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Abstract

We study which multi-agent information structures are more effective at elimi-
nating both first-order and higher-order uncertainty, and hence at facilitating effi-
cient play in incomplete-information coordination games. We consider a learning
setting à la Cripps, Ely, Mailath, and Samuelson (2008) where players have access
to many private signal draws from an information structure. First, we charac-
terize the rate at which players achieve approximate common knowledge of the
state, based on a simple learning efficiency index. Notably, this coincides with
the rate at which players’ first-order uncertainty vanishes, as higher-order uncer-
tainty becomes negligible relative to first-order uncertainty after enough signal
draws. Based on this, we show that information structures with higher learn-
ing efficiency induce more efficient equilibrium outcomes in coordination games
that are played after sufficiently many signal draws. We highlight some robust
implications for information design in games played in data-rich environments.
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1 Introduction

Coordination problems under uncertainty about a payoff-relevant state of the world
are ubiquitous in economics, from joint investment decisions and technology adoption
to currency attacks, bank runs, and political revolutions. In such settings, there are
two obstacles to coordinating on an efficient outcome: players’ first-order uncertainty
about the state and their higher-order uncertainty about other players’ beliefs about
the state. Thus, an important question is to understand which information structures
are more effective at reducing both forms of uncertainty, and hence at facilitating
coordination.

In this paper, we address this question by considering a learning setting, where
players have access to many draws of private signals from an information structure
(capturing, for instance, that data is “cheap” or abundant). Our starting point is a clas-
sic result due to Cripps, Ely, Mailath, and Samuelson (2008), henceforth CEMS, which
shows that (under natural conditions) this setting leads to common learning: Under
any information structure, players achieve approximate common knowledge (Monderer
and Samet, 1989) of the true state as the number of signal draws goes to infinity. Thus,
asymptotically, all information structures eliminate both first-order and higher-order
uncertainty, but the result is silent about which information structures do so more ef-
fectively. To understand the latter, a natural approach is to compare which information
structures lead to faster common learning, i.e., are more likely to induce approximate
common knowledge of the state away from the limit, after any large but finite number
of signal draws.

Our first main result conducts such a comparison, by characterizing the speed of
common learning under each information structure. Our key insight is that all that
matters is how fast an information structure eliminates first-order uncertainty: We
show that the speed of common learning simply coincides with the speed at which
all players individually learn the state, because, under every information structure,
higher-order uncertainty vanishes faster than first-order uncertainty. This allows us
to characterize the speed of common learning using a simple multi-agent learning ef-
ficiency index. The index depends only on the statistical informativeness (Chernoff,
1952; Moscarini and Smith, 2002) of the worst-informed player’s private signals; in
contrast, the correlation across different players’ private signals is irrelevant.

Second, we apply this result to rank information structures in terms of their value
in coordination problems. In particular, we show that, for a rich class of games and
objectives that are “aligned at certainty,” information structures with higher learning
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efficiency lead to better equilibrium outcomes whenever players have access to suffi-
ciently many signal draws. Based on the structure of the learning efficiency index, this
result yields some robust implications for information design in coordination games
that are played in data-rich settings.

Section 2 introduces the learning setting. An information structure I specifies a
joint distribution over players’ private signals in each state, where both states and
signals are assumed finite. We consider a setting where players receive t independent
draws of private signals from I, but I may feature arbitrary correlation across different
players’ private signals.

Section 3 characterizes the speed of common learning: For each information struc-
ture I, we consider the probability that players have common p-belief (for p arbitrarily
close to 1) of the true state after t signal draws from I, and analyze how fast this
converges to one as t grows large. Common p-belief is a much more demanding notion
than individual knowledge, as it imposes confidence not only on players’ first-order
beliefs about the state, but on their infinite hierarchy of higher-order beliefs. How-
ever, perhaps surprisingly, Theorem 1 shows that the probability of common p-belief
converges to one at the same exponential rate at which all players individually learn
the state, which is characterized by the aforementioned learning efficiency index. The
proof of Theorem 1 relies on a key information-theoretic lemma that uses Kullback-
Leibler divergence to formalize that players’ higher-order uncertainty vanishes faster
than their first-order uncertainty (Lemma 1).

Section 4 augments the learning setting by assuming that, once players have ob-
served many signal draws from an information structure, they face an incomplete-
information game. With each game, we associate an objective function over action
profiles in each state, capturing, for instance, players’ welfare or a designer’s prefer-
ences. Theorem 2 provides a large-sample ranking over information structures: We
identify a class of games and objectives for which information structures with a higher
learning efficiency index induce better (Bayes-Nash) equilibrium outcomes whenever
players observe sufficiently many signal draws. This class satisfies one substantive as-
sumption, alignment at certainty : We require that, under common knowledge of the
state, the first-best outcome (according to the objective) can be achieved by some
strict Nash equilibrium of the game. A leading instance of this assumption is when the
objective is to maximize utilitarian welfare and the game is a coordination problem,
such as the illustrative joint investment example below, coordinated attack games (Ex-
ample 2), and other important examples in the literature. As we will see, the fact that
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the ranking in Theorem 2 applies uniformly to all these environments relies crucially
on our finding in Theorem 1 that the speed of common learning coincides with the
speed of individual learning.

By focusing on settings where players have access to rich data, our analysis yields
some insights into information design in coordination problems that apply robustly,
regardless of the specific game being played. First, a designer seeking to facilitate
coordination should focus on improving players’ information about the state; in con-
trast, the effect of providing additional signals about other players’ signals (that are
not directly informative about the state) is negligible. Second, the designer should be
“egalitarian,” i.e., focus on improving the worst-informed player’s information about
the state.

Example 1 (Illustrative example: Joint investment). Consider two players, i =

1, 2, with symmetric action sets Ai = {0, 1}. Action 1 represents investment and action
0 no investment. The state θ ∈ {θ, θ} captures whether the market fundamental is low
(θ) or high (θ) and is drawn according to some non-degenerate prior p0. Each player
i’s utility takes the form

ui(a, θ) =

1{θ=θ}1{a−i=1} − c if ai = 1

0 if ai = 0.

That is, if i invests, she incurs a cost of c ∈ (0, 1), and the investment is successful
(payoff of 1) if and only if the state is θ and her opponent also invests. The payoff
to unsuccessful or no investment is 0. Under utilitarian welfare, 1

2
(u1(a, θ) + u2(a, θ)),

the efficient outcome is to play (1, 1) in state θ and (0, 0) in state θ. These are strict
Nash equilibria under common knowledge of θ, but incomplete information prevents
the efficient outcome from being an equilibrium.

Now suppose that, prior to choosing actions, players learn about state θ from re-
peated signal draws. Our analysis yields a (generically) complete ranking over informa-
tion structures: Using our learning efficiency index, one can compare how fast players
achieve approximate common knowledge of θ under different information structures,
and hence how close the induced (best-case) equilibrium play is to the efficient outcome
after sufficiently many signal draws. For example, consider a simple class of binary in-
formation structures: Each player i’s private signal realizations xi are either θ or θ,
and the joint probabilities of players’ signals in state θ are given by

Here, the individual precision parameter γ ∈ (1/2, 1) captures the probability with
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x1 = θ x1 6= θ
x2 = θ γρ γ(1− ρ)
x2 6= θ γ(1− ρ) 1− γ(2− ρ)

which each player’s signal matches the state, and the parameter ρ ∈ [0, 1] captures the
extent of correlation across players’ private signals. Higher values of γ help to reduce
players’ first-order uncertainty about the state, while ρ influences players’ predictions
of their opponent’s signals, i.e., their higher-order uncertainty. Thus, in comparing two
information structures parametrized by (γ, ρ) and (γ̃, ρ̃), it might not be obvious how
to trade off these two considerations. Indeed, if players observe only a small number of
signal draws, whether (γ, ρ) or (γ̃, ρ̃) induces better equilibrium play can vary across
different priors p0 and investment costs c.

However, we will show that our learning efficiency index depends only on γ. Thus,
for any p0 and c, higher levels of individual precision γ allow for more efficient equilib-
rium play when players observe sufficiently many signal draws; in contrast, the effect
of correlation ρ becomes negligible as the number of signals grows large. This reflects
our key insight that the speed of common learning is the same as the speed of individ-
ual learning, because higher-order uncertainty about opponents’ signals vanishes faster
than first-order uncertainty about the state. N

1.1 Related Literature

Our paper contributes to the large literature on higher-order beliefs (e.g., Rubinstein,
1989; Carlsson and Van Damme, 1993; Kajii and Morris, 1997; Morris and Shin, 1998;
Weinstein and Yildiz, 2007). A central insight in this literature is that higher-order
uncertainty about a payoff-relevant state can be an important source of inefficiency
in coordination games. This reflects the fact that, even when all players’ first-order
uncertainty is small, higher-order uncertainty can be significant. In contrast, we high-
light that, in natural learning settings where players have access to rich enough data
about the state, higher-order uncertainty vanishes faster than first-order uncertainty
and eventually becomes negligible relative to first-order uncertainty.

To make this point, we consider the same learning setting as CEMS.1 As men-
tioned, our contribution relative to their paper is to provide a comparison of different

1Other papers (e.g., Steiner and Stewart, 2011; Cripps, Ely, Mailath, and Samuelson, 2013) study
common learning when signals are correlated across draws. Liang (2019) considers non-Bayesian
agents who learn from public signals. Acemoglu, Chernozhukov, and Yildiz (2016) consider a setting
that features identification problems due to uncertainty about the information structure.
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information structures based on the speed at which they induce approximate common
knowledge, and to use this to rank information structures in terms of their value in
coordination games. Our proof of Theorem 1 builds on CEMS’ proof approach, but
as Section 3.2 illustrates, we refine their analysis by introducing information-theoretic
arguments that are crucial for deriving the rate of common learning. We obtain a
complete ranking over any two information structures whose learning efficiency indices
are not equal; more recently, Awaya and Krishna (2022) study the natural comple-
mentary case where information structures have common marginal signal distributions
(and hence equal learning efficiency indices) but differ in their correlation structure
(see the discussion in Section 3.1).

Moscarini and Smith (2002) derive an efficiency index that characterizes the speed
of single-agent learning. Our learning efficiency index generalizes theirs to multi-agent
settings. Our key finding is that, because higher-order uncertainty vanishes faster than
first-order uncertainty, the multi-agent index simply reduces to the slowest agent’s
individual learning efficiency index and does not depend on the correlation across
different agents’ signals. The speed of learning has also been analyzed in various
social learning environments, but most work has not focused on the role of higher-
order beliefs.2 A notable exception is Harel, Mossel, Strack, and Tamuz (2021), who
consider a setting in which long-lived agents repeatedly observe both private signals
and other agents’ actions, so that higher-order beliefs matter for agents’ inferences.
They derive an upper bound on the speed of first-order learning that holds uniformly
across all population sizes. We study learning from exogenous signals rather than from
others’ actions, but provide an exact characterization of the convergence speed of both
higher-order and first-order beliefs.

More broadly, we relate to the literature on information design in games (for surveys,
see Bergemann and Morris, 2019; Kamenica, 2019). In contrast to the typical approach
in this literature, we assume that players observe many i.i.d. draws from the chosen
information structure and we rule out information structures that fully reveal the
state. Our ranking over information structures has robust design implications that
apply to all games and objectives satisfying alignment at certainty. As is also common
in this literature, our analysis assumes a designer-preferred equilibrium selection; see,
e.g., Morris, Oyama, and Takahashi (2020) for an alternative approach that considers
adversarial equilibrium selection.

2See, e.g., Vives (1993); Duffie and Manso (2007); Hann-Caruthers, Martynov, and Tamuz (2018);
Rosenberg and Vieille (2019); Liang and Mu (2020); Dasaratha and He (2019).
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Finally, our exercise relates to the literature on comparisons of information struc-
tures. Blackwell (1951) compares information structures in terms of their induced
payoffs in all single-agent decision problems. While Blackwell’s order assumes that the
agent observes a single signal draw, Moscarini and Smith’s (2002) aforementioned effi-
ciency index extends this order to single-agent settings with many i.i.d. signal draws.3

Extensions of Blackwell’s order to multi-player games have focused on the single signal
draw case. Because more information can be harmful in some games (e.g., Hirshleifer,
1971), one needs to restrict the class of games and objectives to avoid obtaining a highly
conservative ranking.4 In particular, Lehrer, Rosenberg, and Shmaya (2010) focus on
common-interest games with utilitarian welfare, while Pęski (2008) compares min-max
values in zero-sum games.5 As we discuss in Remark 1, by assuming that agents observe
many signal draws, we obtain a ranking that is a completion of Lehrer, Rosenberg, and
Shmaya’s (2010) order and applies to a richer class of games and objectives beyond the
common-interest case.

2 Setting

Learning environment. Throughout the paper, we fix a finite set of agents N , a
finite set of states Θ, and a full-support (common) prior belief p0 ∈ ∆(Θ).

An information structure I consists of a finite set of private signals Xi for each
agent i ∈ N , with corresponding set of signal profiles X :=

∏
i∈N Xi, as well as a

distribution µθ ∈ ∆(X) over signal profiles conditional on each state θ ∈ Θ. Let
µθi ∈ ∆(Xi) denote the marginal distribution over agent i’s private signals in state θ.
We assume that, for all agents i and states θ, µθi has full support and µθi 6= µθ

′
i for all

θ′ 6= θ. Note that the joint distribution µθ may display arbitrary correlation.
We consider a setting where agents observe repeated i.i.d. signal draws from an

information structure. Formally, for each information structure I and t ∈ N, let
PIt ∈ ∆(Θ×X t) denote the probability distribution over states and sequences of signal
profiles that results when the state θ is drawn according to prior p0 and, conditional

3Azrieli (2014) and Mu, Pomatto, Strack, and Tamuz (2021) consider a more demanding order
that requires the number of signal draws to be uniform across decision problems.

4Indeed, Gossner (2000) compares Bayes-Nash equilibrium outcomes for general games and objec-
tives and shows that no two information structures that induce different (higher-order) beliefs can be
compared.

