vol. 8 (Series 1), J, pp. 1-122; in particular, pp. T0-72.
ot ¢ These identities should be supplemented by the following biorthogonal re-
ation:

¥ Fi=1 QT
¥ in—teos —— t=—0, forall valuvesof kand m .
=0 " R
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n-1 e 2mw

(') 3cos—tcos—1t—=10, if neither k—m nor k-+m is divisible by .
=0 " ®
nz-‘lcos!@t: an, if 2k is not divisible by n.
t=0 n
n1 g Imr if either k—m or k+m is divisible by =,
S cos—tecos——¢=43n, but not both;
n
=0
=n, if both k—m and k- m are divisible by =.
i
(b) Xe,@) (1) =0, m+Fn,
te-p

P
22 () =8,

t--p

where we abbreviate;!?

() =4, ¢,(t) =A't, ¢,(t) =B+ Ct, ¢, (1) =Bt 15,

$,(t) =C + Et2 + Fts, ¢,(t) =C't + E't3 + F'ts,

¢, (t) =D + Gtz 4 Jis + Jto |

S (L) =Dt 4 G'ed 4+ I't5 4 07

So=4, §,=4", 8,=C,8,=C, 8§, =F, §,=F,8,=J, §.=J.

4 3

P
ZC tn(t) ¢p(t) =0, msn,

t=-p

(€ ZC,4,2(t) =u, =l 2p(2—1) (25—2) ... (2p—n-+1)/22m

=0

where we abbreviate:!t

(2p)!

S GrnT gt A e

[

Po=1, # (1) =¢t, ¢, (1) =12 —p/2, ¢, (1) =t — % (3p—1)t,
P () =8 — (3p—2)12 + 3p(p—1)/4, v () =t —5(p—1)83

+ (15p2 — 25p + 6) /4,

10 The notations and the explicit values of the constants are found in the
author’s T'ables of the Higher Mathematical Functions, Volume 2, 1935, pp. 307~
369. The numerical evaluation of the constants over extensive ranges of p is also
found in this work.

11 An extensive account of these funetions together with tables of their values
will be found in H. E. H. Greenleaf, “Curve Approximation by Means of Fune-
tions Analogous to the Hermite Polynomials,” Annals of Mathematical Statisbics,
Vol. 3, 1982, pp. 204-255.
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Velt) =15 — 5(2p—4) 14/2 + (45p* — 105p + 46)t2/4
— 15p(p—1) (p—2) /8,

¥, (1) = t7 — T(3p—b5) 15/2 + (105p+ — B15p* + 196) t3/4 — (105ps — 420p
+ 441p2 — 90) /8,

P (1) = t8 — 14 (p—2) 6 + T(15p2— 5bp + 44) /2 — (105p? — 526p2
+ T42p — 264) t2/2 + 105p(p—1) (p—2) (p—3) /16.

11. Mimimizing by the Method of Least Squares

Since most work done with regression equations in the theory of
economic time series is in one way or another an application of the
method of least squares, it will be useful to indicate in this section
some basic results about approximation by this method.

Let us consider that a given function, «(f), over a range a =
t = b, is to be approximately represented by means of a known fune-
tion, f(t;0,, @, -, &,), where the parameters a,,a,,--., a, are to
be determined. The basic postulate of the method of least squares,
in a sufficiently general form for our purpose, affirms that the para-
meters are to be so computed that the integral

b
I=f F(t) [u(t) — F(t;0,, 0, , ) ]2dE

shall be a minimum. The function F(¢) is a weighting function, posi-
tive in the interval (a,b).

Equating to zero the partial derivatives of I with respect to the
parameters, we obtain the following system of equations:

fF(t) o dt - fF(t)u(t)—f-dt—o. i=1,2,,n

In most practical applications in time series, the function f(¢)
is assumed to be linear in the parameters, that is,

fit) =a, u,(t) +a, () +--- + a, un{?).

Introducing this expanded form of f(f) into equations (1), we
then abtain the following set:

b b
alf F(t)uﬁdt-i—a.zf F(t) u, up db + -

n be(t) Uy Uy dE = J‘bF(t)u](t)u(t)dt .
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B ’ b
alj F () uwdt + a, f F(t) wrdt + -

+ f"F(t) Uy = f"F(tm(t)u(t)dt,

(2)

b b
aqf F(t)mdtmf F(t) tnug dt + .-

b b
+a..J F(t) t? dt = f F(t) ua (t)u(t) dt.

If the functions u, (t), w (), --+, u,(t) form a set of functions
orthogonal with respect to F (¢) over the range (a,b), that is to say, if

f”F(t)u,.(t)u..(t)dtzo, m#n,

then system (2) assumes the simpler form

] b
a‘f F (1) () dt=f F(t) w(t) u(t) dt .
If we employ the abbreviation
[
z;:f F(t) w2 (¢) dt,

then we can write the approximation of #(¢) in the following con-
venient form:

b
(3) u(t) f K (t,s) u(s) ds.

The function, K (£,5), called the kernel of the integral, will be
seen to have the expansion

K(ts) =F(s) [““t’l““s’ $ D8 un(tiuu(s)]_

We also note that the right-hand member of (3) furnishes a
minimum for I, since we have by explicit calculation the following:
o*r g

-a-E‘—z=lt>0, aa,iaa,;-_uo’ 3#].

By means of the results established above, it is now possible to
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derive Bessel’s inequality for the general case of orthogonal functions.
For this purpose we introduce the value

f@)=a,u, (£) + A u (£) + -+ + 0y %, ()
into the integral 7. Noting that

I%UHMUMﬂﬁZmM,
and also that
b
f F(£) F(8) dE=ai, + aly + - + a2h,,

we readily obtain

I:be(t) w(t) dt—2be(t)u(t)f(t) di + ij’(t) f2(t) dt
=be(t) w(E) df — 2(a2h, + Gg2he + -+ ) + be(t) f2(8) dt

] b
= [[Foyww a— [ Fo)re)a.

Sinece the integrand of the integral I is positive or ze'ro, the inte-
gral is positive or zero, that is, I = 0, and hence we have established
Bessel’s inequality in the general case:

(4) a2, -k Gy + e+ Q%A S fF(t) w? () dt .

If the set of orthogonal functions is an infinite set and closed,
that is to say, if there exists no other funection outside the set which
is orthogonal to the set, then the sign of equality holds in the Bessel
inequality, and the approximation sign in equation (3) is replaced
by the sign of equality.

The spectrum of the integral equation is then the set of values:
Aay Aoy omey dnvoo.

12. Relationship to the Theory of Multiple Correlation

We shall now indicate the relationship which exists between the
theory of the last section and the theory of multiple linear correlation.
The problem of multiple-correlation analysis, as one sees from
any elementary book on statistics, consists in discussing the relation-
ship between a dependent variable, f(f), and n independent variables,
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w, (1), U (t), -+, un (). Without loss of generality we can assume
that the averages of all these functions over the range (¢ = £ = b)
are zero. This merely means that the variables are deviations from
their respective averages.

The relationship, assumed linear, may then be written

(1) F{t) =a,u, (8) + a;w(t) +--- + a, u, (£).

The first problem in the theory of multiple correlation, and, in fact,
its distinguishing characteristic, is to determine the values of the
parameters @, , @, -+, @, in terms of the standard deviations, o/, o,,
o, -+, on, and the elementary correlation coefficients, r;; and r;; , de-
fined in the following sums:

o Ju f2(8) ds L J2u(s) ds

=T L

_ SPui(s) ui(s) ds

Tig —

:f,"f(-s‘) u;(8) ds

Loy [ £

¥ri R

Laio » L=b-a.

In terms of these statistical constants, equations (2) of the pre-
ceding section become

@,0,? + @oy0:752 + -- -+ CuoroaTin = @197y,
Qy020,T2 T Gpor? + s F Qo Ton = 202,
(2)
0103017n + Qoou02¥pz + oo + Quon® = anosTn
Let us designate by D (1) the determinant
1—4 1 Tis --- T1in
D) = T 1—4 7y o 1o
To1 Ve Tnz - 1—24

The solution of equations (2) can be determined provided D (0)
5= 0. If we designate by b;; the cofactor of the element 7;; in the de-
terminant D (0), then the solution of the system can be written:

(3) o = :.1_ [biarpy + Bag g+ ooe + bin 77a]

Equation (1) can then be written
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(4) f(t)—-Ea wi () = o1 3 by 7 “‘(“

i5=1 a;

——f E(t,3)f(8) ds,

where we abbreviate

(5) K(ts) =3 b, W0 1)
ij=1 di a;

We note that K (¢,s) is a bilinear form in the variables u; (1) /o:
and #;(8) /o; . As is well known, its properties are characterized by
the matrix ||b;|.

Now in most apphcatlons of multiple-correlation theory to prob-
lems in economic time series the variables {u;(f)} are chosen either
because, on a priori grounds, there should be a relationship between
them and the primary variable f(t), or because the correlation co-
efficients {7} have been observed to be high. Obviously the most de-
sirable set of variables to select, if that were possible, would be an
orthogonal set, because in that case the correlation coefficients 7;;
would all be zero, 7 # 7, except when ¢ or j equals f. But since all
the variables are subject to error, and since there are mutual influ-
ences shared by most of them, the possibility of finding an orthogonal
set is practically excluded. As a matter of fact, the greatest danger
in the use of correlation analysis in the theory of economic time se-
ries is found in the possibility that one of the variables may be a
linear combination, except for the erratic element, of one or more of
the others. This linear dependence is sometimes difficult to detect
when the number of variables is at all large. In economic time series
the possibility is always present since one or more of the variables
may share the same set of harmonie terms.

Later in the book the problem of linear dependence will be more
fully discussed. At present we shall set up some of the technical ma-
chinery useful in obtaining a better understanding of the problem.

We shall recall some results from the theory of higher algebra.
Thus, if we designate by 4,, ., ---, 4. the roots of the equation

(6) D) =0,
then the roots, gy, w2, -+, s, of the equation
(7) B(u) =|bi; —o6:ul =0, éu=1, &,;=0, i%j,

are the reciprocals of the Z; ; that is, u;, = 1/4;.
Also, there exists a transformation
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u; (2 » » u; (it
®) ) o Suiny, or vty =Zu, B
i j=1 f=1 aj
where U = ||us;|| is a normal, orthogonal matrix,* such that

(9) K(8) = mv, (£) v,(8) + puv: () v2(8) + o + pn¥n (£) va(s).

The matrix U is determined in the following manner. From the
n systems of equations

n
2 o= ha

2 T‘}ﬁ] )’251 » )
(10)

”
DO SR TR P T
=1

SOll.ltiOIlS ((11 y Aoy vony u'ﬂ)’ (ﬂl; /32, Tty ﬂn)9 Tty ("l sy V2, "%, 711) are
determined. These values are then normalized by dividing each ele-
ment in the first set by v a.?, each element in the second set by

V3 Bi#, ete. The n? quantities thus determined form the elements of
the matrix U . 7

It is obvious that the magnitude of the coefficients u, , ga, --- , iin
in (9) gives considerable information about the possible linear de-
pendence between the variables. Moreover, it is possible that the new
variables {v;(f)} may actually be more natural variables for the de-
seription of f(f) than those originally selected.

The multiple-correlation coefficient is defined to be

R-—- f £(8) [0a 2 (8) + G t(8) + -+ €y 1, 8)] S,
where we write
(11) o = @202 + @7e,% T vt Gnlon® 2040000007 + 0o
That is to say, we have

1
(12) ) R:"-; [aqﬂ‘l'rfl+a'2”2rf2+"’+a‘nﬂ'nrfﬂ] .

12 By a normal, orthogonal matrix U/ we mean one that has the property

U U = |luyl] Nugl| = qu.ku,kll-- 1L

=1

where 8;;, = 1, 8;;, = 0,i+% 3.
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The standard error of estimate of f(f) is then given by the for-
miula :
Standard error of estimate=o,/1— K2,

As an example let us consider the relationship that can be established be-
tween f(t) — the Dow-Jones industrial averages; u,(t) — pig-iron production
lagged three months; w,(¢) — building-material prices lagged six months; g (L)
= gtock sales on the New York Stock Exchange. All data refer to the period
from 1897 to 1913. Pertinent values, taken from the table in Seetion 2 of Chap-
ter 3, are given as follows:

Variable Mean .4 Correlations
ft) 100,72 15,0106 f11=0.684, rra=0.777, vr3= 0,589
w1(é) 100.45 15.8661 ri3= 0,644, rua=0.361
uz(?) 100,32 4.9086 ra=0.3872
ts(#) 102.44 47.8022

From the equation D (A) = 0.581469 — 2.,435359 A .-+ 3A2 — A% == 0, we first
compute

A, =0.455798, A, —0.686851, A,—1.8573566.
The determinant B (0), defined by (7), is next computed and found to be
1.48179  —0.70461  —.27281
B(0y =| —0.70461 1.49566  —0.30202 | .
i —0.27281  —0.30202 1,21084

The normal, crthogonal matrix ¥/ is then determined from the systems of
equations{10). We thus obtain

0.69798  —0.71562 0.02660
U=} —0.38611 —0.34536 0.85536 || .
0.60308 0.60714 0.51737
Hence the orthogonal variables {v;(%)} are defined by means of (8) to be
t t t
v, (t) = 0697982 __ 071562 29 -+ 0.02660 % (1) ,
9 9y i)
£ t t
vy (1) = 038611 2 034586 2 1 0855062
7 I %3
t t t
v, (t) =o.eqaosi‘i-)- + 0.60714 4 () + 0.51737 () .
' 7% T2 %

In terms of these new variables the quadratic form (5) reduces to (9); that is
K (t,8) =2.19898 v, (t) v, (8) - 1.45592 v, (1) v,(s) + 0.53840 v, (t) v,(a).
One may readily show from the values given above that
o—129554, R=—0.8631.



CHAPTER 3

SERIAL CORRELATION ANALYSIS
1. Introduction

Let us assume that we have two series of statistical data, x (1)
and y(¢), which are distributed over a common interval of time,
—a=t=a It will be convenient occasionally in the analysis to
suppose that ¢ = oo, although this implies neither that the series are
actually distributed over an infinite time interval nor that they have
any particular analytical behavior with increasing or decreasing
time. Any finite series, such as those of economics which are our
apecial concern, will be included by the simple device of assuming
that 2 (%) and y(¢) are identieally zero when t > e, £ < —a.

It will be convenient also to make three further assumptions:

(a) thatboth xz(f) and y(f) are residuals from their mean
values;

(b) that both x2(¢) and y(f) have been normalized by division
by their respective standard deviations cver the range
—ae=t=aqa.

(¢) that for limited ranges of i, the averages of z (¢ + 1) and
¥ (t + 1} are zero and their standard deviations are unity.

It will be observed that the only essential limitation to our analy-
sis is found in the third assumption. In the actual application of the
theories of this chapter to statistical data, it is usually desirable to test
the validity of (c) and to make proper corrections if these appear to
be necessary. The mathematical analysis, however, is much simplified
by this assumption and in general no gross errors are introduced by it.

With the limitations thus imposed, we may now define as the
serial correlation funetjon the integral

(1) r(t) =§1-& [ 26y yis + tras.

If ¢ is a positive quantity, then series y will be said to lag behind
series z; if, on the contrary, t is a negative quantity, then series x
will be said to lag behind series y. The reason for this definition is
clearly seen in the lag correlation between pig-iron production, z (%),

—102 —
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and industrial stock prices, y(t) (represented by the Dow-Jones av-
erages), as shown in Figure 22. The maximum correlation is found
for a negative lag of three months, which shows that pig-iron produc-
tion follows the movements of the stock market, that is to say, the
production series lags behind the stock price series, since the items of
the first three months hence will correlate with the present items of
the second.

0 r®
+1.00 +1.00
=3 A -
+0.50 + 0.50
- 4
ok /\ /\ IR
— \J / _

- : 4
-0.50 / 0.50
[ ]

- .00 2 R s 1 n —_— - 1.00
=70 ~60 - 40 -20 0 + 20 40 +80 +70

FIGURE 22.—LAG-CORRELATION GRAFH OF PIG-IRON PRODUCTION WITH
INDUSTRIAL STOCK PRICES.

In many important applications of serial correlation analysis we
are concerned with what is called the autocorrelation function. An
autocorrelation furiction is merely the serial correlation of a function
. with itself, that is,

(@) r(t)=§1—a f"x(s) z(s +t)ds.

An example of such an autocorrelation is shown in Figure 23,
where z(s) is the industrial stock price series (represented by the
Dow-Jones averages), with trend removed, over the period from 1897
to 1913. It will be observed from the graph that r(f) is a symmetric
function, that is to say,

r{f)y =r(—-t).
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This is an important property of the autocorrelation function,
from which one derives the fact that the power-senes development
of r(t) will be in terms of even degree.

r) )
4+ 1.00 + 1.00
8 b
+ 0.50 + 0.50
L 4
r- -
! ]
’ \\f / \ \,/ ’
3 .
- 0.50 0.50
N 4
- 1.00 ] e " i L L i —- 1.00
-70 ~60 -40 -20 [} +20 +40 +60 +70

FIGURE 23.—AUTOCORRELATION GRAPH OF INDUSTRIAL STOCK PRICES.

In order to be able to distinguish between an autocorrelation
function and a serial correlation between two different funections, we
shall apply the term lag correlaiion to the latter case. That is to say,
a lag correlation is a serial correlation between two different vari-
ables.

2. Examples of-Lag Correlation

Since a great deal of useful information about the interaction of
economic series can be gained from a study of their lag-correlation
functions, these functions have been computed for thirteen important
time series (each taken as percentage of trend) over the years from
1897 to 1913. This range was chosen because of the unusual stability
of the trends, which makes it an especially good range for exploring
the interdependence of economic series.

The thirteen series, together with their trends, their arithmetic
averages {(A), and their standard deviations (o), are given below as
follows:
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Series

Trend

A

o

Dow-Jomes Industrial Averages

Pig-Iron Production

Index of High-Grade-Bond Yields

Time-Money Rates

Industrial Production

Index of General Prices

Bradstreet’s Commodity Prices

Commercial-Paper Rates

Stock Sales, N.Y. Exchange
. Metals and Metal-Products Prices
. Building-Materials Price Index
. Bank Clearings outside of

New York City

X .. Loans and Diseounts of All

National Banks

¥y —=72.7761 + 0.1778T3¢
¥y =— 55.0134 4 0.267732¢
¥ — 4.3161 + 0.001607L
y=— 4.0984 + 0.002364¢
y == 58.8687 4 0.197273¢
¥ == 84.7985 4+ 0.158694t
y— &.0021 4 0.012700¢
4.6518 + 0.004823¢
¥ = 14.6685 — 0.004873¢
y = 88.5562 + 0.03447TH
¥ === 49.3119 + 0.095367¢

y=— 4.1942 + 0.021661¢t

y == 4009.567 -+ 22.2311

100.7188
100.4479

99.6406
101.6250
100.5104

99.9688
100.5677
160.7652
102.4376
101.2344
100.3177

100.1615

99.8594

15.0151
16.8561
3.7181
28.0490
156.6961
1.5376
4.2948
17.8462
47.8022
13.2129
4.90856

5.7899

2.1533

In order to have a basis for the exploration of the interdepen-
dence of the series given above, the lag-correlation function for all of
them was computed over a lag range from —12 to +12 months. Auto-
correlations were also included. The results are given in the follow-
ing table. The sign (—#) indicates that the correlated series precedes
the series named at the top of the table by ¢ months; the sign (+%)
indicates that the correlated series lags ¢ months behind. The maxi-
mum value of the lag correlation is indicated by the figures in italics.
For example, consider the relationship between the Dow-Jones indus-
trial averages and pig-iron production. It will be observed that the
maximum correlation comes for ¢ — 8. This means that pig-iron pro-
duction follows by three months the industrial averages.

(X,) Dow-JoNES INDUSTRIAL AVERAGES

Serles | t=—12 i " —3 0 3 3 8 12
X‘ —0014 0241 0530 0804 1000 0.804 0.530 0.241 ~0.014
X2 —0.182 —0.130 —0.036 4-0.166 -}-0.515 0.684 0.568 0.369 0.130
X, 0.007 —0.142 —0.319 —0.455 —.558 —0.472 —0.295 —0.071 0.115
X, —0.322 —0.316 —0.271 —0.141 0183 0.403 0532 0.565 0480
X, —0.184 —0.132 —0.046 0.160 0514 o0.687 058 0369 0.139
X, —0.489 —0.412 —0.305 —0.141 —0.032 0177 0.327 0.429 0.4569
X. —0.222 —0.256 —0.245 —0.119 0.276 0.480 0.601 0.682 0.B58
Xa —0.338 —0.421 —0.431 —0.311 —0.116 0.215 0.437 0552 0.501
X, 0.153 0217 0327 0.492 0539 0.318 0.132 —0.002 —0.089
X, | —0.241 —0.224 —0.098 0.139 0.500 0.656 0.678 0605 0.431
X“ | —0.197 —0.180 —0.801 0.108 0.413 0.651 0.77 0775 0.678
X12 —0.2909 —0.207 —0.019 0.263 0.605 0.63¢ 0.532 0.372 0.184
X, | —0.330 —¢.858 —0.269 —0.111  0.116 0.087 0.163 0122 0.092
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(X,) Pic-IRON PRODUCTION

Series J t=—12 -9 —6 —3 ¢ 3 s 6 9 12
X, | —0.175 0.062 0340 0.656 1.000 0.656 0340 0.062 -—0.176
X, | —0.291 —0.439 —0.558 —0.550 —0.429 —0.204 0.006 0.149 0.237
X, —0.385 —0.280 —(.117 —0.134 0.450 0.677 0.629 0.467 0.350

- X, | 0177 0.046 0313 0636 099, 0.651 03256 0.060 —0.1656
X, | —0.4%1 —0.321 —0.149 0.031 0080 0.173 0.154 0.072 —0.005
X, | —0.33%8 —0.234 0.008 0315 0540 0.588 0544 0.368 0.137
Xy | —0.512 —0.410 —0.252 0.026 0.333 0.632 0.701 0577 0.426
X, 0.166 0.290 6.879 0.361 0.266 0.089 —0.016 —0.106 —0.071
X | —0.330 —0.152 0084 0.350 0.501 0.485 0.3990 0.340 0.253
X, | —0.445 —0.329 —0.113  0.187 0.426 0.544 0.552 0.466 0.317
Xy, | —0.167  0.057 0342 0.608 0.718 0466 0.235 0.046 —0.057
X, | —0277 —0.161  0.020 0.257 0460 0.222  0.075 —0.074 —0.115

(X;) INpEx or HIGH-GRADE-BOND YIELDS

Series | t=—12 —9 —8 -3 0 8 6 3 12
X, 0404 0591 0.782 0914 1060 0914 0.782 0591 0404
X, 0.158  0.209 0.207 0.163 —0.155 —0.380 —0.507 —0.558 ——0.523
X, 0218 0201 0.125 —0.068 —0.433 —0.542 —0.510 —0.399 —0.281
X, 0.440 0479 0456 0.362 0396 0252 0148 0.083 0.084
X, | —0.118 —0.052 —0.065 ~—0.181 ~—0.54% —0.641 —0.707 —0.708 —0.622
X, 0.172  0.276 0.318 0.268 0.170 -—0.249 —0.432 —0.556 —0.566
X, | —0.181 —0.217 —0.350 —0.465 —0.521 —0.447 —0.364 —0.293 —0.196
X, 0.038  0.063 —0.001 —0.161 —0.496 —0.584 —0.598 —0.569 —0.492
X 0.242 0281 0263 0.163 —0.190 —0.329 —0.409 —0.422 -—0.373
X 0.186 0.191 0.069 —0.169 —0.478 —0.493 —0.424 —0.348 —0.249
X, 0,551 0.584 0.555 0.423 0,180 0.299 0.234 0.225 0.187

(X,) TIME-MONEY RATEs

Series t=—12 —8 —6 —3 0 3 6 9 12
X, 0.103 0265 (.419 0.662 1.000 0662 0419 02656 0,103
X, 0335 0441 0596 0.648 0445 0.443 —0.106 —0.275 —0,388
X, | —0-273 —0.104 0.053 0122 0056 0.011 —0.055 —0.130 —0.167
X, 0.174 (813 0.436 0.530 0.602 0.515 0.358 0.178 0.008
X, | —0.049 0138 0.299 0.535 0.872 0.753 0.548 0.364 0.209
X, 0.356 0346 0.289 0.231 0.219 0.044 —0.038 —0.017 0.068
X, 0.220 0403 0.560 0.625 0.625 0.545 0.417 0274 0.181
X, 0.046 0.236 0.423 0549 0.625 (.588 0460 0.267 0.096
X, 0.301 0467 0.597 0590 0.81% 0.063 —0.119 —0.229 —0.290
X,y | —0.155 —0.001 0.196 0.223 0.274 —0.179 —0.297 —0.321 —0.282
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(X;) INDUSTRIAL PRODUCTION

Series

IR T}

- D

0

alialaRafialatel

-

1

t=—12 —9 —6 —3 0 3 6 9 12

—0.165 0.048 0311 0.645 1.000 0645 0311 0048 —0.165
—0.409 —0.305 —0.131 0052 0192 0181 0.167 0.050 0011
—0.352 —0.253 0.004 0315 0539 0588 0562 0382 0.143
—0.516 —0.413 —0.259 0014 0.340 0.61% 0.630 0.563 0.406

‘0162  0.258 0370 0352 0254 0.061 —0.020 —0.104 —0.085
—0.337 —0.167 0.069 0342 0¢.500 0478 0393 0338 0262
—0.449 -—-0.334 —0115 0188 0431 0542 0545 0454 0313

(X} INDEX OF GENERAL PRICES

Series

w o

D BB B 3 B 3 3

-
w

F=—12 —9 —6 —3 0 3 [ 9 12

0.218 0464 0684 0590 1.000 0.790 0684 0.464 0.318
—.276 —0.155 0.041 0234 0333 0.045 —0.027 —0.104 —0.251
—0.360 —0.277 —0.180 0,030 0.095 0069 0.035 —0.094 —0.223

| —0.025 —0.098 —0.167 —0.176 —0.376 —0.492 —0.502 —0.493 —0.465

—0.096 0013 0110 0167 0.022 —0.038 —0.141 —0.278 —0.402
0.009 0187 0271 0296 0176 0108 —0.005 —0.152 —0.297
0139 0274 0.354 0.983 0296 0.065 —0.045 —0.169 —0.278
0.205 0279 0378 0.437 0.592 0541 0464 0310 0.184

(X,) BRADSTREET'S COMMODITY PRICES

Series

te=—12 —9 —8 —3 0 3 6 g 12

wowm o=

[
[T

-
@

(|24 B it et 3¢ 5=t 3

0.145 0352 0.590 0845 1000 0845 0.590 0352 0.145
—0.191 —0.083 0186 0393 0561 0592 0546 0391 0.207
0.859 0.307 0244 0194 0251 0102 0.050 0.141 0.232
0.211 0.468 0.674 0.761 o791 0.675 0500 0328 0.204
0021 0244 0443 0576 0670 0.623 0.446 0219 0.021
0287 0.461 0.543 0.534 0.440 0230 0.011 —0.129 —0.174
—0.358 —0.206 —0.001 0.068 0.093 —0.285 —0.309 —0.403 —0.420

{X,) CoMMERCIAL-PAPER RATES

t=—12 —9 —& ] 4 3 8 9 12

0.070 0271 049 0726 1.000 0726 0496 0271 0.070
0.981 0356 0.258 0.150 0.112 —0.037 —0.069 0.036 0.092
0.288 0478 0.618 0.627 0574 0431 0258 0106 0.043
0.091 0271 0464 0.581 o0.612 0518 0338 0121 —0.(48
0.358 0.531 0.609 0.489 0.189 —0.090 —0.271 —0.359 —0.381
—0.110 0084 0227 0320 0173 —0.217 ~0.333 —0.372 —0.365
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(X;) STOCK SALES ON THE NEW YORK STOCK EXCHANGE

Series E=—I12 —5 —6 —3 0 3 6 9 12

X, 0.245 0.190 0.209 0442 1000 0.442 0.209 0,190 0.245
X0 0152 0.067 0021 0078 0323 0424 0481 0376 0341
X
X

n 0.073 0.020 —0.001 —0.016 0.148 0.272 0.372 0412 0408
—40.222 —0.264 —0.190 —0.040 0.878 0.332 0307 0.172 (.136
X, | —0.434 —0.491 —0.424 —0.350 —0.343 —0.193 —0,088 —0,106 0,127

(X,,) METAL AND METAL-PRODUCTS PRICES

Series te—12 —4 —& —8 0 3 [ g 12

X0 0.243 0.455 0.690 0891 1.000 0.891 0,69 0456 0.243
0174 0306 0.467 0643 0814 0827 0702 0470 0218
X, 0232 0325 0445 0589 0516 0.209 0.012 —0,176 —0.269
X,y | —0.372 —0.316 ~—0.171 —0.029  0.103 —0.185 —0,268 —0.882 —0.415

(X,;) BUILDING-MATERIALS PRICE INDEX

Series te—12 —9 - -3 0 3 ] 9 12
Xn 0201 0431 0672 0857 1.000 0.857 0.672 90431 0201

p. &8 0.288 0418 o522 0493 0384 0.157 —0.061 —0.193 —0.211
X5 | —0194 —0.048 0.071 0162 0.161 —0.116 —0.213 —0.258 —-0.219

(X.;) BANK CiEARINGS OUTSIDE OF NEwW YORK CITY

Series t=—12 —8 —8 -3 [} 3 6 9 12
X, | —0.072 0.077 0332 0620 1.000 0620 0332 0.077 —0.072
X

—0.248 ~0.183 —0.042 0.179 0.48% 0.354 0.172 —0.053 —0.149

(X,_.,L LOANS AND DISCOUNTS OF ALL NATIONAL BANKS

Series t=—12 o —6 —3 0 8 6 9 12
X, 0.264 0.350 0.523 0.754 1.000 0.754 0523 0.350 0.264

It is clear that these tables can be used in a number of useful
ways and that they reveal numerous interrelations between the eco-
nomic varigbles for the period under discussion. Whether or not the
period should be regarded as one of typical economic stability is, of
course, open to doubt, but there seemed to be during these years a
remarkable stability in all the trends. We shall, therefore, think of
the relations exhibited by the correlation table as those of a stable
economy as opposed to a disruptive or crisis economy such as that
since 1926,

One of the conclusions which we may reach by a study of the
correlation table is that no economic series in the list forms a signifi-
cant forecasting series for the behavior of stock prices. With the ex-
ception of X, (index of general prices) and X,, (loans and discounts),
all the lag maxima or minima coincide with or follow the stock-market
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averages. This fact is sufficient to account for the failure of all at-
tempts to make a forecaster for the action of stock prices as a whole.

We also note that series X, (pig-iron production) and X (indus-
trial production) are essentially equivalent indexes. In their serial
correlations with all the other variables one finds an inconsequential
difference in the figures, which reveals this economic proposition that
the production of pig iron is an adequate measure of industrial pro-
duction as a whole.

There are obvious reasons in the structure of investment for con-
cluding that when the stock market is high yield of bonds will be low,
and conversely. This observation would be found in an inverse correla-
tion between a bond-yield index and the index of stock prices. The
correlation between X, (Dow-Jones industrial averages) and X, (in-
dex of high-grade-bond yields) reveals the truth of this observation
in the period under consideration. We have, however, assumed that
the period from 1897 to 1914 was one of comparative economic sta-
bility and it is quite possible, therefore, that the assumption of an in-
verse correlation between these two economic variables would not hold
in other periods. In order to test this, the intercorrelations (without
lag) were computed for the following five series over 101 years from
1830 to 1930 inclusive and for each quarter of a century:?

1. Business Activity
2. Rail Bond Prices
3. Wholesale Prices
4. Rail Stock Prices
5. Commercial Paper Rates.

Employing the symbol r;; for the intercorrelations, where the
subseripts refer to the number of the series, we find the following
table of values:

Correlations Entire Period | First Perlod Second Perfod Third Period | Fourth Period
iy (1830-1930) (1830-1855) (1856—1880) (1881-190E) {1905-1930)
(. 0.0843 0.3185 —0.0451 0.0089 0.1308
T 0.1468 0.4088 (.2680 0.4110 0.1517
- 0.2862 0.6027 0.4442 0.5279 0.2579
s 0.1149 0.2046 0.1830 0.1869 | —0.0006
Yoy —0.2854 0.5768 —0.1098 —0.6098 —0.8290
P 0.5983 0.5400 0.2565 0.0983 0.5626
T —0.4941 0.1089 — 05505 | —0.4194 | —0.3610
. 0.2284 0.1867 0.5942 0.6105 | —0.4299
Pay 0.1044 0.3794 0.1887 0.3498 0.3450
L —0.3778 0.0756 —0.0147 0.0497 —0.2242

1 The data uged in this analysis were compiled by the Cleveland Trust Com-
pany on a monthly basis
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The above table serves adequately as an indicator of the stability
or lack of stability of the correlation coefficients from one pericd to
another. It is unfortunate that the nonexistence of data prevents a
similar set of computations for all the variables included in the table
of autocorrelations. This table may be used, however, in some in-
stances in connection with the other, as, for example, in the relation-
ship between X, (Dow-Jones industrial averages) and X, (index of
high-grade-bond yields) which was the object of the discussion. We
note above that there exists a fairly permanent positive correlation
between (2) and (4) of magnitude around 0.5. Since presumably in-
terest rates on bonds, because of long issues, remained fairly constant
over considerable periods of time, the yield index for bonds should
fluctuate roughly with the reciprocal of price. Since the price of bonds
correlates fairly highly with the price of stocks over the entire period,
we should expect an inverse correlation with yields. An exception to
this general conclusion would, of course, be observed in the second
and third periods, which, as we know, were periods of crisis,

Attention should also be called to the ease with which regressions
can be constructed between the different variables. Thus we observe
a good correlation between X, and X,, and X, and X, , but a low cor-
relation between X, and X, . Designating the respective means, stand-
ard deviations, and intercorrelations by the proper subseripts, we ob-
tain the following data, pertinent for the construction of the desired
regression, from the tables:

For series X,, A, = 100.7188, e, = 15.0151 ,
X, A, =100.4479, o, = 15.8561 ,

X, A, == 1024375, o — 47.3022 ;

. =0.515, 7. = 0.539, 73 = 0.266 .

Employing the well-known formulas
Xi - A,‘ == b,-,-.,_‘(X, — A,‘) +- b,‘k.; (Xk - Ak)
* 067450, v(1—7%;) 01—7%.;) ,

Tink Tij — TixTin
bijx = Tij — , Fij — — »
Tik V (1=7%) (1—7%)

Ok —0; '\/T-_ i,
we readily compute the following regression
X,=0.3787 X, + 0.1372 X, + 48.6248 * 7.5630 .



SERIAL CORRELATION ANALYSIS 111

The agreement between the regression line and the data is re-
vealed in Figure 24.

AVERAGE AVERAGE
150 T 150

100

50

50

g

0 1 1 L 1 i 1 1 ] 1 i

1
1900 1905 1810

FIGURE 24.—Dow-JONES INDUSTRIAL AVERAGES ( } AND

REGRESSION CURVE ( ).

8. Inverse Serial Correlation

The problem of inverse serial-correlation analysis is the prob-
lem of inverting the integral

{1) r(t):%f‘zx(s)'y(s—!—t)ds

for either x{s) or y(s), assuming that one of these functions, to-
gether with r(¢), is known. The restrictions noted in Section 1 are

assumed to hold.
It will be convenient for us first to solve the problem over an in-

finite range. For this purpose we consider the funetion

(2) R(t)=f°°x(s)y(s+t) ds,

oo

where x (s) and y(8) are assumed to behave at infinity in such a man-
ner as to give a value to R(¢) and to the sine and cosine transforms
of B(t). Sufficient conditions for this are well known.

Let us now multiply R (¢) by eff and integrate over the infinite
range. We thus obtain

I”R(t) ot dt:f“’dt f”x(s) u(s +t) efit ds

- fmdt fw‘”(s) Y(s + t)ebis ghiten) dg |
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Making the transformation 8 + ¢ = p, we then obtain

(3) [TRw ovat= [Ty@yonap o) esvds.

-t

If we designate by a{f) and o' () the integrals
a(f) = f”R(t) cosftdt, o(f)= f”R(t) sin £ dt,

and by a.(8), b:(8) and a,(8),b,(f) the corresponding transforms of
z(t) and ¥ (¢) respectively, that is,

a,(ﬁ)=f°°x(t) cos ft di, b,(ﬂ):f”x(t) sin 8t dt,

o) = [Tyt eosprar,  b(p)= [Ty sinpeat,
then we shall obtain the following identities by equating the real and
imaginary parts of (3):

(4) a(f) =a: (B, (B) + b:(B) by(B),
o' (B) = a,(B) b,(f) —a,(8) b.(B) .

Since the case of autocorrelation will be the most interesting to
us in the application of this theory to economic time series, we shall
state the theorem explicitly for the function

R(t) = f" #(s) pls + 1) ds.

We may thus write:

If the functions ¢ (8) and R(3) exist over the infinite range from
—® fo 4%, and if the integrals

(5) a(f) = f”.;,(s) cos fs ds
(6) b(8) = f”¢. () sin fs ds,
(7 a(f) "—"me(s) cos 8s ds,

exist, then the functions a(8), a(8), and b(8) are connected formally
by the relationship

(8) a(f) =a*(B) +b*(f) .
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The proof of this theorem is merely to observe that (8) is a cor-
ollary of (4). If we set 2(f) = y (1) = ¢(¢), then a’(8) is zero and
a{f) reduces to (8).

Two examples of this theorem will illustrate its application:

Example 1. Let us assume that

¢(s) = (_i_a)”‘ ety

R{)=_|= e-a8? g-(8+1)3 g — g-ict?
T Jw

Computing the Fourier transforms of ¢(s) and R{t), we get

f‘;(l)mﬂtds:(%a)me-(ﬁ'lmz\/ J""R(t) cos Bt dt .

Exzample 2. Let us consider the rectangular function

) vza,' —~A S =,
$(8) =
0, 8> A, 8N,

80 that we obtain

which is graphically represented in Figure 2b.
L

za

-N o )

FIGURE 26.—RECTANGULAR FUNCTION.
We readily compute the autocorrelation function to be

A
J.‘ o(e) p(s +t)yds=1—1/2x, 0St=E2,
(9 R(t) = '"‘:"

d(8)o(s4+t)ds=14 /20, —2ASEt=0.
-

The Fourier transform of R(t) is then found to be
A o
fa R(tycosptdt— J-! (1—1t/2\) cos g t dt -} f (L+t/2x) congide
-0 ) -2A

__4sintg)

a0 2ape
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Similarly the Fourier transform of #(s) is given by
o A e 2sin B
f #(8) cos Bsds==2 J {cos B3/V2L) ds= s
-0 @ B\/ﬁ

which is observed to be equal to the square root of the Fourier transform of R (1).

It will be useful later to have several other transforms of special
forms of E(t). These we give below as follows:
IfR(t) =e ', and if § =2 a t/P, then we have

alP) = f e-lat] cos —_— dt
(11)

2a
a + 4 2 /P2’

If R(t) = el cos{2nt/T), and if B = 2x¢/P , we get

af(P) = f: e-letl cos.%;—,Ecosﬁlj,E dit
(12) @ +4ﬂ=(1a/:r+1,fp)z TET 4ﬂ2(1a/:rw1/P)2‘
If we define
A=8/G+ty, o0=t<i,
(13) REy={ (1+t)/(A—-1), —a<t=so0,
0, ' | >2,

then we obtain the transform
(14) a(P) = 4i[cos a{Ci(2a) — Ci(a})
+ sin a{8i(2a) ~ Si(a)} — sin a/2a] ,

where we abbreviate

a==2n1/P, Ci(x)=—fw—c°:tdt, Si(x)‘—‘frsgnta‘,t.

[ 0

If we denote the function in square brackets by S(a), so that
a(R) = 448(a), then a{P) can be defined for practical purposes by
the following table of values:®

z Computed by E. B. Morris.



SERIAL CORRELATION ANALYSIS 115

@ o S{u) a 8iay @ Sqn) a 8(a)
2.0 | -0.1461 2.7 0.1156 3.4 0.0849 6.3 0.0164
2.1 0.1419 28 0.1111 3.5 0.0808 6.9 0.0144
2.2 0.1376 2.9 0.1067 3.6 0.0768 7.5 0.0143
23 0.1333 3.0 0.1022 4.0 0.0615 8.4 0.0146
2.4 0.1289 3.1 0.0978 4.4 0.0483 9.4 0.0135
2.5 0.1245 3.2 0.0934 | 5.0 0.0329 10.8 0.0087
2.6 [ 0.1201 3.3 0.0892 | 5.8 0.0203 15.1 0.0051

We return now to the question proposed in the first paragraph
of this section, namely, the inversion of the integral (2). We shall
first consider the case of the inversion of the autocorrelation function
from which we have the following elegant result.?

If R(t) is the autocorrelation function
(15) R(t) = f”(;,(s) 6(s +1t) ds,

and if a{f) s defined by (7), then ¢(8) is given by the following in-
version:

(16) $6) =g [ Vel cosp () cos 5 df

1 f=
+2—ﬁLva(ﬁ) sinp(f)sin fsdf,
whf;:;e p(f) is an arbitrary odd function of B, that is p(—f) =
—p(8).

In order to prove this theorem, let us designate the first integral by ¢,(s)
and the second by #,(8). Then, employing the Fourier transforms :

f(x)=\]-§- ﬁ:cosmsg(s)ds, g(s) :\/,12? J::cosézf(z) dz,
f(z) =4 } %— J::sin x8 g(s) ds, g(s) =\, -2— I:sm sz f(x) dx,
we get

Va(g) cosp= fw¢1(8) cos Bsds— fmtp(s) cos fads =a(B),

(17)
Va(8) sinp= u(b,(s) singsds—= fm¢(s) sin S sds —=b(8),
Py ~0g

8 This result is due to Norbert Wiener.



116 THE ANALYSIS OF ECONOMIC TIME SERIES

Binee ¢(2) = ¢,(s) + #,(s), and ¢,(—s) = ¢,(8), ¢,(—8) == —¢,(s).

