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Abstract

The discrete Fourier transform (dft) of a fractional process is studied. An exact rep-

resentation of the dft is given in terms of the component data, leading to the frequency

domain form of the model for a fractional process. This representation is particularly use-

ful in analyzing the asymptotic behavior of the dft and periodogram in the nonstationary

case when the memory parameter d ≥ 1
2 . Various asymptotic approximations are estab-

lished including some new hypergeometric function representations that are of independent

interest. It is shown that smoothed periodogram spectral estimates remain consistent for

frequencies away from the origin in the nonstationary case provided the memory parameter

d < 1. When d = 1, the spectral estimates are inconsistent and converge weakly to ran-

dom variates. Applications of the theory to log periodogram regression and local Whittle

estimation of the memory parameter are discussed and some modified versions of these

procedures are suggested for nonstationary cases.
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1 Introduction

Studies of nonstationary time series over the last four decades have produced a vast body of

knowledge that has transformed the conduct of empirical research in economics. The impact

of this research is now manifest in empirical work throughout the social and business sciences.

A catalyst supporting these developments was the widespread recognition that real world

processes in society, economics, and politics are influenced in fundamental ways by advances

in technology, firm investments, and individual human decision making. These processes are

rarely, if ever, stationary. Inevitably they evolve in uncertain ways over time, reflecting the

arrival of new shocks to the system, some of which have persistent effects. Recognizing this

reality led to an understanding that methods of data analysis need to account for the fact

that the way in which memory is carried in the data differs in a fundamental manner among

stationary, near-stationary and nonstationary processes.

Acknowledgement of the importance of this distinction is evident in early researches of

statisticians and economists at the turn of the twentieth century (Hooker, 1901; Yule, 1926;

Pearson and Elderton, 1923) on nonsense correlations1 and the work of the mathematician

Bachelier (1900) on speculative prices, which introduced the notion of a stochastic process.

Methods began to emerge later that provided probabilistic underpinnings and foundations for

statistical inference with data that demonstrated long range memory or dependence (Hurst,

1951, 1956; Mandelbrot and Van Ness, 1968; Granger and Joyeux, 1980; Hosking, 1981) and

various types of random wandering behavior over time. In economics in the 1980s, advances

in the use of function space limit theory were made that enabled the full trajectory features

of nonstationary data to be reflected in regression asymptotics, leading to new understanding

of such regressions, including both cointegrating and spurious regressions, and new methods

of testing and inference for analyzing nonstationary data (Phillips, 1986b, 1987, 1988; Phillips

and Durlauf, 1986; Durlauf and Phillips, 1988).

Joon Park played a big part in these developments, starting with his doctoral dissertation

research and early research at Yale (Park and Phillips, 1988, 1989) and a sustained series of

subsequent works that have helped to push out the envelope of econometric methodology for

linear, nonlinear, and continuous time methods of analysis with nonstationary data. Many of

these works have been jointly conducted with the present author in a longstanding collaboration

that has been as pleasurable and special an academic fellowship as much as it has enriched

this field of research.

My contribution to this symposium of works honoring Joon Park relates to his research on

nonstationary processes and focuses on some of the defining properties of long range dependent

time series. The present work has a history reaching back more than two decades and it is

hoped that a good part of its value is retained amidst the considerable body of work that

has emerged since the original version of the paper (Phillips, 1999a) was written. The first

1See Aldrich (1995) for an overview of early research on correlation, including nonsense correlations, where
as Aldrich aptly puts it ‘there are more ways of going wrong than going right’.
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contribution of the paper is to provide an exact representation of the discrete Fourier transform

(dft) of a fractional process, which enables asymptotic analysis of its behavior and various

functionals such as the periodogram in the nonstationary case when the memory parameter

d ≥ 1
2 . The methods reveal that smoothed periodogram spectral estimates remain consistent

for frequencies away from the origin in the nonstationary case provided the memory parameter

d < 1. When d = 1, the spectral estimates are inconsistent and converge weakly to random

variates. Some useful applications of this theory are given for log periodogram regression and

local Whittle estimation of the memory parameter in nonstationary cases. For an advanced

textbook treatment of long memory processes, readers are referred to Surgailis et al. (2012).

The plan of the paper is as follows. Various preliminaries are given in the following Section

2. Some useful new decompositions and representations in the frequency domain are developed

in Section 3 that extend related decompositions in the time domain. Section 4 develops asymp-

totic approximations for dfts involving special functions that help to simplify representations

and enable development of limit theory for dfts of fractional processes in nonstationary cases.

These results extend earlier work on the limit theory of dfts of stationary processes to the frac-

tional case. For higher levels of dependence, when d = 1, the leakage from the zero frequency

becomes dominant and affects the limit theory at all frequencies, so that dfts are spatially cor-

related across frequency asymptotically, quite unlike the stationary case. Section 5 provides

some applications of the results to spectral estimation and to semiparametric estimation of

the memory parameter. Particular attention in the latter case is given to log periodogram

regression and local Whittle estimation. Some modified versions of these procedures are sug-

gested which conveniently extend their range of applicability to the nonstationary case. Final

remarks on long memory and autoregressive approaches to nonstationarity close out Section 5.

Proofs and technical results are in the Appendix in Section 6. A notational summary is given

at the end of the paper in Section 7.

A final word of introduction. While our focus is on the case where d ∈ (1
2 , 1), the methods

introduced here are applicable when d > 1, and in modified form when |d| < 1
2 . A particularly

useful approach is to combine the exact representation (3.7) that applies when d = 1 with

results for fractional d to produce valid representations for the d > 1 case. The remarks and

results in paragraphs 3.6 - 3.8 indicate some of these possibilities.

2 Preliminaries

We consider the fractional process Xt generated by the model

(1− L)dXt = ut, t = 0, 1, ... (2.1)

Our interest is primarily in the case where Xt is nonstationary and d ≥ 1
2 , so in (2.1) we

work from a given initial date t = 0, set uj = 0 for all j ≤ 0, and assume that ut (t > 0) is

stationary with zero mean and continuous spectrum fu(λ) > 0. This formulation corresponds
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to a Type II fractional process (Marinucci and Robinson, 1999; Davidson and Hashimzade,

2009). Expanding the binomial in (2.1) gives the form

t∑
k=0

(−d)k
k!

Xt−k = ut, (2.2)

where

(d)k =
Γ (d+ k)

Γ (d)
= (d)(d+ 1)...(d+ k − 1)

is Pochhammer’s symbol for the forward factorial function and Γ (·) is the gamma function.

When d is a positive integer, the series in (2.2) terminates, giving the usual formulae for the

model (2.1) in terms of differences and higher order differences of Xt. An alternate form for

Xt is obtained by inversion of (2.1), giving

Xt = (1− L)−d ut =

t∑
k=0

(d)k
k!

ut−k. (2.3)

Throughout this paper it will be convenient to assume that the stationary component ut

in (2.1) is a linear process of the form

ut = C (L) εt =
∞∑
j=0

cjεt−j ,
∞∑
j=0

j |cj | <∞, C (1) 6= 0, (2.4)

for all t and with εt = iid
(
0, σ2

)
with finite fourth moments. The summability condition in

(2.4) is satisfied by a wide class of parametric and nonparametric models for ut, enables the

use of the techniques in Phillips and Solo (1992), and ensures that partial sums of ut satisfy a

functional central limit theorem, which will be needed later.

Under (2.4), the spectrum is fu(λ) = σ2

2π

∣∣∣∑∞j=0 cje
ijλ
∣∣∣2 and fu(0) = σ2

2πC(1)2 > 02. In view

of (2.1), it is natural to define

fx(λ) = |1− eiλ|−2dfu(λ). (2.5)

The function fx(λ) gives the spectrum of Xt when it exists and Xt is stationary (i.e. for |d| < 1
2

and under infinite past initialization of Xt in (2.3)) and is the analogue of the spectrum in the

nonstationary case when d ≥ 1
2 even though it is not integrable. In that case, Solo (1992) gave

a formal justification of fx(λ) as a spectrum in terms of the limit of the expectation of the

periodogram. Taking logarithms of (2.5) produces the equation

ln(fx(λ)) = −2d ln(|1− eiλ|) + ln(fu(λ)), (2.6)

2Zeros everywhere in fu(λ) are ruled out if the last condition of (2.4) is strengthened to C(eiλ) 6= 0 for all
λ ∈ [0, π].

4



which motivates a linear log periodogram regression for the estimation of d, in which fx(λ)

is replaced by periodogram ordinates Ix(λ) evaluated at the fundamental frequencies λs =
2πs
n , s = 0, 1, ..., n− 1. Here, Ia(λs) = wa(λs)wa(λs)

∗, wa(λs) is the discrete Fourier transform

(dft) wa(λs) = 1√
2πn

∑n
t=1 ate

itλs of a time series at, and w∗ is the complex conjugate of w.

With this substitution (2.6) becomes

ln (Ix (λs)) = −2d ln
∣∣∣1− eiλs∣∣∣+ ln (fu (λs)) + U (λs) , (2.7)

where U (λs) = ln [Ix (λs) /fx (λs)] . By virtue of the continuity of fu, fu (λs) is effectively con-

stant for frequencies in a shrinking band around the origin, suggesting a linear least squares

regression of ln (Ix (λs)) on ln
∣∣1− eiλs∣∣ over frequencies s = 1, ...,m (with m a truncation

number). The method has undoubted appeal, is easy to perform in practice and has been

commonly employed in applications. However, (2.6) is a moment condition, not a data gener-

ating mechanism, and the analysis of this regression estimator is complicated by the difficulty

of characterising the asymptotic behavior of the dft wx(λs), which is the central element in

determining the properties of the regression residual U (λs) in (2.7).

An important contribution by Künsch (1986) showed that, for fractional processes like

(2.1), wx(λs) has quite different statistical properties from the corresponding dft, wu(λs), of

the stationary process ut for frequencies in the immediate neighbourhood of the origin. In

particular, for λs = 2πs
n → 0, with s fixed as n → ∞, the dft ordinates are asymptotically

correlated, not uncorrelated. Analyses by Robinson (1995b) and Hurvich et al. (1998) for

Gaussian ut have provided an asymptotic theory in the stationary case, thereby placing log

periodogram regression on a rigorous footing. More recent work has dealt with nonstationary

cases where d ≥ 1
2 (Velasco, 1999; Kim and Phillips, 2006; Phillips, 2007). Another semipara-

metric estimation procedure, suggested by Künsch (1987), is the Gaussian estimator which

maximises a local version of the Whittle likelihood, which is known to have a smaller variance

than log periodogram regression in the stationary case (Robinson, 1995a). This estimator also

relies on the behavior of wx(λs) for frequencies in the vicinity of the origin. More recent work

on Whittle estimation has focused on nonstationary cases where d ≥ 1
2 (Velasco and Robinson,

2000; Phillips and Shimotsu, 2004; Shimotsu and Phillips, 2005, 2006; Abadir et al., 2007;

Shao, 2010; Phillips, 2014) and cases of noise contaminated data (Sun and Phillips, 2003) such

as in the estimation of the Fisher equation (Sun and Phillips, 2004).

The present paper provides new methods for studying the asymptotic behavior of wx(λs) for

nonstationary values of d. The approach relies on an exact representation of wx(λs) in terms of

the dft wu(λs) and certain residual components. This representation aids in the analysis of the

properties of wx(λs) and, thereby, in the study of log periodogram regression and local Whittle

estimation. The representation also provides a frequency domain version of the data generating

mechanism (2.1) above. As such, it is useful in motivating some alternative approaches to

inference about d that are proposed here and which have been explored in subsequent work

that has appeared since the first version of this paper circulated in 1999.
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3 Frequency Domain Decompositions

It is convenient to manipulate the operator (1− L)d in (2.1), with its polynomial expansion

(2.2), in a form that more readily accommodates dfts. This can be done algebraically, as in

Phillips and Solo (1992), by expanding the polynomial operator about its value at the complex

exponential eiλ, leading to the following decomposition.

3.1 Lemma Define the fractional operator expansion Dn (L; d) =
∑n

k=0
(−d)k
k! Lk. Then

Dn (L; d) = Dn

(
eiλ; d

)
+ D̃nλ

(
e−iλL; d

)(
e−iλL− 1

)
, (3.1)

where D̃nλ

(
e−iλL; d

)
=
∑n−1

p=0 d̃λpe
−ipλLp and d̃λp =

∑n
k=p+1

(−d)k
k! eikλ.

The representation (3.1) is an immediate consequence of formula (32) in Phillips and Solo

(1992) and can be obtained by straightforward algebraic manipulation. No summability con-

ditions are required here for its validity since it is a finite sum. However, the value of d does

affect the order of the terms in this expansion and, consequently, the order of magnitude of

these terms when n → ∞, a fact that does affect subsequent theory. Additionally, when λ

depends on n, the order of these terms is affected and this too needs to be accounted for in

the asymptotic theory. Much of the present paper is devoted to this accounting to assist in

characterizing the limit behavior of the dft wx (λ) = 1√
2πn

∑n
t=1Xte

itλ.

Using the operator (3.1), we may write the model (2.1) in the following form for all t ≤ n

ut = Dn (L; d)Xt

= Dn

(
eiλ; d

)
Xt + D̃nλ

(
e−iλL; d

)(
e−iλL− 1

)
Xt. (3.2)

Taking dfts of the left and right sides of (3.2) now yields an exact expression for wx (λ) in

terms of wu (λ) . The result is stated as follows.

3.2 Theorem

wu (λ) = wx (λ)Dn

(
eiλ; d

)
+

1√
2πn

(
X̃λ0(d)− einλX̃λn(d)

)
(3.3)

where Dn

(
eiλ; d

)
=
∑n

k=0
(−d)k
k! eikλ,

X̃λt(d) = D̃nλ

(
e−iλL; d

)
Xt =

n−1∑
p=0

d̃λpe
−ipλXt−p,

and

D̃nλ

(
e−iλL; d

)
=

n−1∑
p=0

d̃λpe
−ipλLp, with d̃λp =

n∑
k=p+1

(−d)k
k!

eikλ. (3.4)
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3.3 Remark Equation (3.3) provides an exact representation of wx (λ) in terms of wu (λ)

and a residual component involving n−
1
2 X̃λn(d). Explicitly,

wx (λ) = Dn

(
eiλ; d

)−1
wu (λ)− 1√

2πn
Dn

(
eiλ; d

)−1 (
X̃λ0(d)− einλX̃λn(d)

)
. (3.5)

In fact, (3.3) or (3.5) may be interpreted as a frequency domain version of the original model

(2.1). In terms of periodogram ordinates, we have the corresponding equation

Ix (λs) = |wx (λs)|2 =

∣∣∣∣Dn

(
eiλs ; d

)−1
[
wu (λs)−

1√
2πn

(
X̃λ0(d)− einλsX̃λsn(d)

)]∣∣∣∣2
=

∣∣∣Dn

(
eiλs ; d

)∣∣∣−2
[
Iu (λs)− 2 Re

{
1√
2πn

(
X̃λs0(d)− X̃λsn(d)

)
wu (λs)

∗
}

+
1

2πn

∣∣∣(X̃λs0(d)− X̃λsn(d)
)∣∣∣2] , (3.6)

which may be interpreted as the data generating mechanism for the ordinates Ix (λs) that

are used in a log periodogram regression. Equation (3.6) reveals the model that is implicit

in (2.7). To the extent that
∣∣Dn

(
eiλs ; d

)∣∣−2
can be replaced by

∣∣1− eiλs∣∣−2d
and the compo-

nent n−
1
2 X̃λsn(d) is small enough to be neglected, (3.6) and (2.5) might seem to suggest that

U (λs) = ln [Ix (λs) /fx (λs)] will behave like the corresponding functional, log [Iu (λs) /fu (λs)] ,

of the errors in (2.1). However, as will become apparent in our analysis, the residual compo-

nent n−
1
2 X̃λsn(d) in (3.5) and (3.6) cannot be neglected, in general, and its importance grows

as d increases.

3.4 Remark When d = 1, the forward factorial (−d)k = 0 for all k > 1, so that series

involving these coefficients terminate at k = 1. In this case Dn

(
eiλ; 1

)
=
(
1− eiλ

)
, d̃λ0 = −eiλ,

X̃λ0(1) = −eiλX0, and X̃λn(1) = −eiλXn. Equation (3.3) then reduces to the simple form

wu (λ) =
(

1− eiλ
)
wx (λ) +

eiλ√
2πn

(
einλXn −X0

)
, (3.7)

an expression obtained by the author in earlier work and used in Corbae et al. (2002, Lemma

B). In this case, it is apparent that n−
1
2 X̃λsn(d) = eiλsn−

1
2Xn = Op(1) for all λs. Thus, in

the unit root case, the residual correction term n−
1
2 X̃λsn(d) definitely matters, plays a role

in the asymptotic behavior of wx (λs) at all frequencies and thereby affects the asymptotic

theory of estimators of d like those arising from log periodogram regression and local Whittle

estimation. Indeed, in those cases the author has shown in other work (Phillips and Shimotsu,

2004; Phillips, 2007) that these estimators have limiting mixed normal distributions rather

than normal distributions when d = 1.
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3.5 Remark When ut = 0 for t ≤ 0, in (2.1), it follows that Xt = 0 for t ≤ 0 and hence

X̃λ0(d) = 0. In this event, expression (3.3) becomes

wu (λ) = wx (λ)Dn

(
eiλ; d

)
− einλ√

2πn
D̃nλ

(
e−iλL; d

)
Xn

= wx (λ)Dn

(
eiλ; d

)
− einλ√

2πn
X̃λn(d), (3.8)

or, in the unit root case,

wu (λ) =
(

1− eiλ
)
wx (λ) +

eiλ√
2πn

einλXn, (3.9)

in place of (3.7). Since these initial conditions are assumed in (2.1), and since the effect of

relaxing them will usually be apparent, we will henceforth use (3.8) in place of (3.3).