5Bergemann and Morris (2016) study general games using Bayes-correlated equilibria, which are
equivalent to Bayes-Nash equilibria in a setting with a mediator who observes the state and signals.
Brooks, Frankel, and Kamenica (2021) compare the informativeness of different agents’ signals within
a multi-agent information structure.
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on each state θ, a sequence xt = (xτ )τ=1,...,t of signal profiles is generated according
to t independent draws from µθ. Agent i’s observed sequence of private signals is
xti = (xiτ )τ=1,...,t.

Common learning. CEMS’s classic result is that, in this setting, agents commonly
learn the state, i.e., both their first-order uncertainty about θ and their higher-order
uncertainty about other agents’ beliefs about θ vanishes as t grows large.

Formally, for any t ∈ N, p ∈ (0, 1), and event E ⊆ Θ × X t, let Bp
t (E) denote the

event that E is p-believed at t, i.e., that all agents assign probability at least p to E
after t draws from I. That is,

Bp
t (E) :=

⋂
i∈N

Bp
it(E), where Bp

it(E) := Θ× {xti ∈ X t
i : PIt (E | xti) ≥ p} ×

∏
j 6=i

X t
j .

Since µθi 6= µθ
′
i for all i and θ 6= θ′, standard arguments imply that all agents individ-

ually learn the true state; that is, for all p ∈ (0, 1) and θ ∈ Θ, we have

lim
t→∞

PIt (Bp
t (θ) | θ) = 1,

where, slightly abusing notation, we also use θ to denote the event {θ} ×X t.
While individual learning only requires all agents’ first-order beliefs to eventually

assign probability arbitrarily close to 1 to the true state, common learning additionally
considers agents’ higher-order beliefs. Let

Cp
t (E) :=

⋂
k∈N

(Bp
t )
k(E)

denote the event that E is commonly p-believed at t. At Cp
t (E), the event E is

p-believed, the event Bp
t (E) is p-believed, and so on. The event Cp

t (θ) for p close to 1

captures that agents have approximate common knowledge of state θ (Monderer and
Samet, 1989). Common learning requires that the true state is eventually commonly
p-believed for p arbitrarily close to 1; that is, for all p ∈ (0, 1) and θ ∈ Θ,

lim
t→∞

PIt (Cp
t (θ) | θ) = 1. (1)

CEMS show that when states and signals are finite, as in the current setting, then
every information structure I gives rise to common learning.6

6See Section 6 for a discussion of more general settings.
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3 Multi-Agent Learning Efficiency

3.1 Speed of Common Learning

While CEMS’ result shows that, asymptotically, all information structures lead to
approximate common knowledge of the state, it says nothing about which information
structures do so more effectively. To capture this, a natural approach is to compare how
different information structures I affect the probability PIt (Cp

t (θ) | θ) of approximate
common knowledge at all large but finite t, i.e., to analyze the rate of convergence in
(1). Our first main result provides a simple characterization of this rate, allowing us
to rank information structures in terms of their learning efficiency.

We first recall a standard statistical measure that characterizes a single agent’s
rate of individual learning under each information structure I. Fix any agent i and
true state θ. Then, for any state θ′ 6= θ, one can measure how difficult i finds it
to statistically distinguish θ′ from θ using the Chernoff distance (e.g., Cover and
Thomas, 1999) between i’s marginal signal distributions in states θ and θ′:

d(µθi , µ
θ′

i ) := min
νi∈∆(Xi)

max
{

KL(νi, µ
θ
i ),KL(νi, µ

θ′

i )
}
. (2)

Here, KL(νi, µ
θ
i ) denotes the Kullback-Leibler (henceforth, KL) divergence of νi relative

to µθi .7 Observe that any minimizer νi of (2) must satisfy KL(νi, µ
θ
i ) = KL(νi, µ

θ′
i ).

Thus, d(µθi , µ
θ′
i ) is the distance from µθi and µθ

′
i to their KL-midpoint, so smaller values

of d(µθi , µ
θ′
i ) capture that i’s private signal distributions in states θ and θ′ are closer to

each other. Note that (unlike KL-divergence) the Chernoff distance is symmetric, and
that d(µθi , µ

θ′
i ) > 0 by the assumption that µθi 6= µθ

′
i .

Statistical arguments (e.g., Chernoff, 1952) yield the following characterization of
i’s speed of individual learning in state θ: For any p ∈ (0, 1), as t→∞, the probability
that i achieves individual p-belief of state θ goes to 1 exponentially,

PIt (Bp
it(θ) | θ) = 1− exp[−λθi (I)t+ o(t)], (3)

where the rate of convergence is given by

λθi (I) := min
θ′∈Θ\{θ}

d(µθi , µ
θ′

i ).

7That is, KL(νi, µ
θ
i ) :=

∑
xi∈Xi νi(xi) log νi(xi)

µθi (xi)
. By convention, 0 log 0 = 0

0 = 0 and log 1
0 =∞.
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Thus, i’s individual learning efficiency under information structure I is captured by
a simple index λθi (I) that measures how difficult i finds it to distinguish state θ from
the state θ′ that generates the most similar private signal distribution. Building on
this, Moscarini and Smith (2002) show that λθi (I) quantifies the value of information
in single-agent decision problems under large samples of signals and prove that this
index extends Blackwell’s order:8 If i’s marginal signal distributions under I Blackwell-
dominate those under Ĩ, then λθi (I) ≥ λθi (Ĩ) for all θ.

Our first main result is that the rate at which agents commonly learn state θ is
given by the multi-agent learning efficiency index

λθ(I) := min
i∈N

λθi (I) = min
i∈N,θ′∈Θ\{θ}

d(µθi , µ
θ′

i ), (4)

which simply considers the slowest agent’s rate of individual learning.

Theorem 1. Fix any information structure I, state θ ∈ Θ, and p ∈ (0, 1). Then
individual learning and common learning both occur at rate λθ(I), i.e.,

PIt (Bp
t (θ) | θ) = 1− exp[−λθ(I)t+ o(t)]; (5)

PIt (Cp
t (θ) | θ) = 1− exp[−λθ(I)t+ o(t)]. (6)

The fact that λθ(I) characterizes the rate of individual learning is immediate from
(3): Since single-agent learning is exponential, the rate at which all agents achieve
p-belief of the true state is determined by the slowest agent’s rate of learning.

The substantive part of Theorem 1 is the characterization of the speed of common
learning. As highlighted by a rich literature (see Section 1.1), common p-belief is a much
more demanding requirement than individual p-belief: Cp

t (θ) imposes confidence not
only on agents’ first-order beliefs about the state, but on their entire infinite hierarchy
of higher-order beliefs.9 Based on this, it might be natural to expect common learning
to occur more slowly than individual learning. However, Theorem 1 shows that, as
t→∞, the probability of common p-belief and the probability of individual p-belief of
the true state θ both tend to 1 at the same exponential rate λθ(I).10 As we illustrate

8More precisely, they use the index minθ′∈Θ\{θ}maxκ∈[0,1]− log
∑
xi∈Xi µ

θ
i (xi)

κµθ
′

i (xi)
1−κ, which

is equal to λθi (I) by the variational formula (e.g., Dupuis and Ellis, 2011, Lemma 6.2.3.f).
9Relatedly, Kajii and Morris’s (1997) critical path theorem yields a lower bound on the probability

of Cpt (θ) relative to the probability of Bpt (θ), but this result only applies when p is small (p < 1
|N | ),

reflecting a significant gap between common p-belief and individual p-belief when p is close to 1.
10The o(t) terms can differ across (5) and (6) and can depend on p0, p, and features of I other than

λθ(I), but these terms become negligible as t→∞.
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in Section 3.2, the key insight behind this result is that, as the number of signal draws
grows large, agents’ higher-order uncertainty about others’ beliefs vanishes faster than
their first-order uncertainty about the state.

The latter insight is also reflected by the structure of the multi-agent learning effi-
ciency index: λθ(I) reduces each information structure I to a simple one-dimensional
measure that only focuses on the worst-informed agent i and the state θ′ that i finds
most difficult to distinguish from the true state θ based on her private signals; in
contrast, the correlation across agents’ signals plays no role. For instance, in the il-
lustrative Example 1, where I is summarized by an individual precision parameter γ
and a correlation parameter ρ, we have λθ(I) = KL((1

2
, 1

2
), (γ, 1 − γ)); this is strictly

increasing in γ but does not depend on ρ. When agents observe a small sample of sig-
nals, the probability of common p-belief in general depends on various other features
of an information structure, including the correlation across agents’ signals. However,
Theorem 1 implies that, under sufficiently large samples of signals, these features be-
come irrelevant and λθ is all that is needed to compare the probabilities of common
p-belief across different information structures:

Corollary 1. Take any information structures I, Ĩ and state θ ∈ Θ such that λθ(I) >

λθ(Ĩ). Then, for each p ∈ (0, 1), there is T such that, for all t ≥ T ,

PIt (Cp
t (θ) | θ) > PĨt (Cp

t (θ) | θ) .

Corollary 1 ranks any two information structures whose learning efficiency indices
are not exactly tied, which holds for generic pairs of information structures.11 One
natural setting this excludes is when I and Ĩ feature the same marginal signal dis-
tributions and differ only in their correlation. Complementary to Corollary 1, Awaya
and Krishna (2022) study such settings and show that here higher correlation across
agents’ signals can reduce the probability of common p-belief at all large enough t.

3.2 Illustration of Theorem 1

We prove Theorem 1 in Appendices B and E. To illustrate the key insight behind the
result, consider the binary information structure from Example 1 with γ = 3/5 and
ρ = 5/12.12 Thus, the signal probabilities conditional on each state θ are:

11Given I, the set of information structures Ĩ such that λθ(I) 6= λθ(Ĩ) holds for all θ is open and
dense in ∆(X)Θ endowed with the Euclidean topology.

12With these parameter values, agents’ signals are negatively correlated conditional on each state,
but this feature is not important for our general arguments.
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x1 = θ x1 6= θ

x2 = θ 0.25 0.35

x2 6= θ 0.35 0.05

Fix any p ∈ (0, 1). Let νit ∈ ∆(Xi) denote the empirical distribution of agent i’s
signals up to t, and observe that this is a sufficient statistic for i’s (first-order and
higher-order) beliefs. Hence, the events Bp

t (θ) and Cp
t (θ) can be described as subsets

of ∆(X1)×∆(X2). In particular, as depicted in Figure 1 (left), for all large enough t,
one can show that Bp

t (θ) and Cp
t (θ) are approximated by

Bp
t (θ) ≈

{
νit(θ) ∈

(
1

2
, 1

]
,∀i = 1, 2

}
, Cp

t (θ) ≈
{
νit(θ) ∈

(
1

2
,

9

11

)
,∀i = 1, 2

}
.

(7)
The expression for Bp

t (θ) is intuitive: at large t, i becomes confident in state θ as long
as the majority of i’s signals matches θ. To see the idea behind Cp

t (θ), note that for
any realized signal frequency νit(θ) = α ∈ (1

2
, 1] of agent i and all large enough t, i

assigns high probability to j’s realized signal frequency νjt(θ) being approximately13

E [νjt(θ) | θ, νit(θ) = α] = α
0.25

0.6
+ (1− α)

0.35

0.4
. (8)

Observe that (8) exceeds 1
2
only if α < 9

11
. Thus, for i to be confident both in state θ

and in the fact that j is confident in state θ, we need νit(θ) ∈ (1
2
, 9

11
). Conversely, if

νit(θ) ∈ (1
2
, 9

11
), then (8) is itself in (1

2
, 9

11
). This yields the approximation for Cp

t (θ).14

To consider the rate of common learning, assume that the true state is θ. By (7),
at large t, the event

(
Cp
t (θ)

)c that common p-belief of θ fails can be decomposed into
two types of failures:

1. First-order belief failures:
(
Bp
t (θ)

)c ≈ {νit(θ) ≤ 1
2
for some i

}
.

2. Higher-order belief failures: Bp
t (θ) \ C

p
t (θ) ≈

{
νit(θ) ≥ 1

2
∀i, νit(θ) ≥ 9

11
for some i

}
.

Reflecting that common p-belief is more demanding than individual p-belief, the
second event, Bp

t (θ)\C
p
t (θ), remains bounded away from the empty set even as t→∞.

However, the key insight behind Theorem 1 is that, as t grows large, the probability
13This holds because i becomes confident in θ, so i’s beliefs about νjt(θ) concentrate on the expec-

tation E [νjt(θ) | θ, νit(θ) = α] by a law of large numbers argument.
14More precisely, based on these observations, one can show that, for all large enough t, there is an

event Ft ≈
{
νit(θ) ∈

(
1
2 ,

9
11

]
,∀i = 1, 2

}
such that Ft ⊆ Bpt (θ) and Ft ⊆ Bpt (Ft) (i.e., Ft is p-evident),

which by Monderer and Samet (1989) implies that Ft ⊆ Cpt (θ).
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Figure 1: Left: Approximation of Bpt (θ) and Cpt (θ) at large t. Right: Rate of decay of higher-
order belief failures (KL-distance of dashed arrows) and first-order belief failures (KL-distance of solid
arrows) in state θ.

of higher-order belief failures vanishes much faster than the probability of first-order
belief failures, and hence becomes negligible for the rate of common learning.

Formally, we invoke Sanov’s theorem from large deviation theory. Letting νt ∈
∆(X) denote the joint empirical distribution of agents’ signals, this states that, for
any set D ⊆ ∆(X) that is the closure of its interior,

PIt (νt ∈ D | θ) = exp[− inf
ν∈D

KL(ν, µθ)t+ o(t)].

