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Abstract

Functional coefficient (FC) regressions allow for systematic flexibility in the responsive-

ness of a dependent variable to movements in the regressors, making them attractive in

applications where marginal effects may depend on covariates. Such models are commonly

estimated by local kernel regression methods. This paper explores situations where respon-

siveness to covariates is locally flat or fixed. In such cases, the limit theory of FC kernel

regression is shown to depend intimately on functional shape in ways that affect rates of

convergence, optimal bandwidth selection, estimation, and inference. The paper develops

new asymptotics that take account of shape characteristics of the function in the locality

of the point of estimation. Both stationary and integrated regressor cases are examined.

Locally flat behavior in the coefficient function has, as expected, a major effect on bias and

thereby on the trade-off between bias and variance, and on optimal bandwidth choice. In FC

cointegrating regression, flat behavior materially changes the limit distribution by introduc-

ing the shape characteristics of the function into the limiting distribution through variance

as well as centering. Both bias and variance depend on the number of zero derivatives in

the coefficient function. In the boundary case where the number of zero derivatives tends to

infinity, near parametric rates of convergence apply for both stationary and nonstationary

cases. Implications for inference are discussed and simulations characterizing finite sample

behavior are reported.
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1 Introduction

Kernel approaches to nonparametric regression use localized versions of standard statistical

methods to fit shape characteristics of nonlinear functions in statistical models. These methods

have been extensively used in applied research across the social, business, and natural sciences.

The methods are particularly useful in assessing the role of nonlinearities and parameter insta-

bilities and are used in modeling cross section, time series, and panel data. An especially useful

model for which these methods have been developed is functional coefficient (FC) regression.

Such regressions allow the responses of a dependent variable to depend locally in a systematic

way on movements in other variables.

This paper demonstrates that the limit theory in FC regression depends on the functional

shape of the regression coefficient in ways that involve rates of convergence, asymptotic variance,

bandwidth selection, and inference. Standard limit theory for kernel regression shows clearly

how functional shape affects bias, which is well known to depend on the local first two derivatives

of the regression function and the first derivative of the density of the covariate. The limit theory

changes in material ways when these and possibly higher derivatives are zero at the point of

estimation. Recent work on FC cointegrating regression (Phillips and Wang, 2020) pointed

out dependence of the asymptotic variance on the first derivative of the functional coefficient

in estimating cointegrating equations. But the effects of flat functional shape on the limit

distribution, including the bias function and limiting variance, have not been explored in earlier

nonparametric literature on FC regression in either stationary or nonstationary cases. There

also appears to be no former research on the implications of flat functional shape on the limit

theory for standard kernel density estimation or kernel regression.

The present paper develops new asymptotics that involve these shape characteristics of the

function in the locality of the point of estimation. In particular, locally flat behavior in the

coefficient function is shown to have a major effect on the form of the asymptotic distribution as

well as the rate of convergence, with important differences between stationary and nonstationary

regressions. Local flatness in the coefficient function at some point in the covariate space may

be regarded as an intermediate case between the usual FC model and regression with a fixed

coefficient, allowing for responses of the dependent variable to be unresponsive to movements

in other variables at this point in their support. The primary focus in this paper is to develop

asymptotics for FC regression under such flatness conditions. Related effects to those described

here may be expected to apply in other nonparametric regression models where flatness occurs

in nonlinear nonparametric regressions.

The paper is organized as follows. The new limit theory is given in Section 2, which covers

both stationary and nonstationary FC regression. Section 3 discusses the implications of the

limit theory for inference. Section 4 provides simulation evidence corroborating the asymptotics.

Section 5 concludes. Proofs of the main results, several subsidiary lemmas, and computation

details are given in the Appendix. Additional technical details are provided in the Online
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Supplement to this paper. Throughout the paper we use the notation ≡d to signify equivalence

in distribution, ∼a to signify asymptotic equivalence,  to denote weak convergence on the

relevant probability space, b·c and d·e to denote floor and ceiling functions, [·] to signify the

rounded part of a real number, and µj(K) =
∫
K u

jK(u)du, νj(K) =
∫
K u

jK2(u)du for kernel

moment functions, where K is the support of the kernel function K. According to the context,

we use := and =: to signify definitional equality. Unless otherwise indicated
∫

denotes
∫ 1

0 .

2 Asymptotic theory for locally flat FC estimation

The standard FC regression model is a simple extension of linear regression, taking the following

form

yt =x′tβ(zt) + ut (2.1)

in which the covariate zt determines the strength or weakness of the response of yt to the

regressor xt. The regressor xt is a p× 1 time series, which may be stationary or nonstationary.

The covariate zt is a q × 1 time series and is commonly, although not always, assumed to be

stationary. The error term ut is a scalar stationary process, often taken to be a martingale

difference. In view of its flexibility as a convenient extension of fixed parameter regression, the

model has been extensively studied and applied in econometrics. A popular textbook reference

is by Li and Racine (2007, Chapter 9.3). Many papers have studied estimation and inference in

this model under various assumptions, including early work by Cai et al. (2000) on stationary

regression and much subsequent work on nonstationary regressions covering both cointegrated

and noncointegrated models (Juhl, 2005; Xiao, 2009; Cai et al., 2009; Sun et al., 2011; Wang

et al., 2019).

Kernel weighted local least squares regression is a standard approach to estimating the

functional coefficient β(·) in (2.1). The local level least squares estimate of β(z) is β̂(z) =

(
∑n

t=1 xtx
′
tKtz)

−1 (
∑n

t=1 xtytKtz) with kernel function Ktz = K((zt − z)/h) and bandwidth h.

The estimate β̂(z) may be decomposed in the usual manner into ‘bias’ and ‘variance’ terms as(
n∑
t=1

xtx
′
tKtz

)(
β̂(z)− β(z)

)
=

n∑
t=1

xtx
′
t[β(zt)− β(z)]Ktz +

n∑
t=1

xtutKtz. (2.2)

Under suitable regularity conditions the limit theory for β̂(z) is normal or mixed normal af-

ter standard corrections are employed for bias and suitable recentering or undersmoothing is

employed (Phillips and Wang, 2020). These asymptotics lead to a theory of estimation and in-

ference for both stationary, cointegrating, and mixed regressor cases. Our treatment extends the

existing limit theory to address the impact of locally flat behavior in the regression coefficient

function β(·). We start with the stationary case.
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2.1 The FC stationary model

It is convenient for exposition to use a prototypical version of the model (2.1) in which the

following conditions are assumed.

Assumption 1.

(i) The observable time series {xt, zt} are strictly stationary α-mixing processes with mixing

numbers α(j) that satisfy
∑

j≥1 j
c[α(j)]1−2/δ < ∞ for some δ > 2, c > τ(1 − 2/δ) and

τ > 1 with finite moments of order p > 2δ > 4 and Extx′t = Σxx > 0. The density f(z) of

the scalar process zt and the joint density f0,j(s0, sj) of (zt, zt+j) are bounded above and

away from zero over their supports with uniformly bounded and continuous derivatives to

the second order.

(ii) {ut} is a martingale difference sequence (mds) with respect to the filtration

Ft = σ{{xs}∞s=1; {zs}∞s=1;ut, ut−1, · · · }, E(u2
t |Ft−1) = σ2

u a.s., and E(u4
t ) <∞.

(iii) {xt}, {zt} and {ut} are mutually independent.

(iv) The kernel function K(·) is a bounded probability density function symmetric about zero

with µj(K) =
∫
K u

jK(u)du, νj(K) =
∫
K u

jK2(u)du, and support K either [−1, 1] or

R = (−∞,∞).

(v) β(z) is a smooth function with uniformly bounded continuous derivatives to order L + 1

for some integer L ≥ 1.

(vi) n→∞ and h→ 0.

The stationarity conditions in Assumption (i) accord with earlier work on nonparametric

and functional coefficient kernel regression for which the mixing requirements are commonly

used to enable development of asymptotic theory in time series FC regression (e.g., Fan and

Yao, 2008; Cai et al., 2000). A stronger mixing decay rate condition c > τ(1 − 2/δ) some

δ > 2 and τ > 1 in (i) is used in place of the more usual condition c > 1 − 2/δ to assist in

the nonparametric limit distribution theory under dependence. The mds condition in (ii) and

exogeneity and independence conditions in (iii) are convenient for the limit theory. Relaxation

of those conditions requires alternative methods such as FC instrumental variable methods and

additional technical complications that are not within the goals of the present work to address.

The kernel assumptions in (iv) are commonly employed but when bandwidths are very small,

as they are in some of the results herein, kernels with support K on the entire real line R are

better suited, or other methods used to avoid finite sample failure in the kernel-weighted signal

in the regression.

The smoothness conditions (v) on β(zt) and its derivatives are needed for the theory de-

veloped here because the limiting bias expressions rely on higher order derivatives of β(zt).
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When the smoothness degree parameter L is unknown and estimated a stronger condition may

be required to allow for potential overestimation of L in practice. Condition (vi) is standard

in nonparametric work and specific rate conditions involving (n, h) are given as needed in the

results below. However, as shown in the analysis of limit behavior when L → ∞, the optimal

bandwidth may no longer satisfy the contraction condition h→ 0 in (vi).

Our first result details the limit theory for the FC regression estimator β̂(z) in model (2.1)

for the stationary case under locally flat conditions on the coefficient function.

Theorem 2.1. If Assumption 1 holds, if β(z) has derivatives β(`)(z) = 0 at z for all ` =

1, 2, ..., L − 1 and some integer L ≥ 1 for which β(L)(z) 6= 0, then the following limit theory

holds when nh→∞

√
nh
{
β̂(z)− β(z)− hL∗BL(z)

}
 N (0,ΩS(z)) , (2.3)

where L∗ = (L+ 1)1{L=odd} + L1{L=even}, ΩS(z) = ν0(K)σ2
u

f(z) Σ−1
xx ,

BL(z) =
µL∗(K)

f(z)
CL(z) =

GL(z)

f(z)
(2.4)

µL∗(K) = µL(K)× 1{L=even} + µL+1(K)1{L=odd}, GL(z) = µL∗(K)CL(z) and

CL(z) =
f(z)β(L)(z)

L!
1{L=even} +

[
β(L)(z)

L!
f (1) (z) +

β(L+1)(z)

(L+ 1)!
f (z)

]
1{L=odd}. (2.5)

Theorem 2.1 shows that flatness in the functional coefficient β(·) at z affects the limit theory

of β̂(z) in the stationary xt regressor case only through the bias function hL
∗BL(z) = hL

∗ GL(z)
f(z)

in (2.3). The bias order O(hL
∗
) and the functional form GL(z) are affected. The bias function

GL(z) depends on the first two non-zero derivatives {β`(z); ` = L,L+ 1} of β(z), as well as the

density f(z) and its first derivative f (1)(z), the latter appearing as is usual in nonparametric

regression. When L is even the dependence is confined to the derivative βL(z) and the density

f(z). The limiting variance formula ΩS(z) = ν0(K)σ2
u

f(z) Σ−1
xx is unchanged from the standard case

without flatness and the convergence rate remains
√
nh. So, the effect of local flatness in β(z)

affects the limit theory of FC regression only via the bias function.

As L rises with an increasing degree of flatness in the regression coefficient at z, the bias

function in (2.3), which is of order O(hL
∗
), falls when h → 0 as n → ∞. When estimation

bias falls it is natural to select a wider bandwidth to reduce variance. Correspondingly, the

usual plug-in optimal bandwidth formula changes, with resulting adjustment to the convergence

rate. This can be conveniently shown in the scalar coefficient function β(z) case, for which the

optimal bandwidth formula for minimizing asymptotic mean squared error can be deduced from
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(2.3) in the usual way, giving (using the scalar xt case to illustrate)

hopt* =

(
ΩS(z)

2L∗BL(z)2

) 1
2L∗+1 1

n1/(2L∗+1)
. (2.6)

In the conventional case where L = 1 and L∗ = 2, we have the usual optimal bandwidth rate

hopt* = O(n−
1
5 ). More generally, and taking L to be even for convenience so that L∗ = L and

BL(z) =
(
β(L)(z)
L!

)
f(z)µL (K), we have

hopt* =

(
L!(L− 1)!ΩS(z)

2[µL(K)f(z)β(L)(z)]2)

)1/(2L+1) 1

n1/(2L+1)
=

cL(z)

n1/(2L+1)
(2.7)

where cL(z) = dL(z) [L!(L− 1)!]1/(2L+1) with dL(z) =
(

ΩS(z)

2[µL(K)f(z)β(L)(z)]2)

)1/(2L+1)
. For in-

stance, when the functional coefficient has the polynomial form β(z) =
∑q

j=0 ajz
L+j which is

locally flat to order L − 1 at z = 0 when a0 6= 0, we have β(L)(z) = L!
∑q

j=0
(L+j)!
L!j! ajz

j and

β(L)(0) = a0L! = O(L!). The same applies when the locally flat coefficient function β(z) has

the asymptotically regular form β(z) ∼a a0z
L as L → ∞. In such cases, it is evident that

cL(z) = O([L!/β(L)(z)]1/L) = O(1) as L → ∞ and the optimal bandwidth hopt* in (2.7) ap-

proaches the non-shrinking rate O(1/n0) = O(1). Hence, for large L the associated optimal

convergence rate is
√
nhopt∗ which approaches

√
n, giving a near-parametric convergence rate

for extremely flat functions.

This behavior matches the heuristic that when a functional coefficient is nearly flat and

bias is small from neighboring observation points, averaging over those observations by using a

wider (or asymptotically non-shrinking) bandwidth is useful in reducing variance and thereby

mean squared error. Note, however, that for this optimal choice of bandwidth as L → ∞,

in such cases we have BL(z) = O(β(L)(z)/L!) = O(1) as L → ∞ so that
√
nhhL

∗BL(z) =

O(n1/2hL+1/2) = O(n1/2n−
L+1/2
2L+1 ) = O(1) following (2.7) for the case that L is even. So the

bias term is, as usual, not negligible for the optimal choice of bandwidth. What Theorem 2.1,

formula (2.7), and this asymptotic bias analysis show is that when the coefficient function is

nearly flat in the neighborhood of the point of estimation, near parametric convergence rates

are possible with the same limit normal distribution and variance as in other cases.