Then from equations (17) we obtain

w(B) cog®p + a(B) ein?p = a (@) =a2(B) + b2(g).

Sinee serial-correlation functions of many economic series show
a rapid damping, it is probably easier to represent them by means of
Gram-Charlier series than by other types of orthogonal series, Hence
the following discussion of inverse serial correlation is particularly
pertinent. The following result is due to C. Runge:*

If z(3) and y(8) are functions expansible in a Gram-Charlier
series over the infinite range —«© to +«, that 18, if

z(8) =e*[x,— &, H,(8) + 2, H,(8) — 2, Hy(8) + 2, H,(8) — -] ,
y(s) =e-"[y'o -+ . Hl(s) + Y2 Hz(s) + Ys Hs(s) -+ Yu HA(S) + ] ?
where H,(s) is the nth Hermite polynomial defined by
H,(s) =e"% e,

then the function

R(t) = f”x(s) y(s + t)ds

a

has the expansion

R() = via e[z, + (zoh + 2100) B (£) + (209, + 2.9,
+ Za¥Yo) B (B) + (Xols + Zalhs + Tty + Tolo) A (t) + -2,

where hy(t), the second form of the nth Hermite polynomial, is de-
fined by

b () = 270 Hn(t/\/f) = e“'.%”'_‘. e

The eoefficients x, and y_ are readily computed from the orthogonality prop-
erty of the Hermite polynomials. Thus, multiplying y(8) by H,(sy and inte-
grating between the limits - and 4 o0, we obtain

f"y(s)H,(a) ds=—y, fw.r-' H,(8) ds=y, 2= n! V7.

- o

4 “Ueber eine besondre Art von Integralgleichungen,” Mathematische An-
nalen, Vol. 75, 1914, pp. 130-132. See also G. Polya, *Ueber eine von Herrn. C.
mshehandelte Integralgleichung,” Mathematische Annalen, Vol. 75, 1914, PP.

5 For a discussion of these functions, see Chapter 2, Section 10.
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That is, we have

1 0
y e ——
n o nl vV J:ny(s) H”(S) ds,
and gimilarly,

1 -]
xn—m f_mx(s) H,(8) da.

Assuming that the coefficients x, and y, are known, then the coefficients, r,, ,
of i, (t) in the development of E(t) are connected analytically with x, and y,
in a simple and useful manner.

Thus, let us construct the three functions

)=z, —ax tt+ 2, Pz 8L -,
i =yt ttytt 4y ts Lty 4,
Py =r 4,4t L b,

From the theorem it is explicitly seen that the coefficients r, may be deter-
mined from the equation

(18) ) =z () ¥*(t).

In case r(t) is an autocorrelation function, we then have z(tf) = y(t), and
equation (18) is then replaced by

(19) r*(t) == z*{—1) =* ().

I, further, £ (%) ia an even function, that is, if x(—t) = z(t), then (19) re-
duces to the simple form

(20) (1) == [z*($) ]2,
The proof of identity (8) is obtained without difficulty from these results.
Thus, let us assume #(2) can be expanded in the series
¢(8) —e o  H. (2) .
=0
When this expansion is substituted in (5) and (6), we obtain

(21 a(8) = f “ernconBe3 s, Hyls) ds
-0 aal

2 b(8) = f “evsinfs 3o, Hy) do.
Noting the identities

f‘Hzr(.) sinpaetids= J"leﬂ.(s) cos s de—0,

fﬂH'.lru(') gingaeds— (—1)" VT e/ garst |
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f H,.(8) cos Bs e ds—= (—1)7 V7 ¢4 gor,
we are able at once to simplify (21) and (22) as follows:

a(B) == VT B 3 (—1)m g, ,

n=0

BIR) = VT B 3 (—1)n ey,

re=(

From these expansions we then obtain in an obvious manner the identities
(23) a(f) + ib(p) == VT P4 4*(ig) ,
(24) a(B)y —ib{f) = VT eB ¢*(—iB) ,

where we abbreviate

lfa*(_ﬂ) — $¢nﬁﬂ .

n=0
In similar manner we derive
(25) a(B) =T e-872 3 (—1)nr, pim=—meBY2r(ig) .

n-i

Multiplying equation (23) by (24) and taking account ¢f both (19) and
(25), we immediately obtain the identity (8) previously derived by other means,
namely,

a(B) == A(g) + B2(p) .

In the preceding discussion we have considered the problem of in-
version over the infinite ranpge. We now see that the more restricted
problem represented by {he serial correlation r(f) defined by (1) is
easily included in the theory which we have just developed.

In order to show this we merely assume that both z(s) and y(8)
are identically zero outside of the range —a¢ = 8 = a. Then we can
write

(26) 2a 7 (f) =lim fa:r(s) (s +1t) ds=R(1) .
Similarly, the transforms

(27)A(5):(_1tf“¢(s) cos fsds | B(ﬁ):é faga(s) sin 8 s ds ,

~a

are related to the transforms (5) and (6) by the following:
(28) a(f)y =aA(f), b(f) =aB(B) .
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Consequently the fundamental identity (8) becomes
29) | 2= + B,
where we now define

(30) a(f) :J‘“’r(t) cos fsds.

4. The Lag-Cerrelation Function for a Harmonic Sum

It is frequently important to know the lag-correlation and auto-
correlation functions for sums of harmonic terms. These functions
are most conveniently constructed by using averages in the mean.

Definition: By an average in the mean of a function f(f) we
shall understand the limit

F-—hm— f f(t) dt.
Thus, if we consider the pure harmonic
y=Asin(ft+a), f=2a/T,
we have for the average in the mean the value
Asinasingi _
pgi

Definition: By a product in the mean of two functions f(¢) and
g (£) we shall understand the limit

hm-—f Asin(ft + o) dt‘"h

R-hm—ff(t)g(t) dt ;

and by the second moment in the mean of f(¥) we shall understand
the limit

_ 1 .
G= hm?ﬁ f (t) dt.

A=pg
Thus for the two harmonies
=Asin(ft +a), and y.,=Asin(ft+ a+ s),

we obtain the following produect in the mean:
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.1 A .
R(8) =])1:_m?1 J A gin(Bt + a) sin(8t + o + fs) dt =14 A*cos f3.
m N
Similarly for ¥, , we compute as the second moment in the mean
G —hm— f Azsin? (Bt + a) di =14 A2,

The same result is obtained for the second moment of the mean of
¥, that is, G =} A*.

Since the autocorrelation function for the harmonic y is given
by »(8) = R(s)/VG.G: , we readily obtain

(1) r(3) =% A? cos fs/3A?=cos fs.

This result can be easily generalized for the lag correlation in the
mean between the two harmonic series

y=Alsin-§,f(t+a.,) +A,sinﬁ(t+ag)
1 ]

+---+A,.sin1-,—2ﬂ(t+a,) ,

z=2n, sin% (t+5b) + B, sing-n (t +by)
T] Tz

+ ... +B,,sin-1-,23 (t+b,) .
Employing the average in the mean, we readily find the lag corre-
lation between x and y to be

A, B, cos,,,g;E {(a, - b)) +--+ 4,8, cos;?,i (a, — b,)

(2) r=

VTAI, +12’ + ew + A,‘i) (B'13 + Bzﬂ + e + Bn’)

The autocorrelation function for y can be immediately obtained
from this expression by setting A; = B, ,a; =s + b;. We then have

2n 2n 2n
2 rr—
A4, COST—;'?_,-A’ cos——-zs+ . cos .“s

(3) r(8) = AT+ AF+ ..+ 4.z

It is interesting to observe that formula (8) of the preceding sec-
tion holds between y and »(s8), provided the Fourier transforms are
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interpreted as transforms in the mean. Thus we immediately derive

=00

.1 [* 2n 2n
lim — — 1 = i =
21, cos T, y(t) dt=14 A, sin (T: 0«) o,

.1 A, 2a B 2n
timo [ sz tue) dt—%A,(_:os(Traff)=ﬁ,,

. 1J’* 2n Cras . B
1*155 Jcos,l-,—rsr(s) ds=3 A2/ (A2 + A2+ .-+ A2 =7,.

Dividing a, and 8, by the standard error of ¥, that is, by
Py AFF A+ T A7,
we get the desired relationship
7. = (/o) + (B:/0)2.

For experimental purposes a synthetic series was constructed of
the form

2n

5 2n
T,l- t+EBiCOS-—-ﬁt ’

5
y=23 A, cos
=1 :

where the following values were used for the constants:

Subseripts (i) Ty At By VATRBZ
1 12 i 6 9.2195
2 25 4 3 5,0000
3 44 12 14 18.4391
4 60 3 4 5.0000
5 144 4 i) 6.40381

Three hundred values of the series were computed so that the
first period appeared 25 times, the second 12 times, the third 7 times,
the fourth 5 times, and the last 2 times. Substituting the values of
T., A;, and B; in equation (3}, one derived the following autocorre-
lation funection:

2n 2n 2n
T (3) = 0.1647 cos ']_E 8 + 0.0484 cos 2—5" 8 + 0.6589 cos -4—4 8
2n 2n
+ 0.0484 cos —6"68 + 0.0795 0081—4-28 .

Since this function was derived on the assumption of limits in
the mean, it is of interest to compare values of r(s) computed directly
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from the function with those obtained by direct autocorrelation of the
series itself. The discrepancies are exhibited in the following table
and are seen to be relatively small. This example, then, justifies the
use of limits in the mean in harmonic series of this type.

a r(s) ris} s r(s) ?(-s) & T{g§) T{&)

By formula Computed By formula Computed By formaula Computed
0 1.0000 1.0000) 27 —0.4712 | —0.5544 [ 48 0.7366 0.7965
3 0.7571 0.7713 {30 —0.4513 | —0.56222 ) 51 0.3832 0.4621
6 0.3859 04124433 —0.0563 —0.1167 || 54 —0.0621 0.0254
9 4.2567 (.2823 | 36 0.3543 0.3142 | 57 —0.2117 | —0.1330
11 0.1878 0.2124 138 0.4265 0.4110 | 60 —40.3263 | —0.2689
16 —.3323 | —0.2982] 39 0.4141 0.4138 | 63 —0.6748 | —0.6362
18 —0.6868 —0.6861 [ 41 0.3890 0.4136 | 66 —0.8921 —{.8953
20 —0.7187 | —0.7097 1 42 0.4114 0.4450 j 69 —0.6467 | —0.7232
21 —0.6063 | —0.6620 43 0.4665 (¢.5059-] 72 —0.2960 | —0.3767
24 —0.4200 | —0.5167 (45 0.61367 0.6839 |75 —0.2161 | —0.3571
25 ~—.4135 | —0.6053 | 47 0.7506 '0.7491 |

The agreement between the two computations is exhibited graph-
ically in Figure 26.
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FIGURE 26 —A UTOCORRELATION GRAPH OF A FUNCTION WITH FIVE PERIODIC TERMS.
: 7{s) computed by formula; - - - - : 7(¢) computed directly from data.

5. The Lag-Correlation. Function and Its Harmonic Analysis for
Statistical Data

In the preceding analysis we have defined the lag-correlation
function as an infinite integral or as a limit in the mean. As a matter
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of fact, the lag-correlation function which appears in the analysis of
statistical data is neither of these quantities, but a set of values com-
puted from data over a finite interval which we may specify as
—=5=aq.

The arithmetic average is then

1 2
A=g Lf(S) ds,
and the variance is
az:if [f(s) — A]*ds.
2a ) 4
In terms of these quantities the correlation between f(s) and

f{s + t) is given by the formula
f“ [f(8) —A] [f(s+ 1) —A]ds_

o

1
r(t) ~%a
Since the Fourier coefficients A (8) and B(f) are determined by
s —-A
A(p) :%L f —[L(i)———]cosﬁsds ,
a

B(f) =1 [ 5 (8)0- A]

sinfsds,

the factor 2 which appears in the denominator of r{t) but not in

A(B) and B(B) must be accounted for in formula (8) of Section 3.
Hence, when the preceding theory is applied to statistical data

given over a finite range —a < s = o, formula (8) of Section 3 must

be replaced by [see formula (29) of Section 3]

(1) 2 a(f) = A2(8) + B2()) = R*(5) -

Moreover, the equality sign holds only when limits in the mean
are understood. For many problems, however, the relationship ex-
pressed in equation (1) is sufficiently close for practical purposes,
when ¢ is large; This may readily be seen from the illustrative ex-
ample of Section 4.

6. Some Examples Useful in the Analysis of Economic Time
Series—Continuous Spectra

It is a matter of statistical observation that the autocorrelation
function of certain economic time series may be approximately rep-
resented by the function
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_(L—itl/a, |t <a,

provided a, where 2a is the range of the data, is sufficiently large.

Hence, the harmonic analysis of this function should throw some
light upon the harmonic properties of the time series themselves, But
we have seen in Section 3 that, given a certain autocorrelation, r (%),
the primary function, ¢ (£), from which it was derived is not unique.
There is, as a matter of fact, an infinite set of such functions. Let
9(%) be one of these.

But since the harmonic analysis of r(¢) yields also the harmonic

analysis of both ¢(f) and 6(f) through the relationship [see formula
(1) of Section 5]

20(f) =R*(§), p=2T,

it 48 clear that the harmonic properties of amy two functions, ¢ (1)
and 6(t), will be the same provided these functions have the same
autocorrelation r (£). Such functions we shall call harmonically equiv-
alent.

This observation greatly simplifies the discussion of certain har-
monic analyses since a complex function, ¢(t), may frequently be re-
placed by a simpler function, 6(t), harmonically equivalent to the
first, whose properties and spectrum are completely known.

As an example of considerable usefulness, let us consider the
function #(¢) defined as follows:

1, —m=t=y,

=10, s<|f=a.

The arithmetic average, A , of this function is equal to g, where
pr=y/a, and the variance, ¢*, is given by ¢ = g(1 — u). _

By a direct computation, we readily determine the autocorrela-
tion of 6(¢) to be the following:

u2

— =
1 oz 1t , t=2y,
r(t) = @
-, |E] > 2» .
0.2

We next eompute the value of o.(8) and thus obtain

a(B) =%f‘r(s) cos fsds, f=2a/T,
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a(p) = i (g7 sy - 2 (L) sin 22
_ ar(l— u) 2?1) T a{l — u) 291) S =g

If 4 is large with respect to », it is clear that the second term
may be neglected and we thus have merely

. 2u Ty . 2
0 =5 () T
Hence, the ordinates of the periodogram of the function 8 (f) are

given by
R=ER(T)=+v2a(f)
or
T

If T is large with respect to », it is clear that R (T) will approach
the following limit asymptotically:

sin 2y
7

©
1—u’

R(T) ~ 2\/
We also note that the maximum values of R are found at the roots
of the equation
tanzx =2, x=2m/T.
The first ﬁve of these roots, except the trivial one x = 0, are
z,— 44934, x,=T7.7253, =z2,=10.9041,
x,— 14,0662, x,=—17.2208,

If we employ the abbreviation k = 2v/u/(1 — ), then the values of
R(T) at the roots just given may be computed from the following
table: :

Zy Tp=(27Y) /s Ri(Tw)

x, 1.3983» 0.2172k
Xy 0.8133r 0.1284k
x, 0.5762» 0.0913Kk
x, 0.4467> 0.0709%
x L 0.3649 0.0580k

As an example, we consider the values 2a = 204, 2» = 12, We
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then compute & = 0.5, and the periodogram is given by the function
R = R(T), where
T 127
= — | gin =" 1|
R(T)=10.5 15n sin T
The ‘graphs of (£) and the periodogram are shown in {a) of Figure
27.
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F1eUrg 27.—PERIOPOGRAMS CORRESPONDING TO DIFFERENT
AUTOCORRELATION FUNCTIONS.
Primary functions with these autocorrelations have continuous spectra.

A second autocorrelation function which is closely related to the
one which we have just analyzed is the following:

_ sin(at/1)
rO =G

All funetions, or series of statistical data, which are harmonical-
ly equivalent through this autocorrelation function are seen to have
continuous spectra from the following computation of 2a(8) :

2a(p) = [TASBT D o prar, p=2a/T,

/4
0, T<21,
=41l}, T=2,
1, T'>2;.
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Considerations similar to those carried out in the first case show
that for data given over a finite range A must be evaluated so that

’

— # '

s

where 2a is the length of the range of the data.
The graphs of r(f) and the periodogram are shown in (b) of
Figure 27 for the values 20 = 204, 1 =12,

In order to illustrate the application of these ideas to actual economic data,
we shall consider two periodograms taken from the data of Chapter 7. The first
of these is the periodogram of the industrial stock prices in the disruptive period
from 1925 to 1934, Because of the character of the data we know that no real
periodicity existed in these prices, and yet an inspection of the periodogram
{(B) in the lower part of (a) in Figure 28] indicates a concentration of energy
for some period greater than 40. The object of the present analysis is to show
that the periodogram is derived from the existence of a continuous spectrum,

We first compute the autocorrelation function of the data, obtaining the fol-
jowing values:

r(t) 1 ¥t} 3 r(s)

1.0000 12 0.6252 22 0.0732
0.9288 15 0.4877 23 0.0292
0.8588 18 0.3550 24 —0.0163
0.7559 21 0.1188 27 ~—0.1464

ONWDT | =

[1C]
+1.00

0 10 20 % % 5 & 7
(b}
FIGURE 2B.—FIGURES SHOWING THE EXISTENCE OF CONTINUOUS SPECTRA
IN EcoNnoMmic TIME SERIES.

We see from the graph [ (B) in the upper part of (a) in Figure 28], that the
autocorrelation function approximates a straight line which crosses the t-axis at
approximately {, = 24.
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Referring to the theory developed earlier in this section, and noting that the
geries is short, that is 2a == 120, we use as the approximate representation of the
autocorrelation the linear function

atl ol
022 (L—pu)(2v)

r{t) =1—

and compute p from the relationship r{t;}) — 0. This gives us the equation

2p —2p 4t Ja=10.

Solving this for ¢ we obtain # = 0.2764, and from this value we compute

k:2\/ r =1.236, vr==16.58.
1—n

The periodogram of the resulting continuous speetrum is found from the
equation

. 2mr
sin —|,

T
R(T) =1.2360 —
(T) M T

where o, the standard deviation of the series, is equal to 79.48.

When one appreciates the fact that the actual elements in the
data which we are analyzing are unknown, the agreement exhibited
between (A) and (B) in the lower part of {a) in Figure 28 is seen
to be a remarkable one. The conclusion to be derived from this analy-
sis is that there is no true period in the data and the rise noted
in the periodogram after T = 40 is fully accounted for as arising
from a continuous spectrum.

The second example relates to the problem of defermining whether or not
there exists a 40-month cycle in the series of industrial stock prices over the period
from 1897 to 1913. This is 2 much debated proposition to which we shall refer
at length later. In the present analysis we are interested in the problem of how
much of the peak noted in the periodogram [see (b}, Figure 28] at T = 41
might be due to the existence of a continuous spectrum.

Graphical representation of the lag-correlation function of stock prices and
the antocorrelation function

'sin (7Tt/20)
r({l) = ——
(t/20)
shows that the two functions are quite similar. Hence we might reasonably ex-
pect the existence of a considerable continuous spectrum in the periodogram of

the actnal data.
If we assume that A — 20, and note that 2e¢ — 204, then the value of & turns

out to be
k=2\/ - —0.66 .
1—u
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Hence, since ¢ = 15.01, the continuous spectrum in the data might be repre-
sented by the periodogram

R [F7==991, T >40,
—{0, T < 40.

One sees from the graph [see lower (b}, Figure 28] that this function agrees
very well with the maximum value observed in the periodogram of the data after
T — 55,

Thus our analysis would indicate that while the peak at T = 41
furnishes real evidence in favor of the existence of a 40-month period
in stock prices, the fact that the data may contain a continuous spec-
trum of amplitude as great as 9.91 makes one cautious in accepting
the existence of the 40-month cycle without other evidence than that
furnished by the periodogram itself.

7. Yule’s Theory of Random Variation

In his notable paper of 1927 to which we have referred in the first
chapter of this work, G. U. Yule considered the possibility of account-
ing for the deviations of an empirical time series from its true har-
monic motion by means of a random impulse function. Yule's ideas
are essentially those of the physicist when he considers the behavior
of an elastic system under the influence of an impressed force, except
that, in Yule's case, the impressed force is a series of random shocks.
Yule also chose to employ the machinery of difference equations in-
stead of the more tractable differential equations of the physiecist.

Thus Yule began with the difference equation

(1) Aty + gt + 1) = ¢ (¢t +2h) ,
where we define
Au(ty = u{t + h) — u{t), x = 4 gin’s = 2(1 —cos 28), s = ah,/T,

and ¢(¢) is an impressed force acting upon (f).

If #(t) is defined as a set of small erratic fluctuations, &, = .
2, £, ete., then u(¢) is a simple harmonic motion disturbed by these
random impulses. The solution of equation (1) may be shown to have
the form

sin 48
sin 2s

()  u(?) =Asin2-%l (t+ 1) +a(t) + & (t — k)

sin 6s sin 8s
t— 2h
sin2s¢'( 2h) +sin23

$(t —3h) +---.
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Let us examine this solution more carefully, We see that it con-
sists of a simple harmonic term and a series, the particular integral,
which we shall for convenience designate by 7 (). If we assume that
¢(t) is zero for negative values of the argument, then ¥ (nh) is a
finite sum of harmonic terms defined in the following manner by the
erratic fluctuations &, &, , &, etc.:

£, 81N 28 + £, ,5in 48 + £, .80 68 4+ --- -+ g sin({n+1)2s
sin 2s

¥ (nh) =

In order to test his formula, Yule constructed a series of 300
items. He set T'= 10k, u(0) = 0, u(h) = sin 36°> = 0.5878, u =
0.3820. The values of »(t) were determined by tossing four dice and
computing

__Toss of 4 dice — 14 (mean value)
$ () = 0 .

+4 S

- XY \/ \4/ ‘\

-

+4 +2

AWARANANN
BVERYAVA

-4 -4

L A

50 60 70 2] 90 100
F16ure 29 —PFRIODIC FUNCTIONS SUBJECT T¢ RANDOM FLUCTUATIONS.
: Complete series; - --- : Harmonic component.

Hence ¢ () fluctuates between +0.5 and —0.5 and the expected
maxima and minima of ¥ (?) are m(+e) = 2.7532 and m(—e) =
—2.71532, The first 100 values are graphically shown in Figure 29, to-
gether with the harmonic term upon which the particular integral
is superimposed. We note that the expected extremal of |u(t) |, name-
Iy, 1 + m(e) = 3.7632, is not attained by the function, although it is
actually exceeded slightly by five maxima and five minima in the en-
tire series of 300 items.

We note also the significant fact that both the phase and “the
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amplitude are subject to considerable change over the range shown
in the figure. Yule makes the following comments on the experi-
ment: ‘“The series tends to oscillate, since, if we take adjacent terms,
most of the periodic coefficients of the &'s are of the same sign, and
consequently the adjacent terms are partially correlated; whereas, if
we take terms, say 5 places apart, the periodic coefficients of the &'s
are of opposite sign, and therefore the terms are negatively corre-
lated—since adjacent terms represent simply differently weighted
sums of &'s, all but one of which are the same.” A further comment
bears upon the situation when the fundamental harmonie term is
omitted. In this case “the series would reduce to the fundamental in-
tegral alone, but the graph would present to the eye an appearance
hardly different from that of the figure, The case would correspond
to that of a pendulum initially at rest, but started into motion by the
disturbances.”

The method of analysis suggested by this study then consists es-
sentially of computing the period of the underlying harmonic by de-
termining that value of & which gives the best fit of the equation

(3) e =F Uy — Uso

to the data. If two underlying harmonics are suspected to exist, then
equation (3) is replaced by

(4) Ur = By (Uey + Upeg) — Ko Uy — Uy »

When Yule applied equation (3) to the first 150 items of his own
experimental series he obtained the period 7' = 10.087. The second
150 items yielded the value T = 9.845, a very satisfactory agreement.

Applied to Wolfer's sunspot numbers over the period 1749-1924,
equation (3) yielded a period of 10.08 years, whereas equation (4)
gave a minor period of 1.42 years and a major period of 11.95 years.

The error of more than 1 year, as given by (3), from the gen-
erally accepted period of 11.25 (Schuster) led Yule to replace equa-
tion (3) by the following:

(5) Ue = Dy Upy — by Upa

which yielded a period of 10.600 years for the sunspot numbers.

Now if the &; were all equal to a single positive constant £, we
would have
sin (n +1)s sin (n+2)s

gin ¢ sin 2s !

Y(nh) =¢

which obviously cannot exceed
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&
~ Tsin 3| [sin 2s]

m (&)

in absolute value.

But if the & are random numbers of either sign with an average
value of zero, then ¥ {nh) might be expected to fluctuate more or less
regularly between the values m (+&) and m(—e), where ¢ is the ex-
treme variation of the random numbers. It might happen, however,
that there existed a sequence of values among the &;, which, for some
value of n, agreed in sign with their corresponding multipliers. Then
¥ (nh) could exceed by almost any given amount the extremal values
Jjust written down. The probability of the existence of such a for-
tuitous distribution of signs is not high, but if the range for = is suf-
ficiently large, then the probability may be made as high as one
wishes that in some part of the range this extreme variation may
take place.

All these observations accord with the actual observed behavior
of economic time series. Such series fluctuate about their trends in a
manner which, for the most part, may be described as a disturbed
sinusoidal pattern. The maxima and minima of such fluctuations as
are observed in onc period are exceeded, sometimes greatly, by the
maxima and minima of another. It is this accord between the solu-
tion of Yule and the observed facts about economic time series that
makes the former so attractive as an approach to the statistical de-
scription of economic variation.

The theory of Yule was extended in some respects by Sir Gilbert
Walker and applied by him to the study of atmospheric pressure data
at Port Darwin, “one of the most important centers of world weath-
er,”?

Although the conclusions regarding the existence of harmonic
structure in the data turned out to be negative, the method itself is
illuminating and furnishes a good illustration of some of the theory
developed in this chapter.

It is first assumed that there exists a linear regression between
the mean deviations u. , u,., , ete. of the data; that is,

(6) U = Gl y + GoMhry + -0+ Gl .

If u. is normalized by division by ¢, and if the series is assumed
to be sufficiently long so that neither correlation coefficients nor o are
essentially altered by the neglect of a few terms, then we shall have

8 “C0n Periodicity in Series of Related Terms,” Proceedings of the Royal So-
ciety of London, Vol. 131 (A), 1931, pp. 518-532.
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@ 5 [ttt ds=r =0 (6=1)+ g7 (-=2) + - + g7 (2-9).

Hence the autocorrelation function 7(¢) is a solution of the dif-
ference equation (6) and the interpretation of the data can be made
directly from the form of r(¢). The procedure is either to compute
(6) and then solve (7), or first to find (7) and then compute the re-
gression (6). '

The theory of this chapter, and in particular Section 3, affords a
further interpretation of the data by providing a mechanism for con-
structing the complete harmonic analysis of the data from the co-
efficients of (6) whether they are determined initially from (6) or
(7.

Walker first determined the autocorrelation of his data over a
range of N = 177 quarters (708 months). He then observed that a
good approximation to the actually observed values was furnished by
the following function:

(8) () =0.19 (0.96)"cos % + 0.15 (0.98)* + 0.66 (0.71)*

— 0.19 e0o00st cog 2% 4 (.15 e-oomst 4+ .66 e0semt
i)
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FIGURE 30.—AUTOCORRELATION OF SIRE GILBERT WALKER'S ATMOSPHERIC-
PRESSURE DATA AT PORT DARWIN.

: Autocorrelation determined from function; - --- : Autocorrelation

from actual data.

Both the actual values of the correlation and those computed from
(8) are shown in Figure 30.
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The corresponding difference equation (6) is readily observed to
be

Uy — 3-35 Uer — 4-43 Uzz + 2-71 Uz a — 0-64 Usp_y o

It is now possible by means of (8) to determine the periodogram
of the data. Thus from equation (29) of Section 3 we have

2 2
9 R(T)= |2a(T) = Ty,
(9) (7) \/a“( ) \/W\/a( )
where we define
(10) a(T) = [ r(t) cos%’f_tdt.

(T R(T)
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F1GURE 31 —PERIODOGRAMS OF SIR GILBERT WALKER'S ATMOSPHERIC-
PRESSURE DATA AT PORT DARWIN.
: Periodogram determined

from autocorrelation function.

But equation (10) is immediately written down from the for-
mulas (11} and (12) of Section 3. We thus cbtain

4.6569
1 +164.6934{1 + 12/T)*

4.6569
1+ 164.6934(1 — 12/7')*

7.4257
1 + 96751.18/T*

a{l) =

1.9271
1 + 336.5606/T% "

The function B (T) is graphically represented in Figure 381 together
with the actual values of the periodogram as given by Walker. One
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will observe that the function R(T) is a sort of smoothed average of
the values of the periodogram computed from the data direetly.

The actual values of the ordinates of the periodogram and of
R(T) are given in the following table:

r Periodogram T Pericdogram i T R(T)
5.9 0.07 10.5 0.15 4 0.0678
6.12 0.16 11.0 0.24 6 0.0705
6.29 0.05 11.7 0.29 8 0.0933
6.50 0.03 12,5 8.07 10 0.1554
6.67 0.04 13.5 0.29 11 0.2413
7.00 0.10 14.7 0.18 12 0.3867
7.33 0.07 16.0 0.12 13 0.2614
7.66 0.14 17.6 0.21 14 0.2017
8.00 0.11 20.0 0.14 16 0.1696
8.3 0.02 22.0 0.24 ‘ 18 0.1662
8.8 0.06 25.0 0.19 20 0.1686
9.3 0.14 30.0 0.06 24 0.1768

10.0 | 0.08 350 0.19 30 0.1876
! : 36| 01964

8. Lag Correlation and Its Relation to Supply and Demand Curves

One of the most fundamental ideas in the classical theory of eco-
nomics is that of supply and demand. Thus Alfred Marshail com-
ments: “There is . . . a good deal of general reasoning with regard to
the relation of demand and supply which is required as a basis for the
practical problems of value, and which acts as an underlying back-
bone, giving unity and consistency to the main body of economic rea-
soning. Its very breadth and generality mark it off from the more
concrete problems of distribution and exchange to which it is sub-
servient; ... '

But the terms supply and demand are used in classical theory in a
sense that is hard to define statistically. Limiting ourselves for the
sake of simplicity to a single commodity, let us consider the demand
for this commodity in terms of price alone. If the commodity were
given away freely, it is clear that the total demand would still be
finite, but, in general, considerably larger than if a price were charged
for it. An example of such a quantity is water, which, in many com-
munities is so nearly free that it is used without thought as to its
cost. Let us designate this maximum demand by ¥, .

But if a price is charged for the commodity, then amounts small-
er than ¥, would, in general, be demanded, and if the price became
sufficiently great then smaller and smaller quantities would be pur-
chased until the demand became zero, Let p, designate this price of

6z Prineiples of Economics, 8th ed., 1920, p. 83.
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zero demand. If y, the quantity of the commodity demanded at a
price p, be plotted against the price, then a curve similar to the one
shown in Figure 32 would be obtained. This is the classieal curve of
demand and it seems but reasonable to assume that it must always
have a negative derivative. One will observe that price is plotted as
an ordinate (see Figure 32) and ¥ as an abscissa contrary to custom
in mathematics. This method of representing prices has became
standard in economic literature.

P
Pl
) 3 > w Yy
Ficure 32.—DrmMaND AND SuppLY CURVES.
1. Demand curve, y — »(p) ; II. Supply curve, u — u(p) .

Most studies on demand consider also what is called the elas-
ticity of demand. If we denote the demand curve by the function
¥ = y (p), then this coefficient is given by the expression

) _dyp__dy/y__d(logy)
"y dp/p d(logp)

Since in the demand curve the derivative dy/dp is negative,
while p/y is positive, the elasticity is essentially negative. For this
reason some writers, notably those who follow Alfred Marshall, pre-
fer to write the ratio with a negative sign.

If the demand curve is a straight line,

2.+.£:1 ,

yn po
then the elasticity is given by the formula
=1 =4/ U=—p/(p. — D).

If the elasticity of demand is a constant, 7, , then we have

—= e,

Y »
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from which we get by integration

logy=mnologp +logC,
or
y=Copm.

Closely related to the curve of demand is that of supply. This
curve represents the amount of supplies available as a function of
price. Thus there will exist a price, P, , below which it is unprofitable
to produce the commodity. Let us call P, the price of zero supply. In
general, the available supply, which we shall designate by u, will in-
crease with an increasing price, as is exhibited by eurve II in Figure
32, This is certainly true for manufactured goods, where natural lim-
itations are not imposed as in the annual growth of agricultural com-
modities. _

E quilibrium price is defined as the ordinate of the point P, where
the curves of supply and demand cross, that is to say, where supply
equals demand, y = u . It is obvious from any casual survey of eco-
nomie data that the point P is not a stdble one, sinee it varies from
one period to another.

In this work we are interested in price, not as a fixed point in a
static structure of supply and demand schedules, but rather as a dy-
namic variable which fluctuates from day to day. The most casual
scrutiny of the constantly varying pattern of prices shows that the
old classical picture of fixed supply and demand curves must give
way to a more realistic interpretation.

In his notable treatise on The Theory and Measurement of De-
mand,” the late Henry Schultz devoted a great deal of space to a dis-
cussion of fluctuating prices and the determination from them of
classical supply and demand curves. It has long been known that
realistic demand curves of agricultural commodities can be obtained
by graphing the variation in yield against variation in price, proper
corrections being made for the growth of population, the change in
the general price level, and the magnitude of crop carry-overs. But
when these same methods are applied to industrial produets, such as
the production of pig iron, then the demand curve so obtained has a
positive slope and appears to have all the properties of a supply curve.
Such a demand(?) curve was first computed by H. 1. Moore in his
celebrated work on Economic Cycles: Their Law and Cause, and the
phenomenon of a positively sloping demand curve caused great con-
cern to economists. In Figure 33 we show Moore’s curves for the de-
mand for corn compared with his similar computation for the demand

7 Chicago, 1938, xxxi - 817 pp.
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for pig iron. Obviously such anomalous results must be explained.

The first satisfactory explanation was advanced by E. J. Working
in 1927% and an elaboration and extension of his ideas was made by
Schultz® in his treatise referred to above. The kernel of the explana-
tion lies in the assumption that demand and supply curves, in the
sense of classical economics, do not remain fixed, but may vary from
time to time. Demand may remain stable, while supply varies, or
supply may remain fixed, while demand varies, or both may vary.
The consequences from each of these three possibilities are essentially
different. :

In order to explore the possibilities, let us first observe that
if for a given commodity there exists a fixed supply eurve and a
fixed demand curve, the intersection of the two curves will not vary
with time and hence there will be observed one and only one price.
Since the most casual inspection of price data shows that this is not
the case, it is evident that there is a shifting of either supply or de-
mand with time.

In order to fix our ideas more precisely, let us assume that the
supply curve remazins fixed, but that theé demand curve varies. For
simplicity of description, let us assume that the supply curve is the
straight line '

p =U,- _

8 “What do Statistical ‘Demiand Curves’ Show?” Quarterly Journal of Eco-
mmuca, Vol. 41, 1927, pp. 212-235. See, also, in this connection the review by P

G. Wright of Schultz’s Statistical Laws of Demcmd and Supply, Jowrnal of the

American Statwucal Asgociation, Vol. 24, 1929, pp. 207-215,
2 See, in particular, pp. T2-81.
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and that prices are observed to be simply periodic with time; that is
to say, they may be described by the function

p(t) =p, + Asinkt.
If, then, the demand curve is also linear, let us say, of the form
p+tmu=a, m>0,

it is clear that the parameters must be functions of time. Moreover,
one observes that if they satisfy the time relation

a/(1+m)=p,+ Asinkt,

then the intersection of the demand curve with the supply curve will
yield the variable price originally postulated. This is illustrated in
Figure 34.
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Fi16URE 34a.—THE SUPPLY CURVE: FIGURE 34b.—THE TIME-PRICE CURVE:
p=mu, p=pn,+ esinkt.

The same argument prevails if the demand curve remains fixed,
while the supply curve varies. If the observed price changes with
time, then the intersections of the demand curve with the variable
supply curve will exhibit the negative slope of the demand curve.

1f, however, both supply and demand vary, then the situation
becomes indeterminate and there is no possibility of computing either
the demand curve or the supply curve from the data of time series.

The question remains as to whether or not both supply and de-
mand curves might not be derived from the same time series by a
method of lag correlations. It seems reasonable to suppose that when
agricultural prices are high, the farmers will plant more acres dur-
ing the next season in the hope that they may profit from some carry-
over of the prevailing price level. On the other hand, for the same
reason, they may reasonably be expected to plant fewer acres during



140 THE ANALYSIS OF ECONOMIC TIME SERIES

the season which follows a period of low prices. Hence, in the one
case, a surplus is created, and in the other, a deficiency, If this were,
indeed, the correct view, then prices of one year, correlated with the
production of the succeeding year, would produce a high positive cor-
relation, whereas the prices of one year, correlated with the produc-
tion of the preceding year, would produce a high negative correlation.
The regression equation in the first instance would approximate the
supply curve, while the regression equation in the second instance
would approximate the demand curve.

This attractive idea is scarcely consonant with Working’s hypo-
thesis of fixed supply and demand curves, Schuliz believed, however,
as in the case of the supply and demand functions for sugar, that such
a procedure is occasionally possible.

The argument may be stated as follows. We first observe that,
with respect to supply and demand curves, there exist four possibil-
ities: (a) the supply curve may be fixed, but the demand curve varies:
(b) the demand curve may be fixed, hut the supply curve varies; (c¢)
both curves vary; {d) both curves remain fixed. The first three cases
have already been discussed, but the fourth remains to be considered.

If both the supply and demand curve were fixed, then the price
would be rigidly fixed at their intersection. But since few prices ap-
pear to be fixed, their variation in the stream of time might be re-
garded as positions of disequilibrium. Thus, let us suppose that the
demand and supply curves are respectively

p=1(q), g==g{p),

and that they intersect in one point, which determines the equilibrium
price, p,, and the equilibrium quantity, ¢,. Then let p, be an ob-
served price different from p,. We should have ¢, = g (p,), which is
also not equal to the equilibrium quantity, ¢,. Continuing the se-
quence, we obtain the following set of values:

P =0, 6 =g{(p),
p:=f(q.), 7. =g(p:},
s =f{(g), ;=g (ps) ,
2= f{gs) , 7. =g(p.),

If, finally, the functious are such that some p, corresponds to p, , then
obviously the sequence, p, , P2, s, -+, Pr = P41, -+~ is cyclical in char-
acter. This situation is schematically represented in the accompany-
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ing diagram. The formulation given here is commonly referred to as
the eobweb theory of price.

QUANTITY PRICE

QUANTITY TIME TIME

FI1GURE 35.—BEHAVIOR OF PRICE AND QUANTITY UNDER FIXEp DEMAND (a)
AND SUPPLY (b) CURVES.

Schultz remarks about this situation are as follows:

Thus far we have assumed that the two unknown ecurves [of demand and
supply] remain fixed and have shown that, when an interval elapses between
changes in price and corresponding changes in supply, it is possible to deduce
both curves statistically. This conclusion also holds even when both curves are
subject to secular movements, the necessary conditions being: (1) that the curves
retain their shape, (2) that each curve shift in some regular manner, and (3)
that there exist a time interval between changes in price and changes in supply.

The importance of such a demand-supply relationship lies in that it admits
of a straightforward statistical “verifiecation.” If by correlating prices and out-
put (consumption) for synchronous years (or other intervals) we obtain a high
negative correlation; and if by correlating the same data but with output lagged
by, say, one year, we get a high positive correlation; and if these correlations have
meaning in terms of the industry or commodity under eonsideration, the statistical
demand and supply curves thus obtained are probably very close approximations
to the theoretical curves. It is assumed, of course, that the data have been ad-
justed for secular changes and other disturbing factors.1?

10 The Theory and Measurement of Demand, pp. 78-80. See also Mordecai
Ezekiel, “Statistical Analyses and the ‘Laws’ of Price,” Quarterly Journal of
Feonomics, Vol, 42, 1928, pp, 199-227.



CHAPTER 4

THE THEORY OF RANDOM SERIES
1. Definitions and Examples

In the discussion of the nature and the structure of economic
time series it is necessary to consider the definition and properties of
what we shall call random series.

By a random series we shall mean a sequence of items

(1) YirYasUss Y s Wi s ¥Un,s

which has the property that the autocorrelation »(f) is sufficiently
small so that the data may reasonably be assumed to have been drawn
at random from an infinite universe,

It will be convenient to assume that the average of series (1) is
zero and that the standard deviation is unity, neither assumption im-
posing an essential restriction upon the series. The autocorrelations
for a lag of ¢ units will then be given by

N-¢
(2) r(t) =§U. Yere/ (N—E) .,
It will also be convenient to write equation (2) in the continu-

ous form
(3) 'r(t)=limél— f y(s) y(s +t) ds,
400 a —a
where the function y(s) is assumed to be normalized; that is,
lim L f'yz(s) ds=1.
a=a0 2(1 -

In case the limit in the mean assumed by (3) is not desired, that
is to say, if ¥ (8) is defined over a finite interval —a = s = a, then we
may employ the following definition of »(f):

(4) r{t) =R(t)/2a,
where we write
(5) R(t):f”y(s)y(sﬂ) ds .

—142 —
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For the purposes of illustration, let us consider a random series
‘constructed in the following manner. The percentages of trend of the
Dow-Jones industrial averages for the prewar period (1897-1913)
were written on cards and these cards were then drawn at random to
form a series of 204 items, that is, N = 204. The standard deviation,
o, was Tfound to equal 15.011, and the arithmetic average, A, was
99.618. The actual values of the random series thus constructed are
given in the following table and the series is graphically represented
in Figure 5 of Chapter 1 and in (b) of Figure 38 of this chapter. The
items are arranged by months to correspond to the items of the actual
time series itself, which is charted in Figure 70 of Chapter 7.

