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Abstract

A semiparametric triangular systems approach shows how multicointegration can occur

naturally in an I(1) cointegrated regression model. The framework reveals the source of

multicointegration as singularity of the long run error covariance matrix in an I(1) system,

a feature noted but little explored in earlier work. Under such singularity, cointegrated

I(1) systems embody a multicointegrated structure and may be analyzed and estimated

without appealing to the associated I(2) system but with consequential asymptotic proper-

ties that can introduce asymptotic bias into conventional methods of cointegrating regres-

sion. The present paper shows how estimation of such systems may be accomplished under

multicointegration without losing the nice properties that hold under simple cointegration,

including mixed normality and pivotal inference. The approach uses an extended version

of high-dimensional trend IV (Phillips, 2006, 2014) estimation with deterministic orthonor-

mal instruments that leads to mixed normal limit theory and pivotal inference in singular

multicointegrated systems in addition to standard cointegrated I(1) systems. Wald tests of

general linear restrictions are constructed using a fixed-b long run variance estimator that

leads to robust pivotal HAR inference in both cointegrated and multicointegrated cases.

Simulations show the properties of the estimation and inferential procedures in finite sam-

ples, contrasting the cointegration and multicointegration cases. An empirical illustration

to housing stocks, starts and completions is provided.
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1 Introduction

Economic identities that link some variables to partial sums of constituent variables arise fre-

quently in economic data. Examples include common relations between stock and flow versions

of variables such as the capital stock and fixed investment, inventory investment and inventory

stock, housing construction completions and housing units under construction. Many of these

variables have nonstationary characteristics and cointegration models have proved a frequently

used framework for empirical work investigating such time series.

The concept of multicointegration was introduced by Granger and Lee (1989, 1990) to allow

explicitly for linkages among stock and flow forms of integrated order one (I(1)) variables. In

particular, multicointegration was suggested to capture the notion that equilibrium errors in an

I(1) cointegrating relation may accumulate so that they cointegrate with the original variables.

Engsted and Haldrup (1999) remark that this phenomenon is likely to occur in practice when

characterizing the dynamic interactions of stock and flow variables. Granger and Lee (1990) and

Lee (1996) showed how multicointegration can arise in the context of optimum control problems

and infinite horizon quadratic adjustment cost models. One of the latest empirical applications of

multicointegration has been to global climate change modeling, where the effects of accumulating

cointegration disequilibria in temperature and surface radiation raise oceanic heat storage which

leads to a multicointegrated linkage influencing global temperature (Bruns et al., 2020).

In these models the equilibrium errors (or residuals in an I(1) cointegrating relation) are con-

sidered I(0) or stationary, so that upon cumulation these errors become I(1), and then subsequent

cointegration may occur with the original variables or partial sums of them. Somewhat naturally

it has therefore been posited in the multicointegration literature that the following statements

hold:

1. “Engsted and Johansen (1999) show that when variables are multicointegrated the require-

ments for the system to be an I(1) system will fail; in fact, an I(1) specification will be

misspecifed even though the main interest lies in the analysis of the I(1) series. Instead the

system should be formulated as an I(2) model where multicointegration can be shown to re-

sult in cointegration amongst generated I(2) variables and their first differences” (Engsted

and Haldrup, 1999, p.237)

2. “If the process is given by the cointegrated VAR model for I(1) variables, then multicoin-

tegration cannot occur” (Engsted and Johansen, 1999).

These ideas seem natural in the stock and flow framework and appear to have been well

accepted in the literature. But they were developed in a VAR framework and do not necessarily

hold in more general models, including semiparametric I(1) cointegrating settings such as the

triangular system of Phillips (1991). In fact, as demonstrated here and in related work on fully

modified least squares (Kheifets and Phillips, 2021, hereafter, KP), multicointegration occurs

naturally in a cointegrated I(1) model whenever there is a rank deficiency in the long run con-

ditional covariance matrix of the cointegrating equation error. The phenomenon is a general one
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and rank deficiency turns out to be the determining factor of multicointegration in an I(1) sys-

tem. Multicointegration arises because singularity in the long run conditional covariance matrix

induces a further long run cointegrating relation simply because the singularity implies a moving

average I(−1) (or higher level) component in that direction in the equation error, which leads

directly to cointegration upon accumulation. This formulation of multicointegration in terms of

rank deficiency in the long run conditional error covariance matrix is intuitive because it points

directly to latent higher order relations in the I(1) system and indicates their direction without

further complications or the use of additional notation. The phenomenon has an analogue re-

duced rank structure in the parametric VAR model context and was noted but not analyzed by

(Engsted and Haldrup, 1999, p.241).

The masterful treatment of reduced rank VAR systems by Johansen (1992, 1995) provides

explicit representations of the reduced rank structures which ensure the existence of cointegrated

I(1) and I(2) VAR systems. The implications of these conditions for characterizing systems

with multicointegration are employed in (Engsted and Johansen, 1999, hereafter, EJ), which

demonstrates the relevance of the I(2) system for embodying multicointegrated structures in

VAR systems. Outside the VAR setting, multicointegration can exist in an I(1) reduced rank

VARMA setting or in I(1) cointegrated systems with infinite order bidirectional lags. These

models and approaches to multicointegration are reconciled in what follows.

The present paper makes three main contributions. First, a general analysis of multicointe-

gration is provided within an I(1) cointegrated system using the semiparametric triangular model

framework. Multicointegration in such systems depends on singularity in the long run error co-

variance matrix, which in turn is shown to affect the asymptotic behavior of standard cointegrated

system estimation procedures by introducing bias and non-pivotal inference. These findings are

illustrated here in the case of the integrated modified least squares (IM-OLS) approach (Vogel-

sang and Wagner, 2014, hereafter, VW). Similarly, KP(2021) recently developed asymptotics for

the fully modified least squares (FM-OLS) cointegration coefficient estimator under multicointe-

gration, showing degenerate limit theory in general but accelerated convergence over the usual

O(n) rate in the direction of multicointegration, accompanied by second order bias in the limit

theory. In a second contribution, it is shown that an extended version of high-dimensional trend

IV (TIV) estimation with deterministic orthonormal instruments (Phillips, 2006, 2014) provides

a robust approach to estimation with mixed normal limit theory and pivotal inference in singu-

lar multicointegrated systems as well as standard cointegrated I(1) systems. This TIV method

therefore provides a convenient IV approach to estimation and inference in I(1) cointegrated

systems that is robust to multicointegration without the need for pretesting. The system TIV

estimator has the further advantage of a higher convergence rate under multicointegration than

the FM-OLS estimator studied in KP(2021) and this estimator enables robust inference using

standard Wald statistics formulated in the same way with a HAR variance matrix under both

cointegration and multicointegration.

A further contribution of the paper is technical, with a group of new findings concerning the

limit theory of functionals of trend transformed stationary and nonstationary variables in the
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case of asymptotically infinite instrument numbers. This contribution includes some new methods

of developing limit theory for estimators and Wald statistics in highly complex cases involving

singularities in signal matrices and partitioned regression asymptotics that require component-

wise analysis or matrix normalization rather than diagonal matrix normalization to extract the

correct asymptotics. These methods and results are of independent interest given recent research

on large instrument numbers and deterministic transforms of variables that enable empirical

investigations to focus on long run behavior.

The paper is organized as follows. The next section explains the source of multicointegration in

the standard semiparametric triangular cointegrated system of I(1) variables. Section 3 reconciles

these origins with VAR and augmented regression representations that are commonly used in

practical work. Section 4 presents and analyzes IM-OLS and TIV approaches to the estimation

of cointegrated systems under conditions of multicointegration. Limit theory for both approaches

is provided. Section 5 develops methods of inference using HAR methods that lead to pivotal

asymptotics suited for inference in practical work. Section 6 reports some simulation results and

an empirical illustration is given in Section 7. Section 8 concludes and proofs are given in the

Appendix in Section 9. As noted above some proofs involve complex methods and derivations.

As an aid to readers in following the derivations, a glossary of notation 9.3 for the most common

functionals that appear in formulae is given for convenient reference at the end of the paper.

Proofs and some additional technical results of interest, including a reverse partial summation

formula, are given in the Online Supplement that accompanies the paper.

2 Multicointegration in the I(1) framework

The starting point in developing a framework for the source of multicointegation is the following

I (1) triangular matrix system of cointegration (Phillips, 1991)

yt = Axt + u0t (1)

xt = xt−1 + uxt, t = 1, . . . , T. (2)

Here A is an m0 × mx cointegrating coefficient matrix, the I (1) mx-vector xt is initialized at

t = 0 by x0 = Op(1), and the composite error vector ut = (u′0t, u
′
0xt)
′ is assumed throughout the

paper to follow the linear process

ut = D(L)ηt =

∞∑
j=0

Djηt−j , with

∞∑
j=0

j||Dj || <∞, ηt ∼ iid(0, Im), (3)

where m = m0 + mx. Let Γh = Eutu′t+h and VLR (ut) =
∑∞
h=−∞ Γh denote the long run

variance matrix of ut. The linear operator D(L) and long run variance matrix VLR(ut) =

Ω =
∑∞
h=−∞ Γh = D(1)D(1)′ =

∑∞
j,k=0DjD

′
k and one sided long run covariance matrix

∆ =
∑∞
h=0 E (ut−hu

′
t) of ut are partitioned conformably with ut as

D(L) =

[
D00(L) D0x(L)
Dx0(L) Dxx(L)

]
, Ω =

[
Ω00 Ω0x
Ωx0 Ωxx

]
, ∆ =

[
∆00 ∆0x
∆x0 ∆xx

]
(4)
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where Ωxx > 0 is positive definite, ensuring that xt is a full rank unit root vector process which

delivers mx common stochastic trends to the I(1) system (1)-(2). This full rank condition is

maintained throughout the paper. The conditional long run variance matrix Ω00.x = Ω00 −
Ω0xΩ−1

xxΩx0 is the Schur complement of the block Ωxx in Ω and this matrix is positive (semi-)

definite if and only if Ω is positive (semi-) definite by virtue of the Guttman rank additivity

formula rank (Ω) = rank(Ωxx) + rank (Ω00.x).

The case of nonsingular Ω is well studied. The case where Ωxx may be singular and the

regressors xt not full rank I(1) processes was studied in Phillips (1995). But the situation where

the conditional long run variance matrix Ω00.x is singular seems largely to have been ignored1

in the now vast literature on cointegration and, with the exception of KP(2021), none of the

implications of singularity for estimation and inference have been explored in the (1)-(2) setting.

This neglect is partly because, as we will show, singularity in the long run error covariance

matrix leads to an I(1) reduced rank VARMA representation rather than a reduced rank I(1)

VAR representation. So while such systems fall naturally within the semiparametric framework

above, they do not fall so neatly within the VAR framework, at least without raising the order

of the system to I(2). Nonetheless, the singular long run variance matrix case is especially

interesting because it leads directly to a situation where partial sums of the observed variables yt

and xt (which then become I (2) variables) are cointegrated with xt in some unknown direction

- see (9) below. The importance of this situation is that it provides a primitive (that is, within

the I(1) system) link to the phenomenon of multicointegration, as envisaged in special cases

by Granger and Lee (1989). But the source of the multicointegration is now firmly evident in

the I (1) framework (1)-(2). Moreover, the condition for multicointegration is straightforwardly

expressed in terms of the existing parameters of the I(1) system without further notation or

complications.

The multicointegration model is well known to be empirically important in cases involving

variables such as production, sales and inventories (Granger and Lee, 1990) or housing comple-

tions, starts, and construction (Lee, 1996), where aggregation plays a critical role in relating key

variables of economic interest. More recent applications of multicointegration involve issues of

fiscal sustainability (Berenguer-Rico and Carrion-i Silvestre, 2011; Escario et al., 2012; Kheifets

and Phillips, 2021) and climate change (Bruns et al., 2020). The present formulation is a general

semiparametric one in the tradition of Phillips and Hansen (1990), so that the short run dynamics

are left completely unspecified beyond the linear process framework (3) and both cointegrating

and multicointegrating relations are parameterized with unknown coefficients rather than through

the special case of identities, stock-flow relationships, or posited behavioral relations with known

coefficients.

The time series u0t−1 = yt−1 − Axt−1 is the lagged equilibrium error and the system (1)-(2)

1The possibility of full system singularity with rank failure in Ω is mentioned by Engsted and Haldrup (1999,

p.241) but is not analyzed. Singularity in the long run conditional variance matrix and the implications of this

singularity on estimation procedures such as fully modified least squares (FM-OLS) were the subject of a Yale

Take Home Examination in 2011 (http://korora.econ.yale.edu/phillips/teach/ex/553a-ex11a.pdf). That approach

was analyzed in KP(2021).
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may therefore be written in the following error correction model (ECM) form (Phillips, 1991)[
∆yt
∆xt

]
=

[ −u0t−1
0

]
+
[
A∆xt + u0t

uxt

]
=

[ −Im0

0

]
[Im0

,−A]
[
yt−1
xt−1

]
+
[
A∆xt + u0t

uxt

]
= : αβ′

[
yt−1
xt−1

]
+
[
A∆xt + u0t

uxt

]
(5)

or, setting zt = (y′t, x
′
t)
′
, as

∆zt = αβ′zt−1 + uzt, (6)

where

α =
[ −Im0

0

]
, β′ = [Im0

,−A] , uzt =
[
A∆xt + u0t

uxt

]
, (7)

with the m × m0 loading coefficient matrix α and the (m0 ×m) cointegrating matrix β′. The

vector β′zt−1 = yt−1 − Axt−1 = u0t−1 is just the lagged equilibrium error term from (1). The

ECM error vector uzt in (6) is serially dependent and follows a general linear process induced by

ut and the mechanism (3).

An alternate representation of (1) which is useful in the development of efficient estimation

methods of I (1) cointegrated systems by FM-OLS or trend IV regression (Phillips, 2014) is the

augmented regression

yt = Axt + Ω0xΩ−1
xx∆xt + u0.xt, u0.xt := u0t − Ω0xΩ−1

xxuxt

= : Axt + F∆xt + u0.xt, ∆xt = uxt, (8)

where both the cointegrating coefficient matrix A and the long run regression coefficient F =

Ω0xΩ−1
xx are treated as unknown. Importantly, the long run regression coefficient matrix F is

nonparametric. Applying partial sum operations to (8) gives

Yt = AXt + F (xt − x0) + U0.xt, (9)

with Yt =
∑t
s=1 ys, Xt =

∑t
s=1 xs, and U0.xt =

∑t
s=1 u0.xs. Now suppose that the long run

(conditional) variance matrix Ω00.x of u0.xt is singular of rank 0 < p < m0 and H is an m × p
matrix of full rank p spanning the null space of Ω00.x, so that

H ′Ω00.xH = 0. (10)

Then in this direction the transformed error H ′u0.xt has zero long run variance matrix and zero

spectral density matrix at the origin. There therefore exists some p dimensional I (0) process

εHt for which H ′u0.xt = ∆εHt a.s., in the absence of fractional antipersistence2 which is ruled

out by the absolute 1-summability condition (3), leading to the representation

H ′yt = H ′Axt +H ′F∆xt + ∆εHt,

2Under fractional antipersistence in which εHt = H′u0.xt = ∆dεHt = (1 − L)dεHt for some d ∈ (0, 1), the

system (11) would be replaced by the equation H′(1−L)−dyt = H′A(1−L)−dxt +H′F (1−L)−duxt +εHt. Both

the matrix transform H and the antipersistence parameter d would be unknown in this case, leading to further

complications that are left for future research.
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and by partial summation to

H ′Yt = H ′AXt +H ′F (xt − x0) + (εHt − εH0) .

It follows that

H ′Yt = H ′AXt +H ′Fxt + (εHt − εH0 −H ′Fx0) =: H ′AXt +H ′Fxt + ηHt, (11)

where ηHt = εHt − εH0 − H ′Fx0 is I (0) up to (and conditional on) the initial condition x0 =

Op (1) , and provided no further level of long run degeneracy (or higher order multicointegration)

is present for which VLR(εHt) = 0. From (11) it follows that the variables (Yt, Xt, xt) are

cointegrated, involving both the I (2) time series (Yt, Xt) and the I (1) time series xt. This accords

with the conventional definition of multicointegration. Importantly, in this general framework

the multicointegration parameters, notably H and H ′F = H ′Ω0xΩ−1
xx , are nonparametric.

Now define the partial sum process Zt =
∑t
s=1 zs = (Y ′t , X

′
t)
′
and note that zt = (y′t, x

′
t)
′
is an

I (1) process whose common stochastic trends are embodied in xt. In the notation of EJ(1999), the

linear combination τ ′zt := [Im0
,−A] zt = u0t is I (0) and the cumulated process τ ′Zt =

∑t
s=1 τ

′zs

cointegrates with xt in the sense that there exist matrices ρ′ = H ′0 and ψ′ = −H ′0F (again using

the notation of Engsted and Johansen) such that

ρ′
t∑

s=1

τ ′zs + ψ′xt = H ′ [Im0 ,−A]Zt −H ′Fxt = H ′Yt −H ′AXt −H ′Fxt = ηHt ≡ I (0) . (12)

The m dimensional I (1) process zt is therefore multicointegrated, which appears to contradict

the claims made in #1 and #2 above that “multicointegration cannot take place in the error

correction model for I (1) variables.” Of course, neither the I (1) ECM (6) nor the I (1) augmented

regression model (8) is specified in a VAR form. It turns out that requiring an I (1) VAR

specification is a binding restriction that eliminates multicointegrated I (1) systems in VAR

format. In this sense the semiparametric setting is materially more general because it admits

multicointegrated I(1) versions simply as a property of the error process in the formulation of

the I(1) system.

The reason is straightforward and is explained by writing the ECM (6) as follows

∆zt = αβ′zt−1 +
[
A∆xt + u0t

uxt

]
= αβ′zt−1 +

[
A∆xt + F∆xt + u0.xt

uxt

]
= αβ′zt−1 +

[
A+ F

0

]
∆xt +

[
u0.xt
uxt

]
= αβ′zt−1 +

[
A+ F

0

]
∆xt−1 +

[
u0.xt
uxt

]
+
[
A+ F

0

]
∆uxt

= αβ′zt−1 +
[

0 A+ F
0 0

]
∆zt−1 +

[
u0.xt
uxt

]
+
[

0 A+ F
0 0

]
∆ut. (13)

Now the long run variance matrix of the error vector in (13), viz.,[
u0.xt
uxt

]
+
[

0 A+ F
0 0

]
∆ut (14)
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is the same as the long run variance matrix of the first member of (14) and is therefore[
Ω00.x 0

0 Ωxx

]
,

which is singular. So the system (13) is a reduced rank regression but has non-invertible moving

average error components (H ′u0.xt = ∆εHt and ∆ut) and cannot therefore be written in standard

reduced rank I(1) VAR form with lagged regressors and martingale difference errors. However,

it can be viewed as a reduced rank I(1) VARMA model with MA unit roots; and taking partial

sums of (13), subject to initial conditions, leads to a reduced rank I(2) system

∆Zt = αβ′Zt−1 +
[

0 A+ F
0 0

]
zt−1 +

[
U0.xt
xt−1

]
+
[
A+ F
I

]
uxt, (15)

which provides a reduced rank linear combination of the I (2) vector Zt, the I (1) vectors

zt, xt, U0.xt =
∑t
s=1 u0.xs, and the stationary vector uxt. Thus, there is an I (2) multicointe-

grated system with weakly dependent errors corresponding to the I (1) multicointegrated system

(6), matching the reasoning that leads to the I (2) system in EJ(1999). Note that the lower

block of (15) is an identity and the error vector uxt in (15) therefore has lower dimension but has

nonsingular long run variance matrix Ωxx. The process U0.xt = β′Zt − Fxt, on the other hand,

is not full rank I (1) and therefore can be expected to affect inference, just as it does in the I (1)

system (8).

3 Reconciliation with the VAR

3.1 Cointegrating relations and the moving average representation

It is helpful to reconcile the above discussion with the analysis of multicointegration given in

EJ(1999). Start by writing the triangular system (1)-(2) as[
Im0

−A
0 ∆Imx

] [
yt
xt

]
= ut = D(L)ηt.

Formally solving this system yields the ‘reduced form’[
yt
xt

]
=
[
Im0

−A
0 ∆Imx

]−1

D(L)ηt =

[
Im0

∆−1A
0 ∆−1Imx

]
D(L)ηt,

and factoring ∆−1 leads to[
yt
xt

]
=

1

∆

[
∆Im0 A

0 Imx

]
D(L)ηt := (1− L)

−1
C(L)ηt (16)

where

C(L) =
[

∆Im0
A

0 Imx

] [
D00(L) D0x(L)
Dx0(L) Dxx(L)

]
.

System (16) may be interpreted as the usual moving average Wold representation ∆zt = C(L)ηt.

In this system EJ(1999) assume that the roots of |C(z)| = 0 are either bounded away from unity

or z = 1. Observe that the matrix

C (1) =
[

0 A
0 Imx

] [
D00(1) D0x(1)
Dx0(1) Dxx(1)

]
=
[
A
I

]
[ Dx0(1) Dxx(1) ] =: ξε′

8



has reduced rank, as expected in a standard cointegrated I(1) system, with cointegrating matrix

given by the orthogonal complement ξ′⊥ = [ Im0
−A ] (in the more common reduced rank

notation (6) we would have ξ′⊥ = β′) so that ξ′⊥C (1) = 0. The matrix ε′ = [ Dx0(1) Dxx(1) ]

has full rank mx and, by reordering of coordinates as may be needed, we can assume Dxx(1) to

be nonsingular3. An orthogonal complement matrix of ε may then be constructed as

ε⊥ =

[
Dx0(1)′

Dxx(1)′

]
⊥

=

[
Im0

−Dxx(1)−1Dx0(1)

]
.

Following the algebraic approach in EJ(1999) the derivative matrix of C(z) is

Ċ(z) =
[ −Im0

0
0 0

]
D(z) +

[
(1− z) Im0 A

0 Imx

]
Ḋ(z),

so that

ξ′⊥Ċ(1)ε⊥ = −ξ′⊥
[
D00 (1) D0x (1)

0 0

] [
Im0

−Dxx(1)−1Dx0(1)

]
= − [ D00 (1) D0x (1) ]

[
Im0

−Dxx(1)−1Dx0(1)

]
= −

{
D00 (1)−D0x (1)Dxx(1)−1Dx0(1)

}
.

The matrix D00 (1) − D0x (1)Dxx(1)−1Dx0(1) is the Shur complement of the block Dxx(1) in

D (1) and is singular if and only if the matrix

D (1) =

[
D00 (1) D0x (1)
Dx0 (1) Dxx (1)

]
is singular since by the Schur determinantal formula

|D (1)| =
∣∣D00 (1)−D0x (1)Dxx(1)−1Dx0(1)

∣∣ |Dxx (1)| = 0

if and only if
∣∣D00 (1)−D0x (1)Dxx(1)−1Dx0(1)

∣∣ = 0 because |Dxx (1)| 6= 0 by construction.

But the long run error variance matrix in (1)-(2) is Ω = D (1)D (1)
′
. It follows that the matrix

ξ′⊥Ċ(1)ε⊥ has reduced rank if and only if the long run error variance matrix Ω is singular.

Hence, the criterion given in EJ(1999) for multicointegration in an I (2) system (that ξ′⊥Ċ(1)ε⊥

has reduced rank) reduces to the multicointegration criterion in an I (1) system given here –

namely that the long run error covariance matrix in that system (here the triangular system

given by (1)-(2)) is singular. Importantly, however, the algebraic analysis in EJ(1999) restricts

attention to autoregressive formulations of cointegrated I(1) systems and in doing so eliminates

cointegrated I(1) models such as (1)-(2) with singular long run error variance matrices4.

3Since Ωxx = Dx0 (1)Dx0 (1)′+Dxx (1)Dxx (1)′ is positive definite, the matrix [Dx0 (1) , Dxx (1)] has full row

rank mx and the columns (coordinates) may be rearranged as needed to ensure that the mx×mx matrix Dxx (1)

is nonsingular.
4In particular, EJ(1999) show that multicointegration cannot appear in a cointegrated I(1) autoregressive

model because a requisite condition for the autoregressive representation is that
∣∣∣ξ′⊥Ċ(1)ε⊥

∣∣∣ 6= 0 or ξ′⊥Ċ(1)ε⊥ has

full rank – see their conditions (1) and (4).
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3.2 Parametric augmented regression

The augmented regression (8) provides another mechanism for reconciling the existence of multi-

cointegration without specifying an I(2) system. In fact, (8) may be converted into an equivalent

augmented parametric system of distributed lags as follows. We begin by noting that

yt = Axt + u0t = Axt +

∞∑
k=−∞

Gk∆xt+k + u0.xt (17)

The latter equation arises from the well known relation (Saikkonen, 1991)

u0t =

∞∑
k=−∞

Gkuxt+k + u0.xt =

∞∑
k=−∞

Gk∆xt+k + u0.xt

which explicitly relates the regression errors u0t and u0.xt in terms of leads and lags of the errors

uxt so that the orthogonality

E (uxt+ku
′
0.xt) = 0, k = 0,±1,±2, ...

holds and the long run variance matrix of (u0.xt, uxt) is the block diagonal matrix diag [Ω00.x,Ωxx] .

In this formulation we have the long run regression coefficient equivalence
∑∞
k=−∞Gk = Ω0xΩ−1

xx ,

leading to (8) as is now demonstrated.