That is, as t grows large, the probability of event D vanishes exponentially at rate
given by the KL-distance between D and the theoretical signal distribution µθ. In the
current setting, this implies that the probability PIt

(
Bp
t (θ) \ C

p
t (θ) | θ

)
of higher-order

belief failures vanishes at rate

KL

((
9

11
,

2

11

)
, µθi

)
= KL

((
9

11
,

2

11

)
,

(
3

5
,
2

5

))
,

as illustrated by either of the dashed distances in Figure 1 (right).15 In contrast, as the
solid distances illustrate, the probability PIt

((
Bp
t (θ)

)c | θ) of first-order belief failures

15The ν ∈ ∆(X) that attains the infimum infν∈Bpt (θ)\Cpt (θ) KL(ν, µθ) satisfies margXiν = ( 9
11 ,

2
11 )

and ν(·|xi) = µθ(·|xi) for each xi, so KL(ν, µθ) depends only on i’s marginal distributions (by the
chain rule for KL-divergence). The arrows in Figure 1 should be interpreted as depicting KL-distances
in the space of marginal distributions.
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vanishes at rate

KL

((
1

2
,
1

2

)
, µθj

)
= KL

((
1

2
,
1

2

)
,

(
3

5
,
2

5

))
= λθ(I).

Crucially, the latter rate is strictly smaller than the former. Thus, as t grows large,
the ratio of PIt ((Bp

t (θ))
c | θ) to PIt

(
Bp
t (θ) \ C

p
t (θ) | θ

)
explodes. Hence, higher-order

belief failures become negligible relative to first-order belief failures, and the rate of
common learning coincides with the rate of individual learning λθ(I).

Finally, to see the more general idea, note that, by (8), (1
2
, 1

2
) = E[νjt | θ, νit =

( 9
11
, 2

11
)]. Thus, the inequality KL

((
1
2
, 1

2

)
, µθj

)
< KL

((
9
11
, 2

11

)
, µθi

)
is an instance of

the following general result that plays a crucial role in the proof of Theorem 1:

Lemma 1. Fix any θ ∈ Θ and distinct i, j ∈ N . For each t and realized empirical
signal distribution νit ∈ ∆(Xi), we have

KL(E[νjt | θ, νit], µθj) ≤ KL(νit, µ
θ
i ). (9)

Moreover, the inequality is strict whenever µθ has full support and νi 6= µθi .

In the appendix, we derive Lemma 1 from the chain rule for KL-divergence, a central
result in information theory. To interpret (9), note that the RHS captures how much
i’s signal observations νit deviate from i’s theoretical signal distribution µθi in state θ,
while the LHS quantifies how much i’s expectation of j’s observations deviates from
j’s theoretical signal distribution µθj . Thus, (9) says that when i forms an estimate of
j’s signal observations based on i’s own signal observations, then (conditional on any
state θ) this estimate is less “atypical” than i’s own signal observations.16 Generalizing
the above illustration, this can be used to show that, as t grows large, the event that
agents learn θ but believe other agents to have incorrect first-order beliefs vanishes
faster than the event that agents have incorrect first-order beliefs.

The inequality in Lemma 1 is reminiscent of the “contraction principle” in CEMS,
whereby the map νi 7→ E[E[νit|θ, νjt] | θ, νit = νi] is an L1-norm contraction on ∆(Xi)

if µθ has full support (see their Lemma 4). This contraction principle can be used to
show that the probability of higher-order belief failures vanishes as t→∞, and hence
that common learning obtains, but it does not deliver the rate at which higher-order

16For example, if i and j’s signals are independent, then regardless of her own observations, i’s
estimate of j’s observations is always the theoretical distribution (i.e., the LHS of (9) is 0). If i and
j’s signals are perfectly correlated, then i expects j to observe the same signals as herself, so (9) holds
with equality.
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belief failures vanish. A key difference of our information-theoretic Lemma 1 is its
use of KL-divergence. This is essential for being able to apply large deviation theory
(Sanov’s theorem) to obtain this rate, and yields the new insight that common learning
occurs just as fast as individual learning.

4 Ranking Information Structures in Coordination

Problems

We now return to the question which information structures are more valuable for
coordination. For this, we consider incomplete-information games that are played
after a large number of signal draws, and we apply Theorem 1 to rank information
structures in terms of the induced equilibrium outcomes.

4.1 Games and Objective Functions

A basic game G consists of a finite set of actions Ai for each agent i, with correspond-
ing set of action profiles A :=

∏
i∈N Ai, as well as a utility function ui : A × Θ → R

over action profiles and states for each agent i. For each basic game G and information
structure I, we consider the (static) incomplete-information game Gt(I), where
agents’ information is parametrized by t draws of signals from I. That is, states θ and
signal sequences xt are drawn according to PIt , and a strategy σit : (Xi)

t → ∆(Ai) for
agent i maps i’s observed sequence of private signals xti to a mixed action in Ai. Let
BNEt(G, I) denote the set of Bayes-Nash equilibria (BNE) of Gt(I).17

To compare equilibrium outcomes across different information structures, we as-
sociate with any basic game G an objective function W : A × Θ → R. This can
be interpreted as capturing a designer’s preferences over outcomes in the game. A
benevolent designer might seek to maximize agents’ welfare, for example, via utilitar-
ian aggregation, W = 1

N

∑
i∈N ui. However, we also allow for objective functions that

do not relate to agents’ utilities in any particular way. We assume that in each state
θ, W is maximized by a unique action profile, {aθ,W} = argmaxa∈AW (a, θ).

For any information structure I and strategy profile σt = (σit)i∈N of game Gt(I),

Wt(σt, I) :=
∑

θ∈Θ,xt∈Xt,a∈A

PIt (θ, xt)σt(a | xt)W (a, θ)

17Strategy profile σt = (σit)i∈N is in BNEt(G, I) if for each i ∈ N , xti ∈ Xt
i , and ai with σit(ai |

xti) > 0, we have ai ∈ argmaxa′i∈Ai
∑
θ∈Θ,xt−i∈Xt−i,a−i∈A−i

PIt (θ, xt−i | xti)σ−i(a−i | xt−i)ui(a′i, a−i, θ).
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denotes the induced ex-ante expected value of the objective. The objective value

Wt(G, I) := sup
σt∈BNEt(G,I)

Wt(σt, I) (10)

is the ex-ante expected value of the objective under the best BNE of Gt(I) (Remark 1
discusses the focus on best BNE).

We seek to compare the objective values Wt(G, I) and Wt(G, Ĩ) under any two
information structures I and Ĩ when the number t of signal draws is large. We will see
that, using our learning efficiency index, this comparison can be carried out robustly
for a rich class of games G and objective functions W . The one substantive restriction
we impose is the following joint assumption on G and W . Let SNE(G, θ) ⊆ A denote
the set of strict Nash equilibria of G under common knowledge of θ.

Assumption 1 (Alignment at certainty). For each θ ∈ Θ, aθ,W ∈ SNE(G, θ).

Assumption 1 requires that when there is common knowledge of any state θ, theW -
first best outcome aθ,W is achievable as a strict Nash equilibrium of G. The condition
does not require aθ,W to be the only strict Nash equilibrium of G at θ.

When W represents utilitarian welfare, Assumption 1 is satisfied by our motivating
application of incomplete-information coordination games, such as the joint investment
game in Example 1 and other leading examples in the literature: Here, coordination
on the efficient outcome is a strict Nash equilibrium under common knowledge of the
state, but first-order and higher-order uncertainty may impede efficient coordination.
An extreme special case are common-interest games G, where ui = uj = W for all
i, j. However, under common interest, agents’ incentives in G are fully aligned with W
even away from common knowledge, in the sense that maximization of the expected
objective is a BNE of G under any information structure. This is much stronger than
Assumption 1, which only requires alignment at certainty and imposes no restriction
on agents’ incentives in G or the relationship with W away from common knowledge.18

Finally, under more general objective functions W , Assumption 1 includes many
other games G. In particular, as long as G admits a strict Nash equilibrium aθ ∈
SNE(G, θ) in each state, Assumption 1 is trivially satisfied under the objective function
W (a, θ) = 1{a=aθ}. In this case, the objective value Wt(G, I) simply measures the ex-
ante probability that, after t draws of signals from I, agents are able to play the

18For example, Assumption 1 allows for environments where, away from the common knowledge
limit, improving agents’ information can lead to worse equilibrium outcomes; see the discussion of
Lehrer, Rosenberg, and Shmaya (2010) in Remark 1.
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common knowledge equilibrium aθ in each state θ.

4.2 Ranking of Information Structures

Under Assumption 1, we now rank information structures I and Ĩ in terms of their
objective values Wt(I,G) and Wt(Ĩ,G) at large t. For expositional simplicity, we
additionally assume that maximizing W requires all agents to distinguish all states:

Assumption 2 (Full separation). For all i ∈ N and distinct θ, θ′ ∈ Θ, aθ,Wi 6= aθ
′,W
i .

Assumption 2 is satisfied, for instance, in the joint investment game in Example 1.
However, this assumption is not essential for our analysis, and in Appendix C, we
extend Theorem 2 below when Assumption 2 is dropped.

Define the (ex-ante) learning efficiency index by

λ(I) := min
θ∈Θ

λθ(I) = min
i∈N,θ,θ′∈Θ,θ′ 6=θ

d(µθi , µ
θ′

i ). (11)

That is, λ(I) considers the worst-case across all states of the conditional learning
efficiency indices λθ(I).

Theorem 2. Take any information structures I, Ĩ with λ(I) > λ(Ĩ). For every basic
game G and objective function W satisfying Assumptions 1–2, there is T such that
Wt(G, I) > Wt(G, Ĩ) for all t ≥ T .

Theorem 2 shows that, for all games G and objectivesW satisfying Assumptions 1–
2, the learning efficiency index eventually permits a generically complete ranking over
information structures: Except when the efficiency indices λ(I) and λ(Ĩ) are exactly
tied, I and Ĩ can be ranked, and the information structure with the higher efficiency in-
dex strictly outperforms that with the lower index whenever agents observe sufficiently
many signals.

In the proof (Appendix D–E), we show that, for every BNE sequence σt ∈ BNEt(G, I),

1−
∑

θ∈Θ,xt∈Xt

PIt (θ, xt)σt(a
θ,W | xt)︸ ︷︷ ︸

probability of inefficiency

≥ exp[−tλ(I) + o(t)], (12)

and that (12) holds with equality for some BNE sequence (σ∗t ). That is, under in-
formation structure I, the index λ(I) is the fastest rate at which inefficiency (i.e.,
not choosing aθ,W at θ) can vanish in equilibrium. Thus, if λ(I) > λ(Ĩ), then
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Wt(G, I) > Wt(G, Ĩ) for all large enough t, because Wt(G, I) approaches the first-best
payoff

∑
θ p0(θ)W (aθ,W , θ) faster than does Wt(G, Ĩ).

As the following example illustrates, this argument relies crucially both on our find-
ing that the efficiency index λ(I) characterizes the (ex-ante expected) rate of common
learning and that this coincides with the rate of individual learning:

Example 2 (Coordinated attack). Consider a coordinated attack game à la Morris
and Shin (1998), with binary states Θ = {θ, θ} and binary actions Ai = {0, 1}. Each
agent i’s utility function takes the form

ui(a, θ) =

1{θ=θ}1{
∑
j 6=i aj≥k} − c if ai = 1

0 if ai = 0.

Here c ∈ (0, 1) denotes the cost of attacking (ai = 1) and an attack is successful if and
only if the state is θ and at least k ∈ {0, 1, . . . , |N |−1} other agents also attack. Under
utilitarian welfare, W = 1

N

∑
i∈N ui, the efficient action profiles are aθ = (1, . . . , 1) and

aθ = (0, . . . , 0). Note that Assumptions 1–2 are satisfied and Example 1 corresponds
to the special case with |N | = 2 and k = 1.

To see why ex-post inefficiency vanishes at least as fast as λ(I), note that common
p-belief of state θ is sufficient for coordination on the efficient outcome aθ, as aθ is a
strict Nash equilibrium under common knowledge of θ. More precisely, if p ∈ (0, 1)

is sufficiently large, then for every t, there is a BNE σ∗t under which aθ is played
conditional on event Cp

t (θ). Under sequence (σ∗t ), inefficiency vanishes at least as fast
as the (ex-ante expected) rate of common learning, which is λ(I) by Theorem 1.

Why can inefficiency not vanish faster than the rate of common learning? This
is less immediate, as common p-belief is in general not necessary for coordination on
the efficient outcome.19 Indeed, if k < |N | − 1, a successful attack does not require
all agents to attack, so there can be BNE in which aθ is played without there being
common p-belief of state θ. However, note that in any BNE, aθ can only be played
whenever all agents at least have individual p-belief of θ for some p > 0. Hence,
inequality (12) follows from the fact that the rate λ(I) of common learning coincides
with the rate of individual learning.20 N

19See, e.g., Oyama and Takahashi (2020) for systematic analysis of this issue.
20When Assumption 2 is dropped, coordination on the efficient outcome need not even require all

agents to have individual p-belief of the true state. Reflecting this, the generalization of Theorem 2 in
Appendix C employs a modified learning efficiency index that, for any G and W , captures the rate at
which each agent i learns to distinguish those states that entail different efficient actions aθ,Wi for i.
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By focusing on data-rich settings, Theorem 2 yields some robust implications for
information design in coordination games (and other environments satisfying Assump-
tions 1–2) that apply regardless of the specific game being played. Specifically, as long
as agents have access to many signal draws, the structure of the index λ(I) suggests
two general principles for facilitating coordination:

Focus on first-order uncertainty: A designer should focus on improving agents’
information about the state, whereas providing signals about other agents’ signals
(that do not convey any additional information about the state) has a negligible effect.
Thus, in contrast with the insight in the literature that uncertainty about opponents’
signals can be a significant obstacle to coordination, our results suggest that, in data-
rich settings, reducing such higher-order uncertainty should be a second-order concern.

Egalitarianism: A designer should focus on improving the worst-informed agent’s
information about the state.

Remark 1. Focus on best equilibrium. The definition of the objective value
Wt(G, I) in (10) considers the best BNE, similar to the assumption of designer-preferred
equilibrium selection that is common in the literature on information design (Sec-
tion 1.1).21 Thus, in the context of incomplete-information coordination games, our
comparison of information structures isolates the extent to which they reduce ineffi-
ciency due to first-order and higher-order uncertainty about the fundamental, rather
than due to equilibrium selection. At the same time, Online Appendix G shows that
the learning efficiency index also characterizes the rate at which the entire equilibrium
set BNEt(G, I) approaches the set of common knowledge equilibria in each state.