RANDOM SERIES CONSTRUCTED FROM THE DOW-JONES INDUSTRIAL AVERAGES AS
PERCENTAGES OF TREND (1897-1913)

‘Month | 1897 1898 1808 1900 1901.1207 1903 1904 1905 1006 1907 1908 1909 1910 111 1912 1913

Jan, 100 100 97 98 B4 102 126 108 104 99 118 102 7B 100 117 93 81
Feb. 116 98 113 i 87 114 121 161 137 RR 123 BR 89 91 B9 104 125
Mar. 101 92 1083 92 104 106 105 70 98 1¥ A6 I21 TR 111 83 T2 70
Apr. 110 104 B0 104 123 81 122 102 99 100 8B 107 76 9T 119 121 94
May 126 67 122 8¢ 112 1i0 11Y 93 B0 I26 114 109 112 125 101 110 B8
June 99 B3 986 74 09 98 8B 98 114 AT 61 106 99 74 130 98 103
July 126 113 101 %4 126 92 101 83 8T 81 8r 111 107 102 104 BT 106
Aug. 119 64 106 89 84 118 98 93 955 104 101 1083 94 92 108 115 106
Sept. 92 69 72 80 120 94 TO 96 112 101 92 105 96 102 76 109 96
Oct. W06 68 84 103 97 110 96 123 121 75 89 103 90 124 119 102 108
Nov. 107 124 o4 119 70 101 126 8% 104 94 122 75 94 BT 109 131 114
Dec. 101 % 86 931 106 111 66 106 78 99 104 7L Y1 8 TT 126 100

In order to test this series for randomness the autocorrelation
was computed, the following values being obtained:

t 1 2z 3 4 5 6 T 8 9 0 11 12 13 14 16
rit) 0.038 0.072 0.155 0.060 —0.051 0.085 —t.114 0.026 -0.027 -0.022 —0.039 —0.088 —0.050 —0.063 0.099

vt rit)

+1.00 +1.00
+0.50 ~+0.50
N A e AT S PET SIA AT T A
[ S Y _ |- — . Y _ ._._1;";\,&/_
=-0.20 —J-0.20
-15 -10 . =5 ¢ +5 +10 +15

FICURE 36.—AUTOCORRELATION OF A RANDOM SERIES.
The dotted lines define the standard-error band.
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Since the standard-error band varies from *0.070 at the begin-
ning, where N = 204, to #0.076 at the end, where N = 204 —-30 =174,
the distribution of the lagged values is seen to meet the test of ran-
domness in a satisfactory manner. These results are graphically ex-
hibited in Figure 36. :

2. Goutereau’s Constant

If something is known about the distribution of the items of a
random series, that is to say, whether the items have been drawn
from a normal, a rectangular, or some other type of frequency dis-
tribution, then a ratio known as Goutereaw’s constant is useful in test-
ing the randomness of the series. This constant, which we shall des-
ignate by G, may be defined as follows:

If the mean of series (1) is m and if 4, = .., — ¥, and 2; =
¥; — m, then Goutereau’s constant is the ratio

= 2l

E|xa| ’

that is to say, it is the ratio of the mean variability to the mean
deviation of the series.
We shall first prove the following theorem:

THEOREM 1. If the series {#:} = ¥, ¥ --- , Uy 18 a set of nor-
mally distributed values arranged in a random sequence, then
(1) GC=+2=14142 ...,

If the series {y.) is a set of rectangularly distributed values ar-
ranged in a random sequence, then

(2) G=4/3=13333....

Proof:t Let us assume that the values of {y;} are arranged in a frequency
table as follows:

Values 8

L 82 e 8

(3)

Frequencies f.  f. e f

where f, + f, + - + f, =N. .
The total number of ways in which the variation |4,| can be obtained is the

number of permutations (with repetitions) of N things taken two at a time, that

is, N2. But NZ can be expanded in terms of the individual frequencies as follows:

! This proof follows one due to E. W. Woolard, “On the Mean Variability in
Random Series,” Monthly Weather Review, Vol. 53, 1925, pp. 107-111.
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Ne=@Ef)r=f2+f2+ A2t 2ffot2f i+ +2h 1,
+2f2f3 +2f2f4 + + 2f2fn+ +2fﬂ-—-1fn
n A1 H-f
=Zf.2 ) Cf.
-_'—iEfft + 2;%1 Elf' f“’ )
From this we see that the probability of a zero variation is given by
3 f,2/Ne
i=1
while the prebability of the variation |&;;] — |s; — s;{ is 2 f; f;/N2.
If we assume that s; == ¢ + ik, where ¢ is a constant and » is the class in-

terval, then |4;;| = |¢ — j| h = mh, where m is an integer. Hence all the n—m
combinations which yield the same value mh are given by

Isiﬂ'n_si[! i:1!2""vﬂ""m;

with probabilities

2Qf. f.

_f}\—{:ﬂ , m#=0, i=12, .- ,n—m.

Hence the matherﬁatical expectation of the variability, v, is given by
2 n-1in-m
J— -

(4) E('t?) _]Fz'mzt i§1 mfi fi+'m .

If we have a rectangular distribution, then
fi=f, N=nf,
from which we get
(5) E(v) :% g m('n——m):M__l) .
n? m=1 3n

Since table (3) is now of the form

c+h ¢+ 2h ¢ + nh

f f - f

the mean, M , is given by
M=—c¢ —%—hf_zli/N:c + d(m+1)k.
0=

Consequently the mathematical expectation of the mean déviation, &, be-
comes

Zfixi:h j—

(6) E() =—

tf;
N

iMa

z o

1

.
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Sinece, in the rectangular distribution, f; — f and N = =nf, we get
n 0
i§1 1f;/N=%(n+1) .

Consequently the expected mean deviation becomes

9h (ns1) h
(7 E(@®)=— I [in+1)—j]l=— (n2-—1).
n isl 4n
From (5) and (7) we then obtain the value of G for rectangular distribu-
tions as the ratio
E(v) h(n®—1) 4in
(8) G= = : =4/3=—138383---.
E(e) 3n hinz—1)
From a normal distribution we have the frequencies f; = ,C;, N = 2»,
where ,C; is the ¢th binomial coefficient.
Hence the mathematical expectation of the variability becomes

n-1 n-m

2h 1w
E(v)=— X m=2,C Ci..

Nazm=1 iza® %

2h -t

= Nz m‘El m(zncnﬂn - ﬂCm) H
that is,
hn
(9 E(v) = (1,00 — 2.

Since the arithmetic mean of the distribution is 2n, the expected mean devia-
tion becomes

n

h
'T‘ 1
E(9) = e " Clm—1n|.

For simplicity we shall assume that » is even, an inconsequential assump-
tion, since n is large. We then ohtain

2h 1n
(10) E@ =% ¢ (n—m) ="

N m= n“ He oN ncin )
Goutereau’s constant is then given by the ratio of (9) to (10), that is,
____2nCn - 2n
N C

n i

(11)

In the formula ,,C, = (2p)1/(p!)* we now replace the factorials by their
Stirling approximation, namely n! ™ n# ¢-2V27%n | and thus obtain for sufficiently
large values of p the limiting form

V2 22p
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If the appropriate approximations are now introduced into formula (11),

. we obtain

G 202 — V2mn
N

If n is large, as has been assumed above and as is assumed, of course, in the
derivation of the normal distribution from its binomial approximation, we shall
obtain the desired ratio

—V2—V2wn- 2.

(12) G=VZ2=14142...,

To these values of G as given by (8) and (12) we must now
assign probable errors, This may be done as follows:?

If n is large, then the standard deviation for a rectangular dis-
tribution is approximately given by ¢ = hn/v/8.% Hence, if = is large,
we can write

E{(v) =o/v3, and E(¥) =1V3oc.

Since the standard error of ¢ is known, the standard errors of
both E (v) and E (8) are known. But from the fact that G is a pure
number, since both v and @ are functions of ¢, the ordinary method of
finding the standard error of the ratio fails. But we also note that
the mean deviation is independent of the order in which the x’s occur
and, therefore, this coefficient does not give any indication of the ran-
domness of the series. The mean variability, however, does depend
upon the order or time occurrence. The Goutereau ratio, therefore,
as a test of randomness, depends entirely on the numerator of the
ratio. Consequently, if we assume that the mean deviation does not
change greatly from one type of rectangular distribution to another,
then we can derive the standard error of G. If there is a deviation
in » due to the randomness of the series, we say that this variation
will not affect 4. Hence we can write
v+Av _ v " Av

—_— —_—

G+ 46= 7 R

Then, by definition,
) o 2\/_2. 8

T AvE(N-T) 3 vN-1

Hencé we obtain as the standard error of G

Av =1y

2 This argument is due to Herbert E. Jones of the Cowles Commission, who

has made an exhaustive study of this problem.
8 See Davis and Nelson, Elements of Statistics, 2nd ed., 1937, p. 319.
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2veg 1 = 0.9428 ! .

=o/l=— —— ——
e 3 VN-1 VN=T
A similar computation for the normal distribution shows that the

standard error of G is given by vV (n—2) /(N—1) = 1.0684/+/(N—1).
" These results we can formulate in the following theorem:

THEOREM 2. If the series {y:} is a set of normally distributed
values arranged in ¢ random sequence, then the standard error of
Gouteresw’s constant 1s

/ a—2 __ 10684
o — - - s
TAN-1 VNTI
where N is the number of items in the set.

If the series {y:} is rectangularly distributed, then the standard
error is

(13)

2v2 1 0.9428
3 vN—1 yN—-1

As an example, we may consider the random series given in Section 1. A test
shows that the items are essentially distributed normally and hence G is to be
computed from formula (1). We readily find =|a;| — 8570, Zlx,;| — 2486, from
which it follows that

(14) 0 =

G ==1.4360.

Since the probable error as given by {13) equals 0.0702 and since the differ-
ence between the actual and expected value of G is 0.0219, we see that the series
very satisfactorily meets the test of randomness.

It is instructive to compare this value with the value of G obtained from the
items of the original Dow-Jones series from which the random series was con-
structed as explained in Section 1. A computation shows that for the original
series G =— 0.3345 .,

Tt is interesting also to note that if the series of values {¥:} is
derived from a known funetion y = y (f), then the Goutereau constant -
assumes the following simple form:

v | dy

[ atee
e —
|1t ae
where @ = t = b is the range of the data,

For example, if ¥ = sin(2at/T) and the range of the integration
is from 0 to T, then we have

G=
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o

T qusin(zn/T)idt

The standard error is readily shown to equal

N —22214 T .
oT

3. Yule's Theory

As we have already explained in Chapter 1, G. U. Yule devoted
considerable attention to the correlation of random series in his clas-
sical paper on “Why Do We Sometimes Get Nonsense-Correlations
Between Time-Series 24

In order to derive some of Yule's most interesting results, let us
consider the following series:

Y, Yo s Y s Yss Y5 ¥Yn

We shall assume that the average of the series is zero, and that
N is sufficiently large so that neither the standard deviation nor the
arithmetic average is essentially affected by the omission of a number
of terms less than or equal to some number &, which is very much
smaller than N . If ¢ represents the standard deviation of fhe series,
then the autocorrelation coefficient, »,, |t| = &, will be given by*

(1) Tt:E(ysyHt)/(Naz)-
We now consider the difference, 4 ¥, = ¥s.: — ¥», and note that
2(dy,)*= Z(Yen)? + E (Ye)® =~ 2 3 (Your ¥s)
=NZ+NF—2Nos21,.

Since 3 (4¥,)? = N ¢,* ; where ¢,* is the variance of the series
of first differences, we thus obtain the relationship

(2) 0:2202(1'—7’1) .

Let us now compute the autocorrelation coefficient, o, , for a lag
of t units for the difference series A4 v, . We first evaluate the sum

+ Journal of the Royal Statistical Society, Vol. 89, 1926, pp. 1-64.

42 Many of the formulas given in this section will alzo be found in the work
of 0. Anderson, to whom reference has been made in Section 14 of Chapter 1.
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Ry=3[4Y: A Ysut] =Z (Yors = ¥s) (Usrtnn = Ysud)
=2 WUsa Ysrter) + ZWase Us) — ZWs Yaren) — (Y Yous)
which, from (1), is seen to reduce to the following:
EB.=Notr,+ N7, - Neo*ry —Notr,.
Since R, is itself equal to N p; ¢4?, we obtain from formula (2)

kz’)",f'r‘ﬂ—f‘,-,_“ 1
@) P T =) 2(1—r)

A (7).

It is clear that the autocorrelation for the second derived series
can be written down at once from this formula. If we designate by
p{® the autocorrelation function for a lag of ¢ units of the second dif-
ference series A%, , then by formula (3) itself, since p{* bears the
same relationship to p; as p. does to r. , we shall obtain

p‘” :2 Pr — Py T P - _ 1
¢ 2(1'"',01) 2(1“P1)

Az(PI-x) .

This process being entirely general, we see that if ! is the auto-
correlation function for a lag of t units of the nth difference series
4" u,, then p'™ can be expressed in terms of the autocorrelation func-
tion for the (n—1)th difference series A"y, as follows:

2 Pin—l) . Pl'nvn — Ptn—n 1
t+1 t-1

“) = ZA— o) = a4

As an example of this theory let us compute the values of the autocorrela-
tions of the first five derived series of an initial random series., For the random
series we know, by definition, that r, = 1, r, = 0, t = 0. Hence, by successive

applications of formula (4), we obtain the following values of the autocorrela-
tions:

Type of Serics Autocorrelations
1
Ay,g .P[):l, PI:-“Ei Pt:Or t>1;
. 2 1
Ay, gl =1, pl‘”:_é’ pzm—_s__ g, =20, t>2;
a 3 3 (3) — !
A‘_Ij_, Pom):l! Plls’:_z! P:H)——-l_[;’ b —E'

=0, t>3;
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Aiy p(!.‘»—l' P“)H—f‘l P2(4)—~........' Ip_l‘ﬂ'-"*_._‘i
s 0o 1 5 - 3T =T 5
(4)—1 Mm=0, t>4
P =— p, 1= ;
! 70""" ’
AS 5) =—=1 (5) — 5 (5)---'1 (5) — 5
Y, Pttt =1, p ==y Py =3’ P3 ——'-Eg;
5 — — 2 (5 5
P e T T U0 20

4. Generalization of Yule’s Theory of the Differences
of Random Series

The results obtained by Yule for the differences of random series
may be generalized in such a way as to lead to the representation of
the autocorrelation as a continuous function of the lag parameter.

Let us assume that the series

(1) Yoy Yy Yay -+ Yes oy Yn,

13 random, and that its arithmetic average is zero and its standard
deviation is unity. We shall then have

1, 7=0,
0, 75F0.

The series formed from the nth differences of (1) may be repre-
sented by

(2) zyizol Eyiyiﬂ':{

Aﬂl ] Anz * A";i r "7 A"N—n ,
where we employ the abbreviation _
Ay =1 — aCr Uy + wCa Y2 — -+ (—1) 0Ci Yi ++-- + (1)} Yien

Then, if N is sufficiently large with respect to » so that end values
may be neglected, we shall have from condition (2)

n
(3) Ednk:() ’ E(Ank)zz 2 nCiQ':ann:NO'AE-
i=1
Similarly we evaluate
n-t
Rt(n) = E "-1,1-'# d"k*—t = (_"1) : 2 nCi ncﬂt - (""'1) ‘zncnd .

Hence, since p,'™ = R,/ (Nea’), we achieve the direct evalua-
tion

(4) Pt(n) — (_1) ‘ 'ZrzCn-t

_— .,
2‘nCn
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The question naturally arises as to whether or not a continuous
representation ean be given to the autocorrelation function (4). Pro-
ceeding formally, we replace {—1)? by cos nt, and then write the bi-
nomial coefficients in terms of Gamma functions as follows:

o r@n+1) c.r@n+1)
2n n—t"—I|(n+t+1)Iw(n__t+1) y 2m n'"-I"2('n+]_).

Replacing these values in (4), we then obtain the following as
the continuous autocorrelation function for the nth difference of a
random series:

) S cosnt I (n + 1)
PO T T -t D I+ E+1)

It is interesting to note that this funection, if substituted in the
difference equation [see formula (4) of Section 3]

2(1 = pfrh)pn =20 = i = pn
furnishes a solution of the equation.

Formula (5) was tested experimentally for the random series
desceribed in Section 1. The first three difference series were con-
structed and the lag correlations computed and compared with those
obtained from (5). The results of this experiment are tabulated as

follows;

Series | Lagedoneunit Lngwedtwounity | _ Lagyedthrecunits

I‘ Observed Expected | Obrerved,  Fxpocted Observed Expected
Random | 0.0152 | 0.0000 £0.0727) 0.070& |0.0000 +0.0727 |  0.1552 0.0000 +0.0727
First Differance | —0.8575 | —0.5000 +0.0630| 0.0471 | 00000 +0.0707 | 0.0051 | 0.0000 40,0707

Second Difference | —0.6265 | — 0.6667 -+0.0304| 0.101¢ | 01667 +0.068% | 0.0844 |  0.0000 £0.0709

Third Difference | —0.8579 | —0.7600 +0.0311| 0.2012 | 0.1000 +0.0647 | ~-0.1692 | —0.0500 =0.0711

It will be observed from a comparison of the difference of the
observed and expected values with the standard errors given with
the expected values, that the assumptions made in the derivation of
formula (5) are amply justified. :

The graph of function (5) for the case where n = 3, that is, for

8 — 12(4)
R T TE D)
_ 36 [sin2nt
(G —t)(4—)(1T—12)| 2af ] ’

is given in Figure 37.
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FIGURE 37.—AUTOCORRELATION oF THIRD DIFFERENCES OF A RANDOM SERIES.

In the application of formula (5) for unit lags, the following
sum is useful in checking calculations:

Ser=14.

This is easily established from formula (4), which yields the
sum

T T T T
L1 i 1

35 = (/) B (1) 2Cot = naCr/mCr=1.
=0 =0

Thus we can verify the computations for p!* as given in Section
3 by finding the sum
5 10 b 5 1 126 1

tﬁ)-—~ - 4 —_— —  — T ——— — —
; 162128+62522522

A special case of formula (5), which will be of particular inter-
vst to us later, is that for which n = 0. In this case we find
(6) o = cos at _ sin 2nat
t ra—-Hr{a+i 2nt
That is to say, the autocorrelation funmction of a continuous random
series is the unit impulse function frequently encountered in the the-
ory of electric cireuits.®

% See, for example, H. T. Davis, The Theory of Linear Operators, Blooming-
ton, Ind., 1936, pp. 263-268.
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It is also interesting to observe that the function

sin 2as

(7) y(s) = 5

if introduced into the autocorrelation integral,
ry= [Ty uis + ) ds,

gives (6). That is to say, the unit impulse function is its own auto-
correlation,
In order to prove this, let us first consider the integrals

0, 8>1,

$cosfat, |[Bi=1,
cosfiat, |Bi<1,

p(p) = fw si:gns cosn f(s+t) ds=

oo

Let us now define

(8) P(g) = J‘w sin ng sin S n{s+1) — ds

ns a(s+t) ’

oo

and note that P'(8) = p(8), from which we obtain

P@ =P + [*pp) dp= fﬂ'p(ﬁ)dﬂ-

An immediate consequence of the integration is the following set
of values:

sinﬂ/i:zt’ sz1,
in 8 at

(9) P(p) = Smﬁn, B =1,
sin S at
—— B#=-1.

In formula (4) we have obtained the autocorrelation between
differences of the same order, but it would be interesting and usefyl
to have an extension of this result for the correlation between differ-
ences of orders m and n, that is, between the series A7 and A7,

If we designate this correlation by the symbol p{™™, then the re-
sult may be stated as follows:

¢ See, for example, S. Bochner, Vorlesungen iiber Fouriersche Integrale,
Leipzig, 1932, viii 4+ 229 pp.
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For discrete series the lag correlation between the differences of
orders m and » of a random series is given by the formula

(10) p:m,m -_— (_.1)ul+n+t \/:":%(E_’%_,.
2mom 2nlon

The continuous equivalent of this formula, obtained by replacing
the factorials in the binomial coefficients by the Gamma-function
equivalents, is given by

(11)  pomm=08 a{m+ntt) I'(m+u+l) I'(m+1) I'(n+1)
b T Fn A D)y T (m—t+ D) T2 Cm+1) 72 (2n+1)

The derivation of these formulas will be given in Section 6, where
more general results are available,

As an interesting special case, we observe that the lag correlation between
a random series and its nth difference is obtained by setting m — 0. Thus we
obtain

ucne-t
- s

Vol

2un

ptﬁonﬂl = (1)t

or, in its continuous form,

(12} o 0w — 2o 7 (n+t) T2(n+1)
E T T(n+t41) T1—t) Ti(2n-H1)

If ane notes the identity T'(1-1%) T(1—2) == (wi)/sin #t, then (12) can be
put into the form
gin 27t T2{n41)

1 0,m — (—1)n '
(13) Py D AT GIh e T D)

5. Accumulated Raﬁdbm Series.

One of the most interesting operators that has been applied to
random series is the operator of summation. By the proper use of
this operator cycles can be generated in random data, and this inter-
esting faet has focused attention upon summation as a possible cause
of the eyclical phenomena noticed in many economic series.

Let us, then, eonsider the operator

(1) Stz ()] = f’m(s) as— - j (L — s) 2(s)ds,

where r(t) is any function of limited variation. In particular, it may
be defined by the elements of a random series. We see that S(x) is
the first accumulation of the function x(t) referred to its mean, its
length being L.
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Now let us define a sequence of functions by means of the itera-
tion formulas

5§ (x) =SIS(2)], §%(2) =SIS® ()], -,
S™ (@) =S ()] -

If z(t) defines a random series, it is a matter of statistical ob-
servation that S™ (x) tends toward a cosine function of period equal
to the length of the series; that is,

Zn

where L is the length of the series, A is a constant amplitude, and a,
i8 a phase constant, which depends upon the order of the iteration.’

In order to see how the phase depends upon the order of iteration,
let us write

@) S () © (ﬁ) A cos-“ii' +a),

Ly Z2n
S )(x) ——(zn—)A COS—E- (t + a-n).
We then have

n t
S(nn)(x) —__—(2-%!) A[ f cO08 %n-(s + a,.)d.S‘

1 t 2n
— EL_J;(L-*S) cosT- (s +¢ln)dsJ

fit+l
= (Z_Ly}) A cos —2;—(75 + a, — $L)
Hence, in general, we get

L nar 2
{7} — — 1 .
S {x) (_) A cos T (t+a, —1rl);

that is to say, the phase angle is changed to a, — 47L.

While the statistical observation that the iteration defined above
yields a cosine function of the form given in (2) was first made for
random series, it is also true that the iteration converts any function
of limited variation in the interval 0 = ¢ = L into the same form. The
proof of this has been given by E. J. Moulton as follows:?®

" See, for example, R, W. Powell, “Successive Integration as a Method for
Finding Long Period Cycles,” The Annals of Mathematical Statistics, Vol. 1,
1930, pp. 123-136,

8 For this formula see E. J. Moulton, “The Periodic Function Obtained by

Repeated Accumulation of a Statistical Series,” The Awmerican Mathematical
Monthly, Vol. 45, 1938, pp. 583-586. See also the same volume, pp. 105-1086,
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THEOREM: If we define the operator
SO =2SEM1, S0 =SS0,
then there exist constants A and a such that

L

converges uniformly towards zero in the interval 0 2t =L as n—> ®.

Sa () —Acos[ﬁma—_lé.(nﬂ)]

Proof: The function S,(t) is an integral of x(f) and therefore S,(t) is
continuous and of bounded variation in the interval 0 = ¢ = L. Hence 3,(1)
can be developed in a Fourier series in the interval 0 =t = L ; that is,

] 211’
(3) 5, -—._——EIA,‘ cos (Z kt+4a)+C.

The constant C must be zero since, from formula (1), we have J’o LS, (tydt =0.

Since the left-hand member of (3) is continuous and of bounded variation
in the interval 0 = ¢ = L, the Fourier series must converge uniformly toward
S, (t); hence we can integrate it term by term. We then find

s _;Ak 2
2(t) _b:l-i;;cos(rkt + a'k_ % W) E
and by similar argument
w4, 2w '
S, =32 k—ncos[z-kt + g — 3 (n—1)7] .

Since the sequence of Fourier coefficients {4,} is bounded, we have

and hence the sum

i cos[-f + @y — 2 (n—1)7]

converges uniformly towards zero in the interval 0 = t = L asn — ©,
From this fact the theorem is seen to follow as an immediate consequence.
Two examples will illustrate the application of the theorem. The first of
these is the successive application of the operator S, (f) to the function z(s) — &
in the interval 0 =s =< 1. The following polynomials are thus obtained:

S, ()= 2‘11'[‘]'0* sdg — J'Ul (1—s)sds] =27 (t2/2—1/6) ,

8, () — 4wz (13/6 — /6 + 1/24) ,

S, (1) = 8w (t4/24 — t2/12 + /24 — 1/720) ,

5, (1) = 1674 (15/120 — £3/36 + t2/48 — t/720 — 1/1440).
These four polynomials are graphically represented in (a)} of Figure 38.
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The second example is the application of the theory to the summation of the
random series given in Section 1. The reduction of the series to sinuscidal form
is observed from (b) of Figure 38 to be very rapid.

, X5)=8 RANDOM SERIES
+ +200
o L1111 |
42 o
r 1t} // X -~ 200
+2000
UI 1] N\
=1 "] L
N /] AN RS
. | t
-
o \\‘ / . i |~ 2000
TNER amo
+1.0 - AN
™~ ~
] §
0 = L ] / 1
] Y L] i~ . - 40,000
-5 : — +1,000,000
+1.0 > 5 i // \\
° e @]
e S I N g ™
-1 - 1,000,000
o 6.5 0 0% 300
(a) (b)

FIGURE 38 —EFFECT OF SUCCESSIVE INTEGRATIONS.

This chart shows how successive integrations (summations) convert fune-
tions defined over a limited range into harmonics. In (a) the function succes-
sively iterated is z(s); in (b) the function is a random series of 204 items. The
numbers represent the first, second, third, and fourth operations.

The analysis congidered in this section has also been extended by
A. Wald, who proposed the problem of determining “in terms of prob-
ability, how fast the repeated integrations of a random series ap-
proach a cosine funetion.” ®

He proved the following theorem:'

If the distance between S.(t) and its cosine approximation is
defined to be
s=lL (.12 dt!
ﬂ‘_{'z‘ J;[ rI( )] l‘r
where we write
2n
D, (t) =8.() — A, cos [_f

9 “Long Cycles as a Result of Repeated Integration,” American Mathematical
Monthly, Vol. 46, 1939, pp. 136-141.

1
t+a-—?(n—1)],
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then the probability that the ratio 8,/A, will not exceed ifi, is greater
than or equal to 1 — A-%, where 1 is an arbitrary positive number and
B is defined by

1 HN-1)
(4) Bt== = 1/k*™, f.>0.
2 =
We shall not give the proof of this theorem here, but may merely
indicate that it depends essentially upon the fact that no hypothesis
about the distribution of the random series is imposed by the defini-
tions of Section 1. Hence, the well-known inequality of Tchebycheff
may be substituted for any postulate regarding the distribution of the
series.
Since the value of 4, may be estimated from the formula,

A,r= (N/2n)*"(4/N)o*,

where o® is the variance of the original series, the theorem may be
used readily in numerical estimates.

For example, in the illustrative series of Section 1, it is found that that the
distance between the third accumulation and the fundamental term of the ap-
proximation is equal to §, = (N/27)% X 0.3516. Since & == 15.011, the value of
A, is given by A, — (N/27)* X 2.1020. Hence we obtain the ratio §,/4, —
0.1673. The value of g, is readily obtained from (4), from which we find g,
= 0.0931. Dividing 0.1673 by 0.0931, we obtain » = 1.7970, and from this the
value 1 — A-2 — 0.6803. We may then conclude that the probability that §,/4,
will not exceed 0.1673 is greater than or equal to 0.6903, a reasonable conclusion.

6. Random Series Smoothed by a Moving Average™

Another operator frequently employed in the study of random
series is the moving average

A
Z Wa xsﬂ
==X
(1) Y=
=W,
s=-A
where W, is a weight function. Usually W, is a constant or the bi-
nomial coefficient, W,—:Ci.. The parameter 1 of the moving
average is generallv chosen sufficiently large to remove the major
harmonic swings in the data, when a trend line is to be established by
means of the moving average. The quantity 21 is called the period of
the moving average.

#a Most of the analysis described in this section was done by H. E. Jones to
whom the author is especially indebted for undertaking and carrying out the work.
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For continuous data, ¥ (%), the equivalent of function (1), can be
written in the form

X t+A
fW(s)x(s+t)ds fW(r—t)x(r) dr -
(t) . ke S i -2 e
y pr—
Wis) d W(s) ds
L {s) ds L (s)

In order to simplify the problem of applying formula (1) to ran-
dom data, without, however, any loss of generality, let us designate
the items of a random secries by

-Tl_) oy Tyy Xay =0y Tny

and let us assume that = is sufficiently large so that the following
conditions hoid:

(2) Sz, =0, Zri=constant=o;*, Ix:%;.; =0, JjF#O.

There will be no loss in generality if we assume further that ¢, =1.

The diiference of any series {y;} will be designated by 4%,
where a is the order of the difference. By the symbol 7<% we sghall
mean the lag correlation between the differences of orders ¢ and §;
that is,

e
L ,A“m.a By

Let us now consider the following moving average:
y‘- j W(} X —i’ W, .’L‘j” '{" W‘_: X + - + Wa xha ]

where we assume for simplicity that the sum of the weights is unity,
that is 37 W, = 1. The period of the moving average is obviously
equaltos + 1.

The difference A2 of ¥, can be written

a9 Yi — Yira — acl Yiva + acz Yivg-a — " + (‘1)" aCH v
=Wex, + W, xi, + W Xieat -+ Wqu Xivsea s

where the new weights, W,?, are explicitly determined from the fol-
lowing system:

W= (_‘1)“00& Wu: Wﬂl - (_I)a [ﬂcﬂ W — oCas, WO] LA
W= (_1) “ [aCa W, — uCa—l ch-l 4- aCu—'z Wiee — oo+
+ (_l)kacmk Wo] .
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We next note the standard deviation
(3) Z(4ty:) = (W) + (Wio)2 + (W,o)2 + .. + (W,2)2
and the covariance

S(Ay:) (BFyin) = S(Werz, +W o2y, + -0 + W2 204,)

X (WP xie+ WP Ly +-oo + WP i)
(4)
== Wta Woﬁ + W{I‘*I Wlﬂ + Wﬁ‘+2 Wzﬂ
+ee W‘a Wﬂl-f E)

where W’s with negative subscripts are understood to be zero.
From these values the lag correlation between the differences
4°y; and ABy,., is immediately written in the form

-t
S We,; Wie
(5) 7,08 = = ’ aé’ﬁ,—(ﬁ-&—s)étés-&-u.
NG TULY
j=0 j=0

This general formula can now be specialized in several useful
ways. If, for example, we assume that « = § = 0, then we get the
autocorrelation function of the original moving average in terms of
the weights employed.

Suppose, for example, that we selected the weights as positive
binomial coefficients, that is

Wy= 3Ck .
Noting the fdllowing identities

aCt aCo + sCtﬂ aCI + achz IC'.*_ Tt qu scs—t = 2SC¢—t 2
and

aCuz + sC12 TR 3032 - 2ch 3
we can immediately write the autocorrelation
(6) 'ror'o - zaCl-t/zaCs .

Replacing the binomial coefficients by their continuous equiva-
Jents as we did in Section 4, we obtain the following:
o I*(s+1) _
¢ I'(s—t+1) I (s+t+1)
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This result may be compared with the autocorrelation obtained
by assuming a unit weight for the moving average, that is, by letting
W, =1. In this case we immediately obtain

o 8t 1|t
7 | e mak

The effect of binomial weights as compared with constant
weights upon an autocorrelation is exhibited in the following table,
where the period of the moving average is assumed to be 12, that is
s=11:

. ¥ r T T

t | (binomial (ecnatant : (binomial (constant

weights) weights) weights) weights)
1 0.9167 0.9167 7 0.01087 0.4167
2 0.7051 0.8233 8 0.002183 0.3333
3 0.4533 0.7500 9 0.0003275 0.2500
4 0.2418 0.6667 10 0.00003119 0.1667
5 0.1058 0.5833 11 0.000001418 0.08333
6 0.03733 05000 012 0 ’ 0

A statistical example of the application of formula (7), which will be useful
for us later, is furnished by the 12-item moving average of the random series
described in the first section. The smoothed series, centered upon the middle item
of the average, is given in the following table:

Month | 1897 1898 1899 1900 1961 1502 1903 1604 1905 1906 1907 1908 1909 1910 1911 1912 1913

Jan. 99 %4 8l 102 98 109 93 102 102 93 104 981 95 106 98 105
Feb, #4 97 90 101 101 108 93 102 102 98 105 91 95 106 9B 104
March 92 98 80 106 97 106 95 104 101 97 106 90 96 104 101 108
April 8% 99 92 104 100 206 97 102 98 98 107 8% 99 104 100 103
May 81 9 94 100 102 107 94 105 97 100 103 90 98 166 102 102

June 108 90 96 96 101 108 103 97 102 98 101 100 90 100 104 106 100

July 108 90 96 94 103 1056 162 9T 102 100 9% 98 92 102 102 106
Aug. 167 91 95 92 105 1056 100 160 98 1063 o7 98 92 102 108 107
Sept. Ws 92 94 93 106 105 97 102 M0 IOC 99 95 8 100 101 107
Oct. 06 90 96 905 10r 109 96 102 100 99 101 82 97 102 101 105
Nov, 101 96 93 97 101 109 93 101 104 98 101 82 98 100 102 102
Dec. ! 100 55 91 9% 10t 108 94 1062 102 98 102 g2 96 105 99 103

These data are graphically represented in Figure 5, in Section 6 of Chapter
1. The arithmetic average is 98.96 and the standard deviation is # — 4.94.
The autocorrelation of the series ig given as follows:

t (1) t i) L4 rit)

1 0.9201 8 6.3806 i1 —~0,0746
2 0.8371 7 i 0.2632 12 —0.1434
3 J 0.7312 8 0.163% 13 —0.1233
4 L 08177 9 0.073% 14 —0,0951
5 | 0.4948 10 —0.6047 156 —{.0608

Referring to (7T) we see that the autocorrelation function is theoretically

equal to
r(t) =1-—[¢/12, t=<12.
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The graph of this function, together with the actual autocorrelation and the
autocorrelation of the original random series, is shown in Figure 39.

4C] r{t}
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FIGURE 39.—AUTOCORRELATION OF FUNCTIONS.
This chart shows (a)} actual r(t) for 12-month moving average of a random
series; (b) theoretical r{£); {(e¢) r(t) for original random series.

The derivation of formula (10) of Section 4, ean be given quite
simply in terms of the present theory. Thus, we wish to determine
the lag correlation between the differences of orders m and n respec-
tively, that, is, between the functions

A% Y = a0l Bism — wCi Tisms T mCz Tisma + -+ + (=1)™ oCr %4,
4+ ¥i= uCo Lim — ncl Timy + ncz Tisng T+ (—'1)" nCn *i.

By reversing the order of the terms, we may write these expres-
sions in the form :

a» U= (_l)m[mcn Xy — mC1 Ting -0+ {_l)mmco xi+m] »
A Y= (=1 [Co Zi — #C: Tiaa + -+ + (1) 40, Zisn] .

These sums are now in the standard form and we may then readi-
ly compute '

W’;‘ W: + W’;‘H W'; MRl o W: W:H
= (__.1)mm.t [mct nCo + mctu ncx + ek mCm nCm-t}
— (_1)m+n+¢ mcmt .

The lag correlation, p{™* , between the two differences is then
immediately written down from this identity and is found to be

m+nCn+t

vzmcm 'mcn ‘-

P:m-ﬂl = (_1) minst
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7. The Theory of Sequences and Reversalst®

As we have stated in the first chapter, the theory of runs is close-
ly related to the theory of random series. Moreover, its nonmetrical
character, since it depends only upon the distribution of the signs of
the terms and not upon their magnitudes, makes it especially simple
in application.

The theory of runs is concerned with the signs of the first differ-
ences of the elements of a time series. These differences may be plus,
minus, or zero, but since zero differences are comparatively rare, it
is usually not necessary to differentiate the three classes. A zero dif-
ference may generally be regarded as having the sign of the preced
ing difference. :

A run is defined as a sequence of like signs and its length is the
number of like signs. A reversal, as contrasted with a sequence, oc-
curs when a positive sign is followed by a negative one, or vice versa.

The ratio of scquences to reversals is defined by the fraction

E(S
(1) =

where E'(S) is the expected number of sequences, and E(R) is the
expected number of reversals.

For purposes of illustration we shall consider a random series
and an economic time series. The random series is the one given in
Section 1; the economic time series is the Dow-Jones industrial aver-
ages from which the random series was constructed as explained in
Section 1. Since there are 204 items in each series, we shall have
tables of signs with 203 entries, and a total of 202 sequences and re-
versals. These tables of signs, sequences (S}, and reversals (R), are
given in the accompanying table.

A count of the sequences and reversals shows that for the ran-
dom series we have § = 57, R = 145, and for the Dow-Jones indus-
trial averages S == 113, R — 89. Hence, designating the ratios re-
spectively by p, and p., we obtain », = 57/145, = 0.3931, pz = 113/89
== 1.2696 .

In order to examine these ratios more carefully we shall first
state a few of the results which have been obtained in the theory of
sequences and reversals and in the closely related theory of runs.

12 Much of the material in this section is taken from an article by H. E.
Jones, “The Theory of Runs as Applied to Time Series,” in Cowles Commission
for Research in Economiecs, Report of Third Annual Research Conference on
Economies and Statistics, 1937, pp. 33-36.
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TABLE OF SEQUENCES AND REVERSALS

n 1 II| »n 1 Il = 1 1I|4‘n I IIj n I I
! +BR —Si42 +R +S| 8 —R +R|124 + R —R 165 +R +R
2 R —8i43 —S +R{ 8 +RBR —S[135 —8 + R|166 —R — S
% +8 —R|44 —R —E! 8 —8 —R|126 —~R —S|167 +8 —8&8
A +R +S[45 +S +sl 8 —R +38i127 + R —S|168 +R — 38§
h —R +8i46 +R + S| 8 +R +Rj128 —S —Si169 —R —§
6 +R +Si4T —S 4+ R| 88 —RB —R[129 —B —S|170 + S —R
7 —8 +R[48 —R —S| 8 +R 45130 +R —R|{171 +R + &
8 —R —Sl49 + S —R| 90 —R L §|181 —S 4+ S[172 —R + 8§
9 +8 —S!50 +S +8]91 +8 +S|182 —S +R[1713 +R + 8
10 +%8 —R|51 +R +5, 92 +8§ +5|133 —R —Si174 —E +E
11 —5 +Si52 —S +8} 938 + B +5|13¢8 +B —RI175 +B —8
12 —S§ 4 R53 —R +Rj 94 —R +R|135 —R + S|176 —R — S
4 —S —Si54 +R —R{ 9 +R —R136 +R +R|177 +R —R
4 —R —R|55 —R + Rl 9 —R +S|137 —R —R|118 — S + S
1h +B +S|56 +B —S; 97 +R +S138 + R 4+ S'179 —R +R
16 —R +Si57 —S — S| 98 —R +RI139 —R +R[180 + 5 —R
17T +8 4+ 8ij58 —R — 8,9 +R —Si140 +-R —E|181 +R 4+ S
18 + R +8i59 +B —Rj100 —R —Rj1d1 — 8§ +S|182 —R + 8§
19 —R +R|60 —R +R:101 +R + S1142 —S -~ R'18 +RB +R
20 +R —R|61 + R —Ri{102 —R +R|143 —R —S|18¢ — S —R
2t —R +S62 —S +R{103 +8 —R[144 +S —S[18 —S +R
99 +R +S63 —R — Si{104 -+S + S|145 +R —R |18 —R —R
28 —R + S|64 +R —8'105 +RBR + S[146 —S + S|187 +R + §
24 +S 45165 —S —E/106 —S + 5|17 —~E + 5|18 —S +R
25 +R -+ 5166 —R +S/107 —R + S|148 + R + S!189 —R —R
26 —S +S|67T +R +R|108 +R +R[149 —R + S|190 +B +R
27 —R L R|68 — R —S|109 —R —R|[150 + R +8/191 —8 — S
28 +R —Ri69 + R —S{110 +R +R[151 —R + §1192 —R —§
29 —R +S.70 —R —R|111 —R —R|152 +R +R 193 +R —R
30 +R +S/71L +8 +8|112 +R +R|153 —R —S5{194 —R +R
41 —8 +R|72 +R +Si113 —S —R|154 +R —RI[195 +R — S
32 —R —R!73 —8 +R|114 —R + 5155 —RB +R{196 —R —3S
33 +S +S!714a —R — 8115 +RB + 8156 + R —S|197 +5 —R
4 +R +R|75 +R —S|116 —S + R[157 —R —S$198 +S + 8
38 —F —S|76 —§ —Si1l7 —BR —R (158 +R —S199 +E +F
% +8 —S!TT —R — S[118 +R +R{159 —R — S|200 —S — 8
%7 +R —R|78 + R —R!119 — R —S 160 +R — S|201 —R — S
%8 —E +R|T9 —S +R120 +S —5yi6l —R —S202 +E —F
39 +R —S|80 —R —5|121 + R —S|162 +R —R 208 — -+
40 —§ —Si8 +S —Si122 —R —R|163 —E -+ R |204

4l —R —R|82 +R —RI123 +S +E|164 +5 —R

Column I gives the signs of the differences of the random series and enumer-
ates the sequences (S) and the reversals (E). Column II refers to the Dow-Jones
industrial averages over the period 1897-1913.