In particular, using the BN decomposition under the validating summability conditions of

Phillips and Solo (1992) that are satisfied by (3) we have

ut = D(L)ηt = D (1) ηt + η̃t−1 − η̃t = D (1) ηt −∆η̃t,

where η̃t =
∑∞
j=0 D̃jηt−j and D̃j =

∑∞
k=j+1Dk. The long run variance matrix Ω is partitioned

conformably with D (1) =

[
D0 (1)

′ ...Dx (1)
′
]′

as

Ω = D (1)D (1)
′

=

[
D0 (1)D0 (1)

′
D0 (1)Dx (1)

′

Dx (1)D0 (1)
′
Dx (1)Dx (1)

′

]
=
[

Ω00 Ω0x
Ωx0 Ωxx

]
,

and then

F = Ω0xΩ−1
xx = D0 (1)Dx (1)

′ (
Dx (1)Dx (1)

′)−1
=

∞∑
j=−∞

Gj = G (1)

because we have

∞∑
j=−∞

Gj∆xt+j =

∞∑
j=−∞

Gjuxt+j =

( ∞∑
k=−∞

Gj

)
uxt + ũxt−1 − ũxt = G (1)uxt −∆ũxt,

where ũxt = G̃ (L)uxt with G̃ (L) =
∑∞
k=j+1Gk1 {j ≥ 0} −

∑j
k=−∞Gk1 {j < 0} using the two-

sided version of the BN decomposition (Corbae et al., 2002, Lemma D).

It now follows that

yt = Axt +

∞∑
k=−∞

Gk∆xt+k + u0.xt (18)
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= Axt +G (1) ∆xt + u0.xt −∆ũxt,

= Axt +G (1) ∆xt + u+
0.xt, with u+

0.xt = u0.xt −∆ũxt (19)

for which we have the long run variance matrix equivalence

VLR
(
u+

0.xt

)
= VLR (u0.xt) = Ω00 − Ω0xΩ−1

xxΩx0,

because ∆ũxt has zero long run variance matrix and zero long run covariance with u0.xt. This

equivalence confirms that the models (18) and (19) are long-run equivalent in the sense that the

difference between them has zero long run covariance matrix. Thus, the multicointegrated aug-

mented regression system (8) has an analogue (18) in the parametric model context but requires

modeling with infinite order bidirectional lags. In both cases, asymptotic theory and inferential

methods need to take account of the singularity of Ω00.x. The formulation (18) extends the earlier

bidirectional (leads and lags dynamic OLS regression) model of cointegration (Saikkonen, 1991;

Phillips and Loretan, 1991; Stock and Watson, 1993) to the multicointegration case.

4 Estimation

With the exception of certain specialized models involving known relationships between variables

such as stocks and flows, the existence of multicointegration will often not be anticipated in

practical applied work on estimation and inference in I(1) cointegrated systems. Tests for the

presence of multicointegration have been developed for VAR systems Engsted et al. (1997) but

multicointegration may not be suspected, pre-test analyses may not be conducted or they may

lead to pre-test bias and misleading outcomes; and empirical research may be conducted using

triangular cointegrated systems rather than VAR specifications. In the absence of such tests it

is obviously useful to have methods of estimating I(1) cointegrated systems that are robust to

the presence of multicointegration.

Since semiparametric formulations of cointegrated I(1) systems may be conducted in the

presence of multicointegration, standard efficient methods of estimating these systems such as

FM-OLS or dynamic OLS may continue to be employed in practical work. But the properties of

such regressions are influenced by the singularity of the long run error covariance matrix. The

typical impact of singularity is to raise the rate of convergence in the direction of singularity,

thereby producing a degenerate limit theory for the estimate of the full cointegrating matrix.

Moreover, common semiparametric methods of estimation such as FM-OLS involve the use of

nonparametric kernel estimates of the long run variance and covariance matrices for bias correc-

tion and inference. In consequence, the accelerated rate of convergence in FM-OLS estimation

is affected by the asymptotic behavior of these kernel estimates under rank degeneracy, as in

the analysis of regression with cointegrated regressors and unrestricted VAR regression in the

presence of cointegration (Phillips, 1995). Inference is correspondingly affected with further non-

standard limit distribution complications and non-pivotal limit theory in test statistics. These
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consequences may be analyzed5 but are not pursued here. Instead, for reasons explained below

the present paper explores the implications for integrated modified least squares (IM-OLS) es-

timation of such systems and develops new methods of estimation based on trend instrumental

variable (TIV) methods that have clear advantages for efficient estimation and robust inference.

Another potentially interesting option that is not pursued here is the use of IVX estimation

(Phillips and Magdalinos, 2009; Kostakis et al, 2014), which is known to provide robust estimation

and inference in cointegrating regression and predictive regression models with many integrated

or near-integrated regressors. In the present context, it can be shown that these robustness

characteristics continue to hold. In particular, the same mixed normal estimation limit theory

and chi-squared Wald statistic inferential limit theory applies even when Ω00.x = 0, provided

that Ω00 > 0, which is explained by the fact that the IVX limit theory depends only on Ω00.

This favorable robust outcome holds because IVX avoids endogeneity corrections by the use of

mildly integrated instrument regressors that are endogenously constructed from the regressors

themselves but with persistence outside the local to unity vicinity. However, the same rate of

convergence is maintained in the limit theory for both singular and nonsingular cases, so that this

procedure is asymptotically inefficient in both cases. The case where Ω00 = 0 is more complex

and it turns out that again IVX estimation has a mixed normal limit theory and the rate of

convergence is faster than when Ω00 > 0. But the IVX estimation method is still inefficient in

this case. While this approach is certainly a worthwhile option to explore in view of its generality

and robustness to departures from integration, it is not pursued here but will be examined in

later work.

The present paper examines two approaches to estimation and inference which offer a rate

efficient method of estimation in both singular and nonsingular cases: TIV regression (Phillips,

2005b, 2014) and IM-OLS regression (VW, 2014). To keep the analysis as brief as possible we

confine attention to a scalar cointegrating relationship, which enables a convenient introduction

of the basic ideas, highlights the main implications, and covers one of the most common cases

arising in practice. Extension to the multivariate model follows usual lines but inferential analysis

using Wald statistics is further complicated6 by the need for matrix normalization to take account

of differing rates of convergence in differing directions and arbitrary linear combinations of the

matrix coefficients under test.

5KP(2021) developed the limit theory of FM-OLS estimation under rank failure of the long run conditional

variance matrix of the error in the augmented regression equation.
6This complication is by no means trivial. Often in such cases, simplifying assumptions are made to assure

no loss of rank or degrees of freedom in the limit, e.g., Andrews and Cheng (2012, 2014), and VW(2014). A

general analysis of Wald statistic testing under matrix normalization without such prior requirements is examined

in Magdalinos and Phillips (2019) and under ongoing development.
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4.1 Estimation Approaches

To fix ideas, consider the following scalar version of the augmented I(1) cointegrating equation

(8)

yt = a′xt + f ′∆xt + u0.xt, ∆xt = uxt, u0.xt = u0t − Ω0xΩ−1
xxuxt (20)

where f ′ = Ω0xΩ−1
xx and the conditional long run variance Ω00.x = Ω00−Ω0xΩ−1

xxΩx0 ≥ 0. We will

consider both the standard form of the equation where Ω00.x > 0 and the singular form where

Ω00.x = Ω00 − Ω0xΩ−1
xxΩx0 = 0. In that event, we write u0.xt = ∆et where et has variance σ2

e

and long run variance ωee > 0. The latter positivity condition is not necessary but its relaxation

leads to further complications involving higher order singularity (with consequential effects on

multicointegration) that may be dealt with using similar methods to those developed here but

these complications do not appear to be empirically relevant and are not pursued in the present

work. In what follows, we consider two methods of estimation of the parameters in (20).

We start by requiring the following high-level conditions, which hold under well-known con-

ditions (e.g., Phillips and Solo (1992)). Here and in what follows we use  to signify weak

convergence in the relevant probability space.

(a)
1√
n

bn·c∑
t=1

et  Be (·) ≡ BM
(
ω2
e

)
, when Ω00.x = 0, (21)

(b)
1√
n

bn·c∑
t=1

u0.xt  B0.x (·) = BM (Ω00.x) , when Ω00.x > 0. (22)

In case (a) we further assume the joint functional law

1√
n

bn·c∑
t=1

(et, u
′
xt)
′
 
(
Be (·) , Bx (·)′

)′ ≡ BM ([
ωee ωex
ωxe Ωxx

])
, with (23)

[
ωee ωex
ωxe Ωxx

]
> 0, ∆xx =

∞∑
h=0

E (ux0u
′
xh) , ∆xe =

∞∑
h=0

E (ux0eh) , (24)

∆x0 =

∞∑
h=0

E (uxhu0h) , ∆+
x0 = ∆x0 − Ω0xΩ−1

xx∆xx = ∆x0 −∆xxf. (25)

The functional law (22) already holds under (3), and (23) similarly holds under analogous linear

process conditions, as in Phillips and Solo (1992). Although u0.xt = ∆et has zero long run

covariance with uxt in case (a) the same is not necessarily so of et. For instance, if et = α′uxt+εt

where εt ∼ iid
(
0, σ2

ε

)
and independent of uxt, then u0.xt = α′∆uxt + ∆εt has zero long run

covariance with uxt but the long run covariance of uxt and et is CVLR (uxt, et) = ωxe = Ωxxα 6= 0.

Condition (23) allows for both ωxe = 0 and ωxe 6= 0 possibilities.

4.1.1 Integrated modified least squares (IM-OLS)

The first method of estimation that we consider raises the integration order of the system by

partial summation of (20), a process that can be performed whether or not Ω00.x = 0. But singu-

larity obviously affects limit behavior, as demonstrated below. The method of raising the order
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of system integration is always available and has been considered in other work, including pre-

dictive regression cases (Phillips and Lee, 2013), and, of course, aggregated VAR representations

and ECM systems such as (15) above. VW(2014) recently proposed an important new version

of this procedure for estimating I(1) systems under the standard condition Ω00.x > 0 and called

the method integrated modified least squares (IM-OLS). The IM-OLS method has an appealing

practical advantage over FM-OLS in that it involves simple least squares regression and does not

require estimation of long run one-sided covariance matrices and avoids use of kernels and band-

width choices. The method does not lead to consistent estimation of all the coefficients in the

system because the equation necessarily has spurious regression components in which the error is

I (1) just as some of the regressors. Moreover, the approach is asymptotically inefficient relative

to FM-OLS and other efficient methods of I(1) system estimation. Procedures of inference are

also considerably more complex than usual because a simple consistent estimator of Ω00.x is not

readily available, due to the partially spurious regression feature of the fitted equation and the

inconsistent estimates of some of the coefficients.7 The present paper makes a separate contribu-

tion to IM-OLS inference by providing a new pivotal approach to inference in the cointegration

case. The method developed here makes use of a sandwich-form asymptotic covariance variance

matrix estimator that can be constructed in the usual way and which applies in the same form

for both cointegrated and multicointegrated systems.

Using capitals as before to denote partial summation, write Yt =
∑t
s=1 ys, Xt =

∑t
s=1 xs,

and U0.xt =
∑t
s=1 u0.xs. The transformed system (20), up to initial conditions (in particular,

taking e0 = 0), is then

Yt = a′Xt + f ′xt + e+
t (26)

e+
t = et1 {Ω00.x = 0}+ U0.xt1 {Ω00.x > 0} , (27)

a formulation that covers both singular and non-singular cases. Applying least squares regression

to (26) gives the IM-OLS error of estimation of the cointegrating coefficients

â− a = (X ′QxX)
−1
X ′Qxe

+, f̂ − f = (x′QXx)
−1
x′QXe

+ (28)

in standard partitioned matrix regression notation with orthogonal projector Qx = x(x′x)−1x′,

where X ′ = [X1, ..., Xn], x′ = [x1, ..., xn], and e+′ =
[
e+

1 , ..., e
+
n

]
. There are no modifications in

the OLS estimation procedure, just the use of least squares on the partial summed augmented

system (26). In practice it is useful to include a fitted intercept in regressions on (26), which

7 VW(2014) examine three methods as a basis for inference with IM-OLS: (i) using an FM-OLS regression

estimate of the long run error variance from the original I (1) cointegrating equation, thereby avoiding use of

residuals from the partially spurious IM-OLS regression, but introducing another estimation procedure that is

based on the original model; (ii) differencing the IM-OLS residuals and using these to construct a long run variance

estimate; (iii) bias-adjusting the residuals in (ii) by means of a further regression and using these adjusted residuals

for long run variance estimation. Each of these methods relies on information that there is no multicointegration

in the system and the properties of these methods under multicointegration are unexplored. The present work

provides a new approach to inference in IM-OLS regression that uses a standard form of HAR variance matrix

estimation that leads to pivotal inference in a cointegrated system.
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takes care of any initialization effects if e0 6= 0 in the singular case where e+
t = et1 {Ω00.x = 0} .

For such regressions, all the following results are modified by demeaning the limit processes in

the usual manner (Park and Phillips, 1988, 1989). To avoid notational clutter we do not make

this modification in the limit theory or derivations that follow so that the results apply when

e0 = 0.

Standard weak convergence methods for nonstationary regression lead to the following asymp-

totics as n→∞, where we focus on estimation of the cointegrating vector a. The result given in

Theorem 1(i) below for the case Ω00.x > 0 corresponds to the finding in VW(2014, Theorem 2),

with a somewhat simpler form of the limit theory. The result given in (ii) shows the effects of the

presence of multicointegration on the IM-OLS estimator. These results are not directly needed in

our subsequent development. But they are useful for comparative purposes and in detailing some

of the challenges involved in robust estimation and inference in cointegrated/multicointegrated

systems.

Theorem 1 (IM-OLS Estimation)

When Ω00.x > 0 and (22) holds

(i) n (â− a) A−1
X.x

∫ 1

0
BX.xB0.x=A−1

X.x

∫ 1

0

−−−→
BX.xdB0.x

≡MN
(

0,Ω00.xA−1
X.x

(∫ 1

0

−−−→
BX.x

−−−→
BX.x

′
)
A−1
X.x

)
,

where AX.x =
∫ 1

0
BX.xB

′
X.x,
−−−→
BX.x (r) =

∫ 1

r
BX.x, BX.x (r) = BX (r)−

∫ 1

0
BXB

′
x

(∫ 1

0
BxB

′
x

)−1

Bx (r)

and BX (r) =
∫ r

0
Bx.

When Ω00.x = 0 and (23) holds

(ii) n2 (â− a) A−1
X.x

{∫ 1

0
BX.xdBe −

(∫ 1

0
BXB

′
x

)(∫ 1

0
BxB

′
x

)−1

∆xe

}
.

Importantly and as expected, the limit distributions (i) and (ii) are very different for the two

cases Ω00.x > 0 and Ω00.x = 0. Singularity raises the rate of convergence in (ii) to O
(
n2
)

but

introduces nonstandard asymptotics with second order bias effects from endogeneity (correlation

between the Brownian motions Bx and Be when ωxe 6= 0) and serial dependence (∆xe). Thus,

raising the integration order of the system fails to resolve these standard problems of least squares

asymptotic theory. Even when ωxe = 0, bias remains whenever ∆xe 6= 0. When Ω00.x > 0, mixed

normal asymptotic theory applies as for other procedures like FM-OLS but with some efficiency

loss and some complexities in inference, as discussed in VW(2014) and further complexities in

the estimation of Ω00.x due to the partial spurious regression feature of (26).

Thus, while this approach of raising the integration order leads to a viable estimation and

testing methodology in nonsingular systems, it does not provide a robust methodology for singu-

lar, multicointegrated models, at least without the introduction of new modifications to address

endogeneity and serial dependence. Akin to other methods like FM-OLS, IM-OLS does not

provide a generally robust estimation methodology for cointegrated systems that encompasses

multicointegration. A new approach is needed to accomplish this.
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4.1.2 Trend Instrumental Variable Estimation

The approach we develop here is based on the trend IV (TIV) method of Phillips (2014)8 which

employs orthonormal (ON) deterministic trend functions as instrumental variables for the re-

gressors in (20). These ON instruments are designed to transform the system so that its long

run properties are brought into primary focus both for regression estimation (Phillips, 1998) and

for long run variance matrix estimation Phillips (2005b); Müller (2007). These methods have

recently become popular in examining various properties of long run relations among time series

variables (e.g., Phillips (2005a); Müller and Watson (2018); Hwang and Sun (2018)) and have

numerous empirical applications as revealed in these studies.

In the TIV method of estimating cointegrating equations such as (20), deterministic instru-

mental variables
{
ϕk
(
t
n

)}K
k=1

are employed, where {ϕk (r)}∞k=1 are orthonormal basis functions

of L2 [0, 1] and K is allowed to pass to infinity as n→∞. This approach is high-dimensional TIV

estimation. An alternate version of this method is based on a fixed number K of orthonormal

trend instruments and is used in recent work by Hwang and Sun (2018). We call this method

the fixed-K approach of TIV regression. Various classes of orthonormal functions may be used

in these regressions without materially affecting the limit theory or finite sample performance, as

demonstrated in Phillips (2014) and Hwang and Sun (2018). The latter paper shows a particular

advantage in terms of F and t distribution limit theory for conventional test statistics of coeffi-

cient restrictions, which can enhance inference in finite samples in standard cointegrated systems.

This advantage has received wider attention recently (Lazarus et al., 2018). But as shown later

in the current work, the fixed-K approach does not deal as effectively with multicointegrated

systems.

In what follows, we let ϕ̃K (r) = (ϕ1 (r) , ..., ϕK (r))
′
, and Φ′K = [ϕ̃K1, ..., ϕ̃Kn] where ϕ̃Kt =

ϕ̃K
(
t
n

)
=
[
ϕ1

(
t
n

)
, ..., ϕK

(
t
n

)]′
. The projector matrix onto the space of the instruments is

PΦK
= ΦK (Φ′KΦK)

−1
Φ′K . For trigonometric orthonormal polynomials we have n−1Φ′KΦK =

IK + O
(

1
n

)
, as shown in Phillips (2005b, Lemma A) when ϕk (r) =

√
2 sin

{(
k − 1

2

)
πr
}
, so

that PΦK
∼ n−1ΦKΦ′K . TIV estimation of (20) is then asymptotically equivalent to simple least

squares regression on the linearly transformed K-dimensional system

Vy = Vxa+ V∆xf + Vu0.x , (29)

where we use the general notation Vc = Φ′Kc =
∑n
t=1 ϕ̃Ktc

′
t for the trigonometric transform of

a time series ct. The resulting coefficient estimates of (29) have the following form in standard

8The TIV approach was originally proposed by the author in a York University Workshop conference presen-

tation given in 2003. The same paper was presented in the Faro Time Series Econometrics Conference 2005 and

distributed as a Cowles Foundation Discussion Paper (Phillips, 2006). That paper also introduced the concept of

a trend likelihood associated with the low frequency components of a time series obtained by fitted regression on a

number of deterministic orthonormal regressors. Phillips (2005b) introduced the related idea of trend coordinates

based on these fitted regression components to study long run covariability among trending time series, a subject

that has been extensively investigated recently by Müller and Watson (2018). The approach has earlier origins in

band spectral regression (Hannan, 1963; Engle, 1974; Corbae et al., 2002) in the frequency domain.
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partitioned regression notation

âTIV − a = (V ′xQV∆x
Vx)
−1
V ′xQV∆x

Vu0.x
, (30)

f̂TIV − f = (V ′∆xQVx
V∆x)

−1
V ′∆xQVx

Vu0.x
. (31)

This least squares procedure is called transformed augmented least squares (TA-OLS) in Hwang

and Sun (2018), who investigate its asymptotic properties when Ω00.x > 0 and K is fixed as

n→∞. It is asymptotically equivalent to fixed-K TIV.

The approach we suggest here is designed to robustify the TIV procedure to the presence

of multicointegration and singularity. The idea is to apply TIV regression to the following

augmented regression form of (26)

Yt = a′Xt + f ′xt + g′∆xt + e+
t = a′Xt + f ′xt + g′uxt + e+

t , (32)

where the additional (redundant) regressor ∆xt is included with coefficient g = 0 and the re-

gression error is e+
t = et1 {Ω00.x = 0}+U0.xt1 {Ω00.x > 0} as before. Thus, this time aggregated

version of the model is augmented by the inclusion of the additional regressor ∆xt, analogous

to the original system (8). As before, in practical work it is useful to include a fitted intercept

in (32), which is innocuous but takes care of initialization effects in the singular case where

e+
t = et1 {Ω00.x = 0} and e0 6= 0. Again, the limit theory is simply adjusted to employ deviations

from means for the relevant stochastic processes, which for ease of notation is not done here.

In observation form, we write (32) as

Y = [X,Cx] γ + e+, with γ′ = (a′, f ′, g′) =: (a′, `′) (33)

and

C ′x = [cx1, ..., cxn] =
[
x1 · · · xn
ux1 · · · uxn

]
=:

[
x′

u′x

]
.

Equation (32) may, of course, also be estimated by direct application of least squares, leading

to a form of augmented IM-OLS regression with

â = (X ′QWX)
−1

(X ′QWY ) ,

where QW = Qx − Qxux (u′xQxux)
−1
u′xQx in standard notation. The asymptotic theory for

such direct least squares estimation is derived in the Appendix. For the cointegration case with

Ω00.x > 0 we find that

n (â− a) A−1
X.x

∫ 1

0

BX.xB0.x ≡MN (0,Ω00.x × ΩXX) (34)

with

ΩXX = A−1
X.x

(∫ 1

0

−−−→
BX.x (r)

−−−→
BX.x (r)

′
dr

)
A−1
X.x, (35)

which is identical to the limit distribution of the IM-OLS estimator. Thus, inclusion of the

surplus and irrelevant regressor uxt in the fitted model (32) has no effect on the limit theory
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under cointegrating regression and the same limit theory as in Theorem 1(i) applies. In the

multicointegrated case, we find that

n2 (â− a) A−1
X.x

{∫ 1

0

BX.xdBe −
(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1

∆xe

−

[∫ 1

0

BX.xdB
′
x −

(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1

∆xx

]
Σxxσxe

}
, (36)

where Σxx = E (uxtu
′
xt) , σxe = E (uxtet) and the one-sided long run covariances are given

in (24). But inference in this system is further complicated by the fact that in the partially

spurious regression (32) the coefficients of the additional regressors ∆xt = uxt are inconsistently

estimated in both cointegration and multicointegration cases. So, the use of direct least squares

on the augmented system does not resolve the endogeneity and serial dependence issues of IM-

OLS and nuisance parameter dependencies in the limit. Some form of fully modified version of

least squares regression on (32) might be employed to improve asymptotic properties but this

avenue leads to further difficulties and will not be pursued in what follows.

Instead, we proceed with the analysis of TIV estimation of the augmented system. The TIV

estimator of a in (32) has the form

âTIV = arg min
a

(Y −Xa)
′
RK (Y −Xa) = (X ′RKX)

−1
(X ′RKY ) (37)

where the projector matrix is RK = PΦK
− PΦK

Cx (C ′xPΦK
Cx)

−1
C ′xPΦK

and Y ′ = [Y1, ...Yn] .

The TIV estimation procedure projects all the variables in the augmented system (32) onto the

deterministic instruments using the projector PΦK
. For fixed K, this approach is, as above in

(29), asymptotically equivalent to least squares regression on the transformed system

VY = VXa+ Vxf + V∆xg + Ve+ =: VXa+ VC`+ Ve+ , (38)

where we employ the notation VZ = Φ′KZ for an observation matrix Z. Standard partitioned

least squares regression on (38) leads to the following estimator of a

âfTIV − a = (V ′XQVC
VX)

−1
V ′XQVC

Ve+ , (39)

giving the fixed-K trend IV (fTIV) estimate.

The results that follow provide the asymptotic theory for TIV estimation with fixed-K and

as K →∞ in both Ω00.x > 0 and Ω00.x = 0 cases. The proofs involve new complications due to

the presence of the redundant regressor ∆xt in the fitted equation, the partially spurious nature

of the regression equation when Ω00.x > 0, and the impact of singularity when Ω00.x = 0.

New asymptotic theory is provided to address these complications. The analysis is particularly

difficult when K → ∞ as n → ∞ and the development of the asymptotic theory of inference in

the following section involves new methods and results. But the final limit theory is satisfyingly

simple for both the singular and nonsingular Ω00.x cases. The result for fixed-K TIV estimation

is given in Theorem 2. The main result is given in Theorem 3 for TIV estimation when K →∞.
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This approach leads to mixed normal limit distribution theory in Ω00.x > 0 and Ω00.x = 0 cases,

therefore providing a basis for robust estimation and inference in cointegrated/multicointegrated

systems even when the presence of multicointegration is unknown a priori.

Theorem 2 (TIV estimation with fixed K)

When Ω00.x > 0, (22) holds, K is fixed, and n→∞

(iii) n (âfTIV − a) S′KΨ0.xK ≡MN
(

0,Ω00.xS
′
K

(∫ 1

0

∫ 1

0
(r ∧ s) ϕ̃K (r) ϕ̃K (s)

′
drds

)
SK

)
,

where SK = JKµK (µ′KJKµK)
−1
, µK =

∫ 1

0
ϕ̃KB

′
X ,Ψ0.xK =

∫ 1

0
ϕ̃KB0.x, JK = QξK−QξKηK (η′KQξKηK)

−1
η′KQξK ,

ηK =
∫ 1

0
ϕ̃K (r)Bx (r)

′
dr, ξK =

∫ 1

0
ϕ̃K (r) dBx (r)

′
, and QξK = IK − ξK (ξ′KξK)

−1
ξ′K .