Comparison with t = 1. Lehrer, Rosenberg, and Shmaya (2010) assume agents
observe one signal draw from each information structure and show that a generaliza-
tion of Blackwell’s single-agent garbling condition characterizes whenW1(G, I) exceeds
W1(G, Ĩ) for any common-interest game G and utilitarian W . In contrast, Theorem 2
yields a ranking that (i) is a completion of Lehrer, Rosenberg, and Shmaya’s (2010)
order, and (ii) applies to a richer class of environments that allows for misaligned in-
centives.22 Both (i) and (ii) rely on agents observing sufficiently many signal draws:
When t = 1, many information structures are incomparable even when focusing on

21Our analysis extends to the case where (10) instead considers the worst BNE and Assumption 1
is replaced with the assumption that W (·, θ) is strictly minimized by some action profile in SNE(G, θ)
(capturing settings with a strong misalignment between the designer’s objective and agents’ incen-
tives). Here, Theorem 2 (applied to the objective −W ) implies that information structures with a
lower learning efficiency index are better for the designer at all large t.

22For (i), note that Lehrer, Rosenberg, and Shmaya (2010)’s order implies that each agent’s marginal
signal distributions under I Blackwell-dominate those under Ĩ, which ensures λ(I) ≥ λ(Ĩ).
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common-interest games; moreover, even if I is more informative than Ĩ in the sense of
Lehrer, Rosenberg, and Shmaya (2010), I can be strictly worse than Ĩ in environments
that satisfy Assumptions 1–2 but are not common-interest.

Bounds on T . A natural question is how many signal draws are needed for our
ranking to apply. In some specific environments, one can bound the number of draws T
beyond which the ranking in Theorem 2 applies, but the bound may in general depend
on G, W , the prior p0, and I and Ĩ. It is worth noting that the proof of Theorem 2
does not require that WT (G, I) and WT (G, Ĩ) are close to the first-best payoff, so the
payoff gap under I vs. Ĩ can in general still be non-negligible at T .23 N

5 Discussion

5.1 Information Design in Games with Cheap Data

The learning efficiency index can be used to solve constrained information design prob-
lems where information comes at a small cost. Beyond the ordinal implications high-
lighted following Theorem 2, here the cardinal value that λ(I) assigns to each infor-
mation structure is relevant.

Concretely, given any game G and objective W , consider the optimal choice of an
information structure from some set I subject to a budget constraint:

max
I∈I,t∈N

Wt(I,G) s.t. tc(I) ≤ κ. (13)

That is, the designer optimally selects both an information structure I ∈ I and the
number t of signal draws from I, subject to a marginal cost of c(I) > 0 per draw from
I and an overall budget of κ > 0.

The preceding analysis implies the following:

Corollary 2. Fix any G and W satisfying Assumptions 1–2 and any finite set I of
information structures. Whenever the budget κ is sufficiently large (i.e., information
is sufficiently cheap), the designer’s problem (13) simplifies to

max
I∈I

λ(I)

c(I)
.

23Relatedly, while Corollary 1 yields T such that the probability of common p-belief of the true
state under I exceeds that under Ĩ, these probabilities need not be close to 1 at T .
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Thus, the optimal information structure can be determined solely based on the
learning efficiency index and per-sample cost, and the solution is robust across all
games and objectives satisfying Assumptions 1–2. Based on this observation, one can
explore properties of the optimal information structure, depending on the nature of
the cost function c.

5.2 Convergence of Belief Hierarchies

There is a discussion in the literature about which topologies over belief hierarchies
are appropriate for measuring proximity to common knowledge. However, Theorem 1
implies that, as far as the speed of convergence to common knowledge in our setting is
concerned, the choice of topology may be less important: The learning efficiency index
λθ(I) characterizes this speed under several commonly used topologies.

Recall that a belief hierarchy for agent i is a sequence τi := (τ 1
i , τ

2
i , . . .) ∈ Zi =

(Z1
i , Z

2
i , . . .), where Z1

i := ∆(Θ) and Zk
i := ∆(Θ ×

∏
j 6=i Z

k−1
j ) denotes the space of

agent i’s kth order beliefs, subject to standard coherency requirements across the kth
order beliefs τ ki for different k (e.g., Brandenburger and Dekel, 1993).24 Given any
information structure I, each realized signal sequence xti induces a belief hierarchy
τi(x

t
i) ∈ Zi for agent i. Let τi(θ) ∈ Zi denote i’s belief hierarchy when there is common

certainty of state θ.
Let ρproducti denote a metric on Zi that induces the product topology over agent i’s

belief hierarchies. For example, define ρproducti (τi, τ̃i) := (1− β)
∑

k β
kρk(τ ki , τ̃

k
i ), where

β ∈ (0, 1) and ρk denotes the Prokhorov metric over kth order beliefs. The literature
has pointed out that the product topology may in general be too coarse (e.g., Lipman,
2003; Weinstein and Yildiz, 2007), and has proposed several alternative metrics that
refine this topology. For instance, the metric for the uniform-weak topology (Chen,
Di Tillio, Faingold, and Xiong, 2010) is given by ρuniformi (τi, τ̃i) := supk ρ

k(τ ki , τ̃
k
i ).

Theorem 1 implies the following:

Corollary 3. Fix any information structure I and state θ ∈ Θ. Under both the product
and uniform-weak topologies, the rate of convergence to common certainty of θ is given
by λθ(I): For all sufficiently small ε > 0, we have

PIt ({max
i
ρproduct
i (τi(x

t
i), τi(θ)) ≤ ε} | θ) = 1− exp[−λθ(I)t+ o(t)],

24For any topological space Y , we let ∆(Y ) denote the space of Borel probability measures over Y
and endow it with the topology of weak convergence.
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PIt ({max
i
ρuniform
i (τi(x

t
i), τi(θ)) ≤ ε} | θ) = 1− exp[−λθ(I)t+ o(t)].

Thus, although differences between these topologies can play a significant role in
general, these differences do not matter for the speed of convergence to common cer-
tainty in the current learning setting.25 The proof of Corollary 3 exploits the fact that
common learning has the same rate as individual learning.

5.3 Higher-Order Expectations

Beyond its use in the current paper, Lemma 1 can shed light on the “informativeness”
of agents’ higher-order expectations, which plays an important role, for instance, in
beauty-contest games (e.g., Morris and Shin, 2002; Golub and Morris, 2017).

Consider a finite set of types Ti for each agent i, with T :=
∏

i∈N Ti. Let π ∈ ∆(T )

be a (full-support) common prior over type profiles, with marginals πi ∈ ∆(Ti). Each
type ti ∈ Ti of agent i induces a conditional distribution π(· | ti) ∈ ∆(T ) over type
profiles. By identifying each tj ∈ Tj with the point-mass distribution δtj ∈ ∆(Tj), we
can associate with π(· | ti) a sequence of higher-order expectations about other agents’
types. In particular, Eti [tj] :=

∑
tj∈Tj π(tj | ti)δtj ∈ ∆(Tj) is ti’s expectation of j’s

type, EtiEtj [tk] :=
∑

tj∈Tj ,tk∈Tk π(tj | ti)π(tk | tj)δtk ∈ ∆(Tk) is ti’s expectation of j’s
expectation of k’s type, and so on.

A seminal result due to Samet (1998) is that any such sequence of higher-order
expectations converges to the prior distribution as the number of iterations grows
large. Formally, consider any sequence of agents i0, i1, . . . ∈ N in which all i ∈ N

appear infinitely often and any initial type ti0 ∈ Ti0 . Then his result adapted to the
current setting implies that26∥∥∥Eti0Eti1 · · ·Etik−1

[tik ]− πik
∥∥∥→ 0 as k →∞.

By applying Lemma 1 to this setting, we can formalize a sense in which agents’
higher-order expectations grow closer to the prior distribution at each step of the
iteration. In particular, Lemma 1 implies that

KL(Eti0 [ti1 ], πi1) ≥ KL(Eti0Eti1 [ti2 ], πi2),

25The result extends to other topologies considered in the literature, for example, the strategic
topology (Dekel, Fudenberg, and Morris, 2006), which is in between the product and uniform-weak
topologies.

26See the proof of his Proposition 6.
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and iteratively, for each k,

KL(Eti0Eti1 · · ·Etik−1
[tik ], πik) ≥ KL(Eti0Eti1 · · ·Etik [tik+1

], πik+1
).

Thus, complementing Samet’s asymptotic result, this clarifies that the informativeness
of agents’ higher-order expectations, as measured by their KL-divergence relative to
the prior distribution, decreases monotonically along any sequence. While Samet’s
insight can be applied to analyze equilibrium behavior in beauty contests in the limit
as coordination motives become strong (Golub and Morris, 2017), our non-asymptotic
finding may be useful for conducting comparative statics with respect to coordination
motives away from the limit.

6 Conclusion

This paper conducted a comparison of multi-agent information structures in a learning
setting where players have access to rich data. We showed that the speed of common
learning under each information structure coincides with the speed of individual learn-
ing and used this to rank information structures in terms of their value in coordination
games.

As a natural starting point, we assumed that signal spaces are finite and signals are
i.i.d. across draws. This allowed us to build on CEMS’ result that this setting always
gives rise to common learning.

With infinite signals, CEMS exhibit an example in which common learning fails
even though individual learning is successful; at the same time, there are other natural
infinite-signal settings, in particular Gaussian signal structures, that do give rise to
common learning.27 Online Appendix H analyzes such Gaussian environments and
shows that common and individual learning again occur at the same exponential rate.

A simple setting where signals are not identically distributed across draws is when
draws independently alternate across two different information structures I and Ĩ.
However, this is equivalent to considering repeated independent draws from the product
information structure I × Ĩ, and thus is a special case of our setting in this paper.
Online Appendix I analyzes when the learning efficiency index λ(I × Ĩ) of alternating
draws from I and Ĩ is greater or less than the sum λ(I)+λ(Ĩ) of their separate indices,

27Recently, Faingold and Tamuz (2022) derive general sufficient conditions for common learning un-
der infinite signals. In contrast, Dogan (2018) shows that with (uncountably) infinite states, common
learning fails under mild conditions (even if signals are finite).
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shedding light on whether I and Ĩ are complements or substitutes.
When signals are correlated across draws, there are some known settings in which

common learning fails even though individual learning is successful and others in which
common learning succeeds (e.g., Steiner and Stewart, 2011; Cripps, Ely, Mailath, and
Samuelson, 2013). We leave the analysis of such settings for future work, in particular,
the question whether common learning can be successful but occur at a slower rate
than individual learning.

Farther afield, one might consider settings in which players engage in basic game G
not only once, at t, but repeatedly following each signal draw. In this case, players’ past
actions can reveal information about their private signals. Basu, Chatterjee, Hoshino,
and Tamuz (2020) and Sugaya and Yamamoto (2020) study such settings and construct
equilibria that lead to common learning. An interesting open question is to analyze
the speed of common learning and how this is affected by players’ strategic incentives.

Appendix: Proofs

A Preliminaries

A.1 Preliminary Definitions

The following will be used throughout the appendix. As in CEMS, given any infor-
mation structure I and agents i and j, we consider the matrix M θ

ij ∈ RXi×Xj with
(xi, xj)-th entry

M θ
ij(xi, xj) = µθ(xj | xi).

As CEMS observed, if agent i’s empirical signal distribution at t is νit, then conditional
on state θ, i’s expectation of j’s empirical distribution is given by E[νjt | θ, νit] = νitM

θ
ij

(treating νit ∈ ∆(Xi) ⊆ R1×Xi as a vector). Moreover, µθiM θ
ij = µθj .

For each d < λθ(I) and t, define the event

Ft(θ, d) :=
⋂
i∈N

Fit(θ, d), where Fit(θ, d) :=
{

KL(νit, µ
θ
i ) ≤ d

}
.

Finally, we call an information structure I fully private if the joint distribution µθ

has full support on X in all states θ. We call I public if signals are perfectly correlated
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across agents.28

A.2 Proof of Lemma 1

Fix θ ∈ Θ, distinct i, j ∈ N , and νi ∈ ∆(Xi). Define m,m′ ∈ ∆(Xi ×Xj) by

m(xi, xj) := νi(xi)M
θ
ij(xi, xj), m′(xi, xj) := µθi (xi)M

θ
ij(xi, xj)

for each xi ∈ Xi, xj ∈ Xj. Note that supp(m) ⊆ supp(m′) and that the marginals of
m,m′ on Xi are νi, µθi , and the marginals on Xj are νiM θ

ij, µ
θ
j , respectively.

Let m(· | xi), m(· | xj), m′(· | xi), m′(· | xj) denote the corresponding conditional
distributions; conditional on a zero-probability signal, we specify these distributions
arbitrarily. By the chain rule for KL-divergence, we have

KL(m,m′) = KL(νi, µ
θ
i ) +

∑
xi∈supp(νi)

νi(xi)KL(m(· | xi),m′(· | xi))

= KL(νiM
θ
ij, µ

θ
j) +

∑
xj∈supp(νiMθ

ij)

(νiM
θ
ij)(xj)KL(m(· | xj),m′(· | xj)).

Since m(· | xi) = m′(· | xi) = M θ
ij(xi, ·) for every xi ∈ supp(νi), we have∑

xi∈supp(νi)

νi(xi)KL (m(· | xi),m′(· | xi)) = 0,

which implies the weak inequality KL(νi, µ
θ
i ) ≥ KL(νiM

θ
ij, µ

θ
j).

