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Abstract

In the presence of bubbles, asset prices consist of a fundamental and a bubble com-
ponent, with the bubble component following an explosive dynamic. The general idea
for bubble identification is to apply explosive root tests to a proxy of the unobservable
bubble. Three notable proxies are the real asset prices, log price-payoff ratios, and esti-
mated non-fundamental components. The rationale for all three proxy choices rests on
the definition of bubbles, which has been presented in various forms in the literature.
This chapter provides a theoretical framework that incorporates several definitions of
bubbles (and fundamentals) and offers guidance for selecting proxies. For explosive
root tests, we introduce the recursive evolving test of Phillips et al. (2015b,c) along
with its asymptotic properties. This procedure can serve as a real-time monitoring
device and has been shown to outperform several other tests. Like all other recur-
sive testing procedures, the PSY algorithm faces the issue of multiplicity in testing
that contaminates conventional significance values. To address this issue, we propose
a multiple-testing algorithm to determine appropriate test critical values and show its
satisfactory performance in finite samples by simulations. To illustrate, we conduct a
pseudo real-time bubble monitoring exercise in the S&P 500 stock market from Jan-
uary 1990 to June 2020. The empirical results reveal the importance of using a good
proxy for bubbles and addressing the multiplicity issue.

Keywords: Bubbles; econometrics identification; market fundamental; explosive root;
multiplicity; S&P 500 composite index

1 Introduction

The history of financial bubbles demonstrates the potential of these financial phenomena
to inflict harm on real economic activity. During the expansion phase of a financial bubble
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a typical consequence is resource misallocation as funds are directed towards asset specula-
tion rather than productive enterprises (Hirano et al., 2015; Caballero and Krishnamurthy,
2006). This process of diversion raises the risk to lending institutions of foreclosure in the
event of a bubble collapse and the risk of economic downturn or even general economic
crisis in its aftermath (Case et al., 2000). The demise of the hedge fund Long Term Capi-
tal Management in 1998 during the Russian financial crisis, the Dot-Com bubble collapse
over 2001-2002, and the subsequent 2008 subprime mortgage crisis with the bankcruptcy
of Lehman Brothers and the advent of the great recession provide three recent examples.
In recognition of the major economic implications of financial bubbles, policymakers have
emphasized the urgency of research designed to deepen understanding of financial bubble
phenomena and to develop measures to address them in order to avoid further crises or
to ameliorate their consequences and to maintain economic and financial stability. Cor-
respondingly, there has been a significant surge of academic interest in financial bubbles
among economists and in the development of econometric tools to facilitate bubble iden-
tification, particularly in real time so that policy measures may be implemented to avert
the more serious economic and financial consequences of collapse. There is now a wide
literature and for recent econometric research in the field readers are directed to Phillips
and Yu (2011); Phillips et al. (2011); Homm and Breitung (2012); Phillips et al. (2015b,c);
Lee and Phillips (2016); Harvey et al. (2013, 2016, 2020); Phillips and Shi (2018, 2020); Shi
and Phillips (2020); Chen et al. (2020); Pavlidis et al. (2016, 2017); Wang and Yu (2019);
Hu and Oxley (2017), among others.

There is a general agreement among economists seeking to model asset prices that in
the presence of bubbles asset prices are driven by two separate components, one involving
economic fundamentals that relate to the activity and another, the bubble component, car-
rying the impact of speculative interest. Both these components are theoretical constructs
and need precise formulation for empirical research, typically related to particular applica-
tions. Various definitions appear in the literature. For example, the definitions presented
in Shi (2017) and Shi and Phillips (2020) for housing markets are derived from underlying
accounting identities involving returns. These are often expressed in logarithmic form, with
the fundamental component being a function of payoffs received from the particular asset
(e.g., dividends in the case of equities or rents in the case of housing) and the real interest
rates. On the other hand, the definitions used in Phillips et al. (2011) and Phillips et al.
(2015b) are based on the present value identity assuming a constant discount factor and
expressed in either levels or logarithmic form and the fundamental component is related
only to the payoffs of the asset. The relationships among the various definitions in use
in empirical research are not always apparent. This chapter provides a framework that
embodies many of these definitions and reveals their connections.

A major challenge for bubble identification is the unobservability of the bubble compo-
nent in asset prices. This component has complex dynamics, exhibiting explosive behavior
during the expansion phase followed by decline or collapse in the bubble downturn. The
most common solution to the problem of the unobservable bubble component is to mon-
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itor its impact through the analysis of realized asset prices or prices adjusted for some
observed returns. During the expansionary phase, explosive unit root tests may be applied
to simple proxies of the bubble component such as real asset prices or log price-payoff
ratios. This approach is successful because in the presence of an expansionary bubble its
explosive dynamic typically dominates the time series behavior of asset prices. Nonethe-
less, the presence of market fundamentals, which are commonly believed to be at most
I(1), can compromise the performance of explosive root tests on these simple proxies for
the bubble component (Shi and Phillips, 2020). An alternative solution is to estimate the
fundamentals separately and remove them from the proxies before applying explosive root
tests. While the first approach is easy to implement and has enjoyed widespread use in the
literature, the second approach has been investigated only recently (Shi, 2017; Shi et al.,
2020; Shi and Phillips, 2020) and has not attracted as much attention, especially in equity
markets. The empirical application of the present work applies both approaches to the
S&P 500 stock market and reveals the importance of controlling for market fundamentals
in identifying bubbles in equity markets.

This chapter focuses on the econometric technique of bubble detection that utilizes the
recursive evolving explosive root test of Phillips et al. (2015b,c, PSY hereafter). The PSY
procedure utilizes historical information and by applying the detector to the data as it
evolves through the observed sample the procedure serves as a real-time monitoring device
as well as a general purpose detector. The approach also accounts for the periodically
collapsing feature of bubbles and provides consistent estimates for bubble origination and
termination dates even when there are multiple bubble episodes within the same sample
period. This procedure has been shown to outperform several alternative methods (Phillips
et al., 2011; Homm and Breitung, 2012) and has been applied to many different markets,
including equity, real estate, and commodity markets. See Wöckl (2019) and Shi and
Phillips (2020) for recent surveys of the field.

Although all statistical tests have a non-zero probability of drawing false-positive con-
clusions, a complex multiplicity issue arises when a particular test is implemented many
times on the same data set, as it is in recursive investigations of episodic financial bubbles
and their initiation and termination dates. In such applications the probability of making
at least one false-positive conclusion rises rapidly toward 100% as the number of tests in-
creases. In the content of real-time bubble monitoring, the PSY procedure is implemented
each period as new information arrives. So the multiplicity issue cannot be ignored in em-
pirical testing for financial bubbles. We illustrate the problem by Monte Carlo simulations.
To address the issue we propose the use of a multiple-testing algorithm for the computa-
tion of suitable critical values for the PSY test. With the use of multiple-testing critical
values, the performance of the real-time bubble monitoring procedure is shown to be satis-
factory in terms of its family-wise error rates under the null hypothesis of no bubbles and
to be successful in its detection rates and estimation accuracy of bubble origination and
termination dates under the alternative of bubbles being present in the data.

The rest of the chapter is organized as follows. Section 2 discusses bubble definitions.
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Section 3 outlines bubble identification strategies. The PSY explosive root test and its
asymptotic properties are introduced in Section 4. Section 5 overviews the multiplicity
issue that arises in recursive testing, introduces the multiple-testing algorithm for critical
value computation, and explores the finite sample performance of the associated bubble
monitoring procedure. The empirical application to the the S&P 500 is reported in Section
6. Section 7 concludes.

