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Abstract

We introduce experimental persuasion between Sender and Receiver. Sender
chooses an experiment to perform from a feasible set of experiments. Receiver
observes the realization of this experiment and chooses an action. We charac-
terize optimal persuasion in this baseline regime and in an alternative regime in
which Sender can commit to garble the outcome of the experiment. Our model
includes Bayesian persuasion as the special case in which every experiment is
feasible; however, our analysis does not require concavification. Since we focus
on experiments rather than beliefs, we can accommodate general preferences
including costly experiments and non-Bayesian inference.
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1 Introduction

Information design has received much attention recently, especially since the elegant
analysis of Bayesian persuasion (BP) by Kamenica and Gentzkow (2011, hereafter,
KG). In their model, Sender publicly selects an information structure, i.e., Blackwell
experiment. Then Receiver sees the realization of the experiment and chooses an
action. The analysis relies on two assumptions: (i) Sender can design any information
structure for Receiver; (ii) Receiver updates his beliefs using Bayes rule.

In many applications, however, the set of feasible experiments is institutionally
restricted. Pharmaceutical companies seeking FDA approval must follow standard
clinical trial protocols, though they do have flexibility in selecting the sample size,
allowing them to perform a “sample size samba” (Schulz and Grimes, 2005, p. 1351).
When schools select grading standards—the focus of Boleslavsky and Cotton (2015)
and Ostrovsky and Schwarz (2010)—they may choose among coarse letter grades and
various numerical systems, not arbitrary stochastic maps from performance to grades.
Even in court—the leading example in KG—the prosecutor is restricted: only certain
evidence is admissible, and each witness will be cross-examined by the defense.

We introduce experimental persuasion (EP). Sender has access to a feasible set of
experiments and selects one experiment from this feasible set to perform. Receiver
observes the realization of this experiment and chooses an action. In our model, the
feasible set of experiments is a primitive that reflects institutional and technological
constraints.

With restricted experiments, Sender cannot induce every Bayes-plausible distribu-
tion of posteriors, so concavification (Aumann et al., 1995; Kamenica and Gentzkow,
2011) does not apply. We therefore focus directly on the space of experiments, rather
than the space of beliefs. Each experiment determines Receiver’s posterior beliefs
and hence his optimal actions, which generate Sender’s payoffs. Composing this se-
quence, we obtain an indirect utility function over experiments. This is the novelty
of our framework. By focusing our analysis on preferences over experiments, we can
accommodate both restrictions on the class of experiments and non-Bayesian models
of belief-updating. We believe this presentation provides a new intuition for persua-
sion, particularly in the binary setting, where we illustrate the solution by plotting
the indifference curves of the indirect utility function in the space of experiments
(Section 3).
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In Section 4, we analyze two different regimes. In the first regime, Sender cannot
garble the outcome of the experiment. This regime is appropriate if the outcome of
the experiment is publicly observed. In this regime, the feasible set does not have a
special structure. We illustrate the solution graphically in examples and observe that
Sender’s preferences are not monotone with respect to Blackwell’s order. This setting
reduces to BP if every experiment is feasible.

In the second regime, Sender can garble the outcome of the experiment. Receiver
observes only the realization of the garbled experiment. This garbling regime reduces
to BP if a perfectly revealing experiment is available, for then Sender can garble
the state arbitrarily. In the garbling regime, we first show that Sender’s problem
has a solution (Theorem 1). Then we establish properties of the solution. Unlike
in the no-garbling setting, Sender weakly prefers Blackwell more-informative primi-
tive experiments since they can always be garbled into less informative experiments.
Therefore, Sender can restrict attention to the subclass of Blackwell undominated
primitive experiments. If there are multiple undominated experiments, then the set
of synthetic experiments Sender can induce via garbling is not convex (Theorem 2).
Nevertheless, we show that optimal experimental persuasion satisfies a form of KG’s
indifference result: the optimal experiment generally makes Receiver indifferent be-
tween multiple actions (Theorem 3).

In Section 5, we assess welfare and discuss further applications of our approach.
While the BP solution is Pareto efficient in the leading binary example in KG, we
show that in general the EP solution need not be Pareto efficient. Moreover, the struc-
ture of the Pareto frontier changes dramatically when there is not a single Blackwell
most-informative experiment. We derive the feasible set of experiments in leading
applications—sampling from a Brownian motion with state-dependent drift (Henry
and Ottaviani, 2019; Morris and Strack, 2019) and experimental cost functions (Po-
matto et al., 2020). Next we solve for optimal EP when Receiver uses a frequentist
decision rule, which captures the FDA’s process for drug approval (Isakov et al.,
2019). More generally, there is a large literature on non-expected utility preferences,
such as prospect theory (Kahneman and Tversky, 1979). Because we focus directly on
experiments rather than beliefs, our framework can accommodate any belief-updating
rule.

