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Abstract

We study the problem of selling information to a data-buyer who faces a decision problem under uncer-
tainty. We consider the classic Bayesian decision-theoretic model pioneered by Blackwell [Bla51, Bla53].
Initially, the data buyer has only partial information about the payoff-relevant state of the world. A data
seller offers additional information about the state of the world. The information is revealed through
signaling schemes, also referred to as experiments. In the single-agent setting, any mechanism can be
represented as a menu of experiments. A recent paper by Bergemann et al. [BBS18] present a complete
characterization of the revenue-optimal mechanism in a binary state and binary action environment. By
contrast, no characterization is known for the case with more actions. In this paper, we consider more
general environments and study arguably the simplest mechanism, which only sells the fully informative
experiment. In the environment with binary state and m ≥ 3 actions, we provide an O(m)-approximation
to the optimal revenue by selling only the fully informative experiment and show that the approximation
ratio is tight up to an absolute constant factor. An important corollary of our lower bound is that the size
of the optimal menu must grow at least linearly in the number of available actions, so no universal upper
bound exists for the size of the optimal menu in the general single-dimensional setting. We also pro-
vide a sufficient condition under which selling only the fully informative experiment achieves the optimal
revenue.

For multi-dimensional environments, we prove that even in arguably the simplest matching utility
environment with 3 states and 3 actions, the ratio between the optimal revenue and the revenue by selling
only the fully informative experiment can grow immediately to a polynomial of the number of agent types.
Nonetheless, if the distribution is uniform, we show that selling only the fully informative experiment is
indeed the optimal mechanism.
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1 Introduction

As large amounts of data become available and can be communicated more easily and processed more ef-
fectively, information has come to play a central role for economic activity and welfare in our age. In turn,
markets for information have become more prominent and significant in terms of trading volume. Bergemann
and Bonatti [BB15] provide a recent introduction to markets for information with a particular emphasis on
data markets and data intermediation in e-commerce.

Information is a valuable commodity for any decision-makers under uncertainty. By acquiring more infor-
mation, the decision-maker can refine his initial estimates about the true state of the world and consequently
improve the expected utility of his decision. In many economically significant situations, a decision-maker
can acquire additional information from a seller who either already has the relevant information or can gener-
ate the relevant information at little or no cost. Beyond digital and financial markets, the value of information
is particularly important for health economics where it appears as the expected value of sample information,
see [ALC04] or more recently, [EGJS21] and [DR20] with applications to COVID-19 testing. The value of
additional information is also central in the literature on A/B testing, see [ADMO+20].

For the seller of information, the question is therefore how much information to sell and at what price
to sell it. A natural starting point is to make all the information available and sell the information at a price
that maximizes the revenue of the seller. The problem of selling information at an optimal price is therefore
closely related to the classic problem of the monopolist selling a single unit of an object at an optimal price.
Just as in the classic optimal monopoly problem, the seller faces a trade-off in the choice of the price. A high
price generates a high revenue for every additional sale, but there might be few buyers who value the object
higher than the price asked. A lower price generates a larger volume of sales but with low marginal revenue.
The optimal policy finds the optimal balance between the marginal revenue and the inframarginal revenue
considerations. The sale of complete information faces similar trade-offs. A high price for the complete
information will be acceptable for decision-makers with diffuse prior information, thus those who value the
additional information most, but may not be acceptable for those buyers who already have some information.

We analyze these issues in the classic Bayesian decision-theoretic model pioneered by Blackwell [Bla51,
Bla53]. Here we interpret the decision-theoretic model as one where a data buyer faces a decision problem
under uncertainty. A data seller owns a database containing information about a “state” variable that is relevant
to the buyer’s decision. Initially, the data buyer has only partial information about the state. This information
is private to the data buyer and unknown to the data seller. The precision of the buyer’s private information
determines his willingness to pay for any supplemental information. Thus, from the perspective of the data
seller, there are many possible types of data buyer.

A recent contribution by Bergemann et al. [BBS18] analyzes the optimal selling policy with the tools of
mechanism design. Their analysis is mostly focused on the canonical decision-theoretic setting with a binary
state and a binary action space. In this setting, the type space is naturally one-dimensional and given by the
prior probability of one state, the probability of the other state being simply the complementary probability.

As in [BBS18], we investigate the revenue-maximizing information policy, i.e., how much information the
data seller should provide and how she should price access to the data. In order to screen the heterogeneous
data buyer types, the seller offers a menu of information products. In the present context, these products are
statistical experiments— signals that reveal information about the payoff-relevant state. Only the information
product itself is assumed to be contractible. By contrast, payments cannot be made contingent on either
the buyer’s action or the realized state and signal. Consequently, the value of an experiment to a buyer is
determined by the buyer’s private belief and can be computed independently of the price of the experiment.
The seller’s problem is then to design and price different versions of experiments, that is, different information
products from the same underlying database.

Indeed, Bergemann et al. [BBS18] find that in the binary action and state setting it is often optimal to
simply sell the complete information to the buyers and identify the optimal monopoly price. This is for
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example the case when the distribution of the prior beliefs, the types of the buyers, is symmetric around the
uniform prior. Yet, they find that sometimes it can be beneficial to offer two information goods for sale,
one that indeed offers complete information, but also an additional one that offers only partial information.
Thus, a menu of information goods sometimes dominates the sale of a single object, namely the complete
information.

Given the proximity of the problem of selling information to the problem of selling a divisible good with
a unit capacity, the superiority of a menu over a single choice may appear to be surprising. After all, in the
single good problem, Riley and Zeckhauser [RZ83] have famously established that selling the entire unit at
an optimal price is always an optimal policy. When we consider the problem of selling information, we find
that the utility of the buyer is also linear in the posterior probability, just as it is linear in the quantity in the
aforementioned problem. Thus the emergence of a menu rather than a single item appears puzzling. The
difference is however that the utility of the buyer is only piecewise linear. In particular, in the binary state
binary action setting, it displays exactly one kink in the interior of the prior probability. The kink emerges
at an interior point of the prior belief where the decision-maker is indifferent between the two actions that
are at his disposal. This particular prior indeed identifies the type of the decision-maker who has the highest
willingness-to-pay for complete information. Moving away from this point, the utility is then linear in the
prior probability. The kink is foremost an expression of the value of information for the decision-maker. But
following the utility descent away from the kink, the value of information is decreasing linearly, and thus the
seller faces not one, but two endpoints at which the participation constraints of the buyer have to be satisfied.

Naturally, with complete information about binary states, there will be two actions, one for each state
which will lead to the highest utility of the decision-maker. Thus, we might expect that the cardinality of
the optimal menu remains at most binary when we allow the agents to have a larger choice or action set
but stay with binary state space that represents the uncertainty. In this paper we pursue this question and
find that the cardinality of the optimal menu increases at least linearly with the number of available actions.
Thus, selling information forces us to consider larger menus even when the space of uncertainty remains
binary, and thus the utility as a function of the one-dimensional prior remains piecewise linear everywhere.
Moreover, the cardinality of a set of optimal actions will always remain at two. Thus, the nature of selling
information is high-dimensional even when the underlying state and ex-post optimal action space remains bi-
nary and thus small.

The main idea behind the revenue-maximizing mechanism for the information seller is akin to offering
“damaged goods” to low-value buyers. However, when selling information goods (see [SCV+98]), product
versioning allows for richer and more profitable distortions than with physical goods. This is due to a peculiar
property of information products: Because buyers value different dimensions (i.e., information about specific
state realizations), the buyers with the lowest willingness to pay also have very specific preferences. For
example, in the context of credit markets, very aggressive lenders are interested in very negative information
only, and are willing to grant a loan otherwise. The seller can thus leverage the key insight that information is
only valuable if it changes optimal actions—to screen the buyer’s private information.

1.1 Our Results and Techniques

We first study the environment when the state is binary, investigating the ratio between the optimal revenue
(denoted as OPT) and the revenue that can be attained with the sale of complete information (denoted as
FREV). [BBS18] showed that in the environment with a binary state and a binary action space, OPT

FREV ≤ 2.
What happens when there are more actions? Since there are only two states, the agent has a single dimensional
preference. Conventional wisdom from the monopoly pricing problem suggests that the ratio should be no
more than a fixed constant. Nonetheless, in the paper we show that the ratio OPT

FREV is Θ(m), which is neither a
fixed constant nor a function that scales with the number of agent types. Here m is the number of actions.

Our first main result, Theorem 1, shows that the revenue obtainable with the sale of complete information
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is only a fraction 1/Ω(m) of the optimal revenue. Using Theorem 1 as a springboard, our second main
result, Theorem 2, shows that the cardinality of the optimal menu is at least Ω(m). The reason is that any
menu with ` experiments can obtain no more than ` times the revenue attained with the sale of complete
information (Lemma 3). To prove Theorem 1, we explicitly construct an environment with m actions, where
selling the complete information yields low revenue. However, characterizing the optimal menu appears
to be challenging for this environment, and even providing any incentive compatible mechanism with high
revenue seems to be non-trivial. We take an indirect approach by first constructing an approximately incentive
compatible mechanism that has a revenue at least Ω(m) times larger than the revenue attained with the sale
of complete information, then converting the mechanism to a menu with negligible revenue loss.

In Theorem 3, we show that selling the complete information can always obtain at least a fraction 1/O(m)
of the optimal revenue, matching the lower bound in Theorem 1 up to a constant factor. This result is estab-
lished by considering a relaxed problem for the optimal revenue maximization, where we only keep a subset
of the original incentive constraints. We show that the cardinality of the optimal menu in the relaxed problem
is alwaysO(m), thus Theorem 3 follows from Lemma 3. Note that we only show that the relaxed problem un-
der which the optimal revenue can be obtained with O(m) experiments. It remains an open question whether
the cardinality of the optimal menu in the original problem grows linearly in the number of available actions,
or perhaps exceeds linear growth in the feasible actions.

These results show that the optimal mechanism to sell information or data are likely high-dimensional
even when the underlying decision problem is low-dimensional. By tailoring the information to different
decision problems the seller can extract substantially more revenue from the decision-maker as if he were
to rely on a simple mechanism. More specifically, for any constant c > 0 and any fixed finite menu, there
exists a binary-state environment such that the revenue attained by the menu is no more than a c-fraction of
the optimal revenue (Corollary 1). Nonetheless, we provide in Theorem 4 conditions under which it is indeed
optimal to only sell the largest possible amount of information, akin to the single unit monopoly problem. In
Examples 1, 2, and 3 we apply this condition to various parametrized classes of information problems.

Our results above provide a complete understanding of OPT
FREV in the binary-state environments. What

happens if there are more than two states? In fact, we show that the ratio becomes substantially larger when the
agent has a multi-dimensional preference. We consider arguably the simplest multi-dimensional environment,
where there are 3 states and 3 actions, and the buyer receives payoff 1 if they match their action j with the
state i (j = i) and receives payoff 0 otherwise. We refer to this as the three state matching utility environment.
We show in Theorem 5 that in this multi-dimensional environment, the ratio OPT

FREV can scale polynomially
with the number of agent types N . In particular, OPT

FREV = Ω(N1/7). With Lemma 3, the result also implies
that the optimal menu contains at least Ω(N1/7) experiments. The proof is adapted from the approach in
[HN19], which was originally used in the multi-item auction problem. Their approach does not directly apply
to our problem due to both the non-linearity of the buyer’s value function and the more demanding incentive
compatibility constraints in our setting. In the proof, we construct a sequence of types placed on a sequence of
concentric thin circular sectors. [HN19] placed all types in a sequence of complete circles. We place the types
in these carefully picked circular sectors, so that the constructed mechanism satisfies the more demanding
incentive compatibility constraints. Then we construct a discrete distribution on those types, so that the ratio
OPT
FREV is large.

An alternative interpretation of the result is that: There does not exist a universal finite upper bound
on either the cardinality of the optimal menu or the ratio OPT

FREV that holds for all possible type distributions.
To complement this result, in Theorem 7, we show that in the same environment – matching utility with 3
states/actions, selling the complete information is indeed optimal if the distribution is uniform. To prove
the result, we propose another relaxation of the problem optimizing over the agent’s utility functions. We
then construct a dual problem in the form of optimal transportation [Vil09, DDT17, RC98]. To verify the
optimality of selling complete information, we construct a feasible dual that satisfies the complementary
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slackness conditions. Although Theorem 7 focuses on a special matching utility environment with 3 states,
our relaxation provides a general approach to certify the optimality of any specific menu.

1.2 Additional Related Work

Unlike selling a single unit of item, the monopolist pricing problem becomes much more involved in multi-
dimensional settings. Complete characterizations are known only in several special cases [GK14, GK15,
HH21, DDT17, FGKK16, DW17, DGS+20]. A recent line of work provides simple and approximately-
optimal mechanisms [CHK07, CHMS10, HN12, BILW14, LY13, Yao15, CDW16, CZ17, DKL20]. Our re-
sults (Theorem 1 and Theorem 3) provide matching upper and lower bounds for the performance of selling
the complete information, arguably the simplest mechanism for selling information, in single-dimensional set-
tings. In sharp contrast to the monopolist pricing problem, our Theorem 2 indicates that the optimal solution
for selling information is unlikely to be simple even in single-dimensional settings.

Our analysis considers the direct sale of information. Here contracting takes place at the ex ante stage: In
this case, the buyer purchases an information structure (i.e., a Blackwell experiment), as opposed to paying
for specific realizations of the seller’s informative signals. By contrast, Babaioff et al. [BKPL12] and Chen
et al. [CXZ20] study a model of data lists (i.e., pricing conditional on signal realizations) when buyers are
heterogeneous and privately informed. Similarly, Bergemann and Bonatti [BB15] consider the trade of infor-
mation bits (“cookies”) that are an input to a decision problem. In these models, the price paid by the buyer
depends on the realization of the seller’s information, thus it prices the information ex interim.

There are some recent works studying the revenue-optimal mechanism in different model of selling infor-
mation. Liu et al. [LSX21] characterizes the revenue-optimal mechanism when the buyer has a linear value
function on the scalar-valued state and action. A recent paper by Li [Li21] studies the case where the agent has
endogenous information, meaning that she can perform her own experiment at a certain cost after receiving
the signal. Finally, Cai and Velegkas [CV21] study the same problem as ours but focus on efficient algorithms
to compute the optimal menu for discrete type distributions. We consider general type distributions and study
the cardinality of the optimal menu as well as the performance of selling the complete information.

2 Preliminaries

Model and Notation. A data buyer (also referred to as the agent) faces a decision problem under uncertainty.
The state of the world ω is drawn from a state space Ω = {ω1, . . . , ωn}. For each i ∈ [n], we refer to state ωi
as state i for simplicity.1 The buyer chooses an action a from a finite action space A. We use m to denote the
size of A and let A = [m]. For every i ∈ [n], j ∈ [m], the buyer’s payoff for choosing action j under state i
is defined to be uij . Denote U the n×m payoff matrix that contains all uij’s. The buyer has matching utility
payoff if n = m and U is an identity matrix (uij = 1 if i = j and 0 otherwise).

The buyer has some prior information about the state of the world, which is captured by a distribution that
represents the probability that the buyer assigns to each of the states. We call this piece of prior information
the type of the buyer, denoted by θ = (θ1, . . . , θn−1), where θi represents the probability that the buyer
assigns to the state of the world ωi for each i ∈ [n − 1] (and a probability of 1 −

∑n−1
i=1 θi for state ωn).

Denote Θ = {θ = (θ1, . . . , θn−1) ∈ [0, 1]n−1 |
∑n−1

i=1 θi ≤ 1} the space of θ. When the state space is binary,
θ is a scalar in [0, 1]. For ease of notation, denote θn = 1−

∑n−1
i=1 θi throughout the paper.

The type θ is distributed according to some known probability distribution function F . We use SUPP(F ) to
denote the support of distribution F . When F is a continuous probability distribution (or discrete probability
distribution), we use f to denote its probability density function (or its probability mass function). Apart

1Throughout the paper, we denote [k] = {1, 2, ..., k} for any integer k ≥ 1.
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from the buyer, there is also a seller who observes the state of the world and is willing to sell supplemental
information to the buyer. 2 We refer to the buyer as he and to the seller as she.

Experiment. The seller provides supplemental information to the buyer via a signaling scheme which we
call experiment. A signaling scheme is a commitment to n probability distributions over a finite set of signals
S, such that when the state of the world is realized, the seller draws a signal from the corresponding distribu-
tion and sends it to the buyer. According to [BBS18], we can without loss of generality restrict our attention
to the experiments whose signal set is the same as the action space [m] (see Lemma 14 in Appendix A). One
can think of every signal j as the seller recommending the buyer to choose action j. We denote such an
experiment E by a n ×m matrix. For every i ∈ [n], j ∈ [m], the (i, j)-th entry, denoted as πij(E) or πij if
the experiment is clear from context, is the probability that experiment E sends signal j when the state of the
world is ωi. It satisfies that

∑
j∈[m] πij(E) = 1, ∀i ∈ [n].

We call an experimentE fully informative if the seller completely reveals the state of the world by sending
signals according to E. This means that for every state of the world the experiment recommends the action
that yields the highest payoff under this state, i.e. for every i ∈ [n], πij(E) = 1 if j = arg maxk uik

3 and 0
otherwise.

The Value of an Experiment. To understand the behavior of the buyer, we first explain how the buyer eval-
uates an experiment. Without receiving any additional information from the seller, the buyer’s best action is
a(θ) ∈ arg maxj∈[m]{

∑
i∈[n] θiuij}, and his maximum expected payoff is u(θ) = maxj∈[m]{

∑
i∈[n] θiuij}.

If he receives extra information from the seller, he updates his beliefs and may choose a new action that in-
duces higher expected payoff. After receiving signal k ∈ [m] from experimentE his posterior belief about the

state of the world is: Pr[ωi|k, θ] = θiπik∑
`∈[n] θ`π`k

,∀i ∈ [n]. The best action is a(k|θ) = arg maxj∈[m]

{∑
i∈[n] θiπikuij∑
i∈[n] θiπik

}
, which yields maximum expected payoff u(k|θ) = maxj∈[m]

{∑
i∈[n] θiπikuij∑
i∈[n] θiπik

}
. Taking the expectation over

the signal the buyer will receive, we define the value of the experiment E for type θ to be

Vθ(E) =
∑
k∈[m]

max
j∈[m]

∑
i∈[n]

θiπikuij


Mechanism. Any mechanism M can be described as {(E(θ), t(θ))}θ∈Θ, where E(θ) is the experiment
type θ purchases and t(θ) is the payment. The interaction between the seller and the buyer in any mechanism
works as follows:

1. The seller commits to a mechanismM = {E(θ), t(θ)}θ∈Θ.

2. The state of the world ωi (i ∈ [n]) and the type of the buyer θ are realized.

3. The buyer reports his type θ to the mechanism.

4. The seller sends the buyer a signal k ∈ [m] with probability πik(E(θ)).

5. The buyer chooses an action j ∈ [m], based on his type θ and the signal k. He receives payoff uij , and
pays t(θ) to the seller.

2It is not crucial to assume that the seller knows the state of the world, and it suffices to assume that the seller can send signals
that are correlated with the state of the world.

3We break ties lexicographically.
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In subsequent sections, sometimes we abuse the notation and denote the experiment E(θ) as M(θ). We
assume that the buyer is quasilinear, i.e. he wants to maximize his utility – the maximum expected payoff
minus the payment.

Incentive Compatibility A mechanism is Incentive Compatible (IC) if reporting his type θ truthfully max-
imizes his expected utility: Vθ(E(θ))− t(θ) ≥ Vθ(E(θ′))− t(θ′), ∀θ, θ′ ∈ Θ. For any ε > 0, a mechanism is
ε-IC if the inequality is violated by at most ε. Given any mapping σ : [m] → [m], denote V (σ)

θ (E) the value
of the experiment E, if the buyer chooses action σ(j) whenever he receives signal j. Formally,

V
(σ)
θ (E) =

∑
i∈[n]

∑
j∈[m]

θiπij(E) · ui,σ(j).

Hence we have Vθ(E) = maxσ V
(σ)
θ (E). Denote V ∗θ (E) the value of the experiment E, if the buyer follows

the recommendation of the seller, i.e., σ is an identity mapping. According to [BBS18], we can without
loss of generality restrict our attention to the mechanisms such that if the buyer reports truthfully, following
the recommendation from the seller maximizes her expected payoff (see Lemma 14). In those mechanisms,
Vθ(E(θ)) = V ∗θ (E(θ)). Then IC constraints are equivalent to:

V ∗θ (E(θ))− t(θ) ≥ V (σ)
θ (E(θ′))− t(θ′),∀θ, θ′ ∈ Θ, σ : [m]→ [m] (1)

Individually Rationality. A mechanism is Individual Rational (IR) if reporting his type θ truthfully induces
expected utility at least u(θ): Vθ(E(θ)) − t(θ) ≥ u(θ), ∀θ ∈ Θ. We remark that the agent has expected
payoff u(θ) before receiving any additional information. Thus IR constraints guarantee that the agent has a
non-negative utility surplus by participating in the mechanism. Any IC and IR mechanism can be described
as a menu M = {(E, t(E))}E∈E . The buyer with any type θ chooses the experiment E that maximizes
Vθ(E)− t(E). The pair (E, t(E)) consisting of an experiment E and its price t(E) is called an option. The
option enables the data-buyer to improves his information and consequently improve his decision. A menu
is called fully informative if it only contains the fully informative experiment. We also refer to it as “selling
complete information”.

Revenue. An environment is a particular choice of parameters of the model (i.e. the payoff matrix and
type distribution). Fix an environment, we denote by REV(M) the revenue that mechanism M generates
and by OPT the optimal revenue among all IC, IR mechanisms. We denote by FREV the maximum revenue
achievable by any fully informative menu.

Payoff Matrix in Binary States When the state space is binary, we can without loss of generality make
some assumptions on the payoff matrix. For any action j, we say the action is redundant, if there exists a
set of actions S ⊆ [m]\{j} and a distribution d = {dk}k∈S such that: uij ≤

∑
k∈S dkuik,∀i ∈ {1, 2}.

In this scenario, the buyer will never choose action j as it is dominated by choosing an action according to
distribution d regardless of the underlying state. Without loss of generality, we assume that none of the actions
is redundant, which clearly implies that there does not exist k 6= j such that u1k ≥ u1j , u2k ≥ u2j . Thus we
can assume that

u11 > u12 > ... > u1m = 0 and 0 = u21 < u22 < ... < u2m,

otherwise we can change the action indexes, or modify every u1j (or u2j) by the same amount. We further
assume u11 ≥ u2m = 1, otherwise we can scale all payoffs or swap the states. Under the assumption above,
the fully informative experiment E satisfies that π11(E) = π2m(E) = 1.
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u 1 · · · j · · · m

ω1 u11 · · · u1j · · · 0
ω2 0 · · · u2j · · · u2m = 1

(a) Payoff Matrix

E 1 · · · j · · · m

ω1 π11 · · · π1j · · · π1m

ω2 π21 · · · π2j · · · π2m

(b) Experiment

3 Binary State: A Lower Bound for Selling Complete Information

We focus on the binary-state case (n = 2) in Section 3 and Section 4. In this section, we show that for any m,
there exists some environment with 2 states and m actions such that selling the complete information is only
an 1

Ω(m) -fraction of the optimal revenue OPT. Proofs in this section are postponed to Appendix B.
In fact, we prove a stronger statement that in this environment, FREV is an 1

Ω(m) -fraction of the maximum
revenue among a special class of menus called semi-informative menu. In particular, an experimentE is semi-
informative if it satisfies: (i) It only recommends the fully informative actions (Action 1 andm), i.e., πij(E) =
0, for all i ∈ {1, 2}, 2 ≤ j ≤ m − 1; (ii) Either π11(E) = 1 or π2m(E) = 1. Since

∑
j∈[m] π1j(E) =∑

j∈[m] π2j(E) = 1, any experiment E that satisfies both of the above properties has one of the following
patterns:

E 1 · · · j · · · m

ω1 π11 · · · 0 · · · 1− π11

ω2 0 · · · 0 · · · 1

(a) Pattern 1: π2m(E) = 1

E 1 · · · j · · · m

ω1 1 · · · 0 · · · 0
ω2 1− π2m · · · 0 · · · π2m

(b) Pattern 2: π11(E) = 1

Table 2: Two Specific Patterns of the Semi-informative Experiment
A mechanism (or menu) is called semi-informative if every experiment in the mechanism (or menu)

is semi-informative. Denote SIREV the optimal revenue achieved by any semi-informative menu. Clearly
OPT ≥ SIREV ≥ FREV since the fully informative experiment is also semi-informative. The class of
semi-informative menus is also useful in Section 4.

Theorem 1. For every m, there exists a payoff matrix with 2 states and m actions, together with a type
distribution F of the agent, such that SIREV = Ω(m) · FREV, which implies that OPT = Ω(m) · FREV.

To prove the theorem, we first introduce the concept of IR curve in the binary-state case.