2.2 The FC cointegrating regression model

For exposition we use a cointegrating regression equation with full rank I(1) exogenous regres-

sors and functional coefficients. The model is a prototype of more complex systems and provides

results that show the impact of flat behavioral characteristics in the functional coefficients on

rates of convergence, estimation, inference, and bandwidth selection in a nonstationary frame-

work. These simplifying conditions enable the use of standard kernel-weighted least squares

regression. Similar analyses to those given here will be needed in more complex modeling en-
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vironments under endogeneity and cointegrated equations with possibly cointegrated or even

functionally cointegrated regressors. Extensions to address such complexities would involve pro-

cedures such as ‘fully modified’ FCC kernel regression. Some related FM methods have been

designed for the time varying parameter framework of cointegration (Phillips et al., 2017; Li

et al., 2016; Gao and Phillips, 2013) and may be developed for FC cointegrating models. But

they are not the subject of the present work and are left for future research.

The following assumption modifies the conditions of Assumption 1 and provides for a simple

cointegrating regression analogue of model (2.1).

Assumption 2.

(i) {xt} is a full rank unit root process satisfying the functional law 1√
n
xbn·c  Bx(·), where

Bx is vector Brownian motion with variance matrix Σxx > 0.

(ii) {zt} is a strictly stationary α-mixing scalar process with mixing numbers α(j) that satisfy∑
j≥1 j

c[α(j)]1−2/δ <∞ for some δ > 2 and c > τ(1−2/δ) and τ > 1 with finite moments

of order p > 2δ > 4. The density f(z) of zt and joint density f0,j(s0, sj) of (zt, zt+j)

are bounded above and away from zero over their supports with uniformly bounded and

continuous derivatives to the second order.

(iii) Assumptions 1(ii) - (vi) hold.

The high level assumption (i) on the functional limit behavior of the regressor xt is conve-

nient, commonly used, and justified by standard primitive conditions (e.g., Phillips and Solo,

1992). Assumption 2(ii) mirrors Assumption 1(i) for the covariate zt. The independence con-

ditions in Assumption 1 (iii) are restrictive, particularly in cointegrating regressions. They

may be partially relaxed, as for example in Li et al. (2016, 2020) in time-varying parameter

cointegrating regression. Such extensions require different methods of estimation, as indicated

earlier. In further extensions of this type to FCC regression models, many of the findings of

the present work on the effects of local flatness of the functional coefficient will be relevant and

can be explored in future work. The moment conditions in (v2) on β(zt) and its derivatives

are needed in the nonstationary case because they figure in the development and appear in the

asymptotic variance formula. The remaining conditions are as in Assumption 1.

Theorem 2.2. If Assumption 2 holds, if β(z) has derivatives β(`)(z) = 0 at z for all ` =

1, 2, ..., L − 1 and some integer L ≥ 1 for which β(L)(z) 6= 0, and E||β(L)(zt)||2 < ∞, then the

following limit theory holds under the respective rate conditions indicated:

(i) n
√
h
{
β̂(z)− β(z)− hL∗BL(z)

}
 MN (0,ΩNS(z)) , if nh2L → 0, nh→∞, (2.8)

(ii)

√
n

h2L−1

{
β̂(z)− β(z)− hL∗BL(z)

}
 MN (0,ΩL(z)) , if nh2L →∞, (2.9)
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(iii) n1− 1
4L

(
β̂(z)− β(z)− hL∗BL(z)

)
 c

1
2
− 1

4L ×MN (0,ΩL(z)) + c−
1

4LMN (0,ΩNS(z))

≡dMN
(

0, c1− 1
2LΩL(z) + c−

1
2LΩNS(z)

)
, if nh2L → c ∈ (0,∞), (2.10)

where L∗ = (L+ 1)1{L=odd} + L1{L=even},

ΩNS(z) =
ν0(K)σ2

u

f(z)

(∫
BxB

′
x

)−1

, (2.11)

ΩL(z) =
ν2L(K)

(L!)2f(z)

(∫
BxB

′
x

)−1(∫
BxB

′
x

(
B′xβ

(L)(z)
)2
)(∫

BxB
′
x

)−1

, (2.12)

and where the bias function BL(z) = µL∗ (K)
f(z) CL(z) = GL(z)

f(z) , just as in Theorem 2.1.

The division of the limit theory of FC cointegrating regression into three categories was

discovered in Phillips and Wang (2020) for the case where L = 1. Theorem 2.2 extends those

results to the general case and reveals the effect on both the limit theory and the convergence

rate of local flatness in the coefficient function at the point of estimation. As shown in Phillips

and Wang (2020) and, as is evident in the proof of Theorem 2.2, the presence of multiple

categories to the limit theory arises because two different sources of variability occur in the

asymptotics – one from the random elements of the bias function and one from the sample

covariance of the regressor and the equation error. Correspondingly, the form of the limit

theory itself changes, according to the behavior of nh2L.

Category (i) where nh2L → 0 is comparable to the stationary case, but with convergence

rate n
√
h that embodies the O(

√
n) order of the I(1) regressor xt and a limit variance matrix

that replaces the stationary sample moment matrix limit Σxx with the corresponding quadratic

functional
∫
BxB

′
x for the nonstationary case in the limit matrix ΩNS in (2.11). The bias

function hL
∗BL(z) in the centering of β̂(z) is identical to the stationary case and has the same

order O(hL
∗
). Mixed normal limit theory, but with different rates of convergence and different

variance matrices, applies in cases (i), (ii) and the intermediate case (iii).

Remark 2.1. (Convergence-rate optimal bandwidth order) In case (iii) of Theorem 2.2

where nh2L → c for some constant c ∈ (0,∞), the bandwidth h ∼a (c/n)
1

2L and then the

convergence rate in case (ii) becomes
√
n/h2L−1 = O(

√
n1+ 2L−1

2L ) = O(n1− 1
4L ). Similarly, the

convergence rate in case (i) becomes n
√
h = O(n1− 1

4L ) when h ∼a (c/n)
1

2L . This duality between

the two cases implies that the convergence rates in cases (i) and (ii) merge to the same O(n1− 1
4L )

rate for the intermediate situation where the bandwidth satisfies nh2L → c. In fact, the case

nh2L → c ∈ (0,∞) yields the maximum convergence rate outcome for FCC regression because,

for the boundary cases where nh2L → 0 or nh2L → ∞, we find that the respective convergence

rates are n
√
h = o(n1− 1

4L ) and
√
n/h2L−1 = o(n1− 1

4L ). Thus, the FCC kernel regression
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convergence rate is optimal in the intermediate case where nh2L → c ∈ (0,∞). The associated

convergence-rate optimal bandwidth, denoted hopt, is hopt ∼a (c/n)
1

2L = O(n−
1

2L ). The limit

distribution is a mixture of the mixed normal componentMN (0,ΩL(z)) (which comes from the

random element of the bias function) and the mixed normal componentMN (0,ΩNS(z)) (which

comes from the usual equation error term). The coefficients in this mixture are c
1
2
− 1

4L and c−
1

4L .

For instance, if the locally flat function β(z) has the asymptotically regular form β(z) ∼a a0z
L

as L → ∞, the variance matrix ΩL(z) = O((β(L)(z)/L!)2) = O(1). Then the c1− 1
2LΩL(z)

component in the asymptotic variance in (2.10) remains stable when L is large just like the

c−
1

2LΩNS(z) component. Therefore the random element coming from the bias function cannot

be ignored even when the functional coefficient is sufficiently flat at the point of estimation.

However, with h = O(n−
1

2L ), based on case (iii) of Theorem 2.2, the bias term cannot be

neglected because it is of order O(n1− 1
4L × n−

L∗
2L ) = O(n

4L−2L∗−1
4L )→∞ when L ≥ 2. Therefore

when discussing the optimal bandwidth order, we need to take the bias effect into consideration,

not only the convergence rate. This requires examination of the Mean Squared Error (MSE)

optimal bandwidth order, as given next.

Remark 2.2. (Optimal bandwidth order) We explore the optimal bandwidth order with

respect to Root Mean Squared Error (RMSE). Let h = O(nγ), −1 < γ < 0, and β̂(z)− β(z) =

O(ngL(γ)). The exponent function gL(γ) in the latter expression represents the order of the

RMSE, which is determined by the maximum of the bias order and the standard deviation

order. The subindex L in gL(γ) indicates that the RMSE order function varies with parameter

L.

First consider the case where L is odd in which case L∗ = L + 1. Based on result (i) of

Theorem 2.2, when nh2L → 0 or equivalently γ < − 1
2L , we have β̂(z)−β(z) = Op(

1
n
√
h

+hL
∗
) =

Op(n
−1−γ/2 + n(L+1)γ). Then we have gL(γ) = max{−1 − γ/2, (L + 1)γ} when γ < − 1

2L .

Similarly, based on result (ii) of Theorem 2.2, we have gL(γ) = max{(L−1/2)γ−1/2, (L+1)γ}
when γ > − 1

2L . Following result (iii) of Theorem 2.2, we have gL(γ) = max{−1+ 1
4L , (L+1)γ}

when γ = − 1
2L . Straightforward analysis yields

g1(γ) =


2γ, −1/3 ≤ γ < 0

−1−γ
2 , −1/2 < γ < −1/3

−(1 + γ/2), −1 < γ ≤ −1/2

(2.13)

and

gL(γ) =

 (L+ 1)γ, − 2
2L+3 ≤ γ < 0

−1− γ
2 , −1 < γ < − 2

2L+3

(2.14)

for L ≥ 3.

Similarly, suppose L is even, in which case L∗ = L, and gL(γ) can be derived based on

Theorem 2.2. Thus, if nh2L → 0 or equivalently γ < − 1
2L , we have β̂(z) − β(z) = Op(

1
n
√
h

+
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hL
∗
) = Op(n

−1−γ/2 + nLγ). When γ = − 1
2L , we have gL(γ) = max{−1 + 1

4L , Lγ} = max{−1 +
1

4L ,−1/2} = −1/2; and when γ > − 1
2L , we have gL(γ) = max{(L−1/2)γ−1/2, Lγ}. Standard

calculations yield

gL(γ) =

Lγ, − 2
2L+1 ≤ γ < 0

−1− γ
2 , −1 < γ < − 2

2L+1

(2.15)

when L is even. Note that (2.14) and (2.15) can be combined as

gL(γ) =

L∗γ, − 2
2L∗+1 ≤ γ < 0

−1− γ
2 , −1 < γ < − 2

2L∗+1

(2.16)

for L ≥ 2.

The gL(γ) functions are plotted in Figure 1. Evidently, when L = 1, the RMSE optimal

bandwidth order is hopt∗ = O(n−1/2), which equals the convergence-rate optimal bandwidth order

hopt. For L ≥ 2, the optimal bandwidth is hopt∗ = O(n−
2

2L∗+1 ), which is smaller than the

convergence-rate optimal bandwidth order hopt = O(n−
1

2L ) when L ≥ 2. The discrepancy between

these two optimal bandwidth rates is due to the fact that when L ≥ 2 bias dominates variance

in result (iii) of Theorem 2.2. To reduce bias, the RMSE optimal bandwidth prefers to select a

smaller order. When L is large, we can see the order of hopt∗, viz., − 2
2L∗+1 , is close to zero and

then hopt∗ diminishes to zero at a very slow rate as n → ∞. This outcome is consistent with

heuristics as β(z) is close to a constant function at the estimation point z when L is large; and

estimation of an almost constant function requires only a very low degree of localization.

Remark 2.3. (MSE optimal bandwidth formula) The above analysis tells us that the

RMSE optimal bandwidth order, or equivalently, the MSE optimal bandwidth order, is achieved

within case (i) of Theorem 2.2. Taking the standard approach to optimal bandwidth selection

that balances bias and variance (and using the scalar xt case for convenience) leads to the

following formula compared with the stationary regressor case given in (2.6)

hopt* =

(
ΩNS(z)

2L∗BL(z)2

) 1
2L∗+1 1

n2/(2L∗+1)
≡ cL(z)n−

2
2L∗+1 (2.17)

where cL(z) =
(

ΩNS(z)
2L∗BL(z)2

) 1
2L∗+1

. To illustrate, suppose L is even in which case

cL(z) =

(
ΩNS(z)

2LBL(z)2

) 1
2L+1

=

(
ν0(K)σ2

uL!(L− 1)!

2µL(K)2f(z)(
∫
B2
x)β(L)(z)2

) 1
2L+1

. (2.18)

If, as before, the functional coefficient is flat at z = 0 with polynomial form β(z) =
∑q

j=0 ajz
L+j

and a0 6= 0, then β(L)(z) = L!
∑q

j=0
(L+j)!
L!j! ajz

j = O(L!) and cL(z) = Op(1) as L → ∞,

the randomness of cL(z) arising from the presence of the quadratic functional
∫
B2
x in (2.18).
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(a) L = 1 (b) L is odd, L ≥ 3

(c) L is even

Figure 1: Plots of gL(γ) for L ≥ 1.
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Again, the optimal bandwidth hopt* = Op(n
−2/(2L+1)) and for large L the optimal bandwidth

shrinks at a very slow rate and the associated optimal convergence rate n
√
hopt∗ approaches n,

giving a near-parametric convergence rate for extremely flat functions. This suggests that larger

bandwidth is needed for large L. In practice in both stationary and nonstationary cases, L is

typically unknown, so cL(z) and the optimal bandwidth order are also unknown in the absence

of information about β(z) and its derivatives. But while estimation of optimal bandwidths by

cross validation or by the use of derivative function estimates is possible, these methods typically

lead to very slow convergence rates in optimal bandwidth formulae even in the simplest cases

(Hall and Marron, 1987; Hall et al., 1991). So the above findings are likely to be mainly of

importance and use for theoretical work.

Remark 2.4. (Asymptotics with MSE optimal bandwidth) When L = 1, choice of the

MSE optimal bandwidth order hopt∗ leads to asymptotics that are determined according to case

(iii) of Theorem 2.2 since nh2L
opt∗ = O(1) when L = 1. More specifically, the limit theory for

β̂(z) is given by

n3/4
(
β̂(z)− β(z)− h2

opt∗B1(z)
)
 MN

(
0, c1/2ΩL(z) + c−

1
2 ΩNS(z)

)
, (2.19)

which matches the result in Phillips and Wang (2020, Theorem 2.1(c)) for the standard case of

no flatness in β(z). In this case, the bias can be neglected because n3/4×h2
opt∗ = O(n−1/4) = o(1).

