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Abstract

T. W. Anderson did pathbreaking work in econometrics during his remarkable career

as an eminent statistician. His primary contributions to econometrics are reviewed here,

including his early research on estimation and inference in simultaneous equations models

and reduced rank regression. Some of his later works that connect in important ways to

econometrics are also briefly covered, including limit theory in explosive autoregression,

asymptotic expansions, and exact distribution theory for econometric estimators. The re-

search is considered in the light of its influence on subsequent and ongoing developments

in econometrics, notably confidence interval construction under weak instruments and in-

ference in mildly explosive regressions.
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Throughout his long career as a statistician Ted Anderson, as he was universally known,

had a professional influence that extended beyond statistics into neighboring disciplines where

statistical methods were in heavy use and new methods were often needed. For econometrics

and psychometrics especially, he forged tools that were suited to the particular models and

data being used in those fields. These broad interests began in his undergraduate years at

Northwestern where he majored in mathematics, minored in economics, and followed courses

in psychology as well as econometrics and statistics. Ted’s early decisions as a student played

an important role in his subsequent work as a researcher and his continuing links with those

*This paper draws on some material covered in earlier interviews and tributes, including (Phillips, 1986b;

DeGroot, 1986; Phillips, 2017) to which readers are referred.
�Support is acknowledged from the NSF under Grant No. SES-18 50860, and a Kelly Fellowship at the
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fields throughout his career.1 His landmark advanced texts in multivariate analysis and time

series (Anderson, 1959a, 1970), together with their subsequent editions, educated generations

of students and researchers in those sister disciplines as well as statistics. In addition to his

strong pedagogical influence on students and researchers in econometrics through these ad-

vanced texts, Ted was a familiar figure and regular keynote speaker at econometric conferences

worldwide; and he maintained strong interests in econometric methods until the end of his life,

his final published paper appearing in an econometrics journal (Anderson, 2017).

This contribution focuses on Ted Anderson’s main contributions to econometrics, which

began with his appointment as a research fellow in the Cowles Commission for Research in

Economics at Chicago in 1945. Amongst econometricians, the Cowles researchers of the 1940s

occupy a special position of seniority because their research opened up promising new fields of

study in structural modeling, identification, continuous time processes, explosive time series

and causality, all of which continue to resonate in the discipline. Ted Anderson was a leading

figure in the Cowles econometrics group during this seminal period.

Limited Information Maximum Likelihood, its origins and longevity

When Ted joined in 1945, the Cowles Commission had commenced a major study developing

econometric methodology to address the intrinsic joint dependence of much economic data.

The first step in this work involved resolving the problem of identifying the structural parame-

ters that linked the endogenous variables in the equations that represented key variables in the

system. In linear systems, identification was resolved by the use of sufficient prior restrictions

from economic theory on the variables that entered each equation. Gaussian maximum like-

lihood, or full information maximum likelihood (FIML) as it became known, was the natural

method to use in estimating the parameters of the entire system but it relied on full system

identification and presented what were at that time major computational obstacles for practical

work. Ted worked with Herman Rubin – another young recruit to Cowles – in undertaking the

entirely new task of using maximum likelihood methods at the single equation level, for which

the required computations were considerably reduced.2 Their resulting publications (Ander-

son and Rubin, 1949, 1950) took a major step forward in structural equation estimation. The

methodology they developed liberated empirical researchers to conduct valid estimation and

inference about the parameters of a potentially large system of equations on an equation by

equation basis with a method that was not substantially more complex than linear regression.

This method became known as Limited Information Maximum Likelihood (LIML). Not sim-

ply an advance at the time to facilitate computation, LIML proved to be a game changer,

delivering properties at the time and since that have made it an attractive approach for both

estimation and inference.

LIML concentrates on the estimation of a single structural equation y1 = Y2β +X1γ + u

1Some of Ted’s personal reminiscences on his training and career are given in his published interviews in
Econometric Theory and Statistical Science, vide Phillips (1986b) and DeGroot (1986).