IR Curve. In binary-state case, u(·) can be viewed as a function in [0, 1], which we refer to as the IR curve.
By definition, u(·) is a maximum over m linear functions. Thus, it is a continuous, convex and piecewise
linear function. Since none of the actions is redundant, the IR curve u(·) contains exactly m pieces. We show
in Table 3 an example with 4 actions and in Figure 1 the corresponding IR curve.

u 1 2 3 4

ω1 1 0.8 0.6 0
ω2 0 0.5 0.8 1

Table 3: The payoff matrix of an example
with 2 states and 4 actions

Figure 1: The IR curve u(·). The slopes of the 4 pieces
are −1,−0.2, 0.3 and 1 respectively.
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Lemma 1. Given any a, b ∈ (0, 1) such that a < b, let h : [a, b]→ (0, 1) be any piecewise linear function that
is strictly decreasing and convex. Consider any environment with IR curve h. 4 Then there exists a continuous
distribution F over support [a, b], such that FREV = 1− h(a), and∫ b

a f(θ) · (1− h(θ))dθ

FREV
= log

(
1− h(b)

1− h(a)

)
,

where f is the pdf of F . When u11 = u2m = 1, the highest expected payoff an agent can achieve is 1, so∫ b
a f(θ) · (1− h(θ))dθ is also the expected full surplus under distribution F .

We provide a sketch of the proof of Theorem 1 here. In the first step, we construct an environment with
2 states and m actions by constructing an IR curve then apply Lemma 1 to create an distribution F over the
agent types to show that the ratio between the full expected surplus and FREV is Ω(m). In the second step,
we indirectly construct a semi-informative menu whose revenue is a constant fraction of the total expected
surplus, which implies that SIREV = Ω(m) · FREV. In our construction, the payoffs satisfy u11 = u2m = 1.

Construction of the IR curve: Given m − 1 types 0 < θ1 < θ2 < ... < θm−1 < 1 which will be
determined later, we consider the following IR curve u(·) on [θ1, θm−1]. The IR curve is a piecewise linear
function with m − 2 pieces. For simplicity, for every 1 ≤ i ≤ m − 2, we will refer to piece Li as the piece
for the corresponding action m− i.5 Fix any ε less than 1

2m .
Let d0 := ε2m . For every 1 ≤ i ≤ m − 2, let di := 2i · ε2m−2i . For every 1 ≤ i ≤ m − 1, let

θi :=
∑i−1

j=0 dj . Then when ε < 1
2m ,

θi = ε2m +
i−1∑
j=1

2j · ε2m−2j < ε2m−2i−1−1 (2)

For every 1 ≤ i ≤ m− 2, piece Li is in the range θ ∈ [θi, θi+1]. The slope of piece Li is li := −ε2i . Thus the
height of piece Li is hi := u(θi+1)−u(θi) = −lidi = 2i ·ε2m . Let u(θ1) := 1−θ1 and h0 := θ1 = d0 = ε2m .
Then for every 1 ≤ i ≤ m− 1, we have u(θi) = 1−

∑i−1
j=0 hj . See Figure 2 for an illustration of notations.

Now we compute the payoff matrix according to the constructed IR curve u(·). u11 = u2m = 1, u1m =
u21 = 0. For every 1 ≤ i ≤ m − 2, before receiving any additional information, choosing action m − i
induces expected payoff θ · u1,m−i + (1 − θ) · u2,m−i. By the definition of the IR curve, it must go through
the two points (θi, u(θi)) and (θi+1, u(θi+1)). Thus we have θi · u1,m−i + (1− θi) · u2,m−i = 1−

∑i−1
j=0 hj

and θi+1 · u1,m−i + (1 − θi+1) · u2,m−i = 1 −
∑i

j=0 hj . Thus u2,m−i = 1 −
∑i−1

j=0 hj − θili, u1,m−i =

1−
∑i−1

j=0 hj − θili + li.
By Lemma 1, there exists a distribution F under support [θ1, θm−1], such that FREV = 1−u(θ1) = θ1 =

ε2m , and ∫ θm−1

θ1

f(θ) · (1− u(θ))dθ ≥ log

(
1− u(θm−1)

1− u(θ1)

)
· FREV = FREV · log

(∑m−2
i=0 hi
h0

)

=FREV · log

(∑m−2
i=0 2i · ε2m

ε2m

)
= FREV · log

(
2m−1 − 1

)
≥ FREV · log(2) · (m− 2)

(3)

Next, we present a semi-informative mechanismMwhose revenue is comparable to the integral
∫ θm−1

θ1
f(θ)·

(1− u(θ))dθ.
4When the type distribution has support [a, b], we can restrict our attention to the IR curve at range [a, b]. In our construction, we

construct a payoff matrix that implements the IR curve.
5We choose the subscript this way so that the IR curve goes from a piece with smaller index to a piece with larger index as θ

increases.
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Construction of the mechanism: Consider the following m − 2 semi-informative experiments. For every
1 ≤ i ≤ m − 2, we design experiment Ei and its price pi so that the buyer’s utility after purchasing experi-
ment Ei coincides with the piece Li of u(·) for θ ∈ [θi, θi+1], when the buyer follows the recommendation.
Formally, experiment Ei is as follows:

Figure 2: Notations in the construction of IR curve

Ei 1 · · · m

ω1 1 + li 0 −li
ω2 0 0 1

Table 4: Experiment Ei
The price for experiment Ei is pi =

∑i−1
j=0 hj + θili. It is not hard to verify that the buyer’s utility for buying

experiment Ei is u(θi) at θi and u(θi+1) at θi+1.
Consider the following mechanismM. For every θ ∈ [θ1, θm−1], let i be the unique number such that

θi < θ ≤ θi+1.6 The outcome and payment of M under input θ are defined as follows: It computes the
buyer’s utilities for (Ei, pi), (Ei−1, pi−1) (when i ≥ 2), and (Ei−2, pi−2) (when i ≥ 3) under type θ, and
chooses the option with the highest utility as the experiment and payment.

We prove in Lemma 2 thatM is IR and δ-IC for some δ = o(ε2m). Moreover, REV(M) is comparable to
the integral

∫ θm−1

θ1
f(θ)·(1−u(θ))dθ.M can then be converted to a semi-informative menu by losing no more

than a constant fraction of the total revenue (see Lemma 16 in Appendix B). Since FREV = ε2m , Theorem 1
then follows from Inequality (3). The proofs of Lemma 2 and Theorem 1 are postponed to Appendix B.

Lemma 2. For any ε ∈ (0, 2−m), M is IR and δ-IC where δ = 7 · ε2m+1. Moreover, REV(M) ≥ 1
9 ·∫ θm−1

θ1
f(θ) · (1− u(θ))dθ.

An important application of Theorem 1 is that, there is an Ω(m) lower bound of the size of the optimal
menu. The main takeaway of this theorem is that, in our model where there is a single agent whose type is
single-dimensional, the optimal menu, however, can be complex.

Theorem 2. For every m, there exists a payoff matrix with 2 states and m actions, together with a type
distribution F , such that any optimal menuM∗ consists of at least Ω(m) different experiments.

To prove Theorem 2, it suffices to show that: Given any menu M with ` experiments, we can sell the
complete information at an appropriate price to achieve revenue at least REV(M)/`. In Lemma 3, we prove
a more general result that applies to any IR (not necessarily IC) mechanism, which is useful in Section 4.

Definition 1. For any finite integer ` > 0, we say that a mechanism M = {(E(θ), t(θ))}θ∈[0,1] (not nec-
essarily IC nor IR) has option size `, if there exists ` different options {(Ej , tj)}j∈[`] such that: For every
θ ∈ [0, 1], there exists some j ∈ [`] that satisfies E(θ) = Ej and t(θ) = tj .

Lemma 3. For any positive integer `, let M be any IR mechanism of option size ` that generates revenue
REV(M). Then there exists a menu M′ that contains only the fully informative experiment and generates
revenue at least REV(M)

` .

Another important implication of Theorem 1 is shown in Corollary 1. It states that there is no menu
with finite cardinality that achieves any finite approximation to the optimal revenue for all single-dimensional
environments. The proof directly follows from Theorem 1 and Lemma 3.

6Choose i = 1 when θ = θ1. It’s a point with 0 measure, so it won’t affect the revenue of the mechanism.
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Corollary 1. For any finite ` > 0, any menu M with size at most `, and any c > 0, there exists an finite
integer m, a payoff matrix with 2 states and m actions, together with a distribution F , such that REV(M) is
at most a c-fraction of the optimal revenue in this environment.

4 Binary State: An Upper Bound for Selling Complete Information

In this section, we provide upper bounds for the gap between the optimal revenue OPT and the revenue by
selling complete information FREV. In Section 4.1, we prove an O(m)-approximation to the optimal menu
using only the fully informative experiment, where m is the number of actions. In Section 4.2, we provide
conditions under which selling complete information is the optimal menu. Proofs in this section are postponed
to Appendix C and Appendix D.

4.1 An Upper Bound for Selling Complete Information

The main result of this section is stated in Theorem 3. Together with Theorem 1, we know that the O(m)
approximation ratio is tight up to an absolute constant factor.

Theorem 3. For any environment with 2 states and m actions, there is a menu that contains only the fully
informative experiment, whose revenue is at least Ω( OPT

m ). In other words, OPT = O(m) · FREV.

To prove Theorem 3, a natural idea is to first show that the optimal menu contains O(m) experiments,
then use Lemma 3 to argue that we can sell the full information at an appropriate price to achieve revenue at
least Ω

(
REV(M)

m

)
. Unfortunately, we are not aware of such an upper bound on the size of the optimal menu,

and it is not clear if the size of the optimal menu is indeed linear in m. Instead, we drop some of the IC
constraints and consider the maximum revenue of a relaxed problem.

We first introduce the concept of responsive-IC and σ-IC constraints. Recall the IC constraint: V ∗θ (E(θ))−
t(θ) ≥ V

(σ)
θ (E(θ′)) − t(θ′),∀θ, θ′ ∈ Θ, σ : [m] → [m] where V ∗θ (E(θ)) is the agent’s utility for receiving

experiment E(θ) and following the recommendation. We distinguish the IC constraints by the mapping σ.
When σ is the identity mapping, we refer to the constraint as the responsive-IC constraint, and when σ is any
non-identity mapping, we refer to the constraint as the σ-IC constraint. A mechanism is responsive-IC if it
satisfies all responsive-IC constraints.

As Lemma 3 applies to any IR mechanism, we drop the σ-IC constraints and bound the number of experi-
ments offered by the optimal responsive-IC and IR mechanism by O(m), which suffices to prove Theorem 3.
An important component of our proof is Lemma 4. Denote C′2 the set of all semi-informative, responsive-IC
and IR mechanisms. We prove in Lemma 4 that the maximum revenue achievable by any responsive-IC and
IR mechanism (denoted as OPT∗) can be achieved by a semi-informative mechanism.

Lemma 4. There existsM∗ ∈ C′2 such that REV(M∗) = OPT∗.

By [BBS18], any semi-informative experiment is determined by a single-dimensional variable q(E) =
π11 · u11 − π2m · u2m (see also Observation 3). Given a mechanism M where every experiment is semi-
informative, for any θ ∈ [0, 1], we slightly abuse the notation and let q(θ) := q(M(θ)). M can also be
described as the tuple (q = {q(θ)}θ∈[0,1], t = {t(θ)}θ∈[0,1]). In Lemma 5, we present a characterization of all
{q(θ)}θ∈[0,1] that can be implemented with a responsive-IC and IR mechanism. The proof uses the payment
identity and it is similar to Lemma 1 in [BBS18], where there are only two actions (Action 1 and m) in their
setting. The main difference is that in our lemma, the IR constraints are not implied by the monotonicity of
q(·).

Lemma 5. Given q = {q(θ)}θ∈[0,1], there exists non-negative payment rule t such that M = (q, t) is a
responsive-IC and IR mechanism if and only if
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1. q(θ) ∈ [−u2m, u11] is non-decreasing in θ.

2.
∫ 1

0 q(x)dx = u11 − u2m.

3. For every θ ∈ [0, 1], u2m +
∫ θ

0 q(x)dx ≥ u(θ). Recall that u(θ) is the value of the agent with type θ
without receiving any experiment.

Moreover, the payment rule t must satisfy that for every θ,

t(θ) = θ · q(θ) + min{u11 − u2m − q(θ), 0} −
∫ θ

0 q(x)dx (4)

By Lemma 5, for any q that can be implemented with some responsive-IC and IR mechanism M, the
revenue of M can be written as an integral of q(·) using Equation (4) (see the objective of the program in
Figure 3). We notice that for continuous distribution F , Property 3 of Lemma 5 corresponds to uncountably
many inequality constraints. To bound the size of the optimal responsive-IC and IR mechanism, another
important component is to show that all (IR) constraints in Property 3 can be captured by O(m) constraints
(Constraint (4) in Figure 3). By Lemma 5, the optimal semi-informative, responsive-IC and IR mechanism is
captured by the optimization problem in Figure 3. A formal argument is shown in Lemma 6.

sup
∫ 1

0
[(θf(θ) + F (θ))q(θ) + min{(u11 − u2m − q(θ))f(θ), 0}]dθ

s.t. (1) q(θ) is non-decreasing in θ ∈ [0, 1]

(2) q(0) ≥ −u2m, q(1) ≤ u11

(3)

∫ 1

0
q(θ)dθ = u11 − u2m

(4)

∫ 1

0
(q(x)− `k) · 1[q(x) ≤ `k]dx ≥ u2,m+1−k − u2m, ∀k ∈ {2, 3, ...,m− 1}

Figure 3: Maximizing Revenue over Responsive-IC and IR Mechanisms

Lemma 6. For any optimal solution q∗ to the program in Figure 3, the mechanismM∗ that implements q∗
(Lemma 5) achieves the maximum revenue among all responsive-IC and IR mechanisms. 7

In Lemma 7, we show that there exists an optimal responsive-IC and IR mechanism whose option size
is O(m). By Lemma 6, it’s equivalent to prove that there is an optimal solution q∗ that takes only O(m)
different values. When F is a discrete distribution, we turn the program into a collection of LPs, so that the
highest optimum among the collection of LPs correspond to the optimum of the program in Figure 3. Each LP
has variables that represent the difference of the q-value between two adjacent θs (as the types are discrete).
The LP has O(m) constraints, that is independent of SUPP(F ), as constraint (1) corresponds to the variables
being non-negative. Thus each LP has an optimal solution where at most O(m) variables are strictly positive,
which corresponds to a q that takes only O(m) different values. For continuous distribution F , we prove the
claim by approximating the continuous program with an infinite sequence of discrete programs. Theorem 3
then follows from Lemmas 3, 4 and 7.

Lemma 7. There exists a semi-informative, responsive-IC and IR mechanism that has option size at most
3m− 1 (Definition 1) and obtains revenue REV(M∗) = OPT∗.

7There is a feasible solution that achieves the supremum of the program. See Claim 3.
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4.2 When is Selling Complete Information Optimal?

We have proved a tight approximation ratio of Θ(m) for selling complete information that applies to all
binary-state environments. A natural follow-up question is whether the approximation ratio becomes signifi-
cantly smaller for special environments. In this section, we provide a sufficient condition for the environment,
under which selling complete information achieves revenue equals to OPT∗, the maximum revenue achievable
by any responsive-IC and IR mechanisms.8 Note that it immediately implies that selling complete information
is the optimal menu in this environment.

Throughout this section, we consider continuous distributions and assume that the pdf f(·) of the agent’s
type distribution is strictly positive on [0, 1] and differentiable on (0, 1).

Theorem 4. For every θ ∈ [0, 1], let ϕ−(θ) = θf(θ) + F (θ) and ϕ+(θ) = (θ − 1)f(θ) + F (θ). Suppose
ϕ−(·) and ϕ+(·) are both monotonically non-decreasing. Suppose the payoff matrix satisfies that ϕ−( p̂

u11
) ≥

ϕ+(1− p̂
u2m

), where p̂ = min
{

(u11−u12)u2m

u11−u12+u22
,

(u2m−u2,m−1)u11

u2m+u1,m−1−u2,m−1

}
. Then selling complete information at any

price p such that ϕ−( p
u11

) = ϕ+(1 − p
u2m

) achieves the maximum revenue achievable by any responsive-IC
and IR mechanisms.

Here is an interpretation of Theorem 4: Both ϕ−(·) and ϕ+(·) are also considered in [BBS18]. Intuitively,
they can be viewed as the agent’s “virtual value” when q(θ) ≤ u11 − u2m and when q(θ) > u11 − u2m re-
spectively, in a semi-informative mechanism. Both virtual value functions being non-decreasing is a standard
regularity condition on the type distribution. The theorem applies to stardard distributions such as uniform,
exponential and Gaussian distributions. See Appendix D.2 for several examples.

To understand the condition on the payoff matrix, we point out that if selling complete information at some
price p is the optimal responsive-IC and IR mechanism, then the buyer’s utility function must intersect with
the IR curve at the first and last piece (∗). Otherwise we can add some extra experiments to strictly increase
the revenue, while maintaining the same utility function and the responsive-IC and IR property, contradicting
with the optimality (see Lemma 20 in Appendix D.2 for details). By some simple calculation, p̂ is exactly the
largest price that satisfies (∗). The condition guarantees the existence of such a price p ≤ p̂.

Note that although the theorem applies to arbitrary number of actions, the condition itself only depends
on the payoffs of the the first two and the last two actions. Thus if the condition is satisfied, selling complete
information is always optimal for any choice of the payoffs for other actions.

To prove the theorem, we provide an exact characterization of the optimal semi-informative, responsive-
IC and IR mechanism, i.e., the optimal solution q∗ = {q∗(θ)}θ∈[0,1] of the program in Figure 3, by Lagrangian
duality (Theorem 10). It is a generalization of the characterization by Bergemann et al. [BBS18] to m ≥ 3
actions.

5 Selling Complete Information in Multiple (n ≥ 3) States

In this section, we consider the environment with n ≥ 3 states. In Section 5.1, we prove that even in arguably
the simplest environment – matching utility environment with 3 states and 3 actions, the optimal revenue
OPT and the revenue by selling complete information FREV can have an arbitrarily large gap, i.e. there
is no universal finite upper bound of the gap that holds for all type distributions. Nonetheless, we prove in
Section 5.2 that in the same environment, if the distribution is uniform, selling complete information is in fact
the optimal mechanism. Proofs in this section are postponed to Appendix E.

8In the paper, we indeed prove a necessary and sufficient condition under which selling complete information is optimal among
all responsive-IC and IR mechanisms (Theorem 9). However, the conditions are in abstract terms and requires further definitions. For
the purpose of presentation, we state here the sufficient condition that is easy to verify.

12



5.1 Lower Bound Example for Matching Utilities

To avoid ambiguity, throughout this section we denote REV(M, D) the revenue ofM with respect to D, for
any (not necessarily IC or IR) mechanismM, and any distribution D. Denote OPT(D) and FREV(D) the
optimal revenue and the maximum revenue by selling complete information, respectively. The main result of
this section shows that in the matching utility environment with n = 3 states and m = 3 actions, the ratio
OPT(D)
FREV(D) arbitrarily large for some distribution D. Recall that in a matching utility environment, n = m and
the payoffs satisfy uij = 1[i = j], ∀i, j.

Theorem 5. Consider the matching utility environment with 3 states and 3 actions. For any integer N , there
exists a distribution D with support size N such that

OPT(D)

FREV(D)
= Ω(N1/7)

The following corollary directly follows from Theorem 5 and Lemma 3.

Corollary 2. Consider the matching utility environment with 3 states and 3 actions. For any integer N , there
exists a distribution D with support size N such that any optimal menu has option size Ω(N1/7).

The proof of Theorem 5 is adapted from the approach in [HN19], which was originally used in problem
of multi-item auctions. Their approach does not directly apply to our problem due to the non-linearity of the
buyer’s value function and the existence of the extra σ-IC and more demanding IR constraints in our problem.

For any mechanismM, denote RATIO(M) the largest ratio between REV(M, D) and FREV(D) among
all distributions, i.e.,

RATIO(M) = sup
D

REV(M, D)

FREV(D)

For every θ ∈ Θ, denote U(θ) the gain in value of a buyer with type θ, after receiving the fully informative
experiment. Formally, U(θ) =

∑n
i=1 θi·maxj uij−maxj {

∑
i θiuij}. Here θn = 1−

∑n−1
i=1 θi. In Theorem 6,

we prove that RATIO(M) can be written as a concrete term using U(·) and the payment t(·) ofM.

Theorem 6. (Adapted from Theorem 5.1 of [HN19]) For any mechanismM = {E(θ), t(θ)}θ∈Θ (not neces-
sarily IC or IR), we have RATIO(M) =

∫∞
0

1
r(x)dx, where r(x) = inf{U(θ) : θ ∈ Θ ∧ t(θ) ≥ x}, ∀x ≥ 0.

Here is a proof sketch of Theorem 5. We first show in Lemma 8 that: Given any sequence {yk}Nk=1 of
vectors in Θ that satisfy all properties in the statement, we can construct a distribution D with support size
N , together with an IC, IR mechanismM such that the ratio REV(M,D)

FREV(D) has a lower bound that only depends
on the sequence {yk}Nk=1. Properties 2 and 3 in the statement are carefully designed to guarantee that the
constructed mechanism is IC and IR. Property 1 ensures the mechanism to obtain enough revenue. With
Lemma 8, we then complete the proof of Theorem 5 by constructing a valid sequence {yk}Nk=1 which induces
a lower bound of Ω(N1/7).

Lemma 8. Consider the matching utility environment with 3 states and 3 actions. Given any integer N and a
sequence of types {yk = (yk,1, yk,2)}Nk=1 in Θ such that

1. gapk = min
0≤j<k

{(yk,1 − yj,1) · yk,1 + (yk,2 − yj,2) · yk,2} ∈ (0, 0.09). Here y0 = (0, 0, 1).

2. yk,1
yk,2
∈ [ 9

10 ,
10
9 ].

3. ||yk||2 =
√
y2
k,1 + y2

k,2 ∈ [0.3, 0.4].
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Then for any ε > 0, there exists a distribution D with support size N such that

OPT(D)

FREV(D)
≥ (1− ε) ·

N∑
k=1

gapk
yk,1 + yk,2

≥ 3

2
(1− ε) ·

N∑
k=1

gapk

To complete the proof of Theorem 5, for any integer N , we construct a sequence of types {yk}Nk=1 that
satisfies all three properties in the statement of Lemma 8, and gapk = Θ(k−6/7). Then by Lemma 8, there
exists a distribution D with support size N such that (by choosing ε = 1

2 )

OPT(D)

FREV(D)
≥

N∑
k=1

gapk = Ω(
N∑
k=1

k−6/7) = Ω(N1/7)

The construction is adapted from Proposition 7.5 of [HN19]: All points {yk}Nk=1 are placed in a sequence of
shells centered at (0, 0) with radius within the range of [0.3, 0.4] (for Property 3). All points are placed in a
thin circular sector close to the 45◦ angle so that Property 2 is satisfied. See Appendix E.1 for the complete
construction and proof.

5.2 Matching Utility Environment with Uniform Distribution

As the main result of this section, we complement the result in Section 5.1, by showing that in the matching
utility environment with 3 states and 3 actions, selling complete information is indeed optimal if the type
distribution is uniform.

Theorem 7. Consider the matching utility environment with n = 3 states and 3 actions, where the buyer
has uniform type distribution. Then selling only the fully informative experiment at price p = 1

3 achieves the
maximum revenue among all IC, IR mechanisms.

The remaining of this section is dedicated to the proof of Theorem 7. We first provide a high-level plan
of the proof. In Section 4, we considered a relaxation of our problem, which finds the optimal responsive-IC
and IR mechanism. Here we propose another relaxed problem of finding the optimal menu for any matching
utility environment (Figure 4). Then we construct a dual problem (Figure 5) in the form of optimal transporta-
tion [Vil09, DDT17, RC98]. This primal-dual framework provides a general approach to prove the optimality
of any menu M: If we can construct a feasible dual that satisfies the complementary slackness conditions,
thenM is the optimal primal solution to the relaxed problem, which implies thatM is the optimal menu. We
apply this framework to the matching utility environment with 3 states and uniform type distribution, proving
that selling complete information at p = 1

3 is optimal.

5.2.1 Construction of the Primal and Dual Problem

By Lemma 14, we will focus on responsive mechanismsM = {(E(θ), t(θ))}θ∈Θ. For any θ ∈ Θ, denote
πij(θ) the (i, j)-entry of experiment E(θ). We also use πi(θ) to represent πii(θ). For every measurable set
S ⊆ Θ, denote VOL(S) =

∫
S 1dθ the volume of S. We first prove the following lemma that applies to any

matching utility environment.

Lemma 9. In any matching utility environment, there is an optimal responsive mechanismM such that: for
every θ ∈ Θ, there exists i ∈ [n] such that πi(θ) = 1.

By Lemma 9, we focus on all mechanisms that are responsive and satisfy: for every θ ∈ Θ, there exists
i ∈ [n] such that πi(θ) = 1. Recall that Vθ(E) (or V ∗θ (E)) is the buyer’s value of experiment E (or the value
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if she follows the recommendation) at type θ. For any θ, denote G(θ) = Vθ(E(θ)) − t(θ) the buyer’s utility
at type θ. Since the mechanism is responsive, we have

G(θ) = V ∗θ (E(θ))− t(θ) =

n−1∑
i=1

πi(θ) · θi + πn(θ) ·

(
1−

n−1∑
i=1

θi

)
− t(θ)

We prove the following observation using the IC constraints.

Observation 1. For any i ∈ [n− 1], ∂G(θ)
∂θi

= πi(θ)− πn(θ).