To show the strict inequality, suppose that νi 6= µθi and µθ has full support on
X. Then there exist xi, x′i such that νi(xi) > µθi (xi) and νi(x

′
i) < µθi (x

′
i). For any

xj ∈ supp(νiM
θ
ij),

m(xi | xj)
m(x′i | xj)

=
νi(xi)M

θ
ij(xi, xj)

νi(x′i)M
θ
ij(x

′
i, xj)

6=
µθi (xi)M

θ
ij(xi, xj)

µθi (x
′
i)M

θ
ij(x

′
i, xj)

=
m′(xi | xj)
m′(x′i | xj)

,

where the inequality holds since M θ
ij(xi, xj),M

θ
ij(x

′
i, xj) > 0 by the full-support as-

28That is, Xi = Xj for all i, j, and for each x ∈ X and θ, µθ(x) =

{
µθi (xi) if xi = xj for all i, j
0 otherwise

.
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sumption on µθ. By Gibbs’ inequality, this guarantees∑
xj∈supp(νiMθ

ij)

(νiM
θ
ij)(xj)KL(m(· | xj),m′(· | xj)) > 0,

and hence KL(νi, µ
θ
i ) > KL(νiM

θ
ij, µ

θ
j).

A.3 Other Preliminary Lemmas

Let ‖ · ‖ denote the sup norm for finite-dimensional real vectors. The following result
is proved by CEMS (Lemma 3) based on a concentration inequality:

Lemma A.1. For any ε > 0 and q < 1, there is T such that for all t ≥ T , θ ∈ Θ,
i ∈ N , and xti,

PIt ({‖νitM θ
ij − νjt‖ < ε,∀j 6= i} | xti, θ) > q.

Let F−it(θ, d) :=
⋂
j 6=i Fjt(θ, d). The following result follows from Lemma 1 and

Lemma A.1 and plays a key role in the proofs of Theorems 1–C.1:

Lemma A.2. Take any collection of partitions (Πi)i∈N over Θ, θ ∈ Θ, p ∈ (0, 1), and
d ∈ (0,mini∈N,θ′ 6∈Πi(θ) d(µθi , µ

θ′
i )). Assume that µθ has full support. There exists T such

that for all i ∈ N and t ≥ T ,

KL(νit, µ
θ
i ) ≤ d =⇒ PIt

 ⋃
θ′∈Πi(θ)

({θ′} ∩ F−it(θ′, d)) | xti

 ≥ p. (14)

Proof. Claim 1. There exist κ ∈
(
0,mini∈N,θ′ 6∈Πi(θ) d(µθi , µ

θ′
i )− d

)
and T ′ > 0 such

that for all t ≥ T ′ and θ′ ∈ Θ,

KL(νit, µ
θ′

i ) ≤ d+ κ =⇒ PIt (F−it(θ
′, d) | xti, θ′) ≥

√
p.

Proof of Claim 1. Lemma 1 implies that for all j 6= i, νi ∈ ∆(Xi), and θ′ ∈ Θ,

KL(νi, µ
θ′

i ) ≤ d =⇒ KL(νiM
θ′

ij , µ
θ′

j ) ≤ KL(νi, µ
θ′

i ) ≤ d.

Moreover, the first inequality on the RHS is strict when νi 6= µθ
′
i (by Lemma 1), and the

second inequality on the RHS is strict when νi = µθ
′
i . Note that KL(·, µi) is continuous

for each full-support µi ∈ ∆(Xi). Thus, since ∆(Xi) is compact, there exists η > 0
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such that for all j 6= i, νi ∈ ∆(Xi), and θ′ ∈ Θ,

KL(νi, µ
θ′

i ) ≤ d =⇒ KL(νiM
θ′

i , µ
θ′

j ) ≤ d− η.

Given this, there exists κ ∈ (0,mini∈N,θ′ 6∈Πi(θ) d(µθi , µ
θ′
i ) − d) such that for all j 6= i,

νi ∈ ∆(Xi), and θ′ ∈ Θ,

KL(νi, µ
θ′

i ) ≤ d+ κ =⇒ KL(νiM
θ′

i , µ
θ′

j ) ≤ d− η/2.

Moreover, there exists ε > 0 such that for all j 6= i, νi ∈ ∆(Xi), and θ′ ∈ Θ,[
KL(νi, µ

θ′

i ) ≤ d+ κ and ‖νiM θ′

ij − νj‖ ≤ ε
]

=⇒ KL(νj, µ
θ′

j ) ≤ d.

Combined with Lemma A.1, this yields the desired conclusion.

Claim 2. Consider any κ as found in Claim 1. There exists T ′′ such that for all
t ≥ T ′′ and i ∈ N ,

KL(νit, µ
θ
i ) ≤ d =⇒ PIt ({θ′ ∈ Πi(θ) : KL(νit, µ

θ′

i ) ≤ d+ κ} | xti) ≥
√
p.

Proof of Claim 2. Take any t ≥ 1 and xti such that KL(νit, µ
θ
i ) ≤ d. Then for each

θ′ 6∈ Πi(θ), we have KL(νit, µ
θ′
i ) > d + κ. Indeed, otherwise KL(νit, µ

θ
i ),KL(νit, µ

θ′
i ) ≤

d+ κ < d(µθi , µ
θ′
i ), contradicting the definition of d(µθi , µ

θ′
i ).

Thus, whenever KL(νit, µ
θ
i ) ≤ d, then for any θ′ such that either θ′ 6∈ Πi(θ) or

KL(νit, µ
θ′
i ) > d+ κ, we have

logPIt (θ′ | xti) ≤ log
PIt (θ′|xti)
PIt (θ|xti)

= log
p0(θ′)

p0(θ)
+ t

∑
xi∈Xi

νit(xi) log
µθ
′
i (xi)

µθi (xi)

= log
p0(θ′)

p0(θ)
+ t(KL(νit, µ

θ
i )−KL(νit, µ

θ′

i ))

≤ log
p0(θ′)

p0(θ)
− tκ.

Hence, by choosing T ′′ > 0 large enough, we have that for all t ≥ T ′′ and all θ′ such
that either θ′ 6∈ Πi(θ) or KL(νit, µ

θ′) > d+ κ,

KL(νit, µ
θ
i ) ≤ d =⇒ PIt (θ′|xti) <

1−√p
|Θ|

,
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proving Claim 2.

Finally, to prove Lemma A.2, let T = max{T ′, T ′′}, with T ′ and T ′′ as found in
Claims 1–2. Then, whenever t ≥ T and KL(νit, µ

θ
i ) ≤ d, we have

PIt (
⋃

θ′∈Πi(θ)

({θ′} ∩ F−it(θ′, d)) | xti) ≥
∑

θ′∈Πi(θ) s.t. KL(νit,µθ
′ )≤d+κ

PIt ({θ′} ∩ F−it(θ′, d) | xti)

=
∑

θ′∈Πi(θ) s.t. KL(νit,µθ
′ )≤d+κ

PIt (F−it(θ
′, d) | xti, θ′)PIt (θ′ | xti)

≥
∑

θ′∈Πi(θ) s.t. KL(νit,µθ
′ )≤d+κ

√
p× PIt (θ′ | xti) ≥ p,

where the second inequality uses Claim 1 and the last inequality uses Claim 2.

B Proof of Theorem 1 (Fully Private Case)

This appendix proves Theorem 1, assuming for ease of exposition that information
structure I is fully private (as defined in Appendix A.1). Appendix E extends the
proof to general information structures.

Fix any θ ∈ Θ and p ∈ (0, 1). We first establish that

lim sup
t→∞

1

t
log
(
1− PIt (Cp

t (θ) | θ)
)
≤ −λθ(I). (15)

Take any d ∈ (0, λθ(I)). Applying Lemma A.2 to the case with Πi(θ) = {θ} for
each i ∈ N , there exists T > 0 such that, for all t ≥ T , (i) Ft(θ, d) ⊆ Bp

t (θ), and (ii)
Ft(θ, d) ⊆ Bp

t (F (θ, d)), i.e., Ft(θ, d) is p-evident. Thus, by Monderer and Samet (1989),
we have Ft(θ, d) ⊆ Cp

t (θ) for all t ≥ T . Therefore,

lim sup
t→∞

1

t
log
(
1− PIt (Cp

t (θ) | θ)
)
≤ lim sup

t→∞

1

t
log
(
1− PIt (Ft(θ, d) | θ)

)
≤ lim sup

t→∞

1

t
log

(∑
i

PIt ({KL(νit, µ
θ
i ) > d} | θ)

)
= max

i
lim sup
t→∞

1

t
logPIt ({KL(νit, µ

θ
i ) > d} | θ)

= −d,

where the last equality follows from Sanov’s theorem. Since this holds for all d < λθ(I),
this establishes (15).
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We next establish that

lim inf
t→∞

1

t
log
(
1− PIt (Bq

t (θ) | θ)
)
≥ −λθ(I). (16)

Take i ∈ N and θ′ 6= θ such that d(µθi , µ
θ′
i ) = λθ(I). Take any d > d(µθi , µ

θ′
i ). Then

there is νi ∈ ∆(Xi) with KL(νi, µ
θ
i ) = KL(νi, µ

θ′
i ) < d. Hence, for some ν ′i close to νi,

KL(ν ′i, µ
θ′

i ) < KL(ν ′i, µ
θ
i ) < d.

Thus, there exist ε > 0 and an open set Ki 3 ν ′i of signal distributions such that for
all ν ′′i ∈ Ki,

KL(ν ′′i , µ
θ′

i ) + ε < KL(ν ′′i , µ
θ
i ) < d.

Then, for all large enough t, Bp
it(θ) ∩ {νit ∈ Ki} = ∅, because by standard arguments,

i’s beliefs at large t concentrate on states whose signal distributions minimize KL-
divergence relative to νit. Thus,

lim inf
t→∞

1

t
log
(
1− PIt (Bp

it(θ) | θ)
)
≥ lim inf

t→∞

1

t
logPIt ({νit ∈ Ki} | θ) ≥ −d,

where the final inequality holds by Sanov’s theorem. Since this is true for all d > λθ(I),
this establishes (16).

C Ranking of Information Structures without Assump-

tion 2

This appendix generalizes the ranking in Theorem 2 when Assumption 2 is dropped,
i.e., playing theW -optimal action profile aθ,W need not require all agents to distinguish
all states. The idea is to construct generalized learning efficiency indices that account
for the presence of “equivalent” states for some players.

Formally, given any objective function W , define a partition ΠW
i over Θ for each

agent i, whose cells are given by

ΠW
i (θ) := {θ′ ∈ Θ : aθ,Wi = aθ

′,W
i } for each θ;

that is, ΠW
i divides Θ into equivalence classes of states in which the W -optimal action

profile features the same action for agent i. Let ΠW := (ΠW
i )i∈N denote the collection

29



of all agents’ partitions.
Given any collection of partitions Π = (Πi)i∈N over Θ, we define the learning

efficiency index
λ(I,Π) := min

i∈N,θ,θ′∈Θ,θ′ 6∈Πi(θ)
d(µθi , µ

θ′

i ).29

That is, in identifying the worst-informed agent and hardest to distinguish states, we
do not consider all agents and pairs of states as in (11). Instead, for each agent i, we
restrict attention to pairs of states at which i’s W -optimal actions are different.

In the following result, we restrict attention to information structures that are either
fully private or public (as defined in Appendix A.1).

Theorem C.1. Fix any collection Π = (Πi)i∈N of partitions over Θ. Take any in-
formation structures I and Ĩ, each of which is either fully private or public, with
λ(I,Π) > λ(Ĩ,Π). For every (G,W ) satisfying Assumption 1 and ΠW = Π, there
exists T such that Wt(I,G) > Wt(Ĩ,G) for all t ≥ T .

Theorem C.1 extends Theorem 2 by dropping Assumption 2. Based on the gen-
eralized learning efficiency indices λ(·,Π), we again obtain a (generically complete)
ranking over the equilibrium outcomes induced by different information structures at
large enough t: This ranking applies for all games and objective functions that are
aligned at certainty and give rise to the same partitions Π of equivalent states. The
proof of Theorem C.1 is in Appendix D.

D Proof of Theorem 2 (Fully Private Case) and The-

orem C.1

Below we prove Theorem C.1. When I and Ĩ are either fully private or public, Theo-
rem 2 then follows as the special case in which Πi(θ) = {θ} for all θ and i. Appendix E
proves Theorem 2 for general information structures. To simplify notation, we drop
the superscript W from aθ,W when there is no risk of confusion.

D.1 Bounds on Inefficiency

For any I, G, and W , we first derive bounds on the probability of inefficient play (i.e.,
not playing aθ in state θ) as t grows large. The following result provides a lower bound

29Slightly abusing notation, we set the index to be ∞ when Π is degenerate (i.e., Πi(θ) = Θ for all
i).
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on this probability for arbitrary sequences of strategy profiles (σt):

Lemma D.1. Fix any I, G, and W . For any sequence of strategy profiles (σt) of Gt(I),

lim inf
t→∞

max
θ

1

t
log

(
1−

∑
xt∈Xt

PIt (xt | θ)σt(aθ | xt)

)
≥ −λ(I,ΠW ).

Proof. Pick i, θ, and θ′ 6∈ ΠW
i (θ) such that λ(I,ΠW ) = d(µθi , µ

θ′
i ). Consider any

sequence of strategy profiles (σt) of Gt(I). Consider modified strategies (σ̃it) for player
i such that, for each xti,

1. σ̃it(aθi | xti) ≥ σit(a
θ
i | xti) and σ̃it(aθ

′
i | xti) ≥ σit(a

θ′
i | xti)

2. σ̃it(aθi | xti) + σ̃it(a
θ′
i | xti) = 1.

That is, (σ̃it) is obtained by shifting all weight (σit) puts on actions other than aθi , aθ
′
i

to aθi , aθ
′
i at all signal realizations.