2Ted describes his early work at the Cowles Commission in Anderson (2015).
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within a complete system of n observations ofm+1 endogenous variables written in observation

form as Y = [y1, Y2] with reduced form Y = [X1, X2]Π+[v1, V2] = XΠ+V , where X = [X1, X2]

is an n×K (= K1+K2) matrix of exogenous variables of which theK1 variablesX1 are included

in the structural equation of interest andX2 variables are excluded, which assures identification

of the parameters in the structural equation when K2 ≥ m. The error matrix V has n rows

that are assumed to be independent and normally distributed. The LIML estimator (β̂′, γ̂′)′

is the Gaussian maximum likelihood estimator of (β′, γ′)′ in this complete system for which

the structural equations for Y2 are unspecified and instead given only in reduced form. The

LIML estimator β̂ is obtained by solving the generalized eigenvector equation (W − λ̂S)b̂ = 0

for b̂′ = (1,−β̂′) and λ̂, the smallest eigenvalue of the matrix S−1W , where W and S are

the residual moment matrices W = Y ′(PX − PX1)Y and S = Y ′(I − PX)Y where PA is the

orthogonal projection onto the range of the matrix A. The LIML vector β̂ minimizes the

ratio b′Wb/b′Sb and so became known as the least variance ratio estimator. When only a few

endogenous variables are present in the structural equation, the computations required to find

β̂ were within reach of a hand calculator at the time, thereby leading to its early practical

implementation even in large simultaneous equation systems.3

In addition to the development of the LIML procedure, Anderson and Rubin (1949) pro-

vided a likelihood ratio test based on the statistic ℓ = (1 + λ̂)−n/2 of the hypothesis that the

structural equation was overidentified, viz., that K2 > m, ensuring that there were more than

enough exclusion restrictions in the equation to identify its structural coefficient m-vector β.

The second paper (Anderson and Rubin, 1950) was concerned with asymptotic theory. The

authors proved the consistency of LIML, established its limiting normal distribution, gave for-

mulae for the asymptotic variance matrix and demonstrated that the likelihood ratio statistic

delivered the usual asymptotic χ2 test, so that −2 log(ℓ) = n log(1 + λ̂)⇝ χ2
K2−m as n → ∞.

The treatment in the paper was general enough to include stable autoregressive specifications

in the formulation of the structural system so that predetermined variables were permitted;

and nonlinearities were allowed in the other structural equations so that the reduced form could

be nonlinear. Further, in determining the limit distribution of LIML they demonstrated that

in large samples the estimator β̂ is essentially the same as the two stage least squares (2SLS)

estimator β̃ = [Y ′
2QY2]

−1[Y ′
2Qy1] where Q = PZ − PZ1 . This anticipated the later discovery of

2SLS (Basmann, 1957), the asymptotic equivalence of the two estimators, and the emergence

of more general instrumental variable (IV) procedures in econometrics (Sargan, 1958).

LIML is known to work very well in practice and there has been much subsequent investi-

gation of its properties. First, extensive simulations have confirmed that the LIML estimator β̂

is a better general purpose estimator than the 2SLS estimator β̃ in finite samples: specifically,

LIML is better centered about the true value with a nearly symmetric distribution, close to

median unbiased, and better approximated by its asymptotic distribution. These properties

3In one of the first large scale empirical applications of LIML estimation Bergstrom (1955) used the method
to estimate the parameters of a 19 equation macroeconomic model of the demand and supply for New Zealand’s
exports.
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apply even though it is known that LIML has no finite integer moments and heavier tails

than 2SLS in general with an exact distribution whose leading term is Cauchy, a property

that holds also for FIML, vide (Phillips, 1984, 1986a). Second, the differences that favor the

LIML estimator are most striking when the degree of equation overidentification is large and

when there is a high correlation between the endogenous regressor and the structural equation

error. Anderson (1982) provides a detailed account of this work. These conclusions match

the findings of more recent research in which it has been discovered that LIML clearly dom-

inates IV estimation procedures such as 2SLS in high dimensional cases where the degree of

overidentification K2 = K2,n → ∞ as n → ∞.

Third, the dominance of LIML is especially marked when the instruments provided by

the excluded exogenous variables are weak. The analysis of weak instrumentation has re-

ceived considerable attention following work on unidentified models (Phillips, 1989) and on

weakly identified systems (Staiger and Stock, 1997). A primary import of this research is that

under certain general conditions weak instrument asymptotics reproduce a version of the ex-

act finite sample theory under Gaussian distributional assumptions, thereby invalidating the

usual asymptotic theory of estimation and inference. In such cases, of course, both LIML

and 2SLS are inconsistent. However, the situation changes when the number of instruments

K2 = K2,n → ∞ as n → ∞. Research by Chao and Swanson (2005) initiated the analysis of

structural regression estimation with an asymptotically infinite number of weak instruments,

showing that in such conditions, LIML recovers consistency but that 2SLS remains inconsistent

unless bias correction measures are employed. Subsequent research has pursued this line of

investigation to generalized method of moments (GMM) estimation with many moment condi-

tions, which includes a nonlinear model extension of LIML to the continuously updated GMM

and the analysis of its properties (Han and Phillips, 2006; Newey and Windmeijer, 2009).