When L ≥ 2, we have nh2L
opt∗ → 0 and the limit theory is determined by case (i) of Theorem

2.2. Specifically with h = hopt∗ = O(n−
2

2L∗+1 ), we have

n
2L∗

2L∗+1

{
β̂(z)− β(z)− hL∗opt∗BL(z)

}
 MN (0,ΩNS(z)) . (2.20)

In this case, the random bias component involving ΩL(z) can be ignored asymptotically but the

deterministic bias term cannot be neglected because n
2L∗

2L∗+1 × hL∗opt∗ = O(n
2L∗

2L∗+1 × n−
2L∗

2L∗+1 ) =

O(1). Using the MSE optimal bandwidth hopt∗ = O(n−
2

2L∗+1 ), the fastest convergence rate

that β̂(z) can achieve is Op(n
− 2L∗

2L∗+1 ) when L ≥ 2. As L → ∞, the fastest convergence rate

approaches Op(n
−1), leading to the parametric cointegrating regression convergence rate β̂(z)−

β(z) = Op(n
−1) as L→∞. As in the stationary case, this matches heuristic arguments because

β(z) approaches a constant function at the estimation point z when L→∞.

3 Implications for Inference

3.1 Procedures for inference

When L is known or is correctly hypothesized standard test statistics for inference about the

functional coefficient β(z) can be constructed in a standard way. Following Phillips and Wang

(2020), but allowing now for local flatness in the coefficient function, we start with the matrix

12



normalization

T̂ (z;L) = V̂n(z;L)−1/2[β̂(z)− β(z)− hL∗B̂L(z)], (3.1)

where V̂n(z;L) = An(z)−1Ω̂n(z;L)An(z)−1 with An(z) =
∑n

t=1 xtx
′
tKtz,

Ω̂n(z;L) = ν0(K)σ̂2
u

n∑
t=1

xtx
′
tKtz +

n∑
t=1

xtx
′
t{x′t

1

L!
β̂(L)(z)(zt − z)LKtz}2 (3.2)

and

B̂L(z) = µL∗(K)

{
β̂(L)(z)

L!
1{L=even} +

[
β̂(L)(z)

L!

f̂ (1)(z)

f̂(z)
+
β̂(L+1)(z)

(L+ 1)!

]
1{L=odd}

}
. (3.3)

The statistic T̂ (z;L) follows the same design as the robust t-test statistic developed in Phillips

and Wang (2020) for the non-flat case with L = 1.

The bias component hL
∗B̂L(z) in (3.1) and the second term of Ω̂n(z;L) in (3.2) are both

infeasible in practical work unless L is known or is stated as part of a null hypothesis such as

H0 : β(z) = β0, L = L0. (3.4)

One way to determine L empirically is to test whether successive derivatives of β(z) are zero at

the point of estimation using consistent kernel estimates,1 β̂(`)(z), of the derivative functions

β(`)(z) and conducting inference to detect zero derivatives at the point of interest. In most

practical cases this procedure would involve examination of only the first derivative or first two

derivatives (` = 1, 2). Nonetheless, empirical determination of the correct degree of flatness is

inevitably subject to pre-test bias from testing (and sequential testing) whether the derivatives

are zero. Finding a feasible pivotal test statistic that incorporates such information has proved

challenging. Section 3.3.1 below discusses some of the difficulties involved in the direct esti-

mation of the derivative order parameter L. Fortunately, simulation evidence presented below

indicates that the naive approach of assuming there is no flatness in the function (i.e., L = 1)

works well in terms of coverage compared with the infeasible test procedure that employs correct

information about L.

Under H0 the statistic T̂ (z;L0) may be used to construct a robust Hotelling’s T 2 type

statistic based on the quadratic form T̂2(z;L0) = T̂ (z;L0)′T̂ (z;L0), so that

T̂2(z;L0) = [β̂(z)− β0 − hL
∗
0 B̂L0(z)]′V̂n(z;L0)−1[β̂(z)− β0 − hL

∗
0 B̂L0(z)].

The following result shows that under the null H0 with use of the correct value of L the statistics

T̂ (z;L0) and T̂2(z;L0) satisfy T̂ (z;L0) N (0, Ip) and T̂2(z;L0) χ2
p as n→∞. This pivotal

1Derivative estimates can be obtained in the usual way by differentation of the kernel estimate β̂(z).
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limit theory provides a basis for performing inference about β(z) when the functional coefficient

is locally flat and the flatness parameter L is correctly hypothesized. This approach covers both

stationary and nonstationary regressor cases.

Theorem 3.1. Under either Assumption 1 or 2, when the null hypothesis H0 holds and nh→
∞, T̂ (z;L0) N (0, Ip) and T̂2(z;L0) χ2

p.

3.2 Test power

When the null hypothesis is false and the true value of the functional coefficient β (z) 6= β0 but

the maintained hypothesis L = L0 is correct, asymptotic power can be explored under local

alternatives of the form

H1,β : β(z) = β0 + ρnm(z),

where m(z) is a p-vector function whose modulus is bounded away from the origin and ρn is

a real sequence for which ρn → 0. Let χ2
p (α) be the 1 − α right tail critical value of the χ2

p

distribution. Then, under H1,β we have

lim
n→∞

P
(
T̂2(z;L0) > χ2

p (α)
)

= 1, (3.5)

for any ρn satisfying ρ2
nnh→∞ if xt is stationary and Assumption 1 holds or for ρn satisfying

ρ2
nn

2h → ∞ if xt is nonstationary, nh2L0 → 0 and Assumption 2 holds. To prove (3.5) first

consider the stationary case. In view of Theorem 2.1 we have, under H1,β,

√
nh[β̂(z)− β0 − ρnm (z)− hL∗0 B̂L0(z)] N (0,ΩS(z)) .

Since 1
nhAn(z)→p Σxxf (z) and

1

nh
Ω̂n(z;L0) = ν0(K)σ̂2

u

1

nh

n∑
t=1

xtx
′
tKtz +

1

nh

n∑
t=1

xtx
′
t{x′t

β̂(L0)(z)

L0!
(zt − z)L0Ktz}2 →p ν0(K)σ2

uf (z) Σxx,

(3.6)

just as in the proof of (A.24), we obtain

nhV̂n(z;L0) =

(
1

nh
An(z)

)−1 1

nh
Ω̂n(z;L0)

(
1

nh
An(z)

)−1

→p ΩS(z). (3.7)

It follows that under H1,β and Assumption 1

T̂ (z;L0) = V̂n(z;L0)−1/2[β̂(z)− β0 − hL
∗B̂L0(z)]

= V̂n(z;L0)−1/2[β̂(z)− β0 − ρnm(z)− hL∗B̂L0(z)] + [nhV̂n(z;L0)]−1/2
√
nhρnm(z)

∼a N (ΩS(z)−1/2
√
nhρnm(z), Ip), (3.8)
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so that (3.5) holds when ρ2
nnh→∞ and m(z) 6= 0 in the stationary case.

In the nonstationary case, the analysis can be carried out separately depending on the rate

of nh2L0 . We take nh2L0 → 0 as an example. When nh2L0 → 0 and nh → ∞, from Theorem

2.2 (i) under H1,β, we have

n
√
h
{
β̂(z)− β0 − ρnm (z)− hL∗0 B̂L0(z)

}
 MN (0,ΩNS(z)) , (3.9)

where ΩNS(z) = ν0(K)σ2
u

f(z)

(∫ 1
0 BxB

′
x

)−1
. Now 1

n2h
An(z)  

∫ 1
0 BxB

′
xf(z) and 1

n2h
Ω̂n(z;L0)  

ν0(K)σ2
uf(z)

∫ 1
0 BxB

′
x, so that

n2hV̂n(z;L0) =

(
1

n2h
An(z)

)−1 1

n2h
Ω̂n(z;L0)

(
1

n2h
An(z)

)−1

 ΩNS(z). (3.10)

Hence, under H1,β, Assumption 2 and with nh2L0 → 0 and nh→∞ we have

T̂ (z;L0) = V̂n(z;L0)−1/2[β̂(z)− β0 − hL
∗
0 B̂L0(z)]

= V̂n(z;L0)−1/2[β̂(z)− β0 − ρnm(z)− hL∗0 B̂L0(z)] + [n2hV̂n(z;L0)]−1/2
√
n2hρnm(z)

∼aMNm(ΩNS(z)−1/2
√
n2hρnm(z), Ip), (3.11)

whereMNm(·, ·) signifies a mean mixture normal distribution.2 The test statistic T̂2(z;L0) then

diverges when ρ2
nn

2h→∞ because it is asymptotically distributed as a mixture noncentral chi-

squared variate with the divergent noncentrality parameter n2hρ2
nm(z)′ΩNS(z)−1m(z) → ∞.

It follows that (3.5) holds in the nonstationary case when ρ2
nn

2h→∞ and m(z) 6= 0.

Results for nh2L0 → ∞ and nh2L0 → c ∈ (0,∞) can be obtained in similar ways and the

details are omitted. In the case where nh2L0 → ∞, the condition nρ2
n/h

2L0−1 → ∞ is needed

for the test to be consistent. When nh2L0 → c ∈ (0,∞) the test is consistent if n
1− 1

4L0 ρn →∞
holds.

Before closing this section we point out that this test is not designed to detect alternatives

specifically about L in either stationary or nonstationary cases. To illustrate the difficulties

involved in such alternatives, we take the stationarity case with nh2L0 → 0 and consider the

alternative H1,L : β(z) = β0, L0 < L where the flatness degree L exceeds the hypothesized L0.

To examine test power observe that

√
nh
{
β̂(z)− β(z)− hL∗0 B̂L0(z)

}
=
√
nh
{
β̂(z)− β(z)− hL∗B̂L(z)

}
+
√
nh
{
hL
∗B̂L(z)− hL∗0 B̂L0(z)

}
.

The order of the second term depends on both L and L0, noting that the order of B̂L0(z)

2A random p-vector ξ has a mean mixture normal density with covariance matrix Ip if the density of ξ is

the mixture density 1

(2π)p/2

∫
ϑ∈Θ

e−
1
2

(x−ϑ)′(x−ϑ)dP (ϑ) where P (ϑ) is the probability measure of the mean-mixing

variate vector ϑ.
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depends on L0 and L through the empirical estimates β̂(L0)(z) and β̂(L0+1)(z) that are used in

the construction of the test statistic. Due to the fact that L is unknown under H1,L, the order

of magnitude of the component
√
nh
{
hL
∗B̂L(z)− hL∗0 B̂L0(z)

}
cannot be precisely determined

and the power characteristics of the test are not known. Since these properties of the test in

the case of departures L from the hypothesized L0 are unknown, the statistic is not designed

to test hypotheses concerning the flatness order L.

3.3 Challenges in test construction when L is unknown

3.3.1 Direct estimation of L

The statistic T̂ (z;L) cannot be used in practical work if L is unknown or is not part of the

null or an explicit maintained hypothesis. A natural approach if this were not the case but

if L were directly estimable (by L̂, say) would be to employ plug-in estimates β̂(L̂)(z) and

β̂(L̂+1)(z) of the required derivatives of β(z) in the bias and variance matrix components of

T̂ (z;L). However, as the analysis below reveals, in the general case of unknown L such a plug-

in approach encounters difficulties because of the challenge of direct consistent estimation of

L. Further, as earlier analysis reveals, the optimal bandwidth order in functional coefficient

regression depends on the flatness degree parameter L. Since L is a higher order property of

an unknown nonparametric function β(z), this dependence poses a subtle question of how to

determine the bandwidth h in estimation and inference.

In this respect, noting that β (zt)−β (z) = β(L)(z̃t)
L! (zt − z)L where z̃t lies on the line segment

between zt and z and β(L) (z) 6= 0 by assumption, it follows that as n→∞ and h→ 0

L†n =
1

log (h)
log

(
1
n

∑n
t=1 |β(zt)− β(z)|Ktz

1
n

∑n
t=1Ktz

)
→p L,

as shown in the Online Supplement - see (??). Of course, L†n is an infeasible rate estimator reliant

on the unknown function β(·) in a neighbourhood of z. It has a slow logarithmic convergence

rate with L†n − L = Op(1/ log(h)), so that when h = n−δ for some δ > 0 we have L†n − L =

Op(1/ log(n)). More specifically, log(h)(L†n − L) = log
(∣∣∣β(L)(z)

L!

∣∣∣)+ log
(∫
|s|LK(s)ds

)
+ op(1),

as shown in (??).

Setting wtz = Ktz/
∑n

t=1Ktz, this limit behavior suggests the following ‘plausible’ practical

estimate of L

L̂ =
1

log(h)
log

(
n∑
t=1

∣∣∣β̂(zt)− β̂(z)
∣∣∣wtz) , (3.12)

which can be computed using a preliminary bandwidth h satisfying h→ 0 and nh→∞. How-

ever, when L > 1 the estimator L̂ is not consistent. Intuitively, this is because the nonparametric

estimator β̂(·) does not necessarily satisfy β̂(`)(w) = 0 for ` < L and w in a neighborhood of
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z. Hence the approximation β̂(zt) − β̂(z) ∼a β̂(L)(z)
L! (zt − z)L no longer holds for zt in the

neighborhood of z. Instead, for zt = z + ph we have β̂(zt) − β̂(z) = Op(h + 1√
nh

) when xt is

stationary and β̂(zt)− β̂(z) = Op(h+ 1
n
√
h

) when xt is nonstationary, as demonstrated in Section

2 in the Online Supplement, and these error orders are not sufficient to ensure that L̂ in (3.12)

is consistent. Therefore, the estimator β̂(z) does not retain the higher order flat property of

β(z) and therefore cannot be used to recover the flatness parameter L. The feasibility of direct

consistent estimation of L requires further study and is left for future research.3

3.3.2 Adaptive statistic design

This section comments briefly on the possibility of constructing an adaptive test statistic that

does not require knowledge of L. The idea stems from Remarks 3.2 and 3.3 in Phillips and Wang

(2020) where a statistic is developed that incorporates bias and variance matrix estimators that

do not involve L but instead rely on local information about the function obtained by kernel

estimation. In principle, it is straightforward to extend this idea to the case where L > 1. Take

the stationary case as an example. The adaptive bias estimator is defined as

B̂(z) = An(z)−1

(
n∑
t=1

xtx
′
t

)
1

n

n∑
t=1

[β̂(zt)− β̂(z)]K

(
zt − z
h

)
,

where the sample average 1
n

∑n
t=1[β̂(zt)− β̂(z)]K

(
zt−z
h

)
is introduced to approximate E[β(zt)−

β(z)]Ktz. Unfortunately this adaptive bias estimator B̂(z) is not consistent for the true bias

when L > 1 because local kernel estimation in β̂(zt) − β̂(z) is insufficiently precise to capture

the required derivative components. In consequence, the limit of B̂(z) has many additional

terms when L > 1. Moreover, direct (bias correction) adjustment to achieve consistent bias

estimation is not possible because the limit of B̂(z) depends on the unknown value of L. More

details are provided in the Online Supplement showing how the adaptive bias estimator fails in

flat regions of the function where L > 1 in both stationary and nonstationary cases. There are

3A further complication that should be mentioned is that even if a consistent estimator of L were available,
bias correction requires specification of the bandwidth factor h(L) = hL in hLBL(z), which presents additional
difficulties. For example, whereas the infeasible estimator L†n →p L, the consistency of L†n does not mean that

hL
†
n ∼a hL. Indeed, by Taylor expansion

h(L†)− h(L) = h(1)(L̃)(L† − L) = hL̃ log(h)(L† − L) = hL log

(∣∣∣∣β(L) (z)

L!