For a random series of normally distributed elements, the ex-
pected number of reversals is given by the formula

2
(2) E(R)=§(n*2) ,

and the standard error is equal to

118ee Jones, loe. eit.
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1 -
(3) oR=§V2(n—2).
Sinee the sum of the sequences and rexersals is equal to n — 2,
that is,
(4) E(R) +E(S)y=n—-2, _
it is clear that ¢, for a random series of normally distributed ele-
ments, is given by

E(S

If v is the length of a run in a random series of normally distrib-
uted elements, then the expected number of such runs is given by the
formula 2

2[(v* + 3o+ 1) (n—7v) +2(v+ 2)]
{(v+3)! :
We also note that if v is multiplied by its expected value and if

this product is summed over all the runs, this sum should be equal to
n — 1 ; that is,

(6) E(v) =

') SvB@w) =n—1.
If we apply these formulas to the random series given in the
table, we find that

E(R) =3} (202) =135, o, =} VA0E=6.70.

As we have already seen the actual number of reversals was 145,
the difference between this figure and the actual value being less than
20 .

R
The following table gives the distribution of runs, both positive

12 This formula is due to. L. Besson, “On the Comparison of Meteorological
Data with Results of Chance,” (translated from the French and abridged by E.
W. Woolard), Monthly Weather Review, Vol, 48, 1920, pp. 89-94. The formula
as implicitly given by Besson in the table in the second column of page 93 of his
article was actually

E @) :2(1'2 +3v+1){n—v— 2),
(v -+ 3)!
which is correct provided “end” runs are not considered. The formula as given

here was furnished the writer by P. S. Olmstead. Formula (7) is only approxi-
mately correct if the Besson value of E(v) is used.
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and negative sequences being indicated, together with the expected
count and the error observed.

TABLE OF RUNS OBSERVED IN A RANDOM SERIES

Actual Count of Runs Expected Count of Runs
v Positive | Negative Total By | Error
runs runs i
1 53 45 a8 84 14
2 16 24 40 37 3
3 4 3 7 11 —4
4 0 1 1 2 —1
b 0 0 0 0 0
Totals 73 73 146 134

If we consider next an accumulated random series, that is to say,
a series whose first differences are random, we find that the expected
number of reversals is given by

(8) E(R)y=%}(n—2),
with a standard error of
(9) o, =3 V(n—2y .

The ratio of sequences to reversals is consequently equal to 1;
that is,

_E®) _

(19) P=E R

1.

We can obtain formula (8) by the following argument: In n ob-
gervations there are (n—1) first differences. In this set of (n-—1)
first differences there can be S sequences and (n—2) — S reversals, if
we assume that the probability of getting a sequence is equal to the
probability of getting a reversal. The number of different orders in
which (n—2) things can be arranged in two sets, § and (n—2) — S,
is (n—2)1/8!1(n—2—8)! = ,.Cs. But a sequence can occur when
cither a rise follows a rise, or a decline follows a decline. The total
number of samples containing S sequences, therefore, will be 2 - ,,Cs .
Since there are 2*! possible samples, the probability of obtaining S
sequences will be given by the equation

(11) P(S) :z_f“

Now the expected number of sequences, E (S), will be that value
of § which makes P(S) a maximum; that is to say, it will be the value
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of S which satisfies the inequalities

P(S—-1)
P(S+1).

It is easily seen that the value § = 1 (n—2) is the desired value,
and equation (8) follows immediately from (4).

The distribution of runs in an accumulated series in which, as
we have assumed before, the probability of getting a sequence is equal
to that of getting a reversal, is given by the formula

P(8) _a,{

(12) B =221,
with a variance equal to
(13) o= 32;1 [1— (20—8) /2] .

In the above analysis we have assumed that the probability of
getting a plus sign is the same as that of getting a2 minus sign. This
would be the case, for example, if our signs are determined by the
toss of a coin, a plus sign for a head and a minus sign for a tail. But
the situation is somewhat more complicated if the probability is p
for obtaining a plus sign and ¢ for obtaining a minus sign, p + ¢ =1.
L. v. Bortkiewicz has considered the problem of runs under these
more general conditions and has obtained the following formulas for
the expected number of runs of length ¢+ for an accumulated series:1?

(14) E(z) = (n—1) p* ¢ 7oy,

where we abbreviate
re=pF + g~

The variance of v is given by the somewhat complex formula
(15) 2= (n—1) [P* @ Tour — 2 P° @* Tpns — (20—1) 72
~4(2v+1) 2 — (20+8) 72+ BV Ty Thy
— 2(2v+1) 7 Py + B(V 1) 7yr Ton]

Since the first term is generally dominating, we have as a first
approximation for the standard deviation the following:

(16) o =pgV(n—1) 1%, .

12 See Die Iterationen, Berlin, 1917, xii + 206 pp.: in particular, pp. 80-87.
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Formulas (12) and (13) are seen to be special cases of (14) and
(15) where weset p =g —3%. _

Since the Dow-Jones industrial averages, whose sequences and
reversals we have tabulated above, simulate an accumulated series,
we may apply these formulas to the actual count obtained from this
eeonomie time series,

Thus for n = 204, we obtain from (8) and (9) the values

E(R)=14 (202) =101, o, =}Vv202=T.1.

R

A4 we have already seen the actual number of reversals was 89, the
difference between this figure and the actual value being less than 20 .

The following table gives the distribution of runs, together with
the expected count, the standard deviation of #, and the error ob-
nerved.

TaBLE 0F RUNs OBSERVED IN AN EconNoMmic TIME SERIES

! Actual Count of Runs | Expected Count of Runs
v Positive | Negative Total ‘ Eip)y Oy Error
runs ransg |
1 21 18 29 | 51 7.14 —12
2 13 6 19 ‘ 25 5.26 — 6
3 6 12 18 | 13 3.54 5
4 3 2 E 8 2.49 —1
5 | e 3 5 | 3 1.75 2
6 | 1 0 1 2 1.23 —1
7o 2 1 3 & 1 0.87 2
8 i 0 4] 0 ! 0 0
Totals | 48 42 90 | 101

In the foregoing analysis we have tentatively assumed that the
stock price series is an accumnulated random series, a conclusion that
would be both interesting and important if it could be established.
We shall therefore subject the results which we have just obtained to
further analysis.

In the first place, we observe that a difference as large as that
ohserved between E(R) = 101 and the actual count of 89 would be
uhserved only about 9 in 100 times since the difference is 1.69 times
the standard error. Let us now compare E (v) with the actual count
of runs by means of the Chi-square test of Karl Pearson.’* Assum-
ing that there are 8 frequency classes, we compufe »? — 12.18, which
viclds a Pearson probability of 0.10. This means that in approxi-
mately 10 cases out of 100 a fit as poor as this will be obtained by

14 S¢e Davis and Nelson, Elements of Statisties, 2nd ed., 1937, pp. 202-206.
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random sampling.’* Our conclusion is, then, that the economic series
under examination probably has more structure than an accumulated
random series. This conclusion will be further strengthened by the
analysis of the next section.

8. An Application to Stock-Market Action

The theory of sequences and reversals has been used by Alfred
Cowles and Herbert E. Jones in a study of the structure of stock mar-
ket indexes.’* As will be explained later in this book, a number of
professional speculators have adopted systems which depend in one
way or another upon the principle that there is a tide in the move-
ments of the stock market and when this tide is running, it is highly
advantageous to swim with it. The existence of such a3 movement can

Number of . Probability
Unit Index Period Observa- pit)y of Chance
tiona Occeurrence

20 Minutes | Harris-Upham 1935-1936 | 2800 1.44 | <0.600001
1 Hour Dow-Jones Hourly Avgs. 1933-1934 800 1.29 0.00040
1 Day Dow-Jones Hourly Avgs. 1931-1935 | 1200 1.18 0.00094
1 Week Standard Statistics 1918-1935 938 1.24 0.00386
2 Weeks Dow-Jones 1897-1935 976 1.02 0.80258
3 Weeks Dow-Jones 1897-1935 652 1.08 0.30772

1 Month Index of R. R. Stock Prices | 1835-1935] 1200 1.66 | <0.000001

2 Months |Index of R. R. Stock Prices | 1835-1935 600 160 | <0.000001
3 Months |Index of R. R. Stock Prices | 1835-1935 400 1.29 0.01242
4 Months |Index of R. R. Stock Prices | 1835-1935 300 1.18 0.16452
5 Months |[Index of R, R. Stock Prices | 18351935 249 1.52 0.00120
6 Months |Index of R. R. Stock Prices | 1835~-1935 208 1.40 0.01778
7 Months |Index of R. R. Stock Prices | 1835-1935 178 1.38 0.03486
8 Months |Index of R, R. Stock Prices ; 1835-1935 156 1.48 0.01640
9 Months i Index of R. R. Stock Prices | 1835-1935 128 1.57 0.01016
10 Months | Index of R. R, Stock Prices | 1835-1935 124 1.49 0.03600
11 Monthg |Index of R. R. Stock Prices | 1835-1935 113 1.27 0.21870
1 Year Index of R. R. Stock Prices | 1835-1935 100 117 0.42952
2 Years Index of R. R. Stock Prices | 1835-1935 50 1.63 0.08726
83 Years Index of R. R. Stock Prices | 1835-1934 33 1.46 0.289014
4 Years Index of R. R. Stock Prices | 1835-1935 256 0.85 0.68180
5 Years Index of R. R, Stock Prices | 1835-1935 20 1.00 1.00000
6 Years Index of R. R. Stock Prices | 1835-1931 16 0.67 0.44130
7 Years Index of R. R. Stock Prices | 1835-1933 14 0.71 0.56192
8 Years Index of R. R. Stock Prices | 1835-1931 12 0.22 0.03486
10 Years Index of R. R. Stock prices | 1835-1935 10 0.60 0.74140

'% The reader will observe that the Chi-square test actuzlly cannot be applied
to the distribution given here. The sum of E(v) does not equal the frequency of
the observed runs, and the conditions of the test are violated. However, the test
probability gives a lower bound to the actual probability, and the eonclusions may
be accepted safely.

16 “Some a Posteriori Probabilities in Stock Market Action,” Econometrica,
Vol. 5, 1937, pp. 280-294.
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be exhibited by means of the ratic of sequences and reversals defined
in the Iast section.

Let us designate by p(f) the ratio of sequences to reversals,
where ¢ designates the time unit to be employed. Thus if ¢ is one day,
we mean that () gives the ratio of sequences to reversals for stock
market averages one day apart. The object of such an investigation
is to answer the question as to the degree of randomness inherent in
the movements of the stock market, and whether or not there is an
optimum length of time for which structural inertia may be discerned.

The accompanying table gives the ratio of sequences to reversals
over a range varying from 20 minutes to 10 years. In computing the
column entitled “Probability of Chance Occurrence,” it has been tenta-
tively assumed that the economic time series considered are of the
nature of an accumulated random series, an assumption that is not
entirely unreasonable as we have seen from the analysis of the pre-
ceding section.

The probabilities have been estimated in the following manner:
If we designate by S the actual number of sequences and by R the
number of reversals, then eliminating K from the equations § + R =
n—1 and S = p B, we shall have

p—1

S=P+1(n~—2).

But from the last section the expected number of sequences,
E(S), is equal to $(n—2) and the standard deviation is }(n-—2)1.
Hence if we consider the difference

RATIO RATIO
2.00 2.00
\ ™~

1.50 Bas 7 Y [, 1.50

1 ]
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FIGURE 40.—RATI0O OF SEQUENCES T0 REVERSALS OF STOCK PRICE INDEXES
FOR VARIOUS TIME INTERVALS.
(Logarithmic time scale in units of 20 minutes.)
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_S—E(S) _p-1

g

o _p+1

V(n=2y,

we see that r gives a measure of the variation of the number of se-
quences from the expected number in terms of standard errors. Con-
sequently the probability of a chance occurrence of the observed ra-
tio, on the assumption that the series is an accumuilated random one,
is given approximately by the function

P(r)=1— \lé ffe—w dt .
[1]

From the table of averages, it is clear that for some time units,
such, for example, as one month, there is a wide variation between
the actual and the expected sequences. Hence, as the authors say,
“this evidence of structure in stock prices suggests alluring posmbxl-
ities in the way of forecastmg "

ABSOLUTE PERCENTAGE CHANGES IN SToCK PrICE INDEXES

I Average | Standard

it Period Number Absolute Deviation
of Ob- Change in of

servations Per Cent Average
20 Min. July 9, 1936-July17, 1936 111 ’ 0.12 0.01
1 Hour Sept. 12, 1935-C0ct. 6, 1935 102 ! 0.32 0.03
2 Hours [Aung.1, 1935—0ct 6, 1935 103 . 0.47 0.04
1 Day Aug, 27, 1934-Dee. 31 1934 102 \ 0.73 0.07
1 Week |Jan. 6, 1913-Dec. 31, 1934 1128 | 256 0.21

|

1 Month |Jan. 1, 1897-Dec. 31, 1934 451 . 3.70 0.46
2 Months [Apr. 1,1918-Dee. 1, 1934 100 5.02 091
3 Months |Jan., 1835-Dec., 1934 400 8.92 0.79
4 Months |Dec., 1900-Dec., 1934 100 I 10.79 0.99
b Months |Jan., 1893-Sept., 1934 100 8.62 0.82
6 Months Dec., 1884-Dec., 1934 100 | 10.04 1.20
7 Months |June, 1876-Oct., 1934 100 | 1181 1.30
8 Months |April, 1868—Dec 1934 100 11.30 1.13
9 Months |June, 1859 June, 1934 100 | 1278 129
16 Months ;Jan., 1851-Apr., 1934 100 I 13.00 1.31
11 Months |Dec., 1842~July, 1934 100 ‘ 13.99 1.25
1 Year Jan,, 1831-Jan., 1934 103 14.70 1.43
2 Years |(Jan,, 1831-Jan., 1933 51 2258 278
3 Years [Jan.,1831-Jan., 1933 34 28.03 4,81
4 Years |Jan., 1831-Jan., 1931 25 30.59 4,77
o Years |Jan, 1831-Jan., 1931 20 33.95 5.71
6 Years [Jan.,1831-Jan., 1033 17 38.59 8.90
7 Years Jan., 1831-Jan., 1929 14 33.54 | 9.62
8 Years |Jan,, 1831-Jan,, 1927 12 32.38 b 916
9 Years |Jan., 1831-Jan., 1930 11 4598 | 13.64
10 Years :Jan,, 1831-JFan., 1931 10 51.64 ¢ 1090
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In order to explore this matter, an extensive study was under-
taken to determine the average percentage change in stock prices for
various units of time. Thus the difference between the index at the
beginning of one unit and the beginning of the next was divided by
the initial value to indicate the percentage change over this unit of
time, The results of this study are contained in the accompanying
table,

It will be observed from these data that the average absolute
change in per cent increased essentially in an exponential manner with
the period employed. It must not be assumed from this, however, that
the same general expansion will take place in the next century, since
our data here describe what has happened to stock prices over one of
the most remarkable periods of industrial expansion in’the history
of the race.

But since it is clear from the analysis that there has been an in-
ertia present in the movement of stock prices, it will be instructive
to compufe what would have been the net gain o an investor had he
made use of this important property of the series. The calculations
" are taken from the original article.

For this computation: let us denote by I(#) the expected annual
net profit in per cent, by p(£) the ratio of sequences to reversals for
the time interval ¢ , by C(¢) the average change per time interval ¢ in
per cent, by ¥ (f) the number of time intervals, ¢, in one year, and by
B the brokerage cost for one complete trade, in per cent.

We shall assume that the investor changes his position only after
the occurrence of each reversal. Hence the average net fime in the
right direction between changes of position will be [p(f) — 1] time
units. Since the average move per unit of time is C(¢), the gross gain
per position will be [p(f) — 1] C(¥), and the net gain will be this
amount diminished by B. To reduce this to a ratio we divide by 100
and the entire quantity we shall designate by i(£) ; that is

i(t) =0.01 {[p(f) — 1] C(¢¥) — B}.

Singe the investor will be in the market in the right direction
p(t) units of time and in the wrong direction 1 unit, the total time
per position will be p(¢) + 1, and the number of positions taken per
vear will be Y (%) /[p(¢) + 11. Let us designate this quantity by
n(t) ; that is,

nw({t) =Y () /[p(t) +1].

Hence the total net annual gain, in per cent, will be given by the
formula
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(1) I(t) =100 {1 +i(t)]~® —1}.

Since the data necessary for the computation of I{¢{) have been
given in the preceding tables, it is possible for us to test the efficacy
of this method of stock investing. The results are given in the fol-
lowing table:

Time Unit pit) cit) Expected Annua! Net Profit for

Brokerage Costs of
1% %% | 2%
1 day 1.18 0.73% | —67.4% —83.0% —91.1%
1 week 1.24 2.56 — 8.56 ~-18.6 —27.6
1 month 1.66 3.70 6.66 425 200
2 months 1.50 5.02 3.66 2.44 1.28
3 months 1.29 8.92 2.79 191 1.02

As one might expect, units as short as one day or one week are
associated with too small an average percentage change to show a
profit. The average net gain per trade is largest for two months, but
the number of changes of position per year reduces the annual net
gain below that of one month. The conclusion is thus reached that the
optimum period of time for this type of investing is one month. In
spite of this positive conclusion that a profit can be made by this
method of making use of the inertia of the series, a study of the con-
sistency of the data for short periods of time shows that the method
1s operative only over very long infervals and could not be used for
obtaining annual] profits.

However, the analysis clearly shows that the time series for the
stock market prices has a structure and that this structure is visible
in a predominance of sequences over reversals. Later in the book it
will be shown how the Dow theory of forecasting essentially makes
use of this property.



CHAPTER 5

THE DEGREES OF FREEDOM IN ECONOMIC TIME SERIES
1. Preliminary Definitions

From the astronomer and the physicist we have derived the con-
cept of degrees of freedom possessed by the elements of a time series.
A particle moving in a line in a plane has one degree of freedom, but
if it may wander without restraint in the plane then it is said to pos-
sess two degrees of freedom. The theory of the kinematics of a rigid
body may properly begin with the proposition that such a body has
six degrees of freedom. The argument is illuminating and may be re-
produced as follows: The position of a rigid body in space is fully
determined by the posifion of three points within it which are not
collinear, since the position of any other point is determined by ref-
erence to the given points. But the nine co-ordinates necessary for
the specification of the three points are not independent, since, in a
rigid body, the three distances between the points remain unchanged.
Hence the number of degrees of freedom will be the number of co-
ordinates diminished by the number of relationships between them,
that is to say, 9 — 3, or six degrees of freedom,

In recent years the concept of degrees of freedom has had an
increasing importance in statistics. Although the concept was fa-
miliar to Gauss, the modern use of it was introduced by “Student” in
1908 and given increasing importance in the writings of R. A. Fisher
and his followers. Strange to say, however, there have been few pre-
cise statements of the meaning of the term degrees of freedom in sta-
tistical literature, Recently, however, Helen M. Walker has done sta-
tistics a favor by devoting an article to the subject.?

In mechanics the term degrees of freedom has long had a precise
meaning, Thus, if we have a system of n material points and these
points are entirely free to move, then 3n co-ordinates would be re-
quired to specify their combined configuration. But generally there
will exist a system of restraints between the points, as we have indi-
cated above in the case of a rigid body, and these restraints will be
specified by a system of % equations between the co-ordinate variables.

1%Degrees of Freedom,” The Journal of Educational Psychology, Vol. 8f,
1940, pp. 253-269.
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These equations may be represented as follows:
(1) Filoi, %, 2582,%2, 25 2y ¥nr 2a) =0, 1=1,2,-,k.

If the particles are free to move in any direction and if 3n co-
ordinates are necessary to specify their configuration, then we say that
the system has 3n degrees of freedom; but if there exist & restraints,
then the number of degrees of freedom is 3n — k. Thus if a single
particle 1s constrained by elastic forces and initial boundary condi-
tions to move in a line in a plane, it has 3 — 2 =1 degree of freedom.
The actual specification of its motion as a function of time may in-
volve the fitting of a function with p parameters.

In the statistics of variance a similar concept is invoked by the
term degrees of freedom. Thus we find the following statement by J.
0. Irwin:

We notice that the number of degrees of freedom is equal to the number of
observations made, less tha number of independent relations between them,

account being taken of the fact that the population mean is itseif estimated from
the sample.12

In the statistics of time series, however, the precise meaning of
the term degrees of freedom has not been clearly stated, or, at any
rate, it has not been incorporated into the theory to the same extent
as it has been in the statistics of variance. We are thus free to for-
mulate the concept in what appears to us to be the most useful form
for our present purpose. It will be seen that we are adapting the
physical concept to the problem of economic time series.

Let us assume that we are concerned with the N elements of a
time series

(2) y(t): yl:yzjya""yyh‘-

If the elements of y () are random numbers, then there will obvious-
ly exist no relationship between them of the type specified by (1). In
this case we shall say that the number of degrees of freedom is N.
But if, on the contrary, the values of y(¢) are given by the curve

y(t) = Asin kt,

then only two parameters are necessary for their specification and
the number of degrees of freedom is 2. If it should happen, however,
that one of the two parameters was specified a priori, then the num-
ber of degrees of freedom reduces to 1. This is illustrated by the case

1a “Mathematical Theorems Involved in the Analysis of Variance,” Journal of
the Royal Statistical Society, Vol. 94, 1931, pp. 284-300; in particular, p. 287.
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of the simple pendulum swinging in a plane. The motion of the bob
for small amplitudes is described by the sine function just written
down. But the pendulum has only one degree of freedom since the
parameter % is equal to the square-root of ¢/L , where g is the accel-
eration of gravity and L is the length of the pendulum ; hence & is not
statistically determined. The parameter 4, on the other hand, de-
pends upon the initial displacement of the bob and thus is a statistical
observable,

Another aspect of the problem of the pendulum that may be used
to guide our thought is found in the fact that the energy of the pendu-
lum system, that is to say the total kinetic energy possessed by the
bob at the bottom of the swing or its potential energy at the top, is
proportional to A?. But we also know that the variance of the func-
tion y(f) = A sin kt taken over any number of complete cycles is
equal to $4%. Hence, it would be attractive to relate the computation
of the number of degrees of freedom to the computation of the energy,
or what is the same thing, to the computation of the variance ac-
counted for by the functions used in the description of the time series.

We may then proceed as follows: Let us suppose first that ¥ (£)
may be described completely by a set of n functions which contain p
statistical parameters. We shall say that y (£) has np degrees of free-
dom. Thus, if ¥(¢) consists of a set of N random numbers, these can
be completely represented by a Fourier series consisting of 3N har-
monics each containing two parameters. The number of degrees of
freedom is thus N .

One of the principal problems in the analysis of economic time
series is to determine how many parameters and how many functions
are necessary for the specification of the elements of the series; that
is to say, to determine the number of degrees of freedom involved in
the observed variation of the series. But it is easily seen that an im-
proper choice of functions may lead to an excessive estimate of the
number of degrees of freedom. For example, if k& in the function
% = A sin kt does not belong to the Fourier sequence described in Sec-
tion 4 of Chapter 2, then the description of ¥ by a Fourier series
would require all the 4N components and we might reach the errone-
ous conclusion that the number of degrees of freedom was N instead
of 2. The concept is thus related to the character of the functions se-
lected for the representation of the series. A choice of the compo-
nentg of a Fourier series would lead to one estimate and a choice of
a series of Legendrian polynomials would lead in general to another.
Although a proper choice of functions is often indicated by the nature
of the series itself, we shall assume that the real number of degrees
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of freedom is the smallest number possible if all types of functibl}al
representation were tried. It is obviously impossible to make such a
determination, but the criterion would immediately differentiate one
set of functions as better than ancther. Moreover, in most cases, by
the use of harmonic analysis and other statistical devices, it is pos-
sible to make a good approximation to the real number of degrees of
freedom. ‘

Since the point of view adopted in this book has been strongly
colored by classical mechanics, principally because economic time se-
ries in many respects resemble series derived from systems of physi-
cal variables, it will be eonvenient to approach the problem in hand
through the concept of energy. If this appears strange to the statis-
tical reader, he may translate energy into variance, The mathematieal
theory of energy is in most regards indistinguishabie from the theory
of variance. But the latter concept has been associated mainly with
static populations, while the former is a concept intrinsic to all dy-
namic phenomena. Hence, we shall define as the total energy of sys-
tem (2), a quantity proportional to the variance ¢°, where o® is the
squared deviation of the clements of the time series from their aver-
age value. Symbolically we shall write this in the form

E:kaz,

where k is a factor of proportionality which depends upon the nature
of the series itself.

It will be convenient, also, to concern ourselves with linear rela-
tionships, and we shall assume that y{f) can be represented by a
iinear function of the form

(3) y(t) = i, (t) + a‘.-y“_’(r') + .+ [I,ﬂL"(t),

where the u, () are functions defined either as continuous mathemat-
ical quantities such as sines and cosines, or by the statistical elements
of an economic time series,

As is well known, any linearly independent set of functions may
be replaced by an equivalent set of normalized orthogonal functions of
the type described in Chapter 2. The technique for obtaining such a
set has already been explained in Section 12 of that chapter. Let us
now assume that such a set has been obtained from the functions
u;(t), and let the elements of the set be »,(?), v, (2), .-+, v.(¢). In
terms of these, equation (3) then becomes

(4) (&) =g, (F) + v {t) + .- + Buva(t).
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If this'set of functions is closed (see Section 3 of Chapter 2), a
necessary condition for which is that » is infinite, then % (#) can be
described completely by the »;(¢). In general, however, a finite num-
ber of the functions will give a sufficiently close approximation to
y (%) and we can write

(5) ﬁzl;‘.l + [5'2212 + e —}— ﬁ‘_’nin____cz ,

where 4, , 4, ---, 1, are proportional to the variances of the functions
0, (£), v2(t), ---, v, (f) as stated in Section 11 of Chapter 2.
The quantities

(6) E; :kﬁazli

will be referred to as the elementary energies associated with the func-
tions v, (¢).
-It is clear that we shall have from (5) the relationship

E1+E2+"'+En:E,

where E is the energy of y(¢).

If the set of functions »;(#) is not closed, then the sum of the
elementary energies will be less than the total energy as one sees from
Bessel’s inequality discussed in Section 11 of Chapter 2. This condi-
tion is the one that usually applies in the application of this theory to
economic time series. :

As we have already indicated above, one of the most important
problems in the analysis of economic time series is to determine the
number of functions and the number of parameters necessary to spe-
cify a given series. But the actual determination of the system of
functions, u:(t), which accounts for the largest amount of energy
with the smaliest number of degrees of freedom is the second prinei-
pal problem of economic dynamics. This choice of functions must also
be accompanied by some a priori judgment as to the essential charac-
ter of the functions thus selected for the approximation. For example,
an economic time series may be equally well accounted for by means
of a system of Legendrian polynomials or by a system of harmonic
terms, since both sets are closed, and the number of degrees of free-
dom might actually be the same. But the harmonics may be a logical
choice for the representation, if cycles are known to be present in the
series, whereas the Legendrian functions may have no interpretation
at all.

The problem of determining the functions to be employed in the
approximation is clearly one of great difficulty, and it cannot be
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solved by mathematics alone. Experience and a knowledge of the un-
derlying phenomena are required. Thus the actual construction of a
new science is a long and difficult task, since the interrelationships
between the observed phenomena must be discovered by the process
of experimentation on the one hand and intuition on the other. The
difficulties in constructing a social science are even greater than the
difficulties encountered in constructing a physical science, since in the
former the relationships are seldom functionally exact and must be
explored through the medium of correlations instead of complete func-
tional relationships.

Before proceeding to the mathematical details by means of which
we may attain a measure of the number of degrees of freedom that
exigts in the assumed relationships between a set of variables, it will
be worth while to consider the nature of the probabilities which are
encountered in establishing these relationships. This problem is dis-
cussed in the next section.

2. Economic Time Series as a Problem in Inverse Probability

The problem of determining struecture, such as a more or less reg-
ular periodicity in economiec time series, is essentially a problem in
inverse probability. We are required to state the probability that a
certain structure exists, while we are in complete, or almost complete,
ignorance as to the generating causes.

As an illustration of this point of view, let us consider the essen-
tial difference between the two observed phenomena of a 12-month
cycle in egg prices and a 40-month cycle in the price of industrial
stocks. In the first instance we are aware of a satisfactory causal re-
lationship. The change in the seasons has a known and measurable
effect upon the production of eggs. Hens lay in the spring and cease
laying in the fall. There is thus a large seasonal variability in the sup-
ply function and this variability is, in turn, reflected in prices. But
what shall we say about the 40-month eyele in the price of industrial
stocks? Let us examine the statistical evidence. It can be shown that
the same cycle is observed in industrial production, constant in phase
but variable in amplitude. At times the influence of the cyele is
masked by larger trade trends such as those experienced during the
disruptive periods before and after the inflationary stock market of
1929. But since one also observes that the eycle in stock prices pre-

"cedes the eycle in production, we cannct, as in the case of eggs, at-
tribute the production cycle as the cause of the cycle in the former.
As a matter of fact, the reverse seems to be trye,
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Here, then, we have an economic phenomenon without any clear
a priori cause. What, then, shall we mean by the question: Is the 40-
month cycle a real economic phenomenon? It will be observed that the
answer to this question contains the crux of the problem of the analy-
sis of economic time series.

In order to investigate the problem thus invoked, suppose that
we first assume that the periodogram of stock prices has been exhib-
ited over a period in which the phenomenon is evident. Let us then
inquire into the nature of the significance of the amplitude B ob-
served for the period T = 40.

In a time series for which it is known a priori that cycles should
appear, although the actual cycles may not be known explicitly, the
relative significance of one amplitnde in comparison with others can
be stated as a direct probability. The technique for obtaining this
probability will be discussed in subsequent sections.

Without invoking questions of statistical procedure, let us assume
that we know the distribution of the values of R as a frequency func-
tion of the form y = F(R), where J2 F(R)dE = 1. Then the prob-
ability that R will have a value between R, and R, + dR is given by
F{R,)dR , and the probability that R will exceed R, in value is

1) P=1- fﬂnF(R)dR.

This probability may be regarded as a measure of the significance of
R,

But in the analysis of the structure of economic time series the
problem ig seen to be essentially different. Thus, suppose that by (1)
we have found that the significance of R for T = 40 is measured by a
probability P = 0.005. That is to say, the probability of observing a
a value of R as large as the one actually observed is five in a thousand.
This would naturally imply high confidence in the actual existence of
a 40-month cycie in stock prices if we knew that cycles were really
present in the series. But unfortunately we have no a priori theory
which will account for the existence of such a cycle, and yet we are
asked to have high confidence in the reality of the cycle as an eco-
homic phenomenon,

But the important question is actually something else. We should
ask, as a result of the observation of R, whether or not the 40-month
cycle is to be regarded as a permanent characteristic of stock prices.
Obviously one may assume that either it is a permanent character-
istic, or it is mot. But what probability shall we then assign to these



182 THE ANALYSIS CF ECONOMIC TIME SERIES

two mutually exclusive propositions? In other words, having observed
a very improbable value of B, we now ask how this observation af-
fects our belief in the hypothesis that the 40-month cycle is a perma-
nent characteristic of industrial stock prices.

Let us phrase the question in terms of the language of inverse
probability, a theory which is clearly indicated as involved in the an-
swer to the question proposed. We may thus say: An event (the ob-
servation of the improbable value of R) is known to have proceeded
from one of two mutually exclusive causes (either the 40-month cycle
is a permanent characteristic of stock prices, or it is not). What is
the probability, p, that the event proceeded from the first cause?

We may assume that, if the 40-month cyele is a permanent char-
acteristic of stock prices, then the probability of observing so large
an amplitude ratio as that actually observed may be as great as p, =
0.995. If, however, the second is true, then the probability of observ-
ing the phenomenon is p. = 0.005. But what probabilities shall we
assign to the two mutually exclusive causes? Invoking the principle
of insufficient reason we might write P, =, P, =1 — P, = 1, Hence

the probability, p, that the event proceeded from the first cause would
be

0.995 X }

= = 0.995.
TO0E X I T 000X o

4

But a personal inquiry into our belief in this figure shows that it
is far from realistic. No one believes that the chances are 995 in 1000
that the 40-month cycle will be revealed by the periodogram of the
next, and as yet unknown, ten-year period of industrial stock prices.
Who, for example, would wager any considerable amount on this prob-
ability by actually adopting a speculative program based on his belief
in the permanence of the 40-month pattern?

It is thus clear that the principle of insufficient reason is not sat-
isfactory. That the 40-month cycle, or any other cycle, is a perma-
nent characteristic of stock prices must be regarded as highly improb-
able in the absence of any a priori reason for its existence. Let us
denote this unknown, but small, probability by P, and the contrary
probability by 1—F,. Then the probability, p, that the observed val-
ue of K appears as a result of the first cause, will be

0.995P, 0.995P,

2 = = .
2 p 0.995P, + 0.005(1—P,) 0.990P, + 0.005

This equation may be solved for P, and we thus obtain
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0.005p

3 = .
3) P 0.295 — 0.990p

Let us now assume that a survey of the evidence, and, in particu-
lar, a reflection upon the magnitude of the observed value K , has con-
vinced us that the probability that I has been derived from a true
40-month pattern in stock prices is as great as 0.50. In other words,
let us assume that p = 0.50. We now ask what the probability is that
the 40-month cyele is a permanent characteristic of stock prices. Sub-
stituting » = 0.50 in (3), we find that P, = 0.005. That is to say, in
spite of the fact that we have a half measure of belief that B must be
derived from a permanent pattern of stock price action, nevertheless
our belief is-only 5 in 1,000 that this permanent characteristic actual-
ly exists.

This analysis explaing, in part at least, the reluctance of econo-
mists to believe in the permanence of the 40-month cycle on the basis
of present statistical evidence. Few speculators, perhaps not more
than 5 in 1,000, who have observed the 40-month period in a time
interval A4 , will use this observation as the basis for speculation in
the subsequent time interval B'.

The reader at this point should observe that the argument which
we have given here depends upon the subjective judgment demanded
by the principle of insufficient reason. About this principle there has
always existed the greatest doubt and many writers on probability
have rejected the theory of inverse probability because of the in-
evitable intrusion of some assumption about the distribution of prob-
abilities in an unknown universe of cbjects. This does not mean that
the formula of Bayes which we have used is wrong, but that the as-
sumption of a uniformly distributed ignorance of fundamental causes
is abhorrent as the basis of a rational theory. The author has merely
attempted in this section to point out that there is usually involved in
speculation in the stock market a subjective judgment about the move-
ment of price averages, and that this subjective judgment is made for
the most part on the basis of insufficient reason since the probabilities
depend upon a mechanism about which little is known at the present
time.

2. Significance Tests and the Problem of Degrees of Freedom

The problem which we shall consider in the next few sections is
that of determining the significance of the parameters in a linear re-
lationship such as that of equation (3) of Section 1; namely,
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(1) y(t) = o (£) + atto (2) + -0 + a, Uy (L),

We shall assume, first, that the independent variables, u,(¢),
Uz{t), «++ , u.(t), have been determined by some a priori judgment.
For example, they might be harmonic terms suggested by a period-
ogram analysis of y(f); or they might be strictly economic variables
which observation shows are related to the dependent variable. Thus,
if y(%) is the price index of common stocks, then «, (¢} might be the
production of pig iron, %, (¢) the index of building, etc.

We shall assume, second, that the variables u;(#) have been ex-
pressed as deviations from their averages and that they have been
divided by their standard deviations, ;. If the number of items is
large, the standard error in the values of ¢; is small, and no essential
restrictions will have been imposed by this assumption. The case of
large samples is one frequently encountered in dealing with economic
variables.

Since it is difficult to define the clementary energies associated
with each of the variables in (1) because of their intercorrelations,
we shall next transform this equation into its equivalent in terms of
the normalized, orthogonal variables v, (), v.(t), «+- , v,(£). We thus
obtain

(2) Yy (&) = Bvi () + Bov2(E) + - + Buvn(i),
where the f§; are obtained from the «: by means of the equations

(3) ﬁ;zz":u,-,- a;.

im
The matrix, U = |||}, is the unit, orthogonal matrix defined in Sec-
tion 12, Chapter 2.
The problem, then, is to determine the significance of the elemen-
tary energies
(4) E;=kﬁ;“2i,

defined by equation (6) of Section 1. This measure of significance can
be made, of course, only by determining the distribution function for
the elementary energies E .

Fortunately this distribution function has been the object of con-
siderable study for the case where the v;(t) are sines and cosines, and
a satisfactory theory has been achieved through the studies of Sir
Arthur Schuster, Sir Gilbert Walker, R. A. Fisher, and others. An
account of these researches in their relationship to the problem of
harmonic analysis has already been given in Section 8 of Chapter 1.-
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It will be found upon examination that much of the theory will also
carry over to the case where the variables are any set of normalized
orthogonal functions.

The following definition of the number of degrees of freedom ob-
served in a function y(£), whose regression equation is (2), appears
Lo be a logical eonsequence of the point of view which we have adopted
above. If we define the quantity Er = ¢2/N as the energy of a random
clement, then the number of degrees of freedom possessed by the
variable ¥ () is given by the expression

(1- 2 Eﬂ)
—_— e 62

ER ’
where 3 E, is the energy accounted for by the p elements of the origi-
nal n variables, which have been judged to be significant by some test
depending upon the distribution function for E. Equation (5) may
be written more simply

(6) w=p+1+N(1—3E,).

In this formula p + 1 is used instead of p since one degree of
freedom is required in the specification of the arithmetic average.

Some objection may be raised to this definition of the number of
degrees of freedom, since it will yield a rather large estimate for most
economic time series. It must be remembered, however, that the num-
ber of degrees of freedom contributed by the second term is the num-
ber of degrees attributable to the random element. Thus, to account
for this random element a Fourier series of N(1 — 3 E,) terms would
probably be required. It seems reasonable, therefore, to attribute that
number of degrees of freedom to this element. We shall refer to p as
the number of significant degrees of freedom and to N(1 — = E,) as
the number of random degrees of freedom in the residual element.

Thus, in the example of Section 2 of Chapter 7, a total energy
F = 0.8866 is accounted for by four harmoniecs each containing two
terms. Since the series is composed of 300 items the number of de-
grees of freedom is estimated to be

#' =9 4+ 300(1 — 0.8866) — 43 .

But we know from the character of the series itself that the addi-
tion of one more harmonic term, containing two degrees of freedom,
will exactly account for all the energy. Hence the number of degrees
of freedom is actually 11 instead of 43, but this could not be known
without a further study of the residuals. Hence the estimate of 438 is
not unrealistie,

(d) n=p+1-+
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We now turn to a discussion of the significance tests for harmon-
ic analysis as they have been evolved by Schuster, Walker, and Fisher.

4. Schuster’s Significance Test in Harmonic Analysis

In order to understand the problem of determining sighificance
in harmonic analysis, let us consider the time series, y(¢). Let the
values A, and £, be computed by the formulas

27 nat

2 2 ¥y nat
Au: E t 4 v 3 Pn:“‘_ > t i el |
J My( ) cos N & N r%y( ) sir N

and let the squares of the amplitudes of the Fourier sequence be de-
fined as betore by

RP=A2>+B,*.

Schustet’s test of significance may then be formulated as follows:
Let Ry? = 46*/N be the mean value of the squares of the amplitudes
of the periodogram scquence R,2. Then the Schuster probability, Py,
that any squured wplitude, B2, chosen at random, will exceed « Ry®
18 given by

P,=e*.

We may reconsiruct the argument as follows: Suppose, first, that
the original observations, ¢ (¢), are normally distributed. Then, since
the 4, and B, are linear functions ol the observations, they will also
be normally distributed. Hence the probability that A4, lies between
A4and 4 + dA is

dl, = —— et g4,
T4 ‘/27!
where we define
N 2atn 2
0‘,;2——-0'2%0032 JIN :—N-—UE.

That is to say, the probability d/, may be written

dr, = Eie-myw:.
7 2o

Similarly, the probability that B, lies between B and B + dB is
given by
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dlg= _‘IY__;; - VB R

T o

Hence, the joint probability that A, lies between A and A +dA ,
while B, lies between B and B + dB is given by
N 1
P=-__ ___ gNR¥so® g
d p— e dA dB.
Replacing dA dB by R dR df, we may write this probability in the
form

N 1
P—=___. pNRYs0? Pz
d — 5 ¢ dR= dg.

_Now integrating over the area between the circles centered at the
origin with radii R and R + dR, we get as the probability that R®
shall lie between E? and R? + dR?

T

dp — 21;_2_ e-NR¥/40? dRz'

Hence, integrating this expression between the limits of B¢ and
o, we obtain as the probability that B? shall exceed the assigned val-
ue Rs® the quantity '

Ps"—_ N

o
402 f e—NR’MU” d’Rz - e-NR,g’/‘!U’ .
R

But the mean value of R? is equal to 4¢2/N so that we can write

R

Hence, if we assume that Bs®> = x Rx®, then the Schuster probability
becomes

Ps:e‘“.

As an example, let us apply this test to the periodogram of the Dow-Jones
industrial stock averages (1897-1914), which we have previously discussed. For
the original data we have the variance, 62 — 225.3154, and since N = 204, we have
as the mean of the Fourier sequence the value R,? — 402/N — 4.4179. Since
Schuster arbitrarily chose as his significant probability, Py — 0.005, we would
have for the corresponding multiplier, « == 5.30. Hence Schuster’s test would say
that there are 5 chances in 1000 that any squared amplitude, K2, chosen at ran-
dom would exceed

5.30 X 4.4179 == 23.4149.
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Upon inspection of the periodogram we find three values which exceed this
limit, namely R2(68) — 109.78, R2(51) == 34.30, and R2(41) — 216.74. A fourth
value, R2(23) — 22.28 nearly equals the limit. From this we would conclude that
the probability favors the belief that there exists more than a random structure
in the original series.