All of these features of LIML and particularly its advantages under conditions of weak

instrumentation with large numbers of instruments have contributed to its longevity as a

method of estimation in simultaneous equations systems. But there was a separate finite sample

contribution in Anderson and Rubin (1949) that was concerned with inference that has had

the most significant subsequent influence both in theoretical work and empirical application.

The Anderson-Rubin method and its unexpectedly long aftermath

In addition to developing the LIML estimation procedure, Anderson and Rubin (1949) devel-

oped a finite sample theory of interval estimation and a statistic for testing the null hypothesis

H0 : β = β0. The procedures apply when the confidence region or null hypothesis concerns the

full vector β of endogenous variable coefficients in the structural equation. The statistic took

the form of the ratio

AR(β0) =
(y1 − Y2β0)

′(PX − PX1)(y1 − Y2β0)/K2

(y1 − Y2β0)′QX(y1 − Y2β0)/(n−K)
, QX = In − PX (1)
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of standardized quadratic forms in the structural equation difference y∗ := y1 − Y2β0. When

H0 is true y
∗ := X1γ+u and when H0 is false y

∗ is a linear function of both X1 and X2. So H0

is tested by a conventional F test of the hypothesis that the coefficient vector of X2 is zero in

the regression of y∗ on X1 and X2, leading directly to (1). When the structural equation errors

u ∼d N (0, σ2In), the test statistic AR(β0) =
u′(PX−PX1

)u/K2

u′QXu/(n−K) has an exact FK2,n−K distribution

with respective numerator and denominator degrees of freedom K2 and n−K. When β ̸= β0,

the distribution is noncentral FK2,n−K . AR(β0) may be viewed as a simple structural equation

extension of the original Fisher regression F test. The asymptotic distribution as n → ∞ is

1/K2 times a χ2
K2

distribution. The AR test statistic is pivotal, asymptotically pivotal, and

consistent; and valid confidence regions are constructed in the usual manner. These properties

are appealing and have ensured a long reaching influence in applications.

The procedures have two main shortcomings: (i) they apply only to the full vector of en-

dogenous variable coefficients; and (ii) the degrees of freedom of the limit distribution equal the

degree of overidentification, so when the number of instruments strongly exceeds the number

of structural coefficients, which is common in empirical work, the test has low power. These

issues have attracted considerable attention in the recent years. An important step forward

in resolving (ii) was made by Kleibergen (2002) who suggested a slight modification to the

projection geometry of the AR statistic retaining its asymptotic pivotal properties but with a

limiting χ2
m distribution that has degrees of freedom equal to the number of structural parame-

ters. This statistic therefore has an asymptotic distribution with a minimal number of degrees

of freedom and is largely unhampered by poor power performance that may be induced by

points of underidentification or large numbers of instruments. Research on (i) concerned with

the development of subvector tests has proved more demanding but is of greater importance

in empirical work. Robust inference, particularly weak-instrument robust inference, is a hard

problem because the structural coefficients not under test become nuisance parameters that

present an obstacle to pivotal limit theory. Typically it is difficult to control size without

rendering the test too conservative (Guggenberger et al., 2012) but the use of data-dependent

critical values that adapt to the strength of the instruments has proved promising in controlling

size and raising test power (Guggenberger et al., 2019).

