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Abstract

Limit theory is developed for least squares regression estimation of a model involving

time trend polynomials and a moving average error process with a unit root. Models with

these features can arise from data manipulation such as overdifferencing and model features

such as the presence of multicointegration. The impact of such features on the asymptotic

equivalence of least squares and generalized least squares is considered. Problems of rank

deficiency that are induced asymptotically by the presence of time polynomials in the

regression are also studied, focusing on the impact that singularities have on hypothesis

testing using Wald statistics and matrix normalization. The paper is largely pedagogical

but contains new results, notational innovations, and procedures for dealing with rank

deficiency that are useful in cases of wider applicability.
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1 Introduction

Under very general conditions Grenander and Rosenblatt (1954) proved a major theorem which

showed that in regression with polynomial and trigonometric polynomial trend regressors and

stationary errors simple application of ordinary least squares (OLS) is asymptotically equiva-

lent to generalized least squares (GLS) and thereby efficient. This important property provided
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an asymptotic justification for the use of OLS in trend regression and made trend elimination

by polynomial time trend regression a popular procedure in empirical research. A key con-

dition underlying this Grenander-Rosenblatt (GR) theorem is that the regression errors are

stationary and have positive spectral density at the origin, which ensures that the long run

variance of the errors is necessarily positive. A similar finding to the GR theorem holds in the

case of trend regression with integrated regressors so the result is not confined to determin-

istic regressors but includes pure cointegrated regression models in which the regressors are

strictly exogenous (Phillips and Park, 1988). While these asymptotic properties, including the

conditions for the limiting equivalence of OLS-GLS, are well established there remain some

interesting unexplored aspects of trend regression.

This paper studies two such issues that can arise in estimation and inference with polyno-

mial time trend regression: (i) problems in the limit theory that arise from a moving average

(MA) error with a unit root that produces a zero error spectrum at the origin and leads to

failure in standard invariance principle arguments and failure in the GR theorem; and (ii)

problems of rank deficiency and singularity that arise in trend regression when testing mul-

tiple hypotheses using Wald statistics. Both of these might be considered graduate student

problems. They are not dealt with in graduate textbooks of econometrics but, as shown here,

they are the type of problem that can easily arise in research when dealing with new models

and nonstationary data. We focus on the simplest case of deterministic trend regression. But

related issues do occur in cases of stochastic regressors (Phillips, 1988, 1995; Park and Phillips,

1988, 1989) as well as explosive model cases (Phillips and Magdalinos, 2013) and nonparametric

kernel regression problems (Phillips et al., 2017) where unexpected singularities can occur in

the asymptotic theory. A general treatment of rank deficiency and singularities in econometric

testing is available in Magdalinos and Phillips (2018). In spite of the simplicity of the present

deterministic trend model, considerable technical complexities arise in the general case, which

require some innovations and notational aids to resolve adequately and to secure definitive

results. These techniques should have wider applicability beyond the trend regression models

of the present study.

The present paper is largely pedagogical in nature and is written specifically for this ad-

vanced textbook series. The development proceeds from a common model of deterministic

trend regression where standard asymptotics hold to one where the limit theory and conver-

gence rates of the usual OLS estimator and associated test statistics differ from the standard

theory. To aid exposition a progression of examples are given that assist in building up the

notation and techniques required to resolve the general case under study. It should there-

fore be accessible to graduate students and some undergraduates with advanced training in

econometrics.

The trend regression model is given in the next Section with key conditions that enable

the asymptotic development given in Section 3 for estimation and in Section 4 for inference.

Section 5 provides some final discussion. A brief Appendix on Wiener stochastic integration is

included for completeness to facilitate development of the limit theory.
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2 Deterministic Trend Regression

We study limit theory in the simple linear trend regression model

yt = x′tβ + ut, t = 0, 1, ..., n (2.1)

where the deterministic trend regressor xt = (1, t, t2, ..., tm)′ and the errors ut are generated by

the linear process ut = C(L)εt =
∑∞

j=0 cjεt−j with coefficients cj satisfying the summability

condition
∑∞

j=0 j|cj | < ∞ and innovations εt ∼ iid
(
0, σ2

)
.

Using the Phillips-Solo device (Phillips and Solo, 1992) gives the valid BN decomposition

ut = C(L)εt =

∞∑
j=0

cjεt−j = C(1)εt − (1− L)C̃(L)εt = C(1)εt + ε̃t−1 − ε̃t (2.2)

where ε̃t = C̃(L)εt and C̃(L) =
∑∞

j=0 c̃jεt−j with c̃j =
∑∞

s=j+1 cs. The series representation

ε̃t =
∑∞

j=0 c̃jεt−j converges almost surely in view of the summability condition
∑∞

j=0 j|cj | < ∞.

The long run behavior of ut is primarily determined by the long run moving average coefficient

C(1), which directly affects the value of the spectral density at the origin and is therefore

instrumental in the long run properties of the time series ut.

The (m+ 1)×1 parameter vector β = (β0, β1, ..., βm)′ in (2.1) is estimated by ordinary least

squares (OLS) regression using β̂ = (X ′X)−1X ′y where X ′ = [x1, ..., xn] and y′ = [y1, ..., yn] .

The remainder of the paper considers the asymptotic theory of β̂ and Wald tests based on β̂

under different conditions that determine the long run behavior of the equation error ut. We

look at two cases. The first is the standard model where C(1) ̸= 0; the second is the degenerate

unit root moving average case where C(1) = 0.

When C(1) = 0 it is clear from the decomposition (2.2) that the regression error ut has

the MA unit root form ut = −(1 − L)ε̃t. Models with MA unit roots or near unit roots

can arise in empirical work with time series data when there is overdifferencing or where

multicointegration is present (Kheifets and Phillips, 2022; Phillips and Kheifets, 2022). The

GR asymptotic equivalence theorem fails in such cases because the spectral density of ut is

fu(λ) =
σ2

2π |C(eiλ)|2 = σ2

2π |1 − eiλ|2|C̃(eiλ)|2 and so at the origin fu(0) = 0. As will be shown,

the asymptotic theory for β̂ changes considerably. Convergence rates of the components of

β̂ differ from when C(1) ̸= 0 and conventional invariance principle asymptotics fail, causing

difficulties with inference. A simple procedure for dealing with this failure is developed.

In both C(1) ̸= 0 and C(1) = 0 cases, Wald tests of general hypotheses concerning β suffer

from rank deficiency and singularity asymptotically that arise from the differing signal strengths

in the nonstationary components of the regressor xt and consequent differing convergence rates

in the components of β̂. These differences affect the Wald statistic limit theory and hypothesis

testing. Related problems of rank deficiency in cointegrated regression and VARs were studied

in Phillips (1995). Readers are referred to Magdalinos and Phillips (2018) for the first general

treatment of matrix normalization problems in inference.
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3 Limit Theory

3.1 The standard case: C(1) ̸= 0

The (m+ 1)× 1 parameter vector β in (2.1) is estimated by ordinary least squares regression

using β̂ = (X ′X)−1X ′y where X ′ = [x1, ..., xn] and y′ = [y1, ..., yn] . The limit behavior of β̂

follows by standard manipulations.

Let Dn = diag{1, n, n2, ..., nm}. For r ∈ [0, 1], D−1
n x⌊nr⌋ → X(r) = (1, r, r2, ..., rm)′ as

n → ∞. It follows by Riemann integration that

n−1D−1
n X ′XD−1

n = n−1
n∑

t=1

D−1
n xtx

′
tD

−1
n →

∫ 1

0
X(r)X(r)′dr =: M, as n → ∞. (3.1)

Under the given conditions, normalized partial sums of ut satisfy the functional central limit

law n−1/2
∑⌊nr⌋

t=1 ⇝ Bu(r) where Bu is Brownian motion with variance given by the long run

variance ω2 = σ2C(1)2 of ut. Setting u′ = [u1, ..., un] we find using Wiener integral limit theory

(see Lemma A.1 in the Appendix) that

1√
n
D−1

n X ′u =
n∑

t=1

D−1
n xt

ut√
n
⇝
∫ 1

0
X(r)dBu(r). (3.2)

It follows directly from (3.1) and (3.2) that

√
nDn(β̂ − β) =

(
1

n
D−1

n X ′XD−1
n

)−1 1√
n
D−1

n X ′u

⇝

(∫ 1

0
X(r)X(r)′dr

)−1(∫ 1

0
X(r)dBu(r)

)
= N

(
0, ω2M−1

)
, (3.3)

since
∫ 1
0 X(r)dBu(r) =d N

(
0, ω2M

)
.