2 Bubble Definitions

A standard theory-based approach to the definition of a rational bubble starts from the
accounting identity of asset returns (Rt+1) over the period of [t, t+ 1] as

1 +Rt+1 =
Pt+1 +Dt+1

Pt
, (1)

where Pt is the price of a financial asset and Dt is the payoff received from the asset, such as
rental income for houses and dividend income for stocks. Taking conditional expectations
at period t and re-organization of equation (1) leads to the standard no arbitrage condition

Pt = ρtEt (Pt+1 +Dt+1) with ρt =
1

1 + Et (Rt+1)
, (2)

where the quantity ρt ∈ (0, 1) is typically referred to as the (time-varying) discount factor.

2.1 Log Linear Approximation

Let pt = log (Pt), dt = log (Dt), and rt = log(1 + Rt). The return identity (1) can be
rewritten using notations pt, dt and rt as

rt+1 = log(Pt+1 +Dt+1)− logPt = pt+1 − pt + log(1 + edt+1−pt+1). (3)

Applying a Taylor series expansion of log(1+edt+1−pt+1) at the sample mean of pt−dt (i.e.,
p− d) as in Campbell and Shiller (1988), we obtain the (approximate) relation

rt+1 = κ+ δpt+1 + (1− δ)dt+1 − pt, (4)

where

δ =
1

1 + exp(d̄− p̄)
and κ = −δ log δ − (1− δ) log(1− δ).

By recursive substitution of (4) and taking conditional expectations with respect to infor-
mation available at period t, we can write the difference pt − dt in the form of a sum of a
fundamental component ft and a bubble component bt as

pt − dt = ft + bt, (5)
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where the two components are written as

ft =
κ

1− δ
+

∞∑
k=0

δkEt(∆dt+1+k − rt+1+k), (6)

bt = lim
i→∞

δiEt(pt+i). (7)

Equations (6) and (7) provide convenient definitions for the market fundamental component
and the rational bubble component of the log price dividend ratio in (5).

Fundamentals ft are determined in terms of a discounted present value involving divi-
dend growth and returns. The bubble component involves the eventual discounted present
expectation of the asset price. In the absence of a bubble, the transversality condition
holds and bt = limi→∞ δiEt(pt+i) = 0, so that eventual discounted expected value is zero.
In the presence of speculative sentiment, the transversality condition does not apply and
the bubble component bt satisfies the sub-martingale property

Et (bt+1) = lim
i→∞

Et

(
δipt+1+i

)
=

1

δ
lim
i→∞

Et

(
δi+1pt+1+i

)
=

1

δ
bt. (8)

Since 1/δ > 1, equation (8) reveals that the speculative bubble component bt is expected
to be larger in the next period than it is today, i.e., Et (bt+1) > bt. In other words, the
variable bt follows an explosive process. Many of the latest econometric techniques for
bubble identification are based on this unique explosive feature of bubbles. See, e.g., Diba
and Grossman (1988); Phillips et al. (2011, 2015b); Pavlidis et al. (2016).

The log linear approximation of log(1 + edt+1−pt+1) typically relies on the presumption
that the sample mean p− d converges to the population mean of pt − dt. In the case that
pt and dt are integrated and with a cointegration vector [1,−1], the approximation is valid.
In the presence of bubbles, pt − dt is itself explosive and the log linear approximation is
only valid under certain conditions. Explosive behavior in the time series pt−dt leads to an
explosive sample mean p− d so that δ = 1

1+exp(d−p)
→ 1, thereby potentially compromising

the validity of the representation (6). Interestingly, Lee and Phillips (2016) show that both
the log linear approximation and the present value identity (5) remain valid as long as the
duration of the bubble is asymptotically negligible.

2.2 Constant Discount Factor

It is often convenient to take the special case of a constant discount factor, i.e., ρt = ρ ∈
(0, 1). By recursive substitution, equation (2) then becomes

Pt =

∞∑
i=0

ρiEt (Dt+i) + lim
i→∞

Et

(
ρiPt+i

)
. (9)
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In this event, fundamentals and bubbles are sometimes defined as the two components

Ft =
∞∑
i=0

ρiEt (Dt+i) and Bt = lim
i→∞

Et

(
ρiPt+i

)
. (10)

Since the discount rate ρ ∈ (0, 1), Bt continues to satisfy a submartingale property where

Et (Bt+1) =
1

ρ
Bt. (11)

Further, under a constant discount factor we have Et(rt+1+k) = − log ρ by virtue of the
definition of ρt and rt+1. We can then write equation (6) in simpler form as

ft =
κ+ log ρ

1− δ
+

∞∑
k=0

δkEt(∆dt+1+k), (12)

which is another commonly used definition of fundamentals. In the absence of bubbles and
when the growth rate of dividends ∆dt+1+k is stationary, then pt − dt = ft is I(0). For
instance, if ∆dt is stationary autoregressive, satisfying ∆dt = α∆dt−1 + ζt with |α| < 1
and ζt ∼ iid(0, σ2ζ ), then

ft =
κ+ log ρ

1− δ
+

α

1− αδ

∞∑
s=0

αsζt−s, (13)

is a stationary linear autoregressive process. So pt and dt are cointegrated. But in the
presence of a bubble process bt, the dynamics of pt − dt are dominated by bt and hence
become explosive. Evidence of explosive dynamics in the log price-to-rent ratio can there-
fore serve as a signal for the presence of a speculative bubble component in the generating
mechanism.

2.3 Time-varying Discount Factor

The log gross return rt+1 is assumed to equal the return of a baseline asset gt+1 plus a risk
premium φt+1 (Campbell and Shiller, 1988; Shi, 2017), so that

rt+1 = gt+1 + φt+1.

The baseline return can be 3-month treasury bill rates in the case of equities or real
mortgage interest rates in the case of housing. It is further assumed that the time-varying
risk premium fluctuates around a long-term risk premium level φ (Shi, 2017; Shi et al.,
2020), so that

φt+1 = φ+ εt+1,
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where εt+1 is a zero mean disturbance. The expected log return of the asset is the sum of
the expected return of the baseline asset and the expected long-run risk premium, i.e.,

Et (rt+1) = φ+ Et (gt+1) .

By definition, the logarithmic discount factor is log ρt = −Et (rt+1), and under this assumed
model structure, the fundamental component in (6) then becomes

ft =
κ− φ

1− δ
+

∞∑
k=0

δkEt(∆dt+1+k − gt+1+k), (14)

which serves as the basis for the fundamental-bubble decomposition used in Section 3.2.