When Ω00.x = 0, (23) holds, K is fixed, and n→∞

(iv) n2 (âfTIV − a) S′KψeK ,

where ψeK =
∫ 1

0
ϕ̃KdBe. When ωex = 0, the limit distribution is mixed normal and

(iv)* n2 (âfTIV − a) MN
(

0, ωee (µ′KRKµK)
−1
)
.

Theorem 3 (TIV estimation with K →∞)

When Ω00.x > 0, (22) holds, and (K,n)→∞ with K = o
(
n4/5−δ) for some δ > 0

(v) n (âTIV − a) A−1
X.x

(∫ 1

0
BX.xB0.x

)
= A−1

X.x

∫ 1

0

−−−→
BX.xdB0.x

≡MN
(

0,Ω00.xA−1
X.x

∫ 1

0

−−−→
BX.x

−−−→
BX.x

′A−1
X.x

)
.

When Ω00.x = 0, (23) holds, and (K,n)→∞ with K = o
(
n4/5−δ) for some δ > 0

(vi) n2 (âTIV − a) A−1
X.x

(∫ 1

0
BX.xdBe.x

)
≡MN

(
0, ωee.xA−1

X.x

)
,

where Be.x (r) = Be (r)−ωexΩ−1
xxBx (r) ≡ BM (ωee.x) where Be.x is independent of the Brownian

motion Bx and ωee.x = ωee − ωexΩ−1
xxωxe.

As expected, in both Theorems 2 and 3 the limit distributions differ for the two cases Ω00.x = 0

and Ω00.x > 0. For Theorem 3 we employ the expansion rate condition on the instrument number

K = o
(
n4/5−δ) for some δ > 0. The same condition was used in Phillips (2014) and facilitates

the joint limit theory (K,n)→∞.
The non-singular TIV regression has the usual O (n) convergence rate for cointegrating regres-

sions when Ω00.x > 0 in both fixed K and K → ∞ cases. Just as in the standard cointegrating

regression theory with Ω00.x > 0 mixed normal limit theory applies, as it does for other methods

of estimation such as FM-OLS regression. Noticeably, when K →∞ as n→∞, Theorem 3 (v)

shows that TIV reproduces the limit theory of the IM-OLS estimator given in Theorem 1 (i). As

remarked above in connection with (35), IM-OLS may also be applied directly to the augmented
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model (32) with the redundant regressor ∆xt but without the long run transforms and again

the same limit theory applies as in Theorem 1 (i) and Theorem 2 (iv). So the presence of the

redundant regressor ∆xt in the fitted regression model (32) has no asymptotic effects, at least

when Ω00.x > 0. There are, however, non-trivial effects on the estimated residuals from the use

of IM-OLS on the augmented system (32) that make inference difficult.

The singular case with Ω00.x = 0 is much more intriguing. First, rates of convergence rise

to O
(
n2
)

as they do for IM-OLS. But the limit theory for TIV is much simpler because the

long run transforms are effective in focusing attention on long run properties. Second, the TIV

regression is successful in removing both endogeneity and serial correlation biases in both singular

and nonsingular cases under joint convergence when K →∞ as n→∞. Third, the limit theory

is mixed normal and conducive to pivotal inference in both cases, even though the rates of

convergence are different for singular and nonsingular systems. Fourth, the mixed normal limit

theory in (vi) may be written in standardized form as

MN
(

0, ωee.xΩ−1/2
xx A−1

W,X.xΩ−1/2
xx

)
≡ ω−1/2

ee.x Ω−1/2
xx ×MN

(
0,A−1

W,X.x

)
, (40)

with AW,X.x =
∫ 1

0
WX.xW

′
X.x, since by simple matrix scale manipulations we have the represen-

tation

BX.x (r) = BX (r)−
∫ 1

0

BXB
′
x

(∫ 1

0

BxB
′
x

)−1

Bx (r)

= Ω1/2
xx

{
WX (r)−

∫ 1

0

WXW
′
x

(∫ 1

0

WxW
′
x

)−1

Wx (r)

}
=: Ω1/2

xx WX.x, (41)

where Bx = Ω
1/2
xx Wx, BX (r) = Ω

1/2
xx

∫ r
0
Wx, and Wx ≡ BM (Imx

) . The limit distribution (40)

is then a matrix scaled form of a mixed normal distribution that depends only on functionals

of standard Brownian motion. Importantly, the convergence rate of TIV regression is faster

than that of FM-OLS in the multicointegrated case where the rate does not achieve O(n2) – see

KP(2021).

Theorems 2 and 3 highlight differences in TIV estimation between the fixed K and high-

dimensional K → ∞ cases. For the fixed K case. TIV does not fully remove endogeneity bias

as the limiting error transform ψeK =
∫ 1

0
ϕ̃KdBe in the limit distribution (iv) remains correlated

with the regressor variable limiting transforms (µK , ηK , ξK) =
(∫ 1

0
ϕ̃KB

′
X ,
∫ 1

r=0
ϕ̃KB

′
xdr,

∫ 1

0
ϕ̃KdBx

)
when the long run covariance ωex 6= 0. But when ωex = 0 and K is fixed the TIV estimator âTIV

does have mixed normal limit theory, given by

n2 (âTIV − a) MN
(

0, ωee (µ′KRKµK)
−1
)
, (42)

which may be written in standardized Brownian motion form, analogous to (40) in this case. So

under the long run orthogonality condition ωex = 0 TIV estimation with fixed K instruments

provides robust estimation and is effective in pivotal inference. But in the general case where the

long run covariance CVLR (et, uxt) = ωex 6= 0 and there is long run endogeneity in the singular
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multicointegrated model, the limit distribution in (v) for the fixed K case is no longer mixed

normal.

These results show the key advantage of high-dimensional trend IV regression on the aug-

mented aggregated system (32). The limit theory of TIV regression is mixed normal in both

non-singular and singular cases when K →∞ as n→∞. The method therefore provides a use-

ful foundation for a robust approach to estimation and inference about cointegrating coefficients

in both cointegrated and multicointegrated systems.

Our primary focus in this paper is on the estimation of the cointegrating vector a, the key

linkage parameter in an I(1) cointegrated system and to develop a new procedure that is robust

to the possible presence of multicointegration. In cases where multicointegration is known to

be present, or at least strongly suspected, the methods developed in this paper also provide for

estimation of the multicointegration vector f .

For completeness but to keep the present paper within manageable length we give only a

brief outline here of TIV estimation of f . For this purpose, it is convenient to use a different

partitioned model representation than (33). In observation form, we write (32) as

Y = [x,CX ] γx + e+, with γ′x = (f ′, a′, g′) =: (f ′, h′) (43)

and

C ′X = [cX1, ..., cXn] =
[
X1 · · · Xn
ux1 · · · uxn

]
=:

[
X ′

u′x

]
.

The TIV estimator of the multicointegration parameter f is then

f̂TIV = arg min
f

(Y − xf)
′
SK (Y − xf) = (x′SKx)

−1
(x′SKY ),

where the projection matrix is now SK = PΦK
− PΦK

CX (C ′XPΦK
CX)

−1
C ′XPΦK

. The following

limit theory for f̂TIV extends Theorem 3 to the multicointegration parameter.

Theorem 4 (TIV multicointegration parameter estimation with K →∞)

When Ω00.x = 0, (23) holds, and (K,n)→∞ with K = o
(
n4/5−δ) for some δ > 0, f̂TIV →p f

and

n
(
f̂TIV − f

)
 A−1

x.X

(∫ 1

0

Bx.XdBe.x

)
≡MN

(
0, ωee.xA−1

x.X.

)
, (44)

in which Ax.X =
∫ 1

0
Bx.XB

′
x.X , Bx.X (r) = Bx (r) −

∫ 1

0
BxB

′
X

(∫ 1

0
BXB

′
X

)−1

BX (r) , and

Be.x (r) = Be (r)−ωexΩ−1
xxBx (r) ≡ BM (ωee.x) , where Be.x and ωee.x are defined in Theorem 3.

The convenient mixed normal limit theory (44) enables pivotal inference in a similar way

to that for the cointegration estimator â. The O(n) convergence rate matches that of simple

cointegration estimation without multicointegration. Moreover, the high-dimensional TIV esti-

mator f̂TIV has analogous optimal estimation properties for the multicointegration parameter

f as those of the TIV cointegration estimator in a semiparametric cointegrated system without

multicointegration (Phillips, 1991, 2014). These properties will be analyzed in full in later work,

as will the proof of Theorem 4 which is lengthy and complex.
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5 Inference

Theorems 1-3 show that both TIV and IM-OLS methods provide consistent and asymptotically

mixed normal estimation procedures which might be expected to form a basis for inference in the

standard I (1) cointegrating regression model with nonsingular Ω00.x > 0. But when Ω00.x > 0 the

augmented system (32) is a partially spurious regression, just like the original aggregated system

(26) with I (1) regressors and an I (1) error. The spurious nature of this regression complicates

inference and requires special methods to estimate the long run variance Ω00.x in constructing

Wald tests. Moreover, when Ω00.x = 0, IM-OLS suffers from asymptotic second order bias and

limit theory that is unsuited to pivotal inference, thereby failing to resolve endogeneity and serial

correlation bias problems in the limit. In what follows we therefore concentrate on the TIV

approach to testing.

More specifically, consider a Wald test of the linear hypothesis H0 : Ha = h about the

cointegrating vector a where H is q×mx of rank q and h is a q-vector. Just as in estimation, the

problem of inference is complicated by the fact that it is unknown a priori whether the system

is singular or not in the absence of prior information or pre-testing. Robust inference therefore

requires that the same approach be employed in both cases since Ω00.x is, of course, unknown.

For this purpose it is convenient to employ a sandwich form in estimating the covariance matrix

metric for the Wald statistic in order to deal in a comprehensive way with the different types

of temporal dependencies that arise in the nonsingular Ω00.x > 0 and singular Ω00.x = 0 cases.

This matrix can be constructed in a general way by using the form of the TIV estimate âTIV .

In view of (33) and (37), âTIV satisfies

âTIV − a = (X ′RKX)
−1

(X ′RKe
+) = GKΦ′Ke

+ = GK

n∑
t=1

ϕ̃K

(
t

n

)
e+
t (45)

where RK = PΦK
− PΦK

Cx (C ′xPΦK
Cx)

−1
C ′xPΦK

, so that

H (âTIV − a) = HGKΦ′Ke
+ = HGK

(
n∑
t=1

ϕ̃K

(
t

n

)
e+
t

)
,

in which the coefficient matrix GK has the form

GK = (X ′RKX)
−1
{
X ′ΦK (Φ′KΦK)

−1 −X ′PΦK
Cx (C ′xPΦK

Cx)
−1
C ′xΦK (Φ′KΦK)

−1
}
, (46)

and Φ′Ke
+ =

∑n
t=1 ϕ̃K

(
t
n

)
e+
t is the transformed error vector in the model after projection on

the instruments ΦK . We may estimate the residuals e+
t from the fitted TIV regression giving

ê+
t = Yt − â′TIVXt − f̂ ′TIV xt − ĝ′TIV ∆xt

= e+
t − (âTIV − a)

′
Xt −

(
f̂TIV − f

)′
xt − (ĝTIV − g)

′
uxt.

and construct the kernel estimates

V̂Kn =

M∑
j=−M+1

k

(
j

M

)
1

n

n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t+ j

n

)′
ê+
t ê

+
t+j , (47)
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ω̂2
e+ =

M∑
j=−M+1

k

(
j

M

)
1

n

n∑
1≤t,t+j≤n

ê+
t ê

+
t+j , (48)

as if we were estimating a long run variance matrix of ϕ̃K
(
t
n

)
e+
t and long run variance of e+

t ,

thereby ignoring the spurious nature of the regression when Ω00.x > 0.

The lag kernel function k (·) : R→ [0, 1] used in (47) and (48) is assumed to be a symmetric,

piecewise smooth density with k (x) = 0 for |x| > 1, and
∫ 1

−1
k (x) dx = 1. In the case of standard

HAC estimation, the lag truncation parameter M is assumed to satisfy 1
M + M

n → 0 as n→∞.
In the case of HAR inference with a fixed-b setting leading to M = bn, we use the notation

kb (x) = k(xb ) and correspondingly define the HAR kernel estimator as

V̂bKn =

n−1∑
j=−n+1

kb

(
j

n

)
1

n

n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t+ j

n

)′
ê+
t ê

+
t+j . (49)

With these components we can construct the following HAC and HAR Wald statistics in

conventional form as follows

WaldTIV = (HâTIV − h)
′
[
HGK

(
nV̂Kn

)
G′KH

′
]−1

(HâTIV − h) , (50)

WaldTIV,b = (HâTIV − h)
′
[
HGK

(
nV̂bKn

)
G′KH

′
]−1

(HâTIV − h) . (51)

The regression error is e+
t = et1 {Ω00.x = 0}+ U0.xt1 {Ω00.x > 0} . So the asymptotic properties

of (47), (48) and therefore both Wald test statistics WaldTIV and WaldTIV,b depend on the

asymptotic behavior of the residuals ê+
t , the long run error variance estimate ω̂2

e+ , and the long

run variance matrix estimates V̂Kn and V̂bKn associated with the transformed error components

ϕ̃K
(
t
n

)
e+
t .

Two forms of TIV inference can be considered, corresponding to fixed-K and K →∞ cases,

just as in estimation. A disadvantage of the the fixed-K approach is that the partially spurious

nature of the fitted regression carries the inconsistencies of the estimates
(
f̂TIV , ĝTIV

)
into the

regression residuals ê+
t and their I (1) character in the usual Ω00.x > 0 case. This leads to

divergence of statistical tests as n → ∞ under the null hypothesis, just as in standard spurious

regression limit theory (Phillips, 1986). Even with the use of sandwich formulae and HAC

estimators such as (47) the divergence rate of the Wald test for fixed K is Op
(
n
M

)
, as shown in

the proof of Theorem 5 below9. This divergence rate for the Wald test with a HAC covariance

matrix estimate is the same as that obtained in Phillips (1998) for standard spurious regression

inference with HAC error variance matrix estimators. Hence, use of fixed K inference with

HAC variance estimation is not readily compatible with both singular and nonsingular cases and

encounters difficulties similar to those arising in the use of IM-OLS and FM-OLS. In view of

these drawbacks, we do not pursue the fixed-K TIV approach further in this context of potential

singularity and multicointegration in I(1) systems.

9See equations (111) and (112) in the proof of Theorem 5 for the residual inconsistency and (120) for the

divergence rate of the Wald test of Op
(

n
M

)
when K is fixed.
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The use of HAR inference leads to very different limit theory that is much more useful

in practical work. Importantly, fixed-b settings for the bandwidth parameter as in (49) with

M = bn and b ∈ (0, 1] control divergence, just as in other work on spurious regressions with HAR

inference methods (Sun, 2004; Phillips et al., 2019). As usual, the HAR approach introduces

nonstandard limit theory. But, as we see below, the limit theory is pivotal even for quite general

linear hypothesis tests such as H0 : Ha = h, so that simulation based techniques and bootstrap

methods are available for inference.

Under HAR inference, a substantial degree of robustness in terms of asymptotic size control in

testing is achieved. Importantly, this robustness covers both cointegration and multicointegration

cases. The following results give the limit theory of the two test statistics WaldTIV and WaldTIV,b

when (K,n)→∞ when Ω00.x > 0 and Ω00.x = 0.

Theorem 5 (TIV inference with K → ∞) Under the assumptions of Theorem 3 and under

the null hypothesis H0 : Ha = h, the following hold as (K,n) → ∞ with K = o
(
n4/5−δ) for

some δ > 0 :

When Ω00.x > 0 :

(vii) WaldTIV = Op
(
n
M

)
, WaldTIV,b  η′EWL {LL

′}−1
L′ηEW ,

where L = E1/2
W Ω

−1/2
xx H, and setting kb (·) = k

( ·
b

)
,

EW := A−1
W,X.x

(∫ 1

0

∫ 1

0

kb (r − p)
(
WX.x (r)WX.x (p)

′)
W̃0.x (r) W̃0.x (p) drdp

)
A−1
W,X.x,

ηEW := E−1/2
W

(∫ 1

0

WX.xW
′
X.x

)−1 ∫ 1

0

−−−→
WX.xdW0.x.

where

W0.x (r) = W0 (r)− Ω0xΩ−1
xxWx (r) ,

W̃0.x (r) = W0.x (r)−
∫
W0.xW

′
X.x

(∫
WX.xW

′
X.x

)−1

WX (r)−
∫
W0.xW

′
x.X

(∫
Wx.XW

′
x.X

)−1

Wx (r) ,

Wx.X(r) = Wx (r)−
∫
WxW

′
X

(∫
WXW

′
X

)−1

WX (r) ,

WX.x(r) = WX (r)−
∫
WXW

′
x

(∫
WxW

′
x

)−1

Wx (r)

When Ω00.x = 0 :

(viii) WaldTIV  χ2
q, WaldTIV,b  η′e.xJ ′q

{
JqFWJ ′q

}−1 Jqηe.x,

where

FW := A−1
W,X.x

(∫ 1

0

∫ 1

0

kb (r − p)WX.x (p)WX.x (r)
′
dQW (p) dQW (r)

)
A−1
W,X.x,
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ηe.x := A−1
W,X.x

(∫ 1

0

WX.xdWe.x

)
, We.x (r) = ω−1/2

ee.x Be.x = ω−1/2
ee.x

(
Be − ωexΩ−1

xxBx
)
,

AW,X.x =

∫ 1

0

WX.xW
′
X.x, and Jq = [Iq, 0] .

FW and ηe.x depend only on the vector standard Brownian motions (Wx,WX) and the standard

Brownian motion We.x which is independent of (Wx,WX). The stochastic process QW (·) is also

a functional of these standard Brownian motions and is defined in (136).

Remarks

(a) The first result of (vii) shows that the HAC-based Wald statistic WaldTIV diverges at rate

Op
(
n
M

)
, just as the squared t-statistic in Phillips (1998). So HAC variance matrices in

the construction of the Wald statistic fail to resolve the partially spurious nature of the

regression (32) and are therefore not recommended in the present context where there is

potential multicointegration.

(b) On the other hand, the second result of (vii) shows that the fixed-b HAR variance matrix

estimator leads to the modified Wald statistic WaldTIV,b whose limit distribution can be

represented by the pivotal quadratic form quantity η′EWL {LL
′}−1

L′ηEW . Importantly, the

random projection matrix PL = L {LL′}−1
L′ has rank q = rank(L) = rank(H) a.s. and

is diagonalizable by an orthogonal matrix. Since the distribution of the random vector

ηEW = E1/2
W ηW is invariant to orthogonal transformation in the same way as the vector

standard Brownian motions (Wx,WX), the random quadratic form η′EWL {LL
′}−1

L′ηEW ,

which is a nonlinear functional of these standard Brownian motions and W0.x, depends

only on the rank of the matrix L, viz. the number of restrictions q. This pivotal limit

theory for the HAR statistic WaldTIV,b makes valid asymptotic inference possible by direct

simulation or by use of the bootstrap. The HAR statistic WaldTIV,b is constructed in the

usual manner for trend IV inference and in the cointegration case with Ω00.x > 0 provides

a simple alternative to the procedures suggested in Vogelsang and Wagner (2014).10

(c) Analysis under the local alternative hypothesis HA : Ha = h + d(a)
n shows that the Wald

test based on the WaldTIV,b statistic has non-trivial asymptotic power under cointegration,

with strength that depends on a random noncentrality parameter involving the quadratic

form θd = d(a)′E1/2
W L {LL′}−1

L′E1/2
W d(a).

(d) In (viii) under multicointegration, the HAC-based Wald statistic WaldTIV  χ2
q and the

HAR-based statistic

WaldTIV,b  η′e.xJ ′q
{
JqFWJ ′q

}−1 Jqηe.x, with Jq = [Iq, 0] .

Both test statistics have nontrivial asymptotic power under multicointegration and local

alternative hypotheses of the form HA : Ha = h + d(a)
n2 . The statistic WaldTIV has a

10The procedures suggested in Vogelsang and Wagner (2014) are designed only for the cointegration case with

Ω00.x > 0 and do not apply under multicointegration.
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noncentral χ2
q limit distribution with noncentrality parameter d(a)′d(a); and the WaldTIV,b

statistic has a noncentral limit distribution involving the random noncentrality parameter

ϑd = d(a)′J ′q
{
JqFWJ ′q

}−1 Jqd(a).

(e) Theorem 5 (vii) and (viii) show that the same HAR Wald statistic WaldTIV,b is asymp-

totically valid and pivotal for both cointegrated and multicointegrated systems, therefore

providing a robust approach to inference concerning the cointegrating coefficients even

under singularity.

(f) These findings for the Wald test WaldTIV,b extend in a straightforward way to HAR-based t

ratio statistics which produce asymptotically pivotal tests for both Ω00.x = 0 and Ω00.x > 0

cases.

In nonsingular systems with Ω00.x > 0 we can expect some loss of cointegration estimation

efficiency and test power when using TIV estimation on the extended system (26) and the associ-

ated robust WaldTIV,b test rather than TIV estimation of (8) and associated Wald tests that rely

on correct prior knowledge that the conditional error variance Ω00.x > 0. But when Ω00.x = 0,

the faster O(n2) convergence rate of the estimator sharpens estimation efficiency and improves

the discriminatory power of both the WaldTIV test and the WaldTIV,b test.

We close this section by mentioning that the inferential apparatus above that leads to the

high-dimensional TIV Wald statistic WaldTIV,b for inference about the cointegration vector a

may be applied to construct similar high-dimensional TIV Wald statistics for testing hypotheses

about the multicointegration vector f . The associated limit theory is chi-squared for a HAC

based Wald statistic which uses a consistent estimator of ωee.x and nonstandard but still pivotal

when a fixed-b estimator of ωee.x is used. These results align with those given in Theorem 5

(viii) for the two Wald statistics WaldTIV and WaldTIV,b for testing hypotheses about a. Both

results rely on the mixed normal limit theory given in Theorem 4 for the estimator f̂TIV . Details

of these results will be reported in later work.

6 Simulations

This Section reports the finite sample performance of TIV estimation of cointegrating relation-

ships and compares TIV performance with IM-OLS estimation for various model specifications

that include time series with and without multicointegration. Finite sample properties of the

TIV Wald statistics are also studied in cases of cointegration and multicointegration. As a base-

line for cointegrated series without multicointegration, simulations in past work (Phillips, 2014)

showed good performance characteristics for TIV estimation in relation to other standard proce-

dures such as FM-OLS and Dynamic Least Squares in triangular systems as well as reduced rank

regression (RRR) in VAR system formulations with cointegration but not multicointegration.

Those findings are now extended to include comparisons with IM-OLS in the present case.
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Several experimental designs were employed based on the data generating process

yt = axt + u0t

xt = xt−1 + uxt, t = 1, . . . , n,

where ut = ηt +D1ηt−1, ηt ∼ iidN(0,Σ), Σ =
[

1 ρ
ρ 1

]
, the cointegrating coefficient a = 2, and

the initialization of xt is x0 = 0. Both cointegrated and multicointegrated systems are considered

and these are determined by the parameter settings of the (endogeneity) correlation coefficient

ρ and the moving average coefficient matrix D1. Various sample sizes are used and the number

of replications in each experiment is 10, 000. The following models were used.

Cointegrated models

Model 10: D1 = 02×2, ρ = 0

Model 11: D1 = 02×2, ρ = 0.5

Model 12: D1 =
[
0.3 0.4
0.8 0.6

]
, ρ = 0.5

Multicointegrated models

Model 20: D1 =
[−1 0

0 0

]
, ρ = 0

Model 21: D1 =
[−1 0

0 0

]
, ρ = 0.5

Model 22: D1 =
[
0.3 0.4
5.2 0.6

]
, ρ = 0.5

Model 23: D1 =
[−0.3 0.4

0.7 −0.6

]
, ρ = 0.5

The models with ρ = 0 and zero diagonal elements in D1 do not generate endogeneity or serial

cross-correlation. So those models are pure cointegrated systems with exogenous regressors and

iid innovations. Model 12 has been used in the cointegration literature in earlier work (Phillips

and Loretan, 1991), and Model 22 modifies model 12 by introducing multicointegration into

the system. Model 23 also generates a multicointegrated system, but with less variability in ux

compared to Model 22.

For TIV estimation the orthonormal trigonometric polynomials ϕk(r) =
√

2 sin{(k− 1/2)πr}
were used as instrumental variabes and the number of instruments was based on the setting

K = n3.8/5 in accord with the requirement in Theorems 3 and 4 that K = o
(
n4/5−δ) for some

δ > 0. Following the recommendation in the paper the model was estimated by TIV with a

fitted intercept. The asymptotic distributions in Theorems 3 and 4 were obtained by numerical

computation from simulations with time series of length n = 1, 000 using 1, 000 replications.
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6.1 Finite sample distributions of the estimators

This subsection compares finite sample performance and convergence rates of TIV, RRR and OLS

estimators of the cointegrating parameter a. Empirical densities of the centred and scaled TIV

and IM-OLS estimators are calibrated against the asymptotic distributions given in Theorem 3.