Let ∇G(θ) = (∂G(θ)
∂θ1

, . . . , ∂G(θ)
∂θn−1

). By Observation 1 and the fact that maxi∈[n]{πi(θ)} = 1,∀θ ∈ Θ, we
have

t(θ) = −G(θ) +∇G(θ) · θ + πn(θ) = −G(θ) +∇G(θ) · θ + 1−max

{
∂G(θ)

∂θ1
, . . . ,

∂G(θ)

∂θn−1
, 0

}
In Lemma 10, we prove a necessary condition under which a function G(·) is derived by some IC, IR and

responsive mechanism.

Definition 2. For every type θ, θ′ ∈ Θ, define c(θ, θ′) = maxE {Vθ(E)− Vθ′(E)}, where the maximum is
taken over all possible experiments with n states and n actions.

Lemma 10. For any IC, IR and responsive mechanismM, let G(·) be the buyer’s utility function. Then G(·)
is convex and satisfies G(θ)−G(θ′) ≤ c(θ, θ′), ∀θ, θ′ ∈ Θ. Moreover, G(0) = 1.

We notice that given any convex function G that satisfies G(θ) − G(θ′) ≤ c(θ, θ′),∀θ, θ′. The function
Ĝ(θ) = G(θ) − G(0) + 1 satisfies all properties in Lemma 10. Thus a relaxation of the problem of finding
the revenue-optimal menu can be written as the optimization problem in Figure 4. Here we replace G(θ) by
G(θ)−G(0) + 1 and remove the constraint G(0) = 1.

sup
G is convex

G(θ)−G(θ′)≤c(θ,θ′),∀θ,θ′

∫
Θ

[
−G(θ) +∇G(θ) · θ −max

{
∂G(θ)

∂θ1
, . . . ,

∂G(θ)

∂θn−1
, 0

}
+G(0)

]
f(θ)dθ

Figure 4: The Relaxed Problem of the Optimal Menu

In the next step, we construct a dual problem in the form of optimal transportation. We first introduce
some useful notations in the measure theory.

• Γ(Θ) and Γ+(Θ) denote the signed and unsigned (Radon) measures on Θ.

• Given any unsigned measure γ ∈ Γ+(Θ×Θ), denote γ1, γ2 the two marginals of γ. Formally, γ1(A) =
γ(A×Θ) and γ2(A) = γ(Θ×A) for any measurable set A ⊆ Θ.

• Given any signed measure µ ∈ Γ(Θ), denote µ+, µ− the positive and negative parts of µ respectively,
i.e. µ = µ+ − µ−.

• Given a measure µ ∈ Γ(Θ). A mean-preserving spread operation in set A ⊆ Θ is a sequence of the
following operation: picking a positive point mass on θ ∈ A, splitting it into several pieces, and sending
these pieces to multiple points in A while preserving the center of mass.
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We define strongly convex dominance similar to the notion of convex dominance in [SS07, DDT17]. The
main difference here is that only the mean-preserving spread operation is allowed during the transformation
between two measures. 9

Definition 3. Given any µ, µ′ ∈ Γ(Θ), we say that µ strongly convex dominates µ′ (denoted as µ �cux µ′)
if µ′ can be transformed to µ by performing a mean-preserving spread. By Jensen’s inequality, if µ �cux µ′,
then

∫
Θ gdµ ≥

∫
Θ gdµ

′ for any continuous, convex function g on Θ.

In the following definition, we define a measure µP for any partition P = (Θ1, . . . ,Θn) of Θ such that
every component Θi is compact. Denote P the set of all partitions.

Definition 4. Given any partition P = (Θ1, . . . ,Θn) of Θ such that every Θi is compact. 10 We define a
measure µP ∈ Γ(Θ) as follows:

µP (A) = 1A(0) +

∫
∂Θ

1A(θ)f(θ)(θ · n)dθ − n ·
∫

Θ
1A(θ)f(θ)dθ −

n−1∑
i=1

∫
∂Θi

1A(θ)f(θ)(ei · ni)dθ

−
∫

Θ
1A(θ) · (∇f(θ) · θ)dθ +

n−1∑
i=1

∫
Θi

1A(θ) · (ei · ∇f(θ))dθ

for any measurable set A. Here ∂Θ (or ∂Θi) is the boundary of Θ (or Θi). n (or ni) is the outward pointing
unit normal at each point on the boundary ∂Θ (or ∂Θi). ei is the i-th unit vector of dimension n − 1.
1A(θ) = 1[θ ∈ A].

We prove the following lemma by applying the divergence theorem.

Lemma 11. For any differentiable function G, we have∫
Θ
G(θ)dµP =

∫
Θ

[−G(θ) +∇G(θ) · θ +G(0)] f(θ)dθ −
n−1∑
i=1

∫
Θi

∂G(θ)

∂θi
f(θ)dθ

Choosing G(θ) = 1, ∀θ ∈ Θ implies that µP (Θ) = 0.

Now we are ready to define the dual problem (Figure 5).

inf
P∈P,γ∈Γ+(Θ×Θ)

γ1−γ2�cuxµP

∫
Θ×Θ

c(θ, θ′)dγ(θ, θ′)

Figure 5: The Dual Problem in Form of Optimal Transportation

To have a better understanding of the dual problem, we prove the following lemma which shows that the
weak duality holds.

9In [SS07, DDT17], the notion of convex dominance is less restricted: µ convex dominates µ′ if
∫

Θ
gdµ ≥

∫
Θ
gdµ′ for any

continuous, non-decreasing, convex function g on Θ. Under this notion, µ′ can be transformed to µ by either performing the mean-
preserving spread, or sending a positive mass to coordinatewise larger points. In our notion, the inequality holds for any convex
function that is not necessarily non-decreasing. Thus the second operation may make

∫
gdµ′ smaller and is not allowed during the

transformation.
10Here we assume each Θi to be compact such that a intergral on Θi is well-defined. Two Θis may overlap on their boundaries.

We still refer to (Θi, . . . ,Θn) a partition of Θ as the set of overlapping points has 0 measure with respect to the density f .
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Lemma 12. For any feasible solutionG to the primal (Figure 4) and any feasible solution (P = (Θ1, . . . ,Θn), γ)
to the dual (Figure 5),∫

Θ

[
−G(θ) +∇G(θ) · θ −max

{
∂G(θ)

∂θ1
, . . . ,

∂G(θ)

∂θn−1
, 0

}
+G(0)

]
f(θ)dθ ≤

∫
Θ×Θ

c(θ, θ′)dγ(θ, θ′)

The inequality achieves equality if and only if all of the following conditions are satisfied:

1. ∂G(θ)
∂θi

= max
{
∂G(θ)
∂θ1

, . . . , ∂G(θ)
∂θn−1

, 0
}

for every i ∈ [n − 1], θ ∈ Θi; maxi∈[n−1]
∂G(θ)
∂θi

≤ 0 for every
θ ∈ Θn.

2. γ(θ, θ′) > 0 =⇒ G(θ)−G(θ′) = c(θ, θ′).

3.
∫

ΘG(θ)d(γ1− γ2) =
∫

ΘG(θ)dµP . In other words, µP (in Definition 4) can be transformed to γ1− γ2

by performing a mean-preserving spread operated in a region where G is linear.

An important application of Lemma 12 is that: Given a menuM in any matching utility environment, we
can certify the optimality ofM by constructing a feasible dual (P, γ) that satisfies all conditions in Lemma 12
with respect to the utility function G(·) induced byM. This is because G(·) being an optimal solution to the
primal problem in Figure 4 immediately implies thatM is the optimal menu since the primal problem is a
relaxation of our problem.

Theorem 8. Given any matching utility environment and any menuM. LetG(·) be the buyer’s utility function
induced byM. If there exists a feasible dual solution (P, γ) to the problem in Figure 5 such thatG and (P, γ)
satisfies all conditions in the statement of Lemma 12, thenM is the optimal menu in this environment.

5.2.2 Proof of Theorem 7

Now we focus on the special case n = 3 and give a proof of Theorem 7 using Theorem 8. The type space
Θ = {(θ1, θ2) ∈ [0, 1]2 | θ1 + θ2 ≤ 1} is a triangle. Let M∗ = {E∗(θ), t∗(θ)}θ∈Θ be the mechanism
that only sells the full information at price p = 1

3 . Let G∗(θ) = V ∗θ (E∗(θ)) − t∗(θ) be the buyer’s utility
function inM∗. By Theorem 8, it suffices to construct a feasible dual (P ∗, γ∗) that satisfies all conditions in
Lemma 12.

Denote π∗i (θ) the (i, i)-entry of E∗(θ). We consider the following partition P ∗ = (Θ∗1,Θ
∗
2,Θ

∗
3) of Θ:

Θ∗i = {θ ∈ Θ | θi ≥ θj ,∀j ∈ {1, 2, 3}}, here θ3 = 1− θ1 − θ2. See Figure 6a for an illustration. In uniform
distribution, the density f(θ) = 2 is a constant for all θ ∈ Θ. Thus we can simplify the description of µP

∗
as

in Observation 2.

Observation 2. By Definition 4, the measure µP
∗

with respect to the partition P ∗ is the sum of:

• A point mass of +1 at 0.

• For each (i, j) = (1, 2), (1, 3), (2, 3), a mass of 2
3 uniformly distributed on the line segment Sij = {θ ∈

Θ | θi = θj ≥ θk}. Here k is the index other than i, j. θ3 = 1− θ1 − θ2.

• A mass of −3 uniformly distributed through out Θ.

Now we construct the measure γ∗ ∈ Γ+(Θ×Θ) as follows: Let Ω1 = {θ ∈ Θ : 1−maxi∈[n] θi ≥ p} be
the set of types where the buyer purchases the full information inM∗. Let Ω2 = Θ\Ω1. For any measurable
set A,B ⊆ Θ, define γ(A × B) = 1A(0) ·

∫
Ω2
1B(θ)dθ/VOL(Ω2). See Figure 6b for an illustration of the

notations. To verify that G∗ and (P ∗, γ∗) are the optimal primal and dual solution respectively, it suffices to
prove the following lemma.
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(a) Illustration of P ∗. Line segments ad, bd, cd corre-
spond to S13, S23, S12 respectively.

(b) Ω1 is the hexagon separated by the three red lines. γ∗

has a positive density between 0 and each point in Ω2.

Figure 6: Illustrations of the optimal dual when n = 3

Lemma 13. G∗ and (P ∗, γ∗) are feasible solutions to the primal (Figure 4) and dual problem (Figure 5)
respectively. Moreover, they satisfy all the conditions in the statement of Lemma 12.

The primal feasibility and the first two conditions are relatively easy to verify. To prove the dual feasibility
and Condition 3, denote γ∗1 , γ

∗
2 the marginals of γ. By definition of γ, µP

∗−(γ∗1−γ∗2) contains only a mass of
−2 uniformly distributed throughout out the hexagon Ω1, and a mass of 2

3 uniformly distributed in each line
segment ad, bd, cd. Due to the special geometric shape of the hexagon, we can transform the positive mass on
the line segments to the whole region Ω1 via mean-preserving spread, to “zero-out” the negative mass. This
proves both the dual feasibility and Condition 3 since G∗(θ) = 2

3 is constant throughout Ω1.

6 Conclusion

We considered the problem of selling information to a data-buyer with private information. The (approxi-
mately) optimal mechanism typically offers menu of options at different prices to the data-buyer. We showed
that this revenue maximization problem shares some features with the problem of selling multiple items to a
single buyer. Yet, the problem of finding the optimal menu of information structure is richer in two important
aspects. First, every item on the menu is information structure, thus matrix of signals given the true state,
and second, the individual rationality constraint varies with the private information of the agent. Thus, the
choice set as well as the set of constraints is richer than the standard multi-item. Our analysis thus focused
on establishing lower and upper bounds for the optimality of the complete information structure, which is a
natural information product and in a sense the equivalence of the grand bundle in the mutli-item problem.

We established a lower bound on the cardinality of the optimal menu in the binary-state environment.
An interesting future direction is to show an upper bound of the cardinality of the optimal menu. Although
we showed an O(m) approximation ratio for selling complete information in this single-dimensional envi-
ronment, no finite upper bound (in a function of m) of the cardinality that holds for all type distribution is
known.

In general environments, we offered a primal-dual approach to prove the optimality of a given menu. We
used the approach to show the optimality of selling complete information in a special environment. We believe
that this approach should be productive to further characterize the optimal menu in other environments.
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[RC98] Jean-Charles Rochet and Philippe Choné. Ironing, sweeping, and multidimensional screening.
Econometrica, pages 783–826, 1998.

[RZ83] John Riley and Richard Zeckhauser. Optimal selling strategies: When to haggle, when to hold
firm. The Quarterly Journal of Economics, 98(2):267–289, 1983.

[SCV+98] Carl Shapiro, Shapiro Carl, Hal R Varian, et al. Information rules: a strategic guide to the
network economy. Harvard Business Press, 1998.

[SS07] Moshe Shaked and J George Shanthikumar. Stochastic orders. Springer, 2007.

[Toi11] Juuso Toikka. Ironing without control. Journal of Economic Theory, 146(6):2510–2526, 2011.

[Vil09] Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

[Yao15] Andrew Chi-Chih Yao. An n-to-1 bidder reduction for multi-item auctions and its applications.
In SODA, 2015.

21



A Additional Preliminaries

Definition 5 (Responsive Experiment [BBS18]). A buyer type θ is responsive to an experiment E if: There is
a one-to-one mapping g : S → [m] from the signal set to the action space such that, for every k ∈ [m], the
buyer chooses the action k when receiving signal s iff g(s) = k.

Lemma 14 (Adapted from Proposition 1 from [BBS18]). A mechanismM = {(E(θ), t(θ))}θ∈Θ is respon-
sive if every buyer type θ is responsive to E(θ). Then for any mechanism M, there exists a responsive
mechanismM′ = {E′(θ), t(θ)}θ∈Θ with the same payment rule, such that for every type θ, the buyer has the
same value for both experiments E(θ) and E′(θ).

Lemma 15. [BBS18] Any optimal menu contains a fully informative experiment.

B Missing Details from Section 3

Proof of Lemma 1: Since h is strictly decreasing in [a, b], let h−1 be its inverse function. Define F as follows:
F (θ) = 1 − c

1−h(θ) , ∀θ ∈ [a, b); F (b) = 1. Here c = 1 − h(a) to ensure that F (a) = 0. Consider the fully
informative experiment with any price p. The utility for purchasing this experiment is 1− p regardless of the
buyer’s prior. Thus the buyer purchases the fully informative experiment iff h(θ) ≤ 1 − p, which happens
with probability 1−F (h−1(1−p)) = c/p. Thus FREV = c. Moreover, f(θ) = −c · h′(θ)

(1−h(θ))2 ,∀θ ∈ [a, b). 11

We have∫ b

a
f(θ) · (1− h(θ))dθ = −c ·

∫ b

a

h′(θ)

1− h(θ)
dθ = c · log(1− h(θ))

∣∣∣b
a

= c · log

(
1− h(b)

1− h(a)

)
2

Proof of Lemma 2: We first bound the revenue ofM. Notice that for every 1 ≤ i ≤ m− 2,

pi =
i−1∑
j=0

hj + θili = (2i − 1) · ε2m − ε2i · (ε2m +
∑

1≤j<i
2j · ε2m−2j ) ≤ (2i − 1) · ε2m (5)

On the other hand, when ε < 1
2m , we have

pi = (2i − 1) · ε2m − ε2m+2i −
∑

1≤j<i
2j · ε2m+2i−2j (6)

≥ (2i − 1) · ε2m − ε2m+2 · (1 +
∑

1≤j<i
2j) ≥ (2i − 1) · ε2m − ε2m+1

Moreover,

1− u(θi+1) =

i∑
j=0

hj = (2i+1 − 1) · ε2m

Thus for every θ such that θi < θ ≤ θi+1, the payment ofM is at least

min{pi, pi−1, pi−2} = pi−2 ≥
1

9
(1− u(θi+1)) ≥ 1

9
(1− u(θ)).

11As h(·) is a convex function, it is also continuously differentiable on except countably many points. For those points, we can
choose h′(θ) to be any subdifferential at θ.
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Thus we have REV(M) ≥ 1
9 ·
∫ θm−1

θ1
f(θ) · (1− u(θ))dθ.

Next we prove thatM is IR and δ-IC. Firstly, if the buyer follows the recommendation of experiment Ei,
his expected utility is θ(1 + li) + 1− θ − pi = 1 + θli − pi = 1−

∑i−1
j=0 hj + (θ − θi)li, which is u(θi) and

u(θi+1) if we choose θ to be θi and θi+1 respectively. Since u(·) is linear on (θi, θi+1], the buyer’ expected
utility for receiving (Ei, pi) is exactly u(θ). Thus her utility by reporting truthfully is at least u(θ) ≥ 0, and
M is IR.

Now fix any θ ∈ [θ1, θm−1]. Let i be the unique number such that θi < θ ≤ θi+1. Suppose that the buyer
misreports and receives experiment Ej for 1 ≤ j ≤ m− 2. We notice that when the experiment recommends
action 1, the state ω1 is fully revealed and the buyer will follow the recommendation, choosing action 1. If
the buyer chooses action m − r when being recommended action m, for 0 ≤ r ≤ m − 1, then his utility for
buying experiment j is

Uj,r(θ) := θ(1 + lj) + θ(−lj)u1,m−r + (1− θ)u2,m−r− pj = u2,m−r + θ(1 + lj − lju1,m−r−u2,m−r)− pj .

When 1 ≤ r ≤ m − 2, using the fact that u2,m−r = 1 − pr and u1,m−r = 1 − pr + lr, we can rewrite
Uj,r(θ) = 1 + θ(pr + lj(pr − lr))− pr − pj .

We argue that for every θ ∈ (θi, θi+1], the following inequality holds.

max
j∈{1,...,m−2},r∈{0,...,m−1}

Uj,r(θ) ≤ max
j′∈{i,i−1,i−2},r′∈{0,...,m−1}

Uj′,r′(θ) + 7 · ε2m+1. 12 (7)

Since a buyer with type θ receives utility maxj′∈{i,i−1,i−2},r′ Uj′,r′(θ) in M if he reports truthfully, In-
equality (7) guarantees that M is δ-IC (recall that δ = 7 · ε2m+1), as the buy can obtain utility at most
maxj∈{1,...,m−2},r Uj,r(θ) by misreporting his type.

Now we prove that for every j ∈ {1, . . . ,m− 2}, r ∈ {0, . . . ,m− 1}, Uj,r(θ) is no more than the RHS
of Inequality (7) by a case analysis.

1. r = 0. For every j ∈ {1, . . . ,m− 2}, Uj,0(θ) = V ∗θ (Ej)− pj is the agent’s utility for purchasing Ej ,
if he follows the recommendation. By the definition of the IR curve u(·), the function U`,0(·) coincides
with u(·) on the interval [θ`, θ`+1] for all ` ∈ {1, . . . ,m − 2}. Since u(·) is a convex function and
θ ∈ (θi, θi+1], Ui,0(θ) ≥ Uj,0(θ) for all j ∈ {1, . . . ,m− 2}.

2. r = m−1. For every j ∈ {1, . . . ,m−2}, since ε < 1
2m , Uj,m−1(θ) = θ−pj ≤ θ ≤ θm−1 < ε2m−1−1.

On the other hand, Ui,0(θ) = 1 + θ`i − pi ≥ 1− 2m · ε2m > 1− ε2m−1 > Uj,m−1(θ).

3. 1 ≤ r ≤ m− 2. Recall pr− (2r− 1) · ε2m ∈ [−ε2m+1, 0] for every r ∈ {1, ...,m− 2} (Inequality (6)).
For every j, r ∈ {1, ...,m− 2}, Uj,r(θ) can be further bounded as follows:

Uj,r(θ) ≥ 1− pr − pj + θ · [(2r − 1)ε2m − ε2m+1 − ε2j ((2r − 1)ε2m + ε2r)]

≥ 1− pr − pj − θ · ε2j+2r − 2 · ε2m+1

≥ 1− (2j + 2r − 2) · ε2m − θ · ε2j+2r − 2 · ε2m+1

The first inequality follows from the upper bound (Inequality (5)) and the lower bound (Inequality (6))
of pi. The second inequality follows from θ < 1 and ε < 1

2m . The last inequality follows from
Inequality (5). On the other hand,

Uj,r(θ) ≤ 1− pr − pj + θ · [(2r − 1)ε2m − ε2j ((2r − 1)ε2m − ε2m+1 + ε2r)]

≤ 1− pr − pj − θ · ε2j+2r + 2 · ε2m+1

≤ 1− (2j + 2r − 2) · ε2m − θ · ε2j+2r + 4 · ε2m+1.

12In the RHS of the inequality, j can only take value i, i− 1 when i ≤ 2, and can only take value i when i = 1.
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The first and last inequalities follow from Inequality (5) and (6). The second inequality follows from
θ ≤ θm−1 < ε2m−1−1. There are two nice properties of the upper and lower bounds of Uj,r(θ): (i) they
are within O(ε2m+1) and (ii) they are both symmetric with respect to j and r.

(a) If 2j + 2r > 2i, then either j or r must be at least i, which implies that 2j + 2r ≥ 2i + 2. By
Equation (2), θ ≤ θi+1 < ε2m−2i−1. Thus θ · ε2j+2r < ε2m+1. We notice that if either j or
r is at least i, (2j + 2r − 2) · ε2m is minimized when (j, r) = (i, 1) or (1, i). Thus Uj,r(θ) ≤
Ui,1(θ) + 7 · ε2m+1.

(b) If 2j + 2r < 2i−1, then i > 1 and thus 2j + 2r ≤ 2i−1 − 2 (as both are even numbers when
i > 1). Since θ ≥ θi > 2i−1 · ε2m−2i−1

, we have θ · ε2j+2r ≥ 2i−1 · ε2m−2. As ε < 1
2m , the term

θ · ε2j+2r dominates (2j + 2r − 2) · ε2m and 1 − (2j + 2r − 2) · ε2m − θ · ε2j+2r is maximized
when 2j + 2r is maximized conditioned on 2j + 2r < 2i−1. In other words, it is maximized when
(j, r) = (i− 2, i− 3) or (i− 3, i− 2). Thus Uj,r(θ) ≤ Ui−2,i−3(θ) + 6 · ε2m+1.

(c) If 2j+2r ∈ [2i−1, 2i], then either j or r is in {i−2, i−1, i}. Since |Uj,r(θ)−Ur,j(θ)| ≤ 6 ·ε2m+1,
for all j and r in {1, . . . ,m − 2}, we have Uj,r(θ) ≤ maxj′∈{i,i−1,i−2},r′∈{1,...,m−2} Uj′,r′(θ) +

6 · ε2m+1.

2

To complete the proof of Theorem 1, we need the following lemma adapted from [CV21].

Lemma 16 (Adapted from Lemma 8 in [CV21]). SupposeM is a mechanism of option size `, where the IC
and IR constraints are violated by at most δ, for some δ > 0 and finite ` > 0. Then there exists an IC, IR
mechanismM′ of option size ` such that REV(M′) ≥ (1−η) ·REV(M)−δ/η−δ, for any η > 0. Moreover,
if every experiment E inM is semi-informative, thenM′ is a semi-informative menu.

Proof of Lemma 16: Let M = ({E(θ), t(θ)})θ∈[0,1] and {(Ej , tj)}j∈[`] be the ` options in M. For every
j ∈ [`], let t′j = (1 − η)tj − δ. LetM′ be the menu with options {(Ej , t′j)}j∈[`], i.e., the buyer with type θ
purchase the experiment that maximizes Vθ(Ej)− t′j . ClearlyM′ is IC and IR.

For any type θ ∈ [0, 1], let j ∈ [m] be the unique number such that E(θ) = Ej . Since the IC constraints
inM are violated by at most δ, we know that

Vθ(Ej)− tj ≥ Vθ(Ek)− tk − δ, ∀k ∈ [`]

Now suppose that the buyer with type θ purchases Ek∗ inM′. Then

Vθ(Ek∗)− (1− η)tk∗ ≥ Vθ(Ej)− (1− η)tj

Choosing k to be k∗ in the first inequality and combining the two inequalities, we have that

Vθ(Ek∗)− (1− η)tk∗ ≥ Vθ(Ek∗)− tk∗ − ε+ ηtj =⇒ tj − tk∗ ≤
δ

η

Hence, for the revenue we have REV(M′) ≥ (1−η) ·REV(M)−δ− δ
η . The second part of the statement

directly follows from the fact thatM′ shares the same set of experiments withM. 2

Proof of Theorem 1: We consider the construction present in Section 3. By Lemma 1 and Lemma 2,

REV(M) ≥ 1

9
· log(2) · (m− 2) · FREV
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We notice that FREV = ε2m . According to the construction of the mechanism,M is of option size at most
m− 2. Thus by applying Lemma 16 with η = 1

2 and δ = 7 · ε2m+1, we have

SIREV ≥ 1

2
· REV(M)− 3 · 7 · ε2m+1 ≥ ε2m ·

[
log(2)

18
(m− 2)− 21ε

]
= Ω(m) · FREV

Since OPT ≥ SIREV, we further have OPT = Ω(m) · FREV. 2

Proof of Lemma 3: Let E1, . . . , E` be the experiments contained in mechanismM, and t(E1), . . . , t(E`) be
the prices. Let pi be the revenue that is generated by experiment Ei, i.e., pi = Prθ[M(θ) = Ei] · t(Ei). Then,
REV(M) =

∑`
i=1 pi =⇒ pj ≥ REV(M)

` , for some j ∈ [`]. Now, consider menuM′ that contains only the
fully informative experiment E∗ with price t(Ej). We claim that for all types θ such thatM(θ) = Ej , the
agent with type θ is willing to purchase the experiment E∗ at price t(Ej), as Vθ(E∗) ≥ Vθ(Ej),∀θ ∈ [0, 1].
Thus, for all θ such thatM(θ) = Ej , Vθ(E∗)−t(E∗) ≥ Vθ(Ej)−t(Ej) ≥ u(θ), where the second inequality
follows fromM is IR. Hence, the revenue ofM′ is at least pj ≥ REV(M)

` . 2

Proof of Theorem 2: By Theorem 1, there exists some environment such that c := OPT
FREV = Ω(m). Suppose

there is an optimal menuM∗ that consists of c′ < c different experiments. Then by applying Lemma 3 to
M∗, we have FREV ≥ OPT

c′ > OPT
c . Contradiction. Thus any optimal menu consists of at least c experiments.