BP has been extended in many different directions, as surveyed in Kamenica
(2019). These extensions generally retain the assumption that all experiments are
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feasible, with Gentzkow and Kamenica (2017) being an early exception. Some re-
cent work relaxes this assumption in specific contexts: bank stress tests (Inostroza
and Pavan, 2021), costly experiments (Degan and Li, 2021), quality certification (Za-
pechelnyuk, 2020; Onuchic and Ray, 2021), and sample selection (Di Tillio et al.,
2021). In Haghtalab et al. (2021), Sender has access to multiple noisy signals about
the state and she can disclose exactly one of these signals. These models can all
be formulated as special cases of our experimental persuasion framework. In each
setting, one can derive the set of experiments available to Sender and then apply
our analysis. Finally, our paper relates to recent work that relaxes the assumption
of Bayesian updating. Beauchêne et al. (2019) analyze persuasion when players are
ambiguity-averse with maxmin expected utility. Liu and Yannelis (2021) consider the
case where Sender can persuade Receiver to use Wald’s maxmin preferences. de Clip-
pel and Zhang (2020) extend persuasion to settings with non-Bayesian updating in
which concavification can still be used.

2 Model

2.1 Setting

Sender (she) and Receiver (he) have state-dependent preferences over the action cho-
sen by Receiver. The action space A and the state space Ω are both finite, with
typical elements a and ω, respectively. Payoffs are given by v(a, ω) for Sender and
u(a, ω) for Receiver.

Sender and Receiver share a common prior p over the state space Ω. Labeling
the states ω0, . . . , ωI−1, we can express the prior p as a vector (p0, . . . , pI−1). Neither
player observes the state realization. Sender can generate information about the state
by performing an experiment. Without loss, we restrict attention to experiments
that generate at most J signal realizations, where J ≥ max{|Ω|, |A|}; see footnote 3
for a discussion of this restriction. Signal realizations are denoted s0, . . . , sJ−1. An
experiment π is a stochastic I × J matrix,1 where πij is the probability that signal
sj is realized, given that the state is ωi. Let Π0 denote the set of all experiments.
Sender has access to a closed subset Π of Π0. She selects from the feasible set Π one
experiment to perform.

1A matrix is stochastic if its entries are nonnegative and each row sums to 1.
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Receiver observes the realization of the experiment and then updates his beliefs.
Given posterior belief q ∈ ∆(Ω), Receiver chooses an action from the set

a∗(q) = argmax
a∈A

∑
i

qiu(a, ωi).

Assume that Receiver breaks ties in Sender’s favor: if there are multiple actions in
a∗(q), Receiver chooses one that maximizes Sender’s utility. Denote this action by
â(q).2

2.2 Induced preferences over experiments

We now define Sender’s induced preferences over experiments. First we introduce
notation for Bayesian updating. Under experiment π, the ex ante probability of
signal realization sj is given by

q̄j(π) =
∑
i

piπij.

Upon seeing sj, Receiver assigns to state ωi probability

qji (π) =
piπij
q̄j(π)

. (1)

Denote the full belief vector following realization sj by qj(π) = (qj0(π), . . . , qjI−1(π)).
The beliefs in (1) depend on the experiment π and also on the prior p, but our notation
suppresses the dependence on p when the prior is understood.

Sender’s indirect utility function over experiments, V : Π0 → R, is defined by

V (π) =
∑
i,j

piπijv(â(qj(π)), ωi). (2)

This summation is an expectation over realized state-signal pairs (ωi, sj). Sender’s
direct utility for each pair depends on the state ωi and Receiver’s chosen action
â(qj(π)). Receiver’s utility over experiments, U : Π0 → R, is defined analogously,
with u in place of v in (2).

2If there are multiple actions in a∗(q) that maximize Sender’s utility, then â(q) can be chosen
among them arbitrarily.
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While we focus directly on experiments, KG focus on beliefs. They define Sender’s
utility over beliefs, v̂ : ∆(Ω)→ R, by

v̂(q) =
∑
i

qiv(â(q), ωi).

Receiver’s posterior belief q determines his action â(q) and also pins down the con-
ditional distribution of the state (since Receiver’s beliefs are correct). By grouping
the summation in (2) by the signal realizations sj, we can express Sender’s indirect
utility function V as an expectation over the belief utility function v̂:

V (π) =
∑
j

q̄j(π)v̂(qj(π)).

KG assume that Sender can perform any experiment. Thus, Sender can induce
every Bayes-plausible distribution over posteriors. Sender’s optimal value, as a func-
tion of the prior, is given by the concavification of v̂—the smallest concave function
larger than v̂. In our setting, Sender is restricted to performing experiments in the
feasible set Π, so she cannot necessarily induce every Bayes-plausible distribution over
posteriors. Hence, the concavification payoff is not necessarily achievable.