2.4 Collapsing Bubbles

Historical evidence indicates that bubbles are typically transitory with alternate stages
of expansion and collapse in asset prices. Various models have been proposed to capture
such dynamics. Examples are the early probabilistic bubble generating mechanisms of
Blanchard and Watson (1982) and Evans (1991) and a recent behavioral model of Phillips
(2016). In Blanchard and Watson (1982) bubbles are generated according to the model

Bt+1 =

{
(πρ)−1Bt + εt+1 with probability π
εt+1 with probability 1− π

, (15)

where εt+1 is an error term. In this model the probability of a bubble in each time period
is set a priori to π and the probability of a bubble collapse is 1 − π. The expansion rate
of the bubble is the autoregressive parameter (πρ)−1 during the bubble expansion phase.
The conditional expectation of Bt+1 is given by

Et (Bt+1) = Et

{
π
[
(πρ)−1Bt + εt+1

]
+ (1− π) εt+1

}
= ρ−1Bt,

So, the bubble generating process satisfies the submartingale property Et (Bt+1) > Bt.
Unlike Blanchard and Watson (1982), Evans (1991) considers a bubble model with

three stages. At the initial stage, the bubble expands at rate of ρ−1. After exceeding the
threshold b, the expansion accelerates with a rate of (πρ)−1 and during this period faces
a probability of collapse. The collapse mechanism is governed by a Bernoulli process θt,
which takes the value one with probability π and zero otherwise. More specifically,

Bt+1 =

{
ρ−1BtεB,t+1 if Bt < b[
υ + (πρ)−1 θt+1 (Bt − ρυ)

]
εB,t+1 if Bt ≥ b

. (16)

The error term in this model is multiplicative, rather than additive, and takes the form of

εB,t+1 = exp
(
vt+1 − w2/2

)
with vt+1

i.i.d∼ N
(
0, w2

)
, which ensures that

Et (Bt+1) = ρ−1Bt.
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The approach taken in Phillips (2016) constructs a behavioral model of asset markets
that produces episodes of exuberance, collapse and recovery. These episodes emerge be-
cause of subjective investor-based rational expectations about the impact of fundamentals
on the market price. Investors are assumed to have heterogeneous sentiments about the
market, allowing them to be exuberant or cautious or strict followers of fundamentals. This
is achieved via boundary conditions that describe their respective views of the expected
market impact of the same economic fundamentals. Equilibrium solution paths take mul-
tiple forms, depending on the dominating market sentiment. This rational expectations
model of asset pricing produces market bubbles when exuberant sentiment dominates and
then gives way to cautionary and negative sentiment.

3 Bubble Identification

As indicated earlier a significant challenge to empirical bubble identification is the unob-
servability of the bubble component in the decomposition of asset prices into bubble and
fundamental components. The problem is in some respects analogous to another com-
mon time series identification problem, the separation of trend and cycle components in
nonstationary data. Various econometric approaches have been proposed to address this
challenge of unobservable components and the main ideas are reviewed in what follows.

3.1 Strategy I: Use Simple Proxies

Consider the fundamental and bubble definitions given in equations (9)-(10). In the absence
of bubbles, the transversality condition limi→∞ Et

(
ρiPt+i

)
= 0 is assumed to hold and

the asset price in (9) is at most I(1), as the dividend process Dt is generally believed
to be integrated of order one. On the other hand, in the presence of speculation, Pt is
dominated by the bubble component and accordingly follows an explosive process during
the expansionary phase of the bubble. Similarly, from (5)-(7), pt − dt is at most I(1) in
the absence of speculative behavior but becomes explosive when speculation overtakes the
market. An immediate solution to the unobservable bubble component problem is to apply
explosive root tests to Pt or pt−dt for bubble identification directly in the observable price
or price/divident ratio data. The approach seeks to detect the explosive dyamics in Pt or
pt − dt that is induced by the underlying bubble component.

The accuracy of this approach to bubble identification can be compromised when the
fundamental component (which is taken as residual noise in this approach) is highly per-
sistent. Since the fundamental process Ft is a weighted linear function of the dividend
process Dt+i, which is itself generally believed to be I(1), Ft can be expected to manifest
persistence. The fundamental component ft of pt−dt given in (13) is related to the growth
rate of dividends ∆dt+1+k, which may be taken as stationary. In other words, under the
constant discount factor assumption, ft in (13) is less persistent than Ft. Therefore, we
focus on pt − dt for subsequent discussions on bubble identification. Nevertheless, when
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the discount factor is allowed to be time-varying, the fundamental of pt − dt in (14) is also
related to returns of a baseline asset, which may well not be stationary. In fact, most time
series of real interest rates are either highly persistent or fractionally integrated, and may
be considered nonstationary (Rose, 1988; Mishkin, 1995; Rapach and Weber, 2004; Sun
and Phillips, 2004; Phillips, 2005) .

3.2 Strategy II: Decomposition

To control the impact of market fundamentals on tests designed to detect explosive root
behavior in time series such as pt − dt, Shi (2017) proposed to remove the residual noise
element by decomposing the observed series pt−dt into fundamental and non-fundamental
components. The explosive root tests could then be conducted directly on the empirically
estimated non-fundamental component.

Two different approaches have been suggested for performing this decomposition. Camp-
bell and Shiller (1988) introduced a structural decomposition method based on (14). The
decomposition involves three steps: (i) forecasting the future stream ∆dt+1+k − gt+1+k

using a VAR model; (ii) calibrating parameters κ, φ, and δ; and (iii) combining the results
from the first two steps in equation (14) to obtain an estimate of ft. This approach requires
asset prices and dividends or rents data to be available in their actual dollar values.

The second approach is a reduced form method proposed recently in Shi and Phillips
(2020). Working with the reduced form involves fewer steps than the structural approach,
which has the added advantage of reducing the potential impact of estimation or calibration
errors on the final outcome. Additionally, the price and dividend or rent series can be
measured in either index form or dollar values, which significantly improves the feasibility
of this approach in practice. The following discussion gives an overview of the method.

The reduced form econometric model of the key variables is assumed to have the fol-
lowing general form

yt = α+ βXt + εt, (17)

Xt = dX + ρXXt−1 + uXt (18)

where yt is the first difference of pt−dt and the regressor Xt includes payoffs of the asset, dt,
returns of a baseline asset, gt, and other relevant observable fundamentals. The regressor
Xt is k×1 and its components are assumed to have varying unknown degrees of persistence,
including I(1), near I(1), or forms of mild stationarity. A convenient way of formulating this
is to assume that the autoregressive coefficient matrix in (18) allows for such possibilities
via a general specification of the form

ρX = Ik +
CX

Tα
, (19)

where Ik is a k × k identity matrix, CX = diag(cX1, ..., cXk) with cXi ≤ 0, and α ∈ (0, 1].
The errors εt in the regression equation (17) are assumed to be generated by the following
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mechanism

εt =

q∑
i=1

ϕiεt−i + σtηt (20)

σ2t = c0 +
m∑
l=1

ωlε
2
t−l +

n∑
j=1

γjσ
2
t−j , (21)

where ηt
i.i.d∼ (0, 1), allowing for both weak dependence and conditional heteroskedasticity.

The simple case of no serial correlation and homoskedasticity is included when ϕi = ωl =
γj = 0 for all (i, l, j).

The system (17)-(18) is similar to typical predictive regression formulations. But the
present goal is to estimate the fundamental component rather than to forecast pt−dt. It is
therefore important in the formulation not to include variables that are contaminated by
speculative behavior in the regression. For example, consumer sentiment, which measures
how optimisitc or pessimistic consumers feel about the market, could be one of the driving
forces behind speculative market behavior. Further, the time-varying risk premium (i.e.,
φt+1 = rt+1 − gt+1) is a linear function of asset returns rt+1 which may itself embody
consequences of a bubble component. So, neither consumer sentiment nor time-varying risk
premia are considered for inclusion in the regression. On the other hand, the real interest
rate, which reflects borrowing costs, is believed to be a key fundamental driving factor
for asset prices, in addition to expected future payoffs. For housing markets, prices may
be related to other variables that affect housing demand (e.g., population, immigration,
employment, personal income) and housing supply (Shi, 2017). Even though most of these
variables manifest varying degrees of persistence, the specification (18)-(19) for Xt suitably
accommodates them all.