2

C Missing Details from Section 4

Observation 3. [BBS18] For any semi-informative experiment E, q(E) = π11 · u11− π2m · u2m satisfies the
following: When q(E) ≤ u11 − u2m, E has Pattern 1 in Table 2, where π11 = (q(E) + u2m)/u11. When
q(E) > u11 − u2m, E has Pattern 2 in Table 2, where π2m = (u11 − q(E))/u2m.

Observation 4. [BBS18] For any semi-informative experiment E, and any θ ∈ [0, 1], V ∗θ (E) = θq(E) +
u2m + min{u11 − u2m − q(E), 0} (recall that u11 ≥ u2m = 1).

C.1 Proof of Lemma 4

Lemma 17. There exists a responsive-IC and IR mechanismM that satisfies both of the following properties:

1. Every experiment ofM only recommends the fully informative actions. Formally, πij(M(θ)) = 0, for
all θ ∈ Θ, i ∈ {1, 2}, 2 ≤ j ≤ m− 1.

2. REV(M) = OPT∗.

Proof. Fix any responsive-IC and IR mechanismM, any experiment E thatM offers, any action ` such that
2 ≤ ` ≤ m−1, and any state i = 1, 2. Suppose πi`(E) is not zero. We modifyE to get another experimentE′

by moving all the probability mass from πi`(E) to πi1(E) and πim(E) in a proper way, such that the modified
mechanism generates the same revenue. LetM∗ be an optimal responsive-IC and IR mechanism. We show
how to modify its experiments E to obtain a responsive-IC and IR menu that satisfies both properties in the
statement.

For any θ ∈ [0, 1], recall that V ∗θ (E) is the agent’s value for experiment E if she follows the recommen-
dation:

V ∗θ (E) = θ
∑
j∈[m]

π1j(E)u1j + (1− θ)
∑
j∈[m]

π2j(E)u2j
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Let Uθ(E) = V ∗θ (E)− t(E) be her utility for E when following the recommendation. We only consider
moving the probability mass from π2`(E) to π21(E) and π2m(E). The case where we move the probability
mass of π1`(E) follows from a similar argument.

Without loss of generality, assume ε = π2`(E) > 0. We move ε1 mass from π2`(E) to π21(E) and ε2

mass from π2`(E) to π2m(E). Both ε1 and ε2, which satisfy ε1 + ε2 = ε, will be determined later. Let E′

be the modified experiment, and we keep its price as t(E). For every θ, we show how to choose ε1 and ε2

appropriately so that Uθ(E′) = Uθ(E).

Uθ(E
′)− Uθ(E) = (1− θ)

∑
j∈[m]

(π2j(E
′)− π2j(E))u2j

= (1− θ) · (ε1(u21 − u2`) + ε2(u2m − u2`))

Here the first equality follows from π1j(E
′) = π1j(E),∀j ∈ [m]. Now choose ε1, ε2 such that ε1+ε2 = ε

and ε1(u2` − u21) = ε2(u2m − u2`). In other words,

ε1 =
(u2m − u2`)ε

(u2` − u21) + (u2m − u2`)
, ε2 =

(u2` − u21)ε

(u2` − u21) + (u2m − u2`)

Notice that since u21 < u2` < u2m we have that ε1, ε2 > 0. With the choices of ε1, ε2, we have Uθ(E) =
Uθ(E

′),∀θ ∈ [0, 1]. Thus, the modified mechanism is still responsive-IC and IR and has the same revenue. We
modifyM∗ by applying the above procedure to every experiment E offered byM∗, every ` ∈ {2, ...,m− 1}
, and every state i = 1, 2. LetM′ be the mechanism after the modification. ThenM′ is responsive-IC and IR
and satisfies both properties in the statement.

Due to Lemma 17, we can focus on responsive-IC and IR mechanisms that only recommend fully informa-
tive actions. Let C2 be the set of all such mechanisms. For ease of notation, we denote an experiment offered

by the mechanism E =

(
π11 1− π11

1− π2m π2m

)
. Note that V ∗θ (E) = θu11 · π11(E) + (1− θ)u2m · π2m(E).

Proof of Lemma 4: LetM be an arbitrary mechanism in C2. Let E be any experiment offered byM, such
that π11 < 1 and π2m < 1. Without loss of generality, assume that (1− π11)u11 ≤ (1− π2m)u2m. The other
case is similar. Let ε1 = 1−π11 and ε2 = u11

u2m
·ε1. By our assumption, ε2 ≤ 1−π2m. We modify experiment

E and its price t(E) in the following way: Move probability mass ε1 from π1m to π11, and move probability
mass ε2 from π21 to π2m. Denote E′ the modified experiment. Since π11 + ε1 = 1, we have

E′ =

(
1 0

1− π2m − ε2 π2m + ε2

)
.

Consider the mechanism M̂ where we replace E by E′ and let the price of experiment E′ be t(E′) :=

t(E) + ε2 · u2m. Formally, for every θ such thatM(θ) = E, define M̂(θ) = E′ and the payment t′(θ) =

t(θ) + ε2 · u2m. For any other types, M̂ offers the same experiment with the same price as offered byM.
For any θ, we have that

V ∗θ (E′)− V ∗θ (E) = θu11 · (π11(E′)− π11(E)) + (1− θ)u2m · (π2m(E′)− π2m(E))

= θε1 · u11 + (1− θ)ε2 · u2m = ε2 · u2m.

Hence, we can immediately see that for every type θ, the agent’s utility for experiment E′ at price t(E′)) is
the same as the agent’s utility for experiment E at price t(E). SinceM is responsive-IC and IR, M̂ is also
responsive-IC and IR. Moreover, we have that REV(M̂) ≥ REV(M). By repeating this procedure for all
the experiments in the optimal mechanism M′ ∈ C2, we can construct a mechanism M∗ ∈ C′2, such that
REV(M∗) ≥ REV(M′). By Lemma 17, REV(M′) = OPT∗. Thus REV(M∗) = OPT∗. 2
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C.2 Proof of Lemma 5

We begin with necessity. For every θ, let E(θ) be the experiment that corresponds to q(θ) (Observation 3).
For any two types θ1, θ2 ∈ [0, 1], where θ2 > θ1, we have

V ∗θ1(E(θ1))− t(θ1) ≥ V ∗θ1(E(θ2))− t(θ2)

V ∗θ2(E(θ2))− t(θ2) ≥ V ∗θ2(E(θ1))− t(θ1)

Adding up both inequalities obtains

V ∗θ1(E(θ1)) + V ∗θ2(E(θ2)) ≥ V ∗θ1(E(θ2)) + V ∗θ2(E(θ1)) (8)

By Observation 4, for every θ, θ′ ∈ [0, 1],

V ∗θ (E(θ′)) =

{
θ · q(θ′) + u2m, if q(θ′) ≤ u11 − u2m

(θ − 1) · q(θ′) + u11, if q(θ′) > u11 − u2m

If both q(θ1) and q(θ2) are at most u11 − u2m, Inequality (8) ⇐⇒ (θ1 − θ2)(q(θ1)− q(θ2)) ≥ 0 ⇐⇒
q(θ1) ≤ q(θ2). Similarly, when both q(θ1) and q(θ2) are greater than u11−u2m, we also have q(θ1) ≤ q(θ2).

Without loss of generality, the only remaining case is when q(θ2) ≤ u11 − u2m < q(θ1). Inequality (8) is
equivalent to

(θ1 − 1)q(θ1) + u11 + θ2 · q(θ2) + u2m ≥ θ1 · q(θ2) + u2m + (θ2 − 1) · q(θ1) + u11

⇐⇒ (θ1 − θ2)(q(θ1)− q(θ2)) ≥ 0,

which contradicts with θ1 < θ2. Hence, q(θ1) ≥ q(θ2) and q(θ) is non-decreasing in θ.
For every θ ∈ [0, 1], let U∗(θ) = V ∗θ (E(θ)) − t(θ) be the agent’s utility by reporting truthfully and

following the recommendation of the experiment. Let θ∗ = sup{θ : q(θ) ≤ u11 − u2m}. Assume q(θ∗) ≤
u11 − u2m.13 When θ ∈ [0, θ∗], U∗(θ) = θ · q(θ) + u2m − t(θ) is a quasilinear function, and by Myerson’s
theory [Mye81],M is responsive-IC implies that U∗(θ) = U∗(0) +

∫ θ
0 q(x)dx. Thus

t(θ) = V ∗θ (E(θ))− U∗(θ) = θ · q(θ) + u2m − U∗(0)−
∫ θ

0
q(x)dx (9)

Similarly, for all θ ∈ (θ∗, 1], we have U∗(θ) = U∗(1)−
∫ 1
θ q(x)dx. Hence

t(θ) = (θ − 1) · q(θ) + u11 − U∗(1) +

∫ 1

θ
q(x)dx (10)

According to Equation (9), when θ = 0, t(0) = u2m − U∗(0) ≥ 0. SinceM is IR, U∗(0) ≥ u2m. Thus
U∗(0) = u2m. Similarly, by Equation (10) we have U∗(1) = u11.

When the agent has type θ∗ and misreports to θ′ > θ∗, responsive-IC implies that

V ∗θ∗(E(θ′))− t(θ′) =(θ∗ − θ′) · q(θ′) + u11 −
∫ 1

θ′
q(x)dx

≤U∗(θ∗) = u2m +

∫ θ∗

0
q(x)dx

13The other case follows from a similar argument, where we replace both intervals [0, θ∗], (θ∗, 1] by [0, θ∗), [θ∗, 1].

27



Let θ′ → θ∗
+

, 14 we have
∫ 1

0 q(x)dx ≥ u11 − u2m. Similarly, when the agent has type θ′ > θ∗ and
misreports to θ∗, responsive-IC implies that

V ∗θ′(E(θ∗))− t(θ∗) =(θ′ − θ∗) · q(θ∗) + u2m +

∫ θ∗

0
q(x)dx

≤U∗(θ′) = u11 −
∫ 1

θ′
q(x)dx

Let θ′ → θ∗
+

, we have
∫ 1

0 q(x)dx ≤ u11 − u2m. Thus
∫ 1

0 q(x)dx = u11 − u2m. Now it’s easy to verify
that t(θ) satisfies Equation (4). Thus for every θ, U∗(θ) = V ∗θ (E(θ))− t(θ) = u2m +

∫ θ
0 q(x)dx. The third

property directly follows from the fact thatM is IR.
For sufficiency, suppose q satisfies all of the properties in the statement, construct the payment t using

Equation (4). Then by Observation 4, for every true type θ, misreporting to type θ′ induces utility

V ∗θ (E(θ′))− t(θ′) = (θ − θ′) · q(θ′) + u2m +

∫ θ′

0
q(x)dx

Since q(θ′) is non-decreasing, it is not hard to see that the utility is maximized when θ′ = θ. Thus the
mechanism is responsive-IC. Moreover, the utility for reporting truthfully her type θ is u2m +

∫ θ
0 q(x)dx.

Thus by property 3, the mechanism is IR.

C.3 Proof of Lemma 6

By Lemma 5, for any q that can be implemented with some responsive-IC and IR mechanismM, the revenue
ofM can be written as follows:

REV(M) =

∫ 1

0
t(θ)f(θ)dθ =

∫ 1

0

(
θ · q(θ) + min{u11 − u2m − q(θ), 0} −

∫ θ

0
q(x)dx

)
f(θ)dθ

=

∫ 1

0
[θf(θ)q(θ) + min{(u11 − u2m − q(θ))f(θ), 0}]dθ −

∫ 1

0

∫ θ

0
q(x)dxdF (θ)

=

∫ 1

0
[θf(θ)q(θ) + min{(u11 − u2m − q(θ))f(θ), 0}]dθ − F (θ)

∫ θ

0
q(x)dx

∣∣∣1
0

+

∫ 1

0
q(θ)F (θ)dθ

=

∫ 1

0
[(θf(θ) + F (θ))q(θ) + min{(u11 − u2m − q(θ))f(θ), 0}]dθ−(u11 − u2m)

Thus the optimal mechanismM∗ ∈ C′2 is captured by the optimization problem in Figure 7. Notice that
there is an IR constraint for every type θ in Figure 7. To bound the size of the optimal responsive-IC and
IR mechanism, we propose an equivalent optimization problem that only contains O(m) constraints. Recall
that for every θ ∈ [0, 1], u(θ) = maxk∈[m]{θ · u1k + (1 − θ) · u2k}. For every k ∈ [m], let hk(θ) =
θ · u1,m+1−k + (1 − θ) · u2,m+1−k = θ · `k + u2,m+1−k, ∀θ ∈ [0, 1] be the agent’s value function when she
has no additional information, and follows action m+ 1− k. Recall that `k = u1,m+1−k − u2,m+1−k is also
the slope of the k-th piece (from the left) of the IR curve.

Given any feasible solution {q(θ)}θ∈[0,1] of the program in Figure 7, the IR constraint at type θ is equiv-
alent to: u2m +

∫ θ
0 q(x)dx ≥ hk(θ),∀k ∈ [m]. For every k ∈ [m], let θk := sup{θ ∈ [0, 1] : q(θ) ≤ `k}.

Consider the following function

u2m +

∫ θ

0
q(x)dx− hk(θ) = u2m +

∫ θ

0
q(x)dx− θ · `k − u2,m+1−k

14a→ b+ means that a approaches b from the right.
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sup
∫ 1

0
[(θf(θ) + F (θ))q(θ) + min{(u11 − u2m − q(θ))f(θ), 0}]dθ

s.t. q(θ) is non-decreasing in θ ∈ [0, 1]

q(0) ≥ −u2m, q(1) ≤ u11∫ 1

0
q(θ)dθ = u11 − u2m

u2m +

∫ θ

0
q(x)dx ≥ u(θ), ∀θ ∈ [0, 1]

Figure 7: The Optimization Problem with Explicit IR constraints

By taking the derivative on θ, we can see that the above function is minimized at θk, as q(θ) ≤ `k for all
θ < θk and q(θ) > `k for all θ > θk. Thus the set of constraints

{
u2m +

∫ θ
0 q(x)dx ≥ hk(θ),∀θ ∈ [0, 1]

}
is

captured by a single constraint u2m +
∫ θk

0 q(x)dx ≥ hk(θk). We notice that θk =
∫ 1

0 1[q(x) ≤ `k]dx. By the
definition of hk, the constraint can be rewritten as∫ 1

0
(q(x)− `k) · 1[q(x) ≤ `k]dx ≥ u2,m+1−k − u2m (11)

A feasible q must satisfy that q(θ) ∈ [−u2m, u11] and
∫ 1

0 q(x)dx = u11 − u2m. Also `1 = −u2m, `m =
u11. Thus, Inequality (11) is trivial when k = 1 or m. In our modified optimization problem, we only include
the constraints for 2 ≤ k ≤ m− 1.

Proof of Lemma 6:
It suffices to show that: A solution q = {q(θ)}θ∈[0,1] is feasible in the optimization problem in Figure 7 if

and only if it is feasible in the optimization problem in Figure 3.
We denote Q the optimization problem in Figure 7 and Q′ the optimization problem in Figure 3. Suppose

q is feasible in Q. For every k ∈ [m], let θk = sup{θ ∈ [0, 1] : q(θ) ≤ `k}. Then since θk =
∫ 1

0 1[q(θ) ≤
`k]dx, we have ∫ 1

0
(q(x)− `k) · 1[q(x) ≤ `k]dx =

∫ θk

0
q(x)dx− θk`k

≥ u(θk)− u2m − θk`k ≥ u2,m+1−k − u2m

Here the first inequality follows from the IR constraint of program Q at type θk, and the second inequality
follows from the definition of the IR curve u(·). Thus q is feasible in Q′.

For the other direction, suppose q is feasible for Q′. For every k ∈ [m], consider the following function
Hk : [0, 1]→ R, where H(θ) :=

∫ θ
0 q(x)dx− θ · `k. Since q(θ) is non-decreasing in θ, Hk(θ) is minimized

at θ = θk = sup{θ ∈ [0, 1] : q(θ) ≤ `k}. We notice that the last constraint of Q′ implies that Hk(θk) ≥
u2,m+1−k − u2m for all k ∈ {2, 3, ...,m− 1}. It is not hard to verify that the inequality also holds for k = 1
and k = m. When k = 1, the inequality is trivial when q(0) > −u2m. If q(0) = −u2m, since `1 = −u2m

and q(θ) ∈ [−u2m, u11], ∀θ ∈ [0, 1], thus q(θ) = −u2m,∀θ ∈ [0, θ1]. Thus H1(θ1) = 0 = u2m−u2m. When
k = m, since θm = 1 and `m = u11, Hm(θm) = u11 − u2m − u11 = u21 − u2m.
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Thus for every k ∈ [m], θ ∈ [0, 1], we have∫ θ

0
q(x)dx− θ · `k ≥ u2,m+1−k − u2m

Since u(θ) = maxk∈[m]{θ · `k + u2,m+1−k}, we have
∫ θ

0 q(x)dx ≥ u(θ) − u2m. Thus q is feasible for
Q. 2

Proof of Theorem 3: By Lemma 7, letM∗ be the optimal semi-informative, responsive-IC and IR mechanism
with option size at most 3m− 1. By Lemma 4, REV(M∗) = OPT∗ ≥ OPT. By Lemma 3, there exists
a menu M that contains only the fully informative experiment, such that REV(M) ≥ REV(M∗)

3m−1 . Thus,
FREV ≥ OPT

3m−1 . 2

C.4 Proof of Lemma 7

We first consider the case whereD is a discrete distribution. For simplicity we assume that 0 ∈ SUPP(D). Let
SUPP(D) = {θ1, . . . , θN}, where 0 = θ1 < θ2 < . . . < θN ≤ 1 and N is the size of the support. For every
i ∈ N , denote fi the density of type θi. For ease of notations, we denote θN+1 = 1. The optimization problem
in Figure 3 w.r.t. the discrete distribution D is shown in Figure 8. 15 The set of variables in the program is
{qi}i∈[N ]. Denote P(D) (or P when D is clear from context) the optimization problem in Figure 8.

max
N∑
i=1

qi ·
θi · fi + (θi+1 − θi) ·

i∑
j=1

fj

+ min {(u11 − u2m − qi) · fi, 0}


s.t. (1) qi ≤ qi+1, ∀i ∈ [N − 1]

(2) q1 ≥ −u2m, qN ≤ u11

(3)

N∑
i=1

qi · (θi+1 − θi) = u11 − u2m

(4)
N∑
i=1

min{qi − `k, 0} · (θj+1 − θj) ≥ u2,m+1−k − u2m, ∀k ∈ {2, 3, ...,m− 1}

Figure 8: The Optimal Responsive-IC and IR Mechanism for Discrete Distribution D

Our goal is to turn the program P(D) into a collection of LPs, so that the highest optimum among
the collection of LPs correspond to the optimum of P(D). Each LP is parametrized by a vector (i∗, i =
{i2, . . . , im−1}), and finds the optimal solution among all (q1, . . . , qN )’s that satisfies the following condi-
tions:

1. qi ≤ u11 − u2m for all i < i∗ and qi ≥ u11 − u2m for all i ≥ i∗.

2. qi ≤ `k for all i < ik and qi ≥ `k for all i ≥ ik for all k ∈ {2, . . . ,m − 1}. Recall that `k =
u1,m+1−k − u2,m+1−k.

15For any solution {qi}i∈[N ], the problem in Figure 8 is clearly equivalent to the problem in Figure 3 where q(·) : [0, 1] →
[−u2m, u11] is defined as q(θ) = qi, ∀i ∈ [N ], θ ∈ [θi, θi+1).
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The reason that we consider solutions that satisfy these conditions is that now the objective and constraint
(4) are linear. In particular, the objective becomes

N∑
i=1

qi ·

θi · fi + (θi+1 − θi) ·
i∑

j=1

fi

+

N∑
i=i∗+1

(u11 − u2m − qi) · fi.

Constraint (4) becomes

ik∑
j=1

(qj − `k) · (θj+1 − θj) ≥ u2,m+1−k − u2m.

To further simplify the program, we introduce variables q̂i = qi+1 − qi,∀i ∈ [N − 1], and replace qi with
q1 +

∑i−1
j=1 q̂j ,∀i ∈ [N ]. The monotonicity constraint of P is thus captured by all q̂i’s being non-negative. See

Figure 9 for the LP we construct. In particular, constraint (1) corresponds to constraint (2) of P; Constraint
(2) corresponds to constraint (3) of P . Constraints (3) and (4) follow from the definition of i∗. Constraints
(5) and (6) follow from the definition of ik, and (7) corresponds to constraint (4) of P . In the LP in Figure 9,
both i∗ and i = {ik}2≤k≤m−1 are fixed parameters. We denote P ′(D, i∗, i) the LP with those parameters.

max
N∑
i=1

(q1 +
i−1∑
j=1

q̂j) · (θifi + (θi+1 − θi) ·
i∑

r=1

fr) +
N∑

i=i∗+1

(u11 − u2m − q1 −
i−1∑
j=1

q̂j) · fi

s.t. (1) q1 ≥ −u2m, q1 +

N−1∑
j=1

q̂j ≤ u11

(2)
N∑
i=1

(q1 +
i−1∑
j=1

q̂j) · (θi+1 − θi) = u11 − u2m

(3) q1 +
i∗−1∑
j=1

q̂j ≤ u11 − u2m

(4) q1 +

i∗∑
j=1

q̂j ≥ u11 − u2m

(5) q1 +

ik−1∑
j=1

q̂j ≤ u1,m+1−k − u2,m+1−k, ∀k ∈ {2, 3, . . . ,m− 1}

(6) q1 +

ik∑
j=1

q̂j ≥ u1,m+1−k − u2,m+1−k, ∀k ∈ {2, 3, . . . ,m− 1}

(7)

ik∑
j=1

(q1 +

j−1∑
r=1

q̂r − `k) · (θj+1 − θj) ≥ u2,m+1−k − u2m, ∀k ∈ {2, 3, . . . ,m− 1}

q̂i ≥ 0, ∀i ∈ [N − 1]

Figure 9: The Linear Program with Parameters (i∗, i)

We first show in Lemma 18 that the LP has an optimal solution q̂ = (q1, {q̂i}i∈[N−1]) such that all but
(3m− 1) q̂i’s are zero, for any discrete distribution D and any set of parameters (i∗, i). We notice that it
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implies that the corresponding q = {qi}i∈[N ] takes at most 3m− 1 different values, which then implies that
the mechanism contains at most 3m− 1 different options.

Lemma 18. For any integer N and set of parameters (i∗, i) where each parameter is in [N ], if P ′(D, i∗, i)
is feasible, then there exists an optimal solution of P ′(D, i∗, i), denoted as (q∗1, {q̂∗i }i∈[N−1]), such that |{i ∈
[N − 1] : q̂∗i > 0}| ≤ 3m− 1.

Proof. The LP contains N variables (q1 is unconstrained), 1 equality constraint, and 4 + 3(m− 2) = 3m− 2
inequality constraints. We add slack variables to change the LP into the canonical form max{cTx : Ax =
b,x ≥ 0}. In particular, we replace variable q1 by two non-negative variables q+

1 , q
−
1 such that q1 = q+

1 −q
−
1 .

For each inequality constraints, we add one slack variable and make the constraint an equality.
Now, we have a canonical form LP, with N + 3m − 1 variables, and 3m − 1 equality constraints. Thus

by the Fundamental Theorem of linear programming, if P ′(D, i∗, i) is feasible, any basic feasible solution
in the canonical-form LP has at most 3m− 1 non-zero entries. Since there must be an optimal solution of
P ′(D, i∗, i) that correspond to a basic feasible solution, so it must have at most 3m− 1 non-zero entries.

Proof of Lemma 7: We first prove the case when D is a discrete distribution. Let OPT′ be the maximum
objective, over all parameters (i∗, i), and all feasible solutions of P ′(D, i∗, i).

Claim 1. For any discrete distribution D = ({θi}i∈[N ], {fi}i∈[N ]), a solution q = {qi}i∈[N ] is feasible for
P(D) if and only if there exists parameters (i∗, i) such that the solution q̂ = (q1, {q̂i}i∈[N−1]) is feasible for
P ′(D, i∗, i). Here q̂i = qi+1 − qi, ∀i ∈ [N − 1]. Moreover, OPT′ = OPT∗.