∣∣∣∣ ∫ |s|LK(s)ds

)
+ op(h

L) (3.13)

since L̃ is on the line segment between L† and L and L† →p L. Then

h(L†) = h(L)×
(

1 + log

(∣∣∣∣β(L) (z)

L!

∣∣∣∣ ∫ |s|LK(s)ds

))
+ op(h

L),

and h(L†) = hL
†
∼a dLhL, where dL =

(
1 + log

(∣∣∣β(L)(z)
L!

∣∣∣ ∫ |s|LK(s)ds
))

, so that hL̂ is inconsistent. Thus,

the slow rate of convergence of L†n interferes with the consistent estimation of the factor hL needed for bias
correction.
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further obstacles to inference in the adaptive bias estimator B̂(z) due to additional variation that

affects the limit distribution of the bias centered term β̂(z)−β(z)− B̂(z). In the nonstationary

case, the variance of this term depends on L and β(L)(z), making it difficult to estimate the

limit variance adaptively without introducing further bias effects. These complications combine

to make it difficult to design an adaptive statistic in cases where the flatness degree is unknown,

leaving this pursuit as a challenge for future research.

Section 4.2 below studies the finite sample performance of the infeasible oracle statistic

T̂ (z;L) where the unknown true value L is used in construction of the test. For comparison, the

naive t-ratio T̂ (z;L = 1) which sets L = 1 is implemented to reveal the consequences of ignoring

potential local flatness in the coefficient function and using the base statistic T̂ (z;L = 1). The

findings shed light on the empirical relevance for inference of failing to utilize local flatness

information about β(z) when flatness is unanticipated.

4 Simulations

The simulation experiments that follow employ a simple prototypical framework for evaluating

the adequacy of the asymptotic theory. We explore the behavior of the functional coefficient

estimators and the adequacy of the limit theory in locally flat and non-flat regions of the func-

tion. The following sections consider estimation and inference in stationary and nonstationary

cases, separately.

4.1 Estimation

Nonstationary xt

In the first experiment the model (2.1) is used with a single I(1) exogenous regressor xt generated

as a random walk with iid N (0, σ2
x) innovations εxt and zero initialization x0, iid N (0, σ2

u)

equation errors ut, and iidU [−1, 2] covariates zt. We set σ2
x = 1 and σ2

u = 1. Throughout

the simulations, the number of replications used is 10, 000 and the coefficient function is the

quartic β(z) = z4, for which the first three derivatives at z1 = 0 are zero, β(4)(z1) = 4! and

β(1)(z2) = 4z3
2 = 4 at z2 = 1.

Figure 2 shows the mean bias (plotted in the left panel), standard deviation (plotted in

the middle panel) and RMSE (plotted in the right panel) for β̂(z) calculated at the points

{z = 0, 1} using samples of size n = 100, 400 and 800, based on 10, 000 replications. In

estimation we employ a Gaussian kernel and the bandwidth formula h = σ̂z × nγ . The range

−0.90 ≤ γ ≤ −0.05 is used to meet the condition nh → ∞ and to avoid extremely small

bandwidths for which there is considerable imprecision in the simulation estimates, as is evident

in the plotted curves for the standard deviation and RMSE near the left limit of the domain of

definition.4 The plots show significant differences in estimator behavior between the two points

4This imprecision is related to the fact that when nh → c < ∞ the asymptotic theory changes and no
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of estimation {z = 0, 1}, which we summarize as follows.

(i) Bias increases as the bandwidth widens and the bandwidth power γ → 0. For very wide

bandwidths, estimates at both z1 = 0 and z2 = 1 suffer large bias. However, bias is smaller and

usually much smaller at the point z1 = 0 of locally flat functional form than at point z2 = 1.

These findings all match the asymptotic theory in Theorem 2.2, which shows that bias has

order hL
∗
, which is h4 when z1 = 0 where L∗ = L = 4, compared with h2 when z2 = 1 where

L∗ = L+ 1 = 2 with L = 1.

(ii) Standard deviation rises in estimation at both points of estimation as the bandwidth be-

comes very small when γ → −1 or as bandwidth becomes very large when γ → 0. This outcome

corresponds to asymptotic theory where there are three convergence rates for the cases given

in Theorem 2.2, where it is shown that the highest convergence rate (or minimum standard

deviation) occurs in the intermediate bandwidth contraction case with h = O(n−
1

2L ). When

the bandwidth is very small (γ close to -1), considerable volatility in the standard deviation

estimates was found even with a large number of replications, particularly for smaller sample

sizes. We therefore only report results for γ ≥ −0.90 and some volatility in the estimates is

evident in the graphics close to this lower limit. The standard deviation of β̂(z) at z2 = 1 is seen

to be substantially greater than that at z1 = 0 except for small bandwidths, again matching

the limit theory.

(iii) The RMSE curves demonstrate similar U-shaped patterns to those of the standard deviation

curves. This simulation evidence corroborates the analysis in Remark 2.2, where it is shown

that the RMSE order gL(γ) has a check function shape with L = 4. Further, the RMSE is

considerably lower when β(z) is flat at z1 = 0 than when the coefficient function is rising at

z2 = 1. These gains hold throughout a wide range of bandwidth powers except for smaller

bandwidths.

(iv) Across panels (a) (b) and (c) in Figure 2, the main impact of larger sample sizes is the

anticipated reduction in the bias, standard deviation, and RMSE, which applies to both z1 = 0

and z2 = 1 cases and across all bandwidth powers.

Table 1: Finite Sample Optimal Bandwidth Order Estimates

xt is nonstationary xt is stationary
StDev optimal RMSE optimal RMSE optimal
z1 = 0 z2 = 1 z1 = 0 z2 = 1 z1 = 0 z2 = 1

n = 100 -0.19 -0.56 -0.27 -0.56 -0.20 -0.40
n = 400 -0.18 -0.56 -0.26 -0.56 -0.17 -0.38
n = 800 -0.18 -0.55 -0.25 -0.55 -0.17 -0.36
n =∞5 -0.13 -0.50 -0.22 -0.50 -0.11 -0.20

invariance principle applies. Readers are referred to Phillips and Wang (2020) for further analysis and discussion
of this phenonomenon.

5The numbers in this row are the optimal bandwidth orders based on the asymptotic theory as n → ∞.
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To better illustrate the optimal bandwidth order discussed in Remarks 2.1 and 2.2, we report

the bandwidth power values corresponding to the minimum points of the standard deviation and

RMSE curves from the simulations in Figure 2. Results are collected in Table 1 under the panel

headed “xt is nonstationary”. According to Remark 2.1, the convergence-rate, or equivalently,

the standard-deviation optimal bandwidth order is achieved at − 1
2L , which is −1

8 ≈ −0.13 for

z1 = 0 (L = 4) and −1
2 for z2 = 1 (L = 1). Following Remark 2.2, the RMSE optimal bandwidth

order is − 2
2L+1 = −2

9 ≈ −0.22 for z1 = 0 (L = 4) and −1
2 for z2 = 1 (L = 1). These are the

figures reported in the last row of Table 1 for n =∞. Only when L = 1 are these two optimal

bandwidth orders the same both here and for z2 = 1 in Table 1. When L = 4, the convergence-

rate optimal bandwidth power is larger than the RMSE optimal bandwidth power. In Table 1 it

is evident that for z1 = 0, the standard-deviation optimal bandwidth order estimates are larger

than the RMSE optimal bandwidth order estimates. Moreover, as the sample size n increases,

the optimal bandwidth order estimates approach the corresponding limit values reported in the

last row for n =∞. These results again corroborate the analysis in Remarks 2.1 and 2.1 showing

that the RMSE optimal bandwidth rate equals the convergence-rate optimal bandwidth order

when L = 1 or is less than the convergence-rate optimal bandwidth order when L ≥ 2.

Stationary xt

In the second experiment the same model (2.1) is used but with a stationary exogenous regressor

xt generated by the autoregression xt = θxt−1 + εxt with iid N (0, σ2
x) innovations εxt and zero

initialization x0, iid N (0, σ2
u) equation errors ut, and iidU [−1, 2] covariates zt. We set σ2

x = 1,

σ2
u = 1, and θ = 0.5. Again 10,000 replications are employed. The results for bias, standard

deviation and RMSE are shown in Figure 3. The plots for the stationary case mirror those in

Figure 2 for the FCC case. The imprecision in the simulation estimates at small bandwidths

is more severe than in the nonstationary case and results are accordingly reported here for the

reduced bandwidth power region −0.8 ≤ γ ≤ −0.05. The findings for the stationary case are

summarized below.

(v) The main difference with the nonstationary model occurs in the standard deviation curves.

Different from the nonstationary case, Theorem 2.1 shows that the convergence rate on the

left hand side is unaffected by the local flatness parameter L or the bandwidth rate condition

nh2L. We therefore expect to see monotonously decreasing standard deviation curves for both

points of estimation {z = 0, 1} as the bandwidth power γ increases. From the middle panel of

Figure 3, we observe that the standard deviation curve for z1 = 0 indeed shows a decreasing

pattern as γ increases to 0, but that for z2 = 1 the curve starts to rise slightly when γ is close

For the case that xt is nonstationary, the standard-deviation optimal bandwidth order is the convergence-rate
optimal bandwidth order analyzed in Remarks 2.1. It is given as − 1

2L
, which is − 1

8
≈ −0.13 for z1 = 0 (L = 4)

and − 1
2

for z2 = 1 (L = 1). The RMSE optimal bandwidth follows Remark 2.2, which is − 2
2L∗+1

= − 2
9
≈ −0.22

for z1 = 0 (L = L∗ = 4) and − 1
2

for z2 = 1 (L = 1). For the case that xt is stationary, the RMSE optimal
bandwidth order is − 1

2L∗+1
as given in (2.6). Then the true value for z1 = 0 (L = L∗ = 4) is − 1

9
≈ −0.11 and

that for z2 = 1 (L = 1, L∗ = 2) is − 1
5
.
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to 0. This is explained by the randomness that is present in the bias function in finite samples.

Although the randomness in the bias function is of smaller order than that of the usual error

term asymptotically and therefore does not figure in the limit theory, it can still affect finite

sample performance. Moreover, the finite sample effects are less severe when the functional

coefficient is locally flatter (with larger L) because the bias is smaller when L is larger. This

explains why a marked rise in the curve is only observed towards the right limit near γ = 0 of

the domain of definition of the standard deviation curves for z2 = 1 but not for the curves for

z1 = 0.

(vi) For both RMSE curves, there is also a clear minimum RMSE bandwidth choice as in the

nonstationary case. Furthermore, the curves indicate that the minimum RMSE bandwidth

power γ is larger for estimation at z1 = 0 than at z2 = 1. Direct evidence of this difference is

given by the estimates of the RMSE optimal bandwidth power reported in Table 1 under the

panel ‘xt is stationary’. These findings corroborate the analysis concerning the optimal RMSE

bandwidth order following Theorem 2.1.

(vii) The plots in Figure 3 show the finite sample gains in estimation that occur from local

flatness of the functional coefficient. These gains occur for bandwidths large enough to be

well beyond the region where there is imprecision in the simulation estimates of the standard

deviation and RMSE.

4.2 Inference

This Section reports findings on the finite sample performance of the t-ratios discussed in Section

3. Three statistics are considered: (i) the infeasible statistic T̂ (z; true L) in which the true value

of L is used; (ii) the ‘naive’ statistic T̂ (z;L = 1) where L = 1 is used as the simplest case without

any attention to potential flatness; and (iii) the oracle t-ratio T (z; true L), which assumes L,

the derivatives (β(L)(z), β(L+1)(z)), and other components σ2
u, f(z) and f (1)(z) are known. The

oracle and infeasible statistics provide two baselines to assess the relative performance of the

naive statistic for comparative purposes. Other details concerning computation are given in

the Appendix. The same generating mechanism is used as in the previous section and we again

consider the two evaluation points z1 = 0 (with L = 4) and z2 = 1 (with L = 1). A second

order Epanechnikov kernel is used in the computations.

The empirical densities of these t-ratio statistics are shown in Figure 4 for stationary xt and

in Figure 5 for nonstationary xt. From Figure 4, at the flat point z1 = 0 the densities of the

oracle statistic are evidently extremely close to the standard normal. Densities of the naive and

infeasible statistics show some discrepancy from the standard normal, but the distribution of the

infeasible statistic is closer to standard normal when the sample size is large. The improvement

of the infeasible over the naive statistic reveals the gains from knowledge of L, or equivalently,

the consequences of ignoring local flatness in the coefficient function at the point of flatness.

At the non-flat point, the oracle statistic is the one closest to standard normal. The naive and
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infeasible statistics are identical in this case because the true value of L is 1. Compared to

the performance at the flat point z1 = 0, the densities are closer to standard normal at the

non-flat point. In the nonstationary case in Figure 5, the oracle statistic is again extremely

close to standard normal at the flat point. The naive and infeasible statistics are competitive in

performance, although both are too densely distributed at the origin. At the non-flat point, the

naive and the infeasible distributions are again identical and their performance is competitive to

that of the oracle statistic. In conclusion, ignoring local flatness in the coefficient function seems

to cause some efficiency loss at the flat point. To see this feature more clearly and examine

its implications for inference we examine coverage rates and confidence interval lengths of the

associated test statistics.

Table 2 reports coverage rates and lengths of the confidence intervals constructed at the two

points z1 = 0 and z2 = 1 using the three statistics T̂ (z; true L), T̂ (z;L = 1), and T (z; true L).