In addition to testing, Anderson and Rubin (1949) suggested inverting the test statistic to

obtain confidence regions for β0. This is a procedure that is now widely employed throughout

econometrics. It is particularly useful in the case of tests that are robust to weak identification,

a situation where there is low correlation between the endogenous regressor variables (viz., Y2 in

the above system) and the instruments used for Y2 in the regression (viz. X2). Problems of weak

instrumentation arise frequently in empirical economic applications (Andrews et al., 2019) and

typically lead to failure in the bootstrap, which treats low correlations as non-zero even when

the correlations are zero asymptotically. The AR confidence regions also suffer difficulties,

as they may be unbounded or disconnected, reflecting the fact that the instruments may

supply very limited information about the structural coefficients. To mitigate these difficulties

several alternative approaches have been suggested and analyzed in the econometric literature
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including conditional likelihood ratio tests (Moreira, 2003), partially restricted reduced form

methods Phillips and Gao (2017), Lagrange multiplier tests and modifications to the AR test

(Kleibergen, 2002). Overviews of some of these procedures and performance evaluations are

given in Mikusheva (2010); Andrews et al. (2019). Much of this recent work and ongoing

progress in the 21st century speaks to the long-reaching influence of the many contributions

in the two original articles by Anderson and Rubin (1949, 1950) that were written under the

auspices of the Cowles Commission more than seven decades ago.

Reduced rank regression and its later link to cointegration

In his doctoral dissertation on the noncentral Wishart distribution at Princeton (Anderson,

1945) Ted considered applications to the problems of estimation and inference in the presence

of linear restrictions on regression coefficients. A full treatment was later provided in Anderson

(1951). This work studied multivariate regressions of the form yt = A1x1t +A2x2t + ut where

the errors ut ∼a iidN (0,Σ) and them×k(= k1+k2) partitioned coefficient matrix A = [A1, A2]

has an m × k2 submatrix A2 of deficient rank r with an outer product form A2 = αβ′ where

α is m× r, β is r × k2 and both α and β are of full rank. If α⊥ is an m× (m− r) orthogonal

complement of α then α′
⊥yt = α′

⊥Axt + ut = α′
⊥A1x1t +α′

⊥ut, revealing the restricted system.

Gaussian maximum likelihood estimation gives rise to a canonical correlation problem solved

by finding the latent roots {λ̂i}mi=1 and eigenvectors {v̂i}mi=1 of the determinantal equation

|λSyy − SyxS
−1
xx Sxy| = 0, where Sab = 1

n

∑n
t=1 atb

′
t, leading to estimates of the restricted

regression coefficients and a likelihood ratio test of the restrictions. The framework and the

asymptotic theory associated was applicable under general conditions to stationary vector

autoregressions (VARs).

Subsequent work by Johansen (1988) nearly four decades later showed that the same frame-

work could be used to analyze cointegrated VAR systems of nonstationary time series. In this

case the model is a simple VAR written in what is known in the econometrics literature as

the ‘error correction’ form ∆zt = Azt−1 +
∑p

j=1∆zt−j + ut, which characterizes the adjust-

ment process towards a ‘long run equilibrium’ relation. That relationship is embodied in the

leading m × m coefficient matrix A = αβ′ written in outer product form with reduced rank

r < m so that the r relations β′zt−1 are the stationary errors about equilibrium, giving a

‘cointegrating’ linkage among the nonstationary variables zt−1 in the previous time period to

which the system variables dynamically adjust by correcting these stationary errors. The gen-

erating mechanism of this system involves two components: (i) the m − r dimensional unit

root system α′
⊥∆zt =

∑p
j=1 α

′
⊥∆zt−j + α′

⊥ut; and (ii) a complementary r dimensional system

β′zt = (Ir + β′α)β′zt−1 +
∑p

j=1 β
′∆zt−j + β′ut that is stationary when the leading coefficient

matrix R = Ir + β′α has stable roots. In (ii) the r ×m matrix β′ describes the cointegrating

space of the system giving the linear linkages among the system variables that reduce the non-

stationary components of the multivariate times series zt to a vector of stationary time series

β′zt. Some further algebraic manipulations with (i) and (ii) lead to the partial sum and moving

average representation zt = C
∑t

s=1 us+α(β′α)−1R(L)β′ut+Cz0, where C = β⊥(α
′
⊥β⊥)

−1α′
⊥,
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β⊥ is an m × (m − r) matrix orthogonal complement of β and R(L) =
∑∞

i=0R
iLi. This sys-

tem reveals the nonstationary component C
∑t

s=1 us (with reduced rank coefficient matrix C)

and the stationary component α(β′α)−1R(L)β′ut (with reduced rank moving average operator

α(β′α)−1R(L)) of the data zt and is called the Granger-Johansen representation (Johansen,

1995). In view of the nonstationary elements in the generating mechanism of zt, the asymptotic

theory of estimation and inference for this cointegrated system required functional central limit

theory, weak convergence and stochastic integral methods that had been developed for multi-

variate regressions involving time series with some unit roots (so-called integrated processes)

in (Phillips, 1986c; Phillips and Durlauf, 1986; Phillips, 1988; Chan and Wei, 1988).