Proof. Suppose q is feasible for P(D). Let i∗ = max{i ∈ [N ] : qi ≤ u11 − u2m}. For every k ∈
{2, . . . ,m − 1}, let ik = max{i ∈ [N ] : qi ≤ `k}. We verify that q̂ satisfies all constraints of P ′(D, i∗, i).
Constraints (1), (2) follow from constraints (2), (3) of P(D) accordingly. Constraints (3)-(6) follow from the
definition of i∗ and all ik’s. Constraint (7) follows from the definition of ik and (4) of P(D). Moreover, by
the definition of i∗ and the fact that qi = q1 +

∑i−1
j=1 q̂i, ∀i ∈ [N ], the objective of solution q in P(D) is equal

to the objective of solution q1 and q̂ in P ′(D, i∗, i). Choosing q as the optimal solution for P(D) implies that
OPT∗ ≤ OPT′.

On the other hand, suppose q̂ is feasible for P ′(D, i∗, i) for some parameters (i∗, i). For every i ∈
{2, . . . , N}, define qi = q1 +

∑i−1
j=1 q̂i. We verify that q is feasible for P(D). Constraint (1) holds as all

q̂i’s are non-negative; Constraints (2) and (3) follow from constraints (1) and (2) of P ′(D, i∗, i) accordingly;
Constraint (4) follows from constraints (5)-(7) of P ′(D, i∗, i). Similarly, according to constraints (3) and (4)
of P ′(D, i∗, i) and the fact that qi = q1 +

∑i−1
j=1 q̂i, ∀i ∈ [N ], the objective of solution q̂ in P ′(D, i∗, i)

is equivalent to the objective of solution q in P(D). Thus by choosing q̂ as the optimal solution among
all parameters (i∗, i) and all feasible solutions of P ′(D, i∗, i), we have OPT′ ≤ OPT∗. Hence, OPT′ =
OPT∗.

By Lemma 18 and the definition of OPT′, there exist a set of parameters (i∗, i) as well as a feasible
solution q̂ of P ′(D, i∗, i) such that: (i) the solution q̂ achieves objective OPT′ in the program P ′(D, i∗, i);
(ii) |{i ∈ [N − 1] : q̂∗i > 0}| ≤ 3m− 1. By Claim 1 and property (i), the corresponding q is the optimal
solution of P(D). By property (ii), there are at most 3m− 1 different values among {qi}i∈[N ]. Let M =
{(qi, ti)}i∈[N ] ∈ C′2 be the responsive-IC and IR mechanism that implements q. According to Equation (4)
and the fact that qi ≤ qi+1, ∀i ∈ [N − 1], ti = tj for all i, j such that qi = qj . ThusM has option size at
most 3m− 1.

Next we prove the case for continuous distributions.
We consider a discretization of the continuous interval [0, 1]. Let N ≥ 2 be any integer and ε = 1

N .
We consider the discretized space {0, ε, 2ε, ..., (N − 1)ε}. We denote by D(N) the discretized distribution of
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D, and {f (N)
i }i∈[N ], {F

(N)
i }i∈[N ] the pdf and cdf of D(N). Formally, F (N)

i = F (iε), and f (N)
i = F (iε) −

F ((i− 1)ε), ∀i ∈ [N ].
Denote S = {q : [0, 1] → [−u2m, u11] : q(·) is non-decreasing}. For every N and every q ∈ S,

denote hN (q) the objective of the program in Figure 8 under solution {q((i− 1)ε)}i∈[N ], with respect to the
distribution D(N). Formally,

hN (q) =
N∑
i=1

[
q((i− 1)ε) · ((i− 1)ε · f (N)

i + ε · F (N)
i ) + min{(u11 − u2m − q((i− 1)ε)) · f (N)

i , 0}
]

For every q ∈ S, denote h(q) the objective of the program in Figure 3 under solution q, with respect to
the continuous distribution D, i.e.,

h(q) =

∫ 1

0
[(θf(θ) + F (θ))q(θ) + min{(u11 − u2m − q(θ))f(θ), 0}]dθ

Claim 2. hN (·) uniformly converges to h(·) on S, i.e., for every δ > 0 there exists N0 ∈ N such that
|hN (q)− h(q)| < δ, ∀N ≥ N0, q ∈ S.

Proof. Fix any δ > 0. Fix any q ∈ S. Consider the term

A
(N)
1 (q) =

N∑
i=1

[
q((i− 1)ε) · ((i− 1)ε · f (N)

i + ε · F (N)
i )

]
−
∫ 1

0
(θf(θ) + F (θ))q(θ)dθ

=

N∑
i=1

[
q((i− 1)ε) · (iε · F (iε)− (i− 1)ε · F ((i− 1)ε))−

∫ iε

(i−1)ε
(θf(θ) + F (θ))q(θ)dθ

]

Here the second equality follows from the definition of f (N)
i , F

(N)
i . For every i ∈ [N ], since q(·) is

non-decreasing,∫ iε

(i−1)ε
(θf(θ) + F (θ))q(θ)dθ ≥ q((i− 1)ε) · (θF (θ))

∣∣∣∣iε
θ=(i−1)ε

= q((i− 1)ε) · (iε · F (iε)− (i− 1)ε · F ((i− 1)ε))

Thus A(N)
1 (q) ≤ 0. On the other hand, for every i ∈ [N ], similarly we have∫ iε

(i−1)ε
(θf(θ) + F (θ))q(θ)dθ ≤ q(iε) · (iε · F (iε)− (i− 1)ε · F ((i− 1)ε))

Thus

A
(N)
1 (q) ≥

N∑
i=1

(q((i− 1)ε)− q(iε)) · (iε · F (iε)− (i− 1)ε · F ((i− 1)ε))

≥ max
i∈[N ]
{iε · F (iε)− (i− 1)ε · F ((i− 1)ε)} · (q(0)− q(1))

≥ −2u11 ·max
i∈[N ]
{iε · F (iε)− (i− 1)ε · F ((i− 1)ε)}

Here the last inequality follows from q(0) ≥ −u2m ≥ −u11 and q(1) ≤ u11. Since F is continuous on the
closed interval [0, 1], the function θ · F (θ) is continuous on [0, 1] and thus it is uniformly continuous. Hence
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there exists N1 ∈ N such that maxi∈[N ]{iε · F (iε) − (i − 1)ε · F ((i − 1)ε)} < δ
4u11

,∀N ≥ N1. Thus

A
(N)
1 (q) > − δ

2 .
Now consider the other term

A
(N)
2 (q) =

N∑
i=1

min{(u11 − u2m − q((i− 1)ε)) · f (N)
i , 0} −

∫ 1

0
min{(u11 − u2m − q(θ))f(θ), 0}dθ

=

N∑
i=1

[
f

(N)
i ·min{q̄((i− 1)ε), 0} −

∫ iε

(i−1)ε
min{q̄(θ), 0}f(θ)dθ

]
,

where q̄(θ) = u11 − u2m − q(θ) ∈ [−u2m, u11] is non-increasing on θ. For every i ∈ [N ], we denote Ti the
i-th term in the sum. Let θ∗ = sup{θ ∈ [0, 1] : q̄(θ) ≤ 0} and i∗ = max{i ∈ [N ] : (i− 1)ε ≤ θ∗ < iε}.

When i < i∗, since q̄(·) is non-increasing and f (N)
i = F (iε)− F ((i− 1)ε),

Ti ≥ f (N)
i · q̄((i− 1)ε)− q̄((i− 1)ε) ·

∫ iε

(i−1)ε
f(θ)dθ = 0

Ti ≤ f (N)
i · [q̄((i− 1)ε)− q̄(iε)]

When i > i∗. Clearly Ti = 0. When i = i∗,

|Ti∗ | =

∣∣∣∣∣f (N)
i∗ · q̄((i

∗ − 1)ε)−
∫ θ∗

(i∗−1)ε
q̄(θ)f(θ)dθ

∣∣∣∣∣ ≤ 2u11 · f (N)
i∗ ,

where the inequality follows from the fact that |q̄(θ)| ≤ max{u11, u2m} = u11, ∀θ ∈ [0, 1] and that F (θ∗)−
F ((i∗ − 1)ε) ≤ f (N)

i∗ . Thus

|A(N)
2 (q)| ≤

∣∣∣∣∣
i∗−1∑
i=1

Ti

∣∣∣∣∣+ |Ti∗ | ≤

∣∣∣∣∣
i∗−1∑
i=1

f
(N)
i · [q̄((i− 1)ε)− q̄(iε)]

∣∣∣∣∣+ 2u11 · f (N)
i∗

≤ (|q̄((i− 1)ε)− q̄(0)|+ 2u11) ·max
i∈[N ]

f
(N)
i

≤ 4u11 ·max
i∈[N ]

f
(N)
i

Since F (·) is uniformly continuous on [0, 1], there exists N2 ∈ N such that maxi f
(N)
i = maxi(F (iε) −

F ((i− 1)ε)) < δ
8u11

,∀N ≥ N2. Thus |A(N)
2 (q)| < δ

2 .
Combining everything together, for every N ≥ N0 = max{N1, N2}, for every q ∈ S, we have

|hN (q)− h(q)| = |A(N)
1 (q) +A

(N)
2 (q)| < δ

2
+
δ

2
= δ

Thus hN (·) uniformly converges to h(·) on S.

Back to the proof of Lemma 7. Denote Pcont the program in Figure 3 and OPT∗ the supremum of the
objective over all feasible solutions of Pcont. We first argue that there exists a feasible solution q∗ whose
objective h(q∗) equals to OPT∗.

Claim 3. There exists a feasible solution q∗ to Pcont, whose objective h(q∗) equals to OPT∗.
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Proof. Let {q∗`}`∈N+ be a sequence of feasible solutions such that lim`→∞ h(q∗` ) = OPT∗. We notice that
for every `, the feasible solution q∗` (·) is a non-decreasing function mapping [0, 1] to a bounded interval
[−u2m, u11]. Thus {q∗`}`∈N+ is a sequence of non-decreasing functions and it’s uniformly-bounded. By
Helly’s selection theorem (see for instance [AFP00, BP12]), there exists a subsequence {q∗`i}i∈N+ and a
function q∗ : [0, 1]→ [−u2m, u11] such that {q∗`i}i pointwisely converges to q∗.

For every θ ∈ [0, 1] and q ∈ [−u2m, u11], define

G(θ, q) = (θf(θ) + F (θ))q + min{(u11 − u2m − q)f(θ), 0} (12)

For every θ ∈ [0, 1], i ∈ N+, define gi(θ) = G(θ, q∗`i(θ)) and g(θ) = G(θ, q∗(θ)). Then since G(θ, q) is
continuous on q for every θ, {gi}i∈N+ pointwisely converges to g. Moreover, define ḡ(θ) = u11 · (θf(θ) +
F (θ) + f(θ)) ≥ 0,∀θ ∈ [0, 1]. Then ḡ(·) is integrable in [0, 1]. And for every i and θ, since q∗`i(θ) ∈
[−u2m, u11] and u11 ≥ u2m, we have |gi(θ)| ≤ ḡ(θ). Thus by the dominated convergence theorem,

OPT∗ = lim
i→∞

h(q∗`i) = lim
i→∞

∫ 1

0
gi(θ)dθ =

∫ 1

0
( lim
i→∞

gi(θ))dθ =

∫ 1

0
g(θ)dθ = h(q∗)

It remains to verify that q∗ is a feasible solution to Pcont. Since {q∗`i}i is a sequence of feasible solutions,
all constraints in Pcont hold for q∗`i . For every inequality, we take the limit i→∞ on both sides. Constraints
(1), (2) hold for q∗ since {q∗`i}i pointwisely converges to q∗. In order for constraints (3) and (4) to hold for
q∗, it’s sufficient to argue that we can swap the limit and integral for both inequalities. This is because for
every i and θ, we have |q∗`i(θ)| ≤ u11 and |(q∗`i(θ) − `k) · 1[q∗`i(θ) ≤ `k]| ≤ |q∗`i(θ)| + |`k| ≤ 2u11 (recall
that |`k| = |u1,m+1−k − u2,m+1−k| ≤ max{u11, u2m} = u11). Thus by the dominated convergence theorem,
constraints (3) and (4) both hold for q∗. Thus q∗ is feasible for Pcont.

For every N ≥ 2, denote OPTN the optimum of P(D(N)), the program in Figure 8 with respect to
the distribution D(N). By Lemma 18 and Claim 1, there exists a set of parameters (i∗, i) and a feasible
solution (q

(N)
1 , {q̂(N)

i }i∈[N−1]) to P ′(D(N), i∗, i) such that: (i) the solution has objective exactly OPTN , and

(ii) |{i ∈ [N − 1] : q̂∗i > 0}| ≤ 3m− 1. For every i ∈ {2, . . . , N}, let q(N)
i = q

(N)
1 +

∑i−1
j=1 q̂

(N)
j . Define

q(N) : [0, 1]→ [−u2m, u11] as follows: q(N)(θ) = q
(N)
i , ∀i ∈ [N ], θ ∈ [(i−1)ε, iε), and q(N)(1) = q

(N)
N . By

Claim 1, {q(N)((i− 1)ε)}i∈[N ] is a feasible solution to program P(D(N)). Moreover, hN (q(N)) = OPTN .

For every i ∈ [N ], by Claim 1, {q(N)
i }i∈[N ] is a feasible solution to P(D(N)). By the definition of q(N),

it’s not hard to verify that q(N) is a feasible solution to Pcont. By property (ii), Im(q) = {q(θ) : θ ∈ [0, 1]},
the image of q(·), has size at most 3m− 1. Let n = 3m− 1 and S ′ ⊆ S be the set of all feasible solutions q
to Pcont such that |Im(q)| ≤ n. We notice that there is a mapping Φ from every q ∈ S ′ to a set of (2n − 1)
real numbers ξ = ({θi}i∈[n−1], {qi}i∈[n]) such that q(θ) = qi, ∀i ∈ [n], θ ∈ [θi−1, θi) and q(1) = qn. Here
θ0 = 0, θn = 1.

Let T be the set of ξ’s that satisfy all of the following properties:

1. 0 ≤ θ1 ≤ . . . ≤ θn−1 ≤ 1.

2. −u2m ≤ q1 ≤ . . . ≤ qn ≤ u11.

3.
∑n

i=1(θi − θi−1) · qi = u11 − u2m.

4.
∑n

i=1(θi − θi−1) · (qi − `k) · 1[qi ≤ `k] ≥ u2,m+1−k − u2m, ∀k ∈ {2, 3, . . . ,m− 1}.

Then it’s not hard to verify that Φ is an 1-1 mapping from S ′ to T . Denote Φ−1 the inverse of Φ. Moreover,
since every constraint above is either equality or non-strict inequality among the sum and product of numbers
({θi}i∈[n−1], {qi}i∈[n]), thus T is a closed subset of R2n−1. Thus T is a compact space under the L∞-norm.
Therefore, the sequence {Φ(q(N))}N contains a subsequence {Φ(q(N`))}`∈N+ that converges to some ξ′ ∈ T .
Let q′ = Φ−1(ξ′) ∈ S ′.
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Claim 4. lim`→∞ hN`(q(N`)) = h(q′).

Proof. Fix any δ > 0. Since both functions θF (θ) and F (θ) are continuous, there exists some η(δ) ∈ (0, δ
8n)

such that |θF (θ)− θ′F (θ′)| < δ
16n·u11

and |F (θ)− F (θ′)| < δ
16n·u11

for any θ and θ′ with |θ − θ′| < η(δ).
Since {Φ(q(N`))}`∈N+ converges to Φ(q′), then there exists `1 such that for every ` ≥ `1, ||Φ(q(N`)) −

Φ(q′)||∞ < η(δ). Denote Φ(q(N`)) = ({θ`i}i∈[n−1], {q`i}i∈[n]) and Φ(q′) = ({θ′i}i∈[n−1], {q′i}i∈[n]). Let
θ`0 = θ′0 = 0 and θ`n = θ′n = 1. We are going to bound |h(q(N`))− h(q′)|. We notice that

h(q(N`)) =
n∑
i=1

[
q`i ·
∫ θ`i

θ`i−1

(θf(θ) + F (θ))dθ + (F (θ`i )− F (θ`i−1)) ·min{u11 − u2m − q`i , 0}

]

=
n∑
i=1

[
q`i · (θ`iF (θ`i )− θ`i−1F (θ`i−1)) + (F (θ`i )− F (θ`i−1)) ·min{u11 − u2m − q`i , 0}

]
Similarly,

h(q′) =
n∑
i=1

[
q′i · (θ′iF (θ′i)− θ′i−1F (θ′i−1)) + (F (θ′i)− F (θ′i−1)) ·min{u11 − u2m − q′i, 0}

]
Since |θ`i − θ′i| < η(δ),∀i ∈ [n − 1], then for every i ∈ [n], |(θ`iF (θ`i ) − θ`i−1F (θ`i−1)) − (θ′iF (θ′i) −

θ′i−1F (θ′i−1))| < 2 · δ
16n·u11

, and |(F (θ`i )− F (θ`i−1))− (F (θ′i)− F (θ′i−1))| < 2 · δ
16n·u11

.
Since ||Φ(q(N`))− Φ(q′)||∞ < η(δ) < δ

8n , we have

|min{u11 − u2m − q`i , 0} −min{u11 − u2m − q′i, 0}| ≤ |q`i − q′i| <
δ

8n

Moreover, |q`i | ≤ u11, |min{u11 − u2m − q`i , 0}| ≤ u11 and θ′iF (θ′i) − θ′i−1F (θ′i−1) ∈ [0, 1], F (θ′i) −
F (θ′i−1) ∈ [0, 1]. Using the inequality |ab− cd| ≤ |a| · |b− d|+ |d| · |a− c| for every a, b, c, d ∈ R, we have
for every ` ≥ `1,

|h(q(N`))− h(q′)| ≤
n∑
i=1

2 · (u11 ·
δ

8n · u11
+ 1 · δ

8n
) <

δ

2

Moreover, by Claim 2, there exists `2 such that for every ` ≥ `2, |hN`(q(N`))−h(q(N`))| < δ
2 . Thus when

` ≥ max{`1, `2}, we have |hN`(q(N`))− h(q′)| ≤ |h(q(N`))− h(q′)|+ |hN`(q(N`))− h(q(N`))| < δ.

We prove h(q′) ≥ OPT∗. For every N , we construct a feasible solution of P(D(N)). For every i ∈ [N ],
let p(N)

i = 1
ε ·
∫ iε

(i−1)ε q
∗(θ)dθ (see Claim 3 for the definition of q∗). We verify that {p(N)

i }i∈[N ] is a feasible

solution to P(D(N)). Constraint (1) follows from q∗(·) being non-decreasing. For constraint (2), since q∗(·)
is non-decreasing, p(N)

1 ≥ 1
ε ·
∫ ε

0 q
∗(0)dθ = q∗(0) ≥ −u2m. Similarly p(N)

N ≤ q∗(1) ≤ u11. For constraint
(3), we have

ε ·
N∑
i=1

p
(N)
i =

N∑
i=1

∫ iε

(i−1)ε
q∗(θ)dθ =

∫ 1

0
q∗(θ)dθ = u11 − u2m

For constraint (4), for every k ∈ {2, . . . ,m− 1}. Let θk = sup{θ ∈ [0, 1] : q∗(θ) ≤ `k} and let i∗ be the

36



unique number such that (i∗ − 1)ε ≤ θk < i∗ε. Then p(N)
i ≤ `k,∀i < i∗ and p(N)

i > `k,∀i > i∗. We have

ε ·
N∑
i=1

min{p(N)
i − `k, 0} =

i∗−1∑
i=1

(∫ iε

(i−1)ε
q∗(θ)dθ − ε`k

)
+ ε ·min{p(N)

i∗ − `k, 0}

=

∫ (i∗−1)ε

0
(q∗(θ)− `k)dθ + ε ·min{p(N)

i∗ − `k, 0}

≥
∫ (i∗−1)ε

0
(q∗(θ)− `k)dθ +

∫ θk

(i∗−1)ε
(q∗(θ)− `k)dθ

=

∫ 1

0
(q∗(θ)− `k)1[q∗(θ) ≤ `k]dθ ≥ u2,m+1−k − u2m

(13)

The first inequality of Equation (13) is because: By the definition of θk,
∫ i∗ε
θk

(q∗(θ)− `k)dθ ≥ 0. Thus

ε ·min{p(N)
i∗ − `k, 0} ≥ ε · (p

(N)
i∗ − `k) =

∫ i∗ε

(i∗−1)ε
(q∗(θ)− `k)dθ ≥

∫ θk

(i∗−1)ε
(q∗(θ)− `k)dθ

The third equality of Equation (13) follows from the definition of θk. The last inequality follows from that q∗

is a feasible solution to Pcont. Thus {p(N)
i }i∈[N ] is a feasible solution to P(D(N)). Define p(N) : [0, 1] →

[−u2m, u11] as follows: p(N)(θ) = p
(N)
i ,∀i ∈ [N ], θ ∈ [(i − 1)ε, iε), and p(N)(1) = p

(N)
N . Then hN (p(N))

is exactly the objective of {p(N)
i }i∈[N ] with respect to the program P(D(N)). By the optimality of q(N),

hN (p(N)) ≤ hN (q(N)). Thus ∀` ∈ N+, hN`(p(N`)) ≤ hN`(q(N`)).
We will argue that hN`(p(N`)) converges to OPT∗ as ` → ∞. If this is true, then by taking the limit on

both sides of the above inequality, we have that OPT∗ ≤ lim`→∞ hN`(q(N`)) = h(q′), where the equality
follows from Claim 4.

Since q∗(·) is non-decreasing, for every i ∈ [N ] and θ ∈ [(i− 1)ε, iε), we have

|p(N)(θ)− q∗(θ)| = |p(N)
i − q∗(θ)| ≤ q∗(iε)− q∗((i− 1)ε).

Thus if q∗(·) is continuous at θ, then limN→∞ |p(N)(θ) − q∗(θ)| = 0. Moreover, since q∗(·) is a
monotone function in a closed interval [0, 1], the set of non-continuous points has zero measure. Thus
limN→∞ p

(N)(θ) = q∗(θ) almost everywhere.
Similar to the proof of Claim 3, we have

lim
`→∞

h(p(N`)) = lim
`→∞

∫ 1

0
G(θ, p(N`)(θ))dθ =

∫ 1

0
G(θ, q∗(θ))dθ = h(q∗),

where the definition of G is shown in Equation (12). Thus, by Claim 2, we have lim`→∞ hN`(p(N`)) =
lim`→∞ h(p(N`)) = h(q∗) = OPT∗. We have proved that h(q′) ≥ OPT∗. On the other hand, since q′ ∈ S ′,
q′ is feasible solution to Pcont. Thus h(q′) ≤ OPT∗. Thus we have h(q′) = OPT∗, which implies that q′
is indeed an optimal solution to Pcont. Let Φ(q′) = ({θ′i}i∈[n−1], {q′i}i∈[n]). Then q′(θ) = q′i,∀i ∈ [n], θ ∈
[θ′i−1, θ

′
i) and q′(1) = q′n. Since q′ is a feasible solution to Pcont, let M′ = {q(θ), t(θ)}θ∈[0,1] ∈ C′2 be

the responsive-IC and IR mechanism that implements q′ (Lemma 5). To show that M′ contains at most
n = 3m− 1 different options, it suffices to prove that for every i ∈ [n], t(θ) is a constant in [θ′i−1, θi).
Suppose there exist θ, θ′ ∈ [θ′i−1, θi), θ 6= θ′ such that t(θ) 6= t(θ′). Without loss of generality, assume
t(θ) < t(θ′). Then when the buyer has type θ′, misreporting θ induces the same experiment, but a lower price.
It contradicts with the fact that M′ is responsive-IC. Thus M′ is an optimal responsive-IC, IR mechanism
that contains at most 3m− 1 different options. We finish the proof.

2
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D Missing Details from Section 4.2

In this section we will provide a proof of Theorem 4. We first provide a sufficient and necessary condition
under which selling complete information achieves the highest revenue among all responsive-IC and IR mech-
anisms (Theorem 9). Note that the same condition also guarantees that selling complete information is the
optimal mechanism among all IC and IR mechanisms.

Since f is strictly positive on [0, 1], F (·) is strictly increasing. Denote F−1(·) the inverse of F . Recall that
for every θ ∈ [0, 1], ϕ−(θ) = θf(θ)+F (θ) and ϕ+(θ) = (θ−1)f(θ)+F (θ). Intuitively, they can be viewed
as the agent’s virtual values when q(θ) ≤ u11 − u2m and when q(θ) > u11 − u2m respectively. If either ϕ−

or ϕ+ is not monotonically non-decreasing, we iron the functions using the generalized ironing procedure by
Toikka [Toi11], which is a generalization of the ironing procedure by Myerson [Mye81]. Denote ϕ̃− and ϕ̃+

the ironed virtual value functions of ϕ− and ϕ+ respectively. See Appendix D.1 for formal definitions of the
ironing procedure and the ironed interval.

Theorem 9. LetM∗ be the menu that contains only the fully informative experiment with price p > 0. Then
M∗ achieves the maximum revenue among all responsive-IC and IR mechanisms if and only if, there exist two
multipliers η∗ and λ∗ ≥ 0 such that:

1. p ≤ p̂, where p̂ = min
{

(u11−u12)u2m

u11−u12+u22
,

(u2m−u2,m−1)u11

u2m+u1,m−1−u2,m−1

}
. Moreover, λ∗ > 0 only when m = 3,

u12 − u22 = u11 − 1, and p = p̂ = 1− u22.