3.6 Remark Another useful representation for the dft of Xt can be obtained by combining

the representation (3.8) with the unit root decomposition (3.9). It is especially useful when

d > 1. Write (2.1) as

(1− L)Xt = (1− L)1−d ut := zt (3.10)

so that Xt =
∑t

j=1 zj + X0. Then, taking dfts in (3.10), we first apply (3.9) to write wx (λs)

in terms of wz (λs) and then use (3.8) to reduce wz (λs) in terms of wu (λs) and a correction

term. The outcome is formalized in the following theorem.

3.7 Theorem If Xt follows (2.1), then

wx (λ)
(

1− eiλ
)

= wz (λ)− eiλ e
iλnXn√

2πn
(3.11)

= Dn

(
eiλ; f

)
wu (λ)− eiλn√

2πn
Ũλn (f)− eiλ e

iλnXn√
2πn

, (3.12)

where f = 1− d,

Ũλn (f) = D̃nλ

(
e−iλL; f

)
un =

n−1∑
p=0

f̃λpe
−ipλun−p, and f̃λp =

n∑
k=p+1

(−f)k
k!

eikλ. (3.13)

3.8 Remark Some further decomposition beyond (3.11) and (3.12) is possible. As in Phillips

and Solo (1992), we can decompose the operator C (L) that appears in ut = C(L)εt as

C (L) = C
(
eiλ
)

+ C̃λ

(
e−iλL

)(
e−iλL− 1

)
, C̃λ (L) =

∞∑
j=0

c̃jλL
j , c̃jλ = e−iλj

∞∑
k=j+1

cke
iλk,

8



where
∑∞

j=0 |c̃jλ| <∞ in view of the summability condition on cj in (2.4). Then,

ut = C (L) εt = C
(
eiλ
)
εt + e−iλελt−1 − ελt, (3.14)

is a valid decomposition of ut into the iid component C
(
eiλ
)
εt and a stationary error that

telescopes under the dft operation, with ελt = C̃λ
(
e−iλL

)
εt =

∑∞
j=0 c̃jλe

−iλjεt−j . In particular,

wu (λ) = C
(
eiλ
)
wε (λ) +

1√
2πn

(
ελ0 − einλελn

)
= C

(
eiλ
)
wε (λ) +Op

(
1√
n

)
.

Using this representation in (3.12) we get

wx (λ)
(

1− eiλ
)

= Dn

(
eiλ; f

)
C
(
eiλ
)
wε (λ)− eiλn√

2πn
Ũλn (f)−eiλ e

iλnXn√
2πn

+Dn

(
eiλ; f

)
×Op

(
1√
n

)
.

(3.15)

Additionally, zt in (3.10) can be written as

zt = C
(
eiλ
)

(1− L)f εt + (1− L)f
(
e−iλL− 1

)
ελt. (3.16)

Set ηt = (1− L)f εt, ηλt = (1− L)f ελt in (3.16) and take dfts, giving

wz (λ) = C
(
eiλ
)
wη (λ) +

1√
2πn

(
ηλ0 − einληλn

)
= C

(
eiλ
)
wη (λ) +Op

(
1√
n

)
, (3.17)

since ηλt is stationary with finite variance for all d ∈
(

1
2 ,

3
2

)
because then |f | < 1

2 . (Note that

ηλt = ελt when d = 1). Next write

ηt = (1− L)f εt = [Dn (L; f) +Rn (L; f)] εt (3.18)

with

Rn (L; f) =
∞∑

k=n+1

(−f)k
k!

Lk,

and note that

εnt := Rn (L; f) εt = Op

(
1

n
1
2

+f

)
.

Applying (3.3) to the dft wη (λ) calculated from (3.18) we have

wη (λ) = wε (λ)Dn

(
eiλ; f

)
+

1√
2πn

(
ε̃λ0(f)− einλε̃λn(f)

)
+ wnε (λ) , (3.19)
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with

ε̃λn(f) =
n−1∑
p=0

f̃λpe
−ipλεn−p, f̃λp =

n∑
k=p+1

(−f)k
k!

eikλ, (3.20)

and

wnε (λ) =
1√
2πn

n∑
t=1

εnte
iλt .

Now wnε (λ) = Op
(
n−f

)
because

E [wnε (λ)wnε (λ)∗] =
1

2πn

n∑
t=1

n∑
s=1

ei
2π
n

(t−s)E (εntεns) =
1

2πn

n∑
t=1

n∑
s=1

O
(
n−1−2f

)
= O

(
n−2f

)
.

(3.21)

Using (3.19) and (3.21) in (3.17) we get

wz (λ) = C
(
eiλ
)[
Dn

(
eiλ; f

)
wε (λ) +

1√
2πn

(
ε̃λ0(f)− einλε̃λn(f)

)]
+Op

(
1√
n

)
+Op

(
1

nf

)
.

(3.22)

Then, combining (3.22) with the unit root decomposition (3.11) leads to the representation

wx (λ)
(

1− eiλ
)

= C
(
eiλ
)
Dn

(
eiλ; f

)
wε (λ)− eiλ Xn√

2πn

+
1√
2πn

C
(
eiλ
)(

ε̃λ0(f)− einλε̃λn(f)
)

+Op

(
1

nf

)
. (3.23)

This representation holds uniformly over λ and is likely to be most useful when λ = λs =
2πs
n → 0 and s→∞.

3.9 Remark The representations (3.8), (3.11), and (3.12) hold for all fundamental frequen-

cies λs = 2πs
n . They are helpful in providing asymptotic representations of wx (λs) . In such

expansions, it is useful to allow for situations where s→∞ as well as n→∞. In some cases,

as in spectral density estimation at some frequency φ 6= 0, we want the expansion rate of s

to be the same as n, so that we can accommodate λs → φ as n → ∞. In other cases, as in

log periodogram and Gaussian semiparametric regression, interest centers on frequencies λs in

the vicinity of the origin, so then we consider cases where s is fixed or s → ∞ and s
n → 0

as n → ∞. The following section gives results that are helpful in the determination of the

asymptotic form of these representations as n→∞ under these various conditions.

4 Asymptotic Approximations

4.1 Component Approximations

We start with the sinusoidal polynomial Dn

(
eiλ; d

)
=
∑n

k=0
(−d)k
k! eikλ that appears in the

decomposition (3.1) and theorems 3.2 and 3.7. The series can be summed in terms of hyper-

10



geometric functions and the asymptotic form taken as n→∞ depends on λ. The behavior is

described in the following lemma.

4.2 Lemma3 Suppose d > 0 and is noninteger. Then

Dn

(
eiλ; d

)
=
(

1− eiλ
)d
− ei(n+1)λ (−d)n+1

(n+ 1)!
2F1

(
n+ 1− d, 1;n+ 2; eiλ

)
, (4.1)

and, for cos(λ) < 1
2 ,

Dn

(
eiλ; d

)
=
(

1− eiλ
)d

+
ei(n+1)λ

eiλ − 1

(−d)n+1

(n+ 1)!
2F1

(
1 + d, 1;n+ 2;

eiλ

eiλ − 1

)
. (4.2)

The following asymptotic representations hold:

(a) For fixed λ 6= 0

Dn

(
eiλ; d

)
=
(

1− eiλ
)d
− 1

Γ (−d)n1+d

einλ

1− eiλ

[
1 +O

(
1

n

)]
.

(b) For λ = λs = 2πis
n → 0 and s→∞ as n→∞

Dn

(
eiλs ; d

)
=
(

1− eiλs
)d

+
1

2πi

1

Γ (−d)nds

[
1 +O

(
1

s

)]
+O

(
1

n1+d

)
.

(c) For λ = λs = 2πis
n → 0 and s fixed as n→∞

Dn

(
eiλs ; d

)
=

1

Γ (1− d)nd
1F1 (1, 1− d;−2πis) +O

(
1

n1+d

)
.

(d) For λ = 0

Dn (1; d) =
1

Γ (1− d)

1

nd

[
1 +O

(
1

n

)]
.

In the above formulae, 1F1 (a, b; z) and 2F1 (a, b, c; z) denote the confluent hypergeometric func-

tion and the hypergeometric function, respectively.

From part (d), it follows that Dn (1; d) differs from zero by a term of O
(
n−d

)
. From part

(c), the same also applies to Dn

(
eiλs ; d

)
when s is fixed and λs = 2πis

n → 0. Of course, in the

event that d is a positive integer, we have the following terminating polynomials

Dn (1; d) =

n∑
k=0

(−d)k
k!

=

d∑
k=0

(−d)k
k!

=

d∑
k=0

(
d

k

)
(−1)k = (1− 1)d = 0,

3Here, and elsewhere in the paper, where fractional powers of a complex variable are given they are taken
to be evaluated at their principal values.
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and

Dn

(
eiλs ; d

)
=

n∑
k=0

(−d)k e
iλsk

k!
=

d∑
k=0

(
d

k

)(
−eiλs

)k
=
(

1− eiλs
)d

in this case.

Our next focus of interest is the correction term in (3.8) that involves X̃λn(d). We are

especially interested in deriving an asymptotic approximation to X̃λn(d) at the fundamental

frequencies λs. As in lemma 3.1, the asymptotic behavior of X̃λs,n(d) is sensitive to the

value of s in λs = 2πs
n . In particular, when d ∈

(
1
2 , 1
)
, the asymptotic form of X̃λs,n(d)

differs, depending on whether s is fixed or whether s → ∞ as n → ∞. In the latter case,

n−
1
2 X̃λs,n(d) = op (1) , while in the former n−

1
2 X̃λs,n(d) = Op (1) . On the other hand, when

d = 1, n−
1
2 X̃λs,n(d) = Op (1) for all s 6= 0. The results are given in the following theorem.

4.3 Theorem Suppose d ∈
(

1
2 , 1
)
. Then

(a) For fixed λ 6= 0 as n→∞,

X̃λ,n(d)√
n

= − eiλ

(1− eiλ)
1−d

Xn√
n

+ op

(
1

n1−d

)
= Op

(
1

n1−d

)
.

(b) For λ = λs = 2πs
n → 0 and s

nα →∞, as n→∞, for some α ∈
(

1
2 , 1
)

X̃λs,n(d)√
n

= − eiλs

(1− eiλs)1−d
Xn√
n

+ op

(
1

s1−d

)
= − eiλs

(−2πis)1−d
Xn

nd−
1
2

+ op

(
1

s1−d

)
= Op

(
1

s1−d

)
.

(c) For λ = λs = 2πs
n and s fixed, as n→∞,

X̃λsn(d)√
n

=
1F1 (1, 1− d;−2πis)

Γ (1− d)

∫ 1

0
e2πisrXn,d(r)dr

− 1

Γ (1− d)

∫ 1

0
1F1 (1, 1− d;−2πisr) r−dXn,d(1− r)dr +Op

(
1

n1−d

)
= Op (1) ,

where Xn,d(r) =
Xbnrc

nd−
1
2
.

(d) When d = 1, the equation

X̃λ,n(1)√
n

= −eiλXn√
n

= Op (1)

holds for λ fixed, or λ = λs = 2πs
n → 0 with s→∞, or λs = 2πs

n → 0 with s fixed.
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In parts (a) and (b) of theorem 4.3 the leading term in the asymptotic approximation of

n−
1
2 X̃λ,n(d) is the same and so, although the error order of magnitude differs, we may write

X̃λ,n(d)√
n

= − eiλ

(1− eiλ)
1−d

Xn√
n

+ op

(
eiλ

(1− eiλ)
1−d

Xn√
n

)
,

for both these cases. Further, the leading term of n−
1
2 X̃λ,n(d) is Op(

1
n1−d ) for fixed λ 6= 0, is

Op(
1

s1−d
) for λs = 2πs

n → 0 and s
nα →∞, and is Op(1) for λs = 2πs

n → 0 with s fixed. Thus, the

correction term n−
1
2 X̃λ,n(d) is nonnegligible in a region around the origin when d ∈

(
1
2 , 1
)
. The

asymptotic form of n−
1
2 X̃λ,n(d) in that case (i.e., case (c), with λs = 2πs

n , and s fixed) is more

complicated than the other cases and it involves hypergeometric series. The representation

given in case (c) actually includes s = 0, for which we have the simpler form

X̃λ0n(d)√
n

=
1

Γ (1− d)

∫ 1

0
Xn,d(r)dr −

1

Γ (1− d)

∫ 1

0
r−dXn,d(1− r)dr +Op

(
1

n1−d

)
. (4.3)

When d = 1, the formula given in (d) is exact, as follows directly from (3.9).

Finally, we look at the correction term Ũλn (f) that appears in (3.12). We concentrate on

the interesting case where λ is in the vicinity of the origin and give the result corresponding

to part (c) of theorem 4.3.

4.4 Theorem Suppose d ∈
(

1
2 ,

3
2

)
and f = 1 − d. Then, for λ = λs = 2πs

n and s fixed, as

n→∞

Ũλsn(f)√
2πn

=
1√
2π

1

Γ (1− f)nf

{
1F1 (1, 1− f ;−2πis)

∫ 1

0
e−2πisrdXn (1− r)

−
∫ 1

0
r−f 1F1 (1, 1− f ;−2πisr) dXn (1− r)

}
+Op

(
1√
n

)
, (4.4)

where Xn(r) = n−
1
2
∑bnrc

t=0 ut. When f = 0, Ũλsn(0) = 0.

4.5 Approximations for wx (λ)

Evaluating (3.8) at λs, we have

wx (λs) = Dn

(
eiλs ; d

)−1
[
wu (λs) +

1√
2πn

X̃λsn(d)

]
.

We use lemma 4.2 and theorem 4.3 to obtain explicit expressions for wx (λs) in terms of wu (λs)

and a correction term. When d = 1, the following exact form comes directly from (3.9)

wx (λs) =
(

1− eiλs
)−1

wu (λs)−
eiλs

1− eiλs
Xn√
2πn

, (4.5)
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and holds for all s = 1, 2, .... When d ∈ (1
2 , 1), it is convenient to separate the following three

cases:

(a) Case λs → φ 6= 0

Here, from lemma 4.2 we have

Dn

(
eiλs ; d

)
=

(
1− eiλs

)d
− 1

Γ (−d)n1+d

einλs

1− eiλs

[
1 +O

(
1

n

)]
=

(
1− eiλs

)d
+O

(
1

n1+d

)
,

uniformly for λs ∈ Bφ =
{
φ− π

M , φ+ π
M

}
where M →∞ as n→∞. Similarly, from theorem

4.3,

X̃λs,n(d)√
n

= − eiλs

(1− eiλs)1−d
Xn√
n

+ op

(
1

n1−d

)
uniformly for λs ∈ Bφ. It follows that

wx (λs) =
(

1− eiλs
)−d

wu (λs)−
eiλs

1− eiλs
Xn√
2πn

+ op

(
1

n1−d

)
, (4.6)

uniformly for λs ∈ Bφ.

(b) Case λs = 2πis
n → 0 and s→∞

From lemma 4.2 (b) when s→∞ as n→∞

Dn

(
eiλs ; d

)
=
(

1− eiλs
)d

+
1

Γ (−d)nd
1

2πis

[
1 +O

(
1

s

)]
+O

(
1

n1+d

)
.

And from theorem 4.3 (b) with s
nα →∞ for some α ∈

(
1
2 , 1
)
, as n→∞,

X̃λs,n(d)√
n

= − eiλs

(1− eiλs)1−d
Xn√
n

+ op

(
1

s1−d

)
.

It follows that if s
n + nα

s → 0 as n→∞, for some α ∈
(

1
2 , 1
)
, then

wx (λs) =
(

1− eiλs
)−d

wu (λs)−
eiλs

1− eiλs
Xn√
2πn

+ op

((
1− eiλs

)−d
s1−d

)
. (4.7)
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Observe that the first two terms of (4.6) and (4.7) are the same. Although the order of

magnitude of the error differs in the two cases, we may write

wx (λs) =
(

1− eiλs
)−d

wu (λs)−
eiλs

1− eiλs
Xn√
2πn

+ op

(
eiλs

(1− eiλs)
Xn√
n

)
(4.8)

for both these cases, and (4.8) is valid for all λs = 2πs
n with nα

s → 0.