5. Walker’'s Significance Test in Harmonic Analysis .

Sir Gilbert Walker was the first to call attention to the inade-
quacy of Schuster’'s test for significance, His argument ran as fol-
lows: Suppose that a large value of R? has been found in the tofal
Fourier sequence of the 4N independent terms necessary to represent
- N observations. Schusler’s test merely gives the probability that an
R? chosen at random shall exceed « By*. But what is really required is
the probability that some E* among the total number in the Fourier
sequence shall exceed « Ry

We may state Walker's test as follows:

The Walker probabilily, Py (x)}, that at least one R* among the
total Fourier sequence of 4N independent velues representing N ob-
servations will exceed « Iy* iz given by

Pu(x) =1 — (1 —e*)*¥,

The argument is merely this: The probability that any squared
amplitude, B?, selected at random will yield a value in excess of « Ey®
is by the Schuster theorem equal to e¢*. Hence the probability that
any randomly chosen value of R? shall be less than « Ex?is 1 — €%, and
the probability that all the values will be less than « Ry? is (1 — e*) ¥,

Thus the probability, Py («), that at least one R? shall exceed the
specified limit is

PW(K) =1 - (1 - e_K)!N.

One deficiency in the Walker theory is immediately observed. We
know that P, (1) must equal 1.00 since some R® must necessarily
equal the average Ry But unless N is infinite, this is not the case.
However, since for values of N exceeding 20 we have Py (1) > 0.9825,
this defect is not likely to cause difficulty in actual application of the
significance criterion. .

Tables of the function Py (x) have been prepared for values of N
from N = 10 to N = 600 by intervals of 10 and for « from 0.1 to 16.0
by intervals of 0.1. These are recorded in Table 1 at the end of the
book.

As an example of the application of Walker’s test, let us eonsider the period-

ogram of the Dow-Jones industrial stock averages (1897-1914), which we dis-
cussed in the example of the previous section, Employing the same criterion of
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significance, namely, P,, = 0.005, we find that this corresponds to the value
« == 9.0 when N = 204. Noting that P,* — 4.4179, we see that by Walker’s test
there are § chances in 1000 that some K2 among the total Fourier sequence will
exceed

9.9 X 4.4179 —= 43,7372

Since the values for E2(68) and R2(41) exceed this limit, we are justified by
this test in assuming that they indicate a significant variation from the expected
distribution.

6. B. A. Fisher's Test of Significance

The tests of Schuster and Walker were derived on the assump-
tion that the R? {0 be tested is derived from a series whose observa-
tions are random selections from a normal universe with known vari-
ance equal to ¢ But when the unknown variance must itself be esti-
mated from samples then these tests must be modified to take account
of this fact. The analysis necessary to establish the eriterion in this
case was carried out by R. A. Fisher. The test may be formulated as
follows:

Let g’ be defined by the ratio
R
-2"'(;'5‘ ]
where R® s the largest among the squares of the amplitudes of the
Fourier sequence. Then, if n == 3{N — 1), where N is the number of

observations, the Fisher probobility, Py, that ¢ will exceed some cri-
tical value g is given by the formula

n{n—1)
21!

r

g'._'T.‘.

Pp=n(l-g)"* — (1-2g) ™ + .

+ (-1 3T 1 - mg)™",

m'!(n—m

where m is the greatest integer less than 1/g.
Before examining the argument by means of which this formula
is derived, let us first observe that the difference between Pr and Pw
is not great within the usual range of application. In order to see this,
let us note that if N is sufficiently large so that we may disregard the
difference between N and N—1, then the x of Walker’s test is related
to the g of Fisher’s test by the formula x = ng . Hence we may write

Pw(K) =1-(1—em"=1— a- e"‘”)",

n(n—1) PN n{n—1) (n—2)

oI — L.
2! 3!

= neMY —
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This series, for sufficiently smail values of g, will converge very
rapidly to Pw{(x). Moreover, if g is small enough, then the term ™
. may be replaced by (1 — rg)". Hence, the Walker probability func-
tion is seen to approximate closely the Fisher function. As an exam-
ple of the closeness of the agreement, let us assume that g = 0.19784,
n == 30. We thus obtain Py = 0.0500, which is to be compared with
Py =10.0813, computed for « = 309, N = 61.

A number of values of Pr have been computed and will be found
in Table 2 at the end of the book. The argument « = ng has been used
instead of g to correspond to the argument used in the table for Py .
This table has been computed in terms of n = §(N — 1) instead of
for N as in the case of the table for Py . Hence comparable values for
P as given by both tables will correspond to the same argument «,
but for N and »n = 3 (N — 1) respectively. Thus if « = 7.5, N = 100,
we get Py = 0.027283 from Table 1 and P, == 0.01737 from Table 2.
The latter value corresponds to n = 50 (neglecting ).

The general derivation of the formula for Py is difficult and re-
guires an analysis of the distribution of the values of R* in a hyper-
space of n dimensions. The following discussion of the problem has
been furnished the author by John H. Smith and is included because
of the light which it throws upon an essentially difficult argument:

Walker's and Schuster’s lests are exact tests of significance for an R? de-
rived from a series whose observations are random selections from a normal uni-
verse whose variance is known to be o2, When the unknown variance must be es-
timated from samples, the test criterion, x, is not distributed exactly as 2x? with
two degrees of freedom as implied by Schuster’s test, but as 3N times the square
of a measure of correlation with 2 and N—2 degrees of freedom. Hence its exact
probability integral corresponding to Schuster’s approximate test is

i \HN-2)
Po—11——
={-5)

This approaches the value e given in Sectipn 4 as N increases without bound and
it may be identified with the incomplete Beta-function, I_[3{(N—2},1],z =1 —
2¢/N , defined in Section 8 of this chapter.

In order to derive Fisher’s formula, let us consider the case where n = 3.
The squared amplitudes, R2;, are then represented in cne octant of a three-dimen-
sional space in which R?, is the vertical co-ordinate. Since the K?; are propor-
tional to x? with two degrees of freedom the freguency density is constant along
planes of the form

Rz, 4- R, + E2, =K

of which the region in the octant considered is an isosceles triangle.
The condition that g’ exceeds g is
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n
R >g 2R,

=1
a condition which is fulfilled by all points above the plane
(1 —g)R? =g(R?, + R2,).

This plane divides any plane of constant frequency density into twe sections,
the section in which R?, is greatest being an isosceles triangle whose sides are
(1—g) times as large as those of the entire region in the octant. Since all planes of
constant frequency density are divided in the same proportion the probability
integral of g’ can be identified with proportions of any such plgne. If B2, were
chosen at random it would be necessary to consider only the region in which Rz,
is greatest as a proportion of the region in the oetant. Since similar areas are to
each other as the squares of their like dimensions, the probability integral for
this case is

P=(1-—g)=

This corresponds to Schuster’s test when estimates of variance are used and when
N = 7 so that n = 3.

When g’ is greater than 3 and B, is the largest R2, the probability integral
is simply three times its value for E?, selected at random, or the sum of three
regions, one in each corner of planes of constant frequency density. When the
value of g’ is between 1/3 and 1/2 these three regions interseet and it is necessary
to subtract three smaller regions of the same shape. Sides of these smaller regions
are (1 — 2g) times as large as those of planes of constant frequency density and
hence, when 1/3 < g' < 1/2, we have

Pp=3(1 — g)2 — 8(1 — 2g)2.

Although g’ must equal or exceed 1/3 when R2, is chosen because it is largest, if
such impossible values of g’ are considered geometrically it is found that the small-
er regions also intersect in the center of each plane of constant density and the
addition of the common area (1 — 8g)}? reduces P, to unity as it should.

In the general case, the probability integral (1—g)™? for the case in which
R2, is selected at random is multiplied by n because there are n regions with
which this Integral may be identified. These regions have n—1 variable dimen-
sions and hence all exponents are n—1. The first term is the complete probability
integral when g’ exceeds 3. When ¢’ is less than %, regions commeon to each pair
of regions of the first order must be subtracted to avoid duplication. There are
nC, such regions of the second order. Similarly, regions of the second order inter-
sect when g’ is less than 1/3, and regions of the third order must be added.

Thus the general integral is derived by adding the relative volutnes of the
regions each of which is equal to the simple probability integral, subtracting vol-
umes of common regions, if any, adding corrections of second order, if necessary,
and continuing the process as long as the volumes of commeon regions as indicated
by Fisher’s formula are positive. In the mth term there is one eommon region
for each set of m hyperplanes and hence the coefficient is the number of eombi-
nations of »n things taken m at a time.
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7. Factor Analysis

By factor analysis we shall understand the calculus by means of
which we ean determine the number of significant components which
account for the energy observed in a statistical variable, Otherwise
stated, it is the calculus which determines the number of degrees of
freedom possessed by the statistical variable.

The term factor analysis appears to have originated in psychol-
ogy, where the difficulties of mental measurement are increased by the
difficulties of defining what is to be measured and by the large num-
ber of tests which are frequently employed to measure mental fac-
ulties, Economics alse is faced by many of the problems inherent in
psychology. Therefore, it is important for us to consider some of the
problems of those who began the measurement of mental factors.

C. Spearman, in an attempt to explain the relationships generally
observed in the intercorrelation of mental tests, proposed the theory
that any intellectual ahility may be regarded as due to a general fae- -
tor common te all such abilities plus an additional factor specific to
the trait in question and not observed in any other except closely re-
iated traits. This proposilion is known as Spearman’s general factor
theory, or alternatively, as his theory of two factors.?

The general idea of what we may call the tetrad-difference cri-
terion may be explained briefly as follows: If we have a set of n men-
tal tests, and if there is a factor, g, common to all of them, then the
correlation between any two of the tests, with g held constant, will be
riven by the classical formula

T = Tip Tjy

V(=) (157

Tij'-g _-

If we assume that the correlation between different tests is zero
when the common factor is held constant, we obtain the equations

(1) T‘;;*‘F';G’J",‘,,:O,

If n = 4, then ri; and r;, can be eliminated from the set (1) and a sys-
tem of zero tetrad differences obtained which are equivalent to (1).
That is to say, we have

2 For a discussion of this theory see C. Spearman, The Abilities of Man, New
York, 1927, 415 4 xxxiii pp.; in particular, the mathematical appendix. Also J.
Holzinger, Stattstz_cqt Résumé of Spearman’s Two-Factor Theory, Chicago, 1937,
vi 4 102 pp.; William Brown and G. H. Thompson, The Essentials of Mental
Meagurement, Cambridge University, 1921, x + 216 pp.; in particular Chapter 9.
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(2) Pl =TT — Ty Te; =0,
If there are n tests, then the number of tetrads, +, is equal to
r=3,Ci=n(n—1) (n—2) (n—3) /8.

Forn—=—4, weget r —=3; for n == 5, r = 15; etc. The three tetrads cor-.
responding to the case n = 4 are the following:

praze — T2 — 2354,
{3) Preae — T1a¥3¢ — T23¥1y,
Przas = T1aTss — Tya¥es . |

It is also possible to compute the elementary correlations r;, pro-
vided (2) holds rigorously. Thus for 7%, we get

{(4) T3 = Tz 7'13/1"23 = Tya Taa/Tae = Tg 'ru/fag .

Similar equations hold also for r,, and 7y, .

Because of the necessity of proving that the tetrad differences
are actually zero much attention has been given to the problem of ob-
taining the standard error of a tetrad. Several solutions of this prob-
iem have been given and the reader is referred to the literature for a
more extensive aceount of this still debatable question. For the case
where n—4, the following estimate of the variance of p:.. will be
found practical:

1
(5) 0%y == -A—]-[?"zl,; 12+ 17 h T — 2(T ey F T
T 1 PagTos t Trgtey®s,) + 4737 T eaT2s]

As an example of this theory, let us consider the relationship ex-
hibited by the example in Section 12 of Chapter 2, where the four re-
lated variables are: (1) the Dow-Jones industrial averages; (2) pig-
iron production lagged three months; (3) building-material prices
lagged six months; (4) stock sales on the New York Stock Exchange.

It is not unreasonable to assume that the four series may be dom-
inated by a single element, the exact nature of which is unknown. To
test this we compute the three tetrads and obtain for them the values
—0.012719, —0.038768, —0.026049. The variance, as computed by (5),
is found to equal o2 = 0.00183616, from which we have ¢ = 0.04285.
Since all the tetrads are smaller than this standard deviation, we may
assume that they are statistically zero. Hence, we reach the conclu-
sion that the correlations observed between the four series is due to



194 THE ANALYSIS OF ECONOMIC TIME SERIES

a single factor.  Such a conclusion is not unrealistic, since, as we shall
see later, a large number of the time series which relate to economic
phenomena share a considerable variation in common. We may also
observe that this variation appears to be related to the variation in
the index of total real national income. Employing the first of the
formulas in {(4), we find that the correlation between this unknown
factor, g, and the Dow-Jones industrial averages is as great as 0.988.

This very interesting conclusion might be interpreted to mean
that economic phenomena, like psychological phenomena, are bound
together by a common, universal thread, which contributes to them
their observed intercorrelations.

E. C. Rhodes in a paper of considerable interest has employed the
technique of factor analysis to construct an index of business activ-
ity.> Thus he assumes that the various series which are ordinarily
cormbined, with suitable weights to form the index of business activ-
ity may be written

Xi=rd, +g.G: + X',

where I is the common factor (business activity), G the group factor,
and X’ the specific factor. The parameters » and g are constants,
which depend primarily upon the special units employed in the defini-
tion of X; . Rhodes’ problem was to distill by means of factor analysis
the common factor from the various special economic time series,
which are assumed to contain the factor 7. The methods which he
employed in this problem are ingenious and suggestive and it is not
unlikely that the future development of the analysis of economic time
series may turn in this direction.

A number of objections, however, have been raised by the psy-
chologists and others to Spearman’s theory, and undoubtedly the econ-
omists will accept it with similar reluctance into their science. Sev-
eral alternative methods have been proposed for determining the fac-
tors in a set of variables. Prominent among these are the matrix
technique of L. L. Thurstone,* the confluence analysis of Ragnar
Frisch,® and the method of principal components due to H. Hotelling.®

3 “The Constructicn of an Index of Business Activity,” Journal of the Royal
Statigtical Society, Vol. 100, 1937, pp. 18-39; Discussion, pp. 40-66.

4 The Vectors of Mind, Chicago, 1935, xv - 266 pp. See also “Multiple Fac-
tor Analysis,” Psychological Review, Vol. 38, 1931, pp. 406-427.

5 Statistical Confluence Analysis by Meuns of Complete Regression Systems,
Oslo, 1984, 192 pp.

¢ “Analysis of a Complex of Statistical Variables into Prineipal Components,”
Journal of Educational Psychology, Vol. 24, 1933, pp. 417441, :
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Mention should also be made to the weighted-regression method due
to M. J. van Uven.’

The method of Thurstone depends essentially upon the possibility
of being able to faetor the matrix of the elementary correlation co-
efficients into the product of a matrix by its conjugate. Its principal
advantage appears to be that it affords a practical method for han-
dling the factor problem when the number of variables is large. The
reader is referred to the originzl sources for a more complete account
of the ingenious devices introduced by Thurstone to make this com-
plex problem tractable,

The theory of principal components introduced .by Hotelling has
much in common with the method to be introduced in the next two
sections of the present work. Hotelling encounters trouble, however,
in establishing a satisfactory significance test for his components ow-
ing in large measure to the mathematical difficulties inherent in the
problem of establishing a manageable distribution for a set of simul-
taneous correlation coefficients. These difficuities are surmounted in
another manner by the theory of significance given in the next few
pages. ‘

Since the confluence analysis of Frisch has been employed by
economists in recent studies, we shall give a brief summary of its
salient features. This method approaches the probiem by means of a
computation of all possible regressions between the variables. The
principal tool is what is called the bunch, that is to say, the totality
of all vectors having the slopes determined by the regression co-
efficients,

If the addition of a variable to a regression does not sensibly
affect the bunch, then this variable is called superfluous: if its addi-
tion widens the bunch, it is called defrimentel; if, however, its inclu-
sion tends to tighten the bunch, then it is useful.

The method of Frisch has several advantages and several disad-
vantages. Of the latter we shall speak first. One of the principal dif-
ficulties with confluence analysis, especially if it is applied to five or
more variables, is the excessive labor of calculation involved. All ele-
mentary regressions must be formed between all the variables. Al-
though Frisch has invented a technique for this ealculation, the labor
is still excessive. Thus for a five-variable system some 1386 multipli-
cations are involved in a complete tilling, while for 12 variables the
number is 565,236. A second objection is found in the fact that no

7 S8ee T. Koopmans, Linear Regression Analysis of Eco'nmmc Time Series,
Haarlem, 1936, 132 pp.
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measure in terms of probability has been given to determine when a
bunch is affected usefully or detrimentally. Hence a variable must be
included or excluded by a personal judgment as to the observed effect
upen the bunch.

The advantage of the method is found in the fact that it reguires
an actual observation of all the possible effects produced by the intro-
duction of new variables into the regression. The visual aspect of
these effects from a study of bunch maps will give unquestionably a
deeper insight into the nature of the included variables than can be
obtained otherwise.

If the tilling table has once been constructed, the application of
confluence analysis is very simple. Thus let X; and X; be two normal-
ized variables® in the set X, , X, ---, X, . We now form the regression
between them by minimizing in the direction of the kth component.
This regression can then be written

X;,=RB® X;+-.=

ij(abe.m)

_ e (abe .- n)

i (abe---m) "’ T

where k assumes in turn the values ¢, b, ¢, --- , . These numbers
are, of course, the elements of the tilling table. This same technique
applies equalily well to any subset.

The bunch is constructed by drawing through the origin for every
value of k& lines with slopes equal to B® and with the lengths

ij{abern)
2 i
[r:'a'(ﬂbcwn) + Tki(ubc---m ] *

As an example illustrating his method, Frisch considers the following regres-
sion system:
X =y, +01y,,

X, —y,+ 01y,
X.=9 +# +01y,,
X, =y, — ¥, +01ly,,

(6)

where the values of y; are determined by independent drawings from a set of
random numbers. The small terms introduce a system of random errors into the
data.

It is clear that the variable X, is approximately equal to ~X, 4 X, and
also to X, + X,. In other words, the complete system of variables contains lin-
early dependent subgroups. Consequently any attempt to form a single regres-
sion equation between the four variables would lead to spurious results,

5]t is esgential that bunch analysis be carried through in normalized vari-
ables, that is to say, variables with means equal to zero and standard deviations
equal to unity. Such variables are

z
X =,
e
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A computation of the bunches reveals this situation ciearly, From the tilling
tables of Frisch the bunches for (12}, (123), and (124) are easily constructed
in the following manner:

We first compute:

B = —0.121551/1.000, B — —.1.000/0.121551,
12(12) 12112
0.553533 0.568602 0.737534
B _———, B e B e e,
124123} 0.567433 124323 0.5535633 11123y 0.736753
0.429929 0.433741 0.641395
B = e B - —_—, Bs: —_— e
12(124) 0.462913 r24124) 0.429929 12(124) 0.663422

The bunches corresponding to these three cases are now graphieally con-
structed as shown in Figure 41. It is obvious that the introduction of either the
variable X| or the variable X, to the system (12) closes the bunch. Hence either,
by itself, is a useful variable, and the tightness of the bunches (123) and (124}
indicates that a satistfactory regression has been attained.

In order to explore the situation further we now examine the bunch for the

cuse (1234). The following regression coefficients are first obtained:

0.001832 0.016355

B i (2) = —,
12(1234) 0.016273 1201234} 0.001832
0.012116 0.010782

B e B —_ .
12(1234) 0.011739 1201234) 0.010733

From the bunch map it is immediately seen that the introduction of the fourth
variable explodes the bunch, and hence the introduetion of either X, to (124) or
X, to (1238) is detrimental. We thus reach the inescapable conclusion that two
linear dependencies exist.

4
4
Ll +05- + 0.5~ 2 +0.01-
. 1
+1 + 05 +0.5 +0.01
¢} —, + —-—-__________?
-1 -05F 1 ~0.5¢ =001
2 3
2
2
12} {123) (124) (1234)

FIGURE 41.—PARTIAL BUNCH MaPr,
This chart illustrates how useful and detrimental variables in a regression
analysis may be detected. Vectors corresponding to the primary variables are
indicated by circles.
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8. The Method of Elementary Energies

As an alternative method for investigating the significance of
variables in a linear regression, we shall return to the formulas of
Section 1. There it was assumed that a variable y (£) is to be ex-
pressed as a linear function of a set of normalized variables, u, (),
Uz (%), +- , un(t), that is to say, variables with zero means and unit

variances.

If the intercorrelations between the functions are represented by
Ty, t,§=1,2,..-, n, and the correlations with y (¢) are r,; , then we
can write '

(1) 'mn=§mmm,

where the a; are determined from the system,
a0+ o+ Taa - + Tin Oy =75,

(2) P21 0q + G+ 723 05 F ooe + Top 0y == 7,

Tar Oyt Tzl + Pnag + - + @, =17,

In terms of these values the fraction of the variance of (%)
which is accounted for by the regression will be o,2.defined by

oottt Fat 200, A g Py e

We next express y(¢) in terms of the normalized, orthogonal
variables v,(£), v2(%), ---, va (£} described in Section 1, and thus ob-
tain

(3) wn=§mmUL

The variance o,® in terms of the §; is now equal to
o =8 A+ Bt A+ F 22,
where the values 1, are the roots of the characteristic equation
D) =|r; —é8;;4|=0, su=1, 4,=0, iEg,

The problem now is to determine the significance of the elemen-
tary energies

(4) Ei=ﬂi’ ;.

Since equation (3) resembles a Fourier series in the sense that
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it is a linear function of a set of normalized, orthogonal functions, it
is reasonable to suppose that a test can be found for the significance
of the coefficients, which is comparable with the Schuster and Walker
tests for harmonic analysis.

An examination of the argument given in Section 4 shows that
some modification is necessary, since there the joint distribution fune-
tion for the coefficients of the sine and cosine components is devel-
oped. This led to the distribution of the energy, R?, associated with
these two components. But in the present instance we are dealing
with an orthogonal system, instead of a biorthogonal one, as in the
case of harmonic analysis,

In order to test the significance of the elementary component
E; = g:® 1; it is necessary to place some restrictions on the sampling
process. Assuming that observations on the dependent variable y (i)
are affected by random normally distributed errors of sampling but
that values of the independent variables u;(f) do not vary from sam-
ple to sample, the sampling distributions of the coefficients of the or-
thogonal functions v, () are easily derived. If observations on the in-
dependent variables u; () are constant from sample {o sample, obser-
vations on the orthogonal variables »; () will, of course, remain con-
stant. Under these conditions the linear function

b VT = 2y (@) vi(t)
i 3 V,Ti

will also be normally distributed.

It is now our purpose to discuss the distribution of the square of
the quantity we have just written down, that is to say, the distribu-
tion of the elementary component E; = 82 1; . For this we shall need
the following analysis:

Using the abbreviation 4 for a normally distributed variable, let
us now consider the probability

(b) P= _}_ f‘e—}(um)’ dA = i J.A et gq
\/27’ G4 -4 '\/231 T4 ]

where o,? is the variance of 4.
If we now make the transformation t = $(4/04)* and in the
Himit of the integral write x = A?/0,?, then P assumes the form

1 ix dt

= et —

vado  VE
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The incomplete Gamma function is defined by the integral

r.(p) = f et 1 gt

Hence, noting that I'(3) = \/n, we can write P in the form
r, ()
P= .
I'(3)

Since tables have been provided by Karl Pearson for the incom-
plete Gamma function in the form?®

=220 =
I'ip+1) Vol
we now write P as follows:
r.(—31+1) _
P=m”_}j D =I{/V2, —1).

This function gives the distribution of A%/¢.? in terms of the
parameter «, and hence we obtain the following as the distribution
comparable with the Schuster distribution e for R?:

(6) Pi=1—I(/VE —3).

If the exact value of ¢, is not known, then the probability inte-
gral given in (6) must be considered as an approximation. If an un-
biased estimate of o,* derived from the residuals from the regression
of y(f) on the v;(¢) is used instead of the exact value of the preced-
ing formulas, the quantity « is distributed as the square of “Student’s”
t. Hence, an exact test of significance can be applied to the ratio
A/a, by entering a table of ¢t with this ratio. The argument may be
reviewed as follows:

Instead of the normal frequency function we begin with “Stu-
dent’s” distribution function

rGN+4 1 g e
T(IN) T Q) y’f\f( N )

where N is the number of degrees of freedom.
The probability P defined by (5) is replaced by

% See Karl Pearson, Tables of the Incomplete I'-Function, Cambridge Univer-
versity and the Biometrike Office, London, 1934, xxxi + 164 pp.
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A z -${¥'+1) ] '
P= 20, f(l-i— ¢ )‘ dt,whereCZ—I—(%ii—é)—

VN o4 N'os Ny ray”

Making the transformation s = 2/ (N'o.2), x = A%/o,4?, we get

KN
P=C f (1 4+ g)3¥+0 gt dg;

or, introducing the second transformation » = s/(1 + s), we obtain

K

R
— — -IN'-1 pi-1 e
(7) P—c:_[n (1—x) wrde, R

Employing the following notation for the incomplete Beta-func-
tion:°

B.(@, q) = f o (1—2) v d,

g1}

1 r Ir'(q)
B(p,q) = f -1 (1-x) e dx=————lﬁ’(’;+qf ,
I,(p,q)z%;g%ﬂ—fm(q,p),
we can write
__Bz(},3N) _ .

=1-La(3N',3).
Hence the probability corresponding to (6) assumes the form

(8) P=I(4N,§),  R=g—.

The practical application of these criteria is immediately seen to
depend upon the possibility of determining the value of the variance
of A, that is to say, ¢.%, either exactly, in which case formula (6)
applies, or as an unbiased estimate, for which we may then use for-
mula (8).

But in the case of the elementary energies, E; = £, 1;, we see
that the variance is immediately estimated from the variance of the
original data provided the original orthogonal system is closed. This

10 See Karl Pearson, Tables of the Incomplete Bela-Function, Cambridge Uni-
versity Press and the Proprietors of Biometrika, London, 1934, lix + 494 pp.
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18 by virtue of Bessel’s inequality given in Section 11 of Chapter 2,
from which we derive

-
Nol2= (B A+ 52+ + .2 0) =2 ¥(f) =N,
61
that is to say,

Hence, in order to test the significance of a particular value of
E; = g:* 1; chosen at random from a closed set, we form the ratio

B3k

02

and introduce this value into either formula (6), if ¢* is known ex-
actly, or into formula (8), if o* is an estimated value.

This resuit may be stated in the following theorem: Let the quan-
tity E;, = §* 1; be defined by equations (3} and (4), where the func-
tions v, (t) form a closed set of orthogonal functions. Then if obser-
vations on y(t) are not correlated with v;(t), the probability, P,
that any E; chosen at random will exceed « o is given by equation
(8}, or if o is known exactly, by equation (6).

The results obtained from equation (6) approach those obtained
from equation (8) as N increases without bound and (8) may thus be
replaced by (6) when N is large. The probability function corre-
sponding to Walker’s probability for R? as previously given in Sec-
tion 5 is simple when the exact value of ¢ is known. This may be
written

Py=1-— (1~ Pg)?¥

where N is the number of orthogonal functions, The corresponding
function for use when o must be estimated from small samples is not
known, but it will be asymptotic to the function just written down as
N increases without bound.

The content of the theorem just given may be more clearly under-
stood by the following examples:

Example 1. Let as agsume that the closed system of variables, v;(f), is de-
fined as follows:

27t 47t gt

v, () :cosF, v, (t) = 08— v, (t) “—”0057.

., 2w . 47t
¥, () —sin N v, (1) :sm-ﬁ-,




THE DEGREES OF FREEDOM IN ECONOMIC TIME SERIES 203

Referring to the formulas in Section 10 of Chapter 2, we see that

¥ o 2mwt ¥ Zmwt
=2 sin? = % cos® N = iN.
=) =0

Moreover, noting the definitions employed in Section 7 of Chapter 2, we have

291 2mmt

Bzm-lz“_zcos y(t’) :AmJ
=0
251 2mwt
By = — X sin 5 ¥(8) =B,.
Fs

i=0

Referring to formula (4), Section 3 of Chapter 2, we readily find

2B
0A2 T s T
N
Hence, to test the significance of eithier 4,7 or B,* separately instead of the
sum B2 — A2 + B,?, as discussed in Section 4, we write
Ezi-l Bz:!'i—]. NAlz Ezi NB'JZ
== - o , OFr&—e—— === .
¢A2 - g'A2 Qa2 gAz 202
The probability of obtaining a x as large as the observed one is then obtained
from either formula (6) or formula (8), according to whether o2 is known ex-

actly or by estimate from the data.
Example 2. As a second example let us consider the simple regression equa-

tion

1 5(42+ B2y =0,

o

(9) y=r-Lx
o.‘!

for which we seek the significanée of the regression coefficient, 8 — r o, /0, .

From the point of view of the theory given above we assume that z is a mem-
ber of a set of orthogonal functions, v, (£), »,{(¢f), --- , v4(t), a set which ac-
counts exactly for the variance ¢,7. But since these functions, except for the first
which we can identify with x, are unspecified, we must modify the theory just
given by estimating og? directly. This estimate is well known to be

N
10 62— 0o 2(1 — 72
( ) -4 I ( )N’
where N’ — N — 2 ig the number of degrees of freedom.n?

Since » = Xr? = No.?, we have E = 82\ — N7* 0,2, The value of « thus
becomes

E N’ r2
{11) P s
082 1— 72

11 Qee, for example, R. A Fisher, “Applications of ‘Student’s Distribution,”
Metron, Vol. 5, No. 3, Dec. 1, 1925, pp. 80-1064. Also P. R. Rider, “A Survey of
the Theory of Small Samples,” Annals of Mathematics, Series 2, Vol. 81, 1930,
pp. 577-628; in particular, p. 587.
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If 0,2 is assumed to be exactly known, we enter formula (6) with this value
of », but if the variance is an estimate then we use formula (8).

If we substitute x as defined by (11) in the formula R — «/{ N + «), then
it is found that B — r2, a well-known result.1

Since « js a function of »2 alone, it is clear that the significance level for r
corresponding to any preassigned values of N and P can be immediately com-
puted. Thus if we assume N — 100, P — 0.05, we obtain from formula (6) the
value v == 0.1942, and from formula (8) the value r — 0.1946,

Erample 2. As a third example, let us consider the regression

Y= 11’!1(t) + Bgvz(t) + 4+ ﬁpvp(t),

where v (t), v, (!}, ---, v,{(t) are orthogonal functions, but do not form a com-

plete set, It is clear that the example just given is a special case of this system.
As in the case of the closed system considered previously, we shall have

A== X)) and E; = 3,25, but o ? must be estimated from the equation

1
R i e R i
Muking vse of the notation introduced in formula (5} of Section 3, we can
write this varianee in the form
1-X En
2=
N'
where N’, the number of degrees of freedom, is specifically defined by N' = N
—-p—1,
Hence, in order to determine the significance of any observed value E;, we
enter formulas (G) or (8) with the value

1\’71 Ei
1- 3E,

g

(12) k=k(p) =

Tt is both interesting and important to inquire how this formula agrees with
the one previously obtained for a closed system of orthogonal functions, where «
was defined by the equation

(13) o=

or merely, « — NE;, provided 6,2 — 1, as is assumed in equation (12).

Referring to equation (6) of Section 2, and observing that a set of N orthogo-
nal variables belonging to a complete set will completely specify a function de-
fined over a range of N items, or if one degree of freedom is used for the speci-
fication of the arithmetic average, then N — 1 variables will suffice for the def-
inition of the function, we see that the following 1imit holds:

(14) lim (1~ 3 E,) =0,

as  — N — 1. That is to say, n', as defined by equation (6) of Section 3, ap-
proaches the limit N as p approaches N — 1.

12 See, for example, Pearson's Tables of the Incomplete Bela-Function, p. liv.



THE DEGREES OF FREEDOM IN ECONOMIC TIME SERIES 205

Hernige, we can write (12) in the form

and thus we have, from the eousiderations just given, the limit «{p) — N F, as
p—= N — 1. This iimit is observed to be the same as (13) when 0,2 — 1.

9. Examples Hlustrating the Method of Elementary Energies

As our first example illustrating the method of elementary energies, we
shall eonsider the problem discussed in Section 12 of Chapter 2. This problem con-
siders the regression between: (1) the Dow-Jones industrial averages; (2) pig-
iron production lagged three months; (3) building-material prices lagged six
months; (4) stock sales on the New York Stock Exchange. The question to be
discussed here is the significance of the regression equation between the indus-
trial averages and the other three variables.

By means of the actual correlation coefficients, the three values of «; [equa-
tion (1) of Section 8] are computed from system (2) of Section &, and found to
eqnal
o, — 0.519019, i, = 0.517385, u, == 0.231367 .

t

The fraction of the variance accounted for by the regression is found from
these values to be 0.744908,

By means of the transformation {(3) of Section 3, and the table of values .,
computed in Section 12 of Chapter 2, the parameters g; are readily found to be

B, = —0.141428, B, == —0.103%59, B, = 0.626222

Now intreducing the characteristic numbers, evaluated in Section 12 of Chap-
ter 2, we compute the three elementary energies

E, =2, = 0009117,
E, = g5\, == 0.007422 ,
E, =B, = 0.728368.

The first two energies are very much smaller than the third, but we cannot,
for this reason alone, reject them. To_test their significance we first multiply
them by N/[1 — (E, + E, + E.,}] = 200/0.2551, and thus obtain

k= T1478,  x, = 5.8197.

The Schuster probabilities computed from formula (8) of Section 8 are found
to be respectively P, = 0.0075, and P, == 0.0142, which indicates that the two
variables play more than the role of random variables in the regression. How-
ever, we see from the Walker probability that if N =—— 204 items of a random
series are represented by a closed system of orthogonal variables, then the prob-
abilities that at least one coefficient will have a higher significance than those
attributed to £, and E, by the Schuster probability are respectively 0.7847 and
0.9459. It is possible to infer from this that there are two linear dependencies
between the variables. In other words, there exists a common factor which is the



266 THE ANALYSIS OF ECONOMIC TIME SERIES

cause of the observed correlation hetween the variables, a conclusion which we
have already reached in the analysis of this same example in Section 7.

With thig knowledge before us we may now return to the relationships given
in Section 12 of Chapter 2 between the variables v; and the variables u,. Since
the energies associated with v, and », are essentially zero, the dependencies be-
tween the w's may be studied by setting both v, and v, equal to zero. The most
easily observed conclusion from this is that the production of pig ircn-and the
price of building material, except for the factor peculiar to each individual se-
ries, are essentially the same variable.

For our second example, we shall analyze the regression system {6) of Sec-
tion B, which Frisch employed in the illustration of confluence analysis.

We first compute the secular determinant of the correlation coefficients for
the entire system. This is found to be the following:

1—x  —0.121551  0.656809 0.752502

—0.121551 1—»x 0657698  —0.732862
D)= 656809 0.657698 1—2 0.014385
0.752502  —0.732862 0.014385 11—

= 0.000262838495 — 0.06818088401 » + 4.01770773344 72 — 4 A3 + A%,

The roots of the equation D(1) = 0 are found to be X, = 0.007786, », =
0.0086963, », — 1.870086, ), = 2.113582, .

The fact that the first twe roots are very small indicates that there are prob-
ably two linearly independent relationships between the variables. But since the
distribution for the roots is not known we cannot safely assume this without fur-
ther investigation.

The regression of X, on the other three variables is now computed and found
to be

) X, = —0.112626 X, + 0.721395 X, + 0.659584 X, .

The coefficients of the components are the values of a; in equation (1) of Section
8.

The next step is the computation of the B, . In order to secomplish this the
values of the associated characteristic numbers are first found from the secular
equation 4(A}) = 0, where A(A} is the cofactor of the first element in the de-
terminant D()). From the equation

A()) =0.016272507679 — 2.03013970152T A + 3 A2 — A3 =10 '
we compute the three roots
A, = 0.00811245, », —1.01430115, A; = L1.97757486 .

By means of these values and the theory of Section 12 of Chapter 2, the fun-
damental unitary matrix I/ is now computed and found to be

0.704534  —0.474810 0.527435
U=10.001575 0.667893 0.744256/-
0.709673 0.469731  —0.525088

From this and the values of a; , we now compute the coefficients by means of
Yormnla (3) of Section 8. These turn out to be
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B, = —0.0730867, B, =0.972537, By = —0.0874057 .
It is now possible finally to compute the three elementary energies.
E, = 0.000045, E,=10.959356, E,=—10.015108 .

In order to test the significance of E, and E, we apply formula (12) of Sec-
tion 8 and thus obtain x, == 0.1695 and x, = 56.895. Clearly the significance of
I, is very small, but that of E, is high. From this we may conclude that one
linear dependence exists between the variables and this is approximated by setting
v, equal to zero.

1t is observed by Frisch that in the regression equation (1) the coefficient
of X, exceeds its standard error of 0.10, and hence on the basis of the usual the-
ory this coefficient would be regarded as sigmificant. The present analysis indi-
cates the complete insignificance of this parameter, since X, is a linear funection
of X, and X, by the dependence just established.

From the matrix U we have the relationship

v, = 0.704534 X, — 0.474810 X, + 0.527435 X, ;

but since v, is without significance, we set it equal to zero and thus obtain the

regression
X,=0.673935 X, — (0.748630 X, .

This equation is seen éo be practically identical with the actual regression
X, == 0668378 X, — 0742477 X .

if one computes the number of degrees of freedom in the relationship be-
tween X, , X,, X., and X, in the first example using formula (6) of Section 3,
there is obtained
n =24 204(1 — 0.7449) =2 + 52—=54.

That is, out of the 204 degrees of freedom in a series of the length cbserved,
there are actually 54 degrees of freedom present. One of these is due to the sys-
tematic element, probably the 40-month harmonic component, a second to the dis-
placement of the series defined by its average value, and the remaining 52 to the
erratic element,



CHAPTER 6
THE ANALYSIS OF TRENDS

1. Introduction

In the opinion of some of the keenest -students of the problem of
time series, the analysis and interpretation of trends is one of the
most difficult problems in economics. We have, for example, J. A.
Schumpeter, who says:

There would be little overstatement in saying that trend-analysis will be the
eentral problem of our science in the immediate future and the center of our
difficulties as well . . . If trend analysis is to have any meaning, it can derive it
only from previous theoretical considerations, which must not only guide us in
interpreting results, but also in choosing the method. Failing this, a trend is no
more than & descriptive device summing up past history with which nothing ecan

be done. It lacks economic connotation . .. The trends we want are very different
from those we get by fitting a eurve through unanalyzed material. But this opens
up a host of questions, for example, . . . Whether it is the trend which is the

“generating” phenomenon of cycles or the eycles which generate the trend; wheth-
er or not the trend is a distinct economic phenomenon at all, attributable to one
factor, or a well-defined set of factors; whether all the points on our raw graphs
have on principle equal right to exerting an influence on its slope, and, if not,
what credentials we are to ask of every one point before admitting it.2

The nature of trends was discussed at some length in Section 6
of Chapter 1 and the general features of the problem were examined
there. In the present chapter we shall consider, first, some of the
technical statistical aspects of trends, since the interpretation of
trends is intimately related to the statistical methods employed in
their computation. This discussion wili be followed by a study of the
economic implications of trend analysis.

As has been pointed out in the first chapter the inertial theory of
economics, as it has been presented in the writings of Carl Snyder,
gives to trends a supreme importance. The destiny of governments,
the happiness or the despair of large groups of people, depend much
more upon the trend of economic series than upon cyclical variations,
which are essentially minor movements in the major inertial tendency
of events. Hence trends belong to what we might call the macroscopic
theory of economics and the interpretation of their origin is thus the

1 See Schumpeter’s review, “Mitchell’s Business Cycles,” Quarterly Journal
of Economics, Vol. 45, 1930--31, pp. 150-172.

— 208 —
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principal factor in forecasting the future state of nations. From this
point of view the theory of trends is a theory “in the large.”

But in the application of statistics to economic time series, the
word trend has been frequently used in a much more restricted sense
than that implied by the inertial concept. Thus the variations of some
economic time series are to be examined over a given period of time,
which may vary from a few weeks to many years. The trend, then, is
defined as that characteristic of the series which tends to extend con-
sistently throughout the entire period, Hence we see that the concept
of a trend depends Both upon the nature of the data examined and
upon the range to which it is to be applied. Thus it is one thing to say
that the trend of sfock prices is down and quite another to say that
the trend of building is up, since the movement of the former is domi-
nated by a short cycle of around 40 months, while the latter is domi-
nated by a cycle of from 15 to 20 years. The trend of industrial pro-
duction in the United States has been upward for approximately a
century, although there have heen reversals of the main movement on
the average of once every ten years and some of these have established
trends several years in length. It is thus seen that the definition of a
trend is inherent in the economic problem itself and there is no such
thing as a theory of pure trend.

The final desideratum, of course, is for a theory of econcmics,
which, as is now the case in such disciplines as physics, engineering,
and the like, will determine the characteristics of the trend from fun-
damental principles and laws. Until this happy situation is attained,
however, it will be necessary to supply the lack of such derived trends
by trends which appear reasonable, or which are suggested by actual
forms inherent in the data. A great deal of progress has been made
in recent years in understanding the inertial characteristics of a num-
ber of economic series and an indication of the progress in some of
these will be discussed in later chapters.

2. Types of Trend

In the first chapter we discussed at some length the types of
trends which have been most frequently used in the analysis of time
series. These trends were the following:

(1) Linear trends; (2) the exponential trend, that is, the trend
y — Ae®*, which is essentially a linear trend fitted to the logarithms of
the data, since log. ¥ = log. 4 + Bf; (3) the logistic trend; (4) the
moving average.,

In addition to these there was discussed the theory of the Gom-
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pertz curve, intimately related to the logistic, and the general poly-
nomial trend, which included the straight line as a special case,

Sinece the application of trends to economic time series is inti-
mately related to the statistical properties of the trends themselves,
it will be important for us to examine some of the technical aspects
_ of the subject. We shall find it convenient to show how the paramet-
ers of some of these trends are determined from the data and how the
standard deviation of the residuals may be computed from the para-
meters without a complete reduction of the series.

By far the most useful trend is the straight line because of its
ready computation and the fact that many time series over extended
intervals appear to be characterized by linear movements. Hence the
statistics of this trend will be fully developed as a basis for the more
complicated analysis of the parabola, the cubie, and other polynomials.