We also consider the sequence of strategies (σ∗it) given byσ∗it(aθi | xti) = 1 if KL(νit, µ
θ
i ) ≤ KL(νit, µ

θ′
i )

σ∗it(a
θ′
i | xti) = 1 if KL(νit, µ

θ
i ) > KL(νit, µ

θ′
i ),

where νit is the empirical signal distribution associated with xti. Note that σ∗it can be
seen as a likelihood ratio test (with threshold 1). Thus, the Neyman-Pearson lemma
for randomized tests (Theorem 3.2.1 in Lehmann and Romano, 2006) implies that, for
each t, ∑

xti∈Xt
i

PIt (xti | θ)σ̃it(aθi |xti) ≤
∑
xti∈Xt

i

PIt (xti | θ)σ∗it(aθi |xti)

or
∑
xti∈Xt

i

PIt (xti | θ′)σ̃it(aθ
′

i |xti) ≤
∑
xti∈Xt

i

PIt (xti | θ′)σ∗it(aθ
′

i |xti).
(17)
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Hence,

lim inf
t→∞

1

t
log

max

1−
∑
xti∈Xt

i

PIt (xti | θ)σit(aθi |xti), 1−
∑
xti∈Xt

i

PIt (xti | θ′)σit(aθ
′

i |xti)




≥ lim inf
t→∞

1

t
log

max

1−
∑
xti∈Xt

i

PIt (xti | θ)σ̃it(aθi |xti), 1−
∑
xti∈Xt

i

PIt (xti | θ′)σ̃it(aθ
′

i |xti)




≥ lim inf
t→∞

1

t
log

min

1−
∑
xti∈Xt

i

PIt (xti | θ)σ∗it(aθi |xti), 1−
∑
xti∈Xt

i

PIt (xti | θ′)σ∗it(aθ
′

i |xti)




= min
θ′′∈{θ,θ′}

lim inf
t→∞

1

t
log

1−
∑
xti∈Xt

i

PIt (xti | θ′′)σ∗it(aθ
′′

i |xti)

 ,

where the first inequality follows from the construction of (σ̃it) and the second inequal-
ity uses (17). The last line is equal to−d(µθi , µ

θ′
i ) = −λ(I,ΠW ), because the asymptotic

error rate under a likelihood-ratio test with threshold 1 is given by Chernoff information
(Theorem 3.4.3 in Dembo and Zeitouni, 2010),30 i.e.,

lim
t→∞

1

t
log

1−
∑
xti∈Xt

i

PIt (xti | θ)σ∗it(aθi |xti)

 = lim
t→∞

1

t
log

1−
∑
xti∈Xt

i

PIt (xti | θ′)σ∗it(aθ
′

i |xti)


= −d(µθi , µ

θ′

i ).

This implies that

lim inf
t→∞

max
θ′′∈Θ

1

t
log

1−
∑
xti∈Xt

i

PIt (xti | θ′′)σit(aθ
′′

i |xti)

 ≥ −λ(I,ΠW ),

as claimed.

Under Assumption 1, the following result provides an upper bound on the proba-
bility of inefficient play under some equilibrium sequence (σt):

Lemma D.2. Fix any I that is either fully private or public and any (G,W ) satisfying
Assumption 1. There exists a sequence of BNE strategy profiles (σt) ∈ BNEt(G, I) such

30This in turn follows from a simple application of Sanov’s theorem.
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that, for all θ ∈ Θ,

lim sup
t→∞

1

t
log

(
1−

∑
xt∈Xt

PIt (xt | θ)σt(aθ | xt)

)
≤ −λ(I,ΠW ).

Proof. Take p ∈ (0, 1) sufficiently close to 1 such that, for all i and θ, choosing aθi is ui-
optimal whenever i’s belief about the state and opponents’ actions assigns probability
at least p to {(θ′, aθ′−i) : θ′ ∈ ΠW

i (θ)}. Such a p exists because, by Assumption 1, aθi is
the unique maximizer of ui(·, aθ

′
−i, θ

′) for each θ′ ∈ ΠW
i (θ).

Fix any d < λ(I,ΠW ) := mini∈N,θ∈Θ,θ′ 6∈Πi(θ) d(µθi , µ
θ′
i ). Let Σit(d) denote the set of

i’s strategies at t such that σit(aθi | xti) = 1 whenever KL(νit, µ
θ
i ) ≤ d. This set is well-

defined by the choice of d, i.e., there is no νi ∈ ∆(Xi) such that KL(νi, µ
θ
i ),KL(νi, µ

θ′
i ) ≤

d for some θ and θ′ 6∈ ΠW
i (θ).

We show that there exists T such that for any t > T , there is a BNE σt of Gt(I)

with σit ∈ Σit(d) for every i. To see this, first consider the case in which I is fully
private. Then, by Lemma A.2 with p as chosen above, there is T such that (14) holds
for all i, θ, and t ≥ T . Thus, for all t ≥ T , each agent i’s best response against any
strategy profile in

∏
j 6=i Σjt(d) must be in Σit(d), because whenever KL(νit, µ

θ
i ) ≤ d,

then i assigns probability at least p to {(θ′, aθ′−i) : θ′ ∈ ΠW
i (θ)}. Thus, for every t ≥ T ,

applying Kakutani’s fixed point theorem to the best-response correspondences defined
on the restricted strategy space

∏
i Σit(d) (which is convex), we obtain a BNE σt of

Gt(I) such that σit ∈ Σit(d) for every i. Next, suppose I is public. In this case,
all players’ posteriors coincide, i.e., PIt (·|xit) = PIt (·|xjt) for all i, j, and t. Moreover,
KL(νit, µ

θ
i ) ≤ d ⇐⇒ KL(νjt, µ

θ
j) ≤ d for all i, j, t. Thus, if we choose T large enough,

the same argument as in Claim 2 in the proof of Lemma A.2 ensures that

KL(νit, µ
θ
i ) ≤ d =⇒ PIt ({θ′ ∈

⋂
j

Πj(θ)} | xti) ≥ p

for all t ≥ T . Based on this observation, the same argument as in the fully private case
yields a sequence of BNE σt ∈

∏
i Σit(d) for all t ≥ T .

The above implies that there is a sequence of BNEs (σt) such that for all θ, we have
that, as t→∞,

1−
∑
xt∈Xt

PIt (xt|θ)σt(aθ | xt) ≤
∑
i

PIt ({KL(νit, µ
θ
i ) > d} | θ) = exp[−td+ o(t)],
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where the equality follows from Sanov’s theorem. Since this holds for all d < λ(I,ΠW ),
this yields the desired conclusion.

D.2 Remaining Proof

Fix any information structures I and Ĩ, each of which is either fully private or public,
and any (G,W ) satisfying Assumption 1 and ΠW = Π. Suppose λ(I,Π) > λ(Ĩ,Π).
Since A is finite and {aθ} = arg maxaW (a, θ) for each θ ∈ Θ, there exist constants
c ≥ c̃ > 0 such that for all t, strategy profiles σt of Gt(I) and σ̃t of Gt(Ĩ), and all θ ∈ Θ,

W (aθ, θ)−
∑
xt,a

PIt (xt | θ)σt(a | xt)W (a, θ) ≤ c

(
1−

∑
xt

PIt (xt | θ)σt(aθ | xt)

)
, (18)

W (aθ, θ)−
∑
x̃t,a

PĨt (x̃t | θ)σ̃t(a|x̃t)W (a, θ) ≥ c̃

(
1−

∑
x̃t

PĨt (x̃t | θ)σ̃t(aθ|x̃t)

)
. (19)

By Lemma D.2, there exists a sequence of BNE σt ∈ BNEt(G, I) such that

−λ(I,Π) ≥ max
θ

lim sup
t→∞

1

t
log

(
1−

∑
xt

PIt (xt | θ)σt(aθ|xt)

)

= lim sup
t→∞

1

t
log
∑
θ

p0(θ)

(
1−

∑
xt

PIt (xt | θ)σt(aθ|xt)

)
,

which by (18) implies

lim sup
t→∞

1

t
log
∑
θ

p0(θ)

(
W (aθ, θ)−

∑
xt

PIt (xt | θ)σt(aθ | xt)W (a, θ)

)
≤ −λ(I,Π).

(20)
Let σ̃t denote a strategy profile that maximizes Wt(·, Ĩ). By Lemma D.1,

−λ(Ĩ,Π) ≤ lim inf
t→∞

max
θ

1

t
log

(
1−

∑
x̃t

PĨt (x̃t | θ)σ̃t(aθ | x̃t)

)

≤ lim inf
t→∞

1

t
log
∑
θ

p0(θ)

(
1−

∑
x̃t

PĨt (x̃t | θ)σ̃t(aθ | x̃t)

)
,
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which by (19) implies

lim inf
t→∞

1

t
log
∑
θ

p0(θ)

(
W (aθ, θ)−

∑
x̃t

PĨt (x̃t | θ)σ̃t(aθ | x̃t)W (a, θ)

)
≥ −λ(Ĩ,Π).

(21)
Thus, for all large enough t, we have Wt(G, I) ≥ Wt(σt, I) > Wt(σ̃t, Ĩ) ≥ Wt(G, Ĩ),
where the strict inequality follows from (20) and (21) and the assumption that λ(I,Π) >

λ(Ĩ,Π).

E Proofs of Theorems 1–2 (General Case)

In this section, we extend the proofs of Theorems 1–2 to general information structures
that need not be fully private. The main complication stems from the fact that the
strict inequality part of Lemma 1 need not hold when µθ does not have full support.
We handle this issue by modifying the events Ft(θ, d) appropriately.

Fix any information structure I and state θ. Let Xθ ⊆ X denote the support of µθ.
Conditional on state θ, define Hθ

i = (hθi (x))x∈Xθ to be agent i’s information partition
of Xθ based on observing her own private signal; that is

hθi (x) := {x′ ∈ Xθ : x′i = xi}, for all x ∈ Xθ.

For any distribution ν ∈ ∆(Xθ) and any partition H of Xθ, let νH ∈ ∆(H) denote the
induced distribution over the cells in H; that is, νH(h) :=

∑
x∈h ν(x) for all h ∈ H.

Letting νt ∈ ∆(Xθ) denote the joint empirical distribution of signals up to t, note that
(νt)Hθ

i
can be identified with i’s empirical distribution νit. For each subset of agents

S ⊆ N , define Hθ
S :=

∧
i∈S H

θ
i to be the finest common coarsening of all the partitions

Hθ
i with i ∈ S. For any joint empirical signal distribution νt, distribution (νt)Hθ

S
is

commonly known among all agents in S.
Finally, for any d > 0 and ε1, . . . , ε|N | ∈ [0, d), define the following event:

Ft(θ, d, ε1, . . . , ε|N |) :=
{
xt ∈ (Xθ)t : KL

(
(νt)Hθ

S
, µθHθ

S

)
≤ d− ε|S|, ∀S ⊆ I

}
.

Note that, for any i ∈ S, KL
(
νit, µ

θ
i

)
≥ KL

(
(νt)Hθ

S
, µθ

Hθ
S

)
. Thus, Ft(θ, d, 0, . . . , 0) =

Ft(θ, d). Observe also that if µθ has full support, then Hθ
S = {X} for all non-singleton

S, so Ft(θ, d, ε1, . . . , ε|N |) = Ft(θ, d− ε1).
The main step in extending the proofs of Theorems 1–2 is the following result,
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which we prove in Appendix E.1.

Proposition E.1. Take any d ∈ (0, λθ(I)) and ε ∈ (0, d). There exists a sequence
ε = εn > · · · > ε2 > ε1 = 0 such that, for all p ∈ (0, 1), there exists T such that

PIt
(
{θ} ∩ Ft(θ, d, ε1, . . . , ε|N |) | xti

)
≥ p

holds for every i ∈ N , t ≥ T , and signal sequence xt ∈ Ft(θ, d, ε1, . . . , ε|N |).

Using Proposition E.1, the proof of Theorem 1 extends as follows. It suffices to
prove (15) for general I, as the argument for (16) in Appendix B did not rely on the
full-support assumption. To prove (15), take any d ∈ (0, λθ(I)) and ε ∈ (0, d). Then
for all p ∈ (0, 1) and large enough t, the events Ft(θ, d, ε1, . . . , ε|N |) constructed in
Proposition E.1 satisfy

Ft(θ, d, ε1, . . . , ε|N |) ⊆ Cp
t (θ),

since Proposition E.1 ensures that these events are p-evident and Ft(θ, d, ε1, . . . , ε|N |) ⊆
Bp
t (θ) at large t by the usual argument. Moreover, by Sanov’s theorem and the fact

that Ft(θ, d, 0, . . . , 0) = Ft(θ, d),

lim
εk→0∀k

lim
t→∞

1

t
log
(
1− PIt

(
Ft(θ, d, ε1, . . . , ε|N |) | θ

))
= lim

t→∞

1

t
log
(
1− PIt (Ft(θ, d) | θ)

)
= −d.

Since this holds for all d < λθ(I), (15) follows.
To extend the proof of Theorem 2, it is sufficient to establish Lemma D.2 for general

I under Assumption 2, as the remaining steps of the proof in Appendix D did not rely
on the full-support assumption. To this end, fix p ∈ (0, 1) and d ∈ (0, λ(I)) as in the
original proof of Lemma D.2, and take any ε ∈ (0, d). Applying Proposition E.1 and
following the same steps as in the original proof of Lemma D.2, we construct a BNE
sequence (σt) such that for all large enough t and each θ, we have σt(aθ|xt) = 1 at all
signal sequences xt ∈ Ft(θ, d, ε1, . . . , ε|N |). Thus,

lim
t→∞

1

t
log

(
1−

∑
xt∈Xt

PIt (xt|θ)σt(aθ | xt)

)
≤ lim

t→∞

1

t
log
(
1− PIt

(
Ft(θ, d, ε1, . . . , ε|N |) | θ

))
.

As above, the right-hand side tends to −d as εk → 0 for each k. Since this holds for
all d < λ(I), we obtain the desired conclusion.
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E.1 Proof of Proposition E.1

E.1.1 Generalization of Lemma 1

The key step in proving Proposition E.1 is the following generalization of Lemma 1.
For each i ∈ N and ν ∈ ∆(Xθ) with νi = margXiν, define distribution νM θ

i ∈ ∆(Xθ)

by
(νM θ

i )(xi, x−i) := νi(xi)µ
θ(x−i|xi), for all (xi, x−i) ∈ Xθ. (22)

When the joint empirical signal distribution is νt, then νtM θ
i is i’s expectation of this

joint distribution conditional on state θ and on observing νit.