2. Let θLp = p
u11

and θHp = 1 − p
u2m

be the two points where the utility function of buying the fully
informative experiment, i.e., a linear function, intersects with the IR curve. For every θ ∈ [0, θLp ),
ϕ̃−(θ)− η∗ + λ∗ ≤ 0; For every θ ∈ [θLp , θ

H
p ), ϕ̃−(θ)− η∗ + λ∗ ≥ 0 and ϕ̃+(θ)− η∗ ≤ 0; For every

θ ∈ [θHp , 1], ϕ̃+(θ)− η∗ ≥ 0.

3. θLp is not in the interior of any ironed interval of ϕ̃−(·). And θHp is not in the interior of any ironed
interval of ϕ̃+(·).

Here is a proof sketch of Theorem 9. We first prove an exact characterization of the optimal responsive-
IC and IR mechanism in C′2, i.e., the optimal solution q∗ = {q∗(θ)}θ∈[0,1] of the program in Figure 3, by
Lagrangian duality (Theorem 10). It is a generalization of the characterization by Bergemann et al. [BBS18]
to m ≥ 3 actions. We Lagrangify constraints (3) and (4) in the program. q = {q(θ)}θ∈[0,1] is an optimal
solution iff there exist Lagrangian multipliers that satisfy the KKT conditions. As a second step, we apply this
characterization to q that corresponds to selling the complete information. To simplify our characterization,
we show that at most two of the Lagrangian multipliers can be non-zero (in contrast to Θ(m) non-zero
multipliers as in Theorem 10), when the solution q corresponds to a mechanism that only sells complete
information. This is enabled by showing that in order to be the optimal menu, the price of the complete
information can not be too high (Lemma 20).

We notice that if a fully informative menu achieves the maximum revenue among all responsive-IC and
IR mechanisms, then it must also achieve the maximum revenue among all IC and IR mechanisms. In the
rest of this section, we focus on responsive-IC and IR mechanisms. By Lemma 4 and Observation 3, we only
need to consider mechanisms where every experiment is semi-informative (Table 2). Recall that C′2 is the set
of responsive-IC, IR mechanisms that have this format. Throughout this section, we use q = {q(θ)}θ∈[0,1]

to represent the experiments of the mechanism. Recall that the optimal mechanism in C′2 is captured in the
program in Figure 3.

In Appendix D.1, we come up with an exact characterization of the optimal responsive-IC and IR mech-
anismM∗ ∈ C′2, in any environment with 2 states and m actions. In Appendix D.2, we apply this result to
achieve a sufficient condition under which the fully informative menu is optimal.
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D.1 Characterization of the Optimal Responsive-IC and IR Mechanism

In this section, we are going to present our exact characterization of the optimal mechanism in C′2, i.e., the
optimal solution q∗ = {q∗(θ)}θ∈[0,1] of the program in Figure 3. We Lagrangify Constraints (3) and (4) in the
program. Denote η and λ = {λk}2≤k≤m−1 the Lagrangian multipliers for both sets of constraints accordingly.

Definition 6. Given Lagrangian multipliers η and λ = {λk}k∈{2,...,m−1} ≥ 0, define the virtual surplus
function J (η,λ) : [−u2m, u11]× [0, 1]→ R as follows:

J (η,λ)(q, θ) =(θf(θ) + F (θ)) · q + f(θ) ·min{u11 − u2m − q, 0}

+ η · (u11 − u2m − q) +
m−1∑
k=2

λk · ((q − `k) · 1[q ≤ `k]− u2,m+1−k + u2m)

Then the LagrangianL(q, η, λ) of the program in Figure 3 can be written as: L(q, η, λ) =
∫ 1

0 J
(η,λ)(q(θ), θ)dθ.

Observation 5. For any fixed θ ∈ [0, 1], all of the following functions are continuous, differentiable in
[−u2m, u11] except at finitely many points, and weakly concave in q (note that g2(q) is linear)

1. g1(q, θ) = (θf(θ) + F (θ)) · q + f(θ) ·min{u11 − u2m − q, 0}.

2. g2(q) = u11 − u2m − q.

3. g(k)
3 (q) = (q − `k) · 1[q ≤ `k]− u2,m+1−k + u2m, ∀k ∈ {2, 3, ...,m− 1}.

Thus for any Lagrangian multipliers (η, λ ≥ 0), the function J (η,λ)(q, θ) is continuous, differentiable in
q ∈ [−u2m, u11] except at finitely many points, and weakly concave in q, for any fixed θ ∈ [0, 1]. Besides,

∂g1

∂q
(q, θ) =

{
θf(θ) + F (θ), ∀q ∈ (−u2m, u11 − u2m)

(θ − 1)f(θ) + F (θ), ∀q ∈ (u11 − u2m, u11)

are both continuous in θ on [0, 1]. Thus except at q = −u2m, u11 − u2m, u11, ∂J(η,λ)

∂q (q, θ) exists and is
continuous in θ on [0, 1].

Denote S = {q : [0, 1] → [−u2m, u11] : q(·) is non-decreasing}. We notice that S is convex, thus
by Observation 5, the program in Figure 3 is a general convex programming problem. Strong duality holds
according to Theorem 8.3.1 and Theorem 8.4.1 of [Lue97].

Lemma 19. [Lue97] Let (η∗, λ∗) ∈ arg minλ≥0,η maxq∈S L(q, η, λ) be the optimal Lagrangian multiplier.
Then a solution q∗ is optimal in the program in Figure 3 if and only if q∗ ∈ arg maxq∈S L(q, η∗, λ∗).

Now we are ready to state the characterization of the optimal solution.

Definition 7 (Ironing [Mye81]). Given any differentiable function ϕ : [0, 1] → R. Let F be any continuous
distribution on [0, 1], with density f(·). Define the ironed function ϕ̃(·) as follows: For every r ∈ [0, 1], let
H(r) :=

∫ r
0 ϕ(F−1(x))dx and G(·) be the convex hull of H(·). 16 Let g(·) be the derivative of G(·), 17

and ϕ̃(θ) := g(F (θ)),∀θ ∈ [0, 1]. For any open interval I ⊆ (0, 1), we call I an ironed interval of ϕ̃(·) if
G(F (θ)) < H(F (θ)), ∀θ ∈ I .

16G(·) is the convex hull of H(·) if G is the highest convex function such that G(θ) ≤ H(θ),∀θ ∈ [0, 1].
17Since H(·) is differentiable, G(·), as the convex hull of H(·), is continuously differentiable on (0, 1). We extend g to [0, 1] by

continuity.
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Definition 8. Let F (·) be the agent’s type distribution on [0, 1], with density f(·). For every θ ∈ [0, 1], let
ϕ−(θ) = θf(θ) + F (θ) and ϕ+(θ) = (θ − 1)f(θ) + F (θ) be the agent’s two virtual values at type θ.18

Denote ϕ̃−(·) and ϕ̃+(·) the ironed virtual value functions of ϕ−(·) and ϕ+(·) respectively. We say an open
interval I ⊆ (0, 1) an ironed interval of ϕ̃− (or ϕ̃+) if

∫ F (θ)
0 ϕ̃−

(
F−1(x)

)
dx <

∫ F (θ)
0 ϕ−

(
F−1(x)

)
dx (or∫ F (θ)

0 ϕ̃+
(
F−1(x)

)
dx <

∫ F (θ)
0 ϕ+

(
F−1(x)

)
dx) for all θ ∈ I .

Theorem 10. Suppose q∗ = {q∗(θ)}θ∈[0,1] is a feasible solution of the program in Figure 3. Then q∗ is
optimal if and only if, there exist multipliers η∗ and λ∗ = {λ∗k}k∈{2,...,m−1} ≥ 0, such that all of the following
properties are satisfied:

1. q∗(·) is non-decreasing,

q∗(θ) ∈ arg max
q∈[−u2m,u11]

{
ϕ̃−(θ) · q− + ϕ̃+(θ) · q+ − η∗ · q +

m−1∑
k=2

λ∗k(q − `k) · 1[q ≤ `k]

}
,

where q− = min{q, u11 − u2m}, q+ = max{q − u11 + u2m, 0}, almost everywhere.

2. q∗ and (η∗, λ∗) satisfy the complementary slackness, i.e., for every k ∈ {2, 3, ...,m− 1},

λ∗k ·
[∫ 1

0
(q∗(x)− `k) · 1[q∗(x) ≤ `k]dx− (u2,m+1−k − u2m)

]
= 0

3. q∗ satisfies the generalized pooling property (Definition 10): For any x ∈ [−u2m, u11], define q∗
−1

(x) =
inf{θ ∈ [0, 1] : q∗(θ) ≥ x}. Then q∗ satisfies the generalized pooling property if

(a) for every x ∈ [−u2m, u11 − u2m] and open interval I ⊆ (0, 1):

q∗
−1

(x) ∈ I and I is an ironed interval for ϕ̃−(·) =⇒ q∗(·) is constant on I.

(b) for every x ∈ (u11 − u2m, u11] and open interval I ⊆ (0, 1):

q∗
−1

(x) ∈ I and I is an ironed interval for ϕ̃+(·) =⇒ q∗(·) is constant on I.

Theorem 10 follows from the generalized ironing procedure by Toikka [Toi11]. We first introduce the
necessary background.

General Virtual Surplus Function: Given any function J(·, ·) : [a, b] × [0, 1] → R. We assume that J
satisfies: (i) For every fixed q ∈ [a, b], J(q, ·) is continuously differentiable on (0, 1), and (ii) For every fixed
θ ∈ [0, 1], J(·, θ) is continuous on [a, b] and weakly concave. (iii) Except at finitely many points q ∈ [a, b],
∂J
∂q (q, θ) exists and is continuous in θ on [0, 1]. We define the ironed virtual surplus in Definition 9.

Definition 9 (Generalized Ironing Procedure [Toi11]). Given any virtual surplus function J , for every r ∈
[0, 1], let h(q, r) := ∂J

∂q

(
q, F−1(r)

)
. By assumption (iii), it is well-defined on [a, b] except at finitely many

points. We extend h to the whole interval [a, b] by left-continuity. For every q ∈ [a, b], r ∈ [0, 1], letH(q, r) :=∫ r
0 h(q, x)dx. 19 For every q ∈ [a, b], define G(q, ·) := convH(q, ·) as the convex hull of function H(q, ·).

Let g(q, r) := ∂G
∂r (q, r), which is non-decreasing in r for every q ∈ [a, b]. 20 Define the ironed virtual surplus

function J̃ : [a, b]× [0, 1]→ R as follows:

J̃(q, θ) = J(0, θ) +

∫ q

0
g(s, F (θ))ds

18ϕ−(θ) is the virtual value when q(θ) ≤ u11 − u2m, and ϕ+(θ) is the virtual value when q(θ) > u11 − u2m.
19By assumption (iii) of J(·, ·) and the continuity of F−1(·), h(q, x) continuous in x and hence is integrable in x.
20Since H(q, ·) is differentiable on (0, 1) for every q ∈ [a, b], G(q, ·), as the convex hull of H(q, ·), is continuously differentiable

on (0, 1) for every q ∈ [a, b]. We extend g(q, ·) to [0, 1] by continuity.
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Definition 10. [Toi11] Given q = {q(θ)}θ∈[0,1]. For any x ∈ [a, b], define q−1(x) = inf{θ ∈ [0, 1] : q(θ) ≥
x}. Then q satisfies the generalized pooling property if for every x ∈ [a, b] and open interval I ⊂ [0, 1]:

q−1(x) ∈ I and G(x, θ) < H(x, θ), ∀θ ∈ I =⇒ q(·) is constant on I.

Theorem 11. [Toi11] Let S = {q : [0, 1] → [a, b] : q(·) is non-decreasing} and S ′ = {q : [0, 1] → [a, b]}.
Then

sup
q∈S

{∫ 1

0
J(q(θ), θ)dθ

}
= sup

q∈S′

{∫ 1

0
J̃(q(θ), θ)dθ

}
.

Moreover, q ∈ S achieves the supremum of
∫ 1

0 J(q(θ), θ)dθ if and only if: J̃(q(θ), θ) = supq∈[a,b] J̃(q, θ)
almost everywhere, and q satisfies the generalized pooling property.

Proof of Theorem 10: By Observation 5, for any collection of Lagrangian multipliers η, λ ≥ 0, the virtual
surplus function J (η,λ)(·, ·) satisfies our assumptions. We apply the ironing procedure in Definition 9 to
J (η,λ)(·, ·):

h(q, r) =
∂J (η,λ)

∂q

(
q, F−1(r)

)
=

{
ϕ−(F−1(r))− η +

∑m−1
j=k(q)+1 λj , q ≤ u11 − u2m

ϕ+(F−1(r))− η +
∑m−1

j=k(q)+1 λj , q > u11 − u2m

Recall that `k = u1,m+1−k − u2,m+1−k, ∀k ∈ [m]. Here k(q) is the unique number j ∈ {1, ...,m − 1} such
that `j < q ≤ `j+1 (let k(q) = 1 when q = `1). For every q ∈ [−u2m, u11] and r ∈ [0, 1],

H(q, r) =

∫ r

0
h(q, x)dx =


∫ r

0 ϕ
−(F−1(x))dx+ r ·

(∑m−1
j=k(q)+1 λj − η

)
, q ≤ u11 − u2m∫ r

0 ϕ
+(F−1(x))dx+ r ·

(∑m−1
j=k(q)+1 λj − η

)
, q > u11 − u2m

For every fixed q ∈ [−u2m, u11], to obtain G(q, ·), we take the convex hull of H(q, ·). Note that r ·(∑m−1
j=k(q)+1 λj − η

)
is a linear function on r, thus we are effectively only taking the convex hull of the

functions Ĥ−(r) :=
∫ r

0 ϕ
−(F−1(x))dx and Ĥ+(r) :=

∫ r
0 ϕ

+(F−1(x))dx. Denote Ĝ−(·) and Ĝ+(·) the
convex hull of Ĥ−(·) and Ĥ+(·) accordingly. Then

G(q, r) =

Ĝ
−(r) + r ·

(∑m−1
j=k(q)+1 λj − η

)
, q ≤ u11 − u2m

Ĝ+(r) + r ·
(∑m−1

j=k(q)+1 λj − η
)
, q > u11 − u2m

By definition of ϕ̃−, ϕ̃+ (Definition 8), we have

g(q, r) =

{
ϕ̃−(F−1(r)) +

∑m−1
j=k(q)+1 λj − η, q ≤ u11 − u2m

ϕ̃+(F−1(r)) +
∑m−1

j=k(q)+1 λj − η, q > u11 − u2m

The ironed virtual surplus J̃ (η,λ)(q, θ) = J (η,λ)(0, θ) +
∫ q

0 g(s, F (θ))ds. We notice that J (η,λ)(0, θ) =

−
∑m−1

k=2 λk`k, and by definition of k(q),∫ q

0

m−1∑
j=k(s)+1

λjds =

m−1∑
j=2

λj ·
∫ q

0
1[s ≤ `j ]ds =

m−1∑
j=2

λj ·min{`j , q}
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Thus we have

J̃ (η,λ)(q, θ) = J (η,λ)(0, θ) +

∫ q

0
g(s, F (θ))ds

=

{
ϕ̃−(θ) · q − η · q +

∑m−1
k=2 λk(q − `k) · 1[q ≤ `k], q ≤ u11 − u2m

ϕ̃−(θ) · (u11 − u2m) + ϕ̃+(θ)(q − u11 + u2m)− η · q +
∑m−1

k=2 λk(q − `k) · 1[q ≤ `k], q > u11 − u2m

=ϕ̃−(θ) · q− + ϕ̃+(θ) · q+ − η · q +
m−1∑
k=2

λk(q − `k) · 1[q ≤ `k],

where q− = min{q, u11 − u2m}, q+ = max{q − u11 + u2m, 0}.
We first prove that the properties are necessary for q∗ to be optimal. Suppose q∗ is an optimal solu-

tion. Let (η∗, λ∗) be the optimal Lagrangian multipliers. By Lemma 19, q∗ maximizes L(q, η∗, λ∗) =∫ 1
0 J

(λ∗,η∗)(q(θ), θ)dθ over q ∈ S. By Theorem 11, J̃ (η∗,λ∗)(q∗(θ), θ) = supq∈[−u2m,u11] J̃
(η∗,λ∗)(q, θ) al-

most everywhere, which is exactly the first property in the statement of Theorem 10, and q∗ satisfies the
generalized pooling property. Since q∗ is the optimal solution and (η∗, λ∗) are the optimal Lagrangian multi-
pliers, the second property in the statement of Theorem 10 directly follows from the KKT condition. Finally,
we prove the last property. An important property of H(·, ·) and G(·, ·) is that for any q ≤ u11 − u2m,
H(q, r) > G(q, r) iff Ĥ−(r) > Ĝ−(r), and for any q > u11 − u2m, iff Ĥ+(r) > Ĝ+(r). Therefore, q∗
satisfies the generalized pooling property is equivalent to the last property in the statement.

Now we prove sufficiency. For any feasible solution q∗, suppose there exist multipliers (η∗, λ∗ ≥ 0)
that satisfy all three properties in the statement. We argue that q∗ is the optimal solution (and (η∗, λ∗)
are the optimal Lagrangian multipliers) by verifying the KKT conditions. Firstly, both q∗ and (η∗, λ∗) are
feasible primal and dual solutions. Secondly, by the first property of the statement, J̃ (η∗,λ∗)(q∗(θ), θ) =
supq∈[−u2m,u11] J̃

(η∗,λ∗)(q, θ) almost everywhere. As argued above, the fact that q∗ satisfies the third property
implies that q∗ satisfies the generalized pooling property. Thus by Theorem 11, q∗ maximizes L(q, η∗, λ∗) =∫ 1

0 J
(λ∗,η∗)(q(θ), θ)dθ over q ∈ S . The stationary condition is satisfied. Thirdly, the second property of

the statement implies that the complementary slackness is satisfied. Thus by the KKT conditions, q∗ is the
optimal solution. 2

D.2 Optimality Conditions for Selling Complete Information

In this section, we characterize the conditions under which selling only the fully informative experiment
is optimal using Theorem 10. Clearly, any responsive-IC and IR mechanism that only contains the fully
informative experiment E∗ is determined by the price p > 0 of E∗. And for every type θ ∈ [0, 1], the agent
selects E∗ if and only if Vθ(E∗) ≥ u(θ). Since Vθ(E∗) = θu11 + (1 − θ)u2m − p is linear in θ and the IR
curve is convex in θ, the agent selects E∗ when her type θ is in some closed interval [θLp , θ

H
p ] (see Figure 10a

or Figure 10b for an illustration of θLp , θ
H
p ).21 Clearly, the mechanism is also IC, since the agent will always

follow the recommendation when receiving either no information or full information.
We first prove the following corollary of Lemma 5. It states that any k-piecewise-linear “utility curve”,

which always stays above the IR curve, can be implemented by a responsive-IC and IR mechanism with k
experiments.

Corollary 3. Given any finite integer k ≥ 2 and any continuous, piecewise linear function h : [0, 1] → R+

with k pieces. Suppose h(·) satisfies all of the following: (i) h(0) = u2m, h(1) = u11; (ii)−u2m ≤ `1 < ... <
`k ≤ u11, where for each i ∈ [k], `i is the slope of the i-th piece of h; (iii) h(θ) ≥ u(θ),∀θ ∈ [0, 1]. Then
there exists a responsive-IC and IR mechanismM∈ C′2 with k experiments, such that for every θ ∈ [0, 1], the
agent’s utility at type θ, when she follows the recommendation, is h(θ).

21We assume that θLp and θHp exist, otherwise the price is too high, and the mechanism has revenue 0.
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Proof. We define the mechanismM = (q, t) as follows. Let 0 < θ1 < θ2 < ... < θk−1 < 1 be the k − 1
kinks of h. Denote θ0 = 0, θk = 1. For every θ ∈ [0, 1), define q(θ) = `i, where i ∈ [k] is the unique number
such that θ ∈ [θi−1, θi). Also define q(1) = `k.

We will verify that q satisfies all the requirements of Lemma 5. By property (ii), we have that q(θ) ∈
[−u2m, u11] is non-decreasing in θ. Moreover, we notice that q(θ) is the right derivative of h(θ) at every
θ ∈ [0, 1). Since h(0) = u2m and h is continuous at θ = 1, we have h(θ) = u2m +

∫ θ
0 q(x)dx,∀θ ∈ [0, 1].

Taking θ = 1, we have
∫ 1

0 q(x)dx = h(1) − u2m = u11 − u2m. At last, by property (iii) we have h(θ) =

u2m +
∫ θ

0 q(x)dx ≥ u(θ),∀θ ∈ [0, 1].
Thus by Lemma 5, there exists a payment rule t such thatM is a responsive-IC and IR mechanism, and

t satisfies Equation (4). By Observation 4, with such payment, the agent’s utility at every type θ, when he
follows the recommendation, is u2m+

∫ θ
0 q(x)dx = h(θ). Since q(θ) takes k different values, the mechanism

contains k experiments.

To obtain a simplified characterization, an important step is the following observation: If some fully
informative menu with price p is the optimal menu, then both θLp and θHp have to stay in the first and last
piece of the IR curve accordingly (see Figure 10a). To see the reason, consider a curve h(·) (a piecewise
linear function) that is the maximum of the utility function of buying the fully informative experiment at price
p and the IR curve. In other words, h(·) coincides with the utility function of buying the fully informative
experiment on interval [θLp , θ

H
p ], and coincides with the IR curve everywhere else. If θLp and θHp do not lie in

the first and last piece of the IR curve respectively, there are pieces of the curve h(·) that belong to the i-th
piece of the IR curve for some 2 ≤ i ≤ m − 1 (the blue line in Figure 10b). We argue that we can change
the mechanism to offer another experiment (based on this piece of the IR curve), so that (i) the mechanism is
still responsive-IC and IR, and (ii) the revenue of the mechanism strictly increases.This contradicts with the
optimality of selling only the fully informative experiment. See Figure 10b for an illustration and Lemma 20
for a formal statement.

Lemma 20. Consider the fully informative experiment E∗ with any price p > 0. Assume there is some θ such
that Vθ(E∗) > u(θ). Let θLp , θ

H
p (0 < θLp < θHp < 1) be the two θ’s such that Vθ(E∗) = u(θ). Let θ1 and θ2

be the first and last kink of the IR curve.22 Suppose selling the full information at price p achieves the optimal
revenue among all responsive-IC and IR mechanisms. Then θLp ≤ θ1 and θHp ≥ θ2 (see Figure 10a).

Proof. Let M be the menu that only contains the fully informative experiment E∗ with price p. We prove
by contradiction. Without loss of generality, assume that θLp > θ1. Let L : [0, 1] → R be the agent’s utility
function for the experiment E∗, i.e., L(θ) = Vθ(E

∗)− p = θ · u11 + (1− θ)u2m − p. Consider the function
h : [0, 1] → R such that h(θ) = max{u(θ), L(θ)},∀θ ∈ [0, 1]. One can easily verify that h is a piecewise
linear function that satisfies the requirement of Corollary 3. By Corollary 3, there exists a responsive-IC and
IR mechanismM′ = (q′, t′) ∈ C′2, such that for every θ ∈ [0, 1], the agent’s utility at type θ, when she follows
the recommendation, is h(θ). When the agent’s type θ ∈ [θLp , θ

H
p ], she purchases experiment E∗ at price p in

M′, and thus the mechanism collects total revenue REV(M) at interval [θLp , θ
H
p ]. It suffices to show thatM′

collects strictly positive revenue from types in [0, θLp ) ∪ (θHp , 1], which contradicts with the optimality ofM.
Since θ1 < θLp , there is at least one (linear) piece of the piecewise linear function h(·) is in [θ1, θ

L
p ].

Consider any such piece. The whole piece is also on the IR curve. Let (θ′, u(θ′)) and (θ′′, u(θ′′)) be the
two endpoints of this piece (θ′ < θ′′) and ` be the slope. Then −u2m < ` < u11 − u2m. We design
an experiment E offered by M′, so that all types on interval (θ′, θ′′) purchase this experiment. Denote
q the variable corresponds to the experiment E. Then by Observation 4, q = ` ≤ u11 − u2m. Thus when
θ ∈ (θ′, θ′′), Vθ(E) = q·θ+u2m. Moreover, notice that (i) u(θ′) ≥ u2m−u2mθ

′, the RHS is agent’s payoff for

22Formally, θ1 satisfies u2m(1− θ1) = u1,m−1θ1 + (1− θ1)u2,m−1, and θ2 satisfies u11θ2 = u12θ2 + (1− θ2)u22.
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always choosing actionm without receiving any experiment, and (ii) h(θ) = ` · (θ−θ′)+u(θ′),∀θ ∈ [θ′, θ′′].
Hence

t′(θ) = Vθ(E)− h(θ) = u2m + ` · θ′ − u(θ′) = (u2m + `)θ′ > 0,∀θ ∈ (θ′, θ′′)

Therefore, REV(M′) ≥ REV(M) + (F (θ′′)− F (θ′)) · (u2m + `)θ′ > REV(M), as F (·) is strictly
increasing, contradicting with the optimality ofM. Hence, we must have θLp ≤ θ1 and θHp ≥ θ2.