(c) Case λs = 2πis
n → 0 and s fixed

From lemma 4.2 (c) when s is fixed as n→∞, we have

Dn

(
eiλs ; d

)
=

1

Γ (1− d)nd
1F1 (1, 1− d;−2πis) +O

(
1

n1+d

)
, (4.9)

and it follows that

1

nd
wx (λs) =

1

nd

[
1

Γ (1− d)nd
1F1 (1, 1− d;−2πis) +O

(
1

n1+d

)]−1

×
[
wu (λs) +

1√
2πn

X̃λsn(d)

]
,

giving

wx (λs)

nd
=

Γ (1− d)

1F1 (1, 1− d;−2πis)

[
wu (λs) +

1√
2πn

X̃λsn(d)

]
+Op

(
1

n

)
. (4.10)

Further, from theorem 4.3 (c),

X̃λsn(d)√
n

=
1F1 (1, 1− d;−2πis)

Γ (1− d)

∫ 1

0
e2πisrXn,d(r)dr

− 1

Γ (1− d)

∫ 1

0
1F1 (1, 1− d;−2πisr) r−dXn,d(1− r)dr +Op

(
1

n1−d

)
,

so that

1

nd
wx (λs) =

Γ (1− d)

1F1 (1, 1− d;−2πis)
wu (λs) +

1√
2π

∫ 1

0
e2πisrXn,d(r)dr

− (2π)−
1
2

1F1 (1, 1− d;−2πis)

∫ 1

0
1F1 (1, 1− d;−2πisr) r−dXn,d(1− r)dr

+Op

(
1

n1−d

)
. (4.11)

Unlike (4.6) and (4.8), the term
eiλs

1− eiλs
Xn√
2πn

(4.12)
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does not figure directly in (4.11). In fact, as the alternate representation in the next section

shows, the term (4.12) is absorbed into the series expression in (4.11), so it is still present and

figures in the leading term of the dft wx (λs) when s is fixed.

(c) Case λs = 2πis
n → 0 and s fixed: alternate form.

Theorem 3.7 gives

wx (λs)
(

1− eiλs
)

= Dn

(
eiλs ; f

)
wu (λs)−

1√
2πn

Ũλsn (f)− eiλs Xn√
2πn

, (4.13)

with f = 1− d, lemma 4.2 (c) gives

Dn

(
eiλs ; f

)
=

1

Γ (1− f)nf
1F1 (1, 1− f ;−2πis) +O

(
1

n1+f

)
,

and theorem 4.4 gives

Ũλsn(f)√
2πn

=
1√
2π

1

Γ (1− f)nf

{
1F1 (1, 1− f ;−2πis)

∫ 1

0
e−2πisrdXn (1− r)

−
∫ 1

0
r−f 1F1 (1, 1− f ;−2πisr) dXn (1− r)

}
+Op

(
1√
n

)
.

Also,

wu (λs) =
1√
2πn

n∑
t=1

e2πsi t
nut =

1√
2π

n∑
k=1

e2πsin−k
n
un−k√
n

=
1√
2π

∫ 1

0
e−2πisrdXn (1− r)+Op

(
1

n

)
.

Combining these last three representations in (4.13), we get

wx (λs)
(

1− eiλs
)

=
1

Γ (1− f)nf
1F1 (1, 1− f ;−2πis)

1√
2π

∫ 1

0
e−2πisrdXn (1− r) +Op

(
1

n

)
− 1√

2π

1

Γ (1− f)nf
1F1 (1, 1− f ;−2πis)

∫ 1

0
e−2πisrdXn (1− r)

+
1√
2π

1

Γ (1− f)nf

∫ 1

0
r−f 1F1 (1, 1− f ;−2πisr) dXn (1− r)− eiλs Xn√

2πn

+Op

(
1√
n

)
=

1√
2π

1

Γ (1− f)nf

∫ 1

0
r−f 1F1 (1, 1− f ;−2πisr) dXn (1− r)− eiλs Xn√

2πn
+Op

(
1√
n

)
,
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leading to

1

nd
wx (λs) =

1√
2π

1

Γ (1− f)n (1− eiλs)

∫ 1

0
r−f 1F1 (1, 1− f ;−2πisr) dXn (1− r)

− 1√
2π

eiλs

n (1− eiλs)
Xn

nd−
1
2

+Op

(
1

nd−
1
2

)
, (4.14)

which shows how (4.12) continues to play a role in the leading term of wx (λs) .

4.6 Limit Theory

Under (2.4), partial sums of ut satisfy the functional law

Xn(r) =
1√
n

bnrc∑
t=0

ut →d B(r), (4.15)

where B is Brownian motion with variance ω2 = σ2C(1)2, e.g., Phillips and Solo (1992).

There is a corresponding functional law for suitably standardized elements of the time series Xt.

Akonom and Gouriéroux (1987) showed such a functional law for n
1
2
−dXt when the components

ut follow a stationary ARMA process and the following simply extends their result to the linear

process ut.

4.7 Lemma For ut satisfying (2.4) and with εt iid
(
0, σ2

)
and E |εt|p < ∞ for p >

max
(

1
d− 1

2

, 2
)
,

Xn,d(r) =
Xbnrc

nd−
1
2

d→ Bd−1(r) =
1

Γ (d)

∫ r

0
(r − s)d−1 dB(s), (4.16)

a fractional Brownian motion where B(s) is Brownian motion with variance ω2.

Like Xt, the fractional Brownian motion Bd−1(r) is initialized at the origin, and therefore

has nonstationary increments, in contrast to the other fractional process

WH(r) =
1

C (H)

∫ ∞
−∞

[{
(r − s)+

}H− 1
2 −

{
(−s)+

}H− 1
2

]
dB(s), H = d− 1

2
, (4.17)

C (H) =

{
1

2H
+

∫ ∞
0

[
(1 + s)H−

1
2 − sH−

1
2

]2
ds

} 1
2

, 0 < H < 1

introduced by Mandelbrot and Van Ness (1968) and studied by Samorodnitsky and Taqqu

(2017) in this form. Both processes reduce to Brownian motion for special cases of the param-

eters, viz. d = 1 for (4.16), and H = 1
2 for (4.17).

These functional laws enable us to get limit representations of the correction term n−
1
2 X̃λsn(d).

The case where s is fixed as n→∞ is especially interesting, the other two cases following im-
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mediately from (4.16) and the respective expressions (4.6) and (4.7).

4.8 Lemma For λs = 2πis
n → 0 and s fixed

X̃λsn(d)√
n

d→ 1

Γ (1− d)

∫ 1

0
e2πisrBd−1(r)dr 1F1 (1, 1− d;−2πis)−

∫ 1

0
e2πisrdB (r) . (4.18)

The next result gives formulae for the stochastic Fourier integral
∫ r

0 e
2πsiqdB(q) that ap-

pears in (4.18) and (when s = 0) for the constituent Brownian motion B in terms of the

fractional Brownian motion Bd−1.

4.9 Theorem For fixed integer s

∫ r

0
e−2πsi(r−q)dB(q) =

1

Γ (1− d)

∫ r

0
1F1 (1, 1− d;−2πis(r − q)) (r − q)−dBd−1(q)dq, (4.19)

and, in the special case where s = 0,

B (r) =
1

Γ (1− d)

∫ r

0
(r − q)−dBd−1(q)dq. (4.20)

The equality (4.20) is the inverse (integral) transform of the fractional Brownian motion

Bd−1(r). In effect, the right side of (4.20) is the (1− d)’th fractional integral of the (d− 1)’th

fractional derivative of Brownian motion. Formula (4.19) extends this representation to the

case s 6= 0. When r = 1, (4.19) becomes∫ 1

0
e2πsiqdB(q) =

1

Γ (1− d)

∫ 1

0
1F1 (1, 1− d;−2πis(1− q)) (1− q)−dBd−1(q)dq.

4.10 Theorem Suppose d ∈
(

1
2 , 1
)
. The following limit results apply.

(a) Let φ > 0 and suppose λsj ∈ Bφ =
{
φ− π

2M , φ+ π
2M

}
for a finite set of distinct

integers sj (j = 1, ..., J). When M → ∞ as n → ∞, the family {wx(λsj )}Jj=1 are

asymptotically independently distributed as complex normal Nc (0, fx (φ)) where fx (φ) =∣∣1− eiφ∣∣−2d
fu (φ) .

(b) Let {sj}Jj=1 be distinct integers with 0 < l < sj < L for each j and with L
n + nα

l → 0

as n → ∞, for some α ∈
(

1
2 , 1
)
. The family {(λsj )dwx(λsj )}Jj=1 are asymptotically

independently distributed as Nc (0, fu (0)) .
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(c) Let {sj}Jj=1 be a finite set of distinct positive integers which are fixed as n → ∞. Then,

for each j
1

nd
wx
(
λsj
) d→ 1√

2π

∫ 1

0
e2πisjrBd−1 (r) dr, (4.21)

where Bd−1 is the fractional Brownian motion given in (4.16). Joint convergence also

applies.

When d = 1, the following limits apply.

(d) Let φ > 0 and suppose λsj ∈ Bφ =
{
φ− π

M , φ+ π
M

}
for a finite set of distinct integers

sj (j = 1, ..., J). When M → ∞ as n → ∞, the family {wx(λsj )}Jj=1 are asymptotically

distributed as

{ 1

1− eiφ
ξj −

eiφ

1− eiφ
η}Jj=1, (4.22)

where the {ξj}Jj=1 are iid Nc (0, fu (φ)) and are independent of

η =
B(1)√

2π
, (4.23)

where B is Brownian motion with variance ω2.

(e) Let {sj}Jj=1 be a finite set of distinct positive integers for which
sj
n → 0 as n→∞. The

family {λsjwx(λsj )}Jj=1 are asymptotically distributed as

i
(
ξj − η

)
, (4.24)

where ξj and η are as in (4.22) and (4.23).

(f) When sj is fixed as n→∞, the ξj in (e) have the representation

ξj =
1√
2π

∫ 1

0
e2πisjrdB (r) , (4.25)

and
1

n
wx
(
λsj
) d→ 1√

2π

∫ 1

0
e2πisjrB (r) dr, (4.26)

which also holds for sj = 0.

Parts (a) and (d) show that Hannan (1973)’s result for the limit theory of dfts of stationary

processes extends to fractional processes at frequencies removed from the origin when d ∈ (1
2 , 1)

but not when d = 1. In the latter case, the leakage from the zero frequency is so substantial

that it affects the limit theory of the dft at all frequencies, although the limit distribution is

still normal. Moreover, as is apparent from the form of (4.22), the limit variates are spatially
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correlated across frequency by virtue of the presence of the random component η, through

which the leakage is transmitted.

Part (b) shows that, when d ∈ (1
2 , 1), a version of Hannan’s result applies to the scaled

transforms (
sj
n )dwx(λsj ) in a (distant) vicinity of the origin where λsj =

2πsji
n → 0 but nα

sj
→ 0

as n → ∞, for some α ∈
(

1
2 , 1
)
. However, when d = 1, the scaled transforms

sj
n wx(λsj ) are

asymptotically dependent across frequency.

Part (c) shows that in the immediate vicinity of the origin (i.e., for λsj =
2πsji
n → 0

with sj fixed), the n−dwx(λsj ) are asymptotically dependent for d ∈ (1
2 , 1] and each converges

weakly to an integral functional of fractional Brownian motion that involves the integer sj . In

earlier work, Akonom and Gouriéroux (1987) gave (4.21) in the case of ARMA ut. An alternate

expression for (4.21), which relates to (4.14) is

1

nd
wx
(
λsj
) d→ 1√

2πΓ (1 + d)

∫ 1

0
1F1 (1, 1 + d;−2πisjr) r

ddB (1− r)

and can be obtained from the formula∫ 1

0
e2πisrBd−1 (r) dr =

1

Γ (1 + d)

∫ 1

0
1F1 (1, 1 + d;−2πisr) rddB (1− r) ,

which is proved in lemma E in the technical appendix.

The methods in the proof of theorem 4.10 are used in (Phillips, 2007, theorem 3.2) to

extend existing theory showing the asymptotic independence of a finite collection of dfts of

stationary time series (Hannan, 1973) to collections of a small (i.e., with less than sample size)

infinity of dfts at Fourier frequencies.

5 Statistical Applications

5.1 Spectrum Estimation for Fractional Processes

The limit theory in Section 4.6 is useful in obtaining the asymptotic behavior of spectral

estimates for fractional processes. We give some results for smoothed periodogram estimates

for frequencies at the origin and away from the origin. The former are of interest in procedures

that are used to estimate the memory parameter d. The latter reveal any leakage from low to

high frequencies that occurs in spectrum estimation.

For frequencies away from the origin such as φ 6= 0, the usual smoothed periodogram

estimator of fx (φ) is given by

f̂xx (φ) =
1

m

∑
λs∈B(φ)

wx (λs)wx (λs)
∗ , (5.1)

where Bm (φ) = (φ − π
2M , φ + π

2M ] and M is the bandwidth parameter that determines the

number of frequencies m = # {λs ∈ Bm (φ)} = [n/2M ] used in the smoothing. At the zero
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frequency φ = 0, we consider a one-sided average of m periodogram ordinates at the origin

f̂xx (0) =
1

m

m−1∑
s=0

wx (λs)wx (λs)
∗ . (5.2)

The following theorem gives the asymptotic behavior of f̂xx (φ) for these two cases and for

d ∈ (1
2 , 1) and d = 1.

5.2 Theorem

(a) For φ 6= 0 and 1
2 < d < 1

f̂xx (φ)→p fx (φ) =
fu (φ)

|1− eiφ|2d
.

(b) For φ 6= 0 and d = 1

f̂xx (φ)→d fx (φ) +
1

2π

∣∣∣1− eiφ∣∣∣−2
B (1)2 .

(c) For 1
2 < d < 1 and m such that m

nα →∞ with α ≥ 1
2d

m

n2d
f̂xx (0)→d

1

2π

∫ 1

0
Bd−1 (r)2 dr.

(d) For d = 1 and m such that m√
n
→∞

m

n2
f̂xx (0)→d

1

2π

∫ 1

0
B (r)2 dr.

According to part (a), spectral estimates like f̂xx (φ) at frequencies removed from the origin

are consistent for fx (φ) =
∣∣1− eiφ∣∣−2d

fu (φ) provided d < 1. When d = 1, the estimate is

inconsistent and converges weakly to a random quantity. In this case, the leakage from low

frequency behavior is strong enough to persist in the limit at all frequencies φ > 0. Part (d)

was given in earlier work by Phillips (1991), where it was shown to be useful in analysing

regression in the frequency domain with integrated time series. A new and simpler derivation

is given here based on the decomposition (3.9). Part (c) can be expected to be useful in similar

regression contexts with fractional processes.

5.3 Semiparametric Estimation of d

We indicate some potential applications of the above theory for the estimation of the memory

parameter d in (2.1). This is a large subject which goes beyond the scope of the present
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paper and for which theoretical development was undertaken after the original version of this

paper was completed in 1999. The main references will be reported in the following discussion.

The presentation here focuses on the new ideas that led into these developments and not the

technical details.

Concordant with the nonparametric approach, our concern is with the case where little

is known about the short memory component ut of (2.1) and its spectrum fu(λ) is treated

nonparametrically. In both log periodogram estimation and local Whittle estimation, this is

accomplished by working with the dft wx (λs) of the data Xt over a set of m Fourier frequencies

{λs = 2πs
n : s = 1, ...,m} that shrink slowly to origin as the sample size n → ∞ by virtue of

a condition on m of the type m
n → 0. It has been suggested that, in view of the asymptotic

correlation of the ordinates in the vicinity of the origin (Künsch, 1986), it may be useful to trim

this set of frequencies away from the origin and restrict attention to {λs = 2πs
n : s = l, ...,m}

where l is a trimming number that satisfies l → ∞ and
√
m logm
l → 0 (Robinson, 1995b),

although it is now known that this trimming is not necessary (Hurvich et al., 1998).

From (4.7) we know that for d ∈ (1
2 , 1), the dft wx (λs)

wx (λs) =
(

1− eiλs
)−d

wu (λs)−
eiλs

1− eiλs
Xn√
2πn

+ op

((
1− eiλs

)−d
s1−d

)
, (5.3)

when s
n + nα

s → 0 as n → ∞, for some α ∈
(

1
2 , 1
)
. The asymptotic behavior of wx (λs) is

dominated by the first two terms of (5.3), and as d→ 1 the importance of the second term in

(5.3), which is Op(n
d/s), rivals that of the first term, which is Op(n

d/sd). Apparently, therefore,

it would seem desirable to correct the dft wx (λs) for the effects of leakage in semiparametric

estimation of d simply by adding the correction term supplied by the known form of the

expansion (5.3). For log periodogram regression this amounts to using the quantity

vx (λs) = wx (λs) +
eiλs

1− eiλs
Xn√
2πn

(5.4)

in place of wx (λs) in the regression. Thus, in place of the usual least squares regression (over

s = 1, ...,m)

ln (Ix (λs)) = ĉ− d̂ ln
∣∣∣1− eiλs∣∣∣2 + error

that is inspired by the form of the moment relation (2.6) in the frequency domain, the argument

above suggests the linear least squares regression

ln (Iv (λs)) = c̃− d̃ ln
∣∣∣1− eiλs∣∣∣2 + error, (5.5)

in which the periodogram ordinates, Ix (λs) , are replaced by Iv (λs) = vx (λs) vx (λs)
∗ . We

call this procedure modified log periodogram regression. This replacement is inspired by (5.3),

which approximates the data generating process of the dft wx (λs) over the relevant set of
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frequencies as m→∞ in the regression. In place of the ‘regression model’

ln (Ix (λs)) = c− d ln
∣∣∣1− eiλs∣∣∣2 + u (λs) ,

with c = ln (fu (0)) and

u (λs) = ln [Ix (λs) /fx (λs)] + ln (fu (λs) /fu (0)) ,

as in (2.7), we now have from (5.3)

Iv (λs) =

∣∣∣∣(1− eiλs
)−d

wu (λs) + op

(
nd

s

)∣∣∣∣2
=

∣∣∣1− eiλs∣∣∣−2d
Iu (λs)

[
1 +

(
1− eiλs

)d
wu (λs)

−1 op

(
nd

s

)]
=

∣∣∣1− eiλs∣∣∣−2d
Iu (λs)

∣∣∣∣[1 + op

(
1

s1−d

)]∣∣∣∣2 ,
which leads to the new regression model

ln (Iv (λs)) = c− d ln
∣∣∣1− eiλs∣∣∣2 + a (λs) , (5.6)

with

a (λs) = ln [Iu (λs) /fu (λs)] + ln (fu (λs) /fu (0)) +Op

(
1

s1−d

)
. (5.7)

This relationship holds for frequencies λs satisfying s
n + nα

s → 0 as n→∞, in view of (5.3).