The centred densities of the TIV, RRR and OLS estimators are shown in Figure 1 for n = 50

for three models. In the pure cointegration model 10, the three estimators show similar behavior

although TIV, which is not needed in this pure cointegration case, shows somewhat greater

dispersion than OLS and RRR. In models 22 and 23 under multicointegration the TIV estimator

shows much greater concentration and little bias compared with OLS and RRR which are biased

and skewed with greater dispersion. These results corroborate the limit theory in which TIV

has an O(n2) convergence rate in multicointegrated models instead of the usual O(n) rate for

cointegrated systems.

We now compare the performance characteristics of TIV and IM-OLS in finite samples. Fig-

ure 2 plots the densities of the centred TIV and IM-OLS estimators scaled by the appropriate

convergence rate for each model against the mixed-normal asymptotic distribution. For the coin-

tegration models 10-12, Figure 2 plots the densities of the standardized TIV estimator n(âTIV −a)

based on the sample sizes n = 50 and n = 100 together with the asymptotic mixed normal density

given in Theorem 3(v). For the three models, the mixed-normal approximation works well as an

approximation to the finite sample distributions of TIV, even for n = 50. The same is true for

the densities of the standardized IM-OLS estimators, confirming the result in Theorem 1(i) and

earlier results in VW(2014).

For the multicointegrated models 20-23, the densities of the standardized TIV estimator

n2(âTIV − a), based on sample sizes n = 50 and n = 100 and the simulated asymptotic mixed

normal density, based on Theorem 3(vi), are plotted in Figure 3. For all these models and cases

the mixed-normal approximation to the distribution of the TIV estimator works well, again even

for n = 50, whereas the IM-OLS estimator shows clear evidence of bias, skewness and greater

dispersion for models 21-23. For model 20, where no endogeneity or serial correlation is present,

which is the perfect set of conditions for the IM-OLS estimator, the densities of both estimators

are approximated well by the mixed normal density, as predicted by Theorem 1(ii) and Theorem

3(vi) with some finite sample advantage in terms of reduced dispersion to the IM-OLS estimator

in this case.

6.2 Size and power properties of the Wald test

Finite sample performance of Wald test statistics for testing the null hypothesis H0 : a = 2 were

explored next. The empirical rejection rates under the null for the Wald statistics using the HAR

variance estimate and the fixed-b asymptotic distribution given in Theorem 5 were calculated

with the setting b = 1 and are reported in Table 1 for levels 10%, 5% and 1%. The results show

excellent size control in all cases even for n = 50 in both the cointegrated and multicointegrated

models.
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For the Wald statistics using the HAC variance estimate calculated with the setting M =

3n1/5 and using a χ2 asymptotic distribution are presented in Table 2. For the cointegration

models size is not controlled and the statistics diverge with the sample size. For the multicointe-

gration models the rejection rates are 2–3 times larger than the nominal ones. Both cases show

the importance of the HAR specification and appropriate limit theory for controlling size in Wald

statistic testing.

Two control parameters – the number of instruments K and the bandwidth M (or b, the

sample fraction) – are used in variance estimation. These parameters need to be set by the user.

We analyzed the sensitivity of the Wald test to these parameter settings for models 12 and 22.

Empirical rejection rates of the Wald test at the 5% nominal level were studied, varying K as

fractions {0.2, 0.4, 0.6, 0.8} of the sample size n and M as fractions {0.2, 0.4, 0.6, 0.8, 1} of the

sample size n. The rates under the null in Table 3 show: (i) that size is stable across a wide

range of values of K and b in the cointegrated case; and (ii) that the size is stable across a wide

range of values of K, when b > 0.5 in the multicointegrated case.

Size-adjusted power calculations under the alternative H1 : a = 2.1 are reported in Table 4.

The results show that power is stable across all K values with a minor drop for larger bandwidths

in the cointegration case. The size-adjusted power results in the multicointegration case under the

alternative H1 : a = 2.001 in Table 4 show that the power is high and increases with the sample

size but with a minor drop for larger K and bandwidth size. In view of the faster convergence rate

in the multicointegration case, local power in this case is evident for the much smaller departure

H1 : a = 2.001 from the null compared with the cointegration case where results for H1 : a = 2.1

are reported.

Finally, in Table 5 we calculate the empirical rejection rates of Wald test statistics at the

5% level varying K as fractions {0.2, 0.4, 0.6, 0.8} of the sample size n and (small) bandwidth

as fractions {0.02, 0.04, 0.06, 0.08, 0.1} of the sample size n using a χ2 approximation instead of

the correct limit theory. The test statistic diverges for all values of K and bandwidths in the

cointegration case, while the size in the multicointergation case is sensitive to both number of

instruments and bandwidth size.

7 Empirical Illustration

Lee (1996) considered a model of the housing market that implies a long run equilibrium re-

lationship between time series of housing starts and housing completions. If these series are

multicointegrated then a parametric VAR I(1) model will be misspecified. Engsted and Haldrup

(1999) therefore analyzed the time series within an I(2) framework allowing for multicointegra-

tion. In this section, we analyze the long run relationship between housing starts and completions

over the five decade period 1970 − 2020 in an I(1) semiparametric triangular model using the

new TIV estimator and associated Wald tests.

The data are provided by the U.S. Census Bureau and the U.S. Department of Housing and

Urban Development. They were obtained from FRED, the Federal Reserve Bank of St. Louis
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on March 16, 2021. We consider two series: starts = Housing Starts, which comprise Total New

Privately-Owned Housing Units Started [HOUST]; and completions = Total New Privately-

Owned Housing Units Completed [COMPUTSA]. Both series are reported in thousands of units

and are seasonally adjusted. Our empirical analysis considers the following five decadal periods:

(1) 1970-01-01 — 1979-12-31, (2) 1980-01-01 — 1989-12-31, (3) 1990-01-01 — 1999-12-31, (4)

2000-01-01 — 2009-12-31, (5) 2010-01-01 — 2019-12-31.

The cointegration relationship between completions and starts is estimated in each of these

decades. In estimation no a priori assumption is made about the existence or non-existence of

multicointegration. The results are given in Table 6. Over decades (1) and (2) to 1990, the

estimate 0.98 is basically the same as that found in Lee (1996). The estimate then declines to

0.96 in 1990-2000 and to 0.95 in recent years. A possible interpretation is that 5% of houses

under construction were never completed in those decades. A practical question is whether

this fraction of uncompleted houses is significant, which can be formalized as a test of the null

hypothesis H0 : a = 1 against the alternative H1 : a < 1.

The equilibrium errors from the cointegrated relationship between completions and starts

accumulate into a stock variable of incomplete constructions. In each period, the inventory stock

variable is measured as

Stockt =

t∑
j=1

(âTIV ∗ startj − completedj) , (52)

and is plotted together with the flow variables starts and completions in Figure 4. The figure

reveals that these variables are again cointegrated, revealing a multicointegrated relationship

between completions and starts. To conduct a test of the null H0, the asymptotic distributions

of the Wald test statistic given in Theorem 4 are approximated by Monte Carlo simulations

with 1000 replications for a sample size of 1000, and p-values for the two distributions (under

cointegration and multicointegration) are calculated for each period.

The empirical findings for these tests are shown in Table 6. Allowing for multicointegration

in the relationship we conclude that the null hypothesis H0 : a = 1 is rejected for periods (2), (3),

and (4) (and nearly rejected for period (5)) at the 5% level as indicated by the p-values shown

in the column ‘pvalue-M’. If the multicointegrated relationship is ignored, the null hypothesis

would not be rejected for any period, except for period (4), as indicated by the p-values given

in the column ‘pvalue-C’. Allowing for the presence of a multicointegrated relationship among

starts, completions, and the housing stock therefore has a material impact on the empirical

(cointegrating) relationship between starts and completions that suggests a significant shift in

the relationship that raises the fraction of uncompleted houses.

8 Conclusion

This paper has studied the effects of singularities in long run conditional covariance matrices on

estimation and inference in cointegrating regression models. Such singularities are shown to be
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present whenever a cointegrated I(1) system happens to involve multicointegrated time series.

Singularities complicate estimation and inference by leading to non-pivotal, nuisance parameter

dependencies in all existing methods of estimating nonstationary time series regressions. But in

view of their natural focus on the analysis of long run properties, instrumental variable regression

with deterministic trend regressors or similar trend transforms have appealing properties even

under singularities. The results of the present analysis show that, in spite of the complications

introduced by long run variance matrix singularities, certain key advantages of the trend IV

regression approach continue to apply. Notably, the limit theory of trend IV regression is mixed

normal and Wald tests based on traditional sandwich formulae may be conducted under pivotal

asymptotics without knowledge of potential singularities or the presence of multicointegration in

the time series. Use of fixed-b methods in conjunction with trend IV regression are particularly

helpful in achieving pivotal limit theory when the regression equation is partially spurious with

nonstationary errors and usual HAC-based test statistics are divergent under the null.

The analysis in this paper deals with estimation and inference in a scalar cointegrating rela-

tionship. The main ideas and methods of estimation and inference extend to systems estimation.

In such cases, the higher convergence rate O
(
n2
)

applies in the (possibly matrix) direction L1 of

singularity of Ω00.x for which L′1Ω00.xL1 = 0 and the slower O (n) rate applies in the orthogonal

direction L2. The full matrix of cointegrating coefficients then converges to a mixed normal limit

distribution which is a matrix transform of the slower rate limit distribution, just as in usual

cointegration limit theory (Park and Phillips, 1988, 1989; Phillips, 1988, 1989). The analysis and

algebra in this general case follows the same approach as that in cointegrated regression systems

with cointegrated regressors and unrestricted VAR estimation with cointegrated variates, as de-

tailed in Phillips (1995). But inferential limit theory is more subtle in this case of singularity in

the matrix Ω00.x because of interaction between the restriction matrix H, the rotation matrix

L = [L1, L2] isolating the two directions of convergence, and the matrix normalization involved

in standardizing the TIV estimation errors. A full analysis of this case requires the use of meth-

ods and limit theory for Wald tests under general conditions of matrix normalization as recently

developed in Magdalinos and Phillips (2019). The application of those methods in the present

context is left for subsequent work.
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Figure 1: Kernel estimates of the density functions of the estimation errors â − a for the TIV,

RRR and LS estimators for sample size n = 50 in the pure cointegration model 10 and the

multicointegration models 22 and 23.
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n(â − a)

de
ns

iti
es

(f) n = 100, Model 12

Figure 2: Kernel density estimates of the density functions of the estimation error n(â−a) for the

TIV and the IM-OLS estimators and the density of the mixed-normal limit of the TIV estimator

for sample sizes n = 50 and n = 100 and cointegration models 10, 11, and 12.
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Figure 3: Kernel density estimates of the density functions of the estimation error n2(â − a)

for the TIV and the IM-OLS estimators and the density of the mixed-normal limit of the TIV

estimator for sample sizes n = 50 and n = 100 and multicointegration models 20, 21, 22 and 23.
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Table 1: Test size using HAR variance estimates. Empirical rejection rates are shown at nominal

10%, 5% and 1% levels Wald test using the fixed-b asymptotic approximation, calculated for

different models and sample sizes.

Model n 10% 5% 1%
10 50 0.1178 0.0612 0.0163
10 100 0.1100 0.0591 0.0139
11 50 0.1178 0.0612 0.0163
11 100 0.1100 0.0591 0.0139
12 50 0.1139 0.0585 0.0154
12 100 0.1141 0.0581 0.0163
20 50 0.1070 0.0552 0.0130
20 100 0.0958 0.0479 0.0095
21 50 0.1070 0.0552 0.0130
21 100 0.0958 0.0479 0.0095
22 50 0.1242 0.0653 0.0139
22 100 0.1161 0.0623 0.0138
23 50 0.1201 0.0613 0.0135
23 100 0.0950 0.0513 0.0121

Table 2: Test size using HAC variance estimates. Empirical rejection rates are shown at nominal

10%, 5% and 1% levels for the Wald test using χ2 critical values as approximations, calculated

for different models and sample sizes.

Model n 10% 5% 1%
10 50 0.6981 0.6442 0.5494
10 100 0.7302 0.6852 0.5949
11 50 0.6981 0.6442 0.5494
11 100 0.7302 0.6852 0.5949
12 50 0.6893 0.6348 0.5391
12 100 0.7359 0.6833 0.5907
20 50 0.2212 0.1488 0.0661
20 100 0.1722 0.1056 0.0396
21 50 0.2212 0.1488 0.0661
21 100 0.1722 0.1056 0.0396
22 50 0.2492 0.1730 0.0788
22 100 0.2318 0.1560 0.0638
23 50 0.2601 0.1871 0.0932
23 100 0.1983 0.1312 0.0536
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Table 3: Test size across K and b. Empirical rejection rates at nominal 5% level Wald test

using the fixed-b asymptotic approximation, calculated for different models and sample sizes,

for a range of instrument numbers K (in rows) and a range of bandwidths used in the kernel

estimation of the variance determined by b (in columns).

Model n K\b 0.2 0.4 0.6 0.8 1
12 50 10 0.0533 0.0550 0.0576 0.0622 0.0633
12 50 20 0.0582 0.0541 0.0553 0.0593 0.0577
12 50 30 0.0580 0.0549 0.0540 0.0582 0.0581
12 50 40 0.0577 0.0543 0.0543 0.0587 0.0585
12 100 20 0.0612 0.0594 0.0606 0.0646 0.0625
12 100 40 0.0607 0.0557 0.0555 0.0588 0.0583
12 100 60 0.0599 0.0546 0.0544 0.0579 0.0567
12 100 80 0.0594 0.0548 0.0542 0.0576 0.0554
22 50 10 0.0345 0.0604 0.0660 0.0682 0.0662
22 50 20 0.0744 0.0766 0.0753 0.0716 0.0670
22 50 30 0.0982 0.0856 0.0803 0.0781 0.0713
22 50 40 0.1070 0.0935 0.0889 0.0839 0.0766
22 100 20 0.0622 0.0634 0.0627 0.0631 0.0599
22 100 40 0.0886 0.0723 0.0715 0.0672 0.0612
22 100 60 0.1020 0.0798 0.0716 0.0710 0.0629
22 100 80 0.1011 0.0855 0.0823 0.0754 0.0672

Table 4: Size-adjusted power across K and b. Empirical rejection rates at nominal 5% level Wald

test using fixed-b approximation, calculated for different models and sample sizes, for a range

of number of instruments, K (shown in rows), and a range of bandwidths used in the kernel

estimation of the variance determined by b (shown in columns).

Model n K\b 0.2 0.4 0.6 0.8 1
12 50 10 0.8011 0.7657 0.7312 0.7036 0.6773
12 50 20 0.8143 0.7883 0.7593 0.7278 0.7057
12 50 30 0.8177 0.7883 0.7644 0.7320 0.7058
12 50 40 0.8208 0.7884 0.7624 0.7311 0.7019
12 100 20 0.9440 0.9233 0.9044 0.8819 0.8650
12 100 40 0.9484 0.9276 0.9095 0.8905 0.8747
12 100 60 0.9493 0.9289 0.9116 0.8921 0.8778
12 100 80 0.9494 0.9281 0.9126 0.8926 0.8786
22 50 10 0.5742 0.5313 0.4955 0.4627 0.4291
22 50 20 0.5222 0.4793 0.4369 0.3966 0.3621
22 50 30 0.4229 0.3749 0.3280 0.2976 0.2782
22 50 40 0.3129 0.2693 0.2423 0.2148 0.2049
22 100 20 0.9671 0.9577 0.9453 0.9282 0.9108
22 100 40 0.9396 0.9246 0.9084 0.8891 0.8652
22 100 60 0.8941 0.8722 0.8533 0.8258 0.8006
22 100 80 0.8274 0.8013 0.7787 0.7488 0.7238
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Table 5: Test size across K and small b. Empirical rejection rates at nominal 5% level for the

Wald test using χ2 critical values, calculated for different models and sample sizes, for a range

instrument numbers K (shown in rows), and a range of bandwidths used in the kernel estimation

of the variance determined by b (shown in columns).

Model n K\b 0.02 0.04 0.06 0.08 0.1
12 50 10 0.7086 0.7086 0.6790 0.6450 0.6281
12 50 20 0.7460 0.7460 0.7174 0.6838 0.6614
12 50 30 0.7497 0.7497 0.7222 0.6891 0.6660
12 50 40 0.7518 0.7518 0.7222 0.6905 0.6658
12 100 20 0.8140 0.7525 0.7081 0.6773 0.6565
12 100 40 0.8238 0.7617 0.7182 0.6853 0.6615
12 100 60 0.8250 0.7635 0.7189 0.6865 0.6612
12 100 80 0.8256 0.7631 0.7183 0.6863 0.6607
22 50 10 0.0009 0.0009 0.0025 0.0129 0.0340
22 50 20 0.0172 0.0172 0.0301 0.0694 0.1172
22 50 30 0.0686 0.0686 0.0953 0.1524 0.2047
22 50 40 0.1481 0.1481 0.1757 0.2214 0.2549
22 100 20 0.0008 0.0062 0.0401 0.0863 0.1238
22 100 40 0.0104 0.0544 0.1367 0.1946 0.2285
22 100 60 0.0483 0.1284 0.2100 0.2511 0.2702
22 100 80 0.1172 0.1890 0.2378 0.2617 0.2761

Table 6: US housing construction data. Wald test statistics and p-values for the null hypothesis

H0 : a = 1 under cointegration and multicointegration for successive decades over 1970-2020.

Period begins Period ends TIV pvalue-M pvalue-C
1970-01-01 1979-12-31 0.9784476 0.06218905 0.18656716
1980-01-01 1989-12-31 0.9735254 0.01492537 0.07462687
1990-01-01 1999-12-31 0.9606591 0.02736318 0.11691542
2000-01-01 2009-12-31 0.9709445 0.00497512 0.04477612
2010-01-01 2019-12-31 0.9454967 0.05223881 0.16666667
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Figure 4: Housing starts (Starts), completions (Completions) and accumulated difference (Stock)

data for successive decades (a) 1970s, (b) 1980s, (c) 1990s (d) 2000s and (e) 2010s.
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9 Appendix

This Appendix provides proofs of subsidiary results and all the main theorems in the paper. The

following glossary of notation that is used in the paper is provided for convenient reference.

9.1 Subsidiary Results

Lemma A (Reverse partial summation) :
∑n
s=1 asbs =

∑n
t=1 (

∑n
s=t as) ∆bt if b0 = 0.

Proof of Lemma A

By partial summation fngn− f0g0 =
∑n
t=1 (∆ft) gt +

∑n
t=1 ft−1∆gt. Setting ft =

∑t
s=1 as so

that ∆ft = at and bt = gt we have, with b0 = 0,

n∑
s=1

asbs =

(
n∑
s=1

as

)
bn −

n∑
t=1

(
t−1∑
s=1

as

)
∆bt =

(
n∑
s=1

as

)
bn −

n∑
t=1

(
n∑
s=1

as −
n∑
s=t

as

)
∆bt

=

(
n∑
s=1

as

)
bn −

(
n∑
s=1

as

)
(bn − b0) +

n∑
t=1

(
n∑
s=t

as

)
∆bt =

n∑
t=1

(
n∑
s=t

as

)
∆bt,

giving a reverse form of the usual partial summation formula which involves only a single term

and is useful in simplifying finite sample expressions and limit formulae.

Lemma B:

(i) anVe+ :=

{
n1/2

∑n
t=1 ϕ̃K

(
t
n

)
et Ω00.x = 0

n−3/2
∑n
t=1 ϕ̃K

(
t
n

)
U0.xt Ω00.x > 0

 

{ ∫ 1

0
ϕ̃KdBe Ω00.x = 0∫ 1

0
ϕ̃KB0.x Ω00.x > 0

=:
{

ψeK Ω00.x = 0
Ψ0.xK Ω00.x > 0 ;

(ii) 1
n3/2Vx := 1

n

∑n
t=1 ϕ̃K

(
t
n

) x′
t√
n
 
∫ 1

0
ϕ̃KB

′
x = ηK ;

(iii) 1√
n
V∆x :=

∑n
t=1 ϕ̃K

(
t
n

) u′
xt√
n
 
∫ 1

0
ϕ̃KdB

′
x = ξK ;

(iv) 1
n5/2VX := 1

n

∑n
t=1 ϕ̃K

(
t
n

) X′
t

n3/2  
∫ 1

0
ϕ̃KB

′
X = µK ;

(v) 1
n

∑n
t=1 ϕ̃K

(
t
n

) x′
t

n3/2  
∫ 1

0
ϕ̃KB

′
x =

∫ 1

0

(∫ 1

r
ϕ̃K

)
dB′x

(vi) E (ηKξ
′
K) =

∫ 1

r=0
ϕ̃K (r)

∫ r
0
ϕ̃K (p)

′
dpdr × trace [Ωxx] .

where ϕ̃K (r) = (ϕ1 (r) , ..., ϕK (r))
′
, and BX (r) =

∫ r
0
Bx.

Proof of Lemma B

Parts (i)-(iv). These results follow by standard weak convergence methods for these orthonor-

mal linear transform functionals (Phillips (2005a, 2014).

Part (v) Convergence to
∫ 1

0
ϕ̃KB

′
x is immediate. for the second representation, we use a version

of partial integration, analogous to the version of partial summation given in Lemma A, viz.,∫ 1

0

ϕ̃KB
′
x =

[
−
(∫ 1

r

ϕ̃K(s)ds

)
B′x(r)

]1

0

+

∫ 1

0

(∫ 1

r

ϕ̃K(s)ds

)
dB′x(r)
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=

∫ 1

0

(∫ 1

r

ϕ̃K(s)ds

)
dB′x(r),

using the fact that Bx(0) = 0.

Part (vi) Direct calculation gives

E (ηKξ
′
K) = E

{∫ 1

r=0

ϕ̃K (r)Bx (r)
′
dr

∫ 1

s=0

dBx (s) ϕ̃K (s)
′
}

=

∫ 1

r=0

∫ 1

s=0

ϕ̃K (r)

∫ r

0

E
(
dBx (p)

′
dBx (s)

)
ϕ̃K (s)

′
dr

=

∫ 1

r=0

ϕ̃K (r)

∫ r

0

ϕ̃K (p)
′
dpdr × trace [Ωxx] .

The following results provide limit theory for certain quadratic forms of I(2), I (1) , and I (0)

time series where the quadratic forms involve projection matrices onto the space of orthonormal

polynomials in which the dimension of the space K →∞ as n→∞. The resutls are stated here

for convenient reference and proofs are available elsewhere. In particular, results (54) and (55)

are proved in the proof of Theorem 3, (58) is proved in Phillips (2005a), and (53) and (57) are

proved in Phillips (2014).

Lemma C: As (K,n)→∞ with K = o
(
n4/5−δ) for some δ > 0,

1

n2
x′PΦK

x =

(
1

n

x′ΦK√
n

)(
IK +O

(
1

n

))(
1

n

Φ′Kx√
n

)
 
∫ 1

0

BxB
′
x (53)

1

n4
X′PΦK

X =

(
1

n

X′ΦK

n3/2

)(
IK +O

(
1

n

))(
1

n

Φ′KX

n3/2

)
 
∫ 1

0

BXB
′
X (54)

1

n3
X′PΦK

x =

(
1

n

X′ΦK

n3/2

)(
IK +O

(
1

n

))(
1

n

Φ′Kx

n1/2

)
 
∫ 1

0

BXB
′
x (55)

1

n3
X′PΦK

U0.x =

(
1

n

X′ΦK

n3/2

){
IK +O

(
1

n

)}(
1

n
Φ′K

U0.x

n1/2

)
 
∫ 1

0

BXB0.x (56)

1

n
x′PΦK

ux
1

K1/2
= Op

(
1

K1/2

)
= op (1) , (57)

1

K
u′xPΦK

ux =
1

K

u′xΦK√
n

(
IK +O

(
1

n

))
Φ′Kux√

n
→p Ωxx (58)

where PΦK
= ΦK (Φ′KΦK)

−1
Φ′K and Φ′K = [ϕ̃K1, ..., ϕ̃Kn] , where ϕ̃Kt = ϕ̃K

(
t
n

)
=
[
ϕ1

(
t
n

)
, ..., ϕK

(
t
n

)]′
.

9.2 Proofs of the Main Theorems

Proof of Theorem 1

Part (i) When Ω00.x > 0, this result follows as in Vogelsang and Wagner (2014) with only

minor modification. The system (26) is Yt = a′Xt + f ′xt + U0.xt and then

â− a = (X ′QxX)
−1
X ′QxU0.x, f̂ − f = (x′QXx)

−1
x′QXU0.x

Standard weak convergence methods (Phillips, 1986, 1988) give the following component limits:

(a-1) n−2
∑n
t=1 xtU0.xt  

∫ 1

0
BxB0.x, n

−3
∑n
t=1XtU0.xt  

∫ 1

0
BXB0.x,
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where n−3/2Xbnrc = n−3/2
∑bn·c
t=1 xt  BX (r) =

∫ r
0
Bx, Bx (r) = BM (Ωxx) , and B0.x (r) =

BM (Ω00.x) , where Ω00.x = Ω00 − Ω0xΩ−1
xxΩx0.