3.2 The degenerate case: C(1) = 0

Using partial summation as in the proof of Lemma A.1 we obtain

D−1
n X ′u = D−1

n

n∑
t=1

xt∆ε̃t = D−1
n (xnε̃n − x0ε̃0)−D−1

n

n∑
t=1

∆xtε̃t−1

⇝ X(1)ε̃∞ − e1ε̃0 (3.4)

where D−1
n xn → X(1) and ε̃n ⇝ ε̃∞ =d ε̃t as n → ∞, e1 = (1, 0, ..., 0)′ and D−1

n x0 =

e1. Note also that ∆xt ≈ (0, 1, 2t, ...,mtm−1)′ for large t and then
√
nD−1

n ∆xt=⌊nr⌋ ∼a
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(0, 1
n1/2 ,

2⌊nr⌋
n3/2 , ...,

m⌊nr⌋m−1

nm−1/2 )′ = O( 1√
n
) → 0 as n → ∞ for all r ∈ [0, 1]. It follows that

D−1
n

n∑
t=1

∆xtε̃t−1 =

n∑
t=1

√
nD−1

n ∆xt
ε̃t−1√

n
→p 0, (3.5)

confirming (3.4). We deduce that

nDn(β̂ − β) =

(
1

n
D−1

n X ′XD−1
n

)−1

D−1
n X ′u⇝M−1 (X(1)ε̃∞ − e1ε̃0) , (3.6)

so that β̂ is consistent with convergence rate nDn but no invariance principle applies, leading

to difficulties with robust inference about β. However, observe that the convergence rate of β̂

in (3.6) is nDn, which is O(
√
n) faster than the convergence rate

√
nDn for the same estimator

in the case where C(1) ̸= 0. Thus, degeneracy in the long run behavior of the equation error

leads to an acceleration in convergence. But it does not lead to an invariance principle at least

for this OLS estimator because its limit distribution depends on the distributon of ε̃t, thereby

causing the difficulties for inference.

If ε̃0 = 0 then

nDn(β̂ − β)⇝

(∫ 1

0
X(r)X(r)′dr

)−1

X(1)ε̃∞ = M−1X(1)ε̃∞, (3.7)

which has mean zero and variance Var(ε̃∞)M−1X(1)X(1)′M−1, which is singular of rank unity

when m > 0. When m = 0 and xt = 1, we have X(r) = 1 and the limit variance is simply

Var(ε̃∞). But when m > 1 there is a (nonrandom) direction where the convergence rate is

faster than nDn because of the singularity in (3.7). In particular, if G⊥ is an (m + 1) × m

orthogonal complement of the vector g = M−1X(1) then it follows from (3.7) that nG′
⊥Dn(β̂−

β) = op(1). This degenerate feature of the limit theory indicates that there may be another

procedure that can accelerate convergence, which we now consider.

3.3 Use of temporal aggregation

Temporal aggregation of the model (2.1) leads to the equation

Yt = X ′
tβ + Ut, t = 1, ..., n, (3.8)

where Yt =
∑t

s=1 ys, Xt =
∑t

s=1 xs =
∑t

s=1(1, s, s
2, ..., sm)′ and when C(1) = 0 we have

Ut =
∑t

s=1∆ε̃s = ε̃t − ε̃0, so that

Yt = X ′
tβ + ε̃t − ε̃0, t = 1, ..., n. (3.9)

The parameter vector β in (3.8) is again estimated by OLS regression giving β̃ =
(
X̃ ′X̃

)−1
X̃ ′Ỹ

where X̃ ′ = [X1, ..., Xn] and Ỹ ′ = [Y1, ..., Yn] . Similarly, we define Ũ ′ = [U1, ..., Un] =
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[ε̃1 − ε̃0, ..., ε̃n − ε̃0].

To find the limit behavior of β̃ we use Fn = nDn and note that F−1
n X⌊nr⌋ =

1
n

∑⌊nr⌋
s=1 D−1

n xs →
X̃(r) :=

∫ r
0 X(s)ds =

∫ r
0 (1, s, s

2, ..., sm)′ds = (r, r
2

2 , ...,
rm+1

m+1 )
′. It follows by Riemann integra-

tion that

1

n

⌊nr⌋∑
t=1

F−1
n Xt =

1

n

⌊nr⌋∑
t=1

1

n

t∑
s=1

D−1
n xs →

∫ r

0
X̃(p)dp, (3.10)

and

1

n
F−1
n X̃ ′X̃F−1

n = n−1
n∑

t=1

F−1
n XtX

′
tF

−1
n →

∫ 1

0
X̃(r)X̃(r)′dr =: M̃, (3.11)

as n → ∞. Next observe that

1

n
F−1
n X̃ ′Ũ =

1

n

n∑
t=1

F−1
n Xtε̃t −

1

n

n∑
t=1

F−1
n Xtε̃0 =

1√
n

n∑
t=1

F−1
n Xt

ε̃t√
n
− 1

n

n∑
t=1

F−1
n Xtε̃0

= Op

(
1√
n

)
−

(
1

n

n∑
t=1

F−1
n Xt

)
ε̃0 ⇝ −

∫ 1

0
X̃(p)dp ε̃0. (3.12)

To confirm (3.12) first note that under the stated summability conditions ε̃t = C̃(L)εt is zero

mean stationary with long run variance ω̃2 = σ2C̃(1)2 and so partial sums of ε̃t satisfy the

functional law n−1/2
∑⌊nr⌋

s=1 ε̃s ⇝ Bε̃(r) where Bε̃ is Brownian motion with variance ω̃2 > 0

provided C̃(1) ̸= 0. It follows by using the summation by parts argument in Lemma A.1

that
∑n

t=1 F
−1
n Xt

ε̃t√
n
⇝
∫ 1
0 X̃(r)dBε̃(r) so that 1√

n

∑n
t=1 F

−1
n Xt

ε̃t√
n
= Op

(
1√
n

)
, which leads to

(3.12). If C̃(1) = 0, then a further level of complexity arises that can be treated by similar

methods but which we do not address in the present paper. We deduce from (3.11) and (3.12)

that

Fn(β̃ − β) =

(
1

n
F−1
n X̃ ′X̃F−1

n

)−1( 1

n
F−1
n X̃ ′Ũ

)
⇝ −M̃−1

∫ 1

0
X̃(p)dp ε̃0, (3.13)

so that β̃ is consistent with rate of convergence Fn = nDn but no invariance principle applies,

leading to continuing difficulties with robust inference about β.

Remark. We deduce that temporal aggregation of the data and estimation of (3.8) raises the

convergence rate of OLS regression from the rate
√
nDn for β̂ by O(

√
n) to the rate Fn = nDn

for β̃. This rise in the convergence rate is explained by the rise in the signal strength associated

with the signal matrix X̃ ′X̃ in the regression formula ( 1nF
−1
n X̃ ′X̃F−1

n )−1( 1nF
−1
n X̃ ′Ũ) in (3.13).

Temporal aggregation is a simple mechanism for taking into account the MA unit root and zero

long run variance of ut in the general model (2.1) when C(1) = 0, leading to (3.8). This

procedure may therefore be regarded as an important partial step towards implementing GLS.

It is not a full implementation of GLS because the residual ε̃t in (3.8) is generally autocorrelated

with spectrum fε̃(λ) = σ2|C̃(eiλ)|2 that is not necessarily flat. Thus, taking account of the MA
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unit root and the zero long run variance of ut leads to accelerated convergence and asymptotic

normality. So the conventional OLS trend regression estimator β̂ is asymptotically infinitely

deficient by a
√
n factor, relative to the partial use of GLS that leads to β̃, manifesting the

failure of the GR asymptotic equivalence theorem.