The new regression (5.5) seems likely to be most useful in cases where nonstationarity is

suspected. Note, however, that when d < 1
2 , the correction term in (5.4) is op(1) when

√
n
s → 0,

so that use of (5.5) can also be expected to be satisfactory in the stationary case. When d = 1,

the correction is exact for all frequencies, as is clear from (3.9). In that case, therefore, (5.6)

is an exact regression relation whose error is given by

a (λs) = ln [Iu (λs) /fu (λs)] + ln (fu (λs) /fu (0)) . (5.8)

It is then a relatively straightforward matter to show that the modified log periodogram esti-

mator has the following limit theory

√
m
(
d̃− d

)
d→ N

(
0,
π2

24

)
, (5.9)

i.e., the same limit distribution as the log periodogram estimator in the stationary case Robin-

son (1995b); Hurvich et al. (1998). By contrast, the usual log periodogram estimator d̂ has a

mixed normal limit theory when d = 1, as shown in Phillips (1999b, 2007). The mixed normal

limit arises in this case because of the presence of the term (2π)−
1
2 eiλsn−

1
2Xn in (3.9) which
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is Op(1) and does not vanish as n → ∞. Moreover, the usual log periodogram estimator d̂ is

inconsistent and converges in probability to unity when d ∈ (1, 2) as shown in Kim and Phillips

(2006), which makes use of some of the present methods.

The modified regression (5.5) appears to be even more useful in the nonstationary case

when d > 1. In that case, the usual estimator d̂ is inconsistent, and d̂ →p 1, a fact that

can be established using the expansions obtained in sections 2 and 3, whereas d̃ is consistent

and has the same limit distribution as that shown in (5.9). Further analysis of this modified

log periodogram estimator, together with an empirical application to the Nelson-Plosser data

(Nelson and Plosser, 1982), was given in Kim and Phillips (2003).

The intuition leading to the modified regression (5.5) can also be employed in the case of

the local Whittle estimator Künsch (1987); Robinson (1995a). We will not go into details here.

Suffice to remark that we would simply replace Iv(λs; d) in the extremum estimation problem

(5.16)-(5.18) given below by Iv(λs), which can be computed from vx(λs) as in (5.4). The

resulting estimator is a modified local Whittle estimator, and, like the modified log periodogram

regression estimator in (5.5), its asymptotic properties can be expected to be the same for

stationary and nonstationary values of the memory parameter, including those for which d > 1.

Our theory also suggests some other possibilities. In particular, we may build on the idea

noted above that (5.6) gives an exact relationship when d = 1 with error (5.8). Indeed, the

decomposition (3.8) implies the following exact relation between the transforms wx (λs) and

wu (λs)

wx (λs) = Dn

(
eiλs ; d

)−1
[
wu (λs) +

1√
2πn

X̃λn(d)

]
.

Define the new transform

vx (λs; d) = wx (λs)−Dn

(
eiλs ; d

)−1 1√
2πn

X̃λn(d), (5.10)

which is dependent on the memory parameter d and for which the equation

vx (λs; d) = Dn

(
eiλs ; d

)−1
wu (λs) (5.11)

holds exactly. Extending the ideas that led to (5.6) above, we have the exact periodogram

relation

ln (Iv (λs; d)) = c+ ln
∣∣∣Dn

(
eiλs ; d

)∣∣∣−2
+ a (λs) , (5.12)

with Iv (λs; d) = vx (λs; d) vx (λs; d)∗ , and

a (λs) = ln [Iu (λs) /fu (λs)] + ln (fu (λs) /fu (0)) ,

just as in (5.8). In place of linear least squares regression, it is now possible to apply nonlinear

regression directly to the regression model (5.12). Let Ys (d) = ln (Iv (λs; d)) , and As =
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ln
∣∣Dn

(
eiλs ; d

)∣∣−2
. Then, nonlinear regression leads to the following extremum estimator

d# = arg min
d
Qm (d) ,

where

Qm (d) =
1

m

m∑
s=1

[{
Ys (d)− Ys (d)

}
− d

{
As −As

}] [{
Ys (d)− Ys (d)

}
− d

{
As −As

}]∗
,

and As = m−1
∑m

s=1As, Ys(d) = m−1
∑m

s=1 Ys(d) The advantage of d# is that it is the natural

estimator of d that emerges from the exact formulation of the regression model in the frequency

domain, i.e., (5.12). Its disadvantage is that it is more complicated to compute than the

conventional log periodogram regression estimator d̂ and the modified estimator d̃, neither of

which require numerical methods. Some simplifications in computation can be obtained by

using some of the approximations developed in sections 3 and 4.

Finally, we remark that the exact relationship (5.11) can be used to obtain an exact form

of local Whittle estimator under Gaussian assumptions about ut. The local Whittle likelihood

suggested by Künsch (1987) and studied by Robinson (1995a) has the form

Km (G, d) =
1

m

m∑
s=1

[
log
(
Gλ−2d

s

)
+
λ2d
s

G
Ix (λs)

]
, (5.13)

and is minimised jointly with respect to the parameters (G, d), where G0 = fu(0) is the true

value of G. The (negative) Whittle likelihood (e.g., (Hannan and Deistler, 2012, pp. 224-225))

based on frequencies up to λm and up to scale multiplication is

m∑
s=1

log fu (λs) +

m∑
s=1

Iu (λs)

fu (λs)
. (5.14)

The objective function (5.13) is derived from (5.14) by using the approximate relationship

wx (λs) ∼
(

1− eiλs
)−d

wu (λs) ∼ (−λs)−dwu (λs) ,

or

Iu (λs) ∼ λ2d
s Ix (λs) ,

to transform (5.14) to be data dependent, in conjunction with the local approximation fu (λs) ∼
G0. We may now proceed to transform (5.14) using the exact relationship between wu (λs)

and wx (λs) that is given by (5.11) and (5.10). We get

1

2

m∑
s=1

log

{∣∣∣Dn

(
eiλs ; d

)∣∣∣−2
fu (λs)

}
+

1

2

m∑
s=1

∣∣Dn

(
eiλs ; d

)∣∣2 Iv (λs; d)

fu (λs)
,
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and this leads directly to the following ‘exact’ version of the local Whittle likelihood

Lm (G, d) =
1

m

m∑
s=1

[
log

(∣∣∣Dn

(
eiλs ; d

)∣∣∣−2
G

)
+

∣∣Dn

(
eiλs ; d

)∣∣2
G

Iv (λs; d)

]
. (5.15)

The new estimates are obtained from the joint minimization

(G∗∗, d∗∗) = arg min
d,G

Lm (G, d) .

Concentrating out G, we find that d∗∗ satisfies

d∗∗ = arg min
d
Rm (d) , (5.16)

with

Rm (d) = logG∗∗ (d)− 2
1

m

m∑
j=1

log
∣∣∣Dn

(
eiλs ; d

)∣∣∣ , (5.17)

where

G∗∗ (d) =
1

m

m∑
j=1

∣∣∣Dn

(
eiλs ; d

)∣∣∣2 Iv (λs; d) . (5.18)

The estimator d∗∗ would seem to offer an attractive semiparametric procedure because it is

based on likelihood principles and involves the exact data generating mechanism for the discrete

Fourier transforms. This procedure is more computationally intensive than the usual Whittle

estimator but no impediment to practical use. A full analytic investigation of the exact local

Whittle estimator was conducted and reported in Shimotsu and Phillips (2005) showing that

the same asymptotic properties of the local Whittle estimator apply to the exact local Whittle

estimator over a full range of stationary and nonstationary values of the memory parameter

d. This approach enables consistent estimation of d and the construction of valid confidence

intervals for d for both stationary and nonstationary long memory time series. The procedure

has proved popular in empirical research. Further work on nonstationarity-extended Whittle

estimation has been done by Abadir et al. (2007) and Shao (2010).

5.4 Final Remarks

Fractional processes conveniently embody in a single memory parameter d an index that mea-

sures the extent of long range dependence in an observed time series. When a nonparametric

formulation is employed for the innovations that drive the observed process, a great deal of

model generality is achieved. Integer values of d include integrated processes and the special

value d = 1
2 provides a simple boundary between stationary and nonstationary cases. This

flexibility has enabled a fundamental extension of the simple ARIMA models popularized in

the 1970s wherein variate differencing became a common method of dealing with nonstation-

arity. The flexibility of long memory also enriched the concept of cointegration by allowing
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for fractional possibilities in long run equilibrium errors, thereby narrowing the differential

(between variables and errors) that distinguishes a cointegrating relationship among observ-

able integrated time series. In view of this generality, semiparametric methods and frequency

domain methods such as those used in the present work have been found to be very useful in

estimation, inference, and asymptotic analysis of long memory systems.

In spite of the generality that long range dependence brings to empirical analysis, it is

worth remembering that some important cases are not included in its orbit. Explosive and

mildly explosive time series are prime examples that have particular relevance in economics

and finance where exuberance and speculation are not uncommon in real estate and financial

asset markets. A simple autoregressive time series with an explosive root is not rendered sta-

tionary by differencing or fractional differencing, just as differentiating an exponential function

produces a derivative that simply reproduces the exponential. Parameterizations of nonsta-

tionarity using simple autoregressive coefficients and the tests that are so enabled by such

formulations therefore offer possibilities that are not encompassed in the notion of long range

dependence. While autoregressions and long memory systems provide a dual parametric source

of unit root dynamics, these parameterizations deliver alternative departures from unit roots

that help enrich our capacity to model different types of nonstationary time series behavior

and evolution.

6 Technical Appendix and Proofs

6.1 Preliminary Results

We provide some technical lemmas that are useful throughout the paper. Lemmas A and B

provide results on binomial coefficients and hypergeometric functions that are either standard

(e.g., Erdélyi (1953)) or follow from standard results. We give them here to facilitate our own

derivations and to make the paper more accessible. Lemmas C and D provide some more

specific results on sinusoidal polynomials and hypergeometric functions of sinusoids that are

immediately relevant to formulae in the paper. Lemma E gives a useful inverse transform

of fractional Brownian motion, an inverse transform for a hypergeometric series of fractional

Brownian motion and some useful relationships between certain integral functionals of frac-

tional Brownian motion and Brownian motion. Lemma F provides a new asymptotic expansion

for hypergeometric series that allows for increasing coefficients as well as an argument that

tends to unity. The expansion should be useful in other work with hypergeometric series.

Lemma A

(a)
(
d
k

)
= (−1)k

(−d)k
k! .

(b) (p+ a)j =
(j+a)p(a)j

(a)p
, (a)j+k = (a)j(a+ j)k.

(c)
∑n

k=0
(−d)k
k! =

(1−d)n
n! 1 (d 6= 0, 1, ..) +

∑d
k=0

(−d)k
k! 1(d = 0, 1, ..).
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(d) Γ(n+α)
Γ(n+β) = nα−β

[
1 +O

(
1
n

)]
.

Proof Part (a) is immediate from the definition(
d

k

)
=

d!

(d− k)!k!
=
d (d− 1) ... (d− k + 1)

k!
= (−1)k

(−d) ... (−d+ k − 1)

k!
= (−1)k

(−d)k
k!

.

The second formula in Part (b) is immediate from the definition of the forward factorial. The

first formula in Part (b) follows from

(p+ a)j =
Γ (p+ a+ j)

Γ (p+ a)
=

Γ (p+ a+ j)

Γ (j + a)

Γ (j + a) /Γ (a)

Γ (p+ a) /Γ (a)

= (j + a)p
(a)j
(a)p

.

For part (c), we write the sum as a terminating hypergeometric function, and use lemma B

(a) & (c) to obtain

n∑
k=0

(−d)k
k!

=
(−d)n
n!

2F1 (−n, 1; d− n+ 1; 1)

=
(−d)n
n!

Γ (d) Γ (d− n+ 1)

Γ (d+ 1) Γ (d− n)
=

Γ (−d+ n)

Γ (−d)n!

d− n
d

=
Γ (−d+ n+ 1)

Γ (−d+ 1)n!
=

(1− d)n
n!

,

for d 6= 0, 1, 2, .., while for d = 0, 1, .. the sum
∑n

k=0
(−d)k
k! simply terminates at k = d.

Part (d) is a standard result that follows from the Stirling approximation, e.g., Erdélyi

(1953, p. 47).

Lemma B In the following formulae, 2F1(a, b, c; z) =
∑∞

k=0
(a)k(b)k
k!(c)k

zk is the hypergeometric

function.

(a)
∑n

k=0
(−d)k
k! zk =

(−d)n
n! zn 2F1

(
−n, 1; d− n+ 1; z−1

)
1 (d 6= 0, 1, ..) +

∑d
k=0

(−d)kz
k

k! 1(d =

0, 1, ..).

(b)
∑∞

t=m+1
(−d)t
t! zt = zm+1 (−d)m+1

(m+1)! 2F1 (m+ 1− d, 1;m+ 2; z) .

(c) 2F1(a, b, c; 1) = Γ (c) Γ (c− a− b) / [Γ (c− a) Γ (c− b)] for Re (c− a− b) > 0 and c 6=
0,−1,−2, .... .

(d) If |z| < 1 and |z/(z − 1)| < 1

2F1(a, b; c; z) = (1− z)−a 2F1(a, c− b; c; z/(z − 1)), (6.1)
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the right hand side giving an analytic continuation of the hypergeometric function to the

half-plane Re(z) < 1
2 .

(e)
∑n

k=0

(−d)k(e−iλ)
k

k! =
(1−d)ne

−iλn

n! 2F1(−n, 1; 1−d; 1−eiλ)1 (d 6= 0, 1, ..)+
∑d

k=0
(−d)ke

−iλk

k! 1(d =

0, 1, ..).

(f) If Re(c) > Re(b) > 0

2F1(a, b; c; z) =
Γ (c)

Γ (b) Γ (c− b)

∫ 1

0
tb−1 (1− t)c−b−1 (1− tz)−a dt, (6.2)

which gives an analytic continuation of 2F1(a, b; c; z) to the entire z plane cut along

[1,∞] , i.e. to all z for which arg(1− z) < π.

Proof Part (a) is given in Erdélyi (1953, pp. 87,101) in terms of binomial coefficients. Using

the form given there and lemma A (a), we have for d 6= 0, 1, ...

n∑
k=0

(−d)k
k!

zk =

n∑
k=0

(
d

k

)
(−z)k

=

(
d

n

)
(−z)n 2F1

(
−n, 1; d− n+ 1; z−1

)
=

(−d)n
n!

zn 2F1

(
−n, 1; d− n+ 1; z−1

)
.

When d = 0, 1, .. the sum simply terminates at k = d and the stated result follows.

For part (b) we have

∞∑
k=m+1

(−d)k
k!

xk = xm+1
∞∑
k=0

(−d)m+1+k

(m+ 1 + k)!
xk

= xm+1
∞∑
k=0

Γ (m+ 1 + k − d)

Γ (−d) Γ (m+ 2 + k)
xk

= xm+1
∞∑
k=0

(m+ 1− d)k
(m+ 2)k

Γ (m+ 1− d)

Γ (−d) Γ (m+ 2)
xk

= xm+1 Γ (m+ 1− d)

Γ (−d) Γ (m+ 2)

∞∑
k=0

(m+ 1− d)k
(m+ 2)k k!

xk

= xm+1 Γ (m+ 1− d)

Γ (−d) Γ (m+ 2)
2F1 (m+ 1− d, 1;m+ 2;x) (6.3)

= xm+1 (−d)m+1

(m+ 1)!
2F1 (m+ 1− d, 1;m+ 2;x) .

The hypergeometric function 2F1(a, b, c; z) =
∑∞

k=0
(a)k(b)k
k!(c)k

zk is absolutely convergent for all

|z| ≤ 1 when Re (a+ b− c) < 0 (Erdélyi, 1953, p. 57). Hence, the series in (6.3) converges
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absolutely for all |z| ≤ 1 when d > 0.

Part (c) is a well known summation formula (Erdélyi, 1953, p. 61). Part (d) is Euler’s

formula (Erdélyi, 1953, pp. 64, 105). The series for 2F1(a, b, c; z) converges absolutely for all

|z| < 1 and converges absolutely for |z| = 1 when Re (c− a− b) > 0 (Erdélyi, 1953, p. 57).

The series for 2F1(a, c− b; c; z/(z− 1)) converges for |z/(z− 1)| < 1. Since the latter inequality

holds for all z for which Re(z) < 1
2 , it follows that the right side of (6.1) gives the analytic

continuation of 2F1(a, b; c; z) to the half plane Re(z) < 1
2 (Erdélyi, 1953, p. 64).

Part (e) is obtained by direct calculation. Using (a), we proceed as follows for the case

d 6= 0, 1, ...:

n∑
k=0

(−d)k
(
e−iλ

)k
k!