(a-2) n−4X ′QxX = n−4
∑n
t=1XtX

′
t −
(
n−3

∑n
t=1Xtx

′
t

) (
n−2

∑n
t=1 xtx

′
t

)−1 (
n−3

∑n
t=1 xtX

′
t

)
 
∫ 1

0
BXB

′
X −

(∫ 1

0
BXB

′
x

)(∫ 1

0
BxB

′
x

)−1 (∫ 1

0
BxB

′
X

)
=
∫ 1

0
BX.xB

′
X.x,

(a-3) n−3X ′QxU0.x = n−3
∑n
t=1XtU0.xt−

(
n−3

∑n
t=1Xtx

′
t

) (
n−2

∑n
t=1 xtx

′
t

)−1 (
n−2

∑n
t=1 xtU0.xt

)
 
∫ 1

0
BXB0.x −

(∫ 1

0
BXB

′
x

)(∫ 1

0
BxB

′
x

)−1 (∫ 1

0
BxB0.x

)
=
∫ 1

0
BX.xB0.x,

where BX.x (r) = BX(r) −
(∫ 1

0
BXB

′
x

)(∫ 1

0
BxB

′
x

)−1

Bx (r) , the L2 projection residual of BX

on Bx. It follows that

n (â− a) =
(
n−4X ′QxX

)−1 (
n−3X ′QxU0.x

)
 

(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

BX.xB0.x

)
,

as stated in (i). Note that ∫ 1

0

BX.xB0.x =

∫ 1

0

−−−→
BX.x (r) dB0.x (r) (59)

where
−−−→
BX.x (r) :=

∫ 1

r
BX.x. The representation (59) follows as in Lemma B (v) or by using reverse

partial summation as in Lemma A. �

Part (ii) In this case u0.xt = ∆et,
∑bn·c
t=1 u0.xt = ebn·c − e0  e∞ − e0 as n → ∞ and no

invariance principle holds for
∑bn·c
t=1 u0.xt. Instead, the following limits hold for the component

sample moments:

(b-1) n−1
∑n
t=1 xtet  

∫ 1

0
BxdBe + ∆xe, where ∆xe =

∑∞
h=0 E (ux0eh) ;

(b-2) n−3
∑n
t=1Xtx

′
t  

∫ 1

0
BXB

′
x;

(b-3) n−4X ′QxX  
∫ 1

0
BX.xB

′
X.x as in (a-2);

(b-4) n−2X ′Qxe =
∑n
t=1

Xt

n3/2
et
n1/2 −

(
n−3

∑n
t=1Xtx

′
t

) (
n−2

∑n
t=1 xtx

′
t

)−1 (
n−1

∑n
t=1 xtet

)
 ∫ 1

0
BX.xdBe −

(∫ 1

0
BXB

′
x

)(∫ 1

0
BxB

′
x

)−1

∆xe, .

Results (b-1)-(b-3) follow by standard manipulations as in Part (a). Setting Et =
∑t
s=1 es,

E0 = 0, we have n−1/2Ebnrc  Be (r) , and to confirm (b-4) use partial summation to write

n∑
t=1

Xtet =

n∑
t=1

Xt∆Et = ∆

(
n∑
t=1

XtEt

)
−

n∑
t=1

∆XtEt−1 = XnEn −
n∑
t=1

xtEt−1.

Then

1

n2

n∑
t=1

Xtet =
Xn

n3/2

En
n1/2

− 1

n

n∑
t=1

xt
n1/2

Et−1

n1/2
(60)

 BX (1)Be (1)−
∫ 1

0

BxBe =

∫ 1

0

BXdBe, (61)
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by integration by parts since BX (r) =
∫ r

0
Bx is of bounded variation and so

∫ 1

0
BXdBe =

[BXBe]
1
0 −

∫ 1

0
BxBe = BX (1)Be (1)−

∫ 1

0
BxBe. Using (b-1) and (61) we have

n−2X ′Qxe  
∫ 1

0

BXdBe −
(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxdBe + ∆xe

)
=

∫ 1

0

BX.xdBe −
(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1

∆xe,

giving result (b-4). Combining (b-3) and (b-4) and using continuous mapping leads to the stated

limit result

n2 (â− a) 

(∫ 1

0

BX.xB
′
X.x

)−1
{∫ 1

0

BX.xdBe −
(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1

∆xe

}
giving (ii) for the limit distribution of n2 (â− a). �

The following proofs refer to the augmented model given by (32) in the text, which is repeated

here for convenience

Yt = a′Xt + f ′xt + g′∆xt + e+
t = a′Xt + f ′xt + g′uxt + e+

t , (62)

where the regression error is e+
t = et1 {Ω00.x = 0}+ U0.xt1 {Ω00.x > 0} and U0.xt =

∑t
s=1 u0.xs.

We first derive limit results for the application of IM-OLS in this augmented model and then

consider the use of fixed-K TIV regression and TIV regression with K →∞.

Proofs of (35) and (36)

When Ω00.x > 0, the system (62) is

Yt = a′Xt + f ′xt + g′uxt + U0.xt =: a′Xt + d′wt + U0.xt, (63)

with d′ = (f ′, g′) and w′t = (xt, u
′
xt) . Least squares estimation of (63) gives

â− a = (X ′QWX)
−1
X ′QWU0.x

where QW = Qx − Qxux (u′xQxux)
−1
u′xQx in standard notation with Qx = In − x (x′x)

−1
x′.

Then n (â− a) =
(
n−4X ′QWX

)−1 (
n−3X ′QWU0.x

)
and the component limits follow by standard

methods. In particular

1

n
u′xQxux =

1

n
u′xux −

1

n

(
u′xx

n

)(
x′x

n2

)−1(
x′ux
n

)
→p E (uxtu

′
xt) ,

1

n
u′xQxU0.x =

u′x√
n

U0.x√
n
−
(
u′xx

n

)(
x′x

n2

)−1(
x′U0.x

n2

)
 

∫ 1

0

dBxB0.x + ∆+
0x −

(∫ 1

0

dBxB
′
x + ∆xx

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxB
′
0.x

)
,

1
n2 X

′Qxux =
X ′

n3/2

ux√
n
−
(

1

n

X ′x

n2

)(
x′x

n2

)−1(
x′√
n

ux√
n

)
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(∫ 1

0

BXdB
′
x

)
−
(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxdB
′
x + ∆′xx

)
=

∫ 1

0

BX.xdB
′
x −

(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1

∆′xx,

1
n3 X

′QxU0.x =
1

n

X ′

n3/2

U0.x

n1/2
−
(

1

n

X ′x

n2

)(
x′x

n2

)−1(
1

n

x′√
n

U0.x√
n

)
 

(∫ 1

0

BXB
′
0.x

)
−
(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxB
′
0.x

)
=

∫ 1

0

BX.xB
′
0.x,

where ∆+
0x = ∆0x − Ω0xΩ−1

xx∆xx = ∆0x − f ′∆xx. Using these results and (b-3) above we obtain

n−4X ′QWX = n−4X ′QxX −
1

n

(
1

n2
X ′Qxux

)(
1

n
u′xQxux

)−1(
1

n2
u′xQxX

)
 
∫ 1

0

BX.xB
′
X.x,

(64)

and

n−3X ′QWU0.x = n−3X ′QxU0.x − n−3X ′QxUx (U ′xQxUx)
−1
U ′xQxU0.x

= n−3X ′QxU0.x −
1

n

(
1

n2
X ′QxUx

)(
1

n
U ′xQxUx

)−1(
1

n
U ′xQxU0.x

)
 

∫ 1

0

BX.xB
′
0.x.

It follows that

n (â− a) =
(
n−4X ′QxX

)−1 (
n−3X ′QxU0.x

)
 

(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

BX.xB0.x

)
≡ MN

(
0,Ω00.x

(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

−−−→
BX.x (r)

−−−→
BX.x (r)

′
dr

)(∫ 1

0

BX.xB
′
X.x

)−1
)
,

which is identical to the limit result for the IM-OLS estimator in the Ω00.x > 0 case. Thus,

inclusion of the surplus and irrelevant regressor uxt in the fitted model (62) has no effect on the

limit theory of IM-OLS in the base case of cointegrating regression. This proves (35).

To prove (36), consider the singular case where Ω00.x = 0. The system (62) is now

Yt = a′Xt + f ′xt + g′uxt + U0.xt =: a′Xt + d′wt + et, (65)

with d′ = (f ′, g′) and w′t = (xt, u
′
xt) . Least squares estimation of (63) now gives â − a =

(X ′QWX)
−1
X ′QW e. Then n2 (â− a) =

(
n−4X ′QWX

)−1 (
n−2X ′QW e

)
whose component limits

are as follows

1

n
u′xQxux =

1

n
u′xux −

1

n

(
u′xx

n

)(
x′x

n2

)−1(
x′ux
n

)
→p E (uxtu

′
xt) = Σxx,

1

n
u′xQxe =

1

n
u′xe−

1

n

(
u′xx

n

)(
x′x

n2

)−1(
x′e

n

)
→p E (uxtet) = σxe,
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1
n2 X

′Qxux =
X ′

n3/2

ux√
n
−
(

1

n

X ′x

n2

)(
x′x

n2

)−1(
x′√
n

ux√
n

)
 

(∫ 1

0

BXdB
′
x

)
−
(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxdB
′
x + ∆xx

)
=

∫ 1

0

BX.xdB
′
x −

(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1

∆xx,

1
n2 X

′Qxe =
X ′

n3/2

e

n1/2
−
(

1

n

X ′x

n2

)(
x′x

n2

)−1(
x′√
n

e√
n

)
 

(∫ 1

0

BXdBe

)
−
(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxdBe + ∆xe

)
=

∫ 1

0

BX.xdBe −
(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1

∆xe,

where ∆xx =
∑∞
h=0 E (ux0u

′
xh) , and ∆xe =

∑∞
h=0 E (ux0eh) . Using these results, (b-3), and

n−4X ′QWX  
∫ 1

0
BX.xB

′
X.x from (64), we have

n−2X ′QW e = n−2X ′Qxe− n−2X ′Qxux (u′xQxux)
−1
u′xQxe

= n−2X ′Qxe−
(

1

n2
X ′Qxux

)(
1

n
u′xQxux

)−1(
1

n
u′xQxe

)
 

∫ 1

0

BX.xdBe −
(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1

∆xe

−

{∫ 1

0

BX.xdB
′
x −

(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1

∆′xx

}
Σxxσxe. (66)

It follows from (64) and (66) that

n2 (â− a) =
(
n−4X ′QWX

)−1 (
n−2X ′QW e

)
 

(∫ 1

0

BX.xB
′
X.x

){∫ 1

0

BX.xdBe −
(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1

∆xe

−

{∫ 1

0

BX.xdB
′
x −

(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1

∆xx

}
Σxxσxe

}
,

as stated in (36). �

Proof of Theorem 2

Part (iii) The proof proceeds as follows. In this case Ω00.x > 0 and e+
t = U0.xt so we have

n (âfTIV − a) =

(
1

n5
V ′XQVC

VX

)−1(
1

n4
V ′XQVC

VU0.x

)
.

By standard partitioned regression, QVC
= I−VC (V ′CVC)

−1
V ′C = Qux

−Qux
Vx (V ′xQux

Vx)
−1
V ′xQux

,

so that by the results in Lemma B for the component factors we have

n−5V ′XQVC
VX = n−5V ′X

{
Qux
−Qux

Vx (V ′xQux
Vx)
−1
V ′xQux

}
VX
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=
V ′X
n5/2

VX
n5/2

− V ′X
n5/2

V∆x

n1/2

(
V ′∆x
n1/2

V∆x

n1/2

)−1
V ′∆x
n1/2

VX
n5/2

− 1

n5
V ′XQuxVx (V ′xQuxVx)

−1
V ′xQuxV

′
X

 µ′KµK − µ′KξK (ξ′KξK)
−1
ξ′KµK − µ′KQξKηK (η′KQξKηK)

−1
η′KQξKµK

= µ′KJKµK , (67)

where µK =
∫ 1

0
ϕ̃KB

′
X , ηK =

∫ 1

0
ϕ̃KB

′
x, and

JK := QξK −QξKηK (η′KQξKηK)
−1
η′KQξK ,

with QξK = I − ξK (ξ′KξK)
−1
ξ′K and ξK =

∫ 1

0
ϕ̃KdB

′
x. In a similar way, using Lemma B we have

1

n4
V ′X

{
Qux
−Qux

Vx (V ′xQux
Vx)
−1
V ′xQux

}
VU0.x

=
V ′X
n5/2

Qux

VU0.x

n3/2
− V ′X
n5/2

Qux

Vx
n3/2

(
V ′x
n3/2

Qux

Vx
n3/2

)−1
V ′x
n3/2

Qux

VU0.x

n3/2

 µ′KQξK Ψ0.xK − µ′KQξKηK (η′KQξKηK)
−1
η′KQξK Ψ0.xK

= µKJKΨ0.xK .

Now,

Ψ0.xK =

∫ 1

0

ϕ̃KB0.x ≡ N
(

0,Ω00.x

(∫ 1

0

∫ 1

0

(r ∧ s) ϕ̃K (r) ϕ̃K (s)
′
drds

))
,

as

E (Ψ0.xKΨ′0.xK) =

∫ 1

0

∫ 1

0

ϕ̃KE {B0.x (r)B0.x (s)} ϕ̃′Kdrds = Ω00.x

∫ 1

0

∫ 1

0

(r ∧ s) ϕ̃K (r) ϕ̃K (s)
′
drds.

It follows that when Ω00.x > 0

n (âfTIV − a) (µ′KJKµK)
−1

(µ′KJKΨ0.xK) = S′KΨ0.xK

≡ MN
(

0,Ω00.xS
′
K

(∫ 1

0

∫ 1

0

(r ∧ s) ϕ̃K (r) ϕ̃K (s)
′
drds

)
SK

)
, (68)

where SK = JKµK (µ′KJKµK)
−1
. Mixed normality follows by virtue of the asymptotic indepen-

dence of Ψ0.xK and (µK , ξK , ηK). �

Part (iv). In this case Ω00.x = 0 and e+
t = et so we have

n2 (âfTIV − a) =

(
1

n5
V ′XQVC

VX

)−1(
1

n3
V ′XQVC

Ve

)
. (69)

As in (67) of Part (iii), n−5V ′XQVC
VX  µ′KJKµK . The second component of (69) is

1

n3
V ′XQVC

Ve =
V ′X
n5/2

Ve
n1/2

− V ′X
n5/2

Ux
n1/2

(
U ′x
n1/2

Ux
n1/2

)−1
U ′x
n1/2

Ve
n1/2

− V ′X
n5/2

Qux

Vx
n3/2

(
V ′x
n3/2

Qux

Vx
n3/2

)−1
V ′x
n3/2

Qux

Ve
n1/2

 µ′KJKψeK .
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Combining these factors and using continuous mapping we deduce that

n2 (âfTIV − a) (µ′KJKµK)
−1

(µ′KJKψeK) = S′KψeK , (70)

as stated in (iv). Note that this limit distribution is not mixed normal because when ωex 6= 0,

the component ψeK =
∫ 1

0
ϕ̃KdBe is not independent (ξK , µK , ηK) , all of which depend on Bx

which is correlated with Be. However, when ωex = 0, the component ψeK is independent of

(ξK , µK , ηK) and mixed normality holds, giving part (iv)∗. In particular

n2 (âfTIV − a)  S′KψeK ≡MN
(

0, ωeeS
′
K

(∫ 1

0

ϕ̃K ϕ̃
′
K

)
SK

)
≡ MN

(
0, ωee (µ′KJKµK)

−1
)
,

since SK = JKµK (µ′KJKµK)
−1

and
(∫ 1

0
ϕ̃K ϕ̃

′
K

)
= IK . �

Proof of Theorem 3

Part (v)

The proof follows a general line of argument that was developed in the proof of the main

theorem of Phillips (2014) but with considerable additional complications in the present case

arising from the more complex augmented model and the singularity in the conditional long

run variance matrix. To facilitate the development of joint (K,n) → ∞ asymptotics we use an

expansion of the probability space that includes the limit processes (Be, Bx, B0.x) and within

that space use an ‘in probability’ version of weak convergence to the limit Brownian motions

(Be, Bx, B0.x) , as in Lemma A of Phillips (2014) or Lemma C of Phillips (2007). This device

leads in the usual manner to the establishment of weak convergence in the original space.

In the present case the full TIV approach projects the entire aggregated system

Yt = a′Xt + f ′xt + g′∆xt + e+
t = a′Xt + f ′xt + g′uxt + e+

t , (71)

onto the range space of the instruments ΦK using PΦK
= ΦK (Φ′KΦK)

−1
Φ′K . When Ω00.x > 0

the regression error is e+
t = U0.xt =

∑t
s=1 u0.xs and then (71) is

Yt = a′Xt + f ′xt + g′uxt + U0.xt =: a′Xt + `′cxt + U0.xt, (72)

where c′t = (x′t, u
′
xt) and `′ = (f ′, g′) = (f ′, 0) since the true value of the coefficient of uxt is zero.

Write (72) in observation matrix form as

Y = [X,Cx] γ + U0.x, with γ′ = (a′, `′) ,

where Y ′ = [Y1, ...Yn] , X ′ = [X1, ..., Xn] , U ′0.x = (U0.x,1, ..., U0.x,n) , and

C ′x = [cx1, ..., cxn] =
[
x1 · · · xn
ux1 · · · uxn

]
=:

[
x′

u′x

]
,
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noting that ux is the matrix of observations of uxt = ∆xt, in contrast to the vector of partial

sums U0.x. The centred and suitably scaled TIV estimator of a then has the following form

n (âTIV − a) =

{
1

n4
X ′RKX

}−1{
1

n3
X ′RKU0.x

}
=

{
1

n4
X ′PΦK

X −
(

1

n2
X ′PΦK

CxFn

)
(FnC

′
xPΦK

CxFn)
−1
(
FnC

′
xPΦK

X
1

n2

)}−1

×{
1

n3
X ′PΦK

U0.x −
1

n3
(X ′PΦK

CxFn) (FnC
′
xPΦK

CxFn)
−1
FnC

′
xPΦK

U0.x

}
, (73)

where Fn = diag
[
n−1Imx ,K

−1/2Imx

]
. We now proceed to derive the limit theory for the two

major factors in this matrix quotient.

The first factor in braces in (73) is

1

n4
X ′PΦK

X −
(

1

n2
X ′PΦK

[ x ux ]Fn

)(
Fn

[
x′PΦK

x x′PΦK
ux

u′xPΦK
x u′xPΦK

ux

]
Fn

)−1(
Fn

[
x′PΦK

X
u′xPΦK

X

]
1

n2

)
,

(74)

and the components of (74) are now considered in turn. Proceeding as in the proof of equation

(34) of the main theorem and Lemmas B and D of Phillips (2014), we find that as (K,n) → ∞
with K = o

(
n4/5−δ) for some δ > 0

1

n4
X ′PΦK

X =
1

n

X ′ΦK
n2

{
IK +O

(
1

n

)}
Φ′KX

n2

=
X ′ΦK
n5/2

Φ′KX

n5/2

{
1 +Op

(
1

n

)}
 
∫ 1

0

BXB
′
X . (75)

To show (75) we use the a.s. convergent series representation BX (r) =
∑∞
m=1 ϕm (r) νm of the

continuous stochastic process B̆x in terms of the orthonormal sequence {ϕm}∞m=1 over [0, 1] . This

series can be constructed by integrating the uniformly and almost surely convergent Karhunen-

Loève series Bx (r) =
∑∞
k=1 λkϕk (r) ξxk, giving

BX (r) =

∫ r

0

Bx (s) ds =

∞∑
k=1

λk

(∫ r

0

ϕk (s) ds

)
ξxk =

∞∑
k=1

λkψk (r) ξxk

=

∞∑
k=1

λk

( ∞∑
m=1

δkmϕm (r)

)
ξxk =

∞∑
m=1

ϕm (r)

( ∞∑
k=1

δkmλkξxk

)

=

∞∑
m=1

ϕm (r) νm, (76)

with ψk (r) =
∫ r

0
ϕk (r) =

∑∞
m=1 δkmϕm (r) in which each ψk (r) is represented by its expansion in

terms of the ON functions {ϕj} , and the random sequence νm is defined by νm =
∑∞
k=1 δkmλkξxk.

Using this representation of the process BX (r) and the expanded probability space, we have

1

n

n∑
t=1

Xt

n3/2
ϕ̃K

(
t

n

)′
=

∫ 1

0

BX (r) ϕ̃K (r)
′
dr {1 + op (1)}
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=

∫ 1

0

{ ∞∑
m=1

ϕm (r) νm

}
ϕ̃K (r)

′
dr {1 + op (1)}

=

K∑
m=1

νm

∫ 1

0

ϕm (r) ϕ̃K (r)
′
dr {1 + op (1)}+

∞∑
m=K+1

νm

∫ 1

0

ϕm (r) ϕ̃K (r)
′
dr {1 + op (1)}

=

K∑
m=1

νm

∫ 1

0

ϕm (r) ϕ̃K (r)
′
dr {1 + op (1)} = VK {1 + op (1)} ,

where VK = [ν1, ..., νK ] . Standardizing the matrix quadratic formX ′PΦK
X and allowing (K,n)→

∞ we have

1

n4
X ′PΦK

X =
X ′ΦK
n5/2

Φ′KX

n5/2

{
1 +Op

(
1

n

)}
= VKV ′K {1 + op (1)}

=
K∑
m=1

νmν
′
m {1 + op (1)} =

∫ 1

0

BXB
′
X {1 + op (1)} (77)

because∫ 1

0

BXB
′
X =

∫ 1

0

{ ∞∑
m=1

ϕm (r) νm

}{ ∞∑
`=1

ϕ` (r) ν′`

}
dr =

∞∑
m,`=1

νmν
′
`

∫ 1

0

ϕm (r)ϕ` (r) dr =

∞∑
m=1

νmν
′
m,

which is a series representation of
∫ 1

0
BXB

′
X in terms of the component Gaussian vector variates

{νm}∞m=1 .

Moving to the second term of (74), consider the central matrix factor

Fn

[
x′PΦK

x x′PΦK
ux

u′xPΦK
X u′xPΦK

ux

]
Fn =

[
1
n2x
′PΦK

x 1
nx
′PΦK

ux
1

K1/2

1
K1/2u

′
xPΦK

x 1
n

1
Ku
′
xPΦK

ux

]
. (78)

First, as (K,n)→∞
K−1u′xPΦK

ux →p Ωxx, (79)

by Phillips (2005a; 2014, Lemma C). Further

1

n
x′ΦK (Φ′KΦK)

−1
Φ′Kux =

(
1

n

x′√
n

ΦK

)(
1

n
Φ′KΦK

)−1(
1√
n

Φ′Kux

)
=

(
1

n

n∑
t=1

xt√
n
ϕ̃′Kt

){
IK +O

(
1

n

)}( n∑
t=1

ϕ̃Kt
u′xt√
n

)
= Op (1) , (80)

and
1

n2
x′PΦK

x 
∫ 1

0

BxB
′
x, (81)

as in equation (46) of Phillips (2014). Thus, as (K,n)→∞

1

K
u′xPΦK

ux =
1

K

u′xΦK√
n

Φ′Kux√
n
→p Ωxx (82)

1

n
x′PΦK

ux
1

K1/2
= Op

(
1

K1/2

)
= op (1) , (83)
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1

n2
x′PΦK

x  
∫ 1

0

BxB
′
x, (84)

so that, at least to first order, we have

Fn

[
x′PΦK

x x′PΦK
ux

u′xPΦK
x u′xPΦK

ux

]
Fn  

[ ∫ 1

0
BxB

′
x 0

0 Ωxx

]
. (85)

Higher order terms in the off diagonal elements of this matrix will be needed and constructed

later in analyzing the second major factor of (73).

Next consider the first matrix factor in the matrix quadratic form in the second term of (74),

viz.,

1

n2
X ′PΦK

[ x ux ]Fn =
[

1
n3X

′PΦK
x 1

n2X
′PΦK

ux
1

K1/2

]
=

[ (
1
n
X′

n3/2 ΦK

) (
1
nΦ′KΦK

)−1
(

1
nΦ′K

x√
n

)
1
n2X

′PΦK
ux

1
K1/2

]
=

[ (
1
n
X′

n3/2 ΦK

){
IK +O

(
1
n

)}(
1
nΦ′K

x√
n

)
1
n2X

′PΦK
ux

1
K1/2

]
 

[ ∫ 1

0
BXB

′
x 0

]
, (86)

where series arguments similar to those yielding (77) and (81) above are used to show that as

(K,n)→∞

1

n3
X ′PΦK

x =

(
1

n

X ′

n3/2
ΦK

){
IK +O

(
1

n

)}(
1

n
Φ′K

x√
n

)
 

∞∑
m=1

λmνmξ
′
m =

∫ 1

0

BXB
′
x, (87)

Combining (85) and (86) we have(
1

n2
X ′PΦK

[ x ux ]Fn

)(
Fn

[
x′PΦK

x x′PΦK
ux

u′xPΦK
x u′xPΦK

ux

]
Fn

)−1(
Fn

[
x′PΦK

X
u′xPΦK

X

]
1

n2

)
 

[ ∫ 1

0
BXB

′
x 0

] [ ∫ 1

0
BxB

′
x 0

0 Ωxx

]−1 [ ∫ 1

0
BxB

′
X

0

]
=

(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxB
′
X

)
. (88)

Using (77) and (88) we then obtain∫ 1

0

BXB
′
X −

(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxB
′
X

)
=

∫ 1

0

BX.xB
′
X.x,

where BX.x (r) = BX (r)−
(∫ 1

0
BXB

′
x

)(∫ 1

0
BxB

′
x

)−1

Bx (r) is the orthogonal projection residual

of BX on Bx. Thus,

1

n4
X ′PΦK

X −
(

1

n2
X ′PΦK

CxFn

)
(FnC

′
xPΦK

CxFn)
−1
(
FnC

′
xPΦK

X
1

n2

)
 
∫ 1

0

BX.xB
′
X.x.