The rise in convergence rate that results from the use of OLS regression in the temporally

aggregated model does not resolve difficulties concerning inference because the limit theory

(3.13) involves the distribution of ε̃0. This difficulty in the limit theory is addressed by an

adjustment to the estimation technique, as explained in the next section.

3.4 The effect of intercept adjustment

We propose to estimate the parameter vector β in (3.8) by OLS regression with a fitted intercept

in the regression. The model may therefore be written in the form

Yt = X ′
tβ + ε̃t − ε̃0 = µ+X ′

tβ + ε̃t, t = 1, ..., n (3.14)

with (random) intercept µ = ε̃0. The presence of the intercept in the OLS regression leads to

all variables in the model being demeaned. We use the daggered affix variable A†
t to signify

that the variable At is demeaned, so that A†
t := At− 1

n

∑n
s=1As. For the matrix of observations

A = [A1, ..., An]
′ of At we correspondingly denote the observation matrix of demeaned variables

A†
t by A†.

With this notation in hand, the algebra and asymptotics in the aggregated model with

a fitted intercept are determined with the following modifications of those given above. In

particular, setting X†
t := Xt − 1

n

∑n
s=1Xs and by taking limits as n → ∞ and Riemann

integration we have

F−1
n X†

⌊nr⌋ =
1

n

⌊nr⌋∑
s=1

D−1
n xs −

1

n

n∑
t=1

1

n

t∑
s=1

D−1
n xs

→ X̃(r)−
∫ 1

0
X̃(p)dp =

∫ r

0
X(s)ds−

∫ 1

0

∫ p

0
X(s)dsdp =: X†(r). (3.15)

The limit function X†(r) is the demeaned form of X̃(r) =
∫ r
0 X(s)ds in the function space

C[0, 1] and this function correspondingly satisfies
∫ 1
0 X†(r)dr = 0. We now obtain as n → ∞

1

n
F−1
n X̃†′X̃†F−1

n = n−1
n∑

t=1

F−1
n X†

tX
†′
t F

−1
n →

∫ 1

0
X†(r)X†(r)′dr =: M †. (3.16)

Next observe that
∑n

t=1X
†
t ε̃0 = ε̃0

∑n
t=1X

†
t = 0 by virtue of the definition of the demeaned
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variable X†
t , thereby eliminating the effect of ε̃0. It follows that

1√
n
F−1
n X̃†′Ũ † =

1√
n

n∑
t=1

F−1
n X†

t ε̃t −
1√
n

n∑
t=1

F−1
n X†

t ε̃0 =
n∑

t=1

F−1
n X†

t

ε̃t√
n

⇝
∫ 1

0
X†(r)dBε̃(r), (3.17)

where Bε̃ is Brownian motion with variance ω̃2 = σ2C̃(1) in view of the functional law

n−1/2
∑⌊nr⌋

s=1 ε̃s ⇝ Bε̃(r) indicated above which holds provided C̃(1) ̸= 0. The limit theory

in (3.17) involves Wiener integration with respect to the process Bε̃ and is validated, as in

Lemma A.1, by the bounded variation property of the demeaned trend function X†(r) and the

weak convergence of the standardized partial sum process n−1/2
∑⌊nr⌋

s=1 ε̃s.

Combining the limits in (3.16) and (3.17) we obtain the asymptotic behavior of the OLS

estimator β̂† =
(
X̃†′X̃†

)−1 (
X̃†′Ỹ †

)
after centering and scaling, viz.,

√
nFn(β̂

† − β) =

(
1

n
F−1
n X̃†′X̃†F−1

n

)−1( 1

n
F−1
n X̃†′Ũ

)
⇝

(∫ 1

0
X†(r)X†(r)′dr

)−1 ∫ 1

0
X†(r)dBε̃(r)

=d N
(
0, ω̃2M †−1

)
. (3.18)

As is apparent from (3.18), the OLS estimator β̂† obtained from the temporally aggregated

model (3.14) with a fitted intercept in the regression satisfies an invariance principle and is

asymptotically normal with a simple covariance matrix structure involving the inverse limiting

signal matrix M †−1 and the scalar factor ω̃2, which is the long run variance of the equation

errors ε̃t in (3.14). It is further apparent that under the given conditions the spectral density

fε̃(λ) =
σ2

2π |C̃(eiλ)|2 ∈ (0,∞) of ε̃t satisfies the conditions in the GR theorem for the asymptotic

equivalence of OLS and GLS. Hence, asymptotic efficiency in the regression (3.14) can be

achieved by the use of OLS without any knowledge of the spectral density fε̃(λ).

Consistent estimation of ω̃2 may be conducted by standard HAC methods applied to the

residuals of the regression, viz.,

Û †
t = Yt − µ̂† −X ′

tβ̂
† = Y †

t −X†′
t β̂

†, (3.19)

where the intercept estimate is µ̂† = 1
n

∑n
t=1 Yt −

1
n

∑n
t=1X

′
tβ̂

†. The nonparametric estimate

has the usual form ˆ̃ω2 =
∑L

ℓ=−L k
(
ℓ
L

)
γ̂Û†(ℓ), where γÛ†(ℓ) =

1
n

∑
1≤t,t+ℓ≤n Û

†
t Û

†
t+ℓ and k(·) is

a symmetric lag kernel such as the Bartlett or Parzen kernel. Since β̂† →p β it follows that

Û †
t = ε̃t + op(1) and γÛ†(ℓ) →p γε̃(ℓ) = E(ε̃tε̃t+ℓ) for all finite ℓ as n → ∞. Then the kernel

long run variance estimator ˆ̃ω2 →p ω̃2 under standard conditions on the kernel k(·) and the

lag truncation parameter L = Ln → ∞ as n → ∞, which are henceforth assumed to hold.
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With the limit theory (3.18) and consistent estimation of ω̃2 it might appear that inference

about the regression coefficients β can be conducted using standard t-tests and Wald tests.

However, the asymptotic distribution in (3.18) involves matrix normalization by Fn to account

for the differing magnitudes in the trend regressors Xt. This matrix normalization and multiple

hypotheses about the coefficients together lead to some additional complexities in the limit

theory for Wald tests. A general treatment of hypothesis testing in regression under matrix

normalization is developed in Magdalinos and Phillips (2018). The present discussion will

focus on the potential deficiencies and their impact on the asymptotic theory induced by

the presence of the deterministic trend polynomials Xt and multiple convergence rates in the

regression (3.14).

Unlike Wald tests of general hypotheses, inference procedures for individual coefficients βi

follow directly from (3.18). For instance, to test null hypotheses such as H0 : βi = β0
i , standard

t-tests can be employed using the limit theory

tβi
=

β̂†
i − β0

i

ˆ̃ω2

[(
X̃†′X̃†

)−1
]
ii

⇝ N (0, 1), as n → ∞, (3.20)

where [A]ii denotes the ith diagonal element of the matrix A. Tests of multiple hypotheses

involving several of the coefficients βi need to respect the different rates of convergence of the

elements β̂i that are evident in (3.18). Coefficient estimates with lower convergence rates then

dominate the limit theory, which has some interesting features that are explored in Section 4.