In the stationary case, the oracle statistic has the best coverage rates and these are close to

the nominal level. The naive and infeasible statistics have similar coverage rates but these are

lower than those of the oracle statistic. At the flat point, the infeasible statistic has narrower

confidence bands than the naive statistic. This finding reflects the efficiency gain of knowing

L, or the efficiency loss of ignoring local flatness. In the nonstationary case, the efficiency loss

of the naive versus the infeasible statistic is evident from the much wider confidence bands

produced by the naive statistic at the flat point. The naive choice and the infeasible statistic

suffer a mild over-coverage problem in the nonstationary case. In sum, the naive and infeasible

statistics share similar coverage rates but with wider confidence bands at the flat region in

the naive statistic case. So ignoring local flatness has greater consequences in terms of wider

confidence bands than lower coverage rates.

The coverage rate curves and lengths of the confidence intervals are plotted in Figure 6 over

the support [−1, 2] of zt for sample sizes n = 200 and n = 800. The oracle statistic shows

an evident advantage in coverage over the other two methods. The naive and the infeasible

curves are identical except at the flat point z = 0. The efficiency gain in the infeasible statistic

compared to the naive statistic manifests in the narrower confidence bands at z = 0, especially

in the nonstationary case. This finding is consistent with what is observed in Table 2. The

conclusion is, again, that naive inference using L = 1 leads to wider confidence bands in the

flat region as a consequence of ignoring the local flatness in the coefficient function.

Thus, at the cost of some efficiency loss in terms of wider confidence interval in the flat

region compared to the infeasible statistic which uses the true value of L, the naive statistic that

employs the simple setting L = 1 remains an adequate option for inference when straightforward

implementation is a priority.
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Table 2: Coverage rates and confidence interval length (in brackets) at points (z1, z2) based on
the t-ratios T̂ (z; true L), T̂ (z;L = 1), and T (z; true L)

xt is nonstationary xt is stationary

n T̂ (z; true L) T̂ (z;L = 1) T (z; true L) T̂ (z; true L) T̂ (z;L = 1) T (z; true L)
z1 = 0(L = 4) z1 = 0(L = 4)

100 0.96 0.97 0.95 0.85 0.85 0.95
(0.24) (0.67) (0.21) (0.62) (0.74) (0.66)

200 0.97 0.97 0.95 0.88 0.87 0.95
(0.12) (0.31) (0.11) (0.44) (0.56) (0.48)

800 0.98 0.97 0.95 0.91 0.90 0.95
(0.04) (0.10) (0.03) (0.24) (0.32) (0.25)

z2 = 1(L = 1) z2 = 1(L = 1)
100 0.96 0.96 0.95 0.91 0.91 0.94

(0.78) (0.78) (0.71) (1.14) (1.14) (1.15)
200 0.97 0.97 0.96 0.91 0.91 0.95

(0.39) (0.39) (0.36) (0.79) (0.79) (0.80)
800 0.97 0.97 0.95 0.92 0.92 0.95

(0.12) (0.12) (0.12) (0.40) (0.40) (0.41)

5 Conclusion

This paper extends existing limit theory in functional coefficient regression to accommodate

locally constant coefficients in the regression model (2.1), allowing for both stationary and

nonstationary regressors xt. The findings show that, in the stationary case, the primary effects

on the limit theory involve estimation bias, which in turn affects optimal bandwidth choice and

optimal convergence rates. In the nonstationary case, both bias and dispersion are affected in

the limit theory. As a result, the conditions that separate the limit theory into three different

categories are affected by the flatness degree parameter. In particular, both bias and variance

depend on the number (L− 1) of zero derivatives in the coefficient function, with consequential

effects on optimal bandwidth choice and rates of convergence. In the boundary case where L→
∞ near parametric rates of convergence apply for both stationary and nonstationary cases. In

both cases, locally flat functional coefficients make wider bandwidth choices beneficial compared

with those implied by standard limit theory. But optimal bandwidth choice is complicated by

the fact that bias-variance trade-offs may not correspond to optimal convergence rates and bias

correction is more complex due to the locally flat behavior of the coefficient function.

In closing it is worth mentioning that extensions of the type given here are relevant to existing

asymptotic theory for nonparametric estimation whenever locally flat functional behavior is

present in other models such as probability densities, models with nonstationary regressors

that are more complex than I(1) processes and models with time varying parameters. Common

practice in the latter models, for instance, is to use weak trend formulations of the parameters,

leading to time dependent coefficients of the form β( tn). Trend formulations of this type in both
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stationary and nonstationary systems will lead to asymptotics that involve extensions similar to

those developed here, particularly in the stationary regressor case where bias expressions, bias

order, and optimal bandwidth choice will all be influenced by flatness in the function. Similarly,

in time varying parameter cointegrated systems of the type studied in Phillips et al. (2017),

the limit theory will be affected by locally flat regions of the coefficient function. An important

simplification in both these cases is that the coefficient function β(·) is deterministic, which

means that the bias component affects centering but will not contribute directly to variability

and the form of the limit distribution, as it can do in models with nonstationary regressors.

These are some extensions of the present theory that seem worthy of full investigation in future

research.

In all of the above models, any regions of flatness in the function being estimated are typically

unknown a priori , including the degree of local flatness, just as the function itself is unknown.

Our analysis shows that in such cases the formulae based on standard asymptotics that are

used to measure bias and variance in nonparametric estimation are only approximate and rates

of convergence may be wrong, especially in cases of nonstationary regressors. After extensive

attempts we have found it extremely challenging to devise a feasible inference procedure that

accommodates empirical information about unknown locally flat characteristics of a functional

coefficient. Fortunately, simulation results reveal that use of the naive test statistic that simply

ignores the possibility of local flatness is an acceptable approach to inference in practice. In

fact, the naive procedure achieves similar coverage rates to those of the infeasible statistic that

uses additional correct information about the degree of local flatness at the cost of slightly wider

confidence bands. Empirical estimation of the degree of local flatness and improved inferential

procedures that take account of potential flatness both merit further research.

Appendix

A Proof of the Theorems

Proof of Theorem 2.1 We analyze the components in the following normalized decomposition

of the estimation error(
n∑
t=1

xtx
′
tKtz

)(
β̂ (z)− β (z)

)
=

n∑
t=1

xtx
′
t[β(zt)− β(z)]Ktz +

n∑
t=1

xtutKtz.

=

n∑
t=1

xtx
′
tEξβt +

n∑
t=1

xtx
′
tηt +

n∑
t=1

xtutKtz, (A.1)
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with ξβt = [β(zt) − β(z)]Ktz and ηt = ξβt − Eξβt. Starting with the kernel-weighted signal

matrix, we have

1

nh

n∑
t=1

xtx
′
tKtz =

1

nh

n∑
t=1

xtx
′
tE (Ktz) +

1

nh

n∑
t=1

xtx
′
tζtK (A.2)

where ζtK = Ktz − E (Ktz) and EKtz = h
∫
K (r) f (z + rh) dr = hf(z) + O(h3). Since

EK2
tz = h

∫
K2 (r) f (z + rh) dr = hf(z)

∫
K2(r)dr+ o(h) = hf(z)ν0(K) + o(h), where νj(K) =∫

ujK2(u)du, it follows that Var(ζtK) = EK2
tz − (EKtz)

2 = O(h) and so ζtK = Op(
√
h). We

deduce that when nh→∞

1

nh

n∑
t=1

xtx
′
tKtz =

1

n

n∑
t=1

xtx
′
t {f(z) + o(1)}+

1√
nh

n∑
t=1

xtx
′
t

ζtK√
nh
→p Σxxf(z), (A.3)

since 1√
nh

∑n
t=1 xt ⊗ xtζtK  N (0, ν0(K)f(z)E [xtx

′
t ⊗ xtx′t]) from Lemma B.1(d)(i).

Next, from the proof of Lemmas B.2(c) and (B.6), we have

Eξβt = hL
∗+1CL(z) + o(hL

∗+1),

where L∗ = L×1{L=even}+ (L+ 1)1{L=odd}, µL∗(K) = µL(K)×1{L=even}+µL+1(K)1{L=odd}

and CL(z) defined in (2.5). Upon normalization and using Lemma B.2(c), the first term in

(A.1) is then

1

nhL∗+1

n∑
t=1

xtx
′
tE (ξβt)→p ΣxxCL(z). (A.4)

The second term of (A.1) is, upon normalization and using Lemma B.2(b)(i),

1√
nh2L+1

n∑
t=1

xtx
′
tηt  N

(
0,
ν2L(K)f (z)

(L!)2 E
[
(x′tβ

(L)(z))2xtx
′
t

])
= N

(
0,E

[
(x′tVηη,Lxt)xtx

′
t

])
,

(A.5)

provided nh→∞. Otherwise 1√
nh2L+1

∑n
t=1 xtx

′
tηt = Op(1) but no central limit theorem holds,

as shown in Lemma B.2(b)(ii). The final term of (A.1) is, after suitable normalization and

using Lemma B.1(c)(i),

1√
nh

n∑
t=1

xtutKtz  N
(
0, ν0(K)f(z)σ2

uΣxx

)
, (A.6)

provided nh → ∞. Otherwise from Lemma B.1(c)(ii), 1√
nh

∑n
t=1 xtutKtz = Op(1) but no

invariance principle applies.

Standardizing by the weighted signal matrix and recentering (A.1) we have the estimation
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error decomposition

β̂(z)− β(z)−

(
n∑
t=1

xtx
′
tKtz

)−1 n∑
t=1

xtx
′
tEξβt =

(
n∑
t=1

xtx
′
tKtz

)−1 n∑
t=1

xtx
′
tηt

+

(
n∑
t=1

xtx
′
tKtz

)−1 n∑
t=1

xtutKtz, (A.7)

or, with each component appropriately standardized, as

β̂(z)− β(z)− hL∗
(

1

nh

n∑
t=1

xtx
′
tKtz

)−1
1

nhL∗+1

n∑
t=1

xtx
′
tEξβt

=

√
h2L−1

n

(
1

nh

n∑
t=1

xtx
′
tKtz

)−1
1√

nh2L+1

n∑
t=1

xtx
′
tηt +

1√
nh

(
1

nh

n∑
t=1

xtx
′
tKtz

)−1
1√
nh

n∑
t=1

xtutKtz.

(A.8)

Using (A.4), (A.5) and (A.6) in (A.8), we have

√
nh

β̂(z)− β(z)− hL∗
(

1

nh

n∑
t=1

xtx
′
tKtz

)−1
1

nhL∗+1

n∑
t=1

xtx
′
tEξβt


=hL

(
1

nh

n∑
t=1

xtx
′
tKtz

)−1
1√

nh2L+1

n∑
t=1

xtx
′
tηt +

(
1

nh

n∑
t=1

xtx
′
tKtz

)−1
1√
nh

n∑
t=1

xtutKtz

=Op(h
L) +

(
1

nh

n∑
t=1

xtx
′
tKtz

)−1
1√
nh

n∑
t=1

xtutKtz (A.9)

 N
(

0,
ν0(K)σ2

u

f(z)
Σ−1
xx

)
. (A.10)

Using (A.3) and (A.4) we have(
1

nh

n∑
t=1

xtx
′
tKtz

)−1
1

nhL∗+1

n∑
t=1

xtx
′
tEξβt →p

GL(z)

f(z)
, (A.11)

which leads to

√
nh
(
β̂(z)− β(z)− hL∗BL(z)

)
 N

(
0,
ν0(K)σ2

u

f(z)
Σ−1
xx

)
(A.12)

where BL(z) = GL(z)
f(z) , giving the stated result for the first part, which holds whenever nh→∞

ensuring the central limit theorem (A.12).

In cases where nh → c ∈ [0,∞), in view of Lemma B.1(c)(ii) and Lemma B.2(b)(ii), we
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still have 1√
nh

∑n
t=1 xtutKtz = Op(1) and 1√

nh2L+1

∑n
t=1 xtx

′
tηt = Op(1) although no invariance

principle holds. Further, in view of Lemma B.2(c) we have
∑n

t=1 xtx
′
tEξβt = Op(nh

L∗+1). But

the signal matrix
∑n

t=1 xtx
′
tKtz = Op(

√
nh) and so the last term in (A.7) is Op(1). Therefore

β̂(z) is inconsistent when nh→ c ∈ [0,∞). �

Proof of Theorem 2.2

Case (i) We start again with the decomposition (A.7) and rescale the components according

to their asymptotic behavior, as determined in Lemma B.3, so that

β̂(z)− β(z)− hL∗
(

1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1

n2hL∗+1

n∑
t=1

xtx
′
tEξβt

=

√
h2L−1

n

(
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1√

n3h2L+1

n∑
t=1

xtx
′
tηt +

1

n
√
h

(
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1

n
√
h

n∑
t=1

xtutKtz.

(A.13)

Then, since nh2L → 0 in this case, we rescale the equation by n
√
h, giving

n
√
h

β̂(z)− β(z)− hL∗
(

1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1

n2hL∗+1

n∑
t=1

xtx
′
tEξβt


=
√
nh2L

(
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1√

n3h2L+1

n∑
t=1

xtx
′
tηt +

(
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1

n
√
h

n∑
t=1

xtutKtz

= op(1) +

(
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1

n
√
h

n∑
t=1

xtutKtz

 

(
f(z)

∫
BxB

′
x

)−1(∫
BxdBuK

)
≡dMN

(
0,
ν0(K)σ2

u

f(z)

(∫
BxB

′
x

)−1
)
, (A.14)

the mixed normality following from Lemma B.3 (d)(i). In view of Lemma B.3(b) and Lemma

B.3(c)(i) we have (
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1

n2hL∗+1

n∑
t=1

xtx
′
tEξβt →p

GL(z)

f(z)
, (A.15)

for the bias function. Hence,

n
√
h
(
β̂(z)− β(z)− hL∗BL(z)

)
 MN (0,ΩNS(z)) , (A.16)

with ΩNS(z) = ν0(K)σ2
u

f(z)

(∫
BxB

′
x

)−1
, as given in the stated result (2.8) for case (i). �

Case (ii)
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When nh2L →∞ the bandwidth goes to zero slower than O( 1√
n1/2L

). To derive the limit theory

in this case, rescale (A.13) by
√
n/h2L−1, giving

√
n

h2L−1

β̂(z)− β(z)− hL∗
(

1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1

n2hL∗+1

n∑
t=1

xtx
′
tEξβt


=

(
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1√

n3h2L+1

n∑
t=1

xtx
′
tηt +

1√
nh2L

(
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1

n
√
h

n∑
t=1

xtutKtz

=

(
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1√

n3h2L+1

n∑
t=1

xtx
′
tηt + op(1)

 

(
f(z)

∫
BxB

′
x

)−1(∫
BxB

′
xdBη,L

)
(A.17)

≡d MN

(
0,

ν2L(K)

f(z)(L!)2

(∫
BxB

′
x

)−1 ∫
BxB

′
x

(
B′xβ

(L)(z)
)2
(∫

BxB
′
x

)−1
)
, (A.18)

using Lemma B.3(a) and (A.3), where Bη,L is Brownian motion with variance matrix Vηη,L =
ν2L(K)f(z)

(L!)2 β(L)(z)β(L)(z)′.