In economics the cointegrating transform matrix β′zt provides a time series representation

of the concept of a long run equilibrium linking the variables of zt. This strong connection with

economic theory coupled with the methods for deriving asymptotic theory for nonstationary

regressions opened up a wide arena of new research in time series econometrics. The resulting

methodology has spawned a vast literature of applications throughout economics and more

widely across the social and business sciences. Anderson (2002) revisited the reduced rank

regression model, related some of the subsequent developments in econometrics to his earlier

framework in Anderson (1951), and compared the limit theory of the reduced rank estimator

with that of least squares. An interesting further connection to Ted’s research is that the

LIML estimator in the simulataneous equations model may itself be derived as a reduced rank

regression estimator when taking into account the full system including the reduced form and

attendant restrictions associated with the structural equation of interest.

Explosive autoregression, invariance principles and asset bubble detection

Anderson (1959b) broke new ground in the analysis of stationary autoregression, showing

that only a finite variance (not a higher order moment condition) was required for the usual

asymptotic distribution theory for the least squares (LS) estimator. In the same article,

building on the earlier findings of White (1958), Ted studied the explosive autoregression

xt = θxt−1 + ut with ut ∼iid (0, σ2) and θ > 1 showing, under normally distributed inno-

vations and a zero initial condition x0 = 0, that: (i) the asymptotic distribution of the LS

estimator θ̂ =
∑n

t=1 xtxt−1/
∑n

t=1 x
2
t−1 is Cauchy; (ii) the self normalized and centred statistic

(
∑n

t=1 x
2
t−1)

1/2(θ̂−θ)⇝ N (0, σ2) as n → ∞; and (iii) in the general case where the innovations

are not normal the asymptotic distribution of θ̂ depends on the distribution of the innovations

and the initial condition. Importantly, in all these cases, no central limit theory applies. Ted’s

paper also considered the explosive VAR model xt = Axt−1 + ut with ut ∼iid N (0,Σ), Σ posi-

tive definite, and all latent roots λi of the m×m coefficient matrix explosive with λi > 1. The

results for this VAR model mirrored those of the scalar case provided the explosive roots were

all distinct. Again, no invariance principle applied. In addition, Ted noted that when there

were some common explosive roots with λi = λj for some i ̸= j or when there were stable

roots, as well as explosive roots, these results no longer applied and that this case ‘would be

much more involved’.
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The absence of an invariance principle in explosive autoregression asymptotics presented a

barrier to the use of these models in practical work. This obstacle was removed in Phillips and

Magdalinos (2007) where it was shown that martingale central limit theory (MGCLT) delivers

invariance principle results for an explosive autoregression whose coefficient θ = 1+ c/nγ > 1,

where γ ∈ (0, 1) and c > 0 are rate and scale constants. The time series is then ‘mildly

explosive’ in the sense that θ is near unity on the explosive side but more distant from unity

than local to unity departures for which θ = 1 + c/n. (Phillips, 1987; Chan and Wei, 1987).

Use of the MGCLT gives precisely the same limit theory for this mildly integrated case as that

of the purely explosive case and holds also for weakly dependent innovations ut. These results

opened up a large literature in econometrics concerned with the detection of financial and real

estate bubbles, where mildly explosive behavior in asset prices is a characteristic of asset prices

during the expansive phase of a bubble in which prices depart from economic fundamentals

(Phillips and Yu, 2011; Phillips et al., 2015). The methods that have been developed allow for

real time detection of emergent asset bubbles and are used by banks and monetary authorities

to assess ongoing financial market conditions.

Dynamic panel regression

In the early 1980’s two jointly authored papers (Anderson and Hsiao, 1981, 1982) by Ted

and his former student Cheng Hsiao opened up new possibilities in dynamic panel modeling

methodology. By this time such models had evolved into a considerable subfield of applied

research in economics. Longitudinal datasets were increasingly available and in many cases

the panels were short and wide, with a cross section sample size N that vastly dominated

the time series sample size n, which often numbered in the single digits. Regressions in these

dynamic panels were subject when n was small to very considerable autoregressive estimation

bias problems that translated into inconsistencies when the asymptotics were driven solely as

N → ∞ (Nickell, 1981). The Anderson-Hsiao papers had an immediate and lasting impact

demonstrating that, with use of a simple choice of a suitable lagged endogenous instrumen-

tal variable, serious bias problems in stationary dynamic panel models could be eliminated.