3.5 Temporal aggregation in the standard case where C(1) ̸= 0

We next consider the effect of estimating the parameter vector β in the temporally aggregated

model (3.8) by OLS regression with a fitted intercept in the regression but in the case where

C(1) ̸= 0 and there is no degeneracy induced by an MA unit root. The model may therefore

be written in the form

Yt = X ′
tβ + Ut = µ+X ′

tβ + Ut, t = 1, ..., n (3.21)

with µ = 0 and Ut =
∑t

s=1 us. The OLS estimator β̂† = (X̃†′X̃†)−1(X̃†′Ỹ †) has the same form

as before but now the estimation error is β̂†−β = (X̃†′X̃†)−1(X̃†′Ũ) and in place of (3.17) the

sample covariance factor has the following limit

1

n3/2
F−1
n X̃†′Ũ =

1

n

n∑
t=1

F−1
n X†

t

Ut√
n
⇝
∫ 1

0
X†(r)Bu(r)dr. (3.22)

Upon centering and scaling, the limit distribution follows by standard methods giving

1√
n
Fn(β̂

† − β) =

(
1

n
F−1
n X̃†′X̃†F−1

n

)−1( 1

n3/2
F−1
n X̃†′Ũ

)

9



⇝M †−1

∫ 1

0
X†(r)Bu(r)dr =d N

(
0, ω2M †−1

∫ 1

0

∫ 1

0
X†(r)r ∧ sX†(s)′drdsM †−1

)
. (3.23)

The rate of convergence of β̂† is 1√
n
Fn and is therefore slower by O(n) than the MA unit root

case where the error is ut = ε̃t−1− ε̃t. Also, the variance matrix in the limit distribution (3.23)

has a sandwich form, which arises from the fact that the temporally aggregated model (3.21)

is a polynomial regression with a highly autocorrelated I(1) error process Ut. The regressor in

(3.21) is, for large t, Xt =
∑t

s=1 xs ∼a (t, t2, ...., tm+1)′, whose component of lowest degree is

the linear trend t which has the sample signal
∑n

t=1 t
2 = O(n3). This signal of O(n3) exceeds

that of the I(1) error Ut, which is
∑n

t=1 U
2
t = Op(n

2)), by order Op(n). It follows that the

OLS estimator β̂† is consistent with the lowest convergence rate O(
√
n) for the coefficient β0.

The fitted intercept µ̂†, on the other hand, is inconsistent. To show this, note that µ̂† =
1
n

∑n
t=1 Yt −

1
n

∑n
t=1X

′
tβ̂

† and

1√
n
µ̂† =

1

n

n∑
t=1

Ut√
n
− 1

n

n∑
t=1

X ′
tF

−1
n

1√
n
Fn

(
β̂† − β

)
⇝
∫ 1

0
Bu(r)dr −

∫ 1

0
X(r)′dr

(∫ 1

0
X†(r)X†(r)′dr

)−1 ∫ 1

0
X†(r)Bu(r)dr, (3.24)

so that µ̂† = Op(
√
n) diverges as n → ∞. The divergence of the fitted intercept is a conse-

quence of the fact that the temporally aggregated model error Ut is an I(1) time series whose

signal exceeds that of the constant regressor associated with the intercept. The fitted equa-

tion therefore manifests a partially spurious regression property in which the intercept is not

consistently estimated but the time polynomial regression coefficients are consistent because

their signal is stronger, as discussed above.

4 Wald Statistic Inference

Before commencing a general treatment we illustrate the issues involved with some examples.

These help in developing a notation that is suited for a complete discussion of the general case.

In these examples and the subsequent treatment we continue to work with the temporally

aggregated model in which C(1) = 0 and the model has a fitted intercept, as in (3.14). The

analysis for the case where C(1) ̸= 0 is entirely analogous, allowing for the different convergence

rates of the estimated coefficients and different estimate of the residual long run error variance.1

1In practical situations it is typically unknown, at least without testing, whether C(1) = 0 or C(1) ̸= 0.
Then an additional issue arises in the construction of the Wald test statistic, because the statistic depends on
a consistent estimate of the variance matrix of the coefficient estimates, which in turn depends on whether
C(1) = 0 or C(1) ̸= 0. Readers are referred to Phillips and Kheifets (2022) for a systematic analysis of this
issue in the case of a possibly multicointegrated system. That model involves stochastic trends but the ideas
underlying the construction of the Wald statistic may be applied in the present context. A full analysis of that
case is not presented here to avoid unnecessary lengthening of the paper.
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4.1 Example 1

We start with the case of a simple null hypothesis about all the coefficients of the form H0 :

β0 = β1 = β2 = · · · = βm. This hypothesis can be written as H0 : Hβ = h using the

m× (m+ 1) matrix H = [ιm,−Im] and vector h = 0 with the m-vector ιm = (1, 1, ..., 1)′ and

order m identity matrix Im. The Wald statistic for testing H0 is then

Wn = (Hβ̂† − h)′
[
H
(
X̃†′X̃†

)−1
H ′
]−1

(Hβ̂† − h)/ ˆ̃ω2

= β̂†′H ′
[
H
(
X̃†′X̃†

)−1
H ′
]−1

Hβ̂†/ ˆ̃ω2. (4.1)

The analysis that follows proceeds with the case studied in Section 3.4 where C(1) = 0 and

an intercept is included in the regression as in (3.14). Using the normalization matrix Fn =

nDn = diag(n, n2, ..., nm+1), and setting Gn = diag(n2, ..., nm+1), we have G−1
n = O(n−2) and

observe that HF−1
n = [ιm,−Im]F−1

n = [n−1ιm,−G−1
n ] = 1

n [ιm,−nG−1
n ]. Then

n3/2HF−1
n Fn(β̂

† − β) =
[
ιm,−nG−1

n

]√
nFn(β̂

† − β)

∼a

[
ιm,−nG−1

n

](∫ 1

0
X†(r)X†(r)′dr

)−1 ∫ 1

0
X†(r)dBε̃(dr)

∼a N
(
0, ω̃2

[
ιm,−nG−1

n

]
M †−1

[
ιm,−nG−1

n

]′)
⇝ N

(
0, ω̃2 [ιm, 0m×m]M †−1 [ιm, 0m×m]′

)
, (4.2)

as n → ∞ because nG−1
n = O(n−1) and so

[
ιm,−nG−1

n

]
→ [ιm, 0m×m]. Observe that the

limit distribution given in (4.2) is singular because the transform matrix [ιm, 0m×m] has rank

1 < m. This rank deficiency affects the limit distribution of the Wald statistic and the degrees

of freedom of the resulting chi-squared statistic. In particular, we have

β̂†′H ′
[
H
(
X̃†′X̃†

)−1
H ′
]−1

Hβ̂†/ ˆ̃ω2 = β̂†′H ′

[
1

n
HF−1

n

(
1

n
F−1
n X̃†′X̃†F−1

n

)−1

F−1
n H ′

]−1

Hβ̂†/ ˆ̃ω2

=
1

n
β̂†′√nFnF

−1
n H ′

[
1

n
HF−1

n

(
1

n
F−1
n X̃†′X̃†F−1

n

)−1

F−1
n H ′

]−1

HF−1
n

√
nFnβ̂

†/ ˆ̃ω2

∼a β̂†′√nFnF
−1
n H ′

[[
1

n
ιm,−G−1

n

]
M †−1

[
1

n
ιm,−G−1

n

]′]−1

HF−1
n

√
nFnβ̂

†/ω̃2

∼a

∫ 1

0
dBε̃(r)X

†′(r)M †−1

[
1

n
ιm,−G−1

n

]′
×
[[

1

n
ιm,−G−1

n

]
M †−1

[
1

n
ιm,−G−1

n

]′]−1

×
[
1

n
ιm,−G−1

n

]
M †−1

∫ 1

0
X†(r)dBε̃(r)/ω̃

2

∼a

∫ 1

0
dBε̃(r)X

†(r)′M †−1
[
ιm,−nG−1

n

]′ × [[ιm,−nG−1
n

]
M †−1

[
ιm,−nG−1

n

]′]−1

11



×
[
ιm,−nG−1

n

]
M †−1

∫ 1

0
X†(r)dBε̃(r)/ω̃

2

=

∫ 1

0
dWε̃(r)X

†(r)′M †−1/2PAnM
†−1/2

∫ 1

0
X†(r)dWε̃(r)

= Z ′PAnZ ⇝ Z ′PAZ =d χ2
1. (4.3)

Here Wε := (1/ω̃)Bε is standard Brownian motion and Z ′PAnZ is a quadratic form in the

Gaussian vector Z :=
(∫ 1

0 X†(r)X†(r)′dr
)−1/2 ∫ 1

0 X†(r)dWε̃(r) =d N (0, Im). The projection

matrix PAn = An (A′
nAn)

−1A′
n is deterministic of rank m = rank(

[
ιm,−nG−1

n

]
) for finite n.