When regressors are highly persistent, it is well known that least squares estimation
leads to bias and non-standard limit theory, invalidating inference by conventional t and
Wald tests. Endogeneity is a further complication, typically arising from joint determina-
tion of yt and Xt, omitted variables, or errors in variables. Various methods have been
proposed to address these problems but most of these are practical only in the case of a
scalar Xt, which is unrealistic in most applications. One method that addresses all of these
complications is the IVX instrumental variable estimation method, proposed in Phillips
and Magdalinos (2009). This method has many advantages, a particularly important one
in many applications being its use of endogenous instruments, which avoids the need to find
external instruments that satisfy suitable orthogonality and relevance conditions. Kostakis
et al. (2015) extended this method to account for potential heteroskedasticity and a further
extension to deal more successfully with serially correlated errors than the original IVX
method was given by Yang et al. (2020).

The basic idea of the IVX method is to construct instrumental variables from Xt that
are less persistent than Xt when Xt is highly persistent. For completeness, details of the
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IVX estimation method and the internal instrument construction process are provided in
Appendix A. The following discussion shows how the method is implemented in the present
context.

Let α̂ and β̂ be the IVX estimates of α and β in (17) and the corresponding fitted
regression equation be

ŷt = α̂+ β̂Xt−1,

so that ŷt is the regression estimate of yt, the first difference of pt − dt. Using this re-
gression equation, the estimated market fundamental component, f̂t, and estimated non-
fundamental component, êt, are obtained as follows

f̂t = f̂1 +
t∑

i=2

ŷt and êt = pt − dt − f̂t (22)

so that f̂t is a partial sum of the regression fitted values ŷt taken from the initialization
f̂1 = p1 − d1, thereby providing an estimate of the fundamental component of pt − dt.
The residual component êt = pt − dt − f̂t therefore contains estimation errors as well
as components that cannot be explained by the fundamentals. The residuals êt can be
expected to mirror explosive behavior in the bubble component of pt − dt when bubbles
are present in the data. Having removed the fundamental component f̂t from pt − dt, the
residual term êt should be less contaminated by noise from fundamentals and serve as a
better proxy for the bubble component.

4 The PSY Explosive Root Test

The overarching goal of bubble identification procedures is to detect the presence of spec-
ulative behavior in each period using only historical data. The PSY explosive root test is
applied to historical data xt, where xt constitutes different time series data depending on
the particular bubble identification strategy. For the two strategies considered above we
have

xt =

{
pt − dt Strategy I
êt Strategy II

.

The null hypothesis is that there is no bubble present in period t and the alternative
hypothesis is that observation t carries a speculative bubble component. Since xt is at
most I(1) in the absence of bubbles, the null hypothesis can be translated into a unit root
model given by the equation

H0 : xt = cT + xt−1 + ut, (23)

where the intercept satisfies cT = c0T
−γ for some constant c0, with power coefficient

γ > 1/2, and T being the total number of observations. The setting γ > 1/2 ensures that
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the drift induced by the intercept cT is asymptotically negligible as T → ∞.1 See Phillips
et al. (2014) for more discussion.

Under the alternative, xt is driven by a bubble mechanism and follows a mildly explosive
process (Phillips and Magdalinos, 2007) such that

HA : xt = δTxt−1 + ut with δT = 1 + cT−α, (24)

where c > 0 and α ∈ (0, 1). Detecting the presence of a bubble component in the generating
mechanism at period t is therefore equivalent to distinguishing a martingale process (23)
(possibly with negligible drift) from a mildly explosive process (24) at a specific data point.

4.1 The PWY Data Generating Process

Blanchard and Watson (1982) and Evans (1991) used stochastic mechanisms for bubble
generation in which bubbles are turned on and off according to a certain probabilistic
rule (i.e., equations (15) and (16)). Alternative methods, like the reduced form methods
considered earlier, involve direct empirical specifications with deterministic break dates that
can be estimated econometrically. Several methods of this type have been considered in the
literature and employed for the econometric analysis of bubble origination and termination
dates (Phillips et al., 2011; Phillips and Yu, 2009; Phillips et al., 2015b,c; Phillips and Shi,
2018).

The data generating process proposed by Phillips et al. (2011) is for xt and takes the
form

xt =


xt−1 + εt t ∈ [1, te) ∪ [tc + 1, T ]
δTxt−1 + εt t ∈ [te, tc − 1]
X∗

Tc
t = tc

, (25)

where εt
i.i.d∼

(
0, σ2

)
, te is the bubble origination date, tc is the date of bubble collapse, and

δT is specified as in (24). The variable xt follows a unit root process in the normal market
regimes t ∈ [1, te) ∪ [tc + 1, T ] and is mildly explosive with autoregressive coefficient δT in
the bubble expansion regime t ∈ [te, tc − 1]. The rate of bubble expansion is controlled by
magnitude of the power parameter α and that of the localizing coefficient c > 0.2 When
the bubble episode collapses it does so in a single period and adjusts to the level around
that of the bubble origination level with a small perturbation, i.e., X∗

tc = Xte +Op (1).
This data generating process can be generalized to allow for multiple bubbles as in

Phillips et al. (2015b,c) and to include a small drift in the normal regime or allow for various

1Suppose the T equidistant observations span over N years in total. The distance between two observa-
tions is ∆, taking values ∆ = {1/256, 1/52, 1/12}, respectively, for daily, weekly, and monthly observations.
We have T = N/∆ and cT = c0N

−γ∆γ . In finite samples, the magnitude of the drift depends on the sam-
pling frequency ∆. Suppose the time period N is fixed. The higher the sampling frequency (or equivalently
the smaller the value of ∆), the smaller the drift value cT .

2Smaller α and larger c lead to greater values of the autoregressive coefficient δT > 1 and hence stronger
explosive behavior.
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rates of bubble collapse as in Phillips and Shi (2018). Figure 1 displays a typical realization
of the data generating process (25). The parameter settings are: x0 = 100, c = 1, σ = 6.79,
α = 0.6, te = ⌊0.4T ⌋, tc = ⌊0.6T ⌋, and T = 120, as in Phillips et al. (2015b), where the
floor function ⌊.⌋ delivers the integer part of the argument. As is apparent from the
trajectory shown, when the bubble process begins there is little indication of any change
in its character or the generating mechanism. But this quickly changes as the bubble takes
hold and the explosive behavior becomes manifest. The abrupt collapse at the termination
of the bubble is the consequence of the single period transition to the region of the process
at the point of bubble origination.

Figure 1: A typical realization of the data generating process (25) proposed in Phillips
et al. (2011). The two vertical lines indicate the locations of the bubble origination and
bubble termination dates.