Since Bη,L is singular Brownian motion whenever p > 1 we may write the inner product

Bx(r)′Bη,L(r) in the equivalent form Bx(r)′Bη,L(r) =
(
Bx(r)′β(L)(z)

)
Bf,L(r), where Bf,L is

scalar Brownian motion with variance ν2L(K)f(z)
(L!)2 . Then in view of the independence of Bx and

Bη,L we have ∫
BxB

′
xdBη,L ≡dMN

(
0,
ν2L(K)f(z)

(L!)2

∫
BxB

′
x

(
B′xβ

(L)(z)
)2
)
, (A.19)

which leads to the mixed normal limit distribution given in (A.18). Combining this result with

the bias function evaluation obtained earlier in (A.15) yields√
n

h2L−1

(
β̂(z)− β(z)− hL∗BL(z)

)
 

(
f(z)

∫
BxB

′
x

)−1(∫
BxB

′
xdBη,L

)
≡dMN (0,ΩL(z)) ,

(A.20)

where ΩL(z) = ν2L(K)f(z)
(L!)2

(∫
BxB

′
x

)−1 ∫
BxB

′
x

(
B′xβ

(L)(z)
)2 (∫

BxB
′
x

)−1
, giving the stated re-

sult (ii) of Theorem 2.2. �

Case (iii)

Since nh2L → c for some constant c ∈ (0,∞), h ∼a (c/n)
1

2L and then
√
n/h2L−1 = O(

√
n1+ 2L−1

2L ) =

O(n1− 1
4L ) = n

√
h. It follows that the first and second terms on the right side of (A.13) have

the same order and both therefore appear to contribute to the asymptotics. So, upon rescaling
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(A.13) by n1− 1
4L we find that

n1− 1
4L

β̂(z)− β(z)− hL∗
(

1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1

n2hL∗+1

n∑
t=1

xtx
′
tEξβt


= (nh2L)

1
2
− 1

4L

(
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1√

n3h2L+1

n∑
t=1

xtx
′
tηt +

1

(nh2L)
1

4L

(
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1

n
√
h

n∑
t=1

xtutKtz,

= c
1
2
− 1

4L ×

(
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1√

n3h2L+1

n∑
t=1

xtx
′
tηt + c−

1
4L

(
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1

n
√
h

n∑
t=1

xtutKtz.

(A.21)

The asympototics are then jointly determined by the two terms of (A.21). Conditional on Fx,

these terms are uncorrelated as the conditional covariance involves the matrix

E

(
1√

n3h2L+1

n∑
t=1

xtx
′
tηt

)(
1

n
√
h

n∑
t=1

xtutKtz

)′
=

1√
n5hL+1

n∑
t,s=1

E
(
xtx
′
s(x
′
tηtusKsz)

)
= 0.

(A.22)

From (A.21) and the bias function calculation (A.15) which continues to hold, it follows that

when nh2L → c > 0

n1− 1
4L

(
β̂(z)− β(z)− hL∗BL(z)

)
∼a c

1
2
− 1

4L ×
(
f(z)

∫
BxB

′
x

)−1(∫
BxB

′
xdBη,L

)
+ c−

1
4L

(
f(z)

∫
BxB

′
x

)−1(∫
BxdBuK

)
≡d c

1
2
− 1

4L ×MN (0,ΩL(z)) + c−
1

4LMN (0,ΩNS(z))

=MN
(

0, c1− 1
2LΩL(z) + c−

1
2LΩNS(z)

)
. (A.23)

This proves result (iii) of Theorem 2.2. �

Proof of Theorem 3.1

(i) Stationary xt We assume L is known. Using Lemma B.1, σ̂2
u →p σ

2
u, and any consistent

derivative estimator β̂(L)(z) of β(L) (z) , we have

Ω̂n(z;L) = ν0(K)σ̂2
u

n∑
t=1

xtx
′
tKtz +

n∑
t=1

xtx
′
t

{
x′t

1

L!
β̂(L)(z)(zt − z)LKtz

}2

∼a nh

ν0(K)σ2
u

nh

n∑
t=1

xtx
′
tKtz +

1

nh

n∑
t=1

xtx
′
t

{
x′t
β(L)(z)

L!
(zt − z)LKtz

}2
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∼a nh

ν0(K)σ2
uf (z) Σxx +

1

h
E

xtx′t
{
x′t
β(L)(z)

L!
(zt − z)LKtz

}2


∼a nh

ν0(K)σ2
uf (z) Σxx +

1

h
E

xtx′t
(
x′t
β(L)(z)

L!

)2
∫ {(zt − z)LK

(
zt − z
h

)}2

f (zt) dzt


∼a nh

ν0(K)σ2
uf (z) Σxx + E

xtx′t
(
x′t
β(L)(z)

L!

)2
∫ {(sh)LK (s)

}2
f (z + sh) ds


∼a nh

(
ν0(K)σ2

uf (z) Σxx + h2L ν2L (K) f (z)

(L!)2 E
[
xtx
′
t

(
x′tβ

(L)(z)
)2
])

∼a nhν0(K)σ2
uf (z) Σxx. (A.24)

Then

nhV̂n(z;L) =

[
1

nh
An (z)

]−1 [ 1

nh
Ω̂n(z;L)

] [
1

nh
An (z)

]−1

→p [f (z) Σxx]−1 [ν0(K)σ2
uf (z) Σxx

]
[f (z) Σxx]−1 =

ν0(K)σ2
u

f (z)
Σ−1
xx = ΩS(z). (A.25)

Combining (A.25) and Theorem 2.1 gives

T̂ (z;L) = V̂n(z;L)−1/2
(
β̂(z)− β(z)− hL∗B̂L(z)

)
∼a [ΩS(z)]−1/2

√
nh
(
β̂(z)− β(z)− hL∗BL(z)

)
 N (0, Ip) ,

and T̂2 (z;L)  χ2
p follows. Further, in view of (A.24) in the stationary case, the simpler

estimate Ω̃n(z;L) = ν0(K)σ̂2
u

∑n
t=1 xtx

′
tKtz, which is based solely on the variance term, can be

employed and the same limit theory applies.

(ii) Nonstationary xt We again assume that L is known. We analyze each case of the Theorem

in turn.

Case (a) Using Lemma B.3(c) we have 1
n2h

∑n
t=1 xtx

′
tKtz  f (z)

∫
BxB

′
x. In place of (A.24)

and again using a consistent derivative estimator β̂(L)(z) →p β
(L)(z) and σ̂2

u →p σ
2
u, we now

have

Ω̂n(z;L) = ν0(K)σ̂2
u

n∑
t=1

xtx
′
tKtz +

n∑
t=1

xtx
′
t

{
x′t

1

L!
β̂(L)(z)(zt − z)LKtz

}2

∼a n2h

ν0(K)σ2
u

n2h

n∑
t=1

xtx
′
tK

(
zt − z
h

)
+
h2L

n2h

n∑
t=1

xtx
′
t

{
x′t
β(L)(z)

L!

(
zt − z
h

)L
K

(
zt − z
h

)}2
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∼a n2h

ν0(K)σ2
uf (z)

∫
BxB

′
x + nh2L−1

 1

n

n∑
t=1

xt√
n

x′t√
n

{
x′t√
n

β(L)(z)

L!

(
zt − z
h

)L
K

(
zt − z
h

)}2


∼a n2h

ν0(K)σ2
uf (z)

∫
BxB

′
x + nh2L−1

∫ BxBx

{
B′x

β(L)(z)

L!

}2

E

{(
zt − z
h

)2L

K

(
zt − z
h

)2
}

∼a n2h

ν0(K)σ2
uf (z)

∫
BxB

′
x + nh2L−1

∫ BxBx

{
B′x

β(L)(z)

L!

}2 ∫
p2LK (p)2 f (z + ph) dph


∼a n2h

(
ν0(K)σ2

uf (z)

∫
BxB

′
x + nh2L ν2L (K) f (z)

(L!)2

∫
BxBx

{
B′xβ

(L)(z)
}2
)

(A.26)

∼a n2hν0(K)σ2
uf (z)

∫
BxB

′
x when nh2L → 0. (A.27)

It follows that in this case

n2hV̂n(z;L) =

[
1

n2h
An (z)

]−1 [ 1

n2h
Ω̂n(z;L)

] [
1

n2h
An (z)

]−1

 

[
f (z)

∫
BxB

′
x

]−1 [
ν0(K)σ2

uf (z)

∫
BxB

′
x

] [
f (z)

∫
BxB

′
x

]−1

=
ν0(K)σ2

u

f (z)

(∫
BxB

′
x

)−1

= ΩNS (z) , (A.28)

from which we deduce from Theorem 2.2(i) that

T̂ (z;L) = V̂n(z;L)−1/2
(
β̂(z)− β(z)− hL∗B̂L(z)

)
∼a [ΩNS (z)]−1/2 n

√
h
(
β̂(z)− β(z)− hL∗BL(z)

)
 N (0, Ip) .

Then T̂2 (z;L) χ2
p, as required.

Case (b) When nh2L →∞ we have by calculations similar to those leading to (A.26)

Ω̂n(z;L) = ν0(K)σ̂2
u

n∑
t=1

xtx
′
tKtz +

n∑
t=1

xtx
′
t

{
x′t

1

L!
β̂(L)(z)(zt − z)LKtz

}2

∼a n2h

(
ν0(K)σ2

uf (z)

∫
BxB

′
x + nh2L ν2L (K) f (z)

(L!)2

∫
BxBx

{
B′xβ

(L)(z)
}2
)

= n3h2L+1

(
1

nh2L
ν0(K)σ2

uf (z)

∫
BxB

′
x +

ν2L (K) f (z)

(L!)2

∫
BxBx

{
B′xβ

(L)(z)
}2
)

∼a n3h2L+1 ν2L (K) f (z)

(L!)2

∫
BxBx

{
B′xβ

(L)(z)
}2
.

Hence, in this case
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n

h2L−1
V̂n(z;L) =

[
1

n2h
An (z)

]−1 [ 1

n3h2L+1
Ω̂n(z;L)

] [
1

n2h
An (z)

]−1

∼a
[
f (z)

∫
BxB

′
x

]−1 [v2L (K) f (z)

(L!)2

∫
BxBx

{
B′xβ

(L)(z)
}2
] [
f (z)

∫
BxB

′
x

]−1

=
ν2L(K)

(L!)2 f (z)

(∫
BxB

′
x

)−1(∫
BxBx

{
B′xβ

(L)(z)
}2
)(∫

BxB
′
x

)−1

= ΩL (z) , (A.29)

and from Theorem 2.2(ii) we deduce that

T̂ (z;L) = V̂n(z;L)−1/2
(
β̂(z)− β(z)− hL∗B̂L(z)

)
=
[ n

h2L−1
V̂n(z;L)

]−1/2
√

n

h2L−1

(
β̂(z)− β(z)− hL∗B̂L(z;L)

)
∼a [ΩL (z)]−1/2

√
n

h2L−1

(
β̂(z)− β(z)− hL∗BL(z)

)
 N (0, Ip) ,

and T̂2 (z;L) χ2
p, as required.

Case (c) When nh2L → c ∈ (0,∞) we have by calculations similar to those leading to (A.26)

Ω̂n(z;L) = ν0(K)σ̂2
u

n∑
t=1

xtx
′
tKtz +

n∑
t=1

xtx
′
t

{
x′t

1

L!
β̂(L)(z)(zt − z)LKtz

}2

∼a n2h

(
ν0(K)σ2

uf (z)

∫
BxB

′
x + nh2L ν2L (K) f (z)

(L!)2

∫
BxBx

{
B′xβ

(L)(z)
}2
)

∼a n2h

(
ν0(K)σ2

uf (z)

∫
BxB

′
x + c

ν2L (K) f (z)

(L!)2

∫
BxBx

{
B′xβ

(L)(z)
}2
)
.

Then

n2hV̂n(z;L) =

[
1

n2h
An (z)

]−1 [ 1

n2h
Ω̂n(z;L)

] [
1

n2h
An (z)

]−1

∼a
[
f (z)

∫
BxB

′
x

]−1 [
ν0(K)σ2

uf (z)

∫
BxB

′
x + c

ν2L (K) f (z)

(L!)2

∫
BxBx

{
B′xβ

(L)(z)
}2
] [
f (z)

∫
BxB

′
x

]−1

= ΩNS(z) + cΩL (z) . (A.30)

Hence, when nh2L → c or h ∼a (c/n)
1

2L and n2h ∼a c
1

2Ln2− 1
2L as n→∞ we have

n2− 1
2L V̂n(z;L) c−

1
2LΩNS(z) + c1− 1

2LΩL(z).
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From Theorem 2.2(iii) it now follows that when nh2L → c we have

T̂ (z;L) = V̂n(z;L)−1/2
(
β̂(z)− β(z)− hL∗B̂L(z)

)
=
[
n2− 1

2L V̂n(z;L)
]−1/2

n1− 1
4L

(
β̂(z)− β(z)− hL∗B̂L(z)

)
∼a [c−

1
2LΩNS(z) + c1− 1

2LΩL(z)]−1/2n1− 1
4L

(
β̂(z)− β(z)− hL∗BL(z)

)
 N (0, Ip) ,

and again T̂2 (z;L) χ2
p, as required. �

B Useful Lemmas

Lemma B.1. Under Assumption 1, the following hold as n→∞:

(a) (i) If nh → ∞, { 1√
nh

∑bn·c
t=1 ζtK ,

1√
nh

∑bn·c
t=1 utKtz}  {BζK(·), BuK(·)}, where {BζK , BuK}

are independent Brownian motions with respective variances ν0(K)f(z), and ν0(K)σ2
uf(z),

with ζtK = Ktz − EKtz and Ktz = K( zt−zh );

(ii) If nh → c ∈ [0,∞), then { 1√
nh

∑bn·c
t=1 ζtK ,

1√
nh

∑bn·c
t=1 utKtz} = Op(1) but no invariance

principle holds.

(b) (i) If nh→∞, 1
nh

∑n
t=1 xtx

′
tKtz →p Σxxf (z);

(ii) If nh→ c ∈ [0,∞), 1√
nh

∑n
t=1 xtx

′
tKtz = Op(1) but no invariance principle holds.