PAn projects onto the m-dimensional range space of the matrix An where

A′
n =

[
ιm,−nG−1

n

]
M †−1/2 =

[
ιm, O

(
1

n

)]
M †−1/2 → [ιm, 0m×m]M †−1/2 =: A′. (4.4)

The (m + 1) × (m + 1) dimensional limiting projection matrix PA = A (A′A)+A′ has rank

unity, where (A′A)+ is the Moore-Penrose inverse2 of A′A. The projector PA can be simplified

as follows. Let a′ be the first row of the symmetric matrix M †−1/2 =
(∫ 1

0 X†(r)X†(r)′dr
)−1/2

.

Then

A′ = [ιm, 0]M †−1/2 = ιma′, (4.5)

and

PA = aι′m(ιma′aι′m)+ιma′ = a(a′a)−1a′ι′m(ιmι′m)+ιm = Paι
′
m(ιmι′m)+ιm = Pa, (4.6)

since the Moore-Penrose inverse (ιmι′m)+ = ιm(ι′mιm)−2ιm and thus

ι′m(ιmι′m)+ιm = ι′mιm(ι′mιm)−2ι′mιm = 1.

It follows that Z ′PAZ = Z ′PaZ =d χ2
1, giving (4.3).

This example illustrates a key asymptotic deficiency in the Wald test in which a test of

m different hypotheses leads to a statistic whose limit distribution is chi-square with only a

single degree of freedom. The dimension reduction that occurs in this limit theory of the Wald

statistic is associated with the concentration of the range space of the projector PAn to the

lower dimensional range space of the projector PA = Pa. The dimension reduction occurs

in the limit distribution of the Wald statistic as the sample size n → ∞ and thereby affects

inference but it does not occur in the limit distribution of the estimated coefficient vector

β̂† itself, as is clear from (3.18). More specifically, it is the matrix metric H
(
X̃†′X̃†

)−1
H ′,

which is used to measure distance from the null hypothesis in the Wald statistic (4.1), that

collapses in dimension as n → ∞. This collapse in dimension at infinity is the result of the

differing signal strengths in the signal matrix X̃†′X̃† that determine the convergence rates

2For an n× k matrix X of rank k < n the Moore-Penrose inverse of XX ′ is (XX ′)+ = X(X ′X)−2X ′ and
the Moore-Penrose inverse of X is X+ = X ′(XX ′)+.
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of the elements of the estimated coefficient vector β̂. It is captured by the replacement of

this metric, upon appropriate matrix normalization, by the projector PAn which collapses to

PA = Pa as n → ∞.

In the present case the null hypothesis is H0 : β0 = β1 = ..., βm and involves m restrictions

on m + 1 coefficients. But the limit distribution of the Wald test is simply χ2
1 rather than

the usual χ2
m where the number of degrees of freedom equals the number of restrictions. The

reason for the reduced degrees of freedom in the limit distribution is that the estimates of the

individual coefficients {β1, ..., βm} of the trend terms all have faster rates of convergence given

the stronger signal associated with their regressors. This difference means that the variances

of the differentials in the regression coefficients are all dominated by the variance of β̂0. For

instance, in the regression (3.14) for the temporally aggregated equation, the difference in the

first two coefficients β̂0 − β̂1 satisfies

n3/2(β̂0 − β̂1) = n3/2(β̂0 − β1)− n3/2(β̂1 − β1) = n3/2(β̂0 − β1) +Op

(
1

n

)
, (4.7)

since n5/2(β̂1 − β̂1) = Op(1). Recall that the regressor Xt =
∑t

s=1 xs =
∑t

s=1(1, s, s
2, ..., sm)′

in (3.14). So the components of Xt corresponding to the coefficients β0 and β1 are X1t = t

and X2t =
∑t

s=1 s = t(t + 1)/2. The convergence rate of β̂0 is then n3/2, corresponding to

the order of magnitude of the signal
∑n

t=1X
2
1t = O(n3) and the convergence rate of β̂1 is n5/2

corresponding to the signal order
∑n

t=1X
2
2t = O(n5). Hence, the limit distribution in the Wald

test is determined as if the coefficients of the higher order trend terms were known. In effect,

the greater rates of convergence of the higher order coefficient estimates in the trend regression

imply that their variances do not contribute to the limit distribution of the Wald statistic and

only the variance of β̂0 figures in the limit theory. But β̂0 has only a single dimension and this

is what leads to the χ2
1 limit distribution in (4.3).

Remarks

(i) The reduction in dimension that occurs in the limit theory of the Wald statistic Wn in

(4.3) from the rankm ofH to unity matches the reduction in dimension of the limit theory

of the transformed estimator (4.2) following matrix normalization. Importantly, in the

derivation of this limit theory there is no reduction in dimension for finite n. The collapse

in dimension occurs in the limit when n → ∞. Notably, the singular covariance matrix

ω̃2 [ιm, 0m×m]
(∫ 1

0 X†(r)X†(r)′dr
)−1

[ιm, 0m×m]′ of the limit distribution in (4.2) of the

normalized, transformed, and centered estimator n3/2HF−1
n Fn(β̂

† − β) is consistently

estimated by the matrix ˆ̃ω2
[
ιm,−nG−1

n

]
( 1nF

−1
n X̃†′X̃†F−1

n )−1
[
ιm,−nG−1

n

]′
. This means

that, although a generalized inverse is involved in our analysis of the limit distribution

theory of the Wald statistic, it is not necessary to consider limits of generalized inverses

as n → ∞ in determining the limit theory of the Wald statistic as in the analyses of

Stewart (1969); Puri et al. (1984); Andrews (1987). The situation in this example where

consistent estimation of the limiting covariance matrix is available is instead similar to

the case studied in Vuong (1987).
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(ii) As is apparent in the derivation leading to (4.3) the details of the dimensional reduction

rely on the form of the null hypothesis H0 and in particular the form of the matrix H.

The asymptotic theory can be complex and the final limit distribution of the Wald test

is contingent on the interaction between the normalization matrix Fn and the hypothesis

matrix H. This is the essence of the difficulties involved in matrix normalization.

4.2 Example 2

The next example gives a different scenario in the limit theory which displays no asymptotic

deficiency but more complex matrix normalization. The null hypothesis is H0 : Hβ = h with

h = 0 and

H = H2×m+1 =

[
1 −2 0 0 0 · · · 0

0 0 1 1 0 · · · 0

]
=:
[
H1, H2, 02×(m−3)

]
, (4.8)

with

H1 =

[
1 −2

0 0

]
, H2 =

[
0 0

1 1

]
, (4.9)

so that the null hypothesis is simply H0 : β0 = 2β1 and β2 + β3 = 0.

We now partition the normalization matrix as Fn = nDn = diag(n, n2, ..., nm+1) = blockdiag [F1n, F2n, F3n],

where F1n = diag(n, n2), F2n = diag(n3, n4), and F3n = diag(n5, ..., nm+1), so that F−1
3n =

O(n−5). Next observe that

HF−1
n =

[
H1, H2, 02×(m−3)

]
F−1
n =

[
H1F

−1
1n , H2F

−1
2n , 02×(m−3)

]
=

[
1
n − 2

n2 0 0 0 · · · 0

0 0 1
n3

1
n4 0 · · · 0

]

=

[
1
n 0

0 1
n3

][
1 − 2

n 0 0 0 · · · 0

0 0 1 1
n 0 · · · 0

]
=: Qn ×Rn, (4.10)

with Qn = diag(n−1, n−3) and Rn =

[
1 − 2

n 0 0 0 · · · 0

0 0 1 1
n 0 · · · 0

]
has dimension 2 × (m + 1)

and rank 2. Then

√
nQ−1

n HF−1
n Fn(β̂

† − β) = Rn

√
nFn(β̂

† − β)

∼a RnM
†−1

∫ 1

0
X†(r)dBε̃(dr)

=d N
(
0, ω̃2RnM

†−1R′
n

)
⇝ N

(
0, ω̃2RM †−1R′

)
, (4.11)

where Rn → R =

[
1 0 0 0 0 · · · 0

0 0 1 0 0 · · · 0

]
. Observe that the limit distribution of β̂† − β

given in (4.11) is of full rank 2 but requires a more complex matrix normalization involving
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the normalization matrix Qn than does that of the earlier result given in (4.2). With this limit

theory for the estimator in hand we can obtain the limit distribution of the Wald statistic for

testing H0 : Hβ = h = 0 as follows.