(89)
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Next we move to the second major factor in braces in equation (73), which we write as

1

n3/2
X ′PΦK

U0.x

n3/2
−
(

1

n3/2
X ′PΦK

CxFn

)
(FnC

′
xPΦK

CxFn)
−1
(
FnC

′
xPΦK

U0.x

n3/2

)
. (90)

The first term of (90) is

1

n3/2
X ′PΦK

U0.x

n3/2
=

(
1

n

X ′

n3/2
ΦK

)(
1

n
Φ′KΦK

)−1(
1

n
Φ′K

U0.x√
n

)
=

(
1

n

X ′

n3/2
ΦK

){
IK +O

(
1

n

)}(
1

n
Φ′K

U0.x√
n

)
 
∫ 1

0

BXB
′
0.x,

just as in (86). The second term of (90), ignoring the sign, reduces as follows

(
1

n3/2
X ′PΦK

CxFn

)
(FnC

′
xPΦK

CxFn)
−1
(
FnC

′
xPΦK

U0.x

n3/2

)
=

(
1

n2
X ′PΦK

[ x ux ]Fn

)(
Fn

[
x′PΦK

x x′PΦK
ux

u′xPΦK
X u′xPΦK

ux

]
Fn

)−1(
Fn

[
x′PΦK

U0.x
u′xPΦK

U0.x

]
1

n

)
 

[ ∫ 1

0
BXB

′
x 0

] [ ∫ 1

0
BxB

′
x 0

0 Ωxx

]−1 [ ∫ 1

0
BxB0.x

0

]
=

(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxB0.x

)
,

since

Fn

[
1
n2x
′PΦK

U0.x

u′xPΦK
U0.x

]
1

n
=

[
1
n2x
′PΦK

U0.x
1

K1/2n
u′xPΦK

U0.x

]
=

[
1
n2x
′PΦK

U0.x
1

K1/2n
u′xPΦK

U0.x

]
and

1

n2
x′PΦK

U0.x =
1

n2
x′ΦK (Φ′KΦK)

−1
Φ′KU0.x

=
x′

n1/2
ΦK

{
IK +O

(
1

n

)}
Φ′K

U0.x

n3/2
 
∫ 1

0

BxB0.x,

analogous to (81), whereas

1

n
U ′0.xPΦK

ux
1

K1/2
=

1

n
U ′0.xΦK (Φ′KΦK)

−1
Φ′Kux

1

K1/2

=
1

n3/2
U ′0.xΦK

{
IK +O

(
1

n

)}
Φ′K

ux√
n

1

K1/2
= Op

(
1

K1/2

)
= op (1)

analogous to (80). We deduce that

1

n3/2
X ′PΦK

U0.x

n3/2
−
(

1

n3/2
X ′PΦK

CxFn

)
(FnC

′
xPΦK

CxFn)
−1
(
FnC

′
xPΦK

U0.x

n3/2

)
 

∫ 1

0

BXB
′
0.x −

(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxB0.x

)
=

∫ 1

0

BX.xB
′
0.x (91)

It follows directly from (89) and (91) that

n (âTIV − a) 

(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

BX.xB
′
0.x

)
=

(∫ 1

0

BX.xB
′
X.x

)−1 ∫ 1

0

−−−→
BX.xdB0.x
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≡ MN

(
0,Ω00.x

(∫ 1

0

BX.xB
′
X.x

)−1 ∫ 1

0

−−−→
BX.x

−−−→
BX.x

′
(∫ 1

0

BX.xB
′
X.x

)−1
)
, (92)

where
−−−→
BX.x (r) =

∫ 1

r
BX.x, using the same argument as in Lemma B(v) and (59). The limit

distribution is therefore identical to that of IM-OLS in the case where Ω00.x > 0. Nothing is lost

in the asymptotic theory in this case by working with the additional augmentation of the model

to include the regressor ∆xt = uxt. �

Part (vi)

In this case the model is written in observation matrix form as

Y = [X,Cx] γ + e, with γ′ = (a′, `′) ,

where Y ′ = [Y1, ...Yn] , X ′ = [X1, ..., Xn] , e′ = (e1, ..., en) , ` = (f ′, g′)′ and

C ′x = [cx1, ..., cxn] =
[
x1 · · · xn
ux1 · · · uxn

]
=:

[
x′

u′x

]
.

The centred and scaled TIV estimator of a then has the form

n2 (âTIV − a)

=
{

1

n4
X ′PΦK

X −
(

1

n2
X ′PΦK

Cx

)(
C′xPΦK

Cx
)−1

(
C′xPΦK

X
1

n2

)}−1

×{
1

n3/2
X ′PΦK

e

n1/2
−
(

1

n3/2
X ′PΦK

Cx

)(
C′xPΦK

Cx
)−1

C′xPΦK

e

n1/2

}
. (93)

We derive the limit theory for the two factors in this matrix quotient. The first factor in braces

in (93) is identical to (74), and its limit behavior is therefore determined as in (89), giving{
1

n4
X ′PΦK

X −
(

1

n2
X ′PΦK

CxFn

)
(FnC

′
xPΦK

CxFn)
−1
(
FnC

′
xPΦK

X
1

n2

)}
 
∫ 1

0

BXB
′
X −

(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxB
′
X

)
=

∫ 1

0

BX.xB
′
X.x, (94)

where BX.x (r) = BX (r)−
∫ 1

0
BXBx

(∫ 1

0
BxB

′
x

)−1

Bx (r) , as before.

The second factor in braces in (93) is

1

n3/2
X ′PΦK

e

n1/2
−
(

1

n3/2
X ′PΦK

CxFn

)
(FnC

′
xPΦK

CxFn)
−1
FnC

′
xPΦK

e

n1/2
. (95)

For the first component of (95) note that

X ′

n3/2
PΦK

e

n1/2
=
X ′ΦK
n5/2

Φ′Ke

n1/2
{1 + op (1)} . (96)

For the second component of (95) a more complex calculation is required. It turns out that

because of the relative orders of magnitude of the submatrix elements in the matrix multiplication
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involved in this second term we need to include higher order terms in the inverse of the matrix

FnC
′
xPΦK

CxFn. To do so we employ the standard block inverse formula[
A′1A1 A′1A2

A′2A1 A′2A2

]−1

=

[
A−1

11.2 −
(
A′1A1

)−1
A′1A2A

−1
11.2

−A−1
22.1A

′
2A1

(
A′1A1

)−1 (
A′2A2

)−1
+
(
A′2A2

)−1
A′2A1A

−1
11.2A

′
1A2

(
A′2A2

)−1

]
which gives, using the fact that Cx = [x , ux],(

Fn

[
x′PΦK

x x′PΦK
ux

u′xPΦK
x u′xPΦK

ux

]
Fn

)−1

=

[
x′ΦK

n3/2

Φ′
Kx

n3/2
x′ΦK

n3/2

Φ′
Kux

n1/2
1

K1/2

1
K1/2

u′
xΦK

n1/2

Φ′
Kx

n3/2
1
Ku
′
xPΦK

ux

]−1

= :

[
A′1A1 A′1A2
A′2A1 A′2A2

]−1

=

[
A−1

11.2 − (A′1A1)
−1
A′1A2A

−1
11.2

−A−1
22.1A

′
2A1 (A′1A1)

−1
A−1

22.1

]
(97)

with A11.2 = A′1A1 − A′1A2 (A′2A2)
−1
A′2A1, and A22.1 = A′2A2 − A′2A1 (A′1A1)

−1
A′1A2. Using

the results above, direct calculation of the block entries in the matrix (97) leads to

A11.2 =
x′ΦK
n3/2

Φ′Kx

n3/2
− x′ΦK

n3/2

Φ′Kux
n1/2

1

K1/2

(
1

K
u′xPΦK

ux

)−1
1

K1/2

u′xΦK
n1/2

Φ′Kx

n3/2

=
x′ΦK
n3/2

Φ′Kx

n3/2
− 1

K1/2

x′ΦK
n3/2

Φ′Kux
n1/2

(
1

K
u′xPΦK

ux

)−1(
1

K1/2

x′ΦK
n3/2

Φ′Kux
n1/2

)′
=

x′ΦK
n3/2

Φ′Kx

n3/2
+Op

(
1

K

)
 
∫ 1

0

BxB
′
x,

A22.1 =
1

K
u′xPΦK

ux −
1

K1/2

u′xΦK
n1/2

Φ′Kx

n3/2

(
x′ΦK
n3/2

Φ′Kx

n3/2

)−1(
1

K1/2

X ′ΦK
n3/2

Φ′Kux
n1/2

)
=

1

K
u′xPΦK

ux +Op

(
1

K

)
→p Ωxx,

and the off diagonal block entry

−A−1
22.1A

′
2A1 (A′1A1)

−1

= −

{(
1

K
u′xPΦK

ux

)−1

+Op

(
1

K

)}(
1

K1/2

u′xΦK
n1/2

Φ′Kx

n3/2

){(
x′ΦK
n3/2

Φ′Kx

n3/2

)−1

+Op

(
1

K

)}

= − 1

K1/2
Ω−1
xx

(
u′xΦK
n1/2

Φ′Kx

n3/2

)(∫ 1

0

BxB
′
x

)−1

{1 + op (1)} .

Then(
Fn

[
x′PΦKx x′PΦKux

u′xPΦKx u′xPΦKux

]
Fn

)−1

∼a

 (∫ 1

0
BxB

′
x

)−1

− 1

K1/2

(∫ 1

0
BxB

′
x

)−1
x′ΦK

n3/2

Φ′
KUx

n1/2 Ω−1
xx

− 1

K1/2 Ω−1
xx

(
U′

xΦK

n1/2

Φ′
Kx

n3/2

)(∫ 1

0
BxB

′
x

)−1

Ω−1
xx

 . (98)

Retention of the Op
(
K−1/2

)
off-diagonal blocks in (98) is particularly important, as will now

become apparent. In particular, the second component of (95) is

−
(

1

n3/2
X ′PΦK

CxFn

)
(FnC

′
xPΦK

CxFn)
−1
(
FnC

′
xPΦK

e

n1/2

)
.
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The component matrices involved in this block multiplication are

1
n3/2X

′PΦK
CxFn =

[
X′ΦK

n5/2

Φ′
Kx

n3/2
X′ΦK

n5/2 Φ′Kux
1

K1/2

]
+ op (1) ,

(FnC
′
xPΦKCxFn)

−1
=

 (∫ 1

0
BxB

′
x

)−1

+ op (1) −
(∫ 1

0
BxB

′
x

)−1
1

K1/2
x′ΦK

n3/2

Φ′
Kux

n1/2 Ω−1
xx

−Ω−1
xx

(
1

K1/2

u′
xΦK

n1/2

Φ′
Kx

n3/2

)(∫ 1

0
BxB

′
x

)−1

Ω−1
xx + op (1)

,

and

FnC
′
xPΦK

e
n1/2 =

[
1
n
x′ΦK

n1/2

Φ′
Ke

n1/2

1
K1/2u

′
xPΦK

e
n1/2

]
+ op (1) .

Then(
1

n3/2
X ′PΦK

CxFn

)(
FnC

′
xPΦK

CxFn
)−1

FnC
′
xPΦK

e

n1/2

=


(
X′ΦK

n5/2

Φ′
Kx

n3/2

)(∫ 1
0
BxB

′
x

)−1
− 1
K
X′ΦK

n5/2 Φ′KuxΩ−1
xx

(
u′
xΦK

n1/2

Φ′
Kx

n3/2

)(∫ 1
0
BxB

′
x

)−1

− X′ΦK

n5/2

Φ′
Kx

n3/2

(∫ 1
0
BxB

′
x

)−1
1

K1/2
x′ΦK

n3/2

Φ′
Kux

n1/2 Ω−1
xx + X′ΦK

n5/2 Φ′Kux
1

K1/2 Ω−1
xx


×

[
1
n
x′ΦK

n1/2

Φ′
Ke

n1/2

1
K1/2 u

′
xPΦK

e
n1/2

]
+ op (1)

=

(
X ′ΦK
n5/2

Φ′Kx

n3/2

)(∫ 1

0

BxB
′
x

)−1
x′ΦK
n3/2

Φ′Ke

n1/2

− 1

K

X ′ΦK
n5/2

Φ′Kux

n1/2
Ω−1
xx

(
u′xΦK

n1/2

Φ′Kx

n3/2

)(∫ 1

0

BxB
′
x

)−1
x′ΦK
n3/2

Φ′Ke

n1/2

− X ′ΦK
n5/2

Φ′KX

n3/2

(∫ 1

0

BxB
′
x

)−1
x′ΦK
n3/2

Φ′Kux

n1/2
Ω−1
xx

1

K
u′xPΦK

e+
X ′ΦK
n5/2

Φ′Kux

n1/2
Ω−1
xx

1

K
u′xPΦK

e+ op (1)

=

∫ 1

0

BXBx

(∫ 1

0

BxB
′
x

)−1
X ′ΦK
n3/2

Φ′Ke

n1/2
+Op

(
1

K

)
−
∫ 1

0

BXBx

(∫ 1

0

BxB
′
x

)−1
X ′ΦK
n3/2

Φ′Kux

n1/2
Ω−1
xxωxe

+
X ′ΦK
n5/2

Φ′Kux

n1/2
Ω−1
xxωxe + op (1)

=

(∫ 1

0

BXBx

)(∫ 1

0

BxB
′
x

)−1
x′ΦK
n3/2

Φ′K
(
e− u′xΩ−1

xxωxe
)

n1/2
+
X ′ΦK
n5/2

Φ′Kux

n1/2
Ω−1
xxωxe + op (1)

=

(∫ 1

0

BXBx

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxdBe.x

)
+
X ′ΦK
n5/2

Φ′Kux

n1/2
Ω−1
xxωxe + op (1) , (99)

since
1

K
u′xPΦK

e→p ωxe,

just as in (79). Now combine (99) with (96) in (95) and we have

1

n3/2
X ′PΦK

e

n1/2
−
(

1

n3/2
X ′PΦK

CxFn

)
(FnC

′
xPΦK

CxFn)
−1
FnC

′
xPΦK

e

n1/2

=
X ′ΦK
n5/2

Φ′Ke√
n
− X ′ΦK

n5/2

Φ′Kux√
n

Ω−1
xxωxe −

∫ 1

0

BXBx

(∫ 1

0

BxB
′
x

)−1 ∫ 1

0

BxdBe.x + op (1)

=
X ′ΦK
n5/2

Φ′K
(
e− uxΩ−1

xxωxe
)

√
n

−
∫ 1

0

BXBx

(∫ 1

0

BxB
′
x

)−1 ∫ 1

0

BxdBe.x + op (1)

 
∫ 1

0

BXdBe.x −
∫ 1

0

BXBx

(∫ 1

0

BxB
′
x

)−1 ∫ 1

0

BxdBe.x =

∫ 1

0

BX.xdBe.x. (100)
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Finally, combining the results for the two factors (94) and (100) and using continuous mapping

we obtain the stated result that

n2 (âTIV − a) 

(∫ 1

0

BX.xB
′
X.x

)−1 ∫ 1

0

BX.xdBe.x ≡MN

(
0, ωee.x

(∫ 1

0

BX.xB
′
X.x

)−1
)
,

(101)

with ωee.x = ωee − ωexΩxxωxe. �

Proof of Theorem 5: Construction of the Wald statistic

We start the proof of Theorem 5 with some preliminary exposition of the two forms of the Wald

statistic. The HAC Wald statistic WaldTIV = (HâTIV − h)
′
[
HGK

(
nV̂Kn

)
G′kH

′
]−1

(HâTIV − h)

uses an implicit sandwich form and relies on the kernel estimate

V̂Kn =

M∑
j=−M

k

(
j

M

)
1

n

n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t+ j

n

)′
ê+
t ê

+
t+j , (102)

with TIV regression residuals

ê+
t = e+

t − (âTIV − a)
′
Xt −

(
f̂TIV − f

)′
xt − (ĝTIV − g)

′
uxt, (103)

where f = Ω0xΩxx, g = 0 and the true regression error is e+
t = et1 {Ω00.x = 0}+U0.xt1 {Ω00.x > 0} .

The limit behavior of the statistic WaldTIV depends on that of the estimate âTIV , viz.,

âTIV − a = (X ′RKX)
−1

(X ′RKe
+) = GKΦ′Ke

+ = GK

n∑
t=1

ϕ̃K

(
t

n

)
e+
t ,

where RK = PΦK
− PΦK

Cx (C ′xPΦK
Cx)

−1
C ′xPΦK

and

GK = (X ′RKX)
−1
{
X ′ΦK (Φ′KΦK)

−1 −X ′PΦK
Cx (C ′xPΦK

Cx)
−1
C ′xΦK (Φ′KΦK)

−1
}

= (X ′RKX)
−1
{
X ′ΦK −X ′PΦK

Cx (C ′xPΦK
Cx)

−1
C ′xΦK

}
(Φ′KΦK)

−1

as well as the estimation error effects of f̂TIV − f and ĝTIV − g = ĝTIV on the fitted residuals

ê+
t .

In the nonsingular case where Ω00.x > 0, we have e+
t = U0.xt so the true regression error is

I (1) and the regression equation is a partially spurious regression, as discussed in the text of the

paper. Usual long run variance estimates of the equation error are therefore no longer consistent

but tend to a random variable after suitable renormalization. The same is true for IM-OLS

regression, a fact that substantially complicates inference in IM-OLS regression, as recognized in

Vogelsang and Wagner (2014) and discussed in the main text – see footnote 7.

In the singular case where Ω00.x = 0, we have e+
t = et and the regression equation is an

augmented cointegrating regression with an I (0) error. This equation no longer involves spurious

elements and conventional methods of long run variance estimation work as usual. The limit

behavior of the residuals and the kernel estimate V̂Kn are therefore very different in these two
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cases, as is to be expected. They are examined separately below in Part (vii) and Part (viii) of

the proof corresponding to the results given in the statement of Theorem 5. Similar considerations

apply to the long run error variance estimator

ω̂2
e+ =

M∑
j=−M

k

(
j

M

)
1

n

n∑
1≤t,t+j≤n

ê+
t ê

+
t+j , (104)

based directly on the residuals (103).

The second form of the Wald statistic uses the HAR long run variance estimate leading to

WaldTIV,b = (HâTIV − h)
′
[
HGK

(
nV̂bKn

)
G′kH

′
]−1

(HâTIV − h) ,

which uses an implicit sandwich form with the fixed-b kernel estimate in (49)

V̂bKn =

n−1∑
j=−n+1

kb (j)
1

n

n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t+ j

n

)′
ê+
t ê

+
t+j ,

where kb (j) = k
(
j
bn

)
. With these preliminaries in hand we now proceed with the proof of

Theorem 5

Part (vii)

The HAC Case In this case Ω00.x > 0, e+
t = U0.xt and the fitted equation is a partially

spurious regression because of the presence of the I (1) regressor xt and the I (1) error U0.xt in

the transformed model

Yt = a′Xt + f ′xt + g′∆xt + e+
t = a′Xt + f ′xt + g′uxt + U0.xt, (105)

where f = Ω−1
xxΩx0 and g = 0 by construction. The TIV regression produces consistent estimates

of the cointegrating vector a, as shown in Theorem 3 (v), where

n (âTIV − a) =

{
1

n4
X ′RKX

}−1{
1

n3
X ′RKU0.x

}
 

(∫ 1

0

BX.xB
′
X.x

)−1 ∫ 1

0

−−−→
BX.xdB0.x

≡ MN

(
0,Ω00.x

(∫ 1

0

BX.xB
′
X.x

)−1 ∫ 1

0

−−−→
BX.x

−−−→
BX.x

′
(∫ 1

0

BX.xB
′
X.x

)−1
)
. (106)

But due to the spurious regression feature of (105), the estimates f̂TIV and ĝTIV of f and g are

not consistent. In particular,

f̂TIV − f =

(
1

n2
x′RfKx

)−1(
1

n2
x′RfKU0.x

)
,

where

RfK = PΦK
− PΦK

Cf
(
C ′fPΦK

Cf
)−1

C ′fPΦK
,

C ′f =
[
X1 · · · Xn
ux1 · · · uxn

]
=

[
X ′

u′x

]
.
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After some calculations, using PΦK
= ΦK (Φ′KΦK)

−1
Φ′K = 1

nΦK

(
Φ′

KΦK

n

)−1

Φ′K = 1
nΦK

(
IK +O

(
1
n

))
Φ′K ,

we obtain

1

n2
x′RfKx 

∫ 1

0

BxB
′
x −

∫ 1

0

BxB
′
X

(∫ 1

0

BXB
′
X

)−1 ∫ 1

0

BXB
′
x =

∫ 1

0

Bx.XB
′
x.X , (107)

where Bx.X (r) = Bx (r)−
∫ 1

0
BxB

′
X

(∫ 1

0
BXB

′
X

)−1

BX (r) . Using the normalization matrix Ln =

diag
[
n−2Imx

,K−1/2Imx

]
, we have

1

n2
x′RxKU0.x =

(
1

n2
x′PΦK

U0.x −
1

n2
x′PΦK

CfLn
(
LnC

′
fPΦK

CfLn
)−1

LnC
′
fPΦK

U0.x

)
=
x′ΦK
n3/2

Φ′KU0.x

n3/2
− x′ΦK

n3/2

Φ′KCf√
n

Ln
(
LnC

′
fPΦK

CfLn
)−1

Ln
C ′fΦK√

n

Φ′KU0.x

n3/2
+ op (1)

 
∫ 1

0

BxB
′
0.x −

∫ 1

0

BxB
′
X

(∫ 1

0

BXB
′
X

)−1 ∫ 1

0

BXB
′
0.x =

∫ 1

0

Bx.XB
′
0.x, (108)

since

LnC
′
fPΦK

CfLn =

[
X′ΦK

n5/2

Φ′
KX

n5/2
1

K1/2
X′ΦK

n5/2

Φ′
Kux

n1/2

1
K1/2

u′
xΦK

n1/2

Φ′
KX

n5/2
1
K
u′
xΦK

n1/2

Φ′
Kux

n1/2

]
 

[ ∫ 1

0
BXB

′
X 0

0 Ωxx

]
, (109)

and the terms involving ux are op (1) because 1
K1/2

x′ΦK

n3/2

Φ′
Kux√
n

= O
(
K−1/2

)
. Then

f̂TIV − f =

(
1

n2
x′RfKx

)−1

(
1

n2
x′RfKU0.x) 

(∫ 1

0

Bx.XB
′
x.X

)−1 ∫ 1

0

Bx.XB
′
0.x,

and f̂TIV is inconsistent. Next consider ĝTIV . Since g = 0 by construction, we have

ĝTIV =

(
1

K
u′xRgKux

)−1(
1

K
u′xRgKe

+

)
=

(
1

K
u′xRgKux

)−1(
1

K
u′xRgKU0.x

)
, (110)

where

RgK = PΦK
− PΦK

Cg
(
C ′gPΦK

Cg
)−1

C ′gPΦK
,

C ′g =
[
X1 · · · Xn
x1 · · · xn

]
=

[
X ′

x′

]
.

Using the normalization matrix Dn = diag
[
n−2Imx , n

−1Imx

]
we have

1

K
u′xRgKux =

1

K
u′xPΦK

ux −
1

K
u′xPΦK

CgDn

(
DnC

′
gPΦK

CgDn

)−1
DnC

′
gPΦK

ux

=
1

K
u′xPΦK

ux −
(

1√
K

u′xΦK√
n

)[ 1
n

Φ′
KX

n3/2

1
n

Φ′
Kx√
n

] (
DnC

′
gPΦK

CgDn

)−1

[
1
n
X′ΦK

n3/2

1
n
x′ΦK√
n

](
Φ′Kux√

n

1√
K

)
=

1

K
u′xPΦK

ux +Op

(
1

K

)
→p Ωxx.

Turning to the second factor in (110) and using the normalization matrixDn = diag
[
n−2Imx , n

−1Imx

]
we have

1

n
u′xRgKU0.x = u′xPΦK

U0.x −
1

n
u′xPΦK

CgDn

(
DnC

′
gPΦK

CgDn

)−1
DnC

′
gPΦK

U0.x
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=
u′xΦK√

n

(
Φ′KΦK
n

)−1
ΦKU0.x

n3/2
−
(
u′xΦK√

n

)[ 1
n

Φ′
KX

n3/2

1
n

Φ′
Kx√
n

] (
DnC

′
gPΦK

CgDn

)−1

[
1
n
X′ΦK

n3/2

1
n
x′ΦK√
n

]
ΦKU0.x

n3/2

 
∫ 1

0

dBxB0.x −
∫ 1

0

dBxB
′
[X,x]

(∫ 1

0

B[X,x]B
′
[X,x]

)−1 ∫ 1

0

B[X,x]B0.x =

∫ 1

0

dBxB
#
0.x,

where B#
0.x (r) = B0.x (r) −

∫ 1

0
B0.xB

′
[X,x]

(∫ 1

0
B[X,x]B

′
[X,x]

)−1

B[X,x] (r) and B[X,x] = [BX , Bx] .