=
(−d)n
n!

(
e−iλ

)n
2F1

(
−n, 1; d− n+ 1; eiλ

)
(6.4)

=
(−d)n e

−iλn

n!

n∑
j=0

(−n)j (1)j
[
1 +

(
eiλ − 1

)]j
j! (d− n+ 1)j

=
(−d)n e

−iλn

n!

n∑
j=0

(−n)j
(d− n+ 1)j

j∑
q=0

(
j

q

)(
eiλ − 1

)q
=

(−d)n e
−iλn

n!

n∑
j=0

(−n)j
(d− n+ 1)j

j∑
q=0

j!

(j − q)!q!

(
eiλ − 1

)q
=

(−d)n e
−iλn

n!

n∑
q=0

1

q!

(
eiλ − 1

)q n∑
j=q

(−n)j j!

(d− n+ 1)j (j − q)!

=
(−d)n e

−iλn

n!

n∑
q=0

1

q!

(
eiλ − 1

)q n−q∑
s=0

(−n)s+q (s+ q)!

(d− n+ 1)s+q s!
. (6.5)

Since (−n)q+s = (−n)q (−n+ q)s , and (d− n+ 1)s+q = (d− n+ 1)q (d− n+ 1 + q)s from

lemma A (b), (6.5) becomes

(−d)n e
−iλn

n!

n∑
q=0

(−n)q
(d− n+ 1)q

(
eiλ − 1

)q n−q∑
s=0

(q − n)s (q + 1)s
(d− n+ 1 + q)s s!

=
(−d)n e

−iλn

n!

n∑
q=0

(−n)q
(d− n+ 1)q

(
eiλ − 1

)q
2F1 (q − n, q + 1; q − n+ d+ 1; 1) . (6.6)

In this expression, the 2F1 series terminates, so lemma B (c) holds and (6.6) sums to

(−d)n e
−iλn

n!

n∑
q=0

(−n)q
(d− n+ 1)q

(
eiλ − 1

)q Γ (q − n+ d+ 1) Γ (d− q)
Γ (d+ 1) Γ (d− n)

=
(−d)n e

−iλn

n!

n∑
q=0

(−n)q (1)q
q!

(
eiλ − 1

)q Γ (d− n+ 1) Γ (d− q)
Γ (d+ 1) Γ (−n+ d)
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=
d− n
d

(−d)n e
−iλn

n!

n∑
q=0

(−n)q (1)q
q!

(
eiλ − 1

)q Γ (d− q)
Γ (d)

=
(1− d)n e

−iλn

n!

n∑
q=0

(−n)q (1)q
q!

(
eiλ − 1

)q 1

(d− 1) (d− 2) ...(d− q)

=
(1− d)n e

−iλn

n!

n∑
q=0

(−n)q (1)q
q!

(
eiλ − 1

)q (−1)q

(1− d)q

=
(1− d)n e

−iλn

n!
2F1(−n, 1, 1− d; 1− eiλ),

giving the stated result for the case d 6= 0, 1, .... The result for d = 0, 1, .. follows immediately

because the series terminates at k = d. An alternative and more direct proof of the result

makes use in (6.4) of the fact that

2F1

(
−n, 1; d− n+ 1; eiλ

)
=

(d− n)n
(d− n+ 1)n

2F1

(
−n, 1; 1− d; 1− eiλ

)
(6.7)

employing the linear transformation formula 2F1 (−m, b; c; z) = (c−b)m
(c)m 2F1 (−m, b; b− c−m; 1− z)

for terminating hypergeometric series - see Olver et al. (2010, Formula 15.8.7,page 390).

Part (f) is a standard result (Erdélyi, 1953, p. 59).

Lemma C Assume d 6= 0, 1, .. . Then:

(a) For fixed λ 6= 0 as n→∞

∞∑
k=n+1

(−d)k
k!

eiλk = O

(
1

n1+d

)
.

(b) For λs = 2πs
n → 0 and s→∞ as n→∞

∞∑
k=n+1

(−d)k
k!

eiλsk = − 1

2πi

1

Γ (−d)nds

[
1 +O

(
1

s

)]
+O

(
1

n1+d

)
.

(c) For λs = 2πs
n → 0 and s fixed as n→∞

∞∑
k=n+1

(−d)k
k!

eiλsk = O

(
1

nd

)
.

Proof Using lemma B (b), lemma A (d) and lemma F (b), given below, we get

∞∑
k=n+1

(−d)k
k!

eiλk
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=
(
eiλ
)n+1 Γ (n+ 1− d)

Γ (−d) Γ (n+ 2)
2F1

(
n+ 1− d, 1;n+ 2, eiλ

)
(6.8)

= eiλ(n+1) 1

Γ (−d)n1+d

[
1 +O

(
1

n

)]
1

1− eiλ

[
1 +O

(
1

n

)]
= O

(
1

n1+d

)
,

giving part (a). For λ = λs = 2πs
n → 0 and s→∞ as n→∞ we have, using lemma F (a),

(
eiλs

)n+1 Γ (n+ 1− d)

Γ (−d) Γ (n+ 2)
2F1

(
n+ 1− d, 1;n+ 2; eiλs

)
=

eiλs

Γ (−d)n1+d

[
1 +O

(
1

n

)]
2F1

(
n+ 1− d, 1;n+ 2; eiλs

)
=

eiλs

Γ (−d)n1+d

 1

1− eiλs

k−1∑
j=0

(1 + d)j (1)j
j!

(
1

2πis

[
1 +O

( s
n

)])j

+O

((
1

2πis

[
1 +O

( s
n

)])k)}[
1 +O

(
1

n

)]
=

1

Γ (−d)n1+d

eiλs

1− eiλs

[
1 +O

(
1

s

)
+O

(
1

n

)]
=

1

Γ (−d)n1+d

eiλs

1− eiλs

[
1 +O

(
1

s

)]
+O

(
1

n1+d

)
= − 1

Γ (−d)nd

[
1 +O

(
s
n

)]
2πsi

[
1 +O

(
1

s

)]
+O

(
1

n1+d

)
= − 1

2πi

1

Γ (−d)nds

[
1 +O

(
1

s

)]
+O

(
1

n1+d

)
, (6.9)

giving part (b). Finally, for s fixed as n→∞, we have

∞∑
k=n+1

(−d)k
k!

(
eiλs

)k
= O

( ∞∑
k=n+1

1

k1+d

)
= O

(
1

nd

)
,

giving part (c).

Lemma D Assume d 6= 1, 2, ... , let r ∈ (0, 1) and let λs = 2πs
n → 0 with s fixed as n→∞.

Then:

2F1(−bnrc, 1, 1− d; 1− eiλs) = 1F1 (1, 1− d; 2πisr) +O
(
n−1

)
, (6.10)

2F1(−bnrc, 1, 1− d; e−iλs − 1) = 1F1 (1, 1− d; 2πisr) +O
(
n−1

)
, (6.11)

and for nonnegative integer p ≤ n

2F1(−p, 1, 1− d; 1− e−iλs) = 1F1

(
1, 1− d;−2πis

p

n

)
+O

(
p−1
)
. (6.12)
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Proof The same argument gives both results (6.10) and (6.11). We prove (6.10).

2F1(−bnrc, 1, 1− d; 1− eiλs)

=

bnrc∑
j=0

(−bnrc)j
(1− d)j

(
−2πis

n
+O

(
n−2

))j

=

bnrc∑
j=0

(1)j
(−bnrc)j
(−bnrc)j

(1− d)j j!

(
2πisr +O

(
n−1

))j
=

∞∑
j=0

(1)j
(1− d)j j!

(2πisr)j +O
(
n−1

)
−

∞∑
j=bnrc+1

(1)j
(1− d)j j!

(2πisr)j (6.13)

= 1F1 (1, 1− d; 2πisr) +O
(
n−1

)
,

because

∞∑
j=N+1

(1)j x
j

(1− d)j j!
= xN+1

∞∑
k=0

xk

(1− d)k+N+1

=
xN+1

Γ (1− d)−1

∞∑
k=0

xk

Γ (k + 2 +N − d)

=
xN+1Γ (1− d)

Γ (N + 2− d)

∞∑
k=0

xk (1)k
(2 +N − d)k k!

=
xN+1Γ (1− d) eN+1−d
√

2π (N + 2− d)N+1−d

[ ∞∑
k=0

xk (1)k
(2 +N − d)k k!

] [
1 +O

(
1

N

)]
= O

(
1

NN−δ

)
,

for all δ > 0 and all finite x. Line (6.13) above follows because, for 1≤ j ≤ bnrc,∣∣∣∣∣1− (−bnrc)j
(−bnrc)j

∣∣∣∣∣ =

∣∣∣∣1− (1)

(
1− 1

bnrc

)
...

(
1− j − 1

bnrc

)∣∣∣∣ ≤
∣∣∣∣∣1−

(
1− j − 1

bnrc

)j∣∣∣∣∣ = O

(
j2

bnrc

)
,

and

1

n

bnrc∑
j=0

(1)j j
2

(1− d)j j!
(2πisr)j (6.14)

= O

 1

n

bnrc∑
j=0

(3)j
(1− d)j j!

(2πisr)j


= O

(
1

n
1F1 (3, 1− d, 2πisr)

)
= O

(
1

n

)
,
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since the 1F1 function is everywhere convergent.

Next, for (6.12) we have

2F1(−p, 1, 1− d; 1− e−iλs)

=

p∑
j=0

(−p)j
(1− d)j

(
2πis

n
+O

(
n−2

))j
= 1 +

(−p)
1− d

(
2πis

n
+O

(
n−2

))
+

(−p) (−p+ 1)

(1− d)2

(
2πis

n
+O

(
n−2

))2

+...+
(−p)p

(1− d)p

(
2πis

n
+O

(
n−2

))p
= 1 +

(−1)

1− d
(
2πisr +O

(
n−1

))
+

(−1)
(
−1 +O

(
p−1
))

(1− d)2

(
2πis

p

n
+O

(
n−1

))2

+...+

(
−1 +O

(
p−1
))p

(1− d)p

(
2πis

p

n
+O

(
n−1

))p

=

p∑
j=0

(1)j

(
1 +O

(
j
p

))j
(1− d)j j!

(
−2πis

p

n
+O

(
n−1

))j
=

∞∑
j=0

(1)j
(1− d)j j!

(
−2πis

p

n

)j
+O

(
p−1
)

+ +O
(
n−1

)
(6.15)

−
∞∑

j=p+1

(1)j
(1− d)j j!

(
−2πis

p

n

)j
= 1F1

(
1, 1− d;−2πis

p

n

)
+O

(
n−1

)
+O

(
p−1
)
,

giving (6.12). Again, line (6.15) above follows because

1

p

p∑
j=0

(1)j j
2

(1− d)j j!

(
−2πis

p

n

)j
= O

1

p

p∑
j=0

(3)j
(1− d)j j!

(
−2πis

p

n

)j = O

(
1

p

)
.

Lemma E

(a) For j = 1, 2, ...

Γ (j + 1− d)−1
∫ r

0
(r − s)j−dBd−1 (s) ds = Γ (j)−1

∫ r

q=0
(r − q)j−1B(q)dq

and for j = 0, 1, 2, ...

Γ (j + 1− d)−1
∫ r

0
(r − s)j−dBd−1 (s) ds = Γ (j + 1)−1

∫ r

q=0
(r − q)j dB(q).
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(b)

Γ (1− d)−1
∫ r

0
1F1 (1, 1− d;−2πis (r − q)) (r − q)−dBd−1 (q) dq =

∫ r

q=0
e−2πis(r−q)dB (q) .

(c)

1

Γ (1 + d)

∫ 1

0
1F1 (1, 1 + d;−2πisr) rddB (1− r)

=
1

Γ (1− f) (−2πsi)

∫ 1

0
r−f 1F1 (1, 1− f ;−2πisr) dB (1− r) +

1

(−2πsi)
Bd−1 (1) .

(d)
1

Γ (1 + d)

∫ 1

0
1F1 (1, 1 + d;−2πisr) rddB (1− r) =

∫ 1

0
e2πisrBd−1 (r) dr.

In the above formulae, B is Brownian motion with variance ω2 and Bd−1(r) = 1
Γ(d)

∫ r
0 (r − s)d−1 dB(s)

is a fractional Brownian motion initialized at the origin, as in lemma 3.4.

Proof To prove part (a) we use an operator approach with D = d
dx and allow for fractional

powers of D with a Weyl integral interpretation (see Lovoie et al. (1976) and Phillips (1986a)

for the approach used here). The operator eqD is treated at the translation operator, so that

eqDf(x) = f(x+ q). Setting Bd−1 (s) = 0 for all s ≤ 0 we have

1

Γ (j + 1− d)

∫ r

0
(r − s)j−dBd−1 (s) ds =

1

Γ (j + 1− d)

∫ ∞
q=0

qj−dBd−1 (r − q) dq

=
1

Γ (j + 1− d)

∫ ∞
q=0

qj−de−qDBd−1 (r) dq = Dd−j−1Bd−1 (x) |x=r

= Dd−j−1D1−dB (x) |x=r = D−jB (x) |x=r

= Γ (j)−1
∫ r

q=0
qj−1B (r − q) dq = Γ (j)−1

∫ r

q=0
(r − q)j−1B (q) dq, (6.16)

giving the first of the stated results and, consequently,∫ r

0
(r − s)j−dBd−1 (s) ds =

Γ (1− d) (1− d)j
Γ (j)

∫ r

q=0
(r − q)j−1B (q) dq.

To obtain the second form of the result we use integration by parts to give

Γ (j)−1
∫ r

q=0
(r − q)j−1B (q) dq = j−1Γ (j)−1

∫ r

q=0
(r − q)j dB(q)

= Γ (j + 1)−1
∫ r

q=0
(r − q)j dB(q). (6.17)
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Combining (6.16) and (6.17), we have

1

Γ (j + 1− d)

∫ r

0
(r − s)j−dBd−1 (s) ds = Γ (j + 1)−1

∫ r

q=0
(r − q)j dB(q)

which holds also when j = 0, giving the inverse relation

1

Γ (1− d)

∫ r

0
(r − s)−dBd−1 (s) ds = B(r), (6.18)

(see theorem 4.9). An alternate weak convergence proof of (6.18) is given in the proof of

theorem 4.9 below and, from this result, (6.17) can alternatively be obtained by subsequent

integration.

To prove part (b) we proceed as follows:

1

Γ (1− d)

∫ r

0
1F1 (1, 1− d;−2πis (r − q)) (r − q)−dBd−1 (q) dq

=
1

Γ (1− d)

∞∑
j=0

(1)j (−1)j

(1− d)j j!

∫ r

0
(2πis (r − q))j (r − q)−dBd−1 (q) dq

=
1

Γ (1− d)

∞∑
j=0

(−2πis)j

(1− d)j

∫ r

0
(r − q)j−dBd−1 (q) dq

=

∞∑
j=0

(−2πis)j (1− d)j
(1− d)j Γ (j)

∫ r

q=0
(r − q)j−1B (q) dq

=
∞∑
j=0

(−2πis)j

Γ (j)

∫ r

q=0
(r − q)j−1B (q) dq

=
∞∑
j=0

(−2πis)j

j!

∫ r

q=0
(r − q)j dB (q) =

∫ r

q=0
e−2πis(r−q)dB (q) ,

using (6.17) in the penultimate line. This proves part (b).

To prove part (c), we expand the 1F1 function on the right side of the formula and use

Bd−1(1) =
1

Γ (d)

∫ 1

0
(1− s)d−1 dB(s) = − 1

Γ (d)

∫ 1

0
rd−1dB(1− r),

to get

1

Γ (1− f) (−2πsi)

∫ 1

0
r−f 1F1 (1, 1− f ;−2πisr) dB (1− r) +

1

(−2πsi)
Bd−1 (1)

=
1

Γ (1− f) (−2πsi)

∞∑
j=0

(1)j (−2πsi)j

j! (1− f)j

∫ 1

0
rj−fdB (1− r)− 1

(−2πsi)

1

Γ (1− f)

∫ 1

0
r−fdB(1− r)
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=
1

Γ (1− f) (−2πsi)

∞∑
j=1

(1)j (−2πsi)j

j! (1− f)j

∫ 1

0
rj−fdB (1− r)

=

∞∑
j=1

(−2πsi)j−1

Γ (j + 1− f)

∫ 1

0
rj−fdB (1− r)

=

∞∑
k=0

(−2πsi)k

Γ (k + 1 + d)

∫ 1

0
rk+ddB (1− r)

=
1

Γ (1 + d)

∞∑
k=0

(1)k (−2πsi)k

k! (1 + d)k

∫ 1

0
rk+ddB (1− r)

=
1

Γ (1 + d)

∫ 1

0
1F1 (1, 1 + d;−2πisr) rddB (1− r) ,

giving the stated result.

To prove part (d) we use the exponential expansion for e2πisr in the integral on the right

side, giving

∫ 1

0
e2πisrBd−1 (r) dr =

∫ 1

0
e2πis(1−r)Bd−1 (1− r) dr =

∫ 1

0
e−2πisrBd−1 (1− r) dr

=
∞∑
j=0

(−2πsi)j

j!

∫ 1

0
rjBd−1 (1− r) dr

=
∞∑
j=0

(−2πsi)j

j!