(a) The fully informative experiment
where θLp ≤ θ1 and θHp ≥ θ2

(b) The scenario when the fully infor-
mative experiment is not optimal

(c) In the proof of Theorem 9: θHp >
θ2 when `m−1 = u11 − u2m

Figure 10: Illustrations of notations and the utility curve of full information

To prove Theorem 9, we also need the following lemma for the ironed virtual value, which may be of
independent interest.

Lemma 21. (Adapted from Lemma 4.11 in [Toi11]) Let ϕ1, ϕ2 be any pair of differentiable real-valued
functions on [0, 1]. Let F be any continuous distribution on [0, 1]. Denote ϕ̃1, ϕ̃2 the ironed functions of ϕ1,
ϕ2 respectively, with respect to the distribution F (Definition 7). Suppose ϕ1(θ) ≥ ϕ2(θ),∀θ ∈ [0, 1]. Then
ϕ̃1(θ) ≥ ϕ̃2(θ),∀θ ∈ [0, 1].

Proof. Let f be the pdf of F . As shown in Definition 7, define H1(r) =
∫ r

0 ϕ1(F−1(x))dx, ∀r ∈ [0, 1],
G1(·) as the convex hull of H1(·), and g1(·) as the (extended) derivative of G1(·) (see Footnote 17). Define
H2, G2, g2 similarly for ϕ2.

For every θ ∈ [0, 1], ϕ̃1(θ) = g1(F (θ)), ϕ̃2(θ) = g2(F (θ)). Thus to show ϕ̃1(θ) ≥ ϕ̃2(θ), it suffices to
prove that g1(r) ≥ g2(r),∀r ∈ [0, 1]. We prove the claim by contradiction. Suppose there exists r0 ∈ [0, 1]
such that g1(r0) < g2(r0). We notice that

H(r) , H1(r)−H2(r) =

∫ r

0

[
ϕ1(F−1(x))− ϕ2(F−1(x))

]
dx,

which is non-decreasing in r, since ϕ1(F−1(x)) ≥ ϕ2(F−1(x)),∀x ∈ [0, 1]. Let ρ = G1(r0) − G2(r0). To
reach a contradiction, we show that there exists r1 ≤ r0 such that H(r1) ≥ ρ and there exists r2 > r0 such
thatH(r2) < ρ, which contradicts with the fact thatH is non-decreasing.

Let L1 : [0, 1] → R (or L2) be the unique linear function tangent to G1 (or G2) at r0. Then since
G1 (or G2) is the convex hull of H1 (or H2), we have for every r ∈ [0, 1], L1(r) ≤ G1(r) ≤ H1(r) and
L2(r) ≤ G2(r) ≤ H2(r).

The existence of r1: If G2(r0) = H2(r0), then H1(r0) −H2(r0) ≥ G1(r0) − G2(r0) = ρ. By choosing
r1 = r0 we have H(r1) ≥ ρ. Now assume G2(r0) < H2(r0). Then r0 is in the interior of some ironed
interval I of ϕ2. Let r1 < r0 be the left endpoint of the interval I . Then H2(r1) = L2(r1). We have

H(r1) = H1(r1)−H2(r1) ≥ L1(r1)− L2(r1) > L1(r0)− L2(r0) = G1(r0)−G2(r0) = ρ
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Here the first inequality follows from H1(r1) ≥ L1(r1) and H2(r1) = L2(r1). The second inequality follows
from the fact that d(L1(r)−L2(r))/dr = G′1(r0)−G′2(r0) = g1(r0)− g2(r0) < 0. The second-last equality
follows from the fact that L1 (or L2) meets G1 (or G2) at r0.

The existence of r2: The proof follows from a similar argument as r1. If G1(r0) = H1(r0), then G′1(r0) =
H ′1(r0) = g1(r0). We notice that

d(H1(r)− L2(r))

dr

∣∣∣∣
r=r0

= g1(r0)− g2(r0) < 0.

Thus there exists some r2 > r0 such that H ′1(r)− g2(r0) < 0 for all r ∈ [r0, r2] due to the continuity of
H ′1(·), which implies that

ρ = G1(r0)−G2(r0) = H1(r0)− L2(r0) > H1(r2)− L2(r2) ≥ H1(r2)−H2(r2) = H(r2)

Now assume G1(r0) < H1(r0). Then r0 is in the interior of some ironed interval I of ϕ1. Let r2 > r0 be
the right endpoint of the interval I . Then H1(r2) = L1(r2). We have

H(r2) = H1(r2)−H2(r2) ≤ L1(r2)− L2(r2) < L1(r0)− L2(r0) = G1(r0)−G2(r0) = ρ

Here the first inequality follows from H1(r2) = L1(r2) and H2(r2) ≥ L2(r2). The second inequality follows
from the fact that d(L1(r)− L2(r))/dr < 0 and r2 > r0. The second-last equality follows from the fact that
L1 (or L2) meets G1 (or G2) at r0.

The existence of r1 and r2 contradicts with the fact that H is non-decreasing. Thus ϕ̃1(θ) ≥ ϕ̃2(θ),∀θ ∈
[0, 1].

Proof of Theorem 9: Let L∗ be the affine utility function for purchasing the fully informative experiment at
price p, i.e. L∗(θ) = u11θ + u2m(1− θ)− p = (u11 − u2m)θ + u2m − p. Denote θLp and θHp the two points
where L∗ intersects with the IR curve. For every k ∈ [m], let Lk be the affine function for the k-th piece of
the IR curve, i.e., Lk(θ) = θ · u1,m+1−k + (1− θ) · u2,m+1−k = θ · `k + u2,m+1−k, ∀θ ∈ [0, 1].

Let q∗ be the experiments purchased by the agent inM∗, i.e.,

q∗(θ) =


−u2m, θ ∈ [0, θLp )

u11 − u2m, θ ∈ [θLp , θ
H
p )

u11, θ ∈ [θHp , 1]

(14)

Necessary condition. We first prove that the properties in the statement are necessary. SupposeM∗ is the
optimal responsive-IC and IR mechanism, then q∗ is the optimal solution to the program in Figure 3. We are
going to verify each property of the statement by applying Theorem 10 to the solution q∗.

Property 1. Recall that θ1, θ2 are the first and last kink of the IR curve. By Footnote 22,

θ1 =
u2m − u2,m−1

u1,m−1 + u2m − u2,m−1
, θ2 =

u22

u11 + u22 − u12

By Lemma 20, θLp ≤ θ1 and θHp ≥ θ2. Thus θLp , θHp are the points where L∗ intersects with the first and
last piece of the IR curve, respectively. We have L∗(θLp ) = u1mθ

L
p + u2m(1 − θLp ) ⇔ θLp = p

u11
. Similarly,

L∗(θHp ) = u11θ
H
p + u21(1− θHp )⇔ θHp = 1− p

u2m
. Thus θLp ≤ θ1 and θHp ≥ θ2 are equivalent to

p ≤ p̂ = min

{
(u11 − u12)u2m

u11 − u12 + u22
,

(u2m − u2,m−1)u11

u2m + u1,m−1 − u2,m−1

}
.
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To prove the second half of property 1, by Theorem 10, there exist multipliers λ = {λk}k∈{2,...,m−1} ≥ 0
and η that satisfy all properties of Theorem 10. We choose η∗ = η and λ∗ = λ2. For every k ∈ {2, 3, . . . ,m−
1}, let θ∗k = sup{θ ∈ [0, 1] : q∗(θ) ≤ `k}. Then since −u2m < `k = u1,m+1−k − u2,m+1−k < u11, we have
θ∗k = θLp iff `k < u11 − u2m, and θ∗k = θHp otherwise. Notice that

∆k :=

∫ 1

0
(q∗(x)− `k) · 1[q∗(x) ≤ `k]dx− (u2,m+1−k − u2m)

=

∫ θ∗k

0
(q∗(x)− `k)dx− u2,m+1−k + u2m = L∗(θ∗k)− Lk(θ∗k)

(15)

Here the last inequality is because: u2m +
∫ θLp

0 q∗(x)dx = u2m(1− θLp ) = u2m(1− p
u11

) = L∗(θLp ) and

u2m +
∫ θHp

0 q∗(x)dx = L∗(θLp ) + (θHp − θLp ) · (u11 − u2m) = L∗(θHp ).
First consider the case when m = 3. We argue that if `2 6= u11 − u2m, then λ2 = 0. We only prove the

case when `2 < u11 − u2m. The other case is similar. Suppose λ2 > 0, the ironed virtual surplus function
J̃ (η,λ) can be written as follows (denote α = u11 − u2m):

J̃ (η,λ)(q, θ) = ϕ̃−(θ) ·min{q, α}+ ϕ̃+(θ) ·max{q − α, 0} − ηq + λ2 ·min{q − `2, 0}

For every fixed θ, the function J̃ (η,λ)(·, θ) is continuous and 3-piecewise-linear. Thus at least one of the
four values −u2m, `2, u11 − u2m, and u11 must be in arg maxq∈[−u2m,u11] J̃

(η,λ)(q, θ). We also have

∂J̃ (η,λ)

∂q
(q, θ) =


ϕ̃−(θ)− η + λ2, q < `2

ϕ̃−(θ)− η, q ∈ (`2, α)

ϕ̃+(θ)− η, q > α

Define φ1(θ) = ϕ̃−(θ) − η + λ2, φ2(θ) = ϕ̃−(θ) − η and φ3(θ) = ϕ̃+(θ) − η. By Definition 8,
ϕ−(θ) − ϕ+(θ) = f(θ) > 0,∀θ ∈ [0, 1]. Thus by Lemma 21, ϕ̃−(θ) ≥ ϕ̃+(θ), ∀θ ∈ [0, 1]. Thus φ1(θ) >
φ2(θ) ≥ φ3(θ), ∀θ ∈ [0, 1]. We notice that −u2m ∈ arg maxq J̃

(η,λ)(q, θ) iff φ1(θ) ≤ 0. Since q∗(θ) =

−u2m, ∀θ ∈ [0, θLp ) and q∗ is a pointwise maximizer of J̃ (η,λ)(q, θ) almost everywhere (the first property of
Theorem 10), we have φ1(0) ≤ 0. Since λ2 > 0, φ2(0) < 0. Similarly, since u11 ∈ arg maxq J̃

(η,λ)(q, θ)
iff φ3(θ) ≥ 0, we have φ3(1) ≥ 0. Thus φ2(1) ≥ 0. By Footnote 17, φ2 is a continuous function on [0, 1].
Let ε = λ2/2 > 0, then there exists an opened interval I such that φ2(θ) ∈ (−ε, 0), ∀θ ∈ I . At interval I ,
φ1(θ) = φ2(θ) + λ2 > 0, and φ3(θ) ≤ φ2(θ) < 0. This implies that for every θ ∈ I , arg maxq J̃

(η,λ)(q, θ)

contains a single value q = `2, which contradicts with the fact that q∗ is a pointwise maximizer of J̃ (η,λ)(q, θ)
almost everywhere.

Thus, if λ∗ > 0, then `2 = u11 − u2m =⇒ u12 − u22 = u11 − 1. Moreover, by the second property of
Theorem 10, we have

0 = ∆2 = L∗(θHp )− L2(θHp ) = u2m − p− u2,m−1 =⇒ p = 1− u22

Now consider the case when m ≥ 4. We prove that λ = 0 and thus λ∗ = λ2 = 0. For every k ∈
{3, . . . ,m − 2}, since θLp ≤ θ1 and θHp ≥ θ2, we have L∗(θLp ) ≥ L2(θLp ) > Lk(θ

L
p ) and L∗(θHp ) ≥

Lm−1(θHp ) > Lk(θ
H
p ). For every k ∈ {3, . . . ,m − 2}, ∆k > 0. By the second property of Theorem 10, we

have λk = 0. For k = 2, if `2 ≥ u11 − u2m, then θ∗2 = θHp . We thus have L∗(θHp ) ≥ Lm−1(θHp ) > L2(θHp ),
since m ≥ 4. By the second property of Theorem 10, λ2 = 0. Similarly, if `m−1 < u11 − u2m, λm−1 = 0. If
`m−1 = u11 − u2m, we have θHp > θ2 (see Figure 10c for a proof by graph). We have L∗(θHp ) = Lm(θHp ) >
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Lm−1(θHp ), which implies that λm−1 = 0. Since λk = 0,∀k ∈ {3, . . . ,m − 2}, then J̃ (η,λ)(q, θ) can be
written as

J̃ (η,λ)(q, θ) = ϕ̃−(θ)·min{q, α}+ϕ̃+(θ)·max{q−α, 0}−ηq+λ2 ·min{q−`2, 0}+λm−1 ·min{q−`m−1, 0}

Now suppose λ2 > 0 and λk−1 > 0. The case when λ2 > 0 = λk−1 and λk−1 > 0 = λ2 follows from a
similar argument where either the term λ2 ·min{q − `2, 0} or λm−1 ·min{q − `m−1, 0} is redundant. Since
λ2 > 0 and λk−1 > 0, we have `2 < u11 − u2m < `m−1. Thus

∂J̃ (η,λ)

∂q
(q, θ) =


ϕ̃−(θ)− η + λ2 + λm−1, q < `2

ϕ̃−(θ)− η + λm−1, q ∈ (`2, α)

ϕ̃+(θ)− η + λm−1, q ∈ (α, `m−1)

ϕ̃+(θ)− η, q > `m−1

Similar to the proof for the m = 3 case, since λ2 > 0, we can find an opened interval I such that for
every θ ∈ I , arg maxq J̃

(η,λ)(q, θ) contains a single value θ = `2, which contradicts with the fact that q∗ is a
pointwise maximizer of J̃ (η,λ)(q, θ) almost everywhere.23 Thus we have λk = 0, ∀k ∈ {2, . . . ,m− 1}.

Property 2. In property 1, we show that when m = 3, either λ2 = 0 or `2 = u11 − u2m. When m ≥ 4,
λ = 0. Recall that η∗ = η and λ∗ = λ2. In any of the scenarios, the ironed virtual surplus function J̃ (η,λ) can
be expressed as follows (recall that α = u11 − u2m):

J̃ (η,λ)(q, θ) = ϕ̃−(θ) ·min{q, α}+ ϕ̃+(θ) ·max{q − α, 0} − η∗ · q + λ∗(q − α) · 1[q ≤ α]

=

{
(ϕ̃−(θ)− η∗ + λ∗) · q − λ∗α, q ≤ α
(ϕ̃+(θ)− η∗) · q + (ϕ̃−(θ)− ϕ̃+(θ)) · α, q > α

(16)

For every fixed θ, the function J̃ (η,λ)(·, θ) is continuous and 2-piecewise-linear. Thus at least one of the
three values −u2m, u11 − u2m, and u11 must be in arg maxq∈[−u2m,u11] J̃

(η,λ)(q, θ). We study the set
arg maxq J̃

(η,λ)(q, θ) by a case analysis.

• ϕ̃−(θ)−η∗+λ∗ ≤ 0: Since λ∗ ≤ 0, ϕ̃+(θ)−η∗ ≤ ϕ̃−(θ)−η∗ ≤ 0. Thus−u2m ∈ arg maxq J̃
(η,λ)(q, θ).

On the other hand, −u2m ∈ arg maxq J̃
(η,λ)(q, θ) clearly implies that ϕ̃−(θ)− η∗ + λ∗ ≤ 0.

• ϕ̃−(θ) − η∗ + λ∗ ≥ 0 and ϕ̃+(θ) − η∗ ≤ 0: Now q = u11 − u2m maximizes J̃ (η,λ)(q, θ), and vice
versa.

• ϕ̃+(θ) − η∗ ≥ 0: Then ϕ̃−(θ) − η∗ + λ∗ ≥ ϕ̃+(θ) − η∗ ≥ 0. Thus u11 ∈ arg maxq J̃
(η,λ)(q, θ). On

the other hand, u11 ∈ arg maxq J̃
(η,λ)(q, θ) clearly implies that ϕ̃+(θ)− η∗ ≥ 0.

Thus by the first property of Theorem 10, q∗ is a pointwise maximizer of the ironed virtual surplus function
almost everywhere. Thus property 2 holds almost everywhere. Moreover, if there exists some θ0 ∈ [0, 1] such
that q∗(θ0) 6∈ arg maxq J̃

(η,λ)(q, θ). Suppose q∗(θ0) = −u2m. Then according to the above case analysis,
ϕ̃−(θ0) − η∗ + λ∗ > 0. Since ϕ̃−(·) is continuous at θ0, there exists a neighborhood I of θ0 such that
ϕ̃−(θ0) − η∗ + λ∗ > 0, ∀θ ∈ I .24 Thus −u2m 6∈ arg maxq J̃

(η,λ)(q, θ), ∀θ ∈ I , contradicting with the fact
that q∗ is a pointwise maximizer of the ironed virtual surplus function almost everywhere. Similarly, we reach
a contradition when q∗(θ0) = u11−u2m or u11. Hence, q∗ is a pointwise maximizer of J̃ (η,λ) everywhere on
[0, 1], which implies that property 2 holds for every θ ∈ [0, 1].

23If λ2 = 0 and λm−1 > 0, we reach a contradiction by finding an opened interval I such that for every θ ∈ I ,
arg maxq J̃

(η,λ)(q, θ) contains a single value θ = `m−1.
24When θ0 = 0 (or 1), ϕ̃−(·) is right-continuous (or left-continuous) at θ0. We choose I to be [0, δ) or (1 − δ, 1] for some

sufficiently small δ > 0.
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Property 3. q∗ only takes three different values −u2m, u11 − u2m, u11. Moreover, q∗
−1

(−u2m) = 0,
q∗
−1

(u11 − u2m) = θLp , q∗
−1

(u11) = θHp . Thus by the third property of Theorem 10, q∗ satisfies the gen-
eralized pooling property iff θLp is not in the interior of any ironed interval of ϕ̃−(·), and θHp (·) is not in the
interior of any ironed interval of ϕ̃+.

Sufficient Condition. Next, we prove that the properties in the statement are sufficient. Given a menuM
that contains only the fully informative experiment with with price p > 0. Suppose there exist multiplier η∗

and λ∗ ≥ 0 that satisfies all properties in the statement. We prove that q∗ (defined in Equation (14)) is an
optimal solution to the program in Figure 3.

Firstly, since p ≤ p̂, due to the analysis for Property 1, we know that θLp ≤ θ1 and θHp ≥ θ2. Thus
θLp < θHp and q∗ is a feasible solution of the program, which induces strictly positive revenue.

To apply Theorem 10, we choose multipliers η′ and λ′ = {λ′k}k∈{2,...,m−1} ≥ 0, and prove that all three
properties in the statement of Theorem 10 are satisfied for q∗ and (η′, λ′), which implies that q∗ is an optimal
solution. Let η′ = η∗. When m = 3, let λ′2 = λ∗. When m ≥ 4, let λ′k = 0 for all k ∈ {2, . . . ,m− 1}.

For the first property of Theorem 10, we notice that the ironed virtual surplus function J̃ (η′,λ′)(q, θ)
satisfies Equation (16). As argued earlier in the case analysis in property 2, when property 2 of Theorem 9 is
satisfied, q∗ is a pointwise maximizer of J̃ (η′,λ′)(q, θ). The first property of Theorem 10 is satisfied.

For the second property of Theorem 10, according to the choice of λ′, we only have to argue that the
equality holds when m = 3 and λ∗ > 0. For other scenarios, the property trivially holds since the corre-
sponding multiplier λ′k is 0. Thus by property 1 (in the statement of Theorem 9), u12 − u22 = u11 − 1 and
p = 1−u22. We follow the notation θ∗k and ∆k as used for proving property 1 is necessary. By Equation (15),

∆2 = L∗(θ∗2)− L2(θ∗2) = L∗(θHp )− L2(θHp ) = u23 − p− u22 = 0, (u23 = 1 as m = 3).

Thus the second property of Theorem 10 is satisfied. As argued above, q∗ satisfies the generalized pooling
property iff θLp is not in the interior of any ironed interval of ϕ̃−, and θHp is not in the interior of any ironed
interval of ϕ̃+. Thus the third property of Theorem 10 is also satisfied. Hence, q∗ and (η′, λ′) satisfy all
properties in Theorem 10, which implies that q∗ is an optimal solution. 2

Proof of Theorem 4: We are going to show that there exist p > 0 and multipliers η∗, λ∗ ≥ 0 that satisfy all
properties of Theorem 9. Then by Theorem 9, selling the complete information at price p is the optimal menu.

We notice that in Definition 7, if ϕ(·) is non-decreasing, H(·) is a convex function. Thus G(r) =
H(r),∀r ∈ [0, 1] and ϕ̃(θ) = ϕ(θ), ∀θ ∈ [0, 1]. Since ϕ−(·) and ϕ+(·) are both monotonically non-
decreasing, we have ϕ−(θ) = ϕ̃−(θ) and ϕ+(θ) = ϕ̃+(θ),∀θ ∈ [0, 1].

Define function W : [0, 1] → R as: W (p) = ϕ−( p
u11

) − ϕ+(1 − p
u2m

). Then by Definition 8, we have

W (0) = ϕ−(0) − ϕ+(1) = −1. If ϕ−( p̂
u11

) ≥ ϕ+(1 − p̂
u2m

), W (p̂) ≥ 0. Since both ϕ− and ϕ+ are
continuous, W is also continuous. Thus there exists p0 ∈ (0, p̂] such that W (p0) = 0. Consider p = p0 and
multipliers η∗ = ϕ−( p0

u11
) = ϕ+(1− p0

u2m
), λ∗ = 0. Property 1 of Theorem 9 holds since p0 ≤ p̂ and λ∗ = 0.

Property 3 of Theorem 9 holds since neither ϕ−(·) nor ϕ+(·) requires ironing. For property 2 of Theorem 9,
since θLp0

= p0

u11
and θHp0

= 1− p0

u2m
, by our choice of η∗, ϕ−(θLp0

)− η∗ = 0 and ϕ+(θHp0
)− η∗ = 0. Property

2 then follows from the fact that ϕ−(·) and ϕ+(·) are both monotonically non-decreasing.
2

For several standard distributions, ϕ−(·) and ϕ+(·) are both monotonically non-decreasing. The following
examples are some applications of Theorem 4.

Example 1 (Uniform Distribution). Consider the uniform distribution U [0, 1]. Then ϕ−(θ) = 2θ and
ϕ+(θ) = 2θ − 1 are both increasing functions. Thus when m = 3 and u12 − u22 = u11 − 1, selling
the complete information is optimal. When u11 = u2m = 1, ϕ−( p̂

u11
) ≥ ϕ+(1− p̂

u2m
) if and only if p̂ ≥ 1

4 . In
other words, if u22 ≤ 3(1− u12) and u1,m−1 ≤ 3(1− u2,m−1), selling the complete information is optimal.
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Example 2 (Exponential Distributions Restricted on [0, 1]). f(θ) = c · λe−λθ, where c = 1 − e−λ. f ′(θ) =
−cλ2 · e−λθ. When λ ≤ 2, (ϕ−)′(θ) = 2f(θ) + θf ′(θ) = cλ(2 − θλ) · e−λθ ≥ 0. And (ϕ+)′(θ) =
2f(θ) + (θ − 1)f ′(θ) > 0, since f ′(θ) < 0. Selling the complete information is optimal if either conditions
in Theorem 4 is satisfied.

Example 3 (Normal Distributions Restricted on [0, 1]). Consider the normal distributionN (0, σ2) restricted
on [0, 1]. f(θ) = c·exp(− θ2

2σ2 ), where c = 1/
∫ 1

0
1

σ
√

2π
·exp(− θ2

2σ2 )dθ. f ′(θ) = −c· θ
σ2 exp(− θ2

2σ2 ) < 0. When

σ2 ≥ 1
2 , (ϕ−)′(θ) = 2f(θ)+θf ′(θ) = c(2− θ

σ2 )·exp(− θ2

2σ2 ) ≥ 0. And (ϕ+)′(θ) = 2f(θ)+(θ−1)f ′(θ) > 0,
since f ′(θ) < 0. Selling the complete information is optimal if either conditions in Theorem 4 is satisfied.

E Missing Details from Section 5

E.1 Missing Details from Section 5.1

Proof of Theorem 6: Let β =
∫∞

0
1

r(x)dx. We first show that for any distribution D, REV(M,D)
FREV(D) ≤ β. In fact,

we have

REV(M, D) = E
θ∼D

[t(θ)] =

∫ ∞
0

Pr
θ∼D

[t(θ) ≥ x]dx ≤
∫ ∞

0
Pr
θ∼D

[U(θ) ≥ r(x)]dx

≤
∫ ∞

0

FREV(D)

r(x)
dx = β · FREV(D)

Here the first inequality follows from the definition of r(x): t(θ) ≥ x implies that U(θ) ≥ r(x). For
the second inequality, we notice that by the definition of U(θ), the buyer will purchase the fully informative
experiment at price p if and only if U(θ) ≥ p. Thus FREV(D) ≥ r(x) · Pr[U(θ) ≥ r(x)].

Now we prove that RATIO(M) ≥ β. In particular, we show that for any β′ < β there exists a distribution
D such that REV(M, D) > β′ · FREV(D).

Since 1/r(x) is weakly decreasing, non-negative, and
∫∞

0
1

r(x)dx = β, there exist 0 = t0 < t1 < · · · <
tN <∞ with 0 = r(t0) < r(t1) < · · · < r(tN ) <∞ such that 25

β′′ =
N∑
k=1

tk − tk−1

r(tk)
> β′.