4.2 The PSY Recursive Evolving Algorithm

Policy makers, regulators, financial institutions and individual investors are all intensely
interested in learning whether market conditions have changed from normal to abnormal
behavior. From an econometric perspective, this interest translates into learning from
the data whether observations of xs are generated by a martingale process under normal
efficient market conditions as in (23) or whether speculative behavior has overtaken the
market with a mildly explosive dynamic as in (24). The recursive algorithms suggested
in Phillips et al. (2011, 2015b,c) deliver test procedures that provide a mechanism for
answering this important question of whether a subtle change has occurred in the generating
process that may ultimately lead to significant changes in market behavior that carry
attendant risks of market re-adjustment or collapse.
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The PSY procedure employes an evolving recursion to compute the test statistic. The
recursion starts by generating a sequence of augmented Dickey-Fuller (ADF) statistics from
subsamples of the data. Let t1 and t2 be the starting and ending dates of a subsample such
that t2 > t1 ≥ 1 giving a window size tw = t2 − t1 + 1 ≥ tmin, where tmin is the minimum
window size required to run the regression. The fitted ADF regression equation is

∆xt = β̂0 + β̂1xt−1 +

K∑
j=1

ψ̂j∆xt−i + ε̂t, (26)

where t runs from t1 to t2, K is the lag order, and ε̂t is the residual. The regression is fitted
by ordinary least squares. The t-statistic for the significance of β̂1 is referred to as the ADF
statistic and is denoted ADFt1,t2 . This statistic is computed in an evolving fashion over
the data from varying points of initialization.

The goal in this evolving recursion is to determine whether the data generating process
has a bubble component. As attention moves through the sample observations, suppose
the current observation of interest is s. In this evolving recursion, the end dates of all
the subsamples are fixed on the observation of interest (in this case t2 = s), whereas the
starting date varies from the first observation to s − tmin + 1. Consider, for example, the
sample path displayed in Figure 1 and suppose s = 60. The recursive algorithm together
with its attendant calculations are illustrated in Figure 2. The PSY test statistic, denoted
by PSYs (tmin), is computed as the extremum of the individual ADF statistics ADFt1,t2 ,
viz.,

PSYs (tmin) = max
t2=s,

t1∈[1,s−tmin+1]

{ADFt1,t2} .

Let cvs (βT ) be the 100βT% critical value of the PSYs (tmin) statistic.3 The null hy-
pothesis is rejected and observation s is taken as driven by a speculative bubble if the
critical value is exceeded, that is if

PSYs (tmin) > cvs (βT ) .

Otherwise, we conclude that the null is not rejected and there is no bubble component
in the data at period s. The feasible range for s runs from tmin to T , the lower point of
the range tmin being determined by the requirement of a minimum window size for the
ADF regressions. The first chronological observation at which the PSY statistic exceeds
the critical value is taken as the estimated bubble origination date, so that

t̂e = inf
s∈[tmin,T ]

{PSYs (tmin) > cvs (βT )} .

3Critical values of the PSY statistic are computed numerically by simulation, evolve according to the
position of the time period s, and depend on the setting of the minimum window size tmin. For ease of
notation they are written here as cvs (βT ), although cvs (βT , tmin) would be more precise.
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Figure 2: The recursive evolving algorithm: t2 = s and t1 ∈ [1, s− tmin + 1].

In similar fashion, the termination date of the bubble is estimated by the first chronological
observation after t̂e that falls below its corresponding critical value, i.e.,

t̂c = inf
s∈[t̂e,T ]

{PSYs (tmin) < cvs (βT )} .

The nuisance parameter tmin is usually set according to the rule recommended in Phillips

et al. (2015b) on the basis of extensive simulations, viz., tmin =
⌊
0.01T + 1.8

√
T
⌋
.

4.3 Asymptotic Theory

The properties of the evolving recursion are analyzed in Phillips et al. (2015b,c) under both
the null and alternative hypotheses using asymptotic theory as the sample size T → ∞ and
finite sample simulations. This section reviews the limit properties of the PSY procedure
and the dating estimators that emerge from it. We use the notation ⇒ to signify weak
convergence, := to represent definitional equivalence, ∼a to indicate distributional equiva-
lence, →p to represent convergence in probability, and τ to denote fractional observations
(i.e., τ1 = t1/T , τ2 = t2/T , τw = tw/T , τmin = tmin/T , τ = s/T , τe = te/T , and τc = tc/T ).

The error term ut inH0 may be weakly dependent and is assumed to satisfy the following
linear process conditions to facilitate the development of the asymptotics (Phillips and Solo,
1992).

Assumption 4.1 Let ut = ψ (L) εt =
∑∞

j=0 ψjεt−j, where L is the lag operator, the
summability condition

∑∞
j=0 j |ψj | < ∞ holds and {εt} is an i.i.d. sequence with zero

mean, variance σ2, and E |εt|4+δ <∞ for some δ > 0.
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Under the null hypothesis of (23) and Assumption 4.1, Phillips et al. (2015b) show that

ADFt1,t2 ⇒
1
2τw

[
W (τ2)

2 −W (τ1)
2 − τw

]
−
∫ τ2
τ1
W (r) dr [W (τ2)−W (τ1)]

τ
1/2
w

{
τw
∫ τ2
τ1
W (r)2 dr −

[∫ τ2
τ1
W (r) dr

]2}1/2
:= Υτ1,τ2 ,

where W (.) is a standard Wiener process. By virtue of continuous mapping arguments,
the PSY statistic is found to have the following pivotal asymptotic distribution (Phillips
et al., 2015b):

PSYs (tmin) ⇒ sup
τ2=τ,

τ1∈[0,τ2−τmin]


1
2τw

[
W (τ2)

2 −W (τ1)
2 − τw

]
−
∫ τ2
τ1
W (r) dr [W (τ2)−W (τ1)]

τ
1/2
w

{
τw
∫ τ2
τ1
W (r)2 dr −

[∫ τ2
τ1
W (r) dr

]2}1/2


:= Υτ (τmin) .

The asymptotic 100βT% critical value of PSYs (tmin) is taken as the 100(1−βT )th percentile
of the distribution Υτ (τmin).

Next, we review limiting properties of the PSY statistic under the data generating
process (25), which has a single bubble episode. For ease of notation, we refer to the two
normal periods (i.e., [1, te) and [tc + 1, T ]) as N0 and N1 and the bubble period [te, tc − 1]
as B. The asymptotic properties of ADFt1,t2 depend on the location of the subsample.
There are four possible scenarios:

(1) t1 ∈ N0 and t2 ∈ N0,

(2) t1 ∈ N0 and t2 ∈ B,

(3) t1 ∈ N0 and t2 ∈ C,

(4) t1 ∈ N0 and t2 ∈ N1.

Except for the first episode N0, all the other cases involve structural breaks. For case (2)
the subsample begins in the normal regime N0 with a structural break introducing the
bubble component to the data generating mechanism and the bubble regime B ends just
before the collapse period (3). In regime B the regression is dominated by bubble dynamics
with a mildly explosive autoregression. In this regime, rather than converging to a random
variable as in case (1), the ADF statistic diverges to positive infinity at rate Op

(
T 1−α/2

)
.

For cases (3) and (4), the sample period includes both expansion and collapse stages of the
bubble. The initial strong reverting autoregressive pattern within the subsample causes
the ADF statistic to diverge to negative infinity at rate Op

(
T (1−α)/2

)
, which signals the
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collapse regime C. More specifically, Phillips et al. (2015c) show that under the DPG (25),

ADFt1,t2 ∼a



Υτ1,τ2 t1 ∈ N0 and t2 ∈ N0

T 1−α/2 τ
3/2
w√

2(τe−τ1)
→ +∞ t1 ∈ N0 and t2 ∈ B

−T (1−α)/2
√

1
2cτw → −∞ t1 ∈ N0 and t2 ∈ C

−T (1−α)/2
√

1
2cτw → −∞ t1 ∈ N0 and t2 ∈ N1

. (27)

By continuous mapping arguments the asymptotic behavior of the PSY statistic in the
various locations is given by

PSYs (tmin) ∼a



Υτ (τmin) s ∈ N0

T 1−α/2 supτ1∈[0,τ−τmin]

{
(τ−τ1)

3/2

√
2(τe−τ1)

}
→ +∞ s ∈ B

−T (1−α)/2
(
cτ
2

)1/2 → −∞ s ∈ C

−T (1−α)/2
(
cτ
2

)1/2 → −∞ s ∈ N1

.