(c) (i) If nh→∞, 1√
nh

∑n
t=1 xtutKtz  N

(
0, ν0(K)σ2

uf(z)Σxx

)
;

(ii) If nh→ c ∈ [0,∞), 1√
nh

∑n
t=1 xtutKtz = Op(1) but no invariance principle holds.

(d) (i) If nh→∞, 1√
nh

∑n
t=1 xt ⊗ xtζtK  N (0, ν0(K)f(z)E [xtx

′
t ⊗ xtx′t]);

(ii) If nh→ c ∈ [0,∞), 1√
nh

∑n
t=1 xtx

′
tζtK = Op(1) but no invariance principle holds.

Proof of Lemma B.1

Part (a) (i) and (ii) See Lemma B.1(a) of Phillips and Wang (2020). For later use, note that

EKtz = hf(z)+o(h), and EK2
tz = hf(z)ν0(K)+o(h), so that Var(ζtK) = hf(z)ν0(K)+o(h) and

ζtK = Ktz − E (Ktz) = Op(
√
h). Further, Var(utKtz) = hν0(K)σ2

uf(z) + o(h) and EutK2
tz = 0,

so that the limit processes (BζK(r), BuK(r)) are independent. The functional laws follow by

standard weak convergence methods when nh → ∞ and (ii) follows by showing the Op(1)

property directly whereas the CLT does not hold because of failure of the Lindeberg condition,

just as in the proof of Phillips and Wang (2020, Lemma B.1(a)(ii)). �

Part (b) (i) We have

1

nh

n∑
t=1

xtx
′
tKtz =

1

n

n∑
t=1

xtx
′
t

EKtz

h
+

1

nh

n∑
t=1

xtx
′
tζtK

=
1

n

n∑
t=1

xtx
′
t{f(z) + o(1)}+Op

(
1√
nh

)
→p Σxxf (z) , (B.1)
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as in (A.3) by virtue of Lemma B.1(d)(i) and the law of large numbers. For Part (ii), when

nh→ c ∈ [0,∞) we have 1√
nh

∑n
t=1 xtx

′
tζtK = Op(1) as in Lemma B.1(d)(ii) with no invariance

principle holding. Then, as in (B.1),

1√
nh

n∑
t=1

xtx
′
tKtz =

√
nh

1

n

n∑
t=1

xtx
′
t{f(z) + o(1)}+

1√
nh

n∑
t=1

xtx
′
tζtK = Op(1), (B.2)

as stated. �

Part (c) Result (i) follows by the martingale central limit theorem. Stability holds because

the martingale conditional variance matrix is〈
1√
nh

n∑
t=1

xtutKtz

〉
= σ2

uf(z)ν0(K)
1

nh

n∑
t=1

xtx
′
t →p σ

2
uν0(K)f(z)Σxx. (B.3)

Setting wtK = xtutKtz and noting that E
∥∥∥wtK√

h

∥∥∥2
<∞ we have, given ε > 0,

1

n

n∑
t=1

E

{∥∥∥∥wtK√h
∥∥∥∥2

1[‖wtK‖>ε
√
nh]

}
→ 0 (B.4)

and the Lindeberg condition holds when nh → ∞, giving the stated result. Part (ii) follows

because, although the stability condition continues to hold as in (B.3), the Lindeberg condi-

tion fails when nh → c ∈ [0,∞) as (B.4) no longer tends to zero. In the present case, with

scalar xt, iid {(ut, zt)} and independent, strictly stationary components with respective densities

{fx(x), fu(u), f(s)} we have, given ε > 0 and nh→ c ∈ [0,∞)

1

n

n∑
t=1

E

{(
wtK√
h

)2

1[|wtK |>ε
√
nh]

}
=

1

h

∫
x2u2K

(
s− z
h

)2

fx(x)fu(u)f(s)1[|xuK( s−zh )|>ε
√
nh]dxduds

=

∫
x2u2K(p)2fx(x)fu(u)f(z + ph)1[|xuK(p)|>ε

√
nh]dxdudp

→

{
ν0(K)f(z)E(x2

tu
2
t ) > 0 if nh→ 0∫

x2u2K(p)2fx(x)fu(u)f(z)1[|xuK(p)|>ε
√
c]dxdudp > 0 if nh→ c ∈ (0,∞)

,

leading to failure in the Lindeberg condition. �

Part (d) Parts (i) and (ii) follow in the same way as Parts (c)(i) and (ii). �

Lemma B.2. Under Assumption 1, if β(`)(z) = 0 for ` = 0, 1, · · · , L−1 and β(L)(z) 6= 0, then

the following hold as n→∞ and h→ 0:

(a) (i) If nh2L+1 → ∞, 1√
nh2L+1

∑bn·c
t=1 ηt  Bη,L(·), where Bη,L(·) is Brownian motion with

variance matrix Vηη,L = ν2L(K)f(z)

(L!)2 β(L)(z)β(L)(z)′, with ηt = ξβt − Eξβt and ξβt = [β(zt) −
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β(z)]Ktz;

(ii) If nh→ c ∈ [0,∞), then 1√
nh2L+1

∑bn·c
t=1 ηt = Op(1), but no invariance principle holds.

(b) (i) If nh2L+1 →∞, 1√
nh2L+1

∑n
t=1 xtx

′
tηt  N

(
0, ν2L(K)f(z)

(L!)2 E
[
(x′tβ

(L)(z))2xtx
′
t

])
;

(ii) If nh→ c ∈ [0,∞), 1√
nh2L+1

∑n
t=1 xtx

′
tηt = Op(1), but no invariance principle holds.

(c) 1
nhL∗+1

∑n
t=1 xtx

′
tEξβt →p GL(z)Σxx, where L∗ = L× 1{L=even} + (L+ 1)1{L=odd}, GL(z) =

µL∗(K)CL(z) with µL∗(K) = µL(K)1{L=even} + µL+1(K)1{L=odd}, and

CL(z) =
f(z)β(L)(z)

L!
1{L=even} +

[
β(L)(z)

L!
f (1) (z) +

β(L+1)(z)

(L+ 1)!
f (z)

]
1{L=odd}. (B.5)

Proof of Lemma B.2

Part (a) (i) Phillips and Wang (2020) proved a related result when L = 1 in their Lemma

B.1(b). A similar argument is employed here. But for general L we need to compute the first

and second moments of ηt = ξβt − Eξβt and deal with the precise form of the local behavior of

the coefficient function β(·) in the neighborhood of the point of estimation z. To this end, the

proof uses the following Taylor representations

β(z + ph)− β(z) =β(L) (z)
pLhL

L!
+ β(L+1) (z̃p)

pL+1hL+1

(L+ 1)!

f(z + ph) =f(z) + f (1) (z̆p) ph,

where
{
β(j) (z) = 0; j = 1, ..., L− 1

}
and with z̃p and z̆p on the line segment connecting zt and

z. The first and second moments of ηt may now be deduced. Specifically, using the symmetry

of K, we have

Eξβt = E[β(zt)− β(z)]Ktz =

∫ 1

−1
[β(s)− β(z)]K((s− z)/h)f(s)ds

= h

∫ 1

−1
[β(z + ph)− β(z)]K(p)f(z + ph)dp

= h

∫ 1

−1

[
hLpL

L!
β(L)(z) +

hL+1pL+1

(L+ 1)!
β(L+1)(z̃p)

]
K(p)

[
f (z) + f (1) (z̆p) ph

]
dp

=

{
h

∫ 1

−1

hL

L!
β(L)(z)f (z) pLK(p)dp+ o(hL+1)

}
× 1{L=even}

+

{
h

∫ 1

−1

[
hL+1

L!
β(L)(z)f (1) (z̆p) +

hL+1

(L+ 1)!
β(L+1)(z̃p)f (z)

]
pL+1K(p)dp+ o(hL+2)

}
× 1{L=odd}

=

{
hL+1µL (K)

β(L)(z)

L!
f(z) + o(hL+1)

}
× 1{L=even}
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+

{
hL+2µL+1 (K)

[
β(L)(z)

L!
f (1) (z) +

β(L+1)(z)

(L+ 1)!
f (z) + o(1)

]
+ o(hL+2)

}
× 1{L=odd}

= hL
∗+1µL∗(K)CL(z) + o(hL

∗+1) =: hL
∗+1GL(z) + o(hL

∗+1), (B.6)

where L∗, µL∗(K), GL(z) = µL∗(K)CL(z), and CL(z) are defined in the statement of the Lemma.

Next

Eξβtξ′βt = E[(β(zt)− β(z))(β(zt)− β(z))′K ((zt − z)/h)2]

= h

∫ 1

−1
(β(z + hs)− β(z))(β(z + hs)− β(z))′K(s)2f(z + hs)ds

= h

∫ 1

−1

[
hLsL

L!
β(L)(z) + o

(
hL
)] [hLsL

L!
β(L)(z) + o

(
hL
)]′

K(s)2 [f (z) + o (1)] ds

=
h2L+1

(L!)2 f (z)β(L)(z)β(L)(z)′
∫ 1

−1
s2LK2(s)ds+ o(h2L+1)

=
h2L+1

(L!)2 ν2L(K)f (z)β(L)(z)β(L)(z)′ + o(h2L+1).

It follows that

Var(ηt) = Eξβtξ′βt − (Eξβt)(Eξβt)′ =
h2L+1

(L!)2 ν2L(K)f (z)β(L)(z)β(L)(z)′ + o(h2L+1), (B.7)

and ηt = Op

(
hL+ 1

2

)
. Next, in view of (B.6) the serial covariances satisfy

Cov(ξβt, ξβt+j) = Eξβtξ′βt+j − (Eξβt) (Eξβt)′ = Eξβtξ′βt+j +O(h2L∗+2)

and by virtue of the strong mixing of zt, measurability of β(·), and Davydov’s lemma the

covariances satisfy the bound

|Cov(ξβt, ξβt+j)| ≤ 8
(
E |ξβt|δ

)2/δ
|α(j)|1−2/δ = Aβh

2L+2/δ|α(j)|1−2/δ + o(h2L+2/δ), (B.8)

whereAβ = 8(
∫ ∣∣∣β(L)(z̃p)

L!

∣∣∣δ |p|δLK(p)δdpf(z))2/δ, since E |ξβt|δ = h1+Lδ
∫ ∣∣∣β(L)(z̃p)

L!

∣∣∣δ |p|δLK(p)δdpf(z)+

o(h1+Lδ) in a similar way to (B.6), and where z̃p is on the line segment connecting z and z+hp.

Further, for j 6= 0 and using the joint density f0,j(s0, sj) of (zt, zt+j) we have

Eξβtξ′βt+j = E[(β(zt)− β(z)) (β(zt+j)− β(z))′KtzKt+j,z]

=

∫ ∫
(β(s0)− β(z)) (β(sj)− β(z))′K

(
s0 − z
h

)
K

(
sj − z
h

)
f0,j(s1, sj)ds0dsj

= h2

∫ ∫
(β(z + hp0)− β(z))(β(z + hpj)− β(z))′K(p0)K(pj)f0,j(z + hp0, z + hpj)dp0dpj
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=

{
h2L+2β

(L)(z)

L!

β(L)(z)′

L!
f0,j(z, z)

∫
pL1K(p1)dp1

∫
pL2K(p2)dp2 + o(h2L+2)

}
× 1{L=even}

+

{
h2L+4

[
β(L+1)(z)

(L+ 1)!

β(L+1)(z)′

(L+ 1)!
f0,j(z, z) +

β(L+1)(z)

(L+ 1)!

β(L)(z)′

L!

∂f0,j

∂sj
(z, z)

+
β(L)(z)

L!

β(L+1)(z)′

(L+ 1)!

∂f0,j

∂s0
(z, z) +

β(L)(z)

L!

β(L)(z)′

L!

∂2f0,j

∂s0∂sj
(z, z)

]∫
pL+1

1 K(p1)dp1

∫
pL+1

2 K(p2)dp2

+o(h2L+4)
}
× 1{L=odd}

= O(h2L∗+2) ≤ O(h6) for L ≥ 1. (B.9)

We now deduce that the long run variance matrix of ηt, or variance matrix of the standard-

ized partial sum 1√
nh2L+1

∑n
t=1 ηt, is

VLR(ηt) = E

[
1√

nh2L+1

n∑
t=1

ηt

][
1√

nh2L+1

n∑
t=1

ηt

]′
=

1

nh2L+1

n∑
t=1

Eηtη′t +
1

nh2L+1

∑
t6=s

Eηtη′s

=
1

h2L+1
Eηtη′t + o(1)→ ν2L(K)f (z)

(L!)2
β(L)(z)β(L)(z)′ =: Vηη,L, (B.10)

which follows from (B.7) and standard arguments concerning the o(1) magnitude of the sum of

the autocovariances of kernel-weighted stationary processes. In particular, from the α mixing

property of zt and using a sum splitting argument and results (B.6), (B.8) and (B.9) above, we

have

1

nh2L+1

∑
t6=s

Eηtη′s =
1

h2L+1

n−1∑
j=−n+1,j 6=0

[
1− |j|

n

]
[Eξβtξ′βt+j − (Eξβt) (Eξβt)′]

=
1

h2L+1

M∑
j=−M,j 6=0

[
1− |j|

n

]
[Eξβtξ′βt+j − (Eξβt) (Eξβt)′]

+
1

h2L+1

∑
M<|j|<n

(
1− |j|

n

)
[Eξβtξ′βt+j − (Eξβt) (Eξβt)′]

= O

(
Mh2L∗+2

h2L+1

)
+O

 1

h2L+1

(
E |ξβt|δ

)2/δ ∑
M<|j|<n

α
1−2/δ
j


= O

(
Mh× 1{L=even} +Mh3 × 1{L=odd}

)
+O

 h2 1+Lδ
δ

h2L+1M c

∑
M<|j|<∞

jcα
1−2/δ
j


= O

(
Mh× 1{L=even} +Mh3 × 1{L=odd}

)
+O

 1

h1−2/δM c

∑
M<|j|<∞

jcα
1−2/δ
j
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= O
(
Mh× 1{L=even} +Mh3 × 1{L=odd}

)
+ o

(
1

(M
c

1−2/δ h)1−2/δ

)
= o (1) , (B.11)

for a suitable choice of M → ∞ such that Mh → 0, M τh → ∞, and M
n → 0, with τ > 1,

c > τ(1 − 2/δ) and δ > 2. It then follows by arguments similar to the central limit theory for

weakly dependent kernel regression in Robinson (1983), Masry and Fan (1997), and Fan and

Yao (2003, theorem 6.5) that the standardized partial sum process of ηt satisfies a triangular

array functional law giving

1√
nh2L+1

bn·c∑
t=1

ηt  Bη,L(·), (B.12)

where Bη,L is vector Brownian motion with variance matrix Vηη,L = ν2L(K)f(z)
(L!)2 β(L)(z)β(L)(z)′.