In recent statistics, the logistic curve has come into high favor
because it appears to fit the needs of an expanding economic system.
Special attention will be given to this curve and applications made of
it to population and production data. This curve is particularly use-
ful in extrapolation and tends fo define realistic lines of saturation.

No attempt will be made in this chapter to define the probable
error of the trends themselves, since this subject requires some spe-
cial considerations which are more properly treated in connection
with the problem of forecasting economic time series.

3. Technical Discussion of the Linear Trend

Before proceeding to the more general discussion of polynomial
trends, it will be useful to consider the case of the simple linear trend -
because of its frequent use in the analysis of time series. We shall
write the straight line in the form

(1) ¥y =a, + at,

and assume that the data to which it is to be fitted are given as equal-
ly spaced items, N == 2p + 1 in number. No essential restriction is
implied by this assumption, since, in general, if the data are not given
in this form, it is usually possible by interpolation to approximate
them by a series of equally spaced items. Moreover, in practical analy-
sis, the inclusion or omission of a single item to obtain a series in
which N is odd is usually of negligible significance.

. We shall therefore assume that the data are arranged in the fol-
lowing form:
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—p,—p+1,---,—-2,—-1,0, 1, 2,---,p

(2)
y—pl y_pﬂ,"'; Yor Y ysYgrYy1sUor' "5y

By the zeroth and first moments we shall mean®

14 r
My=23Xu:, M.=3ty..

t=—p i=—p
Numerous devices and tables have been developed for determin-
ing the coefficients of equation (1) so that the straight line will fit the
data. We shall adopt as most suitable for our purpose the method of
least squares, which yields the coefficients in the following simple

form: '

(3) a,=—=AM,, a, = AM,,

where we abbreviate 4 = 1/(2p+1), A’ = 3/p(p+1) (2p+1).

These coefficients have been extensively calculated and will be
found to 10 significant figures for values of p from 0.5 to 150.0 in the
author’s Tables of the Higher Mathematical Functions, Vol. 2, 1935,
pp. 325-329.

We may now observe that the average of the deviations of the
data from the linear trend is zero.

In order to prove this, we represent the right-hand member of
equation (1) by w ({) and compute the sum

Sl=2p [v: —y(£)]

t=p
=M, — 6,(2p + 1).

But from.the definition of @, as given in (8), this is seen to be
zero, which establishes the proposition.
If the variance of the series of data be represented by o?, that is,
1 9 J&Ioz
2 7Y =
[ E yt N J » N 21‘9 + 1 N

t=-p

N

1a We have adopted here as a convenient name for the sum = {* y, in the vari-

able t the term moment of order n, or more simply, the nth moment. The word
moment, originating in mechanics, was introduced later into statistics in con-
nection with frequency distributions. It is hoped that the present adaptation of
the name will appear useful. It should be noted that in statistics the term mo-
ment is frequently used for a mean value based on a product sum instead of for
the product sum itself as here,
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then the variance of the deviations from trend, that is, the variance
of the residuals, may be shown to equal
A Mz
N

Since the mean deviation is zero, we have for ¢,? the following:

(4) 0‘12 e 0’2 -

12 -
=g -y®IF, N=2p+1,
t=—p

1
ZFE [¥:2— 2y, y(f) + 92 (8)]
t=-p
1r
:FE [y — 29, (a, + a,t) + (2 + 2a, ait + a2 )]
t=—p
1 2
== [Zy*—2aM,—2a,M, + (2p + 1) a,®
N S

+p(@+1)(2p + 1})a,2/3]

1y M7l | Mg M, M,
=] Eve —NF]+W? I Al

‘a2 +p(p+1)a2/3.

Introducing the explicit values of @, and a, into this expression
and noting that the first term is ¢, we find by 2 simple algebraic
manipulation that the terms combine to yield equation (4).

A third consideration appropriate to our discussion relates to
the correlation of the residuals of two series which have been re-
duced by linear trends. For the purpose of this discussion let us as-
sume that we have, in addition to series (2), the elements of a second
series, {Y,}, t ranging from —p to + p, and let us assume further
that the first two moments of the second series (based upon N = 2p
+ 1 items) are

P p
=2 Yt , m=2tY:.
t=-p t=—p

Let & be the standard deviation of the first series and 7 the stand-
ard deviation of the second, and let R denote the correlation coefficient
of the two series before they have been corrected for trend.

Under the assumptions stated above, it can be proved that the
correlation coefficient of the residuals from the linear trends of the
two series is given by the expression
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_A'Ml H1
N

where o, and &, are respeclively the standard deviations of the resi-
duwls of the first and second series as computed by formula (4).
In order to prove this we first observe that the averages of the residuals of

the two series from their trends are zero, and hence that the desired correlation
coefficient will be -

(5) r={(Ro7 Yeia

(6) r= g ,
N o, 0

where y(t) and ¥ (f) are respectively the two trends, that is, y () is the right-
hand member of equation (1) and ¥ (t) may be written Y (¢) = 4, + A,t.
Expanding the numerator, which we shall designate by I, we get

I'“—""i' v, — 9(O1[Y, — Y (8]
=-p

= S[Y, — Yut) — .Y () + 4 (Y (D)]

t=—p

s )
=y Y, —ou,—ap —AM,—AM +a AN
t=—p .

e+ 1) (2p +1) g4, /3.
But this may also be written
M Mz
No +{°——N - ‘—a’o“o}'a‘:l‘l —A{M,—a,N}
— A M, —p(p+1)(2p+1)e,/3}).

Noting from equations (3) that the expressions in braces vanish, and also
observing that

4
I :t_‘_z_,‘pytY: -

Mu,

]
Y, — = NRoo ,
t=—p

we reduce the expression for I to the folloﬁing:
I—=NRov—ap, .
Replacing this value in the formula for r and replacing @, by A'M, from
(3), we immediately obtain the desired formula (5).

1t is important, also, to observe that formula (5) can be employed
to compute the serial correlations of the residuals by the device of cor-
recting one of the moments. The corrected moment is then inserted

in (5).
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Let us assume that the series which is to be lagged with respect
to the other is Y, and let us assume also that it is moved ahead of the
series ¢, by  units; that is to say, we shall compare the terms Y,...
with the terms v, .

Hence we can obtain the desired serial correlation of the residuals
by first correcting u, and yu, for the assumed lag, and then employing
these corrected moments in place of g, and w, in formula (5). This
correction we shall now compute for the first moment.

We shall designate by u, the unlagged moment,

n
n=3tY,,
¢ op

and by g (42} and w, (--m) the moments of the series after it has been
moved respectively ¢ units ahead and m units behind the first series;
that is,

(7) i (m) :‘{j tY. ., s (—m) :ﬁ tYim .

to=p t=—p
We note that u, (0) = g, .

The first of these moments can be written

rd n-m
[.l}(’ﬂl):Eth—m: .\: (S+m) Y-B ’
!:

z-p ERE (S
ﬁ
=y (s+m) Y, +4.(m),
gi-p
where we abbreviate
Jl(ﬁ*I) n

X — X i{stm)y..

Is— =Pt & fr=mta !

A (m) =
It is thus clear that the desired correeted moment becomes

{]) wilm) =u +mu, + A (m),

where, it will be observed, A, (#m) may actually be large with respect
to the other two moments,
Similarly we obtain for the negative lag the corrected moment

{9 i (—m) =, — mu, + 4, (—m),

where we abbreviate

A, (~m) =["§ - 2} (s—m)Y,.

LRSS Ki-p
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As an example of the application of the formulas of this section, we shall
compute some of the pertinent constants of the postwar Dow-Jones industrial
stock price averages and the index of pig-iron production. These series, in four-
month averages, are given below as follows:

Industrial Pig:Im;n

; , Industrial . Pig-Iron
Year | f . Stock Price | Pro- Year t i Stock Price Pro-
i ' Averages | duction k ! Averages 1 duction
I, _ Averages | duwetom | o _ .. A _ duetion
1914 ‘ -25 1 8166 69.9 1923 | 2 100.62 | 110.8
24 | 7416 | 648 | - 9144 | 119.3
23 1 6090 | 549 4 91.07 ‘ 99,1
1915 |22 | 6124 | 622 | 1924 © 5 95.38 105.8
(=21 7282 ¢ 812 S 6 9839 | 67.6
-20 | 9562 | 100.1 b7 10078 | 819
1916 1 -19 ! 9L16 | 1061 1925 | 8 | 120,67 | 1118
[-18 | 90.72 | 105.7 9 | 133.99 89.2
|-17 | 10212, 108.2 10 15193 98.5
1917 | -16 J 93.91 | 1031 1926 |11 | 149,02 109.3
-15 9210 | 107.9 12 | 15486 ' 1063
-14 \ 76.34 1 1027 |13 | 15558 | 1049
1918 | -13 78.60 935 | 1927 | 14 ’ 160.66 | 107.9
t-12 | 8121 1 1104 15 | 177.90 100.7
|-11 1 8338 | 1123 | |16 | 19498 89.4
1919 [-10 | 8679 | 985 | 1928 17 | 20050 | 1005
-9 | 10810 | 763 | 118 | 221.69 | 1022
-8 ¢ 11029 1 769 | |19 ] 27124 | 1075
120 -7 | o787 | 1001 1929 |20 81576 | 116.9
6 . 3896 | 995 121 | 23981 | 1232
] -5 | 7897 | 989 122 | 276.10 107.5
1921 |- 4 [ 76.43 © 59.6 1930 |23 ‘ 275.90 101.1
-3 | 6946 | 334 | 24 | 243.96 92.3
-2 | 7587 ; 434 125 | 184.06 65.4
1922 | _ 1 g714 | 615 | |
| o 96.€0 728 |
1 96.45 | 869 | |
We first compute the following constants:
(I) Stock Price Averages (I1} Pig-Iron Production
M,= 6,626.05, By = 4,709.9,
M, = 41,920.02, g, = 4,161.9,
a? = 4,802.0908, ' 2= 412.06,
o= 69.2971 , o= 20.2962 ,
R = 0.40835, 2p +1=—>51.

Since, for p — 25, A = 0.01960784314, A’ — 0.00009048773756, we compute
the trend lines from (3) and thus obtain

(1) y=—129.9226  3.703671¢ ; (IT) »=—=092.3510 - 0.376643 ¢



216 THE ANALYSIS OF ECONOMIC TIME SERIES

AVERAGE INDEX

- |

. A
NI T /\ 50
. VIR
" ; | |
100 pal - / V *

g Y WV o

P T ] PRI W i

11
1820 1925 1930

[NV N T I IR S W R S B |

0 A
1915 1920 1925 1930 1915

FIGURE 42.—Dow-JONES INDUSTRIAL AVERAGES {a) AND INDEX oF
Pie-IroN PrRODUCTION (b), 1914--1930.

Now, employing formula (4), we obtain as the residual variances the follow-
ing values:

(I) o,2= 4802.0908 — 3118.2470 (II) o2 412.06 — 30.74
== 1683.8438 ; —381.32;
o, = 41.0847 ; o = 19.5274.

The correlation between the residuals is then obtained from formula (5) and
is found to be #==10.330. This correlation, although small, is interesting in show-
ing that the persistent relationship between the production of pig iron and the
price of industrial stocks prevailed even during the explosive inflation caused,
as we shall show later, by an unusual increase in the velocity of money over the
latter part of this period.

We should also note that the effect of reducing the two series by trends is to
decrease substantially the variance of (I), while the variance of (II) is essentially
unaffected.

In order to illustrate the application of the formulas to lag correlations, we
ghall augment the pig-iron produection data by adding the items for the years
1913 and 1931. These values are

1918 90.9, 85.8, 76.0; 1931: 62.3, 51.8, 36.3.
Hence we compute
A,(3) =909 +858 + 76.0—101.1-—923 - 654=—— 6.1,
A (—3) —62.3 + 51.8 - 26.3— 69.9 —64.8 —54.9—-—30.2,
A, (3) =—=1098.1, A {(—3) =54119.

From these values we obtain the corrected moments

B {8) — 4709.9— 6.1 —=4703.8, #,(—3) — 4709.9 — 39.2 — 4670.7,
#,{(8) = 4161.9 + 1098.1 — 5260.0 , 2 (—2) =4161.9 — 5411.9—=—1250.0 .
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The values of o and ¢, adjusted for lag, which we shall designate by @, (m),
are found to be

o(3) = 20.0419, 0,(3) = 187771, o(—3)==21.6795, o (—8) =216154.

When these quantities are substituted in (5), we obtain as the desired serial
correlations the following values:
_498.262 — 391.268 —20.372 4 92.982

r(3) = —=0.139, r(—3) = =10.082 .
770.513 8%6.931

4. Euxtension of the Foregoing Theory to Polynomial Trends

The formal theory which we have developed in the preceding sec-
tion for linear trends may be extended without essential difficulty to
the general polynomial

(1) Y=t + @t + a,t? + a;t3 + .- + @b,
Referring to (2) of Section 3, we shall define in terms of these
data the first » moments as follows:

(@) M=ty , r=0,1,2,.,n,
iy

T—p

If the normal equations for the polynomial (1) are set up in
terms of the moments {2) then by reference to Section 11 of Chapter
2, it will be seen that they assume the following simple form:

(2p + 1) @, + 2s.a, + 28,4, +.---=M,,

;3 . .
(3) 99,@0 + 28,0, + 28, + - =M,,
98,y + 2840, + 28,0, + .- =M,

and for the odd moments
2s.a, + 28,a; + 25,005 +--- =M,
(4) 28,0, + 284t; + 28:05 + -+ =M,
28,0, -+ 285ty + 28,405 F+ -o- = Ms‘,

where 8., 3, , 8. . etc. are the sums of second, fourth, sixth, etc., pow-
ers of the integers from 1 to p inclusive; that is,

§, =17+ 2 + 37 4T+,
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The solutions of these equations have been explicitly determined
for polynomials through the seventh degree (the septimic) and the
coefficients of the moments have been numerically determined for vari-
ous ranges of the parameter p . These results and tables will be found
in the author’s Tables of the Higher Mathematical Functions, Vol. 2,
1935, pp. 307-359.

For the sake of reference and the understanding of symbols we shall record

the various cases below, The reader will understand that the values of 4, B, C,

., A’y B, C',...for these various cases are different functions of p, and that
their numerical values are to be found in the Tables referred to above.

(1) The straight line: y=—a, + 0 t,
a, =AM, a, =AM .

(2) The parabole: y—a, 4 a,t 4-a.t2,
a,—AM, + BM,, &, as in case (1),
a,=BM,  + CM,.

(3) The cubic: y—a;, +at+ a,t? 4 a.t?,

a =AM, + B'M,, a, and a, as in case (2) ,
a,=B'M 4 CM,.

(4) The quartic: y=a,+ a;t + at? + at® + a,i,
a,—AM, + BM, + CM_, a, and e, as in case (3),
a,=BM,+ DM, + EM,,
a,=CM, +EM, + FM,.

(5) The quintic: y=—a, + at + a,t? + a,t* + at+ + ats,

o, =AM, +BM,+CM,, a,,a,, anda, asin case (4),
a,—=BM L+ DM, +EM,,
o, =CM, + EM, + F'M,.

(6) The sextic: y—a, + a,t + ¢,12 + a3 + at4 4 a5 até,
a, =AM, +BM,+CM,+ DM_, a,,a,,and a, as in case (5),
a,—BM, -+ EM, + FM, + GM,,

e, =CM,+ FM,+ HM, + IM_,
o, =DM, +GM, + IM, + JM,.

(7) The geptimic: y=—ua, + a;t + a1z 4+ a,63 + a s + a5 + a s 4 a,t7,
a,—A'M, +B'M,+CM, +D'M,, a,, e ,6 anda, as in case (6) ,
ag=BM, + EM; + FM; +GM.,
a.=—CM +FM,+HM +I'M,,

@, =DM +GM,+I'M, +JM._.

We first prove the following theorems:

THEOREM 1. The average of the deviations of the data from a
polynomial trend is zero.

Proof: If we designate the polynomial (1) by w(t), then we must show that

F
S, :t_zr_;[y: —uy(t)]

is zere. But we see by explicit calculation that
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» »
S= 2y, — Xy)
t=—p t=—p
= M, —a,(2p + 1) — 25,0, — 25,0, — 25,8, — ... .

the first equation in {3), we see that this last quantity is zero,

Referring to
which establishes the proposition.

THEOREM 2. The variance (os®) of the deviations of the data
from a polynomial trend is given by the formula
(5) o’ =g + Moz/}p - (a'nMn+ a.M, + a.M, -+ a.M; + ')/N »
where N = 2p-+1 is the number of ifems in the data and o* is the vari-

ance of the original series.
Proof: The variance of the deviations from trend may be explicitly written

in the form
(6) L3
| 0= —y(t)y]?,
A Nfz_p[y, gf()]
1 »
=— Iy —2yu(t) + 2 (1)],
t==p
J s . . 9
—_— Eyt:—zaoMg_Qﬂ’]_Ml'_zagMg_"'+Ey2{t)}l
. t=-p

Referring to the data as tabulated in (2) of Section 8, we see that the last

sum in the above expression can be expanded as follows:

f‘yz(t) =N -+ 2a,0,5, + 200,83, + 2008, + -
= + 2a ?s, + 2a.a,5, 4 20,05, + 2o 0.8, + - --
+ 2aa,8, + 2a.%s, + 2a,a,8, + 2a,0.5, + -
+ . .
This expression may then be written in the form
_Sf‘gﬂ(t) =a,{ a,N + 2a,5, + 20,5, 4 2a,5,+ -+ }
- +a, { 2a,s, 4 2a,8, + 2a s, + 2a,5, + -}

+ a, { 2a.s, + 2a,5, + 2a,5, + 2a,8, + -}

: + . .
Referring to equations (3) and (4), we see that this sum may be written
in the following form:
P
Fyry=eM,+aM, +a M, }a M, 4 ..

t=-p
Introducing this expression into (6) and noting that the variance of the

original data is given by
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107 M

—_— ?
= Zy

o2 ——,
N?
we obtain for the desired variance of the deviations from trend the following ex-

pression:
o2 =02 + M2/Nt — (a M +a M, +eM, +a M +- /N,
which is seen to establish the theorem.

In the practical application of this theorem to actual time series,
it is convenient to have an explicit expression for the variance in
terms of the tabulated coefficients. The following table gives the vari-
ance of the residuals for each of the tabulated cases, the residual vari-
ance being indicated by a subscript equal to the degree of the trend:

Straight line:
e 2m=02 — (A'M2)/N.

Parabola:
o= 0t o M 2/N? — (A'M.2 + AM2 + 2BM M, + CM,2) /N

Cubic:
a2 =o2 | M2/N2 — (AM2 + 2BM M, 4+ CM,? + A'M 2
+2B'M M, + CM2)/N.

Quartic:
of=—02 + M2/N2 — (A'M2 +2B'M M, - CM2 4 AM 2
+ 2BM M, + 2CM M, + DM 2 4+ 2EM M, + FM 2)/N .

Quintic:
e2==0% + M7?/N? — (AM2 + 2BM M, 4+ 2CM M, + DM,2 + 2EM,M,
+ FMz2 + A'M2 + 2B'M,M, + 2C'M M, + D'M;? + 2E'M .M,
+ F'M. 2} /N .

Sextic:
ot =ot + M2/N2 — (A'M,> + 2BM M, + 2CM M, + D'M;2 + 2E'M .M,
+ M2 4 AM2 + 2BM M, 1 2CM M, + 2DM M, + EM,?
+ 2FM. M, + 2GM M, + HM 2 - 2IM M, + TM_2}/N .
Septimic:
ot=o? -4 M;?/N? — (AM,? + 2BM M, + 2CM M, + DM M, 4 EM,?
+ 2FM M, + 2GM M, + HM 2 + 2IM M, + JM 2 + A'M 2
+ 2B'M M, |- 2CM M, + 2D'M .M, + E'M? + 2F'"M M, +2G'M_M,
+HM?2 4 2I'M M, + J'M.2)/N,

1t is intuitively evident that the value of o should detrease as the
number of moments used in its computation increases, that is to say,
with the degree of the polynomial used as the trend. The analytical
proof, however, can be given as follows :

We first express y{(£) in terms of the Gram polynomials described
in Section 10 of Chapter 2; that is,
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(M Y () = Qoo (t) + i (1) + -+ + Cugpn (2).

This representation is identical with those given above, the only
difference being that the approximation of a polynomial of nth degree
is exhibited in terms of a linear combination of orthogonal polyno-
mials.

Since the Gram polynomials are orthogonal over the range —p
to +p, the evajuations of the coefficients a; are independent of one
another. We next take note of Bessel’s inequality (see Section 11 of
Chapter 2},

P
a{"ll + %212 + e + a-,f)m é E y‘Z »
t=-p
where we abbreviate
p
LA=3 ¢:2(t).
t=—p
We may easily show that the variance of the difference is given by
the formula

P
Ne2 =2 ¥* — (%4 + %, +--- F -+ + Gy7ha) .
i=—p : *
F
Thus it is clear that os? cannot increase, but will, in general, de-
crease for each successive addition of a Gram polynomial to the sum
(7). The truth of the theorem is thus evident.

As an example of the application of the formulas given in this section, we
shall successively reduce the standard deviations of the two series used illustra-
tively in Section 3. The following moments are first computed:

(I) Stock Price Averages (II) Pig-lron Production.
M,= 6,626.05 == 4,709.9
M = 41,920.02 gy == 4,161.9
M,—=  1,725204.66 p,= 1,020,459.5
M,= 17,006,574.60 e, =— 1,798,139.7
M,— 696,835,797.18 #, = 379,292,961.5
M, =—"7,759,714,372.92 - © ;= 904,311,762.9 .

When these moments are substituted in the formulas of this section, the fol-
lowing values of ¢, are readily computed:

(1) ¢ —69.2971, (11} ¢ —20.2962,
o, = 41,0347, o, = 19.5274 ,

o, — 28.7142, e, —19.5274 ,

o, — 28.2849, a,— 19.4544 ,

o, = 241490, o, —15.8537,

o, —19.4158, o, == 15.7882.
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L
80 30
60 \ 60
AL ~40
20 o 20
o . o
1] 1 2 3 4 5

FIGURE 43.—STANDARD DEVIATION OF RESIDUALS AS A FUNCTION OF THE
DEGREE (n) OF THE POLYNOMIAL TREND.

We note that for pig-iron production little change is effected in the standard
deviation bty the use of polynomials of higher degree, but that for stock prices
the standard deviation was substantially decreased. This decrease is graphically
represented in Figure 43,

5. Formulas for the Correlation of Residuals from Polynomial Trends

The problem of computing the correlation between the residuals -
of two series reduced by linear trends has already been solved in Sec-
tion 3. We shall now give the corresponding results for the correla-
tion between the residuals of two series reduced by polynomial trends
of the same or different degrees.

We shall designate the elements of the two series by {¥:} and
{Y;} respectively, ¢ ranging from —p to +p. Let us assume that the
moments of the first {based upon N = 2p-+1 items) are M., M,, M.,
etc., and of the second (also based upon N = 2p+1 items) are w,,
tha, s, ete.

Let us assume further that o is the standard deviation of the first
series and ¢ the standard deviation of the second. Moreover, let R
denote the coefficient of correlation between the two series before they
have been corrected for trend.

If y.(t) and Y, (t) represent the two polynomial trends of de-
grees n and m (n = m) respectively, then the correlation between the
two residuals can be written

(1) =1/ (Nonon) ,

where e,? and o.? are the reduced variances already defined in Section
4, and where we have employed the abbreviation

@) I=3 (¥ — 4u(®)1[Y: — YulD)]

t=-p
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il
I=3yY — (M) /N + (Mouo) /N — (Coprs + a1,
t=-p
+ gy + oo F @}
Noting the identity
>u.Y, — (Mopo) /N = NRow ,

we can reduce the above expression to the following form:

(3) I=NRos + (Mosto) /N — (@otty + @upty + -+ s}

The correlation coefficient, », is then obtained by substituting
this value in (1) ; that is,

(4) ?‘:R( o )+~1# ot - - [Copto + @i+ - + @]

2 — pon
Ty Oin N Oy O, Nﬂ'n Tm

For convenience in application this coefficient will be specialized
in terms of the coefficients of the regression equations given in Sec-
tion 4. From the tables of their values it is then possible to compute

r readily as soon as the original parameters B, ¢, and ¢ are known.
These specialized formulas follows:

(a) Both sevies reduced by straight-line trends (m—n—1):

f..-:(Rﬂ;_A i )/

(b) Both series reduced by parabolag (m—n=—2):

N2 N

- A 1 A B C ;o
r= Rm:r—? fUl‘ur + (_'”_ IIIU#D__E (ﬂ’Ioﬂz + ‘Mzﬂ_n) _E szue [/ Tt -
(e} First series reduced by o parabole, second series by a straight line,
(n=—2,m—1): -
Preceding formula with o, replaced by o, .
(@) Both series reduced dy cubics (m==n=—23):

- 1 A B C A’
r= [R"” + (Kf_zﬁ-ﬁ Mok, Y (Mop, + Myp,) “'EMﬂn“z_ﬁMlﬂ

B’ c —
._E (Mup, + M) "“EMa-“s /“3"3'
(e) First series reduced by cubic, second series by a parabola (n=—3, m=—=

2}:
Preceding formula with ¢, replaced by o,.
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(f) First series reduced by a cubic, second series by a straight line (n—=
3, m=2):
Formula {d) with o, replaced by o, .

(g) Both series reduced by quartics (m—=n=—4):

-~ A’ B C 1 4
r= [R”"“"ﬁMl“x -N (M s + M) "_TV"M3‘"3 + (Ez—_f\— )Mb'“o

B c D
_'F (Moﬂz + Mg“o) —F (MQ“‘ + M4F°) _El 2l

E F -
'—'Xr‘ (Mgﬂﬁ + M‘”g) _FMgﬂ‘J / O"U‘ .

(h) First geries reduced by a quartic; second series by (1) a cubic, (2) a
parabola, (3) a straight line:

In the formula of (g): (1) replace 5, by o, (2) replace o, by ¢,, (3) re
place o, by o, .

(i) Both serics reduced by quintics (m=—=n==5):

r—| Roo 4 1_A\y JB(M + M,p,) C(M M p,)

D E F A B’
_“{,‘M:"z—ﬁ (Mn, +M4“=}"§M¢“¢ _"FMJ": N (Mpy + M)

4 ’

C D’ E F -
Y (M + Myp,) _EMa“a_ﬁ (Mypy + M ;) _ﬁﬂ'l:;#s]/ 0505«

(j) First series reduced by a quintic; second series by (1) o guartic, (2) a
cubic, {3) a parabola, (4) a straight line.

In the formula of (i); (1) replace o, by o,, (2) replace o; by 7, (3) re-
place o, by v,, (4) replace 5, by 7, .

(k) Both series reduced by gextics (m—=n-—=86):

- A B o4 1
r= RW_EMI#I_F (Myp; + Myp;) N (Myn, + M) —§M3#3

E' ¥ O 1 A B

__I\.?- (Maps + Mop,) _FM#‘.'S + ('I_V—z— N ‘Mo*“o—'j\",' (Mo, + Mop,)
c b E F

N (Mo, + M;“o)—"'}v (M, + Ma"n)—‘ﬁMz'“z Y (Mon, + M 1)

G H I J _
_E (Myp, + MG#E)_EM‘”“KI- (Mg + M) '”FMG“G ]/ 7.0 -
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(1) First series reduced by a sextic; second series by (1) a quintic; (2) a
quartic, (3) a cubie, (4) o parabola, (5) o straight line. 3

In the formula of (k): (1) replace o, by o, (2) replace o, by o, (3) replace
v, by ¢, (4) replace o, by 5,, (5) replace o by o, .

(m) Both series reduced by septimics (m—=n="T):

Reo 1 A B C
r= oo T (KE_K )Zuo"‘u N (Mo, + Mos,) N (M sy~ M,b,)

D E F ' G
-~ (M opg -+ Mop,) _ﬁMz"z_“N"(‘uz“q + M) -N (Mypg + Mypy)

H I g, A’ B’
_R:Miﬂl_-ﬁ (Mg + Mgp,) —EAIG#G_FMI#IHH (M py + Mya,)

c D E F .
—~ (Mg, + Mu) Y (M.p. + Mp))— ¥ Mp, - ~ (M., + M_n,)

’ v ’

G’ H I J -
_R}' (M, + M.u,) _?]‘Ma'“s_\_f (Mu. + M.x) _EMW? / .9; .

(n) First series reduced by a septimic; second series reduced by (1) a
sextic, (2} a quintic, (3) a quertic, (4) a cubie, (5) o parabola, (6) a straight
line.

In the formula of (m): (1) replace o. by s,, (2) replace o, by 2., (3) re
place’ @, by o,, (4} replace o. by o,, (5) replace 0. by a,, (6) replace o, by o, .

The serial correlations of the residuals of the two series can also
be computed from the above formulas by the device of correcting the
moments of cne of the series and inserting these corrected moments
in the appropriate formula. The method is merely an extension of
that explained at the end of Section 3 for the linear trend.

Let us assume that the sccond series is shifted m units ahead or
m units behind the first series. We shall designate by p. the original
moments, *

,ur = 2 trY‘ ’
t=—p

and by g, (m) and u.(—m) the moments of the series .after it has been
moved respectively m units ahead and m units behind the first series;
that is

(5) p(m) =2tV ), pl—m) =3 tY,m.

t==p f=—p

The first of these formulas can then be written
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r p-m
‘Hr('?n) ::E tY = E (s + 7n)’Ys
t=-p §=-p—m
p -
=3 (s +m)' Y+ d,(m),
s=—p

where we abbreviate
i —(H41) 14

am) =S — 8 l(s+m)y,.

S==P—in S, ~m+l

Expanding (s + m)’ we then obtain

r(r—1
{6) wAm) =, + rmp, + —%m? r_n

+ w-nzﬂu,_a Foee M + A (m).
Similarly the sceond formula of (5) can be written
r(r—1 -
(7 w,(—m) = u, — rmu, , + —(1;)7—)- Mo

) ) s et e £ A, (—m)

3!
where we abbreviate
b8 —D+in-1
/Ir(ﬂn)=[ - = }(S—M)'Ys-
F=pl &=—p

As an example, let us consider the two series given in Section 3, namely, (I)
stock price averages, and (I1) pig-iron production, and let us compute the corre-
lation of their residuals after the first has been reduced by a enbic and the second
by a straight line. The following pertinent values are taken from the computa-
tions given at the end of Section 4:

(I) Stock Price Averages (ITy Pig-Iron Production
M, = 6,626.05 By = 4,709.9
M, = 4192002 r= 4,161.9
M,= 1,725,201.66 #, == 1.020,459.5
M, = 17,006,574.60 p,= 1,798,139.7

o, = 69.2971 g, = 20.2962

5, == 28.2349 a 19.5274 ,

R = 0.40835, N=2p +1=051.

From the coefficients in Tables of the Higher Mathematical Functions, Vol.
2, we first compute the values:
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A/N=0.0008656070641, A/N=—0.00001112036381,
B/N = —0.000002220644084 , B'/N = —0.00000002397613742 ,
C/N=0.00000001024912654 , C' /N == 0.0000000000615088184% .

When these values are substituted in formula {(d), where ;3 is replaced by 51 .
we obtain the desired correlation

= (574.3396 — 15,015.4190 + 33,059.0773 — 18,043.6025 — 1,240.1357
+ 3,504.2875 - 1,880.9518) /551.3542
= 0.4672.

6. Example of the Reduction of Series to their Random Elements

In order to show the efficacy of the methods which we have pre-
viously developcd for the analysis of economic series into their vari-
ous components, we shall apply the various techniques to the follow-

ing four series:

X, ="The Dow-Jones Industrial Stock Price Averages.
X, = Pig-Tron Production.
X, == Stock Sales on the New York Stock Exchange.

X,, = The Cowles Commission—Standard Statistics Index of
Industrial Stock Prices.

The actual values of these four series over the period of explova-
tion (1897--1913) are given below and they are graphically represent-
ed in Figure 44.

(X,) Tur Dow-JONES INDUSTRIAL STOCK PRICE AVERAGES
Yun_r-_j Jan. T¥eb, Mar. Apr. May . June“.ru!;Aug Sept. Qet. Nov. Dee. rﬁvﬂ
1897 | 42,56 41.71 39.47 38.96 39.91 44.10 47.88 54.81 50.98 49.03 47.46 49.41 | 45.52
1898 | 50.01 46.17 4542 46.00 52.74 52.62 54.20 60.35 53.44 55.43 57.20 60.52 | 52.84
1899 | 64.35 66.78 74.33 76.71 67.51 70.38 73.73 75.66 72.87 74.97 75.55 66.08 - 7i.53
1900 | 66.13 63.96 66.02 61.33 59.10 54.93 56.80 57.81 54.27 50.04 66,69 70.71 = 61.39
1901 | 66.81 67.00 69.92 75.80 75.77 77.94 71.63 73.47 66.66 64.45 65.01 64.66 & 69,92
1902 64.95 64.81 67.19 67.01 66.42 64.31 65.82 66.28 66.15 66.06 62.05 6429 | 65.44
1903 | 65.18 66.19 63.64 63.78 60.27 59.08 50.76 53.19 45.80 4513 44.33 49.11 | 55.54
1904 °| 48.91 47.53 49.12 48.80 48.18 49.25 52.13 54.57 57.59 63.03 72.02 69.61 | 55.06
1905 : 71.33 75.15 80.02 76.08 74.32 76.87 81.7G 80.63 81.90 83.77 89.89 96.20 | 80.35
1906 100.69 93.94 96.95 90.53 93.75 87.01 92.41 94.61 94.84 92.91 9512 94.35 | 93.88
1907 | 91.70 90.54 80.15 84.3¢ 78.10 80.36 78.87 72.28 €7.72 57.70 58.41 5875 1| 74.5%
1008 | 62.70 60.54 67.51 69.55 72,76 72.50 80.34 84,66 79.93 82.53 87.30 86.16 ; 75.56
1909 | 84.09 '81.85 86.12 88.29 9218 92.28 96.79 97.60 99.55 99.07 96.62 99.05 | 92.77
1910 | 91.81 91.34 89.71 86.20 86.32 81.18 76.48 79.68 79.72 B4.77 82.52 81.36 | 84.27
1911 | 84.93 85.02 83.27 83.65 85.55 8598 86.02 79.25 76.31 75.79 80.97 81.68 | B2.8%
1912 | 80.19 81.40 88.27 90.30 88.01 90.92 89.71 91.57 94.15 90.71 91.40 87.87 | 88.7%
1913, 83.72 80.32 80.92 78.38 74.89 78.48 81.81 75.94 78.78 | 79.20

78.54

80.37

78.30
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(X,) PI1G-IRON PRODUCTION

Year Jan. Feb, Mar. Apr. May June July Aug. Sept. Oct. Nov. Deec. A", ;
1897 226 234 24.1 243 24,1 237 232 246 271 29.1 30.9 318 25.7
1898 314 320 323 322 315 303 298 205 30.2 314 328 339 314
1899 33.3 324 330 345 350 359 371 374 382 396 408 412 36.5
1300 414 414 408 409 414 405 385 328 313 30.2 32307 332 36.8
1901 375 405 413 419 432 439 439 431 433 446 454 409 42.6
1502 461 449 466 492 498 482 465 474 478 478 478 496 47.6
1903 475 49.7 5183 536 553 558 499 507 518 460 347 273 47.8
1904 29.8 417 46.8 520 496 432 362 378 458 469 496 521 443
1905 5875 b7.1 625 641 63.4 598 562 595 633 66.2 67.1 66.0 61.9
1906 66.7 68.0 699 691 677 659 65.0 622 657 70.9 729 721 68.0
1907 712 730 718 740 741 1745 728 726 728 754 609 3938 69.4
1908 33.7 372 396 383 376 364 393 439 473 50.6 526 562 42.7
1909 58.0 61.0 59.2 58.0 60.8 644 678 72.6 795 83.9 849 850 69.6
1910 84.2 856 844 828 771 755 693 68.0 685 675 637 574 T3.17
1911 66.8 64.1 70.0 688 611 59.6 HT7.8 622 659 67.8 66.7 659 63.9
1912 664 724 776 79.2 811 Bl4 TI7 811 821 868 877 898 80.3
1918 90.2 924 892 91.8 91.0 876 826 821 §3.5 821 T4.5 64.0 84.3
(X,) Stock SALES ON THE NEW YORK SToCK EXCHANGE

Year Jen. Feb, Mar. Apr. May June Tuly Aug. Sept. Oct. Nov. Deec. Av.

1897 3.37 282 5.07 8.54 421 642 7.01 11.46 13.09 B8.01 576 7T.44 6.52
1898 922 898 995 6,00 917 910 4.78 12,01 9.37 7.42 10.94 15.22 9.35
189¢ | 24.14 15.98 17.68 16.98 14.79 10.88 8.02 12.81 12.35 10.80 18.58 17.05 | 14.59
1300 D.86 10.21 14.45 14.65 9.49 17.29 6.27 4.01 516 10.90 22.65 23.38 | 11.53
1901 | 30.21 21.88 27.00 4169 35.20 19.82 1592 10.77 14.03 14.02 18.36 16.67 | 22.13
1902 14.76 12,95 11.95 26.58 18.49 7.81 16.32 14.32 20.95 16.35 17.12 15.72 15.69
1903 | 16.01 10.93 15.02 12.24 12.46 15.54 14.78 14.46 10.71 12.67 10.74 15.18 | 13.40
1904 12,24 857 1142 816 5.26 4.99 12,13 12.44 18.70 32.48 31.96 28.18 16.54
1905 | 20.77 25.36 29.06 29.37 20.54 12.54 13.02 20.25 16.09 17.74 26.88 31.41 | 21.92
1906 | 38.55 21.69 19.33 24.30 23.95 20.28 16.30 21.72 26.12 21.80 19.41 20.26 | 23.64
1907 | 22.89 16.48 32.25 19.22 15.76 9.73 12.80 14.50 12.14 17.31 9.65 12.54 | 16.27
1908 | 16.62 9.92 15.80 11,61 20.92 9.54 13.87 18.85 17.50 14.27 24.88 22.96 | 16.40
1909 17.27 12.34 13.65 18.97 16.51 20.36 12.81 24.51 20.05 21.71 18.74 17.49 | 17.87
1910 | 24.12 15.99 14.99 14.07 11.95 16.28 14.30 10.22 7.68 13.43 10.81 9.89 ! 13.64
1911 | 10.38 10.17 6.92 504 1069 10.43 5.44 15.04 17.37 11.05 1490 9.07 | 10.54
1912 1091 7.09 14.55 1599 1366 720 7.7 B8.97 10.06 1415 871 12.60 10.92
1913 873 664 T.18 8.46 546 959 6.08 741 347 715 | 6.%4

5.12

7.68

The source and interpretation of the four series which form the
basis of our investigation are given as follows:
(X,) The items in this series are the closing quotations on the
last day of each month, representing the average price per share in
dollars for 12 representative industrial stocks.
Street Journal.
(X.) This series gives the average daily production of pig iron
in units of 1,000 gross tons. Source: Standard Trade and Securities.

Source: The Wall
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(X,,) THE CowLES COMMISSION—STANDARD STATISTICS INDEX OF

INDUSTRIAL STOCK PRICES

Yoo Jan, Feb., Mar. Apr. May June July Aug. Sept. Oct. Nov, Dec. \ Awv,
K7 224 220 219 21.4 214 225 237 254 263 251 239 247 | 234
188 251 254 243 242 264 277 284 294 291 283 301 328 27.6
15943 351 356 477 388 366 353 363 383 384 386 392 348 371
IRLT 355 362 355 353 326 31.0 316 324 316 329 3635 379 34.1
1§21 37.8 385 390.8 432 396 449 421 419 409 393 391 379 40.4
14902 353 39.9 40.0 411 405 59.4 406 40.6 40.7 395 376 361 , 39.6
1403 385 389.6 385 368 366 342 304 290 277 258 252 266 32.2
14904 27.5 26.8 266 269 26.2 263 27.6 286 303 33.0 368 374 29.5
1405 38.1 40.0 41.3 417 39.0 388 40.6 422 417 43.0 43.8 475 415
106 50.3 49.9 478 477 459 46.0 44.3 485 505 50.7 497 502 48.6
b7 49.3 48.1 43.2 42,7 409 3897 4ib 37.2 352 207 278 2891 38.7
1408 30.9 30.0 326 345 36.5 36.4 388 418 402 410 445 445 37.6
Y 44.4 42,1 422 452 483 50.2 513 53.6 5456 550 563 56.8 50.0
1 55.5 51.6 536 524 505 476 44.7 463 46.5 494 50.2 47.7 49.7
iy 485 500 49.1 48.6 50.0 508 50.4 474 43.5 425 448 461 47.6
1912 46,5 455 479 510 51.1 522 523 538 548 551 b53.8 508 51.2
50.2 47.5 464 46,5 42,0 42.8 452 46.1 44.0 425 429 45,1

1913

45.2

(X,) The items represent the monthly totals of shares traded on
the New York stock exciiange in units of 1,000,000 shares. Source:
The New York Times, '

(X,..) This series gives the index numbers of the prices of all
guoted industrial stocks with 1926 — 100 as a base. Source: The
Cowles Commission.?

In the analysis which follows it is assumed that the total variance
o2 of an economic time series can be regarded as the sum of three vari-
ances which are essentially independent of one another. The first of
these, o,?, is the variance due to secular trend; the second, ex? is the
variance due to harmonie, or quasi-harmonic, elements; the third, oz,
is the variance of the erratic element. In times of great inflation, a
fourth variance may also be included, namely that of the disruptive
element, which we may represent by o2 In the period around 1929
this became the dominating part of the total variance and the har-
monic and trend elements were completely effaced by the inflation. In
the stable period, which is the subject of the present investigation,
however, this disruptive variance was zero.

Hence the total variance may be represented by the sum

(1) =g+ ooy + oegt.
The independence of the three elements may be argued in the fol-
2 This analysis was made before the index numbers were finally revised.

Some slight variation will be found between these values and the published ones.
The conclusions are not affected.
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lowing way: If the secular trend is essentially linear, then it may be
reparded as part of the are of a harmonic term with period longer
than the series under analysis. Such harmonic terms are themselves
almost independent of harmonic terms with periods which lie within
the limits of the data, and hence the two variances will be essentially
additive.