Lemma E.1. Take any ν ∈ ∆(Xθ), i ∈ N , and S ⊆ N . Then KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
≤

KL
(
νHθ

i
, µθ

Hθ
i

)
. Moreover, the inequality is an equality only if νHθ

i
(·|h) = µθ

Hθ
i
(·|h) for

every h ∈ Hθ
i ∧Hθ

S with νHθ
i ∧Hθ

S
(h) > 0.

Proof. To show the inequality, first note that

KL
(
νM θ

i , µ
θ
)

= KL
(

(νM θ
i )Hθ

i
, µθHθ

i

)
+
∑
h∈Hθ

i

(νM θ
i )Hθ

i
(h)KL((νM θ

i )(·|h), µθ(·|h))

= KL
(
νHθ

i
, µθHθ

i

)
, (23)

where the first equality uses the chain rule for KL-divergence and the second one holds
because νHθ

i
= (νM θ

i )Hθ
i
and (νM θ

i )(·|h) = µθ(·|h) for each h ∈ Hθ
i by (22). The chain

rule also implies that

KL
(
νM θ

i , µ
θ
)

= KL
(

(νM θ
i )Hθ

S
, µθHθ

S

)
+
∑
h∈Hθ

S

(νM θ
i )Hθ

S
(h)KL

(
(νM θ

i )(·|h) | µθ(·|h)
)

≥ KL
(

(νM θ
i )Hθ

S
, µθHθ

S

)
. (24)

Combining (23)–(24) yields KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
≤ KL

(
νHθ

i
, µθ

Hθ
i

)
.

For the “moreover” part, suppose that KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
= KL

(
νHθ

i
, µθ

Hθ
i

)
. Then,

by (23)-(24), for every h ∈ Hθ
S such that (νM θ

i )Hθ
S
(h) > 0, we have (νM θ

i )(·|h) =

µθ(·|h). In addition, for any h ∈ Hθ
i such that (νM θ

i )Hθ
i
(h) > 0, (22) implies (νM θ

i )(·|h) =

µθ(·|h). These two observations yield that for any h ∈ Hθ
i ∧Hθ

S with (νM θ
i )Hθ

i ∧Hθ
S
(h) >

0, we have (νM θ
i )(·|h) = µθ(·|h), and hence (νM θ

i )Hθ
i
(·|h) = µθ

Hθ
i
(·|h). But by (22),

(νM θ
i )Hθ

i
= νHθ

i
and (νM θ

i )Hθ
i ∧Hθ

S
= νHθ

i ∧Hθ
S
. Thus, νHθ

i
(·|h) = µθ

Hθ
i
(·|h) for all

h ∈ Hθ
i ∧Hθ

S with νHθ
i ∧Hθ

S
(h) > 0.
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Lemma E.1 yields the following corollary:

Corollary E.1. Take any d > 0 and ε ∈ (0, d). There exists ρ ∈ (0, ε) such that for
all S ⊆ N , i /∈ S, and ν ∈ ∆(Xθ) with

KL(νHθ
i
, µθHθ

i
) ≤ d and max

|S′|=|S|+1
KL(νHθ

S′
, µθHθ

S′
) ≤ d− ε,

we have KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
< d− ρ.

Proof. Consider any S ⊆ N , i 6∈ S, and ν ∈ ∆(Xθ) with KL(νHθ
i
, µθ

Hθ
i
) ≤ d and

max|S′|=|S|+1 KL(νHθ
S′
, µθ

Hθ
S′

) ≤ d− ε. It suffices to prove that KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
< d,

as the left-hand side of this inequality is continuous in ν and ∆(Xθ) is compact.
To show the latter inequality, note that Lemma E.1 implies KL

(
(νM θ

i )Hθ
S
, µθ

Hθ
S

)
≤

KL(νHθ
i
, µθ

Hθ
i
) ≤ d. Thus, we can focus on the case in which KL

(
(νM θ

i )Hθ
S
, µθ

Hθ
S

)
=

KL(νHθ
i
, µθ

Hθ
i
). In this case,

KL(νHθ
i
, µθHθ

i
) = KL

(
νHθ

i ∧Hθ
S
, µθHθ

i ∧Hθ
S

)
+

∑
h∈Hθ

i ∧Hθ
S

νHθ
i ∧Hθ

S
(h)KL

(
νHθ

i
(·|h), µθHθ

i
(·|h)

)
= KL

(
νHθ

i ∧Hθ
S
, µθHθ

i ∧Hθ
S

)
≤ d− ε,

where the first equality uses the chain rule and the second one holds by the “moreover”
part of Lemma E.1.

E.1.2 Completing the Proof

To prove Proposition E.1, we first set ε|N | = ε. By Corollary E.1, there exists ρ|N |−1 ∈
(0, ε|N |) such that for all i ∈ N and S = N \ {i}, whenever

KL(νHθ
i
, µθHθ

i
) ≤ d and KL(νHθ

N
, µθHθ

N
) ≤ d− ε,

we have KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
< d− ρ|N |−1.

Next, choose some ε|N |−1 ∈ (0, ρ|N |−1), and proceed inductively in the same manner.
In particular, once we have constructed εk+1, use Corollary E.1 to find ρk ∈ (0, εk+1)

such that for all i ∈ N and S ⊆ N with |S| = k and i /∈ S, whenever

KL(νHθ
i
, µθHθ

i
) ≤ d and max

|S′|=k+1
KL(νHθ

S′
, µθHθ

S′
) ≤ d− εk+1,
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we have KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
< d− ρk.

This yields a sequence

ε = ε|N | > ρ|N |−1 > ε|N |−1 > · · · > ε2 > ρ1 > ε1 = 0

with the property that whenever

KL(νHθ
S
, µθHθ

S
) ≤ d− ε|S| for all S ⊆ N,

we have KL
(

(νM θ
i )Hθ

S
, µθ

Hθ
S

)
< d− ρ|S| for all S ⊆ N and i 6∈ S.

We now show that this sequence is as required by Proposition E.1. As noted, for
any p ∈ (0, 1) and sufficiently large t, we have Ft(θ, d, ε1, . . . , ε|N |) ⊆ Bp

t (θ). Thus, it
suffices to show that, for any p ∈ (0, 1), i ∈ N , and S ⊆ N , there exists T such that

PIt
({

KL
(

(νt)Hθ
S
, µθHθ

S

)
≤ d− ε|S|

}
| xti, θ

)
≥ p (25)

holds for every t ≥ T and signal sequence xt ∈ Ft(θ, d, ε1, . . . , ε|N |).
To show (25), fix any p ∈ (0, 1). First, consider i ∈ N and S ⊆ N with i ∈ S. Then

Hθ
S is coarser than Hθ

i . Hence, for any t ≥ 1 and signal sequence xt with corresponding
empirical distribution ν̃t ∈ ∆(Xθ), we have

PIt
({
νt ∈ ∆(Xθ) : (νt)Hθ

S
= (ν̃t)Hθ

S

}
| xti, θ

)
= 1.

Thus, if xt ∈ Ft(θ, d, ε1, . . . , ε|N |), then

PIt
({

KL
(

(νt)Hθ
S
, µθHθ

S

)
≤ d− ε|S|

}
|xti, θ

)
= 1 > p,

as required.
Next, consider i ∈ N and S ⊆ N with i /∈ S. Then the way in which sequence

(εk, ρk)k=1,...,|N | was constructed ensures that, for any t ≥ 1 and xt ∈ Ft(θ, d, ε1, . . . , ε|N |)

with corresponding empirical frequency ν̃t, we have

KL
(

(ν̃tM
θ
i )Hθ

S
, µθHθ

S

)
≤ d− ρ|S|. (26)

Since ρ|S| > ε|S| and ∆(Xθ) is compact, there exists κ > 0 such that, for all ν, ν ′ ∈
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∆(Xθ),

KL
(
ν ′Hθ

S
, µθHθ

S

)
≤ d− ρ|S| and ‖ν ′ − ν‖ < κ =⇒ KL

(
νHθ

S
, µθHθ

S

)
≤ d− ε|S|. (27)

By the same law of large numbers argument as in the full-support case, there exists
T such that, for all t ≥ T and signal sequences xt with empirical distribution ν̃t, we
have

PIt
({∥∥νt − ν̃tM θ

i

∥∥ < κ
}
| xti, θ

)
≥ p.

Combined with (26)–(27), this implies that (25) holds for every t ≥ T and signal
sequence xt ∈ Ft(θ, d, ε1, . . . , ε|N |).

F Proofs for Section 5

F.1 Proof of Corollary 2

Fix any I ∈ I. Let tκ denote an optimal number of signal draws from I under budget
κ. The analysis in Section 4.2 implies that, for every BNE sequence σtκ ∈ BNEtκ(G, I),

1−
∑

θ∈Θ,xtκ∈Xtκ

PItκ(θ, xtκ)σtκ(aθ,W | xtκ) ≥ exp[−tκλ(I) + o(tκ)], (28)

and that (28) holds with equality for some BNE sequence (σ∗tκ). Note that limκ→∞ tκ =

∞ holds by optimality, as otherwise the designer’s value is bounded away from the
first-best payoff as κ → ∞. Thus, maximizing the rate of convergence in the RHS of
(28) under the budget constraint implies limκ→∞ tκ/κ = 1/c(I). Hence, the difference
between the first-best payoff

∑
θ p0(θ)W (aθ,W , θ) and the designer’s value under each

information structure I takes the form exp[−κλ(I)
c(I)

+ o(κ)].
Since I is finite, there then exists κ∗ such that for all κ ≥ κ∗ and I, I ′ ∈ I with

λ(I)
c(I)

> λ(I′)
c(I′) , it is suboptimal for the designer to choose I ′.

F.2 Proof of Corollary 3

The convergence under the product topology cannot be faster than λθ(I). To see this,
fix any ε ≤ β(1− β). Then there exists p ∈ (0, 1) such that

PIt ({max
i
ρproducti (τi(x

t
i), τi(θ)) ≤ ε} | θ) ≤ PIt (Bp

t (θ) | θ) = 1− exp[−λθ(I)t+ o(t)].
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The convergence under the uniform-weak topology cannot be slower than λθ(I).
To see this, fix any ε > 0. Note that the proof of Proposition 6 in Chen, Di Tillio,
Faingold, and Xiong (2010) implies that the ε-ball around τi(θ) consists of all belief
hierarchies for player i that have common (1− ε)-belief on θ. Thus,

PIt ({max
i
ρuniformi (τi(x

t
i), τi(θ)) ≤ ε} | θ) = PIt (C1−ε

t (θ) | θ) = 1− exp[−λθ(I)t+ o(t)].

Finally, by definition, convergence under the uniform-weak topology cannot be
faster than under the product topology.
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Online Appendix to “Learning Efficiency of
Multi-Agent Information Structures”

Mira Frick, Ryota Iijima, and Yuhta Ishii

G Convergence of Equilibrium Sets
In Section 4, we focused on equilibria of Gt(I) that maximize the expected objective.
In this section, we show that the learning efficiency index also captures how fast the
whole equilibrium set of Gt(I) converges to the set of common knowledge equilibria.

Formally, given any basic game G, m ∈ ∆(A) is an ε-correlated equilibrium at
θ if, for each i,

m(ai) > 0 =⇒
∑
a−i

m(a−i|ai) (ui(ai, a−i, θ)− ui(a′i, a−i, θ)) ≥ −ε,∀a′i ∈ Ai.

Let CEθ,ε(G) denote the set of ε-correlated equilibria at θ, and CEε(G) the set of joint
distributions over states and actions induced by ε-correlated equilibria at each state,
i.e.,

CEε(G) := {m ∈ ∆(Θ× A) : m(θ) = p0(θ),m(·|θ) ∈ CEθ,ε(G), ∀θ ∈ Θ}.

We also denote by NE(G) the set of joint distributions over states and actions induced
by Nash equilibria at each state, defined in the usual manner.

Define the set of ε-Bayes Nash equilibria of Gt(I) analogously. Finally, abusing
notation relative to the main text, let BNEε

t(G, I) ⊆ ∆(Θ×A) denote the set of joint
distributions over states and actions induced by ε-Bayes Nash equilibria of Gt(I).

Corollary G.1. Take any information structure I and any ε > 0. For any basic game
G,

sup
mt∈BNEt(G,I)

inf
m∈CEε(G)

‖mt −m‖ ≤ exp[−tλ(I) + o(t)], (29)

sup
m∈NE(G)

inf
mt∈BNEεt (G,I)

‖mt −m‖ ≤ exp[−tλ(I) + o(t)]. (30)

Moreover, for some basic game G, both inequalities hold with equality.

By (29), the ex-ante learning efficiency index λ(I) lower-bounds the speed at which
every BNE outcome at large t can be approximated by some ε-correlated equilibrium in
the complete information limit. Note that we employ ε-correlated equilibria in the limit
instead of ε-Nash equilibria; this is because, even though players achieve approximate
common knowledge at large t, signal distributions in general introduce correlation into
their action choices. By (30), λ(I) also lower-bounds the speed at which every Nash
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equilibrium outcome in the complete information limit can be approximated by some
ε-BNE outcome at large t. Finally, both bounds are tight.

Proof of Corollary G.1. For simplicity, we focus on the case where each joint dis-
tribution µθ ∈ ∆(X) has full support; the extension to general information structures
I follows similar arguments as in Appendix E. Fix any ε > 0 and basic game G.

Inequality (29): Pick p ∈ (0, 1) large enough that

pε ≥ (1− p) max
i,ai,a′i,a−i,θ

|ui(ai, a−i, θ)− ui(a′i, a−i, θ)| .