The PSY statistic is asymptotically equivalent to a random variable (i.e., Op(1)) when the
observation of interest s falls in the normal regime N0. It diverges to positive infinity at
rate Op(T

1−α/2) when s is in the bubble regime and diverges to negative infinity when s
falls in regimes C and N1.

Consistency of the bubble origination and termination date estimators, viz., t̂e/T →p τe
and t̂c/T →p τc, follows under the following simple condition on the respective expansion
rate of the critical value cvτ (βT ) and the power coefficient α that controls the mildly
explosive rate in the bubble regime

1

cvτ (βT )
+
cvτ (βT )

T 1−α/2
→ 0.

We assume that βT → 0 and hence cvτ (βT ) → ∞ as T → ∞, to eliminate Type I errors
asymptotically, and the second condition requires the rate of divergence to be slower than
Op

(
T 1−α/2

)
.

Readers are referred to Phillips et al. (2015b,c,a) for proofs of these asymptotic results,
generalizations that include multiple bubble episodes, and further discussion, including
extensive simulation findings of the properties of these procedures in finite samples. Phillips
and Shi (2018) provide further asymptotic results under DGPs with various rates of bubble
collapse and Chen et al. (2020) give an extension in which the DGP includes multiple assets
in which the dynamics are driven by common factors and the asymptotic performance of
the PSY procedure in detecting a common factor bubble is analyzed.

5 The Multiplicity Issue

In all hypothesis testing the prospect of making a false decision is always present with
non-zero probabilities of a false positive (a Type I error controlled by size) and a false
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negative (a Type II error of failing to reject the null, determined by test power). The
basic principle underlying Neyman-Pearson testing is to cap size (i.e., control size to some
preassigned level β, say) and use a test that maximizes power against the alternative of
interest. The multiplicity issue is concerned with the failure to cap size at the required
level when performing multiple hypothesis tests. This problem is universal when repeated
testing occurs, as in recursive test procedures. In the content of bubble identification, it
refers to the situation where a speculative bubble is falsely identified in repeated testing
of the same null hypothesis. For each hypothesis test, suppose the probability of making
a Type I error is βT which is often set to be 5% and referred to as the ‘nominal size’.
Dependence of the size on the sample size T is often convenient for asymptotic theory
to ensure test consistency, as seen above. The multiplicity issue arises when the test is
implemented many times, as it is when the test is employed recursively over subsets of the
sample observations. The presence of Type I error distortion among a large number of
such tests is almost guaranteed unless corrective measures are taken.

Suppose a real-time analysis is conducted on a sample containing T observations with
the PSY procedure. The PSY statistic is computed for each observation running from tmin

to T and inferences of bubble existence are drawn for each of the T − tmin + 1 individual
observations. The probability of making a false positive conclusion for each test may be
set to 5%. But collectively the probability of making at least one false positive conclusion
among the T − tmin + 1 tests (a.k.a, the family wise error rate, FWER) is close to 100%
if the number of tests is large. Such ‘false discovery’ can grossly distort inference and
potentially mislead investors and policymakers. It is therefore important to address the
issue.

5.1 Multiple Testing Algorithm

The goal in dealing with multiplicity is to quantify the degree of Type I error accumulation
that arises when many hypothesis tests are performed and with this information control size
by suitable adjustment. Suppose the window width used in multiple testing for the presence
of a bubble is Tw. The focus in controlling multiplicity is then on samples that are of the
effective size Tw. We propose the following procedure for simulating finite sample critical
values to employ in multiple testing. The approach is in the same spirit as bootstrapping
methods that have been developed to address data mining and multiplicity in recursive
testing (White, 2000; Shi et al., 2020; Shi and Phillips, 2020). Let T ∗ = tmin + Tw − 1.

� Step 1: generate a sample path with T ∗ observations from the model

x
(m)
t = xt−1 + εt.

� Step 2: compute the PSY statistic sequence
{
PSY

(m)
s (tmin)

}T ∗

s=tmin

from the simu-

lated data series.
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� Step 3: compute

MPSY (m) = max
s∈[tmin,T ∗]

{
PSY (m)

s (tmin)
}
.

� Step 4: repeat Step 1-3 M∗ times.

� Step 5: take the 95th percentile of
{
MPSY (m)

}M∗

m=1
as the critical value of the PSY

test, denoted by cv∗ (0.05).

There are two differences between the standard procedure for simulating finite sample
critical values and the algorithm proposed above. First, in Step 1 instead of generating
T observations as in the standard procedure T ∗ observations are generated so that the
resulting PSY statistic sequence from the simulated data is of the correct dimension Tw.
Second, in Step 5 the 95th percentile is taken from the distribution of MPSY (m) instead

of PSY
(m)
s for each s ∈ [tmin, T ] as in the standard procedure. This step ensures that

the false rejection probability for the observation with the largest PSY statistic within the
control window is 5%.

5.2 Simulations

We compare the family wise error rate of the PSY test with the standard and the multiple
testing procedures, labelled respectively as ‘PSY (standard)’ and ‘PSY (multiple)’, for
computing critical values. The minimum window size of the PSY procedure is set according
the rule of Phillips et al. (2015b) and the lag order K of the ADF model is set to one.
The data are generated under the null hypothesis (23) over a 10-year period with sampling
frequencies of quarterly, monthly, and weekly (i.e., T = {40, 120, 520}). For each parameter
constellation, the simulation is repeated M = 2, 000 times.

Let I
(m)
s be the bubble indicator for observation s from the mth simulated data series,

taking value one when PSY
(m)
s is above the critical value and zero otherwise. The family

wise error rate is defined as

FWER =
1

M

M∑
m=1

1

(
T∑

s=tmin

I(m)
s > 0

)
,

where 1 (.) is an indication function taking value one when the condition is satisfied and
zero otherwise.

Table 1 shows the family wise error rates of the ‘PSY (standard)’ and ‘PSY (multiple)’
tests. For the PSY (multiple), the FWER is controlled within the whole sample period
(Tw = T ). Evidently, with the use of standard critical values, the FWER is lowest when
T = 40 but still badly distorted at 55%, and then rises rapidly to 93% when T increases to
520. In sharp contrast, the FWER of the multiple testing procedure is stable around 5%
under all settings.
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Table 1: The family wise error rates of the PSY procedure

FWER / Sample Size Quarterly Monthly Weekly
T = 40 T = 120 T = 520

PSY (standard) 0.55 0.78 0.93
PSY (multiple) 0.04 0.06 0.05

It is important to recognize that there is a trade-off between the use of FWER and Type
II errors. Fewer Type I errors typically result in more Type II errors, meaning that there
is greater chance of failure to identify small bubbles or to detect a bubble at its later stage
of development. To examine the performance of the PSY procedure under the alternative,
we consider the bubble generating process (25). Parameters are set as in Figure 1. It is
standard in the literature to report the power of a test, which is the probability of rejecting
the null hypothesis when it is false. This is equivalent to the FWER in multiple testing
but the computation is made under the alternative. However, the power statistic does not
reveal the estimation accuracy of bubble locations and does not preclude Type I errors. An
important example of the latter is the inconsistency that arises when the test falsely rejects
the null for observation t ∈ [1, te − 1] but fails to detect bubbles in [te, tc − 1]. Although
this is an undesirable scenario, it would still be counted towards test power. We therefore
use two alternative measures to measure success under the alternative: (i) the successful
detection rate (SDR); and (ii) the averaged delays in the estimated bubble origination and
collapse dates.