1t is obvious that the erratic element, if it is truly erratic, will
have a zero correlation both with the harmonic components and with
the trend. The erratic element may be strictly erratic, that is to say,
1t may meet the test of randomness, or it may be relatively erratic, by
which we mean that it will have a zero correlation with the structural
components of the series.

The linear combination of the three variances as given in equa-
tion (1) can be justified analylically in the following way. Let us con-
gider the funetion

y=mt -+ Asinat + B cosaf + (1)

over the range from —p to +p, where p is sufficiently large with re-
spect to the period 2a/a of the harmonic element so that the average
of this term may be assumed to be zero. The erratic element, £(t), is
assumed also to have a zero average over the interval; that is,

L7y dt=
27;.[,,‘9() =0

Under these condilions the variance of y(¢) is explicitly found
to be

P
(2) a,ﬂ:-z—z; ¥ (tydt = im*p* + 3 (A* + B2)
=P
+. f” 2(t)dt +
5p ,,,g (tydt + 5(p),
where we employ the abbreviation

(47 — B?)

n(p) = — 1

. 2m .
sin 2ap + E—(A sin ap + B cos ap)
2m
+—-— (—A cos ap + B sin ap) +-—-f telf)dt

+lf”s(t) (A sin at + B cos at)dt .
P Yy
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Since by assumption ap is large, all terms in 5 {(p) will be small
except the third. But if (m/a) is of the order of unity, which is a
realistic assumption for most economic time series, then this remain-
der term may usually be disregarded also. It vanishes, of course, if
tan ap = A/B. Under these conditions the variance ¢, consists of the
first three terms, which are respectively the variances of the trend, the
harmonic component, and the erratic element.

To proceed now to the actual computation of the erratic elements
of the four series chosen for exploration, we first evaluate the zeroth
and first moments about the center of the time range, that is, assum-
ing N == 203 and p = 101, the four mean values, the standard devia-
tions, and the variances. These values are tabulated below as follows:

" Series \ M, \ M, Mean (A}V

o ot

X, | 1467273 | 129206.24 | 72.2795 ! 153143 | 234.5278
X, | 110514 | 1893133 |.54.1404 ; 185004 | 342.2648

X, 2955.47 =~ 1053.93 14.5590 7.0961 |  50.3546
X, | 804290 1 77827.81 .| 39.6202 8.8608 | 178.5138

= - R B

We shall also need the correlation coefficients between the four
series before they have been corrected for trend. The ceefficients, K;;,
are given below as follows:

i & | & l L | Xu
X, | 10000 ' 07697 | 0.3961 | 0.9516
X, | 0.7697 | 1.0000 | 0.1167 | 0.8152
X, 03961 | 01167 | 1.0000 | 0.3128

|
Xu ;

0.9516  0.8152 0.3128

From the moments, employing formula (3) of Section 3, we
readily compute the four trends as follows:

¥, = T2.2795 + 0.18535¢ ,
¥, = 54.4404 + 0.27T157¢,
¥y, = 14.5590 + 0.00151¢,
Yo = 39.6202 + 0.11164¢ .

These trends are graphically represented by (E) in Figure 44.
The variances due to the trend are now computed from the for-
mula

{3 ot = A'M2/N,
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as one observes from fermula (4) of Section 3. The residual variance,
o.?, is then obtained by subtracting the trend variance from the origi-
nal variance, The trend variances, the residual variances, and the
standard deviations for the four series are given below as follows:

+120
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FiGURE 44.—REDUCTION OF TIME SERIES T0 RANDOM ELEMENT.
This chart shows how harmonic components and trend are removed from

economic time series.
ments; (E) =— trend; (F) ~—= Residuals.

(A) — original series; (B), (C), (D) = harmonic ele-
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Series Trend Variance {¢r2) Residuzl Variance (01?) - o1
X, 117.9708 116.5570 10,7961
X, 253.2619 89.0029 9.4341
X, 0.007849 50.3468 7.0955
X, 42.8034 35.7104 5.9758

The correlations of the trend residuals are now easily computed
by means of formula (5) of Seetion 3. Thus, making use of the values
previously recorded, we get for »,, , the correlation coefficient between
the Dow-Jones averages and pig-iron production, the following value:

. __ (0.7697 X 15.3143 X 18.5001 — 0.18534768 X 932.577832)
1 10.7961 X 9.4341
= ().4440 .

We note that the quantity 0.18534768 is the value of A’ computed
for p = 101 multiplied by the moment 129206.24, and the quantity
932.577832 is the value of the second moment 189313.3 divided by
N = 203.

In this manner all the trend residuals are correlated and the co-
efficients are recorded in the following table:

X X, Xy Xy

1.0000 0.4440 0.4363 0.9001
0.4440 1.0000 0.0182 0.5236
0.4363 0.0182 1.0000 0.4502
0.9001 0.5236 0.4502 1.0000

4 1

E -

b 4 b

-

The next problem is to remove the harmonic elements from the
four series. For this purpose we consult the periodograms for sig-
nificant periods, and for these significant periods we compute from
the data of the periodograms the values of the parameters, 4, B, K,
and R?, where A and B are the coefficients respectively of the cosine
and sine components, and where Rz = A2 + B2, The table on page 234
is thus constructed for the four series.

We now assume that the harmonic variance is given by the fol-
lowing formula:

ot =3[(A2 + B?) + (A2 + B?) +---+ (42 + B2)],
where A; and B, refer to the values for significant periods.

The value of ¢42 subtracted from the residual variance 0,2, should
give, to a close approximation, the variance of the erratic element,
o2 that is,

(4) op? ® 02 — aut
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, o Lengths;_t;;é_igniﬁcant Périodé 7

€2 Months

- Series Pammetgrrs S Ménrtrl;s 30 Months ! 43 Months
A . —3.2466 | —8.7279. ‘ —1.1963
B ©1.2210 —4.4564 | —6.7914
X, R | 2.47 : 9.80 i 6.90
12,0409 96.0400 [ 47.6100
P [ _ . e ——— . - . —_ . _.l — ———— - ‘ e —— e ———
A ~1.3312 1.4380 —4.2334
B T 29308 4.7671 | —6.1268
x, . R © 261 4,98 | 7.46 ;
R . 68121 | 248004 ; 555025
L4 T ymams | —3.1198 )
B 2,093 \ 0.2594
X, R 2.19 : . 316
I 6.2001 | ] 9.9856
A —1emms | 47002 | —0.1514
L 0500 | —3.2827 —4.2426
X, R 1.6 ; ' 5.74 4.25
R 2.38n61

32.9476 18.0625
I ' i .

In the following table we give the values of the harmonic vari-
ance, the erratic varianee as computed by (4), the standard deviation
of the erratic clement, and the actunl value of this standard deviation
computed directly from the final residuals:

Series | o ow . wnby () | oc (Bxact) | rvor
X, 77.8454 | 38.7116 6.2219 | 6.7354 | 0.5135
X, 43.6575 | 45.4454 6.7413 J 6.8394 0.0931
X, 80920 | 42.2539 6.5003 G.7457 0.2454
X 26.9331 8.7773 29627 |

3.7126 0.7499

14 i

The errors in the standard deviation of the erratic element arise
out of the approximate character of formula (4) as has been ex-
plained previously. Except in the last instance, they are all less than
three times the probable errors of o., these probable errors being re-
spectively 0.2249, 0.2284, 0.2252, and 0.1240.

7. Economic Significance of the Example

In order to interpret the significance of the analysis given in the
preceding section, we compute the correlation coefficients between the
erratic elements of the four series and obtain the following table:
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X, X2

710000 | 0.0778 1 0.4057 | 0.7092

Xy | 871

X

X, | 00778 | 1.0000 | 02575 | 0.0608
X, | 04057 | 0.2575 | 1.0000 | 0.2654
X,, | 07092 | 0.0608 | 02654 | 1.0000

One of the maost significant facts to be noted from a comparison
of the three tables of correlation coefficients is that the high correla-
tion of 0.7697 between X, and X, has been reduced to the insignificant
correlation of 0.0778. In other words, we have been able to account
for neariy all the interrelationship between these two series by similar
trends and two common harmonics. The remarkable permanence of
this periodic relationship between these two series was observed pre-
viously in the chapter on serial correlation. There it was established
that pip-iron production moves three months after the stock price
averages. _ '

This cinse correlation between the two series can be exhibited
very simply in another way. Since in both series the 43-month cycle
dominates the other significant eycles, we can represent most of the
eyclical movement in the two series by this single harmonic. Thus
from the table of periocds we have for the stock price averages the
dominating cycle

2at . 2at
X, = —8.77279 cos il 4.4564 sin a5

== 9.7998 sin %ﬂ‘ (t + 29.0190) ;
iy ]
and for pig-iron production,

2nt . 2nat
Xg = —4.2334 cos 73— — 6.1268 sin 33—

="7.4471 sin % (f + 25.6368) .

Computing the lag-correlation function for these two harmonies
by means of formula (2) of Section 4 of Chapter 3, we obtain

_ 2n
r{t) _COSZ[?,‘ (3.382 ~1). |

Hence thé lag between the two series, determined from this very
simple analysis, is equal to about 3.38 months.
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This same conclusion can be derived from the data of the period-
ograms of the two series expressed as percentages of trend. In this
case we obtain for the two harmonic elements the following values:

27 . 2n
X, = —8.5319 cos 5 4.7624 Smiﬁ
. 2.:'1
=9.7711 sin YE: (t + 28.766) ;

2n 2n
i =4 — 3
X, = —4.5647 cos i3 6.2364 sin ey

= T7.7078 sin % {(t + 25.838).
The lag-correlation function is then found to be
r(t) = cos?—i {(2.928 — 1),

which shows a fundamental lag of three months between the two se-
ries.

Another interesting conclusion to be derived from the final table
of correlation coefficients is that the relationship between X, and X,
does not depend upon either trend or harmonic elements. This is an
important conclusion to establish since it discloses a connection be-
tween these two series which docs not depend upon the existence of
common frends or common periodic movements. Since the relation-
ship between the stock price averages and the production of pig iron
is established through common periods, the existence of an essentially
different type of correlation is a matter worthy of special comment.
Obviously the simple explanation is found in the fact that the volume
of sales on the stock exchange increases whenever the market shows
an unusual movement in either & positive or a negative direction.

A final observation from the table of correlation coefficients re-
lates to the series X, and X,,, which are designed to measure essen-
tially the same economic phenomenon. By the removal of trends and
common periods, the initial correlation of 0.9516 has been reduced to
0.7022. While this is not to be regarded as a large change, it is cer-
tainly sufficiently great to excite attention. The first series is derived
from a sample of the end-of-the-month quotations of 12 stocks, while
the second series measures the complete action of the market as it is
determined by an index based upon the monthly averages of all the
listed stocks,
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8. Seasonal Variation

In Section 7 of Chapter 2 the use of harmonic analysis was illus-
trated by removing a twelve-month eycle from the data of freight-car
loadings. The twelve-month cyele is generally called the cycle of
seasonal variation and it is recognized as an important characteristie
of many economic time series,

While the use of harmonic analysis seems to recommend itself in
the study of seasonal variations becaunse it yields at one computation
both the relative energy in the seasonal eyele and the technique for
removing it from the data, the method of link relatives is widely em-
ployed to compute the indexes of seasonal variation.

We ghall illustrate this method by means of the data on freight-
car loadings previously uscd.

If y; represents the data and S: the indexes of seasonal variation,
then the new series

(1) xi:yl/Si

is called the data corrected for seasonal variation. The indexes of
seasonal variation are computed in three steps.

The monthly link relatives of the data are first found and
arranged in a table in order of magnitude. By a series of link relatives
we mean the ratios of each item in the series to the one just preceding
it. Thus referring to the data (Section 7 of Chapter 2), we compute
as the Jan./Dec. ratio for 1920 the fraction 820/758 = 1.08. In this
manner the table on page 238 is readily obtained.?

In the present instance the arithmetic averages are seen to agree
closely with the medians. In general the median is to be preferred in
this computation since it is free from extreme variations in the data
which might affect the average. The fact that unusual departures
from a normal trend are thus excluded by the method of link relatives
seems to the writer to be one advantage possessed by this méthod over
that of harmonic analvsis. Another argument for the use of link rela-
tives is found in the fact that the method automatically eliminates the
trend from the computation.

31t will be observed that. if the available data begin with January and end
with December. then the number of link relatives for the Jan./Dec. ratio will be
one less than the number of link relatives for the other ratios.

Several methods have been devised for correcting data for seasonal variation
differing from the one presented in this section. Some of these adapt the tech-
nique of moving averages to the problem. For a more extensive account than can
be piven here of other methods the reader is referred to F. C. Mills, Statistieal
Methods (Revised edition), New York, 1938, pp. 284-298, and to F. E. Croxton
and D. J. Cowden, Applied General Statistics, New York, 1939, Chapter 18.
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' Jan. Feb. Mar, Apr. May June July Aug. Sept. Oct. Nov. Dee.

Ratio rﬂ;:. Jan. Feb. Mar. ADL _1;15.; June July Aug. —S;:pt. Oct. Nov,

\109 109 109 104 118 107 106 110 110 11¢ 95 94
| 108 106 109 103 109 107 105 109 108 110 93 90
[ 106 105 108 103 108 104 102 109 107 106 91 89
|105 105 106 163 107 102 100 108 106 105 90 88
|
|
|
P

104 104 105 102 107 102 100 108 106 106 89 87

Link (104 100 105 102 106 101 99 107 104 104 89 87
Rela- 103 101 104 102 106 101 99 108 104 105 88 87
tives 103 101 102 99 105 101 99 108 103 105 87 85
. 102 99 102 99 104 100 98 106 102 103 86 85
i 101 99 101 98 103 100 98 106 100 103 B 85
i 101 98 101 97 102 99 98 105 100 103 84 85
100 97 101 96 100 98 98 105 99 102 84 B4
98 95 101 88 98 98 98 104 99 102 83 83
: 94 1017 86 94 94 96 101 99 101 82 82
Median ! 104 101 103 100 106 101 99 108 104 105 88 86
Arithmetic |

Mean | 163 101 104 9% 105 101 100 107 103 105 88 86

The next step in the computalion is to set the link relative for
Jan./Dee. equal to 100 and “chain” each median to this standard. If
the medians of the columns are represented respectively by the sym-
bols m,, M., Ms, -+, My, then the chain relatives will be computed
from the formulas

e, =100, Ci==cCiay, 1=2,8,---,12.

Since it will turn out that ¢,,7, is not equal, in general, to ¢,, as
should be the case if the chain relatives are to be periodie, a ratio to
correct for this discrepaney is computed from the equation

e {(l+dyr=c¢,.m,.
A new set of adjusted chain relatives is then determined by

L2

CTaTra

i=1,2,..-, 12,
It is clear that our objective in the adjustment is attained since we
have C, = C.m, = ¢om (1 + d) ' = ¢, = 100,

The final indexes of seasonal variation are obtained by dividing
the chain relatives by the average value, €, of the adjusted chain
relatives; that is to say,

8:=C,/C.

From the data we readily obtain the following values:
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i\‘ledian-_s. —7 Ehz;i:ﬁ x;erlntiv:z i Ad;us.md ('h'll’l v Indexes of seasonal
1 ‘ relatives variation

04 100 i 100 92
101 | 101 | 101 93
105 | 104 : 104 95
100 I 104 103 . 94
106 } 110 i 109 . ing
101 i 111 | 110 ‘ 101
99 | 110 | 109 : 100
108 ! 119 : 118 : 108
104 ; 124 | 122 ! 112
105 ! 120 | 128 ! 17
88 | 114 ; 112 : 163
8 - % a6 ' 88
Averages : 109 ‘ 100

corrected for seasonal variation. These values are given in the follow-
ing table:

MONTHLY AVERAGES OF MEAN WEEKLY IREIGHT-CAR LeADINGS
CORRECTED FOR SEASONAI,VARIATION
(Unit, 1,000 cars)

Year © Jan. Feb. Mar. April May June J.ul; .—‘\l.u:. _Sent h 0.«'.‘, - N(:v_. Tec. )
1919 791 739 734 761 759 801 8&R 826 BhT 826 1781 B61
1920 8§91 834 893 7TT8 862 851 901 86 BGH BRY  BHB B2l
1921 : 766 734 729 751 757 757 751 50 951 794 73D Ti6
1929 . 763 R22 R®T0 769 T8T 831 825 812 835 848 917 952
1923 919 906 966 1001 975 1001 986 964 926 921 950 938
1924 033 976 965 931 R895 897 894 902 926 932 947 962

1925 100'-1 973 973 1001 968 979 986 1000 959 946 994 1009

1926 1008 988 1020 1019 1037 1018 1049 1022 1025 1030 1037 1027
1927 1028 1028 1055 1037 1024 9893 979 983 0680 953 928 947
1928 937 964 1001 995 1002 975 B586 98¢ 497 1004 1030 1003
1929 971 1013 1013 1060 1051 1042 1038 1034 31013 999 950 949
1930 | 910 942 930 970 914 921 895 865 831 812 775 772

1931 | 782 762 TT4 800 740 T41 738 692 658 649 636 630
1932 616 603 595 593 522 486 483 486 515 542 533 551

av. | 879 877 804 800 878 878 884 873 867 865 863 871

It is instructive to compare the results of this analysis with that
given in Section 7, of Chapter 2, where the seasonal influence was re-
moved by means of harmonic analysis. The two deflated series are
graphically compared in the accompanying figure. The principal dif-
ference appears to be that the method employed in this section tends
to give a greater smoothness than that of the previous method. This
is due to the fact that in the first instance only two major harmonics
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were removed, whereas the present method removes all the harmonic
variation attributable to the interval T=1 to T =12.

This conclusion is further substantiated by computing the per-
centage of energy accounted for from the formula

100E = 100(1 — o,2/0?) ,

where ¢>=23,870 is the variance of the original series and ¢, =
17,292 is the variance of the corrected series. We thus obtain 100F =
27.56 per cent, which is to be compared with 16.43 per cent obtained
by the previous method.

THOUSANDS OF THOUSANDS OF
CARS PERWEEK CARS PERWEEK
1200 1200

1000 1000

f

—
1 1 1 i " \ L o

‘7950 — : 7925 1530
FIGURE 45.-—FREIGHT-CAR LOADINGS, 1919-1932 (MONTHLY AVERAGES OF
WEEKLY DATA.
: Residual after seasonal has been removed by means of harmonic
analysis

relatives

9. The Variate Difference Method and Its Application*

The variate difference method is a statistical procedure designed
to remove the random eiement from the items of a time series. The
origin of the theory is apparently to be found in a paper written by
J. H, Poynting as early as 1884,° but its development as a tool in the

s The author is greatly indebted in this account to The Variate Difference
Method, by G. Tintner, published as a monegraph of the Cowles Commission and
Iowa State College, 1940. Tintner’s admirable work, Prices in the Trade Cyele,
Vienna, 1935, xii 4 204 pp. employs the technique of the variate difference method
and gives a résumé of itg salient features.

5¢A Comparison of the Fluctuations in the Price of Wheat and in the Cot-
ton and Silk Imports into Great Britain,” Journal of the Royal Statistical Se-
ciety, Vol. 47, 1884, pp. 34-54.
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analysis of time series belongs to the more recent period. Among those
who have contributed to the subject may be mentioned the names of
[i. H. Hooker, Miss F. E. Cave, L. March, “Student” (W. 8. Gosset),
Miss E. M. Elderton, Karl Pearson, G. U. Yule, A. Ritchie-Scott,
Warren M. Persons, R. A. Fisher, A. L. Bowley, Oscar Anderson, G.
Tintner, A. Wald, and R. Zaycoff. But it is probable that the present
state of the theory and the general interest in its application are dus
Lo the extensive work of Anderson, whose treatise Die Korrelations-
rechnung in der Konjunkturforschung, published in 1929, may be con-
sidered as definitive of the subject. More recently Tintner has pro-
duced a monograph sefting forth in much detail the applications of
the method to economic data.

It is somewhat aside from our purpose to enter into a discussion
of the merits and the difficulties of the theory, but we believe that
the method has considerable utility in determining the nature of the
erratic element in many economic time series.

The basic postulate of the variate difference method is found in
the assumption that the elements y; of a time series may be resolved
linearly into two parts, the first a mathematical expectation z;, and
the second a random element ¢, ; that is,

Y=, te.

The second postulate of the variate difference method is that x,
is a systematic or funectional variable and that its %th difference ap-
proaches zero as k increases, that is, A*%xc; = 0 for large values of k.
It is well known, of course, that the third difference of a parabola is
zero, that the fourth difference of a cubic is zero, etc. Hence if x;
can be represented by a polynomial of nth degree, then its difference
of order » + 1 will vanish. But since this is not the case with the
random element ¢; , the residual left in the series y; after the difference
of order n + 1 must be that attributable to the random element,

The scheme, then, is to determine the value of k%, let us say, k&, ,
for which A4*x; =0. The value so determined then indicates the fune-
tional character of z;. If, for example, k, is 2, then z; is essentially
linear; if k, is 8, then x; is parabolic, ete.

Having once determined the nature of the functional variable, we
can then proceed to eliminate the random element by smoothing the
data by a moving average indicated by the analysis. The method em-
ployed is the moving average of Sheppard’s graduation theory.

The first problem is to determine k,. For this purpose the second
moments of the kth differences are computed ; that is,

(1) e ECA
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The variances of the k-differences are then obtained from the
formula
ng(k)

2) NG S ool

where 'szk = (2k) !/ (k1) ? is the kth binomial coefficient,

The reason for the divisor »C}, is found in formula (3), Section 4,
Chapter 4, where the variance of a random series is computed. Since
by hypothesis the kth difference is the difference of a random series,
we must compute the variance on this assumption.

The next guestion is to determine the significance of the differ-

ences between successive variances as defined by (2) ; that is, to eom-
pute the expectation, E(d:), of the difference
(3) &= ’ 0%y — ot ! .
This is the most difficult part of the analysis both theoretically and
practically and the eriterion is achieved through several steps which
will be stated without proof. The reader is referred to the original
articles for the justification of the procedure. ®

The variance of d,, which we shall designate by ¢*(d,) , is given
by the formula

(4} o? (&) = o®/Qr,
where () is a complicated function defined by the following ratio:
H(k, N)

VI+GIEN)
The functions H (k, N) and J (&, N) are due to R. Zaycoff and are
defined as follows:
(N—-EBEY(N-—-&-1)
VIOOWNTED(N—B(N—k—-1) =N '
(N—KEY(N~-k—1)by — Nex— ¢
(N +D"YN-BYIN-k-1)-N"'
where b, b, b"x, ¢, and ¢'x are given in the table on page 243.

The remaining parameter, G., in Q: is defined in terms of the
kurtosis of the kth difference; thus

Gk = I)k/'l"k4 ’

Hk,N)=

J{k,N)=

6 Seg R. Zaycoff, “Ueber die Ausschaltung der zufillizen Komponente nach
der *Variate Difference’ Methode,” Publications of the Statistical Institute for Eco-
nomic Research, State University of Sofia, 1937, No. 1
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be 2% b Cx 1 c'y

0.500000 1.¢00000 1.000000 0.500000 0.000000
0.277778 0.222222 1.111111 0.5655666 0.444444

LIRS | )

0.254444 | 0.108889 1.093333 0.134444 | 0.286667
0.209592 1 0.067347 1.080817 2101837 | 0.384490
0.187314 | 0.046838 1.072058 0.094092 ; 0.415470
0.169365 . 0.034973 1.063577 0.084752 | 0.462166
0.156063 | 0.027391 1.060548 0.078301 | 0.500876
where D, the kurtosis, is given by
A, 4N — k) —Brot

Py ’
The constants By and P, are given in the following table:

k By ‘ I

1 12 2
2 108 18
3 1200 164
4 14700 - 1800
5 190512 | 21252
6 g 2561328 . 263844

For k=0, the kurtosis takes the form

N—1
e — 3( N

TI-4/NT6/NF—3/N’

)2004

D,

where m, is the fourth moment about the mean. It may be computed
in terms of the average means, N,, about any other convenient value
Trom the formula

m, =N, — 4N, N, + 6N.N,2 — 3N *,

Since we now have an estimate of the variance of the difference
of the k-variances, we may now establish the criterion for &, in the
usual manner. Thus we form the ratio

O lo*y — o’
Qr .

—-—az(ak) o ot

k

Then k, is the first value of k& for which R, is less than 3 and,
within possible minor variations, remains so.

The final step in the analysis consists in determining the funda-
mental structure of the original series by computing a new series
from which all or most of the random variation of the original data
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has been removed. This is accomplished by means of Sheppard’s
smoothing formula, which consists essentially of fitting a moving
polynomial to the data.”

¥t

t

FIGURE 46.—APPLICATION OF SHEPPARD'S SMOOTHING FORUMLA.

In order to illustrate this method let us consider that a moving
parahola is to be fitted to the data. If the data consisted of five values
only, we might select the central value as the origin and then fit a
parabola to the five points by means of the formulas given in Section
4. We note that if y = a, + a,f + a,f® is the parabola, then the cen-
tral value is given by

y{0) =a, =AM, +BM2=A§y. +B§s’y,=§a,ya .
-1 -p -p

where we write
a,=A + §*B.

Now if we move to the next point as origin, we could repeat the

, .
process and thus obtain #,(0) =3 ¥, and hence in general
=P

P
¥ (0} =3 a¥ess -
-p

This expression is immediately seen to define 2 moving average with
the weights given by a, .

" The reader may consult for this: W. F. Sheppard, (1) “Reduction of Errors
by Means of Negligible Differences,” Proceedings of the Fifth International Con-
gress of Mathematicians, Cambridge, 1912, Vol. 2, p, 348; (2) * Fitting of Poly-
nomials by the Method of Least Squares,” Proceedings of the London Math. Soc.,
(2nd series}, Vol. 18, 1914, p. 97; (3} “Graduation by Reduction of Mean Square
of Error,” Jowrnal of the Institute of Actuaries, Vol. 48, 1914, p. 171, 390; ibid.,
Vol. 49, 1915, p. 148. See also E, T. Whittaker and G. Robinson, The Calculus of
Observations, London, 1924, p. 291; O. Anderson, Die Korrelationsrechnung in
der Konjunkturforschung, Bonn, 1929, pp. 74 and 117 ef seq.; M. Sasuly, Trend
Analysis of Statistics, Washington, D. C., 1934, Chapter 9.
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For the problem originally considered, namely where p = 2, we
obtain the following values for a,:*

a;=0a,—=A +4B=—0.0857143, o, =a; —=A + B=0.3428572,
a, = A = 0.4857143 .

We note also that since a, is the same for the cubic as for the
parabola, the data by this process may be said to be smoothed by the
moving least-squares parabola or cubic. The extension to polynomials
of higher degree is obvious.

It is clear that the amount of the random variation removed by
the process described above depends both upon &, and p, the para-
meter of the moving average. That is, the per cent of the random
variation removed is a function of the two variables n and p, where
n =%k, , if k, is even, and n = §(k, + 1), if k, is odd. We shall des-
ignate this per cent by 100 — 100 L{n,p}, where L(n,p) is defined
by the following table:

Values of LE(n,p)
p=1 C 2 3 4 b 6 T 8

0.3333 0.2000 0.1429 0.1111 0.090%3 0.0769 0.0667 0.0588
0.4857 0.3233 0.2554 02076 0.1748 0.1511 0.1331
0.5671 0.4172 0.3333 0.2785 0.2395 0.2103

0.6193 0.4759 0.3911 0.3233 0.2911

WIS | 32

Thus in our previous example we should have had the values
n =2 and p = 2. We may note that this implies that the random ele-
ment is eliminated in the third or fourth difference since ¥ = 3 or
k = 4 leads to a value of 2 for n. Entering the table of L(n,p), we
find that 100 L(2,2) = 48.57% and hence we conciude that the order
of smoothing employed by this choice would remove 1009% — 48.57%
= 51.43% of the randomness of the series.

Extensive tables of the functions described in this section, to-
gether with an alternative method for determining the order of the
difference in which the mathematical expectation is eliminated, will
be found in the volume by Tintner already mentioned.

As an example of the application of the variate difference method, we shall
consider the data for the Cowles Commission All Stocks index (1880-1896). From
these data we have the values A — 41.4270, ¢ — 4.7450, 02 — 22,5149, N — 204 .

The first step is the computation of the variances of the first six differences
and their squares together with the corresponding fourth moments. These values
are given in the following table:

5 Note that the values of A and B are tabulated in H. T. Davis, Tebles of

the Higher Mathematical Functions, Vol. 2, Bloomington, Ind., 1935, pp. 307-359;
in particular, pp. 331-335.
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e MUB/(N-K)

Order of Dif. 2 :

ference (k) T i T
0 22,5149 30,836.6080 |  1,131.5520 506.9252
1 0.73%47 | 1.513.6183 | 7.45625 0.53798
2 0.34848 2.374.3676 | 11.75430 0.12144
5 0.25999 14.088.9195 | 70.09313 | 0.06759
40022173 125,622.9648 | 628.11482 |  0.04916
5 ' 0.20158 1,405,821.2822 |  7,064.42855 0.04063
é | 0.03555

0.18856 17,201,798.5201

86,877.77030

We next compute the kurtesis (1,) of each difference, the values of Gy,
H{l,N), J(k, N), and hence finuily (},. These computations are given below:

Order of Dif-

]
] '
ference (k) J' Dy I G Inal | kXN J(k,N) O

0 —381.9504 | —0.75307 | 14.213189 0.002427 14.22621
1 0.50022 | 0.92982 29.715297 0.005922 29.63382
2 | —0.07562 © —0.62271 41.742692 0.010890 43.23440
3 ! —0.06719 J —0).99405 52.001766 0.014112 52.46103
4 —0.05257 l —1.06922 | §1.212589 0.017588 61.79673
5 —0.0318>» | —0.7T8388 $9.540589 0.020612 69.90765
6 —0.01588 | —0.44669 | n |

The final step is then te compute the values of B, which are given as fol-
lows:

Cfetence () S U B o B L
21.7814 0.96742 13.76272

0

1 ! 0.28499 J 0.52489 15.55444
2 | 0.08849 ) 0.25394 10.97899
3 | 0.03826 ‘ (,14714 7.71901
4 0.02015 ‘ 0.08089 5.61689
5 |

0.01302

0.06459 4.51535

1t is clear from the last table that the random element has not been eliminated
from the first five differences since R, is still significantly greater than 3. How-
ever, the computation indicates that for k=7 or 8 the value of E; would not
greatly exceed 3. Hence we may assumn that n=—4 will give a sufficient re-
duction in the random element. Thus we may seleet n =4, p=— 5 for the smooth-
ing formula and hence we shall obtain a reduction of 100 per cent — 47.59 per
cent = 52.41 per cent in the random element.

The coefficients of the moving average are found from the formula

o, —o,=A +s52B 4 54 C,

where 4, B, and C are the values corresponding to the quartic in Section 4. The
numerical values of the coefficients are as follows:

a_, == o, = 0.0419580 o, =u,—=—0.1048951,  a_, = a,=-—0.0238100,
a_, = a, = 0.1398601 e, ==a,== 02797203, a,= 0.3333333.

By the use of these weights the expected values of the index may now be
computed. For illustrative purposes the following 55 items (Cowles Commission



THE ANALYSIS OF TRENDS

247

All Stocks index, 1880-1884, preliminary values) have been obtained and they are
praphically compared with the original items in the accompanying table and in

Figure 47,
7I;e)mi Origi- Com- :.‘!_Item ' Origi- | Com- ‘ Item | Origi- | Com-| Item | Origi- | Com-
,ﬁ._‘_nil,ﬁ‘__ puted } 7£&_1i_ puted ! ) nal | puted nal _puterl
1 4111 .. £ 16 508 512 31 483 | 4811 46 | 433 | 436
2 ‘ 419 | 17 523 | 516 82 497 | 49.3] 47 | 439 | 432
3 | 426 ... ' 18 | 529 | 520 33| 502 496| 48 | 43.0 | 429
4| 47 .. | 19 51.1\ bl4 | 34| 489 | 49.0) 49 | 417 428
5| 384 .. L 20 | 49.9 | 50.7 | 35 | 46.8 | 47.7| 50 | 42.8 | 429
i 4 ' i

6| 385 89321 |503 | 499 36 410 | 466] 51 | 426 | 419
7 | 403 \ 396 | 22 | 495 | 497 | 37 | 46.8 | 46.2| 52 | 40.9 | 40.0
8 | 418 409 | 23 | 498 | 49.4 | 38 | 457 | 463 53 | 374 | 378
9 ‘ 41,7 | 421§ 24 | 484 | 485 ) 39 | 463 | 46.4| 54 | 350 | 36.4
10 i 429 | 434 | 25 | 476 | 476 40 | 473 | 468 55 | 35.9 | 362
11 | 452 | 451} 26 | 466 | 47.0 | 41 46.4| 46.9) 56 | 382! 36.6
12 | 470 473 | 27 | 465 | 463 | 42 | 469 | 4661 57 | 369 | 37.0
12 ' 498 | 489 | 28 | 465 | 459 | 43 | 46.1 | 457 58 | 257 | 363
14 . 496 | 49.7 | 29 459 | 459 | 44 | 440 | 448] 59 | 350 | 351
15 | 502 | 504 | 30 | 45.7 | 46.7 | 45 \ 445 ; 443 60 | 349 | 345

INDEX INDEX

(34 a0

50— 50

40 - | k 40

7 | \/\

L
o=

1880

FIGURE 47.—Cowires COMMISSION ALL STOCKsS INDEX, 1880-1884.
) ‘are smoocthed by a moving average (

The original items (

1881

1882

1883

which removes 50 per cent of the random element.

10. The Logistic Trend

1884

Bl

We have previously explained in Chapter 1 the economic signif-
icance of the law of growth as it has heen applied to population and
production data. In this section we shall survey briefly some of the
analytic properties of the logistic curve and its generalization.

By the logistic curve we shall mean the curve represented by the

function.

(1)

K

k

T AT e
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where a, b, and & are parameters to be determined from the data. A
fourth parameter, ¢, may be introduced into the equation by replacing
y by ¥ — ¢, provided the growth to be analyzed starts at some level
greater than zero. Since this is not often the case, it wili be more con-
venient to consider the curve in the form given above.

- We shall first discuss the properties of this curve from the some-
what more general function

k
(2) Y =TT pern’
where ¢ (¢) is an arbitrary function. If we set ¢ ({) = — at, then we

obtain the logistic given in equation (1).
The first derivative of y, as defined by (2), is found to be

dy _ (y — k)
(3) '&_t"‘ﬁ(t)y"—k—,

and the second derivative is given by

d*y

CE =k () + 5 O 2y — i) LB

From the first equation we see that horizontal asymptotes exist,
which are the lines y =0 and v = . These values are attained when

¢ (£) is respectively 4+ and —°,
Maxima and minima of the curve between these limiting values

are given for the values of ¢ which satisfy the equation
' () =0.
Points of inflection are found for the values of ¢ which satisfy
the equation

ko" () + [¢'(£}1*(2y — k) =0,
or, if the value of y is substituted from (2), for values of ¢ which
satisfy
" (1) + [6'(2)]2+ b {8" () — [a'(£)]%) e# 2 =0,

For the special case, ¢ (1) == — at, we see that the two asymptotes
exist, but that no maximum or minimum value is attained by the fune-

tion between them,
Only one point of inflection exists for this case and it is deter-

mined from the equation
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L ,
which yields as the co-ordinates of the point the values

(4) tzllog,b, yzlk.
a 2
This we shall call the critical point of the logistic curve.

If ¢ is a positive quantity, then the curve represents growth, pro-
ceeding from the asymptote y = 0, through the point of inflection de-
fined by (4), to the asymptote ¥ = k. This is the true logistic curve.
If & is negative, then the curve represents a declining function, which
drops from the asymptote y = k to the asymptote y = 0.

For the special case, ¢ (£) = af? g < 0, we see that the curve has
but one asymptote, namely y = 0. It also possesses one maximum
value, namely, at the point £ = 0. Points of inflection are determined
from the equation

(1 + at?)
(1 — at?)’
Closely related to the theory of the logistic is that of the Gom-
pertz curve,
(5) y=ke, b<1,

beﬁﬂ!z —

the theory of which we have discussed in the first chapter.

From the condition that b is less than 1, it is seen that y will ap-
proach the value k as ¢ tends towards plus infinity. If ¢ is likewise
less than 1, then as ¢ approacnes negative infinity the value of ¥ will
approach zero. The curve thus lies between a lower asymptote, y = 0,
and an upper asymptote, ¥y = k. It thus resembles the logistic curve
in this respect.

The first derivative of (5) is given by

d_.
(6) aifr— (log @) (log b) by = log b-log%-'y ’
which shows that there exists no maximum or minimum value be-
tween the asymptotes.
The second derivative of the curve is given by
d*y’

T log?b (loga)b'y [(loga) bt + 17,
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dz

T log2bylog [10g -+ 1].

Setting this derivative equal to zero, we see that a point of in-
flection exists when we have

)
= 1=0.
logk+

Solving this equation for ¢ and ¥ we obtain as the point of inflec-
tion

=
log b ’

— log{(— loga) _k
e

It is interesting to observe that both the logistic and the Gom-
pertz curves belong to the family of curves defined by a differential
equation of the form

dy__
dt

where F(z) is a funetion such that F (1) = 0. The logistic and the
Gompertz curves are derived respectively from the assumptions
F'(z) =2 —1,and F(2) =log z.

The maxima and minima between the two asymptotes ¥ — 0 and
y = k are determined from the zeros of g ({).

A number of statistical methods have been developed for fitting
the logistic to data. The first of these is due to Raymond Pearl and
L. J. Reed.®* This method consists essentially of a preliminary esti-
mate of the parameters from three equally spaced points and the ad-
justment of the parameters by computing the errors of the estimated
values by means of least squares. This method is effective, but tedious
when the series is long. Henry Schultz has given an alternative pro-
cedure for correcting the preliminary estimates of the parameters.®
His solution yields the true leasi-squares logistic in the sense that the
sum of the squares of the differences between the data and the curve
is minimized. Unfortunately, however, the method is difficult to apply
and because of the fact that differences of second order in the para-
meters are neglected, it is usually necessary to apply the method sev-
era) times before a better fit is obtained than that obtained by the

% See, for example, Raymond Pearl, Studies in Human Biology, Baltimore,
11)%24245_11‘%?@ 24; also Davis and Ne]son Elements of Statistics, 2nd ed., 193'7

10 “The Standard Error of a Forecast from a Curve,” Journal of the Ameri-
can Steatistieal Associctiom, Vol, 25, 1930, pp. 139-185.

=g(t)F (y/k)y,
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Pearl-Reed procedure. A third method, the “method of the rate of
inerease,” has been suggested by H. Hotelling.”* This method is sim-
ple to apply and yields results which are in close agreement with the
other two deseribed above. An adaptation of Hotelling’s ideas will
be described below.

Although it is somewhat apart from our purpose in this chapter
to describe the purely statistical methods of adjusting the logistic to
data, this problem frequently arises in practical work and it is use-
ful to have at hand a reasonably simple technique for computing the
parameters. The author has found the present method very easy to
apply and the graduation quite satisfactory. It is an adaptation of
Hotelling’s method,

We note from formula (3) that we can write

1d
(M | =0 (a/k)y .
y di
Hence, if we replace dy and dt by their increments Ay and A4t,
and assume that the latter is equal to unity, then we can write (7) in
the form

(8) E=p+aqy,
where we abbreviate
() R=Ay/y, p=ea, q=—a/k.

Since (8) is a linear funection in ¥ the parameters p and ¢ may
be obtained very simply by the method of least squares from the
known values of E. Consequently a and k are immediately computed
from the last two eguations in (9).

The graduation of the data is then immediately accomplished by
adding increments successively to any assumed arbitrary vzlue ..
These increments are computed from the parabola

(10) Ay = py + qy*.