Then

ĝTIV =

(
1

K
u′xRgKux

)−1(
1

K
u′xRgKU0.x

)
∼a Ω−1

xx ×Op
( n
K

)
so that the TIV regression residuals are

ê+
t = Û0.xt = U0.xt − (âTIV − a)

′
Xt −

(
f̂TIV − f

)′
xt − ĝ′TIV uxt

= U0.xt − n (âTIV − a)
′ Xt

n
−
(
f̂TIV − f

)′
xt − ĝ′TIV uxt,

and, standardizing, we have

ê+
t=bnrc√
n

=
U0.xbnrc√

n
− n (âTIV − a)

′ Xbnrc

n3/2
−
(
f̂TIV − f

)′ xbnrc√
n
− ĝ′TIV

uxt√
n

=
U0.xbnrc√

n
− n (âTIV − a)

′ Xbnrc

n3/2
−
(
f̂TIV − f

)′ xbnrc√
n

+Op

(√
n

K

)
=
U0.xbnrc√

n
− n (âTIV − a)

′ Xbnrc

n3/2
−
(
f̂TIV − f

)′ xbnrc√
n

+ op (1) (111)

if n = o
(
K2
)

as n→∞. Then

ê+
t=bnrc√
n

=
U0.xbnrc√

n
− n (âTIV − a)

′ Xbnrc

n3/2
−
(
f̂TIV − f

)′ xbnrc√
n

+ op (1)

 B0.x (r)−
(∫ 1

0

dB0.x
−−−→
BX.x

′
)(∫ 1

0

BX.xB
′
X.x

)−1

BX (r)−
(∫ 1

0

B0.xB
′
x.X

)(∫ 1

0

Bx.XB
′
x.X

)−1

Bx (r)

= B0.x (r)−
(∫ 1

0

B0.xB
′
X.x

)(∫ 1

0

BX.xB
′
X.x

)−1

BX (r)−
(∫ 1

0

B0.xB
′
x.X

)(∫ 1

0

Bx.XB
′
x.X

)−1

Bx (r)

=: B̃0.x (r) . (112)

Using these results, the HAC kernel estimate of the transformed residuals and standardized

residuals based on ê+
t = Û0.xt is

V̂Kn =

M∑
j=−M

k

(
j

M

)
1

n

n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t+ j

n

)′
ê+
t ê

+
t+j ,

and using (112)

1

nM
V̂Kn =

1

M

M∑
j=−M

k

(
j

M

)
1

n

n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t+ j

n

)′
Û0.xt√
n

Û0.xt+j√
n
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=

 1

M

M∑
j=−M

k

(
j

M

) 1

n

n∑
t=1

ϕ̃K

(
t

n

)
ϕ̃K

(
t

n

)′(
Û0.xt√
n

)2

+ op (1)

=

(∫ 1

−1

k (r) dr

)
1

n
Φ′KΛU0.x,nΦK

 

(∫ 1

−1

k (r) dr

)∫ 1

0

ϕ̃K (r) ϕ̃K (r)
′
B̃0.x (r)

2
dr, (113)

where ΛU0.x,n = diag

[(
Û0.x1/

√
n
)2

, ...,
(
Û0.xn/

√
n
)2
]
. Hence,

nV̂Kn ∼a n2M

(∫ 1

−1

k (r) dr

)
1

n
Φ′KΛU0.x,nΦK ∼a n2M

(∫ 1

−1

k (r) dr

)∫ 1

0

ϕ̃K (r) ϕ̃K (r)
′
B̃0.x (r)

2
dr.

(114)

Next observe that

GK

(
nV̂Kn

)
G′k = nM

(∫ 1

−1

k (r) dr

)
GKΦ′KΛU0.x,nΦKG

′
k + op (1)

= nM

(∫ 1

−1

k (r) dr

)
(X ′RKX)

−1
{
X ′ΦK −X ′PΦK

Cx (C ′xPΦK
Cx)

−1
C ′xΦK

}
(Φ′KΦK)

−1
Φ′KΛU0.x,n

× ΦK (Φ′KΦK)
−1
{

Φ′KX − Φ′KCx (C ′xPΦK
Cx)

−1
C ′xPΦK

X
}

(X ′RKX)
−1

+ op (1) (115)

= nM

(∫ 1

−1

k (r) dr

)
(X ′RKX)

−1
(
X ′PΦK

−X ′PΦK
Cx (C ′xPΦK

Cx)
−1
C ′xPΦK

)
ΛU0.x,n

×
(
PΦK

X − PΦK
Cx (C ′xPΦK

Cx)
−1
C ′xPΦK

X
)

(X ′RKX)
−1

+ op (1)

= nM

(∫ 1

−1

k (r) dr

)(
X ′RKX

n4

)−1
(
X ′PΦK

−X ′PΦK
Cx (C ′xPΦK

Cx)
−1
C ′xPΦK

n4

)
ΛU0.x,n

×

(
PΦK

X − PΦK
Cx (C ′xPΦK

Cx)
−1
C ′xPΦK

X

n4

)(
X ′RKX

n4

)−1

+ op (1) . (116)

Consider the first term in the expanded form of the central three factors in (116), viz.,

En0 :=
1

n4
X ′PΦK

ΛU0.x,nPΦK
X =

1

n5
X ′PΦK

ΛU0.x,nPΦK
X

=
X ′ΦK
n5/2

(
Φ′KΦK
n

)−1(
1

n
Φ′KΛU0.x,nΦK

)(
Φ′KΦK
n

)−1
Φ′KX

n5/2

=
X ′ΦK
n5/2

(
1

n
Φ′KΛU0.x,nΦK

)
Φ′KX

n5/2
+ op (1)

=
X ′ΦK
n5/2

 1

n

n∑
t=1

ϕ̃K

(
t

n

)
ϕ̃K

(
t

n

)′(
Û0.xt√
n

)2
 Φ′KX

n5/2
+ op (1)

∼ a

(∫ 1

0

BX (r) ϕ̃K (r)
′
dr

)(∫ 1

0

ϕ̃K (r) ϕ̃K (r)
′
B̃0.x (r)

2
dr

)(∫ 1

0

ϕ̃K (r)BX (r)
′
dr

)
.

Using the normalizing matrix Fn = diag
[
n−1Imx ,K

−1/2Imx

]
as earlier, the cross product terms

in the expanded form of the central three factors in braces in (116) are (ignoring the negative
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sign): first

En1 :=
1

n4
X ′PΦK

Cx (C ′xPΦK
Cx)

−1
C ′xPΦK

ΛU0.x,nPΦK
X

=

(
1

n2
X ′PΦK

CxFn

)
(FnC

′
xPΦK

CxFn)
−1
(
FnC

′
xPΦK

ΛU0.x,nPΦK
X

1

n2

)
=

X ′ΦK
n5/2

(
Φ′KΦK
n

)−1(
Φ′KCxFn√

n

)
(FnC

′
xPΦK

CxFn)
−1

×
(
FnC

′
xΦK√
n

)(
Φ′KΦK
n

)−1(
1

n
Φ′KΛU0.x,nΦK

)(
Φ′KΦK
n

)−1
Φ′KX

n5/2

∼ a

(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

Bx (r) ϕ̃K (r)
′
dr

)(∫ 1

0

ϕ̃K (r) ϕ̃K (r)
′
B̃0.x (r)

2
dr

)
×
(∫ 1

0

ϕ̃K (r) B̆X (r)
′
dr

)
,

and second (again ignoring the negative sign)

En2 =
1

n4
X ′PΦK

ΛU0.x,nPΦK
Cx (C ′xPΦK

Cx)
−1
C ′xPΦK

X

=

(
1

n2
X ′PΦK

ΛU0.x,nPΦK
CxFn

)
(FnC

′
xPΦK

CxFn)
−1
(
FnC

′
xPΦK

X
1

n2

)
=
X ′ΦK
n5/2

(
Φ′KΦK
n

)−1(
1

n
Φ′KΛU0.x,nΦK

)(
Φ′KCxFn√

n

)
(FnC

′
xPΦK

CxFn)
−1

×
(
FnC

′
xΦK√
n

)(
Φ′KΦK
n

)−1
Φ′KX

n5/2

∼a
(∫ 1

0

BX (r) ϕ̃K (r)
′
dr

)(∫ 1

0

ϕ̃K (r) ϕ̃K (r)
′
B̃0.x (r)

2
dr

)(∫ 1

0

ϕ̃K (r)Bx (r)
′
dr

)
×
(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxB
′
X

)
.

The third term in the expanded form of the central three factors in braces in (116) is

En3 :=
1

n4
X ′PΦK

Cx (C ′xPΦK
Cx)

−1
(C ′xPΦK

ΛU0.x,nPΦK
Cx) (C ′xPΦK

Cx)
−1
C ′xPΦK

X

=

(
1

n2
X ′PΦK

CxFn

)
(FnC

′
xPΦK

CxFn)
−1

(FnC
′
xPΦK

ΛU0.x,nPΦK
CxFn)

× (FnC
′
xPΦK

CxFn)
−1
(

1

n2
FnC

′
xPΦK

X

)
=
X ′ΦK
n5/2

(
Φ′KΦK
n

)−1(
Φ′KCxFn√

n

)
(FnC

′
xPΦK

CxFn)
−1
(
FnC

′
xΦK√
n

)(
Φ′KΦK
n

)−1(
1

n
Φ′KΛU0.x,nΦK

)
×
(

Φ′KΦK
n

)−1(
Φ′KCxFn√

n

)
(FnC

′
xPΦK

CxFn)
−1
(
FnC

′
xΦK√
n

)(
Φ′KΦK
n

)−1
Φ′KX

n5/2

∼a
(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

Bx (r) ϕ̃K (r)
′
dr

)(∫ 1

0

ϕ̃K (r) ϕ̃K (r)
′
B̃0.x (r)

2
dr

)
×
(∫ 1

0

ϕ̃K (r)Bx (r)
′
dr

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxB
′
X

)
.
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Combining these three terms, adjusting for sign, and including the leading term we obtain

1

n4

(
X ′PΦK

−X ′PΦK
Cx (C ′xPΦK

Cx)
−1
C ′xPΦK

)
ΛU0.x,n

(
PΦK

X − PΦK
Cx (C ′xPΦK

Cx)
−1
C ′xPΦK

X
)

= En0 − En1 − En2 + En3

∼a
(∫ 1

0

BX (r) ϕ̃K (r)
′
dr

)(∫ 1

0

ϕ̃K (r) ϕ̃K (r)
′
B̃0.x (r)

2
dr

)(∫ 1

0

ϕ̃K (r)BX (r)
′
dr

)
−

{(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

Bx (r) ϕ̃K (r)
′
dr

)(∫ 1

0

ϕ̃K (r) ϕ̃K (r)
′
B̃0.x (r)

2
dr

)
×
(∫ 1

0

ϕ̃K (r)BX (r)
′
dr

)}
−
{(∫ 1

0

BX (r) ϕ̃K (r)
′
dr

)(∫ 1

0

ϕ̃K (r) ϕ̃K (r)
′
B̃0.x (r)

2
dr

)(∫ 1

0

ϕ̃K (r)Bx (r)
′
dr

)
×
(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxB
′
X

)}

+

{(∫ 1

0

BXB
′
x

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

Bx (r) ϕ̃K (r)
′
dr

)(∫ 1

0

ϕ̃K (r) ϕ̃K (r)
′
B̃0.x (r)

2
dr

)

×
(∫ 1

0

ϕ̃K (r)Bx (r)
′
dr

)(∫ 1

0

BxB
′
x

)−1(∫ 1

0

BxB̆
′
X

)}

=

(∫ 1

0

BX.x (r) ϕ̃K (r)
′
dr

)(∫ 1

0

ϕ̃K (r) ϕ̃K (r)
′
B̃0.x (r)

2
dr

)(∫ 1

0

ϕ̃K (r)BX.x (r)
′
dr

)
.

(117)

The full expression for GK

(
nV̂Kn

)
G′K is then

GK

(
nV̂Kn

)
G′K = nM

(∫ 1

−1

k (r) dr

)
GKΦ′KΛU0.x,nΦKG

′
K + op (1)

=
nM

n4

(∫ 1

−1

k (r) dr

)(
X ′RKX

n4

)−1

(En0 − En1 − En2 + En3)

(
X ′RKX

n4

)−1

+ op(1)

∼ a
nM

n4

(∫ 1

−1

k (r) dr

)(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

BX.x (r) ϕ̃K (r)
′
dr

)
×
(∫ 1

0

ϕ̃K (r) ϕ̃K (r)
′
B̃0.x (r)

2
dr

)(∫ 1

0

ϕ̃K (r)BX.x (r)
′
dr

)(∫ 1

0

BX.xB
′
X.x

)−1

= :
nM

n4

(∫ 1

−1

k (r) dr

)(∫ 1

0

BX.xB
′
X.x

)−1

EnK

(∫ 1

0

BX.xB
′
X.x

)−1

, (118)

where

EnK =

(∫ 1

0

BX.x (r) ϕ̃K (r)
′
dr

)(∫ 1

0

ϕ̃K (r) ϕ̃K (r)
′
B̃0.x (r)

2
dr

)(∫ 1

0

ϕ̃K (r)BX.x (r)
′
dr

)
.

(119)

59



It follows that the Wald statistic is

WaldTIV = (HâTIV − h)
′
[
HGK

(
nV̂Kn

)
G′KH

′
]−1

(HâTIV − h)

= {n (âTIV − a)}′H ′
[
n2HGK

(
nV̂Kn

)
G′KH

′
]−1

H {n (âTIV − a)}

∼ a {n (âTIV − a)}′H ′
[
n2H

{
nM

n4

(∫ 1

−1

k (r) dr

)(∫ 1

0

BXB
′
X

)−1

EnK

(∫ 1

0

BXB
′
X

)−1
}
H ′

]−1

×H {n (âTIV − a)}

=
( n
M

)
{n (âTIV − a)}′H ′

[
H

{(∫ 1

−1

k (r) dr

)(∫ 1

0

BXB
′
X

)−1

EnK

(∫ 1

0

BXB
′
X

)−1
}
H ′

]−1

× H {n (âTIV − a)}

= Op

( n
M

)
for fixed K. (120)

Thus, for fixed K, the HAC Wald statistic is Op
(
n
M

)
and diverges whenever the lag trunction

parameter M = o (n) . This outcome is analogous to the result in Phillips (1998) corresponding

to the behavior of the coefficient t statistics constructed with HAC standard errors in a spurious

regression of an integrated time series on deterministic orthonormal regressors {ϕk}Kk=1 . It is, like

that result and as subsequent research (Sun, 2004; Phillips et al., 2019) has confirmed, indicative

of the important property that when M = bn for some fixed b ∈ (0, 1] we would expect to have

test statistic asymptotic behavior of the form WaldTIV = Op (1) . In the HAR section of the

proof given below we show that this is indeed so and establish the limit theory in this case of

fixed-b long run variance matrix estimation.

First we complete the development of the limit behavior of the HAC Wald statistic when

K → ∞. To do so, working from (120) we need to evaluate the asymptotic behavior of EnK .

Observe that

EnK =

(∫ 1

0

BX.x (r) ϕ̃K (r)
′
dr

)(∫ 1

0

ϕ̃K (r) ϕ̃K (r)
′
B̃0.x (r)

2
dr

)(∫ 1

0

ϕ̃K (r)BX.x (r)
′
dr

)
=

∫ 1

r=0

∫ 1

s=0

∫ 1

p=0

BX.x (r)BX.x (p)
′
ϕ̃K (r)

′
ϕ̃K (s) ϕ̃K (s)

′
ϕ̃K (p) B̃0.x (s)

2
drdsdp

∼a
∫ 1

0

B̃0.x (r)
2
BX.x (r)BX.x (r)

′
dr, (121)

To verify (121) we proceed as follows. First, as in the representation (76) in which BX (r) =∑∞
m=1 ϕm (r) νm, we note that BX.x (r) can be written in orthormal expansion form as BX.x (r) =∑∞
j=1 ϕj (r) ζj for suitably chosen mx-vector variates {ζj}∞j=1 . Then,

∫ 1

0
BX.x (r) ϕ̃K (r)

′
dr =

(ζ1, ..., ζK) =: ϑK and

EnK =

∫ 1

0

[ϑK ϕ̃K (r)]
[
ϕ̃K (r)

′
ϑ′K
]
B̃0.x (r)

2
dr

=

∫ 1

0

 K∑
j=1

ϕj (r) ζj

 K∑
j=1

ϕj (r) ζj

′ B̃0.x (r)
2
dr
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→a.s.

∫ 1

0

BX.x(r)BX.x(r)′B̃0.x (r)
2
dr, as K →∞, (122)

giving (121). Using the fact that n (âTIV − a) = Op (1) with limit distribution given by (106) as

(K,n)→∞, we deduce that the Wald statistic WaldTIV has the following asymptotic behavior

WaldTIV = (HâTIV − h)′
[
HGK

(
nV̂Kn

)
G′kH

′]−1
(HâTIV − h)

∼a
(
n

M

)
{n (âTIV − a)}′H ′ ×[

H

{(∫ 1

−1

k (r) dr

)(∫ 1

0

BXB
′
X

)−1(∫ 1

0

B̃0.x (r)2BX.x (r)BX.x (r)′ dr

)(∫ 1

0

BXB
′
X

)−1
}
H ′
]−1

×H {n (âTIV − a)} = Op

(
n

M

)
,

so that the Wald statistic WaldTIV diverges at rate Op
(
n
M

)
even as K →∞ when M = o (n) as

n→∞. The same divergence result therefore holds for this case as for the regression with fixed

K.

The HAR Case When M = bn and a fixed-b kernel approach is employed, we find that

WaldTIV = Op (1) . To find the limit distribution of WaldTIV in this case we proceed as follows.

Define kb
(
j
n

)
= k

(
j
bn

)
, where k (·) is the lag kernel function as before, and set M = bn for some

b ∈ 0, 1]. First, consider the limit behavior of the fixed b kernel long run variance estimator V̂bKn,

defined as

nV̂bKn =

n−1∑
j=−n+1

k

(
j

bn

) n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t+ j

n

)′
Û0.xtÛ0.xt+j .

Then, in place of (113) and using (112), we have as n→∞

1

n2
V̂bKn =

1

n2

n−1∑
j=−n+1

k

(
j

bn

) n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t+ j

n

)′
Û0.xt√
n

Û0.xt+j√
n

=
1

n2

n∑
1≤t,s≤n

kb

(
s− t
n

)
ϕ̃K

(
t

n

)
ϕ̃K

( s
n

)′ Û0.xt√
n

Û0.xs√
n

 
∫ 1

0

∫ 1

0

kb (r − p) ϕ̃K (r) ϕ̃K (p)
′
B̃0.x (r) B̃0.x (p) drdp.

Hence, nV̂bKn ∼a n3
∫ 1

0

∫ 1

0
kb (r − p) ϕ̃K (r) ϕ̃K (p)

′
B̃0.x (r) B̃0.x (p) drdp and so, in place of (118),

the expression for GK

(
nV̂bKn

)
G′K is now

GK

(
nV̂bKn

)
G′K

∼a
n2

n4

(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

BX.x (r) ϕ̃K (r)
′
dr

)
×
(∫ 1

0

∫ 1

0

kb (r − p) ϕ̃K (r) ϕ̃K (p)
′
B̃0.x (r) B̃0.x (p) drdp

)(∫ 1

0

ϕ̃K (r)BX.x (r)
′
dr

)(∫ 1

0

BX.xB
′
X.x

)−1
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=:
1

n2

(∫ 1

0

BXB
′
X

)−1

EbnK

(∫ 1

0

BXB
′
X

)−1

,

and where, with CK :=
∫ 1

0
BX.x (r) ϕ̃K (r)

′
dr,

EbnK = CK
∫ 1

0

∫ 1

0

kb (r − p) ϕ̃K (r) ϕ̃K (p)
′
B̃0.x (r) B̃0.x (p) drdp C′K .

Hence

n2HGK

(
nV̂bKn

)
G′KH

′ ∼a H
(∫ 1

0

BX.xB
′
X.x

)−1

EbnK

(∫ 1

0

BX.xB
′
X.x

)−1

H ′

= H

(∫ 1

0

BX.xB
′
X.x

)−1

CK
(∫ 1

0

∫ 1

0

kb (r − p) ϕ̃K (r) ϕ̃K (p)
′
B̃0.x (r) B̃0.x (p) drdp

)
× C′K

(∫ 1

0

BX.xB
′
X.x

)−1

H ′.

This expression simplifies in a similar manner to (121). Indeed, in place of (122) and using the

representation CK =
∫ 1

0
BX.x (r) ϕ̃K (r)

′
dr = (ζ1, ..., ζK) =: ϑK as before we now have

EbnK =

∫ 1

0

∫ 1

0

kb (r − p) [ϑK ϕ̃K (r)]
[
ϕ̃K (p)

′
ϑ′K
]
B̃0.x (r) B̃0.x (p) drdp

→ a.s.

∫ 1

0

∫ 1

0

kb (r − p)
(
BX.x (r)BX.x (p)

′)
B̃0.x (r) B̃0.x (p) drdp,

as K →∞ since ϑK ϕ̃K (r) =
∑K
j=1 ϕj (r) ζj →a.s. BX.x (r) =

∑∞
j=1 ϕj (r) ζj . Thus, as (K,n)→

∞ we have

n2HGK

(
nV̂bKn

)
G′KH

′

∼a H

(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

∫ 1

0

kb (r − p)
(
BX.x (r)BX.x (p)

′)
B̃0.x (r) B̃0.x (p) drdp

)(∫ 1

0

BX.xB
′
X.x

)−1

H ′.

We deduce that the modified Wald statistic with fixed b HAR kernel construction is

WaldTIV,b = (HâTIV − h)′
[
HGK

(
nV̂bKn

)
G′KH

′]−1
(HâTIV − h)

= {n (âTIV − a)}′H ′
[
n2HGK

(
nV̂bKn

)
G′KH

′
]−1

H {n (âTIV − a)}

∼ a {n (âTIV − a)}′H ′

×

[
H

(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

∫ 1

0

kb (r − p)
(
BX.x (r)BX.x (p)′

)
B̃0.x (r) B̃0.x (p) drdp

)(∫ 1

0

BX.xB
′
X.x

)−1

H ′
]−1

×H {n (âTIV − a)}

= Op (1) as (K,n)→∞.

Now

n (âTIV − a) 

(∫ 1

0

BX.xB
′
X.x

)−1 ∫ 1

0

−−−→
BX.xdB0.x
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=d Ω
1/2
00.x × Ω−1/2

xx

(∫ 1

0

WX.xW
′
X.x

)−1 ∫ 1

0

−−−→
WX.xdW0.x =: Ω

1/2
00.x × Ω−1/2

xx × ηW

=d MN

(
0,Ω00.x × Ω−1/2

xx

(∫ 1

0

WX.xW
′
X.x

)−1 ∫ 1

0

−−−→
WX.x

−−−→
WX.x

′
(∫ 1

0

WX.xW
′
X.x

)−1

Ω−1/2
xx

)
,

where ηW :=
(∫ 1

0
WX.xW

′
X.x

)−1 ∫ 1

0

−−−→
WX.xdW0.x and W0.x = Ω

−1/2
00.x B0.x is a standard Brow-

nian motion which is independent of Wx = Ω
−1/2
xx Bx and, in consequence, all functionals of

Wx, including WX.x(r) = WX (r) −
∫ 1

0
WXWx

(∫ 1

0
WxW

′
x

)−1

Wx (r) , WX (r) =
∫ r

0
Wx, and

−−−→
WX.x(r) =

∫ 1

r
WX.x. The limit distribution of WaldTIV,b therefore takes the following form

WaldTIV,b  Ω00.x × η′WΩ−1/2
xx H ′ {HEBH ′}

−1
HΩ−1/2

xx ηW ,

where

EB :=

(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

∫ 1

0

kb (r − p)
(
BX.x (r)BX.x (p)

′)
B̃0.x (r) B̃0.x (p) drdp

)(∫ 1

0

BX.xB
′
X.x

)−1

= Ω00.x × Ω−1/2
xx

(∫ 1

0

WX.xW
′
X.x

)−1(∫ 1

0

∫ 1

0

kb (r − p)
(
WX.x (r)WX.x (p)

′)
W̃0.x (r) W̃0.x (p) drdp

)
×
(∫ 1

0

WX.xW
′
X.x

)−1

Ω−1/2
xx

=: Ω00.x × Ω−1/2
xx × EW × Ω−1/2

xx ,

where W̃0.x (r) = Ω
−1/2
00.x B̃0.x (r) and B̃0.x is defined in (112). Next observe that

Ω00.x × η′WΩ−1/2
xx H ′ {HEBH ′}

−1
HΩ−1/2

xx ηW

= η′WE
−1/2
W

(
E1/2
W Ω−1/2

xx H ′
){

HΩ−1/2
xx EWΩ−1/2

xx H ′
}−1 (

HΩ−1/2
xx E1/2

W

)
E−1/2
W ηW

= : η′EWL {LL
′}−1

L′ηEW ,

where ηEW = E−1/2
W ηW and L := E1/2

W Ω
−1/2
xx H, which leads to the following limit representation

of the Wald statistic

WaldTIV,b  η′EWL {LL
′}−1

L′ηEW = η′EWPLηEW ,

with the random projection matrix PL = L {LL′}−1
L′. Since the distribution of the random

matrix

EW =

(∫ 1

0

WX.x (r)WX.x (r)
′
)−1(∫ 1

0

∫ 1

0

kb (r − p)WX.x (r)WX.x (p)
′
W̃0.x (r) W̃0.x (p) drdp

)
×
(∫ 1

0

WX.x (r)WX.x (r)
′
)−1

depends only on the vector standard Brownian motions (WX ,Wx), the scalar Brownian motion

W0.x, and the scalar kernel function kb(·) this distribution is invariant to rotations, just as are
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the vector Brownian motion Wx and the random vector ηEW = E−1/2
W ηW . It follows that the limit

distribution of the Wald statistic

WaldTIV,b  η′EWL {LL
′}−1

L′ηEW

is pivotal and depends only on the rank of L := E1/2
W Ω

−1/2
xx H or equivalently the rank of the

q ×mx restriction matrix H, i.e., on the number of restrictions q.