2.3 Sender’s problem with and without garbling

We consider two different regimes. In the no-garbling regime, the timing is as fol-
lows. Sender selects one experiment π from the feasible set Π. Receiver observes the
realization of π, updates his beliefs, and chooses an action. In the garbling regime,
Sender commits upfront to the garbling that she will apply to her chosen experiment.
After nature draws the signal realization, Receiver observes only the garbled signal.

We now formally state Sender’s problem and we observe that a solution exists.

No garbling Sender performs one feasible experiment π from the set Π. Therefore,
Sender’s problem is

maximize V (π)

subject to π ∈ Π.
(3)

This problem reduces to standard Bayesian persuasion if every experiment is feasible,
i.e., Π = Π0.
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With garbling Sender faces two choices: (i) which experiment to select, and (ii)
how to garble the chosen experiment. A garbling is a J × J stochastic matrix G. If
signal sj is realized in the chosen experiment, then the distribution of the garbled
signal is given by the j-th row of G.

Let � denote Blackwell’s (1951) informativeness order over experiments. For any
experiments π, π′ in Π0, we have π � π′ if and only if there exists a garbling matrix
G such that πG = π′. For any experiment π in Π0, the upper set ↑ π and lower set
↓ π are given by

↑ π = {ψ ∈ Π0 : ψ � π}, ↓ π = {ψ ∈ Π0 : ψ � π}.

If Sender chooses a primitive experiment π from Π, then garbling allows her to gen-
erate any synthetic experiment in the lower set ↓ π. Let ↓Π =

⋃
π∈Π ↓ π. This set

contains every experiment that is Blackwell dominated by some experiment in the
feasible set Π. Sender’s problem is

maximize V (π)

subject to π ∈ ↓Π.
(4)

This setting reduces to Bayesian persuasion if ↓Π = Π0. This equality holds if and
only if the feasible set Π contains an experiment that fully reveals the state. In this
garbling regime, we are implicitly applying the revelation principle to the set ↓Π

rather than the set Π.3

Theorem 1 (Existence)
Each problem (3) and (4) has a solution.

When Receiver is indifferent between actions, he chooses the action preferred by
Sender. This tie-breaking assumption ensures that V is upper semicontinuous. The

3 In the no-garbling regime, the restriction to experiments with at most |A| signal realizations is
without loss by the standard revelation principle. In the garbling regime, we apply the revelation
principle to the set ↓Π rather than the set Π. Consider any primitive set Π of experiments with
arbitrarily many signal realizations. This primitive set induces a set ↓Π of synthetic experiments,
also with arbitrarily many signal realizations. By the revelation principle, we can replace ↓Π with
a set of synthetic experiments rev ↓Π such that experiments in rev ↓Π each have at most |A| signal
realizations and the set of outcome distributions that Sender can induce is the same under ↓Π
and rev ↓Π. We must apply the revelation principle after including the garblings since it is not
necessarily true that rev ↓Π = ↓ rev Π.
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space Π0 of all experiments is compact. By assumption, Π is closed, and the proof
amounts to checking that ↓Π is closed as well.

3 Binary persuasion: A geometric approach

We illustrate our setting through KG’s leading binary example of a prosecutor per-
suading a judge to convict a defendant. There are two states: ω0 (innocent) and ω1

(guilty). Receiver (judge) has two actions: a0 (acquit) and a1 (convict). Receiver gets
utility 1 from the right decision and utility 0 from the wrong decision. He convicts
if he believes the defendant is more likely to be guilty than innocent. Sender (pros-
ecutor) wants the defendant to be convicted. She gets utility 1 from conviction and
0 from acquittal, regardless of the state. The common prior is that the defendant is
guilty with probability 0.3. In this binary setting we identify every belief with the
probability of ω1 (guilty), so p = 0.3.

3.1 Experiments and induced beliefs

There are two actions and two states, so we restrict attention to experiments with
J = 2 realizations. An experiment with two realizations, s0 and s1, is characterized by
the probability of realization s1 in each state. Denote by π0 and π1 the probabilities
of realization s1 in state ω0 and state ω1, respectively.4 Without loss, we assume
π1 ≥ π0; otherwise, swap the labels of the two signal realizations. In (π0, π1)-space,
the set of experiments is the subset of the unit square on or above the 45-degree line.5

This region is shaded in the top left panel of Figure 1. In the language of simple
hypothesis testing, if state ω0 is interpreted as the null hypothesis, state ω1 is the
alternative hypothesis, and signal s1 is rejecting the null, then the experiments are
parameterized by the significance level π0 = α and the power π1 = 1− β.