This idea became the foundation stone of what quickly grew into a cathedral of methodol-

ogy based on generalized method of moment estimation of dynamic panels, creating in the

process a sub-discipline in itself with its own graduate courses and textbooks, complete with

tentacles of application that stretched across many different applied sciences. It was quickly

realized that the Anderson-Hsiao estimators were inefficient because they relied on a single

lagged instrument. Research extending their approach and progressive searches for a complete

set of instruments led to high dimensional instrumental variable and GMM approaches that

were asymptotically efficient under certain conditions. Subsequent research on the asymptotic

theory of these general approaches included nonstationary data cases (Hahn and Kuersteiner,

2002; Phillips and Sul, 2007) and has provided a foundation for statistical inference in applied

work. Publication of the influential advanced text by Hsiao (2022), first in 1986 and now in

its third edition, provided an accessible general reference to these methods and the wide scope
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of empirical applications they encompassed.

Finite sample theory

During the 1970s Ted renewed his analytic research on structural equation estimation, focus-

ing on the small sample properties of LIML and related estimators such as 2SLS. This line

of research was initiated a few years earlier by Sargan and Mikhail (1971) who developed

an asymptotic expansion of the instrumental variable estimator in a general single structural

equation. In a series of papers published over the period 1973-1985 and aided by his students

and former students, Ted derived the exact distributions and asymptotic expansions of some of

these single equation structural estimation techniques in various special cases under Gaussian

assumptions. This work commenced with the asymptotic expansion of the LIML estimator

(Anderson, 1974) in an equation with two endogenous variables and continued with several

comparative studies involving both exact theory and expansions for similar special cases (An-

derson, 1976, 1977, 1982; Anderson et al., 1982; Morimune, 1983). The exact finite sample

distribution of LIML was obtained in the general case of a structural equation with m + 1

endogenous variables in Phillips (1985). Since LIML, 2SLS, and IV estimators all depend on

quadratic functions of the data, the exact distribution of each of these estimators can be viewed

as the distribution of a nonlinear function of a matrix that has a noncentral Wishart distri-

bution. This formulation of the distribution theory links the problem closely to Ted’s original

thesis research at Princeton that was published in Anderson (1946). The behavior of these ex-

act distributions and asymptotic expansions (and hence that of the corresponding estimators)

therefore all depends on the noncentrality parameter matrix, which is itself a quadratic form in

the reduced form parameter matrix and is thereby affected by the strenth of the instruments.

It is now known that the exact distributions and their findings in terms of the relative

performance of the estimation procedures are relevant under much more general asymptotic

conditions that do not rely on Gaussian innovations when the instrumental variables are only

weakly identifying. The reason for this widened generality is that, whereas the innovations

themselves are not Gaussian, standardized linear combinations of them do satisfy martingale

central limit theorems, which implies that in the limit as the sample size n → ∞, the esti-

mators and test statistics typically behave as if the data were Gaussian. So in the limit the

same functional dependence on quadratic forms of a non-central Wishart distribution applies,

thereby enriching the implications of the findings.

Econometric Legacy

The broad sweep of Ted’s research has influenced many different areas of econometrics, from

structural equation estimation and inference, to commonly used time series and dynamic panel

methods, from asymptotic theory to finite sample theory, from linear reduced rank regression

to cointegration, and from Gaussian limit theory to the surprising simplicity of matrix Cauchy

limit distributions in explosive autoregressions. Perhaps Ted’s primary and most enduring
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legacy to econometrics lies in his seminal contributions to simultaneous equations estimation,

the development of the LIML estimator and the Anderson-Rubin inferential procedure that

has found such a wide range of applications in modern partially identified systems. Ted himself

extolled the virtues of LIML and its associated procedures in Anderson (2015). It is a fitting

memorial to his intellectual contributions to econometrics that his last published paper (An-

derson, 2017) delivered further desirable properties of the LIML likelihood ratio test in terms

of its best invariance and admissability, thereby closing the circle of his research career back

to his original work in the Cowles Commission.
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