Wn = β̂†′H ′
[
H
(
X̃†′X̃†

)−1
H ′
]−1

Hβ̂†/ ˆ̃ω2

= β̂†′H ′

[
1

n
HF−1

n

(
1

n
F−1
n X̃†′X̃†F−1

n

)−1

F−1
n H ′

]−1

Hβ̂†/ ˆ̃ω2

=
1

n
β̂†′√nFnR

′
nQ

′
n

[
1

n
QnRn

(
1

n
F−1
n X̃†′X̃†F−1

n

)−1

R′
nQ

′
n

]−1

QnRn

√
nFnβ̂

†/ ˆ̃ω2

= β̂†′√nFnR
′
n

[
Rn

(
1

n
F−1
n X̃†′X̃†F−1

n

)−1

R′
n

]−1

Rn

√
nFnβ̂

†/ ˆ̃ω2 ⇝ χ2
2, (4.12)

in view of (4.11) and the fact that rank(R) = 2. Hence, in this case the distribution has

the usual limiting chi-squared distribution with degrees of freedom that match the number of

(independent) restrictions involved in the null hypothesis H0 : Hβ = h with the restriction

matrix H given in (4.8).

4.3 Example 3

We now combine the features of Examples 1 and 2 in a third more complex case involving the

null hypothesis H0 : Hβ = h with h = 0 and the m× (m+ 1) restriction matrix

H =



1 −1 0 0 0 · · · 0

2 0 1 0 0 · · · 0

0 3 0 −2 0 · · · 0

0 0 1 −1 0 · · · 0

0 0 1 0 −1 · · · 0
...

...
...

...
...

. . .
...

0 0 1 0 0 · · · −1


, (4.13)

giving q = m restrictions on β. So the null hypothesis is H0 : β0 − β1 = 0, 2β0 + β2 =

0, 3β1 + 2β3 = 0 β3 = β4 = · · · = βm or equivalently H̄0 : β0 − β1 = 0, β0 + 1
2β2 =

0, β1 +
2
3β3 = 0, β3 = β4 = · · · = βm. For this equivalent null hypothesis H̄0 : H̄β = 0 we

have the normalized m× (m+ 1) restriction matrix

H̄ =


1 −1 0 0 · · · 0

1 0 1
2 0 · · · 0

0 1 0 −2
3 · · · 0

0m−3 0m−3 ιm−3 −Im−3
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=


−1 0 0 · · · 0

ι2
0 1

2 0 · · · 0

0 1 0 −2
3 · · · 0

0m−3 0m−3 ιm−3 −Im−3

 . (4.14)

Setting Gn = diag(n4, n5, · · · , nm+1) we now have

H̄F−1
n =


− 1

n2 0 0 · · · 0
1
n ι2 0 1

2n3 0 · · · 0

0 1
n2 0 − 2

3n4 · · · 0

0m−3 0m−3
1
n3 ιm−3 −G−1

n



=


1
nI2 0 0 0 · · · 0

0 1
n2 0 0 · · · 0

0 0 1
n3 Im−3

×


− 1

n 0 0 · · · 0
ι2

0 1
2n2 0 · · · 0

0 1 0 − 2
3n2 · · · 0

0m−3 0m−3 ιm−3 −n3G−1
n


=: Qn ×Rn, (4.15)

where Qn is an m × m normalization matrix and Rn is an m × m + 1 matrix of rank m for

finite n which captures the implied normalized form of the restriction matrix. Similar to (4.11)

in Example 2 we can now obtain the limit theory for the appropriately normalized estimated

error in the restrictions H̄(β̂† − β), viz.,

√
nQ−1

n H̄F−1
n Fn(β̂

† − β) = Rn

√
nFn(β̂

† − β)

∼a RnM
†−1

∫ 1

0
X†(r)dBε̃(dr)⇝ N

(
0, ω̃2RM †−1R′

)
, (4.16)

since

Rn → R =


0 0 · · · 0

ι2
0 0 · · · 0

0 1 0 · · · 0

0m−3 0m−3 ιm−3 0m−3×m−2


m×(m+1)

. (4.17)

Observe that the limit matrix R has rank 3 < m and, correspondingly, the limit distribution

in (4.16) is singular with deficient rank 3. As in Example 1, this singularity affects the limit

distribution of the Wald statistic and the degrees of freedom of the resulting chi-squared

statistic. The derivation follows the same lines but is more complex than that leading to (4.3)

in Example 1 because there are now two sources of degeneracy not one and these are of different

dimension. The Wald statistic has the following form (replacing H with H̄)
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β̂†′H̄ ′
[
H̄
(
X̃†′X̃†

)−1
H̄ ′
]−1

H̄β̂†/ ˆ̃ω2 = β̂†′H̄ ′

[
1

n
H̄F−1

n

(
1

n
F−1
n X̃†′X̃†F−1

n

)−1

F−1
n H̄ ′

]−1

H̄β̂†/ ˆ̃ω2

=
1

n
β̂†′√nFnF

−1
n H̄ ′Q−1

n

[
1

n
Q−1

n H̄F−1
n

(
1

n
F−1
n X̃†′X̃†F−1

n

)−1

F−1
n H̄ ′Q−1

n

]−1

Q−1
n H̄F−1

n

√
nFnβ̂

†/ ˆ̃ω2

∼a β̂†′√nFnR
′
n

[
RnM

†−1R′
n

]−1
Rn

√
nFnβ̂

†/ω̃2

∼a

∫ 1

0
dBε̃(r)X

†(r)′M †−1R′
n

[
RnM

†−1R′
n

]−1
RnM

†−1

∫ 1

0
X†(r)dBε̃(r)/ω̃

2

=

∫ 1

0
dWε̃(r)X

†(r)′M †−1/2PAnM
†−1/2

∫ 1

0
X†(r)dWε̃(r)

= Z ′PAnZ ⇝ Z ′PAZ =d χ2
3. (4.18)

As in (4.3) Wε := (1/ω̃)Bε is standard Brownian motion and Z ′PAnZ is a quadratic form

in the Gaussian vector Z := M †−1/2
∫ 1
0 X†(r)dWε̃(r) =d N (0, Im). The projection matrix

PAn = An (A′
nAn)

−1A′
n is deterministic of rank m = rank(An) = rank(Rn) for all finite n.

PAn projects onto the m-dimensional range space of the (m + 1) × m matrix An, where in

(4.18) we have

A′
n = RnM

†−1/2 → RM †−1/2 =: A′, (4.19)

for which the limiting rank is rank(A) = 3, the same as the matrix R. The (m+1)-dimensional

limiting projection matrix PA = A (A′A)+A′ therefore has rank 3. An explicit form of the

projector PA can be expressed as follows. Let a′1, a
′
2 and a′3 be the first, second and third rows

of the symmetric matrix positive definite matrix M †−1/2 =
(∫ 1

0 X†(r)X†(r)′dr
)−1/2

. Then the

(m+ 1)×m matrix A has the explicit form

A = M †−1/2R′ =
[

a1ι
′
2 a2 a3ι

′
m−3

]
, (4.20)

in which there are only 3 linearly independent columns which we collect in the (m + 1) × 3

matrix A = [a1, a2, a3] . It follows directly that the projector PA projects onto the range space

of A and is therefore equivalent to the projector PA by virtue of uniqueness. We deduce that

the limit distribution of the Wald statistic is Z ′PAZ = Z ′PAZ =d χ2
3, as given in (4.18).

4.4 The general case

From these examples, we now proceed to a general treatment of the limit theory for Wald tests

in trend polynomial regression. The analysis continues to use the time aggregated regression

model (3.14), again with C(1) = 0. We start by formulating a generalized version of (4.14)

for the normalized restriction matrix H̄ in which: (i) the rows of H̄ are assembled so that the

corresponding hypotheses are ordered according to the time polynomial power of the respective
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coefficients; and (ii) the first non-zero coefficient in each row, corresponding to the lowest

power of the associated time polynomial, is set to unity, as in (4.14). With this ordering and

normalization and recognizing that hypotheses can involve different elements of the coefficient

vector β that relate to time polynomials of different degrees, we partition the q × (m + 1)

restriction matrix H̄ of the null hypothesis to accord with these elements in rising polynomial

degree form as follows

H̄ =


h1,1 h1,2 h1,3 · · · h1,m+1

0 h2,2 h2,3 · · · h2,m+1

0 0 h3,3 · · · h3,m+1

...
...