In this binary setting, Bayesian updating can be expressed cleanly in terms of the
likelihood ratio between state ω1 and ω0. The likelihood ratios after signal realizations

4In the notation of the general setting, the vector (π0, π1) is column π1 of the 2 × 2 stochastic
matrix π.

5In their survey, Bergemann and Morris (2019) represent the space of outcome rules in a similar
way.
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Figure 1. Top: Space of experiments (left) and induced beliefs (right). Bottom: Blackwell
upper and lower sets for experiment π (left) and induced beliefs (right).
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s1 and s0 are given by6

`1 =
p

1− p
· π1

π0

, `0 =
p

1− p
· 1− π1

1− π0

. (5)

Since π1 ≥ π0, we have
`1 ≥

p

1− p
≥ `0.

Signal s1 is evidence weakly in favor of state ω1, while signal s0 is evidence weakly
against state ω1.

In Figure 1, the top left panel shows the set of experiments and the top right panel
shows the posteriors induced by a few highlighted experiments, for the fixed prior p =

0.3. In an experiment π, signal s1 is realized with ex ante probability pπ1 + (1− p)π0.
The two dashed lines are level curves of this expression. For experiments (π0, π1)

along any fixed line through the origin, the ratio π1/π0 is constant and equal to the
slope of the line.7

We highlight three lines in particular. The black line has slope 1. Experiments
along this line are uninformative and do not move Receiver’s belief away from the
prior p, as indicated in the bottom interval of the right panel. The blue line has slope
(1 − p)/p = 7/3. For any experiment along this line, signal realization s1 induces
posterior q = 0.5, denoted by the blue circle. On this line, the triangle (square)
experiment splits the prior between the posterior q = 0.5 and a posterior q below
p that is denoted by a blue triangle (square). The orange line is vertical. For any
experiment along this line, signal realization s1 induces posterior q = 1, denoted by
the orange circle.8 On this line, the triangle (square) experiment splits the prior
between the posterior q = 1 and a posterior q below p that is denoted by the orange
triangle (square).

In Figure 1, the bottom panels illustrate the Blackwell order on the space of
experiments. The Blackwell order is independent of the prior p. For the indicated
experiment π, the upper set ↑ π is shaded orange and the lower set ↓ π is shaded blue.
Any experiment in the upper set can be garbled into π; any experiment in the lower
set is a garbling of π. The boundaries of the upper and lower sets are formed by two

6The beliefs can be expressed in terms of the likelihood ratios: qj(π) =
(

1
1+`j

,
`j

1+`j

)
for j = 0, 1.

7Similarly, along any line through the upper right endpoint (1, 1), the ratio (1− π1)/(1− π0) is
constant and equal to the inverse of the slope.

8Similarly, for experiments in the upper line (π1 = 1), the signal realization s0 indicates that the
state is ω0 with certainty.
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lines—line L passing through (0, 0) and line R passing through (1, 1). For experiments
ψ above line L, signal s1 induces a stronger belief in state 1 under experiment ψ than
under π. For experiments ψ above line R, signal s0 induces a stronger belief in state
0 under experiment ψ than under π. Each experiment above both lines Blackwell
dominates π; each experiment below both lines is Blackwell dominated by π. The
experiments that lie above one line and below the other are not Blackwell comparable
with π.

The right panel shows the corresponding posterior splittings induced by the ex-
periments. The top line segment illustrates the splitting from a Blackwell dominating
experiment (orange square) and a Blackwell dominated experiment (blue triangle).
The middle line segment shows the splitting from the green diamond experiment,
and the bottom line segment shows the splitting from the pink pentagon experiment.
Both the green diamond and pink pentagon experiments lie on the curve in the left
panel, which traces out experiments that have the same mutual information with the
state as does experiment π.9

3.2 Preferences over experiments

Each experiment determines Receiver’s posterior beliefs, which in turn determine
Receiver’s actions, and hence the payoffs for Sender (and Receiver). By composing
these effects, we obtain Sender’s (and Receiver’s) indirect preferences over experi-
ments. From the likelihood ratios in (5), we see that under experiment π, signal
realization s1 induces Receiver to choose action a1 if and only if

π1

π0

≥ 1− p
p

. (6)

Sender’s indirect utility function is

V (π) =

pπ1 + (1− p)π0 if pπ1 ≥ (1− p)π0,

0 otherwise.

9For each experiment ψ along this curve, we have EH(q(π)) = EH(q(ψ)), were q(π) denotes
the random posterior that takes value qj(π) with probability q̄j(π), and H denotes the Shannon
entropy:

H(q0, . . . , qI−1) =
∑
i

−qi log(qi),

with log denoting the natural logarithm.
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Figure 2. Indifference curves over experiments