∫ 1

0
(1− r)j Bd−1 (r) dr. (6.19)

From part (a) we have

Γ (j + 1− d)−1
∫ r

0
(r − s)j−dBd−1 (s) ds = Γ (j + 1)−1

∫ r

q=0
(r − q)j dB(q),

and setting k = j − d and r = 1 gives the formula

Γ (k + 1)−1
∫ 1

0
(1− s)k Bd−1 (s) ds = Γ (k + d+ 1)−1

∫ 1

q=0
(1− q)k+d dB(q),

or

Γ (k + 1)−1
∫ 1

0
skBd−1 (1− s) ds = Γ (k + d+ 1)−1

∫ 1

q=0
qk+ddB(1− q). (6.20)

Using (6.20) in (6.19) we get∫ 1

0
e2πisrBd−1 (r) dr =

∞∑
j=0

(−2πsi)j

j!

∫ 1

0
rjBd−1 (1− r) dr
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=
∞∑
j=0

(−2πsi)j

j!

Γ (j + 1)

Γ (j + d+ 1)

∫ 1

0
qj+ddB(1− q)

=
∞∑
j=0

(−2πsi)j

j!

(1)j
Γ (j + d+ 1)

∫ 1

0
qj+ddB(1− q)

=
1

Γ (d+ 1)

∫ 1

0

∞∑
j=0

(−2πsiq)j

j!

(1)j
(1 + d)j

qddB(1− q)

=
1

Γ (d+ 1)

∫ 1

0
1F1 (1, 1 + d;−2πisq) qddB(1− q),

giving the stated result.

Lemma F Let α and β be constants for which Re(β),Re(β−α) > 0. The following asymptotic

expansions to some given order k hold

(a) Let λs = 2πs
n . If s

n → 0 as n→∞ and s→∞, then

2F1

(
α, n− β;n; eiλs

)
= (1− eiλs)−α

k−1∑
j=0

(α)j(β)j
j!

(
1

2πis

[
1 +O

( s
n

)])j
+O

((
1

2πis

[
1 +O

( s
n

)])k)
= (1− eiλs)−α

k−1∑
j=0

(α)j(β)j
j!

(
1

2πis

[
1 +O

( s
n

)])j
+O

(
1

sk

) .
(b) Let λ 6= 0 be fixed as n→∞. Then

2F1

(
α, n− β;n; eiλ

)
= (1− eiλ)−α

k−1∑
j=0

(α)j(β)j
j!

(
1

n

eiλ

eiλ − 1

[
1 +O

(
1

n

)])j
+O

(
1

nk

) .
(c) Let λs = 2πs

n . If s
n + n

sp → 0 as n, s, p→∞, then

2F1

(
α, p− β; p; eiλs

)
= (1− eiλs)−α

k−1∑
j=0

(α)j(β)j
j!

(
n

2πisp

[
1 +O

( s
n

)])j
+O

((
n

2πisp

[
1 +O

( s
n

)])k) .
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Proof Since Re(β − α) > 0, the series for 2F1

(
α, n− β;n; eiλs

)
converges absolutely for all

λs. Using (6.1) from lemma B (d), we write

2F1

(
α, n− β;n; eiλs

)
= (1− eiλs)−α 2F1

(
α, β;n;

eiλs

eiλs − 1

)
, (6.21)

where the right side has a convergent series representation for suitable λs, viz. when |eiλs/(eiλs−
1)| < 1, or cos(λs) <

1
2 . Although the domain of convergence of the series on the right side

series is restricted, the right hand side has a valid asymptotic expansion for large n that applies

to all λs as we shall now show.

First observe that as n, s→∞ with s
n → 0, the complex quantity

Zns =
eiλs

eiλs − 1
=

n

2πis

[
1 +O

( s
n

)]
=

n

2πis
[1 + o (1)] (6.22)

lies inside the plane cut along [1,∞] , i.e. | arg(1− Zns)| < π. Hence, we may use the analytic

continuation of the right hand side of (6.21) based on the following integral representation

(Erdélyi, 1953, p. 59; lemma B(f)):

2F1 (β, α;n;Zns) =
Γ (n)

Γ (α) Γ (n− α)

∫ 1

0
tα−1 (1− t)n−α−1 (1− tZns)−β dt. (6.23)

An asymptotic series that is valid even for |Zns| > 1 for large n may now be obtained using

a method due to MacRobert (see Erdélyi (1953, p. 76)) as follows. Expand the last binomial

factor in (6.23) in MacLaurin’s expansion up to k terms with remainder as

(1− tZns)−β =
k−1∑
j=0

(β)j
j!

(tZns)
j +

(β)k
k!

(tZns)
k
∫ 1

0
k (1− q)k−1 (1− qtZns)−β−k dq.

Now scale this expansion by Γ(n)
Γ(α)Γ(n−α) t

α−1 (1− t)n−α−1 and integrate term by term, using the

formula

Γ (n)

Γ (α) Γ (n− α)

∫ 1

0
tα+j−1 (1− t)n−α−1 dt =

Γ (n)

Γ (α) Γ (n− α)

Γ (α+ j) Γ (n− α)

Γ (n+ j)
=

(α)j
(n)j

.

This leads to

2F1 (β, α;n;Zns) =

k−1∑
j=0

(α)j(β)j
(n)jj!

Zjns +Rkn

=

k−1∑
j=0

(α)j(β)j
(n)jj!

( n

2πis

[
1 +O

( s
n

)])j
+Rkn
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=

k−1∑
j=0

(α)j(β)j
j!

(
1

2πis

[
1 +O

( s
n

)] [
1 +O

(
n−1

)])j
+Rkn

=

k−1∑
j=0

(α)j(β)j
j!

(
1

2πis

[
1 +O

( s
n

)])j
+Rkn, (6.24)

where

Rkn =
(β)k

k!B (α, n− α)

∫ 1

0
tα−1 (1− t)n−α−1 (tZns)

k
∫ 1

0
k (1− q)k−1 (1− qtZns)−β−k dqdt

=
k(α)k(β)k

(
n

2πis

[
1 +O

(
s
n

)])k
(n)kk!B (α+ k, n− α)

×
∫ 1

0
tα+k−1 (1− t)n−α−1

∫ 1

0
(1− q)k−1

(
1− qt n

2πis

[
1 +O

( s
n

)])−β−k
dqdt,

since the beta function factors as follows

1

B (α, n− α)
=

Γ (n)

Γ (α) Γ (n− α)

=
Γ (α+ k) Γ (n)

Γ (α) Γ (n+ k)

Γ (n+ k)

Γ (α+ k) Γ (n− α)
=

(α)k
(n)kB (α+ k, n− α)

.

In view of (6.22) there exists a constant c > 0 for which |Im(Zns)| ≥ c. Then, for any given β

and k, there exists an M, independent of n and s, such that

sup
t,q∈[0,1]

∣∣∣(1− qtZns)−β−k∣∣∣ < M.

Then,

|Rkn| ≤ M
k(α)k(β)k

(
n

2πis

[
1 +O

(
s
n

)])k
(n)kk!B (α+ k, n− α)

∫ 1

0
tα+k−1 (1− t)n−α−1

∫ 1

0
(1− q)k−1 dq

= M
k(α)k(β)k

(
n

2πis

[
1 +O

(
s
n

)])k
(n)kk!B (α+ k, n− α)

B (α+ k, n− α)B (k, 1)

= M
k(α)k(β)k

(
n

2πis

[
1 +O

(
s
n

)])k
(n)kk!

Γ (k)

Γ (k + 1)

= M
(α)k(β)k

(
1

2πis

[
1 +O

(
s
n

)] [
1 +O

(
1
n

)])k
k!

= M
(α)k(β)k

k!

(
1

2πis

[
1 +O

( s
n

)])k
,

so that Rkn has the same order of magnitude as the first neglected term in the expansion
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(6.24). Thus, (6.24) is a valid asymptotic expansion of the form

2F1

(
β, α;n;

n

2πis

[
1 +O

( s
n

)])
=

k−1∑
j=0

(α)j(β)j
j!

(
1

2πis

[
1 +O

( s
n

)])j
+O

((
1

2πis

[
1 +O

( s
n

)])k)
,

giving the required result for part (a). Part (b) follows in an identical manner using

Z =
eiλ

eiλ − 1

in place of Zns.

To prove part (c) we proceed as in the proof of part (a), setting Zns = eiλs

eiλs−1
as in (6.22).

Then

2F1 (β, α; p;Zns) =

k−1∑
j=0

(α)j(β)j
(p)jj!

Zjns +Rknp

=

k−1∑
j=0

(α)j(β)j
(p)jj!

( n

2πis

[
1 +O

( s
n

)])j
+Rknp

=

k−1∑
j=0

(α)j(β)j
j!

(
n

2πisp

[
1 +O

( s
n

)] [
1 +O

(
p−1
)])j

+Rknp,

=

k−1∑
j=0

(α)j(β)j
j!

(
n

2πisp

[
1 +O

( s
n

)])j
+Rknp

since ps
n →∞. The remainder is

Rknp =
(β)k

k!B (α, p− α)

∫ 1

0
tα−1 (1− t)p−α−1 (tZns)

k
∫ 1

0
k (1− q)k−1 (1− qtZns)−β−k dqdt

=
k(α)k(β)k

(
n

2πis

[
1 +O

(
s
n

)])k
(p)kk!B (α+ k, p− α)

×
∫ 1

0
tα+k−1 (1− t)p−α−1

∫ 1

0
(1− q)k−1

(
1− qt n

2πis

[
1 +O

( s
n

)])−β−k
dqdt.

As in the case of Rkn, we have

|Rknp| ≤ M
(α)k(β)k

k!

(
n

2πisp

[
1 +O

( s
n

)] [
1 +O

(
p−1
)])k

= M
(α)k(β)k

k!

(
n

2πisp

[
1 +O

( s
n

)])k
,

again since ps
n → ∞. Thus, Rknp has the same order as the first neglected term in the series
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and we get the asymptotic expansion

2F1

(
β, α; p;

eiλs

eiλs − 1

)
=

k−1∑
j=0

(α)j(β)j
j!

(
n

2πisp

[
1 +O

( s
n

)])j
+O

((
n

2πisp

[
1 +O

( s
n

)])k)
,

which leads to the stated result.

6.2 Proofs of Main Lemmas and Theorems

6.1 Proof of Lemma 3.1 See (Phillips and Solo, 1992, formula (32)).

6.2 Proof of Theorem 3.2 From (3.2) we have the following alternate form for the model

(2.1) for all t ≤ n

ut = (1− L)dXt = Dn (L; d)Xt = Dn

(
eiλ; d

)
Xt + D̃nλ

(
e−iλL; d

)(
e−iλL− 1

)
Xt. (6.25)

Observe that

D̃nλ

(
e−iλL; d

)(
e−iλL− 1

)
Xt =

(
e−iλL− 1

)
X̃λt = e−iλX̃λt−1(d)− X̃λt(d), (6.26)

where X̃λt(d) = D̃nλ

(
e−iλL; d

)
Xt =

∑n−1
p=0 d̃λpe

−ipλXt−p. Since the right side of (6.26) is a

telescoping Fourier sum, taking dfts of (6.26) leaves us with 1√
2πn

(
X̃λ0(d)− einλX̃λn(d)

)
. It

follows that when we take dfts of expression (6.25) we have[
Dn

(
eiλ; d

)]
wx (λs) +

1√
2πn

(
X̃λ0(d)− einλX̃λn(d)

)
= wu (λ) , (6.27)

giving the required formula (3.3).

6.3 Proof of Theorem 3.7 Equation (3.11) follows immediately from the definition (1− L)Xt =

zt and (3.9). Equation (3.12) follows by applying (3.8) to zt = (1− L)1−d ut.

6.4 Proof of Lemma 4.2 Using the hypergeometric series representation from lemma B

(b), and the asymptotic expansion in lemma A (d), we have for d > 0

Dn

(
eiλ; d

)
=

n∑
k=0

(−d)k
k!

eikλ =

( ∞∑
k=0

−
∞∑

k=n+1

)
(−d)k
k!

eikλ

=
(

1− eiλ
)d
− ei(n+1)λ Γ (n+ 1− d)

Γ (−d) (n+ 1)!
2F1

(
n+ 1− d, 1;n+ 2; eiλ

)

42



=
(

1− eiλ
)d
− ei(n+1)λ

Γ (−d)n1+d

[
1 +O

(
1

n

)]
2F1

(
n+ 1− d, 1;n+ 2; eiλ

)
, (6.28)

giving (4.1). Formula (4.2) follows immediately from lemma B (d), noting that |eiλ/(eiλ−1)| <
1 when 2 cos(λ) < 1.

Next, using lemma F (b), we have for fixed λ 6= 0,

2F1

(
n+ 1− d, 1;n+ 2; eiλ

)
= (1− eiλ)−1

[
1 +O

(
1

n

)]
. (6.29)

It follows from (6.28) and (6.29) that as n→∞ and for fixed λ 6= 0

Dn

(
eiλ; d

)
=
(

1− eiλ
)d
− 1

Γ (−d)n1+d

ei(n+1)λ

1− eiλ

[
1 +O

(
1

n

)]
,

giving part (a).

When λs = 2πis
n → 0 as n→∞ and s→∞, we proceed as follows. Using lemma F (a) in

the hypergeometric factor in the second term of (6.28), we have

2F1

(
n+ 1− d, 1;n+ 2; eiλs

)
=

1

1− eiλs

k−1∑
j=0

(1 + d)j (1)j
j!

(
1

2πis

[
1 +O

( s
n

)])j
+O

((
1

2πis

[
1 +O

( s
n

)])k)
.

(6.30)

Then, as in the argument leading to (6.9), the second term of (6.28) admits the following valid

asymptotic expansion for λ = λs → 0 as n→∞ and s→∞ :

eiλs

Γ (−d)n1+d

[
1 +O

(
1

n

)]
2F1

(
n+ 1− d, 1;n+ 2; eiλs

)
= − 1

2πi

1

Γ (−d)nds

[
1 +O

(
1

s

)]
+O

(
1

n1+d

)
, (6.31)

and so from (6.28) and (6.31) we get

Dn

(
eiλs ; d

)
=
(

1− eiλs
)d

+
1

2πi

1

Γ (−d)nds

[
1 +O

(
1

s

)]
+O

(
1

n1+d

)
,

giving part (b). The result can also be shown directly by noting from Lemma C(b) that

Dn

(
eiλs ; d

)
=
(

1− eiλs
)d
−

∞∑
k=n+1

(−d)k
k!

eikλs

=
(

1− eiλs
)d

+
1

2πi

1

Γ(−d)nds

(
1 +O

(
1

s

))
+O

(
1

n1+d

)
.
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For part (c), we start by using the following summation formula from lemma B (e)

n∑
k=0

(−d)k
(
eiλs

)k
k!

=
(1− d)n e

iλsn

n!
2F1(−n, 1, 1− d; 1− e−iλs).

Since s is fixed, we have from lemma D (6.12) with p = n

2F1(−n, 1, 1− d; 1− e−iλs) = 1F1 (1, 1− d;−2πis) +O
(
n−1

)
.

It follows that

n∑
k=0

(−d)k
(
eiλs

)k
k!

=
(1− d)n e

iλsn

n!

[
1F1 (1, 1− d;−2πis) +O

(
n−1

)]
=

(1− d)n
n!

1F1 (1, 1− d;−2πis) +O

(
1

n1+d

)
, (6.32)

and, then, for fixed s as n→∞, we have

Dn

(
eiλs ; d

)
=

n∑
k=0

(−d)k e
iλsk

k!
=

1

Γ (1− d)nd
1F1 (1, 1− d;−2πis) +O

(
1

n1+d

)
, (6.33)

as required for part (c).

Part (d) follows as a special case of formula (6.33) with s = 0. We also get the result

directly from lemma A (c), viz.

Dn (1; d) =
n−1∑
k=0

(−d)k
k!

=
(1− d)n−1

(n− 1)!
=

1

Γ (1− d)

1

nd

[
1 +O

(
1

n

)]
.

It follows that Dn (1; d) differs from zero by a term of O
(
n−d

)
.

6.5 Proof of Theorem 4.3 Parts (a) and (b). We write X̃λn(d) as the sum of two

components, the first involving L+ 1 components, with 1 < L < n and where the choice of L

will be discussed below. We have:

X̃λn(d) = D̃nλ

(
e−iλL; d

)
Xn =

n−1∑
p=0

d̃λpe
−ipλXn−p =

n−1∑
p=0

 n∑
k=p+1

(−d)k
k!

eikλ

 e−ipλXn−p

=

L∑
p=0

 n∑
k=p+1

(−d)k
k!

eikλ

 e−ipλXn−p +

n−1∑
p=L+1

 n∑
k=p+1

(−d)k
k!

eikλ

 e−ipλXn−p.
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Then

X̃λn(d)√
n

=
1

n1−d

L∑
p=0

 n∑
k=p+1

(−d)k
k!

eikλ

 e−ipλ
Xn−p

nd−
1
2

+
1

n1−d

n−1∑
p=L+1

 n∑
k=p+1

(−d)k
k!

eikλ

 e−ipλ
Xn−p

nd−
1
2

. (6.34)

Next, look at the sinusoidal sum
∑n

k=p+1
(−d)k
k! eikλ that appears in (6.34). We use the truncated

binomial series formula from lemma B (b) in this sum, giving

n∑
k=p+1

(−d)k
k!

eiλk =
∞∑

k=p+1

(−d)k
k!

eiλk −
∞∑

k=n+1

(−d)k
k!

eiλk

=
(
eiλ
)p+1 (−d)p+1

(p+ 1)!
2F1

(
1 + p− d, 1; p+ 2, eiλ

)
−
(
eiλ
)n+1 (−d)n+1

(n+ 1)!
2F1

(
n+ 1− d, 1;n+ 2, eiλ

)
. (6.35)

For large n and fixed λ 6= 0 we have, using lemma C (a),

∞∑
k=n+1

(−d)k
k!

eiλk = O

(
1

n1+d

)
, (6.36)

while for λ = λs = 2πis
n → 0 and s→∞ as n→∞ we have from lemma C (b)

∞∑
k=n+1

(−d)k
k!

eiλsk = − 1

Γ (−d)nd
1

2πis

[
1 +O

(
1

s

)]
+O

(
1

n1+d

)
. (6.37)

So, neglecting the second term of (6.35) in view of (6.37), we get

n∑
t=p+1

(−d)t
t!