...
. . .

...

0 0 0 · · · hp,m+1


S

=:
[
H̄(1), H̄(2), H̄3, · · · , H̄(m+1)

]
. (4.21)

In this representation there are p block rows indicated and m+1 columns. Each block diagonal

entry of H̄ is a vector of the form hi,i = ciιqi in which ιqi = (1, 1, ..., 1)′ has dimension qi and

ci = jSi is the selector function of the block row i which indicates whether that block row enters

the matrix or not. In particular, block row i occurs in the matrix if the entry is ci = jSi = 1,

which signifies that there are restrictions involving the coefficient βi−1 of ti−1, i.e., the lowest

trend degree coefficient in block row i. On the other hand, if the entry ci = jSi = 0 then

row i is removed from the matrix altogether as the selector jSi = 0 signifies that there is no

restriction involving βi−1 – so the ith block row is removed entirely in the specification H̄S .

The affix S on H̄S in the upper block triangular matrix (4.21) means that selection may have

taken place in the matrix and then r =
∑p

i=1 1{ci ̸= 0} is the actual number of block rows

in the matrix H̄S . This arrangement implies that the q restrictions that comprise the rows of

H̄ are partitioned into r groups whose numbers sum to q =
∑p

i=1 qi1{ci ̸= 0} in total. Upon

selection of its relevant rows the restriction matrix H̄ = H̄S is then of dimension q × (m+ 1)

with full rank q. In the first example above where H̄ = H̄S = [ιm,−Im] there is only one block

row in the restriction matrix H̄ and so r = 1, q1 = q = m, c1 = 1, and cj = 0 for all j > 1. In

the second example above

H̄ = H̄S =

[
1 −2 0 0 0 · · · 0

0 0 1 1 0 · · · 0

]
,

and there are only two rows in the restriction matrix, so that r = q = 2, q1 = q3 = 1,

c1 = c3 = 1 and cj = 0 for all j ̸∈ {1, 3}. In the third example above where

H̄ =


−1 0 0 · · · 0

ι2
0 1

2 0 · · · 0

0 1 0 −2
3 · · · 0

0m−3 0m−3 ιm−3 −Im−3

 , (4.22)
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there are three blocks of restrictions so that r = 3, q1 = 2, q2 = 1, q3 = m − 3, q = m and

c1 = c2 = c3 = 1.

In the general case with restriction matrix (4.21) the normalization matrix is Fn = diag(n, n2, ..., nm+1)

and we write the effect of normalization by F−1
n on the q× (m+1) restriction matrix H̄ in the

following partitioned matrix form which uses the selection matrix notation

H̄F−1
n =

[
H̄(1), H̄(2), H̄3, · · · , H̄(m+1)

]
F−1
n =

[
1

n
H̄(1),

1

n2
H̄(2),

1

n3
H̄(3), · · · , 1

nm+1
H̄(m+1)

]

=



1
nh1,1

1
n2h1,2

1
n3h1,3 · · · 1

nm+1h1,m+1

0 1
n2h2,2

1
n3h2,3 · · · 1

nm+1h2,m+1

0 0 1
n3h3,3 · · · 1

nm+1h3,m+1

...
...

...
. . .

...

0 0 0 · · · 1
nm+1hp,m+1


S

=



c1
n Iq1 0 0 · · · 0

0 c2
n2 Iq2 0 · · · 0

0 0 c3
n3 Iq3 · · · 0

...
...

...
. . .

...

0 0 0 · · · cp
np Iqp


S


c1ιq1

1
nh1,2

1
n2h1,3 · · · 1

nr−1h1,p · · · 1
nmh1,m+1

0 c2ιq2
1
nh2,3 · · · 1

nr−2h2,p · · · 1
nm−1h2,m+1

0 0 c3ιq3 · · · 1
nr−3h3,p · · · 1

nm−2h3,m+1

...
...

...
. . .

...
...

...

0 0 0 · · · cpιqp · · · 1
nm−r+1hp,m+1


S

=: Qn,S+ ×Rn,S . (4.23)

In the matrix Qn,S+ the affix S+ signifies selection and retention of rows and columns according

to the rule that ci = 1 and the removal of those rows and columns for which ci = 0. Thus,

Qn,S+ is a diagonal q× q matrix that is conformable with the q× (m+1) matrix Rn,S defined

by (4.23).

With this framework in the general case we can now obtain the limit theory as n → ∞ for

the appropriately normalized estimated error in the restrictions H̄(β̂† − β), viz.,

√
nQ−1

n,S+H̄F−1
n Fn(β̂

† − β) = Rn,S

√
nFn(β̂

† − β)

∼a Rn,S

(∫ 1

0
X†(r)X†(r)′dr

)−1 ∫ 1

0
X†(r)dBε̃(dr)⇝ N

(
0, ω̃2RSM

†−1R′
S

)
, (4.24)

with

Rn,S → RS :=


c1ιq1 0 0 0 0 · · · 0

0 c2ιq2 0 · · · 0 · · · 0

0 0 c3ιq3 · · · 0 · · · 0
...

...
...

. . .
...

...
...

0 0 0 · · · cpιqp · · · 0


S

, (4.25)

where RS is a q × (m+ 1) matrix of rank r =
∑p

i=1 1{ci ̸= 0} ≤ q =
∑p

i=1 qi1{ci ̸= 0}. When
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r < q the limit distribution given in (4.24) is singular of rank r.

As in Examples 1 and 3, rank deficiency in the limit transformation matrix RS in (4.25)

and singularity of the limiting normal distribution in (4.24) affects the limit distribution of

the Wald statistic and the degrees of freedom of the resulting chi-squared statistic. Following

the earlier approach we have developed above, the limit distribution of the Wald statistic

Wn = β̂†′H̄ ′
[
H̄
(
X̃†′X̃†

)−1
H̄ ′
]−1

H̄β̂†/ ˆ̃ω2 for testing the null hypothesis H0 : H̄β = 0 is

Wn = β̂†′H̄ ′

[
1

n
H̄F−1

n

(
1

n
F−1
n X̃†′X̃†F−1

n

)−1

F−1
n H̄ ′

]−1

H̄β̂†/ ˆ̃ω2

=
1

n
β̂†′√nFnF

−1
n H̄ ′Q−1

n,S

[
1

n
Q−1

n,SH̄F−1
n

(
1

n
F−1
n X̃†′X̃†F−1

n

)−1

F−1
n H̄ ′Q−1

n,S

]−1

Q−1
n,SH̄F−1

n

√
nFnβ̂

†/ ˆ̃ω2

∼a β̂†′√nFnR
′
n,S

[
Rn,SM

†−1R′
n,S

]−1
Rn,S

√
nFnβ̂

†/ω̃2

∼a

∫ 1

0
dBε̃(r)X

†(r)′M †−1R′
n,S

[
Rn,SM

†−1R′
n,S

]−1
Rn,SM

†−1

∫ 1

0
X†(r)dBε̃(r)/ω̃

2

=

∫ 1

0
dWε̃(r)X

†(r)′M †−1/2PAn,S
M †−1/2

∫ 1

0
X†(r)dWε̃(r)

= Z ′PAn,S
Z ⇝ Z ′PASZ =d χ2

r . (4.26)

Justification of (4.26) follows as before, albeit with the additional notational complica-

tions of this general case. Z = M †−1/2
∫ 1
0 X†(r)dWε̃(r) =d N (0, Im) and Z ′PAn,S

Z is a

Gaussian quadratic form. The projection matrix PAn,S
= An,S

(
A′

n,SAn,S

)−1
A′

n,S has rank

q = rank(An,S) = rank(Rn,S) for all finite n and is deterministic. PAn,S
projects onto the

q-dimensional range space of the (m+ 1)×m matrix An,S , where in (4.26) we have

A′
n,S = Rn,SM

†−1/2 → RSM
†−1/2 =: AS

′, (4.27)

for which the limiting rank is rank(AS) = r, the same as the rank of the matrix RS . The

(m + 1)-dimensional limiting projection matrix PAS
= AS (A′

SAS)
+A′

S therefore has rank r.