Take any d < λ(I). By Lemma A.2, there exists T such that for all t ≥ T , i ∈ N ,
and θ ∈ Θ, whenever KL(νit, µ

θ
i ) ≤ d, then

PIt
(
{θ} ∩ Ft(θ, d) | xti

)
≥ p. (31)

Take any t ≥ T , BNE σt of Gt(I), i ∈ N , θ ∈ Θ, and xti ∈ X t
i such that KL(νit, µ

θ
i ) ≤

d. Then for any ai with σit(ai|xti) > 0, the fact that σt is a BNE implies that, for all
a′i ∈ Ai, ∑

θ′∈Θ,xt−i∈Xt
−i

PIt (θ′, xt−i|xti)
(
ui(ai, σ−i(x

t
−i), θ

′)− ui(a′i, σ−i(xt−i), θ′)
)
≥ 0,

which, by (31) and the choice of p, implies that∑
θ′∈Θ,xt−i∈Xt

−i

PIt (θ′, xt−i|xti, {θ} ∩Ft(θ, d))
(
ui(ai, σ−i(x

t
−i), θ

′)− ui(a′i, σ−i(xt−i), θ′)
)
≥ −ε.

That is, for all t ≥ T and θ ∈ Θ, the action distribution induced by any BNE of Gt(I)
conditional on the event {θ} ∩ Ft(θ, d) is an ε-correlated equilibrium at θ.

Thus, for all t ≥ T ,

sup
mt∈BNEt(G,I)

inf
m∈CEε(G)

‖mt −m‖ ≤ max
θ∈Θ

p0(θ)
(
1− PIt (Ft(θ, d)|θ)

)
.

By Sanov’s theorem, this implies that, as t→∞,

sup
mt∈BNEt(G,I)

inf
m∈CEε(G)

‖mt −m‖ ≤ exp[−td+ o(t)].

Since this holds for any d < λ(I), this proves inequality (29).
Inequality (30): Pick p ∈ (0, 1) large enough that

ε ≥ (1− p) max
i,ai,a′i,a−i,θ

|ui(ai, a−i, θ)− ui(a′i, a−i, θ)| .

Take any d < λ(I). By Lemma A.2, there exists T such that for all t ≥ T , i ∈ N , and
θ ∈ Θ, whenever KL(νit, µ

θ
i ) ≤ d, then (31) holds.

2



Take any m ∈ NE(G), and let αθi ∈ ∆(Ai) denote the corresponding Nash equilib-
rium strategy of player i at θ. Let Σit(d) denote the set of i’s strategies σit in Gt(I) such
that, for each θ, σit(·|xti) = αθi (·) whenever KL(νit, µ

θ
i ) ≤ d. By Kakutani’s fixed-point

theorem applied to the best-response correspondences on the restricted strategy space∏
i Σit(d), there exists a strategy profile σt ∈

∏
i Σit(d) such that each player i’s action

conditional on a signal sequence xti with KL(νit, µ
θ
i ) > d is interim optimal against

σ−it. Moreover, for t ≥ T , (31) and the choice of p ensure that each player i’s action
conditional on a signal sequence xti with KL(νit, µ

θ
i ) ≤ d (i.e., the support of αθi ) is

ε-interim optimal against σ−it. Thus, σt is an ε-BNE of Gt(I).
Hence, for all t ≥ T ,

sup
mt∈NE(G,I)

inf
m∈BNEεt (G,I)

‖mt −m‖ ≤ max
θ∈Θ

p0(θ)
(
1− PIt (Ft(θ, d)|θ)

)
.

By Sanov’s theorem, this implies that, as t→∞,

sup
mt∈NE(G,I)

inf
m∈BNEεt (G,I)

‖mt −m‖ ≤ exp[−dt+ o(t)].

Since this holds for any d < λ(I), this proves inequality (30).
Equality for some G: Take i and θ, θ′ such that d(µθi , µ

θ′
i ) = λ(I). Then consider

a basic game G such that Ai = {ai, a′i} and, for all a−i,

ui(ai, a−i, θ)− ui(a′i, a−i, θ) = 2ε = ui(a
′
i, a−i, θ

′)− ui(ai, a−i, θ′).

This implies that, for any m ∈ CEε(G) ∪ NE(G), we have m(ai|θ) = m(a′i|θ′) = 1.
Thus,

sup
mt∈BNEt(G,I)

inf
m∈CEε(G)

‖mt−m‖ ≥ sup
mt∈BNEt(G,I)

max{p0(θ)(1−mt(ai|θ)), p0(θ′)(1−mt(a
′
i|θ′))},

sup
m∈NE(G)

inf
mt∈BNEεt (G,I)

‖mt−m‖ ≥ inf
mt∈BNEεt (G,I)

max{p0(θ)(1−mt(ai|θ)), p0(θ′)(1−mt(a
′
i|θ′))}.

For any sequence (mt) of distributions induced by ε-BNE (or any strategy profiles
more generally), the proof of Lemma D.1 adapted to the current notation shows that

lim inf
t→∞

1

t
log (max{1−mt(ai|θ), 1−mt(a

′
i|θ′)}) ≥ −d(µθi , µ

θ′

i ).

Thus, as t→∞,

sup
mt∈BNEt(G,I)

inf
m∈CEε(G)

‖mt −m‖ ≥ exp[−td(µθi , µ
θ′

i ) + o(t)],

sup
m∈NE(G)

inf
mt∈BNEεt (G,I)

‖mt −m‖ ≥ exp[−td(µθi , µ
θ′

i ) + o(t)],

as claimed.
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H Gaussian Signals
We show that the speed of common learning also coincides with the speed of individual
learning in the following infinite-signal Gaussian environment. For simplicity, consider
two players i = 1, 2 and two states θ = θ, θ; extending to more players/states is
straightforward. Assume that conditional on state θ, signal profiles are drawn i.i.d.
according to

(x1t, x2t) ∼ N
(
(mθ

1,m
θ
2),Σ

)
, Σ =

(
(σ1)2 ρσ1σ2

ρσ1σ2 (σ2)2

)
for some ρ ∈ (−1, 1). Up to applying an affine transformation of signals, we can assume
without loss of generality that mθ

i = 0, mθ
i = 1 for i = 1, 2.

Consider mit :=
∑t

s=1
xis
t
, which is a sufficient statistic for player i’s (higher-order)

beliefs. Conditional on state θ, (m1t,m2t) is distributed Gaussian with mean (mθ
1,m

θ
2)

and covariance matrix 1
t
Σ. Moreover, by the law of large numbers, mit → mθ

i almost
surely conditional on state θ. For any sufficiently large t, if mit <

1
2
(resp. mit >

1
2
),

then i’s belief concentrates on state θ (resp. θ).
Fix any p ∈ (0, 1) and consider state θ; the argument in state θ is analogous. To

calculate the speed of individual learning in state θ, note that

lim
t→∞
−1

t
log
(
1− Pt[Bp

i (θ) | θ]
)

= lim
t→∞
−1

t
logPt

[
mit <

1

2
| θ
]

=
1

8(σi)2
,

where the final equality holds by Cramér’s theorem.31 Thus, as t→∞,

Pt[Bp
t (θ) | θ] = 1− exp

[
−1

8 maxi(σi)2
t+ o(t)

]
.

To calculate the speed of common learning in state θ, assume without loss that
σ1 ≤ σ2, i.e., player 1’s rate of individual learning is faster. For each d ∈ (0, 1/2),
consider the event

Ft(d, θ) =

{
|m1t − 1| ≤ d

σ1

σ2

}
∩ {|m2t − 1| ≤ d} .

Observe that Ft(d, θ) ⊆ Bp
t (θ) for all sufficiently large t. Next, we show that this

event is p-evident. Indeed, note that for each i, we have∣∣E[m−it|mit, θ]− 1
∣∣ = |ρ|σ−i

σi
|mit − 1|.

31Indeed, since mit is the sample mean of i.i.d. draws from N (mθ
i , (σi)

2), Cramér’s theorem im-
plies that limt→∞− 1

t logPt
[
mit <

1
2 | θ

]
= I( 1

2 ), where I(a) := supλ (λa− logM(λ)) =
(a−µθi )2

2(σθi )2
and

M(λ) = exp[λmθ
i + λ2(σi)

2

2 ] is the moment generating function of N (mθ
i , (σi)

2).
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Thus, conditional on event Ft(d, θ), we have∣∣E[m1t|m2t, θ]− 1
∣∣ ≤ |ρ|dσ1

σ2

,
∣∣E[m2t|m1t, θ]− 1

∣∣ ≤ |ρ|d.
Since i’s estimate of m−it given mit and θ becomes arbitrarily precise as t grows large
(i.e., the conditional variance 1

t
(1− ρ2)σ2

−i → 0), this guarantees that event Ft(d, θ) is
p-evident for all sufficiently large t. Hence, by Monderer and Samet (1989), Ft(d, θ) ⊆
Cp
t (θ) for all sufficiently large t. Thus, Cramér’s theorem implies that

lim inf
t→∞

−1

t
log
(
1− Pt[Cp(θ) | θ]

)
≥ lim

t→∞
−1

t
logPt

[
|m1t − 1| > d

σ1

σ2

or |m2t − 1| > d | θ
]

=
d2

2(σ2)2
.

Since d can be chosen arbitrarily close to 1
2
, it follows that

Pt[Cp
t (θ) | θ] = 1− exp

[
−1

8 maxi(σi)2
t+ o(t)

]
,

i.e., as t→∞, common learning and individual learning occur at the same exponential
rate.

I Information Structures as Complements vs. Substi-
tutes

Our analysis suggests a novel formalization of when two information structures I and Ĩ
are complements or substitutes.32 We extend our baseline setting with repeated draws
from a single information structure I by considering the effect of combining signal
observations from I = (X, (µθ)θ∈Θ) and Ĩ = (X̃, (µ̃θ)θ∈Θ). Let I × Ĩ := (X × X̃, (µθ×
µ̃θ)θ∈Θ) denote the combined information structure under which the signal distribution
in each state θ is the product of µθ and µ̃θ.

Definition 1. We say that information structures I and Ĩ are complements if λ(I×
Ĩ) ≥ λ(I) + λ(Ĩ) and substitutes if λ(I × Ĩ) ≤ λ(I) + λ(Ĩ).

To interpret this definition, consider the case in which λ(I) = λ(Ĩ) and I and Ĩ
are strict complements, i.e., λ(I×Ĩ) > λ(I)+λ(Ĩ) = 2λ(I). Then, by Theorem 1, the
rate of common learning under the combined information structure I × Ĩ is more than

32Börgers, Hernando-Veciana, and Krähmer (2013) formalize notions of complements/substitutes
for single-agent information structures with a single signal observation. Under Gaussian priors and
signal distributions, Liang and Mu (2020) study a form of complementarity, where combining multiple
information structures allows for identification of the state while each information structure alone leads
to non-identification. Complementing these papers, our approach applies to multi-agent information
structures and is based on the speed of learning.
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twice as fast as the rate of common learning under I or Ĩ alone.33 Likewise, Theorem 2
implies that for any basic game G and objective functionW satisfying Assumptions 1–2
and any large enough t,

Wt(I × Ĩ,G) > max{W2t(I,G),W2t(Ĩ,G)}.

That is, holding fixed any (large enough) total number of signal observations, better
equilibrium outcomes are achieved if players observe a mix of signals from I and Ĩ
than if they specialize in only I or Ĩ.

The structure of our efficiency index suggests two conflicting channels that deter-
mine whether I and Ĩ are complements or substitutes. On the one hand, a “force for
substitutes” is that the Chernoff distance is subadditive, i.e., for all agents i and states
θ, θ′,

d(µθi × µ̃θi , µθ
′

i × µ̃θ
′

i ) ≤ d(µθi , µ
θ′

i ) + d(µ̃θi , µ̃
θ′

i ). (32)

Intuitively, this captures that combining multiple information sources creates more
scope for “confusing” signal realizations that do not allow an agent to distinguish some
states. For example, if observed in isolation, a particular sequence of signal realizations
from I might be indicative of state θ and a sequence of signal realizations from Ĩ might
be indicative of state θ′, but if the two sequences are observed jointly, these two effects
might cancel out and render θ and θ′ indistinguishable.34

On the other hand, the efficiency index is defined by considering the worst-case
Chernoff distance across all agents and states. When the worst agent or pair of states
differ across I and Ĩ this creates a hedging value to combining I and Ĩ, which acts as
a “force for complements.” The following example illustrates both possibilities:

Example I.1. Suppose states are binary, Θ = {θ, θ′}.
Suppose first that signals under either I or Ĩ are perfectly correlated. Then I and

Ĩ have in common a worst-informed agent. Thus, only the first channel is relevant and
I and Ĩ are substitutes. In particular, (under binary states) this is always the case if
there is only one agent.

Suppose next that signals are binary, Xi = {xi, x′i}, and each i’s signal distributions
are symmetric, i.e., µθi (xi) = µθ

′
i (x′i), µ̃θi (xi) = µ̃θ

′
i (x′i). Then (32) holds with equality.

Thus, only the second channel is relevant and I and Ĩ are complements. N

33That is, for all p ∈ (0, 1) and large enough t, the (ex-ante) probability of common p-belief of the
true state is strictly greater if agents observe t signal draws from I ×Ĩ than if agents observe 2t signal
draws from I or Ĩ alone. An analogous result holds for the speed of learning conditional on any state
θ if complementarity is defined using the conditional learning efficiency index λθ.

34Formally, observe that d(µθi , µ
θ′

i ) = minνi∈∆(Xi) KL(νi, µ
θ
i ) s.t. KL(νi, µ

θ
i ) = KL(νi, µ

θ′

i ). Com-
bined with the fact that KL-divergence is additive across independent distributions, this yields

d(µθi × µ̃θi , µθ
′

i × µ̃θ
′

i ) = min
νi∈∆(Xi),ν̃i∈∆(X̃i)

KL(νi, µ
θ
i ) + KL(ν̃i, µ̃

θ
i )

s.t. KL(νi, µ
θ
i ) + KL(ν̃i, µ̃

θ
i ) = KL(νi, µ

θ′

i ) + KL(ν̃i, µ̃
θ′

i ).

This implies (32), because KL(νi, µ
θ
i ) + KL(ν̃i, µ̃

θ
i ) = KL(νi, µ

θ′

i ) + KL(ν̃i, µ̃
θ′

i ) is possible even if
KL(νi, µ

θ
i ) 6= KL(νi, µ

θ′

i ) and KL(ν̃i, µ̃
θ
i ) 6= KL(ν̃i, µ̃

θ′

i ).
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