"The value of b, if it is desired, may be estimated for a number of
pointg along the range bty meansg of the formula

k—y
Y

and the average of these determinations used as the desired value.

e-at

(11) b=

b

11 “T}ifferential Equations Subject to Error and Population Estimates,” Jour-
nal of the American Statistical Association, Vol, 22, 1927, pp. 283-314.
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As an example of the application of this method we shall graduate the Stand-
ard Statistics index of industrial production from 1894 to 1937. The data and
computations are given in the following table:

Year Clas?‘h)iark v ‘ Ay 144 R = Ayt ¥

1884 1 8.7 — 01 0.1149 —0.0115 75.69
1885 2 | 86 3.6 0.1163 0.4187 | 73.96

w ‘ ‘ ‘ |

1886 3 12.2 J 1.4 0.08197 0.1148 | 14884
1887 4 136 | —o1 0.07253 — 00074 | 18496
1888 5 125 ! 2.4 0.07407 | 01778 18225
1339 , 6 15.9 ‘ 3.3 0.06289 | 0.2075 ggggi
1890 l 7 ' 192 | — 21 0.05208 —0.1094 )

1891 g8 173 1 1.9 0.05848 01111 & 292.41
1892 9 | 190 .42 0.05263 —0.2210 361.00
1893 10 148 — 0.9 0.06757 —0.0518 219.04
1894 11 ‘ 13.9 6.0 0.07194 0.4316 193.21
1895 12 | 19.9 l — 21 0.05025 | —0.1065 396.01
1896 13 178 \ 2.3 0.05618 | 0.12)2 316.84
1897 14 | 201 | 4.4 004975 | 02189 10401
1898 15 24.5 J 49 0.04082 0.2000 600.25
1899 16 | 294 . 0.9 0.03401 | —0.0306 864.36
1900 | 17 | 285 | 5.9 0.08509 |  0.2070 812.25

| i |

1901 | 18 344 ! 3.4 0.02907 0.0988 1183.36
1902 | 19 ’ 2778 | — 1.0 0.02646 —0.0265 1428.84
1903 | 20 | 368 — 27 0.02717 —0.0734 1354.24
1904 21 34.1 13.7 0.02933 0.4018 1162.81
1905 ‘ 22 4738 — 49 0.02092 —0.1025 2284.84
1906 | 23 52.7 — 01 0.01898 —0.0019 2777.29
1907 24 526 | —1732 0.01901 —0.3270 2766.76
1908 25 35.4 |82 0.02825 0.5142 1253.16
1909 26 53.6 2.2 0.01866 0.0411 2872.96
1910 | 27 | 55.8 f — 51 0.01792 —0.0914 3113.64
1911 28 50.7 12.1 0.01972 0.2386 2570.49
1912 ’ 29 62.8 2.0 0.01592 0.0318 3943.84
1913 30 64.8 127 0.01543 —0.1960 4199.04
1914 81 | s21 14.1 0.01919 0.2706 2714.41
1915 82 662 188 | 001511 0.2841 4382.44
1916 33 85.0 1.8 0.01176 |  0.0212 7225.00
1917 34 ‘ 86.8 — 16 0.01152 | --0.0530 7534.24
1918 35 | 822 -10.5 0.01217 —0.1278 6756.84
1919 36 , 7.7 8.4 0.01395 0.1172 5140.89
1920 | 37 80.1 228 0.01248 —0.2845 6416.01
1921 | 38 57.3 20.6 0.01745 0.3595 3283

1922 39 77.9 15.0 0.01284 0.1928 GOES_E?
1928 40 92.9 — 5.8 0.01076 —0.0624 8630.41
1924 41 87.1 8.6 0.01148 0.0987 7526 .41
1925 42 95T | 4.3 0.01045 0.0449 | 915849
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‘;’; | Clas?tliiark: ¥ sy 17y - R = Aviy W
1926 ! 81000 | — 2.8 | 0.01000 —0.0280 | 10000.00
1927 | 44 a2 | 2.8 0.01029 0.0391 9447.84
1928 45 1010 | 71 6.008901 0.0703 | 10201.00
1929 46 108.1 —21% 0.009251 —0.2026 | 11685.61
1930 ‘ 47 86.2 —16.0 0.01160 —0.1856 7430.44
1931 | 48 | 702 —15.4 0.01425 —0.2195 4928.04
1932 | 49 54.8 — 65 0.01825 —0.1186 3003.04
1933 | 50 61.3 29 | 001831 0.0473 3757.69
1934 ¢ 51 64.2 9.7 0.01558 0.1511 4121.64
1935 | 52 72.9 147 0.01353 0.1989 5461.21
1936 | 53 . 886 7.4 0.01120 |  0.0835 7849.96
1937 , 54 | 960 ' —217 0.01042 | —0.2261 9216.00
“Totals | 28515 | 428 o

2.657T9 | 198657.11

From the totals given in this table the following normal equations are im-
mediately written down:

54p + 2851.5q=— 2.6579
2851.5p + 198657.11¢ — 42.8 .

From the solutions, p — 0.1563555 , g ——0.00202886 , we obtain the desired
parameters: a:=—=p—0.15635556, bk— —p/q = T7.06564.

In order to compute successive increments, we now select y,==8.7 as origin
and employ formula (10), which now has the numerical form

Ay = 0.15636y — 0.00202886%2 .

The table of values on page 254, with the exception of the seeond and third
columns, which will be explained later, is then computed.

The final problem is the determination of 3, or what is essentially the same
thing, the location of the class marks with respect to the graduated values. This
may be accomplished in several ways. Since the critical point has an ordinate
equal to %k =— 88,53, the values of the data may be smoothed by a moving average
and the year when this ¢ritical value was attained may be estimated. Such a
procedure shows that the critical year for the production series was about 1903.

Or, otherwise, one may seleet several values of £ and then estimate b for each
of these by means of formula (11). Using the class marks ¢, and selecting the
points t=—= 10, { — 15, t == 20, and t == 30, we obtain as an estimate of b the value
225978, Substituting this in the first formula of (4) as a check, we obtain £ ==
19.94 as the class mark of the critical year. From the original data we see that
this corresponds to the year 1903 in agreement with our previous estimate.

The data and the logistie are graphically represented in Figure 48,

The values attained by the method which we have just described
should not be accepted without some reservation. Apparently a value
for k is often attained which is somewhat lower than the value which
one gets by applyving the Pearl-Reed method. Thus in the data for the
production of pig iron over the period from 1855 to 1925, the method
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Class | Graduated | ‘

Year Mark Value e | j2) qu® | Ay =

(t) ) | Py
1899 6 8,70 7560 | 1.3603 | — 0.1536 | 1.2067
1890 " 9.90 98.01 15480 | — 0.1988 | 1.3492
1891 8 | 11.25 126.56 17591 | — 0.2568 | 1.5023
1892 9 | 12.75 162.56 19936 | — 0.3298 | 1.6638
1893 10 | 1441 207.65 22531 | -- 04213 | 1.8318
1894 11 | 16.24 263.74 25293 | — 05351 | 2.0042
1895 12 | 18.00 324.00 28145 | — 0.6574 | 2.1571
1896 13 | 20.16 406.43 81522 | — 0.8246 | 2.3276
1897 4 | 2249 505.80 35165 | - 1.0262 | 2.4903
1898 15 | 24.98 624.00 329059 | — 1.2660 | 2.6399
1899 16 | 2758 760,66 43124 | — 1.5433 | 27691
1900 17 | 30.85 921.12 47455 | — 1.8688 | 2.8787
1901 18 | 3323 | 110423 51958 | -—- 2.2403 | 2.9555
1902 19 | 36.19 | 1309.72 5.6587 | — 2.6572 | 8.0015
1903 20 | 89.19 | 1535.86 61277 | — 3.1160 | 2.0117
1904 21 | 4220 | 178084 65984 | — 3.6131 | 2.9853
1905 22 | 4519 | 2042.14 7.0659 | —~ 41432 | 29227
1906 23 | 4811 | 231457 7.5225 | — 4.6959 | 2.8268
1907 24 | 5094 | 2694.88 79650 | — 52646 | 2.7004
1908 25 | 53.64 | 287725 83872 | — 58375 | 2.5497
1909 26 | 56.19 | 3157.32 8.7859 | — £.4058 | 2.3801
1910 27 | 5857 | 3430.44 9.1580 | - 6.9599 | 2.1981
1911 28 | 6077 | 3692.99 9.5020 | — 7.4926 | 2.0004
1912 29 | 6278 | 394133 98163 | - 7.9964 | 18199
1913 30 | 64.60 | 4173.16 | 10,1008 | — 84668 | 1.6341
1914 31 | 66.23 | 4386.41 | 10.3557 | — B.8994 | 1.4563
1915 32 | 67.69 | 458194 | 10.5840 | — 9.2961 | 1.2879
1916 33 | 6893 | 475824 | 10.7857 | — 9.6538 | 1.1319
1917 84 | 70.11 | 491541 | 109624 | -— 9.9727 | 0.9897
1918 35 | 7110 | 5055.21 | 11.1172 | —10.2563 | 0.8609
1919 26 | 7196 | 517824 | 11.2517 | —10.5059 | 0.7458
1920 37 | 7271 | 528674 | 11.3689 | —10.7261 | 0.6428
1921 38 | 7885 | 538022 | 11.4690 | —10.9157 | 05533
1922 89 | 73.90 | 5461.21 | 11.5550 | —11.0800 | 0.4750
1923 40 | 7437 | 5530.90 | 11.6285 | —11.2214 | 0.4071
1924 41 | 7478 | 5592.06 | 11.6926 | —11.3455 | 0.3471
1925 42 | 7513 | 5644.52 | 11.7473 | —11.4519 | 0.2954
1926 43 | 7543 | B689.68 | 11.7942 | -_11.5486 | 0.2506
1927 44 | 75.68 - 5727.46 | 11.8333 | —11.6202 | 0.2131
1928 45 | 75.89 J 5759.29 | 11.8662 | —11.6848 | 0.1814
1929 | 46 | 76.07 | 5786.64

gives as the upper saturation level for this series a value of 34,290,000
long tons, while the Pearl-Reed method, after one approximation,
vields an estimate of 43,021,000 long tons. The first value is undoubt-
edly a minimum estimate, while the second appears to be optimistic
in the light of actual production during the last decade.
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FiGURE 48.—GROWTH OF INDUSTRIAL PRODUCTION, 1884-1937.

11. The Growth of Population

Among all the series with which economics deals probably the
most uniform is that of population. Here we observe the operation of
a steady law of growth which is so uniform from one period to an-
other that forecasts of exceptional accuracy are possible not only by
years but by decades. This makes the data of population growth un-
usually attractive to statisticians.

It is obvious that the exponential law of growth, y = ae* , should
apply with some exactness to a young population, since this law is
merely another way of stating the reasonable proposition that the
rate of growth is proportional to the population; that is, dy/dt=by .

But it is equally apparent that some mechanism must eventually
operate to decelerate growth, if for no other season than that terri-
torial limitations must eventually put a bound upon the number of
people who can be supported within them. This is another way of
stating the famous proposition first argued by the English economist,
Thomas R. Malthus (1766-1834), who thought to find this controlling
agency of population growth in the assumption “that population has
a tendency to increase faster than food.” Data for modern populations
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do not tend to confirm this explanation. The population of France
has reached a stable state without any apparent relationship to the
supply of food, and there are strong indications that the rate of
growth of the population of the United States is decelerating, while
the available food supply far exceeds the population’s needs. As a
matter of fact, the critical point (see Section 10) in the population
figures of the United States is in the year 1914, when the country was
entering one of the most spectacular periods of abundance in recorded
history.
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FIGURE 49.—GROWTH OF POPULATION OF THE UNITED STATES, 1790-1920.

g
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Since the mechanism of the deceleration of the rate of growth is
thus obscure, we shall not attempt an explanation of the phenomenon.
What is important here is to note that the exponential law of growth
can apply only at the beginning of a population growth and must be
modified by another law such as that of the logistic which imposes an
ultimate limitation upon the population. ‘

In the following table we have recorded estimates of the para-
meters of the logistic

i

y=1 <+ et
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as they have been computed by Pearl-Reed, H. Schultz, and H. Hotel-
ling:*

CONSTANTS OF THE LOGISTIC OF P(JPULATION FOR THE UNITED STATES

" Constants w- Pearl-Reed | H. Schultz i H. I%otellmg
a | 0.031396 0031352 |  0.031482
b | 67.6315 | 67.1750 | 67.5352
e | 1965968 | 196.2624 ; 195.868

These values refer to an origin in 1780 with the time taken in
years. The following table gives the estimates of population obtained
from the three determinations, although it is obvious that only
inconsequential variations exist between the ordinates of the logistic
as given by the three computers. The graphical representation of
these values is given in Figure 49.

POPULATION ESTIMATES FOR THE UNITED STATES
(Umt = 1 mllhun)

Year t ! Obberved | Pear! Reed i Schultz

| Hotelling
1780 0 | i 2.879 2,879 2.858
1790 10 3.929 2.900 3.918 3.885
1800 ' 20 5308 5.300 5.321 5.271
1810 | 30 | 7T.240 7183 | 7.209 7.134
1820 | 40 . 9.638 9702 9.732 . 9.621
1830 50 12.866 13.043 13.076 12.917
1840 - 60 17.089 . 17.427 17.463 17.236
1850 | 70 | 23192 | 23.100 23.135 22.820
1860 | 80 31.443 20.307 30.397 29,949
1870 | 90 38.558 29.952 39.273 38.710
1880 . 100 | 50.156 50.045 50.047 ©  49.230
1890 110 | 62.948 62.624 62.598 61719
1900 120 75.995 76.709 76.647 75.614
1910 130 | 91972 91792 | 91685 |  90.526
1920 140 105.711 107.188 . 107.036 ' 105792
1930 150 122.775 122.157 121,958 ' 120.682
1940 160 131.410 136.037 135.794 124,539
1950 170 ‘ 148.350 148.072 146.878
1960 180 158.854 158.549 = 157.443
1970 190 | 167.520 167.196 ;  166.191
1980 200 174.473 174137 ©  173.233
1990 210 | 179.929 179.585 | 178776
2000 220 184.136 183.788 |  183.062
2020 240 189.744 189.396 |  188.797
2040 260 192.879 192534 | 192018
2060 280 | 194.595 194253 | 193788
2080 300 ' 195.523 195.184 ‘ 194.749
2100 320 | 106022 195.685 195.267

12 R, Pearl, Situdies in Human Bwlogy, Chapter 25; H. Schultz, “The Stand-
ard Error of a Forecast from a Curve,” Journal of the American Statistical As-
sociation, Vol. 25, 1930, pp. 139-185; H. Hotelling, “Differential Equations Sub
jeet to Error, and Population Estimates,” Jowrnal of the American Stefistical
Association, Vol. 22, 1927, pp. 283-314.
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It is instructive next to inquire when the acceleration of growth
of the population became negative, since this critical value is a highly
important point on the curve. It seems to the writer a hazardous
procedure to forecast from the logistic curve until the actual growth
has passed this critical value. From the Pearl-Reed estimates we at
once compute

t = (log. 67.6315) /0.031396 — 134.2232 ;

since the origin was in 1780, this gives approximately March, 1914.

We also observe from the table of values given above that the
curve of population growth is an unusually stable one when compared
with other time series which deseribe the historical behavior of such
economic variables as price and production. This stability is a for-
tunate matter since it undoubtedly contributes a great deal to the
stability of other series. If per capita estimates of economic varia-
tion can be approximately predicted, then it is clear that the total
variation can be estimated without essential loss of accuracy.

Another significant thing that we should notice is the essential
difference between the growth of a population which is subjeet to no
central mechanism of control and the growth of a population subject
to such a mechanism. The first may be illustrated by a colony of
fruit flies (drosophila melanogaster), which is allowed to grow free-
ly within the limits of a pint bottle, or of a population of yeast cells.
The second is illustrated by the growth of the cells of a pumpkin, or
of the increase in weight of an animal from birth to maturity. An-
alytically the difference between the two types of growth is found in
the observation that in the first instance ¢ (¢) in equation (2) of Sec-
tion 10 is a linear function of ¢, namely —at, whereas, in the second
instance, ¢ (¢) is the cubic function a.t + a.t? + a.t?.

The question of the growth of population of biological organ-
isms has been extensively studied by Pearl, who used as his experi-
mental material colonies of the fruit fly. In the experiment whose
data are recorded below, a colony of fruit flies, a mutant from quintu-
ple, was started with 2 males, each 15 days old, one male and 3 females
each 2 days old, 12 pupae and a small number of eggs and larvae.
Population counts were made 10 times until the problems of managing
the food supply became difficult. The data, together with their gradu-
ated values computed from the logistic

346.14

— 1 + g%.34-0.22¢

are recorded in the following table:
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GROWTH oF POPULATION OF QUINTUPLE STOCK OF DROSOPHIEA IN A PINT BOTTLE.*

* Date of Census } Obs. Pop. ‘ Cal. Pop. ‘| Date of Census | Obs.Pop. |  Cal. Por.
Oct. 6 6 6.0 ' Oct. 24 163 i 1626
Oct. 9 10 11.8 Oct, 27 226 | 2180
Oct. 13 21 25.9 Oct. 30 | 265 i 265.6
Oct. 15 52 38.5 Nov., 3 282 306.8
Oct. 18 67 67.0 t Nov. 7 319 324.5
Oct. 21 04 | 1092 | |

* D:ﬂ;; from Pearl, The Biolog;_:);lf.l’opul;:nbh Grewth, ]‘;- 224,
The excellent agreement between the observed and calculated
population is exhibited in Figure 50.
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FIGURE 50.—GROWTH OF PoOPULATION OF FRUIT FLIES,
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A similar phenomenon is observed in the growth of yeast cells, a
population which might be reearded as being somewhere between a
population of independent organisms such as the fruit flies and a
population of cells controlled by a central mechanism. The following
data are due to T. Carlson.** In the experiment from which these data
were obtained a few cells of yeast were dropped into a proper medium
for their development and the entire colony kept at a moderately warm
temperature. The census was taken daily until the asymptotic value
of the growth was attained.

The data are given below. Their graphical represeniation, fo-

i
T

gether with their logistic of growth computed from the equation
66.5

- 1 + e=1896-0.54551

is shown in Figure 51.

18 “[Jeber Geschwindigkeit und Grisse der Hefevermehrung in Wiirze” Bie-
chem. Zeilschrift, Vol. 57, 1218, pp. 313-334.
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FIGURE 51.—GROWTH OF POPULATION OF YEAST CELLS.

GROWTH OF A POPULATION OF YEAST CELLS

I Quantity of Yeut_ Quantity of Yeast

__Agein Days ~_Obs. Cal. Age in Days Oba, Cal.
0 9.6 9.9 10 513.3 506.9
1 18.3 16.8 11 559.7 562.3
2 29.0 28.2 12 594.8 600.8
3 47.2 46.7 13 629.4 625.8
; 1:;-; lgg-g 14 640.8 641.5
. . 15 16511 651.0
6 174.6 181.9 16 655.9 656.7
7 2573 260.3 17 659.6 660.1
8 350.7 348.2 18 661.8 662.1

9 441.0 433.9 0=3.59

We now compare the growth of individual organisms with the
growth of a population subject to a central mechanism in order to
establish the essential difference between the two phenomena, For
this purpose we consider the growth of a white rat from infancy to
maturity after an experiment by Donaldson. In the following table
there is recorded the actual weight in grams of the male white rat
over the period of a year, together with the calculated weight as gradu-
ated by the curve

273

4.3204-7.21061430.067812-0.5291¢3 °
+ e

y=7+
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FIGURE 52.—GROWTH 1N BoDy WEIGHT oF MALE WHITE RATS.
OBSERVED AND CALCULATED VALUES FOR THE GROWTH IN
WEIGHT OF THE MALE WHITE RAT*

_.Age in | Obe. Wt.|Cal. Wt. | Agein | Obs. Wt. Cal. Wt. J Ageln | Obs. Wt Cal. Wt.
days in grams |in grams days in grama | in grams | days ingrams |io grams

. — —. 1

10 | 185 | 141 | 46 | 505 | 528 | 107 | 1776 | 1781
11 | 133 14.5 49 56.7 583 | 112 | 1838 | 1855
12 148 | 150 52 62.5 642 | 117 | 1914 | 1922
13 158 | 155 55 68.5 704 } 124 ; 1973 | 200.6
14 15.2 16.1 58 73.9 6.8 | 131 | 2025 | 208.1
15 165 | 16.7 61 81.7 834 1 138 | 2097 | 2145
17, 178 | 179 ~ 64 89.1 90.1 [ 143 | 218.3 | 218.6
19 | 195 | 193 | e7 | 993 1 970 | 150 | 2254 | 2237
21 ¢ 212 ! 20.8 70 | 106.3 ‘ 103.8 | 157 | 2270 | 2282
23 | =229 | 224 | 73 | 1138 | 1107 | 164 | 2314 | 2321
25 ! 233 | 242 | 76 | 1213 | 1176 | 171 235.8 1| 236.7
27 l 274 | 261 | 79 | 128.2 124.3 | 178 | 239.4 | 2389
29 | 295 | 282 82 | 135.0 | 1309 | 185 | 289.8 | 241.9
31 318 | 30.5 85 | 1438 ’ 1374 | 218 | 2529 | 2527
34 { 34.9 | 382 88 | 1484 | 1487 | 256 | 265.4 | 2644
37 37.8 : 383 92 | 15623 | 15L7 | 365 | 279.0 | 2796
40 | 422 | a27 | o7 | 1600 | 1612

43 | 463 | 486 | 102 168.8 170.0 o==4.96

* See H, H. Donaldson, The Rat, Philadelphia, Wistar Institute, 1915,

It is clear from the data and from the graduation curve (see
Figure 52) that the growth of organisms subject to a central mechan-
ism does not conform strictly to the logistic. The exponent is a cubic
function of the time, which indicates that the initial growth is more
rapid than in those data for which the logistic holds.

This conclusion is also confirmed by the following data on the
growth of the pumpkin (cucurbita pepo) and its graduation curve
(see Figure 53):
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FICURE 53.—GROWTH IN WEIGHT OF THE PUMPKIN.

OBSERVED AND CALCULATED VALUES FOR THE GROWTH IN WEIGHT OF THE PUMPKIN*

Apein [ Obs. Wt, | ingrams | Agein | Obs. Wt. Cal. Wt. Agein Obs. Wt. Cal. Wt.
days | ingrams | Cal. Wt. | days in grams | in grams days in grams in grams
5 267 267 12 2366 3378 19 5114 5089
6 443 399 12 3758 3829 207 5176 5172
i 658 | 645 14 4092 4186 21 5242 5236
. 8 961 1044 15 4488 4464 22 5208 5282
9 1498 1586 16 4720 4680 23 5352 53156
10 2200 2210 17 4864 4850 24 5360 5337
11 2920 | 2829 18 4980 4984 25 5366 5350

* Data from T. B. Robertson, The Chemical Basis of Growth and Senespcence, Philadelphia, 1923,

The biologigal reasons for this observed difference between the
growth of population of independent organisms and the growth of
colonies of individual cells subject to a central mechanism are still ob-
scure. But the difference itself is clearly established by these empirieal
studies and must be taken into account in the application of the logistic
to population data. The question naturally arises as to whether the
growth of cities, themselves subjected to central planning, the diree-
tion of Chambers of Commerce, etc., may not be more closely related
to the growth of individual organisms than to the growth of ecolonies
of individuals. It is too early yvet to answer this question since Ameri-
can cities have been growing rapidly until recent years. However, the
following data, which are graphically represented in Figure 54, indi-




THE ANALYSIS OF TRENDS 263

cate that the growth of New York City and Chicago is more rapid
than the growth of the population of the country itself and that prob-
ably the graduation of the data by the simple logistic would not be
satisfactory. The answer will be much clearer, however, when the
populations get closer to their asymptotic limits. The data are given
in the following table:

TueE GROWTH OF POoPULATION IN NEW YORK CITY AND CHICAGO

New Yark City ~ Chicego

Year Pop. Year Pop. Year Pop. Year Pop l Year Pop.

1790 33,131 | 18401 348,943 | 1890} 2,507,414 | 1840 4,853 | 1890 | 1,099,850
1800 | 63,787 11850 | 612,385 | 1900 3,437,202 | 1850 29,963 | 1900 | 1,698,575
1810 ( 100,775 | 1860 | 1,174,779 } 1910, 4,766,883 | 1860, 109,260 | 1910 { 2,185,283
1820 | 130,881 | 1870 : 1,478,103 | 1920| 5,620,048 | 1870| 298,977 ] 1020 | 2,701,705

1830 217,985 | 1880 | 1,911,698 | 1930| 6,930,446 | 1880| 503,185 | 1930 | 3,376,438
1940 7,380,259 | 1940 | 3,384,556
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FiGURE 54 —POPULATION GROWTH OF FIGURE 55.—URBAN CONCENTRATION.
CITIEs As COMPARED WITH PoruLa- This chart shows the nearly linear
TION GROWTH OF THE UNITED STATES: shift from rural to urban living
(a) United States, (b} New York,

(c) Chicago.

But it is evident that another factor has been at work in acceler-
ating the growth of cities. As scientific development has progressed
there has been an astonishing shift of the population from rural to
urban living. How great this movement has been is revealed in the
following table showing urban concentration in places of 2500 inhabi-
tants or more since 1820. The data are due to L. E. Truesdell.™*

UrBAN CONCENTRATION IN PER CENT

Year 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930

Per Cent 70 84 116 168 208 262 20.6 354 40.0 458 b5l4 562
Urban

14 Growth of Urben Population in the United States of America,” U. B, Dept.
of Commerce, 1937,
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Figure 55 shows that the percentage increase has been essentially
linear since 1830, the average increase for the 110 years being 4.5 per
cent per decade. Since 1890 the average has increased slightly to 5.2
per cent. We thus see that cities have tended to grow faster than the
population and estimates of their future size must take into account
this general movement of the population.

1t seems quite reasonable to suppose, however, that, as industrial
production levels off around its equilibrium position, this tendency
toward urban concentration will cease. In fact, this deceleration may
come rather abruptly, and in this case, we might expect to see cities
attain their maturity more rapidiy than the country itself. These
phenomena, if interpreted analytically, would appear to show that
the growth of American cities may be governed by a mechanism which
more nearly resembles the growth of individual organisms than the
growth of colonies of individuals

In order to account for the logistic character of population growth
Pearl has made a rather elaborate study of the influence of the density
of population on the birth rate and has found a small negative correla-
tion, » = —0.175 with a probable error of +0.057, after other influences
have been accounted for. This confirmed a study made by J. L. Brown-
ell in 1894.2* Pearl reaches the conclusion: “The bearing of the results
set forth in this chapter on the general problem of the causes lying
back of the logistic curve is evident. As any population confined with-
in definite spatial limits goes up on the logistic curve its density auto-
matically becomes greater and greater. But if, as the evidence indi-
cates, increasing density has associated with it the biological effect of
a reduction in the rate of reproduction of the population exhibiting it,
then obviously there is in this relationship a factor which may appear
as a vera causa in damping the time rate of growth in the upper half
of the logistic curve,”

Factors extraneous to normal growth by the logistic law are ob-
servable also in other population statistics. A notable example of this
is the growth of educational institutions, which has been considerably
greater than the normal growth of the population. This has been due
in part to urban concentration, to increased standards of living, and,

perhaps, also to an increase in general belief in the virtues of educa-
tion itself.

15 “The Significance of a Decreasing Birth-rate,” A 1 the A
Political and Social Science, Vol. 5, 189£95, pp.r48i49. el of the deademy of
18 The Biology of Population Growth, p. 157.
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12. The Growth of Production

The great wealth of the United States and the remarkably high
standard of living attained by its population are due in the final
analysis to the growth of production and trade over the past century
and a half. We have already cited the remarks of Carl Snyder, who
has observed a per capita growth of about 2.8 per cent per annum for
production and trade.

But the last decennium has revealed a somewhat different picture.
Beginning with the collapse of the great bull market in 1929, indus-
trial production indexes declined to unprecedented lows. The secular
advance of 2.8 per cent was abruptly halted. The saturation level of
automobile production cleariy had been reached, and the recurring
difficulties of the steel industry may be traced to the apparent faet
that its development has surpassed society’s capacity to absorb its
production. Like other organisms, the mechanism of industrial pro-
duction is subject to the laws of organic growth and Snyder’s annual
average of increase must finally give way to the leveling process of the
logistic law,

One of the best indexes to reveal the astonishing growth of the

production of the United States is that of pig iron. The data are given
in the table on«page 266 and they are graphically represented in Fig-
ure 5é¢. .
It will be observed from a comparison of the production of pig
iron with the index of industrial production (Figure 48) that the as-
tonishing increase in the productive activities of the American
economy is associated with the use of iron.

In a very suggestive work published in 1930 and using data for
the most part prior to the year 1925, S. 8. Kuznets gave a number of
logistics pertaining to industrial, agricultural, and other indexes.””
Hence, in his work we have essentially a series of forecasts into the
very interesting period which followed 1925. It is probable that Kuz-
nets’ logistics were not corrected by the method of least squares and
are to be regarded as approximations to the trend rather than curves
fitted with sufficient care to form a basis for forecasting. In particular,
the parameter k in equation (1) of Section 10, which measures the
asymptotic level, is especially sensitive to the data and should always
be adjusted carefully if it is to be employed as the basis of a forecast.

The parameters of the logistic curves for the production of wheat,

17 Secular Movements in Production and Prices, Boston, 1930, xxiv -+ 536 pp.
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Produetion

PropuctioN OF Pi¢ IRON

Production|  Per

Per
Year in 1000 Capita Year in 1600 Capita Year
long tons | Production long tons | Production
in long tons in long tons

18556 700 0.0256 1884 4098 0.0740 1913
18586 789 0.0280 ‘| 1885 4045 0.0714 1914
1857 713 0.0246 1886 5683 0.0981 1915
1858 630 0.0211 1887 6417 0.1084 1916
1859 751 0.0245 1888 6490 0.1073 | 1917
1860 821 0.0261 1889 7604 0.12312 1918
1861 663 0.0203 1890 9203 0.1459 1919
1862 703 0.0214 | 1891 8280 0.1286 | 1920
1863 846 0.0252 {1892 | 9157 01394 | 1921
1864 1014 0.0296 1893 7125 0.1064 1922
1865 832 0.0237 1894 6657 0.0975 1923
1866 | 1206 00337 11895 09446 0.1358 | 1924
1867 | 1305 0.0368 | 1896 | 8628 | 0.1216 | 1825
1868 1431 0.0385 1897 9653 0.1337 1926
1869 1711 (.0451 1898 | 11774 0.1602 1927
1870 1665 0.0431 1899 | 13621 0.1821 1928
1871 1707 0.0429 | 1900 : 13989 0.1811 1929
1872 | 2549 0.0622 | 1901 ) 15878 02042 1930
1873 2561 0.0608 1902 | 17821 0.224b 1931
1874 1 2401 0.0555 | 1903 | 18009 0.2224 [ 1932
18765 | 2024 0.0455 } 1904 | 16497 0.1997 1 1933
1876 | 1869 0.0410 | 1905 | 22092. J0.2730 [ 1934
1877 [ 2067 0.0442 | 1906 | 25307 0.2048 | 1935
1878 | 2301 0.0480 | 1907 | 25781 0.2948 | 1936
1879 | 2742 0.0569 | 1908 | 15936 0.1789 | 1937
1880 | 3836 0.0763 | 1909 | 25795 0.2844 | 1938
1881 4144 0.0804 1910 | 27304 0.2959 1939
1882 | 4623 0.0875 | 1911 | 23650 0.2525 | 1940
1883 4596 0.0850 1912 | 29727 0.3127 !

Production Per
in 1000 Capita
long tons | Production
in long tons
30966 0.3209
23332 0.2383
29916 0.3011
39435 0.3914
38621 0.3780
39055 0.3770
31015 0.2954
36926 0.3466
16688 0.1542
27220 0.2477
40361 0.3619
30406 0.2686
36116 0.3144
38698 0.3321
35858 0.3215
37402 0.3120
41757 0.3436
29905 0.2430
17813 0.1435
8660 0.0684
13001 0.1034
16139 0.1275
213173 0.1676
30712 0.2391
36600 0.2830
18763 0.1441
315632 0.2404
41786 0.3162

corn, pig iron, and copper are given in the following table, the vari-
able ¢ being taken in units of five years:

Corn Pig Iron

Constanta ii;’ileat Copper

a +0.28700 | 1021168 | +0.40137 | +0.60928

b 3.1339 3.4667 64.546 9.7499

k 10128 39712 | 50403 | 6995
Origin 1870 | 1865 1860 | 1885

But an inspection of Figure 56 shows that these values are unduly
optimistic except in the case of copper. The production of corn and
pig iron, in particular, has fallen far short of the saturation estimates
of 3,971.2 and 50,403 respectively in the face of the observation that
saturation levels have apparently been attained for this era of the
industrial evolution.
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For this reason, it was deemed advisable to recompute the para-
meters (except in the case of copper) by the method of Pearl and Reed,
which gives approximately an adjustment by least squares. In order
to obtain comparable results only data through 1925 were employed.
The foliowing estimates of the parameters were then obtained, the
variable ¢ being taken as before in units of five years:

Constants Wheat Corn | Piglron
a 0.35075 ‘ 0.3023{\' 0.44905
b | 3.6702 29168 | 66.1102
k 845.4 31282 | 43,021
" Origin | 1865 | 1865 1860

The logistics based upon these values are graphically represented
in Figure 56 and seem to describe with some accuracy the actual be-.
havior of the series in the years after 1925. Both the production of
wheat and the production of corn have been affected adversely by the
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drought period in the middle of the present decade and by governmen-
tal restrictions upon acreage planted. That both series will tend to
oscillate about the established equilibrium lines in the future may be
expected.

An inspection of the logistic for the production of pig iron shows
an optimum which the events of the last few years have denied. Sat-
uration production is seen to be around 43,000,000 long tons annually.
It is interesting to speculate when, if ever, the produection of pig iron
will attain this asymptotic value. An inspection of the graph reveals
three maxima in the production curve, one due to the use of pig iron
in the World War, a second around 1924 due probably to the rapid
expansion of the automobile industry during this period, and the third
in 1929 when the building cycle reached its maximum. We next in-
spect the table of per capita production of pig iron and observe that
there has been a steady increase since 1855 in the use of iron, This
per capita use reached the incredible value of 0.39 tons in 1916, due of
course to the war, another maximum of 0.36 in 1923, due to the ex-
pansion of the automobile industry, and a third maximum of 0.34 in
1929, due to building. The amazing magnitude of the depression is
clearly shown from the fact that in 1932 the per capita use of pig iron
dropped to 0.068 tons, a value lower than any sinee 1879. Since it is
improbable that another industry like that of automobiles will be
developed in the next few years, we cannot expect a large per capita
production from such a source. Butf war is not improbable, and build-
ing boems seem to follow a somewhat irregular cyecle of from 17 to
20 years in length. Hence we may expect to see again a per capita
production around 0.35 tons from one or the other of these two
sources. But a per capita production of 0.35 tons for a population of
123,000,000 people will yield a total in excess of 43,000,000 long tons.
Hence we may expect to see the asymptotic figure exceeded during the
next war or during the next building cycle. In fact, the present re-
armament program of the government has greatly increased the de-
mand for steel and the asymptotic limit will undoubtedly be exceeded
while this program is being earvied out.

From the table of parameters given above it is interesting to
compute the dates of the respective critical points by means of formula
(4) of Section 10, These are found to be the following: wheat, 1885;
corn, 1882; pig iron, 1907 ; copper, 1904, It is interesting to observe
that the critical points for the grains agree and that the critical points
for the metals are also essentially the same. The latter, in particular,
are seen to be in agreement with the critical point for industrial pro-
duction which, in Section 10, we estimated to be around 1908.
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The actual data from which the logistics have been computed,
with the exception of those for the production of pig iron which were
given earlier in this section, are contained in the following tables:

PRODUCTION OF WHEAT
{Unit = 1,099_,_({(5)})}%?]1&]5)

Year Pmd._TYear l —P‘[;l—'l— Year Prod. |Year Prod. {Year Prod. ||Year 1
il | : . L o e E
1865 | ... !51877 | 364.2 71889 | 434.4 (1901 788.6 1913 | 763.4 11925 | 676.4
1866 | 152.0;1878 | 420.11890 | 378.1)1902 724.8 1914 | 891.0 [1926 | B31.0
1867 | 2124 ‘1879 496.4 1891 | 584.5 (1903 G63.9 |1915 | 1025.8 11927 | 878.4

1868 | 224.0 11880 | 498.6|1892 | 5280 (1904 | 5926.9 |1916 636.3 1928 & 014.9

1869 | 260.1 1881 | 383.3 (1892 | 427.6 [1965 | 726.8)1917 | 636.7[1929 | 812.6
1870 | 235.9 11882 | 504.2:1894 | 516.5 |1906 | 756.8]1918 | 92141930 ' 857.4
1871 | 230.7 11882 | 421.1|1895 | 560.5 1907 | 638.0 [1919 | 968.0 1931 | 932.2
1872 | 250.0 1884 | 512.8 (1896 | 544.2 }1908 | 644.7 (1920 | 833.0(1932 | 745.8
1873 | 281.3 /1885 | 357.1 (1897 | 610.3 1909 | 700.4 1921 | 814.9)1933 | 520.0

|
f
b
|
|
|
1874 | 308.1 (1886 | 457.2 1898 | 772.2 1910 . 63511922 | 867.651934 | 496.6
!
|

1875 292.1 [1887 456.3 |1399 636.1 [1911 & 621.3 j1923 797.4 (1935 626.3
1876 289.4 11888 415.9 (1900 602.7 1912 730.3 1924 864.4 {1936 636.5
‘_ | o 1937 874.0
PropucTION OF CORN
{Unit = 1,000,000 bushels)
Year Prod. |Year Prod. |Year Prod. | Year aiPmr,rYeur ;’md ;Year I:r;d::

1865 | ....... 1877 | 1342.6 1889 | 1998.7 §1901 - 1613.5 {1913 | 2447.0 ;1925 1 2917.0
1866 | B867.9 11878 | 1388.2 ;1890 1460.4 1902 : 2619.5]1914 | 2672.8 11926 | 2692.2
1867 | 768.3 1879 | 1823.2 [1891 | 2055.8 11903 | 2346.9 j1915 | 2994.8 11927 | 2763.1
1868 | 906.5 ;1880 {1717.4 [1892 | 1718.7 (1904 | 2528.7 |1916 | 2566.9 1928 | 2818.9
1869 | 874.3 11881 ;11949 (1893 | 1707.6 (1905 | 2748.9 (1917 | 3065.2 1929 | 2535.4
1870 | 1094.3 {1882 1617.0 1894 | 1339.7 (1906 | 2897.7 [1918 | 2502.7 1930 | 2059.6
1871 | 991.9 1883 |1551.1 |1895 | 2311.0 {1907 | 2512.1 1919 ; 2811.3 11931 | 2588.5
1872 | 1092.7 1884 | 1795.5 11896 | 2503.5 [1908 | 2545.0 |1920 | 3208.6 11932 | £9506.9
1873 | 932.3 (1885 | 19236.2 J1897 | 2144.6 {1909 | 2572.3 11921 | 3068.6 1933 | 2350.7
1874 | 850.1 1886 | 1665.4 [1898 | 2261.1|1910 | 2886.3 11922 | 2806.0 1934 | 1377.1
1875 | 1321.1 1887 ; 1456.2 j1899 | 2454.6 (1911 | 2531.5 11923 | 3053.6 1935 | 2296.7
18’76l 1283.8 [1888 | 1987.8 j1900 | 2505.1 (1012 | 3124.7 1924 | 2309.4 %ggﬁ 1524.3

! i 937 - 2645.0

Propuction oF COPPER
_(Unit = 1000 long tons)

" Year | Pred. |Year Prod. ||Year Prod. jYcar Prod. |Year | Prod. Year‘ Prod.

1880 | 27.0{1890 | 116.0 1900 | 270.6 [1910 | 482.2|1920 | 530.8 1929 | 1006.2
1881  32.01{1891 | 126.8 1901 | 268.8 |1911 | 489.811921 | 225.7 1930 | 690.5

1882 40.5 11892 | 154.041902 | 294.4 1912 | 555.01922 ' 424.2 1931 | 528.9
1883 51.61893 | 147.01903 | 311.6 1913 | 546.7 1923{ 640.6 1932 | 238.1
1884 64.711804 | 158111904 | 362.7 1914 | 513.4|1924 | 729.6 11933 | 190.7
1885 7411895 | 169.9)1905 | 402.6 1915 | 619.6 1925 | B42.1 |1934 | 239.3
1886 70.4 (1896 | 205.4 11906 | 409.8 11916 | 860.6 1926 | B72.411935 | 369.5
1887 81.0 [1897 | 220.6(1907 | 387.941917 | 842.011927 ' 820.0'1936| 5922
1888 | 101.1[1898 | 235.1 f1908 420.8 {1918 & 852.0 1928 | 909.1 11937 | 812.0

¢87.9 1919 | 5743+

1889 | 101.241899 : 253.9 11909
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A much more fundamental lesson is learned from these logistics.
The era of the great scientific revolution which began approximately
with the discoveries of Galileo (1564-1642), Tycho Brahe (1546-
1601), Johann Kepler (1571-1630), and Sir Isaac Newton (1642-1727)
is reaching its maturity. The amazing energies of science, directed
by the patterns set by these great leaders, have given us in rapid
succession the steam engine, the dynamo, the telegraph and telephone,
the automobile, the airplane, the radio, and all the other wonders of
the modern world. This transition from the past to the present regime
may be estimated by the per capita increase in the use of iron. If we
are attaining the upper asymptote of the production of this basic
commodity, then also the maturity of technological science must be
close at hand. But there can be no real regrets if this should happen
to be true, since in the process of scientific growth the lot of the human
race has been immeasurably elevated. The standards of living in
America and in those of other nations which desired to profit by the
new knowledge have been greatly raised.

Another question that may be raised concerning the validity of
the logistic to describe production data relates to the growth of indus-
try in special centers as compared with the growth of industry for the
country as a whole.

In the last section we observed that cities have grown more
rapidly than total population, a phenomenon which is closely related
to the steady shift from rural to urban living. For this reason, the
growth of cities has resembled more the growth of organisms con-
trolled by a central mechanism, than it has the growth of colonies of
organisms. The question naturally arises as to whether industrial
production does not exhibit a similar phenomenon.

Strong evidence for the truth of this thesis is furnished by the
investigations of the Bureau of Business Research of the University
of Pittsburgh under the direction of R. J. Watkins. This study shows
the trend of industrial production for the Pittsburgh district and is
based upon 12 statistical series covering manufacturing and coal
mining.

In Figure 57 the trend for the Pittsburgh distriet has been com-
pared with the trend of industrial production for the United States
for the period 1884-1937. The index used has been constructed from
the Warren M. Persons indexes of manufacturing and mining for the
period 1884-1930 and from the Federal Reserve Board indexes for the
subsequent period. Weights were assigned in the ratio of seven for
manufacturing to one for mining.

The phenomenon to be observed is that production in the Pitts-



THE ANALYSIS OF TRENDS 27

INDEX INDEX
2000 2000

AP |

1000 v v
r 0]
PR -
[ DV

L1 4.1 1t

______

100 r ‘ =100
P :
50 1 2 L 1 L 1 50
1880 1890. 1900 1910 1920 1930 1940

FIGURE 57.—INDUSTRIAL PRODUCTION AND POPULATION: PITTSBURGH
DISTRICT AND UNITED STATES:
(a) Production, Pittsburgh District, (b) Production, United States, (¢) Pop-
ulation, Pittsburgh District, {d) Population, United States. January, 1884 — 100.
(Data from Bureau of Business Research, University of Pittsburgh).

burgh distriet grew more rapidly and attained maturity earlier than
production for the country as a whole. There is observed here, per-
haps, the same difference noted between the growth of male white rats
and the growth of colonies of fruit flies. In the first instance a central
mechanism governed the growth, while in the second the growth and
the maturity of the population appeared to be a mechanism of the
population itself. It seems reasonable, arguing by analogy only, to
assume that the production growth of a district with its centralized
governm