Part (viii)

The HAC Case In this case e+
t = et and the fitted equation is by its partial sum construction

a cointegrating equation with I (2) regressor Xt, I (1) regressor xt, augmented with the additional

I (0) regressor ∆xt = uxt, and the I (0) error et. The TIV regression produces consistent estimates

of the cointegrating vector a, as shown in Theorem 3, and also the long run regression coefficient

f = Ω−1
xxΩx0, just as in Phillips (2014). In particular, note that

f̂TIV − f =

(
1

n2
x′RfKx

)−1

(
1

n2
x′RfKe)→p 0 (123)

where

RfK = PΦK
− PΦK

Cf
(
C ′fPΦK

Cf
)−1

C ′fPΦK
,

C ′f =
[
X1 · · · Xn
ux1 · · · uxn

]
=

[
X ′

u′x

]
.

After calculations using techniques similar to those employed earlier11, we obtain

1

n2
x′RfKx 

∫ 1

0

BxB
′
x −

∫ 1

0

BxB
′
X

(∫ 1

0

BXB
′
X

)−1 ∫ 1

0

BXB
′
x =

∫ 1

0

Bx.XB
′
x.X , (124)

where Bx.X (r) = Bx (r)−
∫ 1

0
BxB

′
X

(∫ 1

0
BXB

′
X

)−1

BX (r) , and

1

n2
x′RfKe =

1

n

(
1

n
x′PΦK

e− 1

n
x′PΦK

Cf
(
C ′fPΦK

Cf
)−1

C ′fPΦK
e

)
= Op

(
1

n

)
,

thereby establishing (123). More specifically, and again after considerable calculation, we obtain

1

n
x′RfKe =

1

n
x′PΦK

e− 1

n
x′PΦK

Cf
(
C ′fPΦK

Cf
)−1

C ′fPΦK
e

=
x′ΦK
n3/2

Φ′Ke√
n
− x′ΦK

n3/2

Φ′KCf√
n

Ln
(
LnC

′
fPΦK

CfLn
)−1

Ln
C ′fΦK√

n

Φ′Ke√
n

+ op (1)

 
∫ 1

0

BxdBe.x −
∫ 1

0

BxB
′
X

(∫ 1

0

BXB
′
X

)−1 ∫ 1

0

BXdBe.x =

∫ 1

0

Bx.XdBe.x. (125)

Combining (124) and (125) gives

n(f̂TIV − f) =

(
1

n2
x′RfKx

)−1(
1

n
x′RfKe

)
 

(∫ 1

0

Bx.XB
′
x.X

)−1 ∫ 1

0

Bx.XdBe.x. (126)

11 A full development will be given elsewhere.
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Further, since g = 0 by construction, we have

ĝTIV =

(
1

K
u′xRgKux

)−1(
1

K
u′xRgKe

)
→p Ω−1

xxωxe (127)

where

RgK = PΦK
− PΦK

Cg
(
C ′gPΦK

Cg
)−1

C ′gPΦK
,

C ′g =
[
X1 · · · Xn
x1 · · · xn

]
=

[
X ′

x′

]
.

In particular, note that using the normalization matrix Dn = diag
[
n−2Imx , n

−1Imx

]
we have

1

K
u′xRgKux =

1

K
u′xPΦK

ux −
1

K
u′xPΦK

CgDn

(
DnC

′
gPΦK

CgDn

)−1
DnC

′
gPΦK

ux

=
1

K
u′xPΦK

ux −
(

1√
K

u′xΦK√
n

)[ 1
n

Φ′
KX

n3/2

1
n

Φ′
Kx√
n

] (
DnC

′
gPΦK

CgDn

)−1

[
1
n
X′ΦK

n3/2

1
n
x′ΦK√
n

](
Φ′Kux√

n

1√
K

)
=

1

K
u′xPΦK

ux +Op

(
1

K

)
→p Ωxx,

and, similarly, 1
Ku
′
xRgKe →p ωxe, giving (127). In consequence ĝTIV provides a consistent

estimate of the long run regression coefficient Ω−1
xxωxe.

It follows that the regression residuals

ê+
t = e+

t − (âTIV − a)
′
Xt −

(
f̂TIV − f

)′
xt − ĝ′TIV uxt

= et − n2 (âTIV − a)
′ Xt

n3/2

1√
n
− n

(
f̂TIV − f

)′ xt√
n

1√
n
− ω′xeΩ−1

xxuxt +Op

(
1

K

)
= et − ω′xeΩ−1

xxuxt +Op

(
1√
n

+
1

K

)
=: e0.x,t +Op

(
1√
n

+
1

K

)
, (128)

consistently estimate the e0.x,t = et−ω′xeΩ−1
xxuxt. Thus the effect of the inclusion of the regressor

∆xt = uxt in the regression is to ensure that the fitted TIV residuals estimate the equation errors

adjusted for the conditional long run mean, viz., e0.x,t = et − ω′xeΩ−1
xxuxt. Correspondingly, the

long run variance estimator in (104) is

ω̂2
e+ =

M∑
j=−M

k

(
j

M

)
1

n

n∑
1≤t,t+j≤n

ê+
t ê

+
t+j

=

M∑
j=−M

k

(
j

M

) 1

n

n∑
1≤t,t+j≤n

e0.x,te0.x,t+j

+ op (1)

→p ωee.x = ωee − ωexΩ−1
xxωxe = VLR (e0.x,t) . (129)

In a similar way, the kernel estimate V̂Kn in (102) of the transformed residuals has the form

V̂Kn =

M∑
j=−M

k

(
j

M

)
1

n

n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t+ j

n

)′
ê+
t ê

+
t+j (130)
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=

M∑
j=−M

k

(
j

M

)
1

n

n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t+ j

n

)′
e0.x,te0.x,t+j + op (1)

=

M∑
j=−M

k

(
j

M

)
1

n

n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t

n

)′
E (e0.x,te0.x,t+j) + op (1)

=

(
1

n

n∑
t=1

ϕ̃K

(
t

n

)
ϕ̃K

(
t

n

)′) M∑
j=−M

k

(
j

M

)
E (e0.x,te0.x,t+j) + op (1)

=

(
1

n
Φ′KΦK

)
ω2
e.x + op (1) = ωee.xIK + op (1) , (131)

since 1
nΦ′KΦK = IK +O

(
1
n

)
. Further, observe that

GK = (X ′RKX)
−1
{
X ′ΦK (Φ′KΦK)

−1 −X ′PΦK
Cx (C ′xPΦK

Cx)
−1
C ′xΦK (Φ′KΦK)

−1
}

= (X ′RKX)
−1
{
X ′ΦK −X ′PΦK

Cx (C ′xPΦK
Cx)

−1
C ′xΦK

}
(Φ′KΦK)

−1

so that

GK

(
nV̂Kn

)
G′K = ωee.xGK (Φ′KΦK)G′K + op (1)

= ωee.x (X ′RKX)
−1
{
X ′ΦK −X ′PΦK

Cx (C ′xPΦK
Cx)

−1
C ′xΦK

}
(Φ′KΦK)

−1

×
{

Φ′KX − Φ′KCx (C ′xPΦK
Cx)

−1
C ′xPΦK

X
}

(X ′RKX)
−1

+ op (1)

= ωee.x (X ′RKX)
−1
{
X ′PΦK

X −X ′PΦK
Cx (C ′xPΦK

Cx)
−1
C ′xPΦK

X

−X ′PΦK
Cx (C ′xPΦK

Cx)
−1
C ′xPΦK

X +X ′PΦK
Cx (C ′xPΦK

Cx)
−1
C ′xPΦK

Cx (C ′xPΦK
Cx)

−1
C ′xPΦK

X
}

× (X ′RKX)
−1

+ op (1)

= ωee.x (X ′RKX)
−1

+ op (1) .

using the fact that nPΦK
= nΦK (Φ′KΦK)

−1
Φ′K = ΦK

(
1
nΦ′KΦK

)−1
Φ′K = ΦKΦ′K

{
1 +O

(
1
n

)}
.

Then, the Wald statistic is

WaldTIV = (HâTIV − h)
′
[
HGK

(
nV̂Kn

)
G′KH

′
]−1

(HâTIV − h)

=
1

ωee.x

[
n2 (âTIV − a)

]′
H ′

[
H

(
X ′RKX

n4

)−1

H ′

]−1

H
[
n2 (âTIV − a)

]
+ op (1)

∼ a

[
n2

(
âTIV − a
ω

1/2
ee.x

)]′
H ′

[
H

(∫ 1

0

BX.xB
′
X.x

)−1

H ′

]−1

H

[
n2

(
âTIV − a
ω

1/2
ee.x

)]
≡ χ2

q

since

n2H (âTIV − a) MN

(
0, ωee.xH

(∫ 1

0

BX.xB
′
X,x

)−1

H ′

)
, (132)

thereby giving the required limit theory for the WaldTIV statistic.
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The HAR Case In the HAR variance matrix case in view of the fixed-b kernel, we use the

following full representation in place of (128)

ê+
t = e0.x,t − n2 (âTIV − a)

′ Xt

n3/2

1√
n
− n

(
f̂TIV − f

)′ xt√
n

1√
n

+Op

(
1

K

)
= e0.x,t −

1√
n
D′nwnt +Op

(
1

K

)
, (133)

where D′n :=
(
n2 (âTIV − a)

′
, n(f̂TIV − f)′

)
and wnt = (Xt/n

3/2, xt/n
1/2)′. In view of (126)

and (132) we have

D′nwnbnrc = n2 (âTIV − a)
′ Xbnrc

n3/2
+ n

(
f̂TIV − f

)′ xbnrc√
n

 
∫ 1

0

dBe.xB
′
X.x

(∫ 1

0

BX.xB
′
X.x

)−1

BX(r) +

∫ 1

0

dBe.xBx.X

(∫ 1

0

Bx.XB
′
x.X

)−1

Bx(r)

= `′XBX(r) + `′xBx(r) =: `′+B+(r) (134)

where `′X =
∫ 1

0
dBe.xB

′
X.x

(∫ 1

0
BX.xB

′
X.x

)−1

, `′x =
∫ 1

0
dBe.xBx.X

(∫ 1

0
Bx.XB

′
x.X

)−1

, `+ = (`′X , `
′
x)′,

and B+(r) = (BX(r)′, Bx(r)′)
′
.

The following fixed-b kernel estimate replaces (130) and when K2/n→∞ we have

V̂bKn =

n−1∑
j=−n+1

kb

(
j

n

)
1

n

n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t+ j

n

)′
ê+
t ê

+
t+j

=

n−1∑
j=−n+1

kb

(
j

n

) n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t+ j

n

)′
e0.x,t√
n

e0.x,t+j√
n

− 2

n

n−1∑
j=−n+1

kb

(
j

n

) n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t+ j

n

)′
e0.x,t√
n
D′nwnt+j

+
1

n2

n−1∑
j=−n+1

kb

(
j

n

) n∑
1≤t,t+j≤n

ϕ̃K

(
t

n

)
ϕ̃K

(
t+ j

n

)′
(D′nwntD′nwnt+j) + op (1)

=

n∑
1≤t,s≤n

kb

(
s− t
n

)
ϕ̃K

(
t

n

)
ϕ̃K

( s
n

)′ e0.x,t√
n

e0.x,s√
n

− 2

n

n∑
1≤t,s≤n

kb

(
s− t
n

)
ϕ̃K

(
t

n

)
ϕ̃K

( s
n

)′ e0.x,t√
n
D′nwns

+
1

n2

n∑
1≤t,s≤n

kb

(
s− t
n

)
ϕ̃K

(
t

n

)
ϕ̃K

( s
n

)′
D′nwntD′nwns + op(1)

∼a
∫ 1

0

∫ 1

0

kb (p− r) ϕ̃K (p) ϕ̃K (r)
′
dBe.x (p) dBe.x (r)

− 2

∫ 1

0

∫ 1

0

kb (p− r) ϕ̃K (p) ϕ̃K (r)
′
dBe.x(p)`′+B+(r)dr

+

∫ 1

0

∫ 1

0

kb (p− r) ϕ̃K (p) ϕ̃K (r)
′
`′+B+(p)`′+B+(r)dpdr
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=

∫ 1

0

∫ 1

0

kb (p− r) ϕ̃K (p) ϕ̃KdQB(p)dQB(r) (135)

as n→∞, where the stochastic process QB(r) is defined by the stochastic differential equation

dQB(r) = dBe.x(r) − `′+B+(r)dr. From the definition of the components of QB(r) we have the

equivalent representation

dQB(r) =d ω
1/2
ee.xdQW (r) := ω1/2

ee.x

[
dWe.x(r)− `′W,+W+(r)dr

]
, (136)

in terms of functionals of standard Brownian motion processes. This representation is ob-

tained by noting that: (i) `+ = (`′X , `
′
x)′ =d ωee.x`

′
W,+Ω

−1/2
xx = ωee.x(`′W,X , `

′
W,x)′Ω

−1/2
xx ,

where `′W,X =
∫
dWe.xW

′
X.x

(∫
WX.xW

′
X.x

)−1
, `′W,x =

∫
dWe.xW

′
x.X

(∫
Wx.XW

′
x.X

)−1
; and

(ii) B+(r) = (BX(r)′, Bx(r)′)
′

= Ω
1/2
xx W+(r) = Ω

1/2
xx (WX(r)′,Wx(r)′)

′
, so that we can define

dQW (r) = dWe.x(r)− `′W,+W+(r)dr, which leads directly to the equivalent representation shown

in (136).

In view of (135) we have the following asymptotic behavior of the scaled fixed-b kernel estimate

V̂bKn

nV̂bKn ∼a n
∫ 1

0

∫ 1

0

kb (r − p) ϕ̃K (r) ϕ̃K (p)
′
dQB(p)dQB(r).

Now recall that

GK = (X ′RKX)
−1
{
X ′ΦK (Φ′KΦK)

−1 −X ′PΦK
Cx (C ′xPΦK

Cx)
−1
C ′xΦK (Φ′KΦK)

−1
}

= (X ′RKX)
−1
{
X ′ΦK −X ′PΦK

Cx (C ′xPΦK
Cx)

−1
C ′xΦK

}
(Φ′KΦK)

−1

∼a
1

n
(X ′RKX)

−1
{
X ′ΦK −X ′PΦK

Cx (C ′xPΦK
Cx)

−1
C ′xΦK

}
∼a

1

n

(
X ′RKX

n4

)−1{
X ′ΦK
n5/2

− 1

n5/2
X ′PΦK

Cx (C ′xPΦK
Cx)

−1
C ′xΦK

}
× n5/2

n4

∼a
1

n5/2

(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

BX.x (r) ϕ̃K (r)
′
dr

)
,

so that

GK

(
nV̂bKn

)
G′k ∼a GK

(
n

∫ 1

0

∫ 1

0

kb (r − p) ϕ̃K (r) ϕ̃K (p)
′
dQB(p)dQB(r)

)
G′k

∼a
n

n5

(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

BX.x (r) ϕ̃K (r)
′
dr

)
×
(∫ 1

0

∫ 1

0

kb (r − p) ϕ̃K (r) ϕ̃K (p)
′
dQB(p)dQB(r)

)
×
(∫ 1

0

ϕ̃K (r)
′
BX.x (r)

′
dr

)(∫ 1

0

BX.xB
′
X.x

)−1

∼a
1

n4

(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

∫ 1

0

kb (r − p)BX.x (p)BX.x (r)
′
dQB(p)dQB(r)

)(∫ 1

0

BX.xB
′
X.x

)−1

.

The final line above follows because∫ 1

0

BX.x (r) ϕ̃K (r)
′
dr

(∫ 1

0

∫ 1

0

kb (p− r) ϕ̃K (p) ϕ̃K (r)
′
dQB(p)dQB(r)

)∫ 1

0

ϕ̃K (r)BX.x (r)
′
dr
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∼a
∫ 1

0

∫ 1

0

kb (p− r)BX.x (p)BX.x (r)
′
dQB(p)dQB(r),

where we use precisely the same argument as earlier in (122) to show that(∫ 1

0

BX.x (r) ϕ̃K (r)
′
dr

)
ϕ̃K (p) = (ζ1, ..., ζK) ϕ̃K (p) =

K∑
j=1

ϕj (r) ζj →a.s. BX.x (r) ,

as K →∞. The fixed-b HAR Wald statistic WaldTIV,b then has the following asymptotic form

WaldTIV,b = (HâTIV − h)′
[
HGK

(
nV̂bKn

)
G′KH

′]−1
(HâTIV − h)

=
[
n2 (âTIV − a)

]′
H ′
[
n4HGK

(
nV̂bKn

)
G′KH

′
]−1

H
[
n2 (âTIV − a)

]
∼a

[
n2 (âTIV − a)

]′
H ′

×

[
H

(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

∫ 1

0

kb (r − p)BX.x (p)BX.x (r)′ dQB(p)dQB(r)

)(∫ 1

0

BX.xB
′
X.x

)−1

H ′
]−1

×H
[
n2 (âTIV − a)

]
.

From Theorem 3, we deduce that

n2H (âTIV − a) H

(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

BX.xdBe.x

)
=d ω1/2

ee.x H Ω−1/2
xx

(∫ 1

0

WX.xW
′
X.x

)−1(∫ 1

0

WX.xdWe.x

)
,

with functionals WX.x and We.x of standard Brownian motion, corresponding to BX.x and Be.x.

Next, as shown above in (136) we have dQB(r) =d ω
1/2
ee.xdQW (r). Then

H

(∫ 1

0

BX.xB
′
X.x

)−1(∫ 1

0

∫ 1

0

kb (r − p)BX.x (p)BX.x (r)
′
dQ(p)dQ(r)

)(∫ 1

0

BX.xB
′
X.x

)−1

H ′

=d ωee.xHΩ−1/2
xx

(∫ 1

0

WX.xW
′
X.x

)−1(∫ 1

0

∫ 1

0

kb (r − p)WX.x (p)WX.x (r)
′
dQW (p)dQW (r)

)
×
(∫ 1

0

WX.xW
′
X.x

)−1

Ω−1/2
xx H ′.

It follows that the limit distribution of WaldTIV,b is given by

WaldTIV,b  

(∫ 1

0

dWe.xW
′
X.x

)(∫ 1

0

WX.xW
′
X.x

)−1

Ω
−1/2
xx H ′×[

HΩ
−1/2
xx

(∫ 1

0

WX.xW
′
X.x

)−1(∫ 1

0

∫ 1

0

kb (r − p)WX.x (p)WX.x (r)′ dQW (p)dQW (r)

)(∫ 1

0

WX.xW
′
X.x

)−1

Ω
−1/2
xx H ′

]−1

×HΩ
−1/2
xx

(∫ 1

0

WX.xW̃
′
X

)−1(∫ 1

0

W̃XdWe.x

)
=: η′e.xL

′
H

[
LHFWL′H

]−1
LHηe.x
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where ηe.x =
(∫ 1

0
WX.xW

′
X.x

)−1 (∫ 1

0
WX.xdWe.x

)
, LH = HΩ

−1/2
xx , and

FW =

(∫ 1

0

WX.xW̃
′
X

)−1(∫ 1

0

∫ 1

0

kb (r − p)WX.x (p)WX.x (r)
′
dQW (p)dQW (r)

)(∫ 1

0

WX.xW
′
X.x

)−1

.

Note that H is q ×mx of rank q ≤ mx. Define L = (LHL
′
H)
−1/2

LH , so that LL′ = Iq, and

η′e.xL
′
H [LHFWL′H ]

−1
LHηXe = η′e.xL

′ [LFWL′]
−1
Lηe.x.

Construct the orthogonal mx×mx matrix L =
[

L
L⊥

]
and note that Lηe.x =d ηe.x. We can write

Lηe.x = [Iq, 0]Lηe.x and LFWL′ = [Iq, 0]LFWL′
[
Iq
0

]
,

from which it follows that

η′e.xL
′ [LFWL′]

−1
Lηe.x = η′e.xL′

[
Iq
0

]{
[Iq, 0]LFWL′

[
Iq
0

]}−1

[Iq, 0]Lηe.x

=d η
′
e.x

[
Iq
0

]{
[Iq, 0]FW

[
Iq
0

]}−1

[Iq, 0] ηe.x

= η′e.xJ ′q
{
JqFWJ ′q

}−1 Jqηe.x, with Jq = [Iq, 0] .

Since Lηe.x =d ηe.x and LFWL′ =d FW , the limit distribution of η′e.xL
′ [LFWL′]−1

Lηe.x is seen

to be invariant to L and dependent only on the dimension q of the restrictions, as embodied in the

matrix Jq = [Iq, 0]. The limit distribution WaldTIV,b  η′e.xJ ′q
{
JqFWJ ′q

}−1 Jqηe.x is therefore

pivotal and dependent only on the dimension parameterq, the constituent standard Brownian

motions involved in (ηe.x,FW ) and the fixed-b kernel function kb(·).
�
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9.3 Glossary of Notation

We use the following notation for data matrices, various functionals of the Brownian motions

(BX , Bx, Be, B0.x), and associated stochastic processes including their standard Brownian motion

analogues (WX ,Wx,We,W0.x). The functionals are defined in the paper and repeated here for

convenience. In the following formulae
∫

represents
∫ 1

0
when the limits are not provided.

Px = x (x′x)
−1
x′, Qx = I − x (x′x)

−1
x′

X = [X1, · · · , Xn], x = [x1, · · · , xn], Y = [Y1, · · · , Yn], ux = [ux1, · · · , uxn]

BX (r) =

∫ r

0

Bx = Ω1/2
xx WX = Ω1/2

xx

∫ r

0

Wx

BX.x (r) = BX (r)−
∫
BXBx

(∫
BxB

′
x

)−1

Bx (r) = Ω1/2
xx WX.x(r)

WX.x(r) = WX (r)−
∫
WXW

′
x

(∫
WxW

′
x

)−1

Wx (r)

−−−→
BX.x (r) =

∫ 1

r

BX.x = Ω1/2
xx

−−−→
WX.x(r) = Ω1/2

xx

∫ 1

r

WX.x

AX.x =

∫
BX.xB

′
X.x = Ω1/2

xx AW,X.xΩ1/2
xx = Ω1/2

xx

∫
WX.xW

′
X.x Ω1/2

xx

Be.x (r) = Be (r)− ωexΩ−1
xxBx (r) =d ω

1/2
ee.xWe.x, ωee.x = ωee − ωexΩ−1

xxωxe,

B0.x (r) = B0 (r)− Ω0xΩ−1
xxBx (r) =d Ω

1/2
00.xW0.x

Bx.X (r) = Bx (r)−
∫
BxB

′
X

(∫
BXB

′
X

)−1

BX (r) =d Ω1/2
xx Wx.X

Wx.X(r) = Wx (r)−
∫
WxW

′
X

(∫
WXW

′
X

)−1

WX (r)

B̃0.x (r) = B0.x (r)−
∫
B0.xB

′
X.x

(∫
BX.xB

′
X.x

)−1

BX (r)

−
∫
B0.xB

′
x.X

(∫
Bx.XB

′
x.X

)−1

Bx (r)

= Ω1/2
xx W̃0.x(r)

ηK =

∫ 1

r=0

ϕ̃K (r)Bx (r)
′
dr, ξK =

∫ 1

r=0

ϕ̃K (r) dBx (r)
′
, µK =

∫ 1

r=0

ϕ̃K (r)BX (r)
′
dr

ηW =

(∫
WX.xW

′
X.x

)−1 ∫ −−−→
WX.xdW0.x,

ηe.x =

(∫
WX.xW

′
X.x

)−1(∫
WX.xdWe.x

)
Ψ0.xK =

∫
ϕ̃KB0.x ≡ N

(
0,Ω00.x

(∫ ∫
(r ∧ s) ϕ̃K (r) ϕ̃K (s)

′
drds

))
ψeK =

∫
ϕ̃KdBe

JK = QξK −QξKηK (η′KQξKηK)
−1
η′KQξK
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Jq = [Iq, 0]

ϑK =

∫
BX.x (r) ϕ̃K (r)

′
dr = (ζ1, ..., ζK)

`′X =

∫
dBe.xB

′
X.x

(∫
BX.xB

′
X.x

)−1

=d ωee.x`
′
W,XΩ−1/2

xx

`′W,X =

∫
dWe.xW

′
X.x

(∫
WX.xW

′
X.x

)−1

`′x =

∫
dBe.xBx.X

(∫
Bx.XB

′
x.X

)−1

=d ωee.x`
′
W,xΩ−1/2

xx

`′W,x =

∫
dWe.xW

′
x.X

(∫
Wx.XW

′
x.X

)−1

`+ = (`′X , `
′
x)′ =d ωee.x`

′
W,+Ω−1/2

xx

`′W,+ = (`′W,X , `
′
W,x)′

B+(r) = (BX(r)′, Bx(r)′)
′

= Ω1/2
xx W+(r) = Ω1/2

xx (WX(r)′,Wx(r)′)
′

QB = Be.x(r) + `′+

∫ r

0

B+ = Ω1/2
ee.xQW (r)

QW (r) = We.x(r) + `′W,+

∫ r

0

W+,

where ϕ̃K (r) = (ϕ1 (r) , ..., ϕK (r))
′
.
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