The SDR measures the probability of the estimated bubble origination date falling
between the true start and collapse dates, given by

SDR =
1

M

M∑
m=1

1
(
te ≤ t̂(m)

e ≤ tc

)
.

Averaged delay in dating the bubble is computed by the following two measures, one for
origination and one for collapse

1

M

M∑
m=1

(t̂(m)
e − te) and

1

M

M∑
m=1

(t̂(m)
c − tc).

Evidently, the control of Type I errors comes at a cost. From Table 2, the succesful
detection rate of PSY (multiple) is lower (75% versus 84%) and the bias in the estimated
bubble origination date is larger (12.20 months versus 7.56 months), although there is
a slight improvement in the identification accuracy of the bubble termination date. In
practice, one could take an intermediate position between the two procedures, depending
on the purpose and subject to individual preferences. That is, instead of controlling the
Type I error over the entire 10-year’s period, it may be more realistic and useful to manage
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Table 2: The successful detection rates and the biases of the estimated bubble origination
and collasping dates. Numbers in the parenthes are standard deviations.

T = 120 SDR 1
M

∑M
m=1(t̂

(m)
e − te)

1
M

∑M
m=1(t̂

(m)
c − tc)

PSY (standard) 0.84 7.56 (4.99) 0.79 (1.72)
PSY (multiple) 0.75 12.20 (5.33) 0.77 (1.71)

it over a smaller window, e.g., 1 year, 2 years, or 5 years. As such, one would expect a
smaller delay should there be a bubble within the window. This approach to testing and
estimation is analogous to using a loss function that takes size and power into account,
rather than strictly following the principle of capping size.

The performance of the multiple testing procedure under alternative settings of Tw is
investigated in Table 3. The data generating processes is the same as before. In addition
to FWER, we report the average numbers of rejections (ANR) under the null, i.e.,

ANR =
1

M

M∑
m=1

T∑
s=tmin

I(m)
s ,

which complements the FWER rate as a measure for Type I errors. The performance of
the test under the alternative is again evaluated by SDR and by the average delays in
identifying bubble start and collapse dates.

Although the FWER remains sizeable (44%) when the control window is one year, by
comparison with the 78% of the standard procedure (Table 1), it is already a dramatic
improvement. The average number of false rejections within each sample path is 1.67, with
a standard deviation of 3.26. On the other hand, we observe a slight deterioration in the
bubble identification accuracy. The average delay in identifying the bubble origination date
is slightly longer (8.76 observations), while the SDR is the same as that of the standard
procedure (84%). As the control window Tw increases from 1 year to 5 years, the family-wise
error rate declines from 44% to 10%, and the average number of false rejections decreases
from 1.67 to 0.22. Meanwhile, the successful detection rate reduces to 77%, and the delay
in identifying bubble origination increases to 11.53 months. We do not observe obvious
changes in the estimation accuracy of the bubble termination date.

In practice, the choice of the control window Tw is subjective. The selection of a larger
control window results in more conservative testing with a lower possibility of making false-
positive conclusions. In contrast, a small control window enables a higher probability of
detecting the presence of a bubble as well as earlier detection.

6 Empirical Application: S&P 500 Stock Market

As an illustration, we conduct a pseudo real-time analysis monitoring for a bubble in
the S&P 500 stock market at the monthly frequency, starting from January 1990 and
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Table 3: The finite sample performance of the PSY test with the multiple testing procedure
for critical values. The control window Tw is set to be 1 year, 2 years, and 5 years. The
sample size T = 120. Numbers in the parentheses are standard deviations.

T = 120 Null Alternative

FWER # of Rejections SDR 1
M

∑M
m=1(t̂

(m)
e − te)

1
M

∑M
m=1(t̂

(m)
c − tc)

Tw: 1 years 0.44 1.67 (3.26) 0.84 8.76 (5.21) 0.85 (1.32)
Tw: 2 years 0.22 0.57 (1.53) 0.80 10.44 (5.37) 0.78 (1.71)
Tw: 5 years 0.10 0.22 (0.84) 0.77 11.53 (5.33) 0.84 (1.36)

terminating in June 2020. The sample period covers the dot-com expansion in the late 1990s
and the 2007-2009 subprime mortgage crisis period. Figure 3 displays the logarithmic price-
dividend ratios of the S&P 500 composite index. The price and dividend series are obtained
from Robert Shiller’s website.4 The data series experienced a decade-long expansion at the
beginning of the sample period and peaked in March 2000. The expansion is followed by
a market downturn that leads to a reversion to the market’s 1997 level in 2003. The data
exhibit a V-shape dynamic around the subprime mortgage crisis period.

Figure 3: The log price-dividend ratios of the S&P 500 composite index and the estimated
residual component from January 1990 to June 2020.

We apply the two bubble identification strategies detailed in Section 3 to the market.
The first strategy is to apply the PSY explosive root test to the log price-dividend ratios.
The second is to estimate the fundamental component of the log price-dividend ratios and
apply the PSY test to the non-fundamental/residual component. The decomposition is

4See http://www.econ.yale.edu/~shiller/data.htm.
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based on equations (17)-(18), where yt is the first difference of pt − dt and Xt includes
real dividends and 3-month treasury bill rates. The real dividend series is from Robert
Shiller’s website and 3-month treasury bill rates are from the FRED database.5 The re-
gression model is estimated using IVX detailed in Appendix A. The estimated fundamental
component is plotted along with the log price-dividend ratios in Figure 3. We observe a
general upward trend in the data series. The residual component is computed as the differ-
ence between the log price-dividend ratios and the estimated fundamentals and captures
fluctuations around the trend.

For the PSY procedure, the minimum window contains 38 observations, which is set
according to the rule of tmin = 0.01T + 1.8

√
T . Monitoring starts from February 1993

onwards. Critical values are obtained from the standard procedure in the first row of
Figure 4 and the multiple testing procedure in the second and third rows, with the control
window being two years and five years respectively (i.e., Tw = {24, 60}). The black lines
are the xt series, and the green shaded areas are periods when the PSY statistic exceeds
its critical value. The bubble signal is switched on for two sample periods: the late 1990s
and 2008-2009. While the first episode is associated with upward expansion of the market,
the second episode overlaps with a market plunge. When using the PSY (standard) test on
the residuals, this test also identifies a market downturn between 2002-2003. Although the
PSY test was initially designed for identifying explosive bubbles, Phillips and Shi (2019)
show that this procedure can also detect crises. For analysis and further detail on crisis
identification readers may refer to Phillips and Shi (2019).

Some further comments are worth mentioning regarding the dot-com bubble episode.
First, the identified origination (respectively, termination) date is earlier (later) when the
multiplicity issue is not accounted for or when the control window Tw is smaller. This
result is consistent with the simulation findings in Section 5, where both the family-wise
error rate and the successful detection rate are higher with PSY (standard) or when PSY
(multiple) is used with a smaller control window. Second, the identified bubble period
is shorter when we control for the impact of market fundamentals using the approach of
Shi and Phillips (2020). It suggests that the expansion was first driven by fundamentals
followed by speculative sentiment and investment in 1997-1998, in a similar way to the
behavioral model of Phillips (2016). Third, the multiple testing procedure indicates that
the bubble signal switched off almost two years before the market reached its peak. This
finding is coherent with results in Laurent and Shi (2020) and has potent implications for
investors who aim to withdraw investments in anticipation of a market collapse.