As in the examples discussed above, an explicit form of the projector PA can be found as

follows. Use the expression for the limit matrix Rs given in (4.25) and let {a′i}
m+1
i=1 be the rows

of the positive definite matrix M †−1/2 = (
∫ 1
0 X†(r)X†(r)′dr)−1/2. Then the (m+1)× q matrix

AS can be written as

AS = M †−1/2R′
S =

[
c1a1ι

′
q1 , c2a2ι

′
q2 , · · · , cpapι

′
qp

]
S

(4.28)

in which the selection operator S removes those columns for which cj = 0 so that AS has

the stated dimension (m + 1) × q with q =
∑p

i=1 qi1{ci ̸= 0}. What remains in the ma-

trix AS are r linearly independent columns which we assemble in the (m + 1) × r matrix
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AS = [c1a1, c2a2, · · · , cpap]S , which is easily seen to have full rank r because the matrix

(
∫ 1
0 X†(r)X†(r)′dr)−1/2 is nonsingular. It follows directly that the projector PAS

projects

onto the range space of the matrix AS and is therefore equivalent to the projector PAS
by

uniqueness. The limit distribution of the Wald statistic Wn is then Z ′PAS
Z = Z ′PAS

Z =d χ2
r ,

as stated in (4.26).

5 Conclusion

As is apparent from the analysis in the last section, testing multiple hypotheses in models with

trend regressors involves complexities that can affect the degrees of freedom of the limiting

χ2 distribution. Whereas the least squares coefficients themselves, upon suitable centering

and matrix normalization, have a standard limiting nonsingular normal distribution, Wald

statistics based on them can suffer from degeneracies that are induced by the nature of the

hypotheses being tested. These arise through the algebraic interaction of the normalizing

matrix and the matrix form of the hypotheses being tested. The heuristic explanation is that

lower rates of convergence in estimated coefficients inevitably dominate the limit theory, so

that hypotheses involving linear combinations of coefficients estimated at different rates end

up in the asymptotic theory being dominated by the variation of the coefficients estimated

at the lowest rates, a feature that can induce degeneracy in multiple hypothesis testing when

several hypotheses are of this type. As we have seen, this degeneracy leads to some algebraic

complexity in a general analysis. But the heuristics remain accurate even in such cases and

should enable a straightforward computation of the non-degenerate component in the Wald

statistic limit theory and the appropriate degrees of freedom in the limiting χ2 distribution.

While these features of trend regression induce potential degeneracies in the limit theory of

Wald statistics for multiple hypotheses, the finite sample distributions typically do not suffer

from the same reductions in degrees of freedom, as the analyses above make clear. The higher

order terms that disappear in limit theory may have a considerable influence in finite samples.

These effects and the adequacy of the asymptotic theory may be investigated by simulation

experiments and formal asymptotic expansions to reveal their importance in practice. Such an

investigation is left for future research.

A Appendix

Lemma A.1. In the deterministic m-vector sequence atn = a
(
t
n

)
, the function a(·) is assumed

to be of bounded variation and partial sums of ut are assumed to satisfy the functional law
1√
n

∑⌊nr⌋
t=1 ut ⇝ Bu(r) where Bu is Brownian motion with variance ω2 = VLR(ut) = 2πfu(0) >

0. Then 1√
n

∑n
t=1 atnut ⇝

∫ 1
0 a(r)dBu(r) = N

(
0, ω2

∫ 1
0 a(r)a(r)′dr

)
.

Proof. The proof is by partial summation. Note that ∆(ftgt) = (∆ft)gt + ft−1∆gt. Summing

the left side of this equality gives
∑n

t=1∆(ftgt) = fngn−f0g0 and summing the right side gives
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∑n
t=1(∆ft)gt +

∑n
t=1 ft−1∆gt, which leads to the following partial summation formula

n∑
t=1

(∆ft)gt = fngn − f0g0 −
n∑

t=1

ft−1∆gt. (A.1)

Define the partial sum process St =
∑t

j=1 uj with S0 = 0. Applying partial summation as

in (A.1) we have
∑n

t=1 a(
t
n)ut =

∑n
t=1 a(

t
n)∆St = a(1)Sn −

∑n
t=1 St−1

(
a( t

n)− a( t−1
n )
)
. Then

upon standardization by
√
n the following weak convergence holds as n → ∞

n∑
t=1

a

(
t

n

)
ut√
n
= a(1)

Sn√
n
−

n∑
t=1

St−1√
n
∆a

(
t

n

)
⇝ a(1)Bu(1)−

∫ 1

0
Bu(r)da(r), (A.2)

because 1√
n

∑⌊nr⌋
t=1 ut ⇝ Bu(r) and

∑n
t=1

St−1√
n
∆a
(
t
n

)
⇝
∫ 1
0 Bu(r)da(r) by virtue of Riemann-

Stieltjes integation which may be employed because the limit process Bu(·) is continuous

almost surely and a(·) is of bounded variation by assumption. We may then define the Wiener

stochastic integral
∫ 1
0 a(r)dBu(r) with respect to Brownian motion by virtue of the integration

by parts formula∫ 1

0
a(r)dBu(r) = [a(r)B(r)]10 −

∫ 1

0
Bu(r)da(r) = a(1)Bu(1)−

∫ 1

0
Bu(r)da(r). (A.3)

The functional
∫ 1
0 a(r)dBu(r) is Gaussian with zero mean and variance matrix ω2

∫ 1
0 a(r)a(r)′dr

since Brownian motion has independent increments and E (dBu(s)dBu(r)) = ω2dr1{r = s}.
The special case considered in the paper involves time polynomials of the form a( t

n) = ( t
n)

k

for integer k ≥ 0 and then
∫ 1
0 rpdBu(r) = N

(
0, ω2

∫ 1
0 r2pdr

)
= N

(
0, ω2

2p+1

)
.

Remark

(iii) More general versions of Lemma A.1 hold and are proved in the same manner allowing

for stochastic integration of bounded variation functions, including stochastic functions,

and for functional laws to continuous stochastic processes other than Brownian motion.

For instance, suppose the time series ut is such that 1
dn

∑⌊nr⌋
t=1 ut ⇝ Y (r) where dn is an

increasing numerical sequence with dn → ∞ and Y (r) is a limiting stochastic process

with continuous sample paths almost surely. Then

n∑
t=1

a

(
t

n

)
ut
dn

= a(1)
Sn

dn
−

n∑
t=1

St−1

dn
∆a

(
t

n

)
⇝ a(1)Y (1)−

∫ 1

0
Y (r)da(r) =:

∫ 1

0
a(r)dY (r).

(A.4)

With an appropriate choice of the normalization sequence dn, (A.4) includes the case

where Y (r) = BH(r) is fractional Brownian motion with Hurst parameter H. Further, if

Pt =
∑t

s=1 Ss then it follows by continuous mapping that a suitably normalized version
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of Pt satisfies the weak convergence 1
ndn

P⌊nr⌋ =
1
n

∑t
s=1

Ss
dn
⇝
∫ r
0 Y (q)dq =: Ȳ (r), which

is of bounded variation because Y (q) is continuous. We therefore have

1

ndn

n∑
t=1

Pt
ut
dn

=
P (1)

ndn

Sn

dn
−

n∑
t=1

St−1

dn

1

ndn
∆Pt ⇝

∫ 1

0
Y (q)dqY (1)−

∫ 1

0
Y (r)dȲ (r)

= Ȳ (1)Y (1)−
∫ 1

0
Y (r)2dr =:

∫ 1

0
Ȳ (r)dY (r), (A.5)

by Riemann-Stieltjes integration, thereby defining theWiener stochastic integral
∫ 1
0 Ȳ (r)dY (r)

with respect to Y (r).
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