(
eiλs

)t
=
(
eiλs

)p+1 Γ (p+ 1− d)

Γ (−d) (p+ 1)!
2F1

(
1 + p− d, 1; p+ 2, eiλs

)
+O

(
1

nds

)
(6.38)

for all s→∞, as n→∞. Finally, for s fixed as n→∞, we have from lemma C (c)

∞∑
k=n+1

(−d)k
k!

(
eiλs

)k
= O

(
1

nd

)
,

so that (6.38) also holds with s fixed.
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Using (6.38), we deduce that

1

n1−d

L∑
p=0

 n∑
k=p+1

(−d)k
k!

eikλs

 e−ipλs

= eiλs
1

n1−d

L∑
p=0

(−d)p+1

(p+ 1)!
2F1

(
1 + p− d, 1; p+ 2, eiλs

)
+O

(
L

ns

)

= eiλs
1

n1−d

∞∑
p=0

(−d)p+1

(p+ 1)!
2F1

(
1 + p− d, 1; p+ 2, eiλs

)
−eiλs 1

n1−d

∞∑
p=L+1

(−d)p+1

(p+ 1)!
2F1

(
1 + p− d, 1; p+ 2, eiλs

)
+O

(
L

ns

)
. (6.39)

Now

∞∑
p=0

(−d)p+1

(p+ 1)!
2F1

(
1 + p− d, 1; p+ 2, eiλ

)
=

∞∑
p=0

(−d)p+1

(p+ 1)!

∞∑
k=0

(1 + p− d)k (1)k
k! (p+ 2)k

eiλk

=
∞∑
k=0

∞∑
p=0

(−d)p+1

(p+ 1)!

(1 + p− d)k
(p+ 2)k

eiλk

=

∞∑
k=0

∞∑
p=0

(−d)p+1

(p+ 1)!

(1− d+ k)p (2)p
(1− d)p (k + 2)p

(1− d)k
(2)k

eiλk

=

∞∑
k=0

 ∞∑
p=0

(−d)p+1

(p+ 1)!

(1− d+ k)p (2)p
(1− d)p (k + 2)p

 (1− d)k
(2)k

eiλk. (6.40)

Next, since (2)p = (p+ 1)! and

(−d)p+1 =
Γ (1− d+ p)

Γ(−d)
=

(−d) Γ (1− d+ p)

Γ(1− d)
= (−d) (1− d)p

we have

∞∑
p=0

(−d)p+1

(p+ 1)!

(1− d+ k)p (2)p
(1− d)p (k + 2)p

= (−d)

∞∑
p=0

(1− d+ k)p
(k + 2)p

= (−d)

∞∑
p=0

(1− d+ k)p (1)p
(k + 2)p p!

= (−d) 2F1 (k + 1− d, 1; k + 2; 1)

= (−d)
Γ (k + 2) Γ (d)

Γ (k + 1) Γ (1 + d)
= − (k + 1) , (6.41)
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where the explicit representation in the last line follows by the summation formula of lemma

B (c). Using (6.41) in (6.40) we get

∞∑
k=0

 ∞∑
p=0

(−d)p+1

(p+ 1)!

(1− d+ k)p (2)p
(1− d)p (k + 2)p

 (1− d)k
(2)k

eiλk = −
∞∑
k=0

(k + 1) (1− d)k
(2)k

eiλk

= −
∞∑
k=0

(1− d)k
k!

eiλk = − 1

(1− eiλ)
1−d . (6.42)

Thus,

∞∑
p=0

(−d)p+1

(p+ 1)!
2F1

(
1 + p− d, 1; p+ 2, eiλs

)

=
∞∑
k=0

 ∞∑
p=0

(−d)p+1

(p+ 1)!

(1− d+ k)p (2)p
(1− d)p (k + 2)p

 (1− d)k
(2)k

eiλsk = − 1

(1− eiλs)1−d . (6.43)

Next, using lemma F (c) we find that for s
n + n

Ls → 0 (which holds under the conditions on s

and L that are given below),

∞∑
p=L+1

(−d)p+1

(p+ 1)!
2F1

(
1 + p− d, 1; p+ 2, eiλs

)

= O

 ∞∑
p=L+1

(−d)p+1

(p+ 1)!

1

1− eiλs

[
1 +O

(
n

sp

)]
= O

 1

1− eiλs

∞∑
p=L+1

1

p1+d

[
1 +O

(
p−1
)] [

1 +O

(
n

sp

)]
= O

(
1

Ld
1

1− eiλs

)
. (6.44)

It follows from (6.39), (6.43) and (6.44) that

1

n1−d

L∑
p=0

 n∑
k=p+1

(−d)k
k!

eikλ

 e−ipλs = − 1

n1−d
eiλs

(1− eiλs)1−d +O

(
L

ns

)

+
1

n1−d

∞∑
p=L+1

(−d)p+1

(p+ 1)!
2F1

(
1 + p− d, 1; p+ 2, eiλs

)
= − 1

n1−d
eiλs

(1− eiλs)1−d +O

(
L

ns

)
+O

(
nd

Ld
1

s

)
. (6.45)

The first term in (6.45) is O
(

1
s1−d

)
and dominates the second term. The first term also

dominates the third term when n
Ls → 0, which will be the case when s

nα →∞, as n→∞, for
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some α ∈ (0, 1) and L = bn1−αc and when d < 1. (Note that for s fixed the last term of (6.45)

does matter, and this distinguishes the s fixed case, which will be considered below in the

proof of part (c)). Hence, when n→∞, λs → 0 and s
nα →∞ (with L chosen as L = bn1−αc),

we have

1

n1−d

L∑
p=0

 n∑
k=p+1

(−d)k
k!

eikλs

 e−ipλs
Xn−p

nd−
1
2

=
1

n1−d

L∑
p=0

 n∑
k=p+1

(−d)k
k!

eikλs

 e−ipλs
[
Xn

nd−
1
2

+ op (1)

]
(6.46)

= − 1

n1−d
eiλs

(1− eiλs)1−d
Xn

nd−
1
2

+ op

(
1

s1−d

)
= − eiλs

(1− eiλs)1−d
Xn√
n

+ op

(
1

s1−d

)
. (6.47)

Line (6.46) above is justified by a separate argument, which we now develop. We use the fact,

from lemma 4.7, that n
1
2
−dXn−p = Op(1) and p ≤ L = bn1−αc. We proceed as follows. Select

K = bn1−ηc → ∞ with 0 < η < α (we will place a further condition on η below). Then,
L
K + K

n → 0 and we may write (for large n)

Xn−p

nd−
1
2

=
1

nd−
1
2

n−p∑
j=0

(d)j
j!

un−p−j =
1

nd−
1
2

n−p∑
j=K+1

(d)j
j!

un−p−j +
1

nd−
1
2

K∑
j=0

(d)j
j!

un−p−j

=

n−p∑
j=K+1

1(
j
n

)1−d
un−p−j√

n

[
1 +Op(

1

K
)

]
+

(
K

n

)d− 1
2 1

Kd− 1
2

K∑
j=0

(d)j
j!

un−p−j

=

n−p∑
j=K+1

1(
j
n

)1−d
un−p−j√

n
+Op

(
1

K

)
+Op

((
K

n

)d− 1
2

)

=

n−p∑
j=K+1

1(
j+p
n

)1−d
un−p−j√

n

(
j + p

j

)1−d
+Op

(
1

K

)
+Op

((
K

n

)d− 1
2

)

=

n∑
k=K+p+1

1(
k
n

)1−d un−k√n
(

k

k − p

)1−d
+Op

(
1

K

)
+Op

((
K

n

)d− 1
2

)

=

n∑
k=K+p+1

1(
k
n

)1−d un−k√n (
1 +O

(p
k

))d−1
+Op

(
1

K

)
+Op

((
K

n

)d− 1
2

)

=
n∑
k=1

1(
k
n

)1−d un−k√n −
(
K + p

n

)d− 1
2
K+p∑
k=1

1(
k

K+p

)1−d
un−k√
K + p
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+Op

 p

nd−
1
2

n∑
k=K+p+1

1

k2−dun−k

+Op

(
1

K

)
+Op

((
K

n

)d− 1
2

)
. (6.48)

Observe that for any δ > 0,
∑∞

k=1
1

k1+δ
un−k converges almost surely since

∑∞
k=1

1
k1+δ

E|un−k| <
∞. Then,

E

∣∣∣∣∣∣
n∑

k=K+p+1

1

k2−dun−k

∣∣∣∣∣∣ ≤
n∑

k=K+p+1

1

k2−dE |un−k| ≤
∞∑

k=K+p+1

1

k2−dE |un−k|

≤ 1

K1−d−δ

∞∑
k=K+p+1

1

k1+δ
E |un−k| = o

(
1

K1−d+δ

)
,

and so
n∑

k=K+p+1

1

k2−dun−k = op

(
1

K1−d−δ

)
.

It follows that

p

nd−
1
2

n∑
k=K+p+1

1

k2−dun−k = op

(
p

nd−
1
2

1

n(1−η)(1−d−δ)

)
= op

(
L

n
1
2
−η(1−d−δ)−δ

)

= op

( √
n

nα−η(1−d−δ)−δ

)
uniformly for p ≤ L. For K = bn1−ηc and with η satisfying

0 < η < min

(
α,
α− 1

2 − δ
1− d− δ

)
,

and choosing δ such that 0 < δ < α− 1
2 , we have

p

nd−
1
2

n∑
k=K+p+1

1

k2−dun−k = op (1) , (6.49)

uniformly for p ≤ L.
Using (6.49), we find that (6.48) can be written as

Xn−p

nd−
1
2

=

[
1

nd−
1
2

n∑
k=0

(d)k
k!

un−k + op (1)

]
+Op

(
K + p

n

)d− 1
2

+ op (1) +Op

(
1

K

)
+Op

((
K

n

)d− 1
2

)

=
Xn

nd−
1
2

+Op

(
K

n

)d− 1
2

+Op

(
1

K

)
+ op(1) =

Xn

nd−
1
2

+ op(1),

uniformly for p ≤ L = n1−α with α > 1
2 , thereby establishing (6.46).
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When n→∞ with fixed λ 6= 0, we have, in view of the use of (6.36) rather than (6.37) in

the above arguments, the same expression but with an op
(
n−(1−d)

)
error. Specifically,

1

n1−d

L∑
p=0

 n∑
k=p+1

(−d)k
k!

eikλ

 e−ipλs
Xn−p

nd−
1
2

= − 1

n1−d
eiλ

(1− eiλ)
1−d

Xn

nd−
1
2

+ op

(
1

n1−d

)
+O

(
1

n

nd

Ld
1

1− eiλ

)
+O

(
1

n1−d
1

nd

)
= − 1

n1−d
eiλ

(1− eiλ)
1−d

Xn

nd−
1
2

+ op

(
1

n1−d

)
. (6.50)

In both cases the dominant approximation is given by the first term and we can write

1

n1−d

L∑
p=0

 n∑
k=p+1

(−d)k
k!

eikλ

 e−ipλ
Xn−p

nd−
1
2

= − eiλ

(1− eiλ)
1−d

Xn√
n

+ op

(
eiλ

(1− eiλ)
1−d

Xn√
n

)
.

It remains to show that we may neglect the second term of (6.34). Using lemma C(b),

lemma 4.7, (6.38) and lemma F (c), we have, when n → ∞, λs → 0 and s
nα → ∞ and

L = n1−α

1

n1−d

n−1∑
p=L+1

 n∑
k=p+1

(−d)k
k!

eikλs

 e−ipλs
Xn−p

nd−
1
2

=
1

n1−d

n−1∑
p=L+1

(
eiλs(p+1) (−d)p+1

(p+ 1)!
2F1

(
1 + p− d, 1; p+ 2, eiλs

)
+O

(
1

nds

))
e−ipλs

Xn−p

nd−
1
2

=
eiλs

n1−d

n−1∑
p=L+1

(
(−d)p+1

(p+ 1)!
2F1

(
1 + p− d, 1; p+ 2, eiλs

)) Xn−p

nd−
1
2

+Op

(
1

s

)

= O

 eiλs

1− eiλs
1

n1−d

n−1∑
p=L+1

(
(−d)p+1

(p+ 1)!

[
1 +O

(
n

sp

)])
Xn−p

nd−
1
2

+Op

(
1

s

)

= Op

(
nd

Lds

)
+Op

(
1

s

)
, (6.51)

which is op(
1

s1−d
) since n

Ls → 0.

For the case of fixed λ 6= 0 and with L = n1−α we get

1

n1−d

n−1∑
p=L+1

 n∑
k=p+1

(−d)k
k!

eikλs

 e−ipλs
Xn−p

nd−
1
2

= Op

 1

n1−d

n−1∑
p=L+1

1

p1+d

Xn−p

nd−
1
2


= Op

(
1

n1−dLd

)
= Op

(
1

n1−αd

)
= op

(
1

n1−d

)
. (6.52)
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In both cases (6.51) and (6.52), the order is smaller than the leading term of (6.47) and (6.50),

respectively. Hence, for both fixed λ 6= 0 and λs → 0 and s
nα →∞ as n→∞, we have

X̃λn(d)√
n

=
1

n1−d

n∑
p=0

 n∑
k=p+1

(−d)k
k!

eikλ

 e−ipλs
Xn−p

nd−
1
2

= − eiλ

(1− eiλ)
1−d

Xn√
n

+ op

(
eiλ

(1− eiλ)
1−d

Xn√
n

)
,

giving the required results.

Part (c). Our interest is in

X̃λsn(d)√
n

=
1

n1−d

n−1∑
p=0

 n∑
k=p+1

(−d)k
k!

eikλs

 e−ipλs
Xn−p

nd−
1
2

.

From lemma B (e) we have

m∑
k=0

(−d)k
(
eiλs

)k
k!

=
(1− d)m e

iλsm

m!
2F1(−m, 1, 1− d; 1− e−iλs). (6.53)

Since s is fixed, 1− e−iλs = 2πis
n +O

(
n−2

)
and using lemma D and (6.53) we get

n∑
k=0

(−d)k
(
eiλs

)k
k!

=
(1− d)n

n!
1F1 (1, 1− d;−2πis) +O

(
1

n1+d

)
. (6.54)

Using (6.53) with m = p and lemma D again we obtain

p∑
k=0

(−d)k
(
eiλs

)k
k!

=
(1− d)p e

iλsp

p!
2F1(−p, 1, 1− d; 1− e−iλs)

=
(1− d)p e

iλsp

p!
1F1

(
1, 1− d;−2πis

p

n

)
+O

(
1

p1+d

)
. (6.55)

Now n
1
2
−dXn−p = Op (1) , uniformly in p ≤ n, so that

1

n1−d

n∑
p=0

 n∑
k=p+1

(−d)k
k!

eikλs

 e−ipλs
Xn−p
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1
2

=
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 n∑
k=p+1

(−d)k
k!

eikλs

 e−ipλs

Op (1) .

Using (6.54) and (6.55) and noting that
∑n

p=0 p
−1−d = O (1) , we have

1

n1−d

n∑
p=0
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k=p+1

(−d)k
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 e−ipλs
Xn−p

nd−
1
2
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=
1
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−
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Next observe that, since s is fixed as n→∞,
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We deduce that
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− 1

Γ (1− d)

∫ 1
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(
1
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)
,

giving the stated result.

Part (d). When d = 1 the series expression for n−
1
2 X̃λn(d) terminates because (−d)k = 0 for

all k > 1, so that only the term involving p = 0 is retained. We then have

X̃λn(1)√
n

= −eiλXn√
n
,

which holds for all λ.

6.6 Proof of Theorem 4.4 By definition, zt = (1− L)1−d ut = (1− L)f ut, and from

theorem 3.7 we have
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As in the proof of theorem 4.3 and using the fact that
∑n

p=1 p
−1−fun−p = Op (1) as n → ∞,

we proceed as follows
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(1− f)n 1F1 (1, 1− f ;−2πis)

n!

∫ 1

0
e−2πisrdXn (1− r)

− 1√
2π

1

Γ (1− f)nf

∫ 1

0
r−f 1F1 (1, 1− f ;−2πisr) dXn (1− r) +Op

(
1√
n

)
=

1√
2π

1

Γ (1− f)nf

{
1F1 (1, 1− f ;−2πis)

∫ 1

0
e−2πisrdXn (1− r)

−
∫ 1

0
r−f 1F1 (1, 1− f ;−2πisr) dXn (1− r)

}
+Op

(
1√
n

)
.