7 Conclusion

In the presence of a financial bubble asset prices may be written as the sum of two comp-
nents, one determined by economic fundamentals and the other following an explosive

5see https://fred.stlouisfed.org/.
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Figure 4: The PSY explosive root tests. The black lines are the log price-dividend ratios
in the first column and the estimated non-fundamental components in the second column.
The green shaded areas are periods when the PSY statistic is larger than its critical value.

(a) Log price-dividend ratio: PSY (standard)
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(b) Residual: PSY (standard)
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(c) Log price-dividend ratio: PSY (multiple) Tw = 24
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(d) Residual: PSY (multiple) Tw = 24
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(e) Log price-dividend ratio: PSY (multiple) Tw = 60
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(f) Residual: PSY (multiple) Tw = 60
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dynamic that constitutes a bubble. The common strategy for bubble identification in em-
pirical work is to apply explosive autoregressive root tests to proxies for the unobserved
bubble. In practice proxies are typically constructed by using asset prices themselves or
by standardizing prices in some way (e.g., by taking ratios) using observed fundamentals
that are considered relevant to the asset. This paper outlines an alternative approach that
provides a theoretical framework for the construction of a bubble series that is simple to
use and general enough to apply in the case of many different assets.

The two most commonly used proxies for bubbles are real prices and log price-payoff
ratios. During a speculative bubble, both asset prices and log price-payoff ratios are explo-
sive because the dynamics of the bubble component dominate the observed data. Market
fundamentals are typically near integrated time series, so these proxies of the bubble com-
ponent are therefore contaminated by highly persistent series, a feature that inevitably
influences the sensitivity and performance of explosive root tests.

A new strategy in the literature is to estimate the fundamental component itself and
remove it from the proxy variable before applying explosive root tests. The additional step
in this strategy helps to reduce the persistent noise element in the proxy and enable more
accurate bubble identification. This approach has led to new bubble test results in several
housing markets but has yet to be applied to equities. The present chapter overviews
the fundamental-bubble decomposition approach proposed by Shi and Phillips (2020) and
provides an empirical application of the bubble identification strategy to the S&P 500 stock
market.

Explosive autoregressive root tests play a crucial role in bubble identification. This
chapter reviews the popular PSY real-time explosive root test strategy. The PSY ap-
proach aims to detect explosive dynamics, accounting for their nonlinearity and using this
characteristic to provide a consistent real-time dating strategy. The procedure employs a
recursive evolving algorithm that has been shown to outperform other methods. Neverthe-
less, recursive testing of the type employed by PSY inevitably faces multiplicity problems
with size control. These issues are discussed and illustrated by simulations.

To address multiplicity the chapter provides a multiple-testing algorithm to generate
critical values for the PSY test that are designed to control family-wise size. Simulation
results show that the standard PSY procedure can have extremely high family-wise error
rates, whereas the new procedure PSY (multiple) has good size control and satisfactory
performance overall in detection rates under bubble alternatives. An empirical application
to the S&P500 stock market reveals the importance of controlling for market fundamentals
and addressing the multiplicity issue in testing for bubble behavior in equity markets.
In particular, controlling for the impact of market fundamentals leads to a shorter Dot-
Com bubble period in the 1990s and suggests that the expansive phase was first driven
by fundamentals that then led to speculative behavior. Attention to the consequences of
multiple testing produced a further material change in existing findings on the Dot-Com
bubble by switching off the bubble signal in the data sometime before the market peak.
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Appendix A: IVX Estimation

The IVX method was proposed by Phillips and Magdalinos (2009), extended to allow for
heteroskedastic errors in Kostakis et al. (2015) and subsequently with Cochrane-Orcutt
type parametric adjustments for serial correlation in Yang et al. (2020). In what follows
we outline the IVX-AR method of Yang et al. (2020).

Define the transformed dependent and explanatory variables as yϕ,t = yt−
∑q

j=1 ϕjyt−j

and Xϕ,t = Xt−
∑q

j=1 ϕjXt−j , where ϕ = (ϕ1, . . . , ϕq) and {ϕi} are the coefficients in (20).
Rewrite the regression equation (17) as

yϕ,t = αϕ + βXϕ,t−1 + ηt

where αϕ = α
(
1−

∑q
j=1 ϕj

)
. The IVX estimation method uses instrumental variables

zϕ,t constructed from the predictors Xϕ,t as follows:

zϕ,t =
t∑

j=1

ρt−j
z ∆Xϕ,j with ρz = Ik +

Cz

T β
for some Cz and β ∈ (0, 1) ,

where t = 2, . . . , T , zϕ,1 = 0, k is the dimension of Xt, and Ik is the k × k identity matrix.
When the Xt are unit root or near unit root processes, the instrumental variables zϕ,t are
less persistent than Xt because the autoregressive coefficient matrix ρz generates mildly
integrated time series from ∆Xϕ,t. The IVX parameters are set to Cz = −Ik and β = 0.95,
folliwing the recommendation of Kostakis et al. (2015).

Let Y ϕ =
(
y
ϕ,1
, . . . , y

ϕ,T

)′
T×1

, Xϕ =
(
xϕ,1, . . . , xϕ,T

)′
T×k

, and Zϕ = (zϕ,1, . . . , zϕ,T )
′
T×k,

where y
ϕ,t

= yϕ,t − 1
T

∑T
t=1 yϕ,t and Xϕ,t = Xϕ,t − 1

T

∑T
t=1Xϕ,t denote the demeaned series

of yϕ,t and Xϕ,t. The IVX-AR estimation method is implemented as follows.

Step 1: Compute the IVX estimator with a given ϕ ∈
[
ϕ, ϕ

]
,

β̂(ϕ) = Y ′
ϕZϕ

(
X ′

ϕZϕ

)−1

and obtain the residuals η̂ϕ,t = y
ϕ,t

− β̂(ϕ)Xϕ,t.
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Step 2: Find the optimal moving average coefficients ϕ∗ by minimizing the sum of squared
residuals

ϕ∗ = argmin
ϕ

(
T∑
t=1

η̂2ϕ,t

)
.

Step 3: Compute the IVX-AR estimator β̂IV X with ϕ∗ as

β̂IV X = Y ′
ϕ∗Zϕ∗

(
X ′

ϕ∗Zϕ∗
)−1

,

and the corresponding fitted intercept α̂IV X = ȳ − β̂IV XX̄ with ȳ and X̄ being the
sample means of yt and Xt.

The asymptotic and finite sample properties of the IVX-AR method are explored in
Yang et al. (2020). This method has all the advantages of the usual IVX method, in-
cluding endogenous instrumentation and valid asymptotic inference, for use in the reduced
form regression (17) for the determination of fundamentals via predictive regression. These
advantages are coupled with anticipated improvements in the method’s finite sample prop-
erties over standard IVX arising from the AR transform of the system in the presence
of serially correlated errors, which help to capture in the equation’s fitted values the es-
sential characteristics of innovations in fundamentally driven prices. Construction of the
fundamentals time series then proceeds as in (22) with the residuals capturing the bub-
ble component. Simulations show that this method works well in practice for testing the
presence of bubbles in asset prices.
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