Let ε > 0 be small enough so that β′′ > (1 + ε)β′ and r(tk+1) > (1 + ε)r(tk) for all 1 ≤ k < N .
By the definition of r(·), we can choose a sequence of types {θ(k)}k∈[N ] in Θ such that t(θ(k)) ≥ tk and
r(tk) ≤ U(θ(k)) < (1 + ε)r(tk). Then

N∑
k=1

tk − tk−1

U(θ(k))
>

N∑
k=1

tk − tk−1

(1 + ε)r(tk)
=

β′′

1 + ε
> β′

For every k ∈ [N ], let ξk = U(θ(k)). We notice that U(θ(k)) < (1 + ε)r(tk) < r(tk+1) ≤ U(θ(k+1)) for
0 ≤ k < N . Consider the distribution D with support {θ(1), . . . , θ(N)} and Pr[θ = θ(k)] = ξ1 · ( 1

ξk
− 1

ξk+1
)

for all k ∈ [N ], where ξN+1 =∞.
Recall that the buyer will purchase the fully informative experiment at price p if and only if U(θ) ≥ p.

Thus under distribution D, it’s sufficient to consider the price p = U(θ(k)) = ξk for some k ∈ [N ]. Since

25We notice that U(0) = 0 as the payment t(·) is non-negative. Thus r(t0) = r(0) = 0.
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{U(θ(k))}k∈[N ] is a strictly increasing sequence, then the buyer will purchase at price p = ξk whenever θ ∈
{θ(k), . . . , θ(N)}, which happens with probability

∑N
j=k ξ1·( 1

ξk
− 1
ξk+1

) = ξ1
ξk

. Hence we have FREV(D) = ξ1.

REV(M, D) =
N∑
k=1

t(θ(k)) · Pr[θ = θ(k)] =
N∑
k=1

tk · ξ1 · (
1

ξk
− 1

ξk+1
)

= ξ1 ·
N∑
k=1

tk − tk−1

ξk
> β′ · FREV(D)

2

Proof of Lemma 8: Recall that under this environment U(θ) =
∑3

i=1 θi · 1 − max{θ1, θ2, θ3} = 1 −
max{θ1, θ2, θ3} (here θ3 = 1 − θ1 − θ2). We first construct the distribution D based on the given se-
quence {yk}Nk=1. Let {tk}Nk=1 be a sequence of positive numbers that increases fast enough so that: (i)
(tk/gapk) · U(yk) is increasing, and (ii) tk+1/tk ≥ 1/ε for all 1 ≤ k < N . Such a sequence must exist since
after t1, . . . , tk−1 are decided, we can choose a large enough tk to satisfy both properties. Let δ > 0 be any
number such that 1/δ > maxk∈[N ]{tk/gapk}. For every k ∈ [N ], define xk ∈ [0, 1]2 as xk = (δtk/gapk) ·yk.
For every k ∈ [N ], since δtk/gapk < 1 and yk ∈ Θ, we have xk ∈ Θ.

By Property 2 and 3 of the statement, 0.4 ≥
√
y2
k,1 + y2

k,2 ≥
√
y2
k,1 + (0.9yk,1)2, which implies that

yk,1 ≤
√

0.42/1.81 < 1
3 . Similarly, yk,2 < 1

3 . Let yk,3 = 1 − yk,1 − yk,2 and xk,3 = 1 − xk,1 − xk,2.
Then U(yk) = 1−max{yk,1, yk,2, yk,3} = 1− yk,3 = yk,1 + yk,2. Moreover, since δtk/gapk < 1, we have
xk,i < yk,i <

1
3 for i = 1, 2. Thus U(xk) = 1−xk,3 = xk,1 +xk,2 = (δtk/gapk) ·U(yk). For every k ∈ [N ],

let ξk = U(xk). Then {ξk}Nk=1 is an increasing sequence due to (i).
Consider the distribution D with support {x1, . . . , xN}. Pr[θ = xk] = ξ1 · ( 1

ξk
− 1

ξk+1
) for all k ∈ [N ],

where ξN+1 = ∞. In the next step, we construct a sequence of experiments {Π(k)}k∈[N ] and a mechanism
M. For every k ∈ [N ], define experiment Π(k) as follows:

Π(k) 1 2 3

ω1 yk,1 0 1− yk,1
ω2 0 yk,2 1− yk,2
ω3 0 0 1

Now consider the following mechanismM. For every buyer’s type θ in the support, the buyer chooses
the experiment Π(k∗) where k∗ = arg maxk

{
V ∗θ (Π(k))− δ · tk

}
, and pays δ · tk∗ . In other words, he chooses

the option (with experiment Π(k∗) and price δ · tk∗) that obtains the highest utility, when he follows the
recommendation.

Claim 5. M is IC and IR.

Proof. We first prove thatM is IR. For every buyer’s type xk, the buyer’s utility after purchasing Π(k∗) is

Vxk(Π(k∗))− δ · tk∗ ≥ V ∗xk(Π(k∗))− δ · tk∗

≥ V ∗xk(Π(k))− δ · tk
= xk,1yk,1 + xk,2yk,2 + xk,3 − δ · tk

= δtk ·

(
y2
k,1 + y2

k,2

gapk
− 1

)
+ xk,3

≥ xk,3
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Here the second inequality follows from the definition of k∗; The first equality follows from the fact that:
under the matching utility environment, V ∗θ (Π(k)) = θ1yk,1 + θ2yk,2 + θ3 for every type θ ∈ Θ; The second
equality follows from the definition of xk; The last inequality follows from Property 1 and 3 of the statement.
We notice that at type xk, the buyer has value maxj{

∑
i xk,i · uij} = max{xk,1, xk,2, xk,3} = xk,3 before

purchasing any experiment. ThusM is IR.
By the definition ofM, it’s clear thatM is responsive-IC. To prove thatM is also IC, it suffices to show

that for any type θ from the distribution D and any experiment Π(k), following the recommendation always
maximizes the buyer’s utility, i.e. Vθ(Π(k)) = V ∗θ (Π(k)). In fact, according to the construction of Π(k), when
action 1 or 2 is recommended, the corresponding state (1 or 2, respectively) is fully revealed and thus following
the recommendation clearly maximizes the buyer’s expected payoff. When action 3 is recommended, the
buyer with type xq (for some q ∈ [N ]) has expected payoff xq,1(1 − yk,1), xq,2(1 − yk,2) and xq,3, by
choosing action 1, 2 and 3 respectively. Since xq,1 < 1

3 and xq,2 < 1
3 , we have xq,3 > 1

3 ≥ max{xq,1(1 −
yk,1), xq,2(1 − yk,2)}. Thus the buyer will always follow the recommendation for every experiment Π(k).
SinceM is responsive-IC,M is also IC.

Back to the proof of Lemma 8. Now we compute REV(M, D). We notice that for every k ∈ [N ] and
every type θ ∈ Θ,

V ∗θ (Π(k)) = θ1 · yk,1 + θ2 · yk,2 + θ3.

Consider any buyer’s type xk. For any 1 ≤ q < k, by the definition of xk and gapk, we have

V ∗xk(Π(k))− V ∗xk(Π(q)) = xk,1 · (yk,1 − yq,1) + xk,2 · (yk,2 − yq,2)

=
δtk

gapk
· {yk,1 · (yk,1 − yq,1) + yk,2 · (yk,2 − yq,2)}

≥ δtk > δtk − δtq

Recall that in mechanismM, the buyer chooses the experiment Π(q) that maximizes
{
V ∗θ (Π(q))− δ · tq

}
.

Thus the above inequality implies that inM, the buyer must purchase an experiment Π(q) where q ≥ k. Since
{tk}Nk=1 is an increasing sequence, the buyer’s payment is at least δ · tk. By Theorem 6,

REV(M, D) ≥
N∑
k=1

δ · tk · ξ1 · (
1

ξk
− 1

ξk+1
) = δξ1 ·

N∑
k=1

tk − tk−1

ξk

≥ (1− ε)ξ1 ·
N∑
k=1

δtk
ξk

= (1− ε) ·
N∑
k=1

gapk
yk,1 + yk,2

· FREV(D)

≥ 3

2
(1− ε) ·

N∑
k=1

gapk · FREV(D)

Here the second inequality follows from tk+1/tk ≥ 1/ε. The third inequality follows from the fact that
both yk,1 and yk,2 are at most 1

3 , as shown in the beginning of the proof. The second equality follows from
ξk = U(xk) = (δtk/gapk) · U(yk) = (δtk/gapk) · (yk,1 + yk,2) and the fact that FREV(D) = ξ1, which
is proved in Theorem 6. We include the proof here for completeness. Recall that a buyer with type x will
purchase the fully informative experiment at price p if and only if U(x) ≥ p. Thus under distribution D,
it’s sufficient to consider the price p = U(xk) = ξk for some k ∈ [N ]. Since {U(xk)}k∈[N ] is a strictly
increasing sequence, then the buyer will purchase at price p = ξk whenever x ∈ {xk, . . . , xN}, which
happens with probability

∑N
j=k ξ1 · ( 1

ξk
− 1

ξk+1
) = ξ1

ξk
. Hence, FREV(D) = ξ1.

The proof is done by noticing that REV(M, D) ≤ OPT(D), sinceM is IC and IR by Claim 5. 2
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Proof of Theorem 5: For any integer N , we construct a sequence {yk}Nk=1 that satisfies all three properties
in the statement of Lemma 8, and gapk = Θ(k−6/7). Then by Lemma 8, there exists a distribution D with
support size N such that (by choosing ε = 1

3 )

OPT(D)

FREV(D)
≥

N∑
k=1

gapk = Ω(
N∑
k=1

k−6/7) = Ω(N1/7)

All the points {yk}Nk=1 are placed in a sequence of “shells”. As k goes larger, yk stays in a shell with a
larger and larger radius. For every i = 1, . . . ,M , the i-th shell has radius 0.3 +

∑i
`=1 `

−3/2/α, where
α = 0.1 ·

∑M
`=1 `

−3/2. For every shell i, let ri be the arc from angle arctan( 9
10) to angle arctan(10

9 ).The i-th
shell contains i3/4 points. All points are evenly spread in the arc ri, so that angle between any two of them is
at least c · i−3/4 for some absolute constant c.

We notice that the radius of every shell is in the range [0.3, 0.4]. Thus any point yk on each shell satisfies
yk,1 + yk,2 ≤ 1 and ||yk||2 =

√
y2
k,1 + y2

k,2 ∈ [0.3, 0.4]. Moreover, according to the definition of ri, all points

yk on this arc must satisfy yk,1
yk,2
∈ [ 9

10 ,
10
9 ]. It remains to analyze gapk = min0≤j<k{(yk,1−yj,1)·yk,1 +(yk,2−

yj,2) · yk,2} = min0≤j<k{yk · (yk − yj)}. We have that yj · yk = ||yj ||2 · ||yk||2 · cos(α) where α is the angle
between yk and yj . Let i and i′ be the shell that yk and yj are placed in respectively. Then i′ ≤ i. Suppose
i′ = i. Since α = Ω(i−3/4), we have cos(α) = 1 − Ω(i−3/2) (because cos(α) = 1 − α2/2 + α4/24 − . . .).
(yk − yj) · yk = ||yk||22 · Ω(i−3/2) = Ω(i−3/2). Now suppose i′ < i. ||yk||2 − ||yj ||2 =

∑i
`=i′+1 `

−3/2/α ≥
i−3/2/α. Since

∑∞
`=1 `

−3/2 converges, α = 0.1 ·
∑M

`=1 `
−3/2 is bounded by some absolute constant. Thus

(yk − yj) · yk ≥ ||yk||22 − ||yj ||2||yk||2 ≥ 0.3(||yk||2 − ||yj ||2) = Ω(i−3/2),

where the second inequality follows from ||yj ||2 ≥ 0.3. Combining both cases, we have proved that gapk =
Θ(i−3/2). Since the first i shells together contain

∑i
`=1 i

3/4 = Θ(i7/4) points, we have k = Θ(i7/4) and
gapk = Θ(k−6/7). 2

E.2 Missing Details from Section 5.2

The following observation directly follows from the definition of responsive mechanisms.

Observation 6. In the matching utilities environment, a mechanismM is responsive if and only if θiπii(θ) ≥
θjπji(θ), ∀θ ∈ T, i, j ∈ [n]. Here θn = 1−

∑n−1
i=1 θi.

Proof of Lemma 9: Let M be any optimal responsive mechanism. Then the buyer’s value for experiment
E(θ) is (θn = 1−

∑n−1
i=1 θi):

V ∗θ (E(θ)) =

n∑
i=1

θiπi(θ) =

n−1∑
i=1

θi · (πi(θ)− πn(θ)) + πn(θ) (17)

Now for every type θ, let c(θ) = 1 − maxi{πi(θ)} ≥ 0. For every i ∈ [n], we arbitrarily move a
total mass of c(θ) from {πij(θ)}j 6=i to πii(θ). We also increase the payment of type θ by c(θ). LetM′ =
{E′(θ), t′(θ)}θ∈Θ be the induced mechanism. By Observation 6,M′ is responsive sinceM is responsive and
πii(θ) is (weakly) increased while πij(θ) is (weakly) decreased for i 6= j.

Moreover, for every θ ∈ Θ, the buyer’s utility after purchasing E′(θ), V ∗θ (E′(θ)) − t′(θ), is the same
as V ∗θ (E(θ)) − t(θ). SinceM is IC, IR,M′ is also IC, IR. And REV(M′) ≥ REV(M). ThusM′ is also
the optimal responsive mechanism. The proof is finished by noticing that M′ satisfies the property in the
statement due to the choice of c(θ). 2
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Proof of Observation 1: For any θ, θ′ ∈ Θ, since the mechanism is responsive, IC and IR, we have

G(θ′)−G(θ) ≥ [V ∗θ′(E(θ))− t(θ)]− [V ∗θ (E(θ))− t(θ)]

=V ∗θ′(E(θ))− V ∗θ (E(θ)) =
n−1∑
i=1

(πi(θ)− πn(θ))(θ′i − θi)

Taking derivative on both sides at θ′ = θ finishes the proof. 2

Proof of Lemma 10: For any θ, the buyer’s utility function G(θ) is the maximum of a collection of linear
functions over θ. Thus G(·) is convex. Moreover, for any θ, θ′ ∈ Θ,

G(θ)−G(θ′) ≤ [Vθ(E(θ))− t(θ)]− [Vθ′(E(θ))− t(θ)] ≤ c(θ, θ′)

Here the first inequality follows from the fact that G(θ′) = Vθ′(E(θ′))− t(θ′) ≥ Vθ′(E(θ))− t(θ) sinceM
is IC. The second inequality follows from the definition of c(θ, θ′).

It remains to show that G(0) = 1. SinceM is IR, G(0) ≥ u(0) = 1. On the other hand, the buyer’s value
for any experiment is at most 1. Thus G(0) ≤ 1. 2

Proof of Lemma 11: We use the notations from Definition 4. For every θ ∈ Θ, by the product rule, we have 26

div(G(θ)f(θ) · θ) = θ · ∇(G(θ) · f(θ))−G(θ)f(θ) · ∇θ
= θ · [G(θ) · ∇f(θ) + f(θ) · ∇G(θ)] + (n− 1) ·G(θ)f(θ)

Integrating over Θ for both sides, by the divergence theorem, we have∫
Θ

(∇G(θ) · θ)f(θ)dθ =

∫
∂Θ
G(θ)f(θ)(θ · n)dθ −

∫
Θ
G(θ) · [∇f(θ) · θ + (n− 1)f(θ)] dθ (18)

Similarly, for every i ∈ [n− 1],

div(G(θ)f(θ) · ei) = ei · [G(θ) · ∇f(θ) + f(θ) · ∇G(θ)]

Thus ∫
Θi

∂G(θ)

∂θi
f(θ)dθ =

∫
Θi

(∇G(θ) · ei)f(θ)dθ

=

∫
∂Θi

G(θ)f(θ)(ei · ni)dθ −
∫

Θi

G(θ) · (ei · ∇f(θ))dθ

(19)

Combining Equation (18), Equation (19) and the fact that
∫

Θ f(θ)dθ = 1 completes the proof. 2

Proof of Lemma 12: By Lemma 11,∫
Θ
G(θ)dµP =

∫
Θ

[−G(θ) +∇G(θ) · θ +G(0)] f(θ)dθ −
n−1∑
i=1

∫
Θi

∂G(θ)

∂θi
f(θ)dθ

≥
∫

Θ

[
−G(θ) +∇G(θ) · θ −max

{
∂G(θ)

∂θ1
, . . . ,

∂G(θ)

∂θn−1
, 0

}
+G(0)

]
f(θ)dθ

26For any real-valued function F (·) over Θ, div(F ) is the divergence of F , defined as div(F ) =
∑n−1
i=1

∂F
∂θi

.
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The last inequality achieves equality if and only if Condition (1) is satisfied. It suffices to prove that
∫

ΘG(θ)dµP ≤∫
Θ×Θ c(θ, θ

′)dγ(θ, θ′). In fact, since G(θ)−G(θ′) ≤ c(θ, θ′),∀θ, θ′ ∈ Θ, we have∫
Θ×Θ

c(θ, θ′)dγ(θ, θ′) ≥
∫

Θ×Θ
(G(θ)−G(θ′))dγ(θ, θ′)

=

∫
Θ
G(θ)dγ1 −

∫
Θ
G(θ′)dγ2

≥
∫

Θ
G(θ)dµP

The first inequality achieves equality if and only if Condition (2) is satisfied. The last inequality follows from
the fact that γ1 − γ2 �cux µP and G is convex. The last inequality achieves equality if and only if Condition
(3) is satisfied. 2

Proof of Observation 2: Firstly, ∇f(θ) = 0 for every θ since f(θ) is a constant. Thus the last two terms
in Definition 4 is always 0. Moreover, the term 1A(0) contributes a point mass of +1 at 0. The term −n ·∫

Θ 1A(θ)f(θ)dθ contributes a total mass of−3 uniformly distributed through out Θ. By Lemma 11, the other
two terms contribute a total mass of 2 on the boundary of triangle Θ and line segments ad, bd, cd. We notice
that when θ is on the x-axis (or y-axis), both θ · n and e1 · n1 (or e2 · n2) are 0. Moreover, for any point θ
on the line segment θ1 + θ2 = 1, the outward pointing unit vector is (1, 1). Thus θ · n = 1 = ei · ni for any
i ∈ {1, 2}. Thus there is no mass on the boundary of the big triangle Θ and a total mass of 2 is distributed
among line segments ad, bd, cd. The mass on each segment is then obtained by calculating the line integral.
2

Proof of Lemma 13: We verify feasibility and all three conditions in the statement of Lemma 12:

Primal Solution Feasibility. SinceG∗ is induced by a responsive, IC and IR mechanismM∗, by Lemma 10,
G∗ is a feasible solution to the primal.

Condition 1. By Observation 1, for every i ∈ {1, 2}, ∂G∗(θ)
∂θi

= π∗i (θ) − π∗3(θ),∀θ ∈ Θ. Now for any

i ∈ {1, 2, 3} and θ ∈ Θi, if θ ∈ Ω1, π∗j (θ) = 1,∀j ∈ {1, 2, 3}. Thus max{∂G
∗(θ)
∂θ1

, ∂G
∗(θ)
∂θ2
} = 0; If θ ∈ Ω2,

the buyer does not purchase any experiment. Since M∗ is responsive, by Observation 6 and the fact that
θi ≥ θj ,∀j 6= i, we have that π∗ji(θ) = 1,∀j ∈ {1, 2, 3}. Thus max{∂G

∗(θ)
∂θ1

, ∂G
∗(θ)
∂θ2
} equals to 1 if i ∈ {1, 2},

and -1 otherwise. Thus Condition (1) is satisfied.

Condition 2. γ∗(θ, θ′) > 0 if and only if θ = 0 and θ′ ∈ Ω2. Thus G∗(θ)−G∗(θ′) = 1−max{θ′1, θ′2, 1−
θ′1−θ′2}, since the buyer with any type θ′′ has utility u(θ′′) = max{θ′′1 , θ′′2 , 1−θ′′1−θ′′2} if she does not purchase
any experiment. Consider the experiment E such that πj1(E) = 1, ∀j ∈ {1, 2, 3} and 0 elsewhere, which is
one of the no information experiments. Then V0(E) = u(0) = 1 and Vθ′(E) = u(θ′) = max{θ′1, θ′2, 1−θ′1−
θ′2}. G∗(θ) − G∗(θ′) = V0(E) − Vθ′(E). Moreover, G∗(θ) − G∗(θ′) ≤ c(θ, θ′) since G∗ is feasible. Thus
the inequality achieves equality for any (θ, θ′) such that γ∗(θ, θ′) > 0.

Condition 3 and Dual Solution Feasibility. Denote γ∗1 , γ
∗
2 the marginals of γ. We prove that we can

transform µP to γ∗1 − γ∗2 through a sequence of mean-preserving spreads in the region where G∗ is linear.
By the definition of γ∗, γ∗1 has a point mass of +1 at 0. −γ∗2 has a mass of −1 uniformly distributed on Ω2.
Recall that Ω2 = {θ ∈ Θ : max{θ1, θ2} ≥ 2

3} ∪ {θ ∈ Θ : θ1 + θ2 ≤ 1
3}, which consists of 3 right triangles

with side length 1
3 . Thus VOL(Ω2) = 1

6 = 1
3 · VOL(Θ). Thus by Observation 2, µP

∗
(Ω2) = (γ∗1 − γ∗2)(Ω2).

Hence η = µP
∗ − (γ∗1 − γ∗2) can be written as η1 − η2, where
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1. η1: A mass of 2
3 uniformly distributed on each line segment ad, bd, cd, having a total mass of 2.

2. η2: A mass of 2 uniformly distributed through out Ω1.

We notice that for every θ ∈ Ω1, the buyer purchases the fully informative experiment and thusG∗(θ) = 2
3

is constant throughout the region Ω1. Hence, to prove γ∗1 − γ∗2 �cux µP
∗

and that Condition 3 is satisfied, it
suffices to show that we can spread the positive mass on ad, bd, cd to the whole region Ω1 via mean-preserving
spreads, to “zero out” the negative mass (in −η2).

To visualize the proof, we map each point (θ1, θ2) ∈ Θ to the point (θ1, θ2, θ3 = 1 − θ1 − θ2) ∈ [0, 1]3,
so that the type space becomes a regular triangle (Figure 11). Now Ω1 is separated into three pentagons by
ad, bd and cd.

Figure 11: Proof of Condition 3

For every θ on the line segment cd, denote w(θ) the width of the pentagon efhdg at θ (Figure 12). Sim-
ilarly, define w(θ) for θ on the line segment ad, bd to be the width of the corresponding pentagon at θ. Let
η′2 be a measure that has a total mass of 2 on the line segments ad, bd, cd, such that the density of each point
θ is proportional to w(θ). We claim that η2 �cux η′2 by transforming η′2 to η2 by mean-preserving spreads.
For each point θ on the line segment cd, we spread the mass of θ uniformly to all points θ′ in the pentagon
efhdg such that θ3 = θ′3. This is a mean-preserving spread since by symmetry, the mean of those points is
θ. Moreover, since the density of θ in η′2 is proportional to the width of the pentagon at θ, all the mass are
uniformly distributed in the pentagon. We perform similar operations for the other two pentagons. Thus we
can transform η′2 to η2 by mean-preserving spreads.

Now it suffices to prove that we can transform η1 to η′2 by mean-preserving spreads. We prove the
following claim.

Claim 6. For any x, y ∈ R+ such that x < y, let θ1,θ2,θ3 be the three points on the line segments ad, bd, cd
respectively, such that the distance between each θi and d = (1

3 ,
1
3 ,

1
3) is x (green points in Figure 11).

Similarly, let θ′1,θ
′
2,θ
′
3 be the points that have distance y from point d (red points in Figure 11). Then any

positive mass uniformly distributed in θ1,θ2,θ3 can be transformed to the same amount of mass uniformly
distributed in θ′1,θ

′
2,θ
′
3, via a mean-preserving spread.

Proof. For every i ∈ {1, 2, 3}, we notice that θi is a convex combination of d and θ′i. Thus we can spread the
mass at θi to d and θ′i for every i ∈ {1, 2, 3}. Next, since d is a convex combination of θ′1,θ

′
2,θ
′
3, we can then

spread of mass at d to θ′1,θ
′
2,θ
′
3. By symmetry, the mass is uniformly distributed in those three points.
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Figure 12: Illustration of w(θ) and θ0 in the proof

Back to the proof of Lemma 13. The density of each point in η1 is 2/3
cd = 2

√
6

3 . For η′2, by symmetry, the
density of each point θ is

2w(θ)

3
∫
w(θ′)dθ′

=
2/3 · w(θ)

Area of pentagon efhdg
= 2
√

3 · w(θ)

Let θ0 be the (unique) point in the interior of cd, such that w(θ0) =
√

2
3 (Figure 12). 27 Then for any

point θ in the line segment dθ0, the density of θ in η1 is at least the density of θ in η′2; For any point θ in
the line segment θ0c, the density of θ in η1 is at most the density of θ in η′2. By Claim 6, we can transform
η1 to η′2 via mean-preserving spreads, by keeping spreading the mass of points in dθ0 to points in θ0c. Thus
we have η′2 �cux η1. Combining with the fact that η2 �cux η′2, we have η2 �cux η1, which implies that
γ∗1 − γ∗2 �cux µP

∗
.

2

27The point is unique since
√

2
3

= ef < gh.
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