So we have

Ũλsn(f)√
2πn

=
1√
2π

1

Γ (1− f)nf

{
1F1 (1, 1− f ;−2πis)

∫ 1

0
e−2πisrdXn (1− r)

−
∫ 1

0
r−f 1F1 (1, 1− f ;−2πisr) dXn (1− r)

}
+Op

(
1√
n

)
,

as required. Note that when f = 0, we get

1F1 (1, 1;−2πis) = e−2πsi = 1, 1F1 (1, 1;−2πisr) = e−2πisr,
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and Ũλsn(0) = 0.

6.7 Proof of Lemma 4.7 Akonom and Gouriéroux (1987) prove the result when ut follows

a stationary and invertible ARMA process. Using the device in Phillips and Solo (1992), we

write

ut = C (L) εt = C (1) εt + ε̃t−1 − ε̃t

where ε̃t = C̃ (L) εt =
∑∞

j=0 c̃jεt−j and c̃j =
∑∞

k=j+1 ck. Under (2.4), ε̃t is stationary with

mean zero and finite variance σ2
∑∞

j=0 c̃
2
j . Then

Xt = (1− L)−d ut = C (1) (1− L)−d εt − (1− L)1−d ε̃t.

Now for 1
2 < d ≤ 1, ξt = (1− L)1−d ε̃t is stationary with mean zero and finite variance, so

that n
1
2
−dξbnrc →p 0. On the other hand, Xε

t = (1− L)−d εt is a fractional process constructed

from iid
(
0, σ2

)
innovations with E|εt|p <∞, and so from Akonom and Gouriéroux (1987)

Xε
n,d(r) =

1

nd−
1
2

Xε
bnrc

d→ σ

Γ (d)

∫ r

0
(r − s)d−1 dW (s).

It follows that

Xn,d(r) =
1

nd−
1
2

Xbnrc
d→ Bd−1(r) =

σC (1)

Γ (d)

∫ r

0
(r − s)d−1 dW (s)

=
1

Γ (d)

∫ r

0
(r − s)d−1 dB(s),

as stated.

6.8 Proof of Lemma 4.8 By theorem 4.3 (c), lemma 4.7 and the continuous mapping

theorem we have

X̃λn(d)√
n

=
1F1 (1, 1− d;−2πis)

Γ (1− d)

∫ 1

0
e2πisrXn,d(r)dr

− 1

Γ (1− d)

∫ 1

0
1F1 (1, 1− d;−2πisr) r−dXn,d(1− r)dr +Op

(
1

n1−d

)
d→ 1F1 (1, 1− d;−2πis)

Γ (1− d)

∫ 1

0
e−2πisrBd−1(1− r)dr

− 1

Γ (1− d)

∫ 1

0
1F1 (1, 1− d;−2πisr) r−dBd−1(1− r)dr. (6.56)

In the above, we can replace Xn,d(r) by a continuous polygonal version up to an op(1) error

uniformly over r ∈ [0, 1]. The continuous mapping theorem then applies since the mapping

f 7−→
∫ 1

0 r−df(1− r)dr is continuous when d < 1 for all continuous functions f, and since the

confluent hypergeometric function 1F1 (a, c;x) is an entire function of x.
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Now observe from lemma E that

Γ (1− d)−1
∫ 1

0
1F1 (1, 1− d;−2πis (1− q)) (1− q)−dBd−1 (q) dq =

∫ 1

q=0
e−2πis(1−q)dB (q) .

It follows that (6.56) is

1F1 (1, 1− d;−2πis)

Γ (1− d)

∫ 1

0
e−2πisrBd−1(1− r)dr

− 1

Γ (1− d)

∫ 1

0
1F1 (1, 1− d;−2πisr) r−dBd−1(1− r)dr

=
1F1 (1, 1− d;−2πis)

Γ (1− d)

∫ 1

0
e2πis(1−r)Bd−1(1− r)dr −

∫ 1

q=0
e−2πis(1−q)dB (q)

=
1F1 (1, 1− d;−2πis)

Γ (1− d)

∫ 1

0
e2πisrBd−1(r)dr −

∫ 1

q=0
e2πisqdB (q) . (6.57)

Then,

X̃λn(d)√
n

d→ 1F1 (1, 1− d;−2πis)

Γ (1− d)

∫ 1

0
e2πisrBd−1(r)dr −

∫ 1

q=0
e2πisqdB (q) , (6.58)

giving the first stated result.

6.9 Proof of Theorem 4.9 We offer two proofs of (4.20). The first is by operational

techniques and is given in the proof of lemma E (a) - see (6.18). The second is by way of weak

convergence of the two sides of (3.8) as n→∞. At λs = 0, (3.8) is

1√
2πn

n∑
t=1

ut =
1√
2πn

n∑
t=1

XtDn (1, d)− 1√
2πn

X̃λ0,n(d). (6.59)

From lemma A (c) for d ∈ (1
2 , 1]

Dn (1, d) =

n∑
k=0

(−d)k
k!

=
(1− d)n

n!

=
1

Γ (1− d)nd
[
1 +O

(
n−1

)]
,

so that

1√
n

n∑
t=1

XtDn (1, d) =
1

Γ (1− d)

1

n

n∑
t=1

Xt

nd−
1
2

[
1 +O

(
n−1

)]
d→ 1

Γ (1− d)

∫ 1

0
Bd−1(r)dr. (6.60)
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From theorem 4.3 (c), (4.3), lemma 4.7 and the continuous mapping theorem we have

X̃λ0n(d)√
n

=
1

Γ (1− d)

∫ 1

0
Xn,d(r)dr −

1

Γ (1− d)

∫ 1

0
r−dXn,d(1− r)dr +Op

(
1

n1−d

)
d→ 1

Γ (1− d)

[∫ 1

0
Bd−1(r)dr −

∫ 1

0
r−dBd−1(1− r)dr

]
. (6.61)

It follows from (6.59), (6.60) and (6.61) that

1√
n

n∑
t=1

ut
d→ B (1) =

1

Γ (1− d)

∫ 1

0
(1− r)−dBd−1(r)dr, (6.62)

Applying the same argument to the relation

1√
2πn

bnrc∑
t=1

ut =
1√
2πn

bnrc∑
t=1

XtDn (1, d)− 1√
2πn

X̃λ0,bnrc(d),

instead of (6.59), we obtain the more general formula

B (r) =
1

Γ (1− d)

∫ r

0
(r − q)−dBd−1(q)dq.

To prove (4.19), we can proceed in the same way using (3.8) and theorem 4.3 (c). Or we

can employ operational techniques, as in the proof of lemma E (b), which gives the stated

result directly.

6.10 Proof of Theorem 4.10 Part (a) follows from the representation (4.6) and stan-

dard results on the asymptotic behavior of the dft of a stationary process whose spectrum is

continuous. Indeed, from (4.6) and using lemma 4.7 we have

wx
(
λsj
)

=
(

1− eiλsj
)−d

wu
(
λsj
)
− eiλsj

1− eiλsj
Xn√
2πn

+ op

(
1

n1−d

)
=

(
1− eiφ

)−d
wu
(
λsj
) [

1 +O

(
1

M

)]
+Op

(
1

n1−d

)
where the error magnitudes hold uniformly for λsj ∈ Bφ =

{
φ− π

M , φ+ π
M

}
. Theorem 3 of

Hannan (1973) implies that the quantities {wu(λsj )}Jj=1 are asymptotically independent and

distributed with the same complex normal distribution Nc(0, fu(φ)) as n → ∞. The stated

result for the quantities {wx(λsj )}Jj=1 follows directly.

Part (b) proceeds as follows. From (4.7) we have

wx
(
λsj
)

=
(

1− eiλsj
)−d

wu
(
λsj
)
− eiλsj

1− eiλsj
Xn√
2πn

+ op


(

1− eiλsj
)−d

s1−d
j

 .
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Then,

(
λsj
)d
wx
(
λsj
)

=
(
λsj
)d (

1− eiλsj
)−d

wu
(
λsj
)
−
(
λsj
)d eiλsj

1− eiλsj
Xn√
2πn

+ op

sdj
(

1− eiλsj
)−d

nds1−d
j


=

(
−1

i

)d
wu
(
λsj
) [

1 +O

(
L

n

)]
+

(
2πsj
n

)d n

2πisj

[
1 +O

(
L

n

)]
1√

2πn1−d
Xn

nd−
1
2

+ op

(
1

n
α(1−d)

)
= e

πdi
2 wu

(
λsj
)

+Op

(
L

n

)
+ op

(
1

n
α(1−d)

)

uniformly over sj . It follows that the family
{(
λsj
)d
wx
(
λsj
)}J

j=1
are asymptotically dis-

tributed as {
e
πdi
2 wu

(
λsj
)}J

j=1
,

that is, the members of the family are asymptotically independent and have the same complex

normal distribution, e
πdi
2 Nc(0, fu(0)) or simply Nc(0, fu(0)), as n→∞.

For part (c) note that for each j

1

nd
wx
(
λsj
)

=
1√
2π

1

n

n∑
t=1

Xt

nd−
1
2

e2πsji
t
n =

1√
2π

∫ 1

0
e2πisjrXn,d(r)dr + op (1) ,

and so, by the continuous mapping theorem,

1

nd
wx
(
λsj
) d→ 1√

2π

∫ 1

0
e2πisjrBd−1(r)dr,

giving the stated result for each sj . It is clear from the Cramér-Wold device that joint conver-

gence for {n−dwx(λsj ) : j = 1, ..., J} also applies. Another approach to this result is to note

from (4.10) that (dropping the subscript on sj)

wx (λs)

nd
=

Γ (1− d)

1F1 (1, 1− d;−2πis)

[
wu (λs) +

1√
2πn

X̃λsn(d)

]
+Op

(
1

n

)
. (6.63)

Now

wu (λs) =
1√
2πn

n∑
t=1

ute
2πsi t

n =
1√
2π

∫ 1

0
e2πsirdXn (r) + op (1) , (6.64)
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where Xn (r) = 1√
n

∑bnrc
t=1 ut, and from (6.58) it follows that we may write

X̃λsn(d)√
n

=
1F1 (1, 1− d;−2πis)

Γ (1− d)

∫ 1

0
e2πisrXn,d(r)dr −

∫ 1

q=0
e2πisqdXn (q) + op (1) . (6.65)

Combining (6.64) and (6.65) in (6.63) we get

wx (λs)

nd
=

∫ 1

0
e2πisrXn,d(r)dr + op (1)

d→ 1√
2π

∫ 1

0
e2πisrBd−1(r)dr,

as above.

Part (d) follows from (3.9) and (4.15). Explicitly,

wx
(
λsj
)

=
(

1− eiλsj
)−1

wu
(
λsj
)
− eiλsj

1− eiλsj
Xn√
2πn

=

[(
1− eiφ

)−1
wu
(
λsj
)
− eiφ

1− eiφ
Xn√
2πn

] [
1 +O

(
1

M

)]
(6.66)

d→
(

1− eiφ
)−1

ξj −
eiφ

1− eiφ
η

where the family {ξj}Jj=1 are iid Nc (0, fu (φ)) as in part (a), and the ξj are independent of

η =
B(1)√

2π
, (6.67)

where B is the Brownian motion in (4.15), since the ordinates wu(λsj ) are asymptotically

independent of wu(λ0) for all sj 6= 0.

For part (e), (3.9) yields

(
λsj
)
wx
(
λsj
)

=
(
λsj
) 1

1− eiλsj
wu
(
λsj
)
−
(
λsj
) eiλsj

1− eiλsj
Xn√
2πn

= −1

i
wu
(
λsj
) [

1 +O

(
1

n

)]
+

1

i

[
1 +O

(
1

n

)]
1√
2π

Xn√
n

d→ i
(
ξj − η

)
,

where the family {ξj}Jj=1 are iid Nc (0, fu (0)), and the ξj are independent of η, which has the

same form as in (6.67) above. Finally, when sj is fixed, (4.15) and the continuous mapping

theorem imply that

1

n
wx
(
λsj
)

=
1√
2π

1

n

n∑
t=1

Xt√
n
e2πisj

t
n

d→ 1√
2π

∫ 1

0
e2πisjrB (r) dr, (6.68)

which gives (4.26). Since e2πisjr is continuously differentiable we may apply by integration by
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parts to (6.68), giving

1√
2π

[
e2πisjrB (r)

2πisj

∣∣∣∣1
0

− 1

2πisj

∫ 1

0
e2πisjrdB (r)

]
=

1√
2π

1

2πisj

[
B (1)−

∫ 1

0
e2πisjrdB (r)

]
,

which leads to the representation

ξj =
1√
2π

∫ 1

0
e2πisjrdB (r) ,

giving (4.25). Obviously, (6.68) also holds for sj = 0, and part (f) is proved.

6.11 Proof of Theorem 5.2 From (4.6) and lemma 4.7 we have

wx (λs) =
(

1− eiλs
)−d

wu (λs)−
eiλs

1− eiλs
Xn√
2πn

+ op

(
1

n1−d

)
=

(
1− eiφ

)−d
wu (λs)

[
1 +O

(
1

M

)]
+Op

(
1

n1−d

)
,

where the error magnitudes hold uniformly for λs ∈ Bφ =
{
φ− π

M , φ+ π
M

}
. Then, as n→∞

with M
n → 0, we have

f̂xx (φ) =
1

m

∑
λs∈B(φ)

wx (λs)wx (λs)
∗

=
1

|1− eiφ|2d
1

m

∑
λs∈B(φ)

wu (λs)wu (λs)
∗ +Op

(
1

M

)
+Op

(
1

n1−d

)
p→ 1

|1− eiφ|2d
fu (φ) , (6.69)

by virtue of the consistency of the smoothed periodogram estimate in the stationary (linear

process) case (e.g., (Hannan, 1970, ch. IV)), giving part (a).

For part (b), when d = 1 we have from (6.66)

wx (λs) =

[(
1− eiφ

)−1
wu (λs)−

eiφ

1− eiφ
Xn√
2πn

] [
1 +O

(
1

M

)]
,

and, as n→∞ with M
n → 0, we have

f̂xx (φ) =
1

m

∑
λs∈B(φ)

wx (λs)wx (λs)
∗

=
1

|1− eiφ|2
1

m

∑
λs∈B(φ)

wu (λs)wu (λs)
∗ − 2

|1− eiφ|2
Re

 1

m

∑
λs∈B(φ)

wu (λs)
e−iφXn√

2πn


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+
1

|1− eiφ|2

(
Xn√
2πn

)2

+Op

(
1

M

)
d→ 1

|1− eiφ|2d
fu (φ) +

1

|1− eiφ|2

(
B (1)√

2π

)2

,

in view of (6.69) and (4.15).

To prove part (c), we write the sum (5.2) as the sum over the full set of frequencies {λs}n−1
s=0

and a residual, i.e.,

m

n2d
f̂xx (0) =

m−1∑
s=0

wx (λs)

nd
wx (λs)

∗

nd

=
n−1∑
s=0

wx (λs)

nd
wx (λs)

∗

nd
−

n−1∑
s=m

wx (λs)

nd
wx (λs)

∗

nd

=
1

2π

n∑
t=1

(
Xt

nd

)2

−
n−1∑
s=m

wx (λs)

nd
wx (λs)

∗

nd

=
1

2π

1

n

n∑
t=1

(
Xt

nd−
1
2

)2

−
n−1∑
s=m

wx (λs)

nd
wx (λs)

∗

nd
. (6.70)

Since m
nα →∞ we have by (4.8)

1

nd
wx (λs) =

1

nd

[(
1− eiλs

)−d
wu (λs)−

eiλs

1− eiλs
Xn√
2πn

+ op

(
eiλs

(1− eiλs)1−d
Xn√
n

)]

= Op

(
1

md

)
,

uniformly for s ≥ m. When m is such that m
nα →∞, it follows that

1

nd
wx (λs) = op

(
1

nαd

)
,

and then
n−1∑
s=m

wx (λs)

nd
wx (λs)

∗

nd
= op

( n

n2αd

)
= op (1) (6.71)

for α chosen such α ≥ 1
2d . We deduce from (6.70), (6.71), (4.15) and the continuous mapping

theorem that

m

n2d
f̂xx (0) =

1

2π

1

n

n∑
t=1

(
Xt

nd−
1
2

)2

+ op (1)→d
1

2π

∫ 1

0
Bd− 1

2
(r)2 dr,

giving the stated result in part (c). Part (d) follows in an analogous fashion with d = 1 and

α ≥ 1
2 .
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7 Notation

→a.s. almost sure convergence

=d distributional equivalence

:= definitional equality

oa.s.(1) tends to zero almost surely

op(1) tends to zero in probability

→p convergence in probability
d→,→d weak convergence

b·c integer part of

(a)k (a) (a+ 1) ... (a+ k − 1) forward factorial

1F1 (a, c; z)
∑∞

k=0
(a)k

(c)kk!z
k, confluent hypergeometric function

2F1 (a, b, c; z)
∑∞

k=0
(a)k(b)k
(c)kk! z

k hypergeometric function

1(A) indicator of A

Xn(r) n−
1
2
∑bnrc

t=0 ut

Xn,d(r) n
1
2
−dXbnrc

Γ (z)
∫∞

0 e−ttz−1dt gamma function ( Re(z) > 0)

B (z, w) Γ(z)Γ(w)
Γ(z+w) beta function

wa (λ) 1√
2πn

∑n
t=1 ate

itλ discrete Fourier transform
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