The effective sample size condition nh→∞ is required for this result. �

Part (a) (ii) Otherwise, when nh→ c ∈ [0,∞) we have

1√
nh2L+1

bn·c∑
t=1

ηt = Op(1), (B.13)

but no invariance principle applies. Taking scalar xt and iid {zt} for ease of notation, the

stability condition

E

(
1√
n

n∑
t=1

ηt√
h2L+1

)2

=
1

n

n∑
t=1

E
(

ηt√
h2L+1

)2

= ν2(K)f(z)

(
β(L)(z)

L!

)2

+O(h),

is satisfied so that 1√
nh2L+1

∑n
t=1 ηt = Op(1) but the Lindeberg condition fails. To show this,

note that ηt = ξβt − Eξβt = ξβt +O(hL
∗+1). Given ε > 0, nh 6→ ∞ and β(L)(z) 6= 0 imply

1

n

n∑
t=1

E

{(
ηt√
h2L+1

)2

1[|ηt|>ε
√
nh2L+1]

}

=

∫
[[β(zt)− β(z)]Ktz +O(hL

∗+1)]2

h2L+1
1[|[β(zt)−β(z)]Ktz+O(hL∗+1)|>ε

√
nh2L+1]f(zt)dzt

=

∫
[β

(L)(z)
L! hLpLK(p) +O(hL

∗+1)]2

h2L
1[
|β

(L)(z)
L!

hLpLK(p)+O(hL∗+1)|>ε
√
nh2L+1

]f(z + ph)dp

=
(
β(L)(z)/L!

)2
f(z)

∫
p2LK2(p)1[

|β
(L)(z)
L!

pLK(p)|>ε
√
nh

]dp+O(h)

→


(
β(L)(z)
L!

)2
f(z)ν2L(K) > 0 if nh→ 0,(

β(L)(z)
L!

)2
f(z)

∫
p2LK(p)21[∣∣∣∣β(L)(z)

L!
pLK(p)

∣∣∣∣>ε√c]dp > 0 if nh→ c.
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Part (b) This part follows in essentially the same way as Part (a) and the proof is omitted. �

Part (c) From (B.6) we have

Eξβt = hL
∗+1µL∗(K)CL(z) + o(hL

∗+1) = hL
∗+1GL(z) + o(hL

∗+1) (B.14)

from which it follows directly that 1
nhL∗+1

∑n
t=1 xtx

′
tEξβt →p GL(z)Σxx, as required. �

Lemma B.3. Under Assumption 2 and if β(`)(z) = 0 for ` = 1, · · · , L − 1 and β(L)(z) 6= 0,

the following hold as n→∞ and h→ 0:

(a) (i) If nh→∞ , 1√
n3h

∑n
t=1 xtx

′
tζtK  

∫
BxB

′
xdBζK ≡dMN

(
0, ν0(K)f(z)

∫
BxB

′
x ⊗BxB′x

)
,

and 1√
n3h2L+1

∑n
t=1 xtx

′
tηt  

∫
BxB

′
xdBη,L ≡dMN

(
0, ν2L(K)f(z)

(L!)2

∫
BxB

′
x

[
B′xβ

(L)(z)
]2)

;

(ii) If nh → c ∈ [0,∞], 1√
n3h2L+1

∑n
t=1 xtx

′
tηt = Op(1), and 1√

n3h

∑n
t=1 xtx

′
tζtK = Op(1),

both without invariance principles holding.

(b) With CL(z) defined as in (B.5) and GL(z) = µL∗(K)CL(z),

1

n2hL∗+1

n∑
t=1

xtx
′
tEξβt  µL∗(K)CL(z)

∫
BxB

′
x = GL(z)

∫
BxB

′
x, (B.15)

where L∗ = L× 1{L=even} + (L+ 1)1{L=odd}.

(c) (i) If nh→∞, 1
n2h

∑n
t=1 xtx

′
tKtz  

∫
BxB

′
xf (z);

(ii) If nh→ c ∈ [0,∞), 1√
n3h

∑n
t=1 xtx

′
tKtz = Op(1) but no invariance principle holds.

(d) (i) If nh→∞, 1√
n2h

∑n
t=1 xtutKtz  

∫
BxdBuK ≡dMN

(
0, ν0(K)σ2

uf(z)
∫
BxB

′
x

)
;

(ii) If nh→ c ∈ [0,∞), 1√
n2h

∑n
t=1 xtutKtz = Op(1) but no invariance principle holds.

Proof of Lemma B.3

Part (a)(i) First observe that when nh→∞ we have the joint convergence(
1√
n
xbn·c,

1√
nh

∑bn·c
t=1 ζtK ,

1√
nh2L+1

∑bn·c
t=1 ηt

)
 
(
Bx(·), BζK(·), Bη,L(·)

)
, (B.16)

by virtue of Assumption 1, Lemma B.1(a)(i) and Lemma B.2(a)(i), where the Brownian motion

{Bx} is independent with {BζK , Bη,L} by virtue of the exogeneity of xt. The covariance be-

tween BζK and Bη,L is β(L)(z)
L! νL(K)f(z). This follows from the fact that the contemporaneous

covariance EζtKηt = EK2
tz(β(zt) − β(z)) − EKtzEKtz(β(zt) − β(z)) = hL+1 β

(L)(z)
L! νL(K)f(z) +

O(hL
∗+2) = O(hL+1) and the cross serial covariance EζtKηt+j = O(hL

∗+2) for j 6= 0, so that

combined with the weak dependence of zt and an argument along the same lines as that leading
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to (B.10) we have

E

 1√
nh

bn·c∑
t=1

ζt ×
1√

nh2L+1

bn·c∑
t=1

ηt

 =
1

hL+1
E (ζtKηt) {1+o(1)} =

β(L)(z)

L!
νL(K)f(z){1+o(1)}.

Weak convergence to the stochastic integral limits

1√
n3h

n∑
t=1

xtx
′
tζtK =

n∑
t=1

(
xt√
n

x′t√
n

)
ζtK√
nh
 
∫
BxB

′
xdBζK , (B.17)

1√
n3h2L+1

n∑
t=1

xtx
′
tηt =

n∑
t=1

(
xt√
n

x′t√
n

)
ηt√

nh2L+1
 
∫
BxB

′
xdBη,L (B.18)

then follows directly from Ibragimov and Phillips (2008, theorem 4.3) when nh → ∞, respec-

tively. Both stochastic integrals have mixed normal distributions, viz.,∫
Bx ⊗BxdBζK ≡dMN

(
0, ν0(K)f(z)

∫
BxB

′
x ⊗BxB′x

)
, (B.19)∫

BxB
′
xdBη,L ≡dMN

(
0,
ν2L(K)f(z)

(L!)2

∫
BxB

′
x

(
Bx(r)′β(L)(z)

)2
)
, (B.20)

and the stated result holds. �

Part (a) (ii) When the rate conditions nh → ∞ fails and, instead nh → c ∈ [0,∞) ap-

plies, it follows from Lemma B.1(a)(ii) and Lemma B.2(a)(ii) that 1√
nh

∑n
t=1 ζtK = Op(1) and

1√
nh2L+1

∑n
t=1 ηt = Op(1), respectively, but with no invariance principles holding. Correspond-

ingly, in place of (B.17) and (B.18), we have

1√
n3h

n∑
t=1

xtx
′
tζtK =

n∑
t=1

(
xt√
n

x′t√
n

)
ζtK√
nh

= Op(1), (B.21)

1√
n3h2L+1

n∑
t=1

xtx
′
tηt =

n∑
t=1

(
xt√
n

x′t√
n

)
ηt√

nh2L+1
= Op(1), (B.22)

again without invariance principles. �

Part (b). Using (B.14) and standard weak convergence methods we have

1

n3hL∗+1

n∑
t=1

xtx
′
tEξβt =

1

n

n∑
t=1

xt√
n

x′t√
n

Eξβt
hL∗+1

 GL(z)

∫
BxB

′
x,

giving the stated result. �

Part (c). Using (B.21), Part (i) follows as in Phillips and Wang (2020, Lemma B.1(c)(i)),
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giving

1

n2h

n∑
t=1

xtx
′
tKtz =

1

n

n∑
t=1

xt√
n

x′t√
n

EKtz

h
+ op(1) 

∫
BxB

′
xf(z). (B.23)

The proof of (ii) follows as in Phillips and Wang (2020, Lemma B.1(c)(ii)). �

Part (d). As in Part (a)(i), when nh → ∞ we have 1√
nh

∑nb·c
t=1 utKtz  BuK(·) as in Lemma

B.1(a) and then weak convergence to the stochastic integral 1√
n2h

∑n
t=1 xtutKtz  

∫
BxdBuK

follows directly from Ibragimov and Phillips (2008, theorem 4.3). Due to the independence

between Bx and BuK , we have
∫
BxdBuK ≡dMN

(
0, ν0(K)σ2

uf(z)
∫
BxB

′
x

)
.

(ii) If nh → c ∈ [0,∞), then 1√
nh

∑nb·c
t=1 utKtz = Op(1) as in Lemma B.1(a)(ii), and then

1√
n2h

∑n
t=1 xtutKtz = Op(1) but no invariance principle holds. �

C Additional Computational Details

The following paragraphs provide further details of how the three statistics in Figures 4, 5, 6

and Table 2 were computed.

(i) Computation of the naive t-ratio T̂ (z;L = 1) follows the definition (3.1). Since the use

of T̂ (z;L = 1) implies belief that L = 1, the optimal bandwidth order for that case is employed

in the computation. For the computation of β̂(z) and Ktz the bandwidth h = σ̂zn
γ was used

with γ = −1/2 for nonstationary xt and γ = −1/5 for stationary xt. For the other unknown

components β(1), β(2)(z), f(z) and f (1)(z) involved in (3.2) and (3.3), different bandwidth orders

were used. Specifically, f̂(z) used γ = −1/5, f̂ (1)(z) used γ = −1/7, β̂(1) was estimated using

local linear estimation with γ = −1/7 for stationary xt and γ = −2/7 for nonstationary xt, and

β̂(2) was estimated by local quadratic estimation with γ = −1/9 for stationary xt and γ = −2/9

for nonstationary xt. Those orders were selected based on optimal bandwidth order rules in

the case of local p-th order polynomial estimation to estimate β(p)(z) for p = 1, 2 and rely on

ongoing work by the authors for local p-th order polynomial estimation in functional coefficient

regression.

(ii) For the infeasible statistic T̂ (z; true L), the true L is used in the computation. For

L = 1, it is identical to the naive choice. For L = 4, we need to estimate β(4)(z). We use local

4-th order estimation with bandwidth order γ = −1/13 for stationary xt and γ = −2/13 for

nonstationary xt. For the computation of β̂(z) and Ktz the optimal order γ = −1/(2L∗+ 1) for

stationary xt and γ = −2/(2L∗ + 1) for nonstationary xt were used.

(iii) For computation of the oracle t-ratio T (z; true L), the quantities L, β(L)(z), β(L+1)(z),

f(z), f (1)(z) and σ2
u were assumed known. Given a known L, the optimal order was used in the

estimation of β̂(z) and computation of Ktz. More specifically, for L greater than 1, the optimal

order used is γ = −1/(2L∗ + 1) for stationary xt and γ = −2/(2L∗ + 1) for nonstationary xt.

For L = 1, the optimal order is γ = −1/5 for stationary xt and γ = −1/2 for nonstationary xt.
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(v) For the residual variance σ2
u the same estimate was used in the naive choice and the

infeasible statistics. We used γ = −1/2 to compute β̂(zt) and hence the residual estimates

ût = yt − xtβ̂(zt). Then σ2
u was estimated by σ̂2

u = 1
n

∑n
t=1 û

2
t .

Supplementary Material

Peter C. B. Phillips and Ying Wang (2021). Online Supplement to “Limit Theory for Locally

Flat Functional Coefficient Regressions.”
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(c) n = 800

Figure 2: Nonstationary case: bias, standard deviation and RMSE plots for FCC estimator
β̂(z) at points z1 = 0 and z2 = 1 for the quartic coefficient function β(z) = z4. The figures
show bias, standard deviation, and RMSE in the left, middle and right panels as functions of
bandwidth power γ (−0.9 ≤ γ ≤ −0.05) in h = σ̂z × nγ for Model (2.1) with I(1) regressor xt
and sample size n = 100, 400 and 800.

45



-1 -0.8 -0.6 -0.4 -0.2 0

BW power γ

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

B
ia

s

β̂(z1)

β̂(z2)

-1 -0.8 -0.6 -0.4 -0.2 0

BW power γ

0

0.5

1

1.5

S
t 

D
e

v
ia

ti
o

n

β̂(z1)

β̂(z2)

-1 -0.8 -0.6 -0.4 -0.2 0

BW power γ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
M

S
E

β̂(z1)

β̂(z2)
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Figure 3: Stationary case: bias, standard deviation and RMSE plots for the FC estimator β̂(z)
at points z1 = 0 and z2 = 1 for the quartic coefficient function β(z) = z4. The figures show bias,
standard deviation, and RMSE in the left, middle and right panels as functions of bandwidth
power γ (−0.80 ≤ γ ≤ −0.05) in h = σ̂z × nγ for Model (2.1) with a stationary autoregressive
regressor xt with autoregressive coefficient θ = 0.5 and sample size n = 100, 400 and 800.
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(a) z1 = 0, L = 4

(b) z2 = 1, L = 1

Figure 4: Empirical densities of the self-normalized t-ratio T̂ (z; true L), T̂ (z;L = 1) and
T (z; true L) when xt is stationary.
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Figure 5: Empirical densities of the self-normalized t-ratio T̂ (z; true L), T̂ (z;L = 1) and
T (z; true L) when xt is nonstationary.
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(a) xt is nonstationary, n = 200
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(b) xt is stationary, n = 200
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(c) xt is nonstationary, n = 800
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(d) xt is stationary, n = 800

Figure 6: Coverage rate (left scale) and length (right scale, with lines marked by circles) of the
95% confidence bands over the support of zt for n = 200 and n = 800, from 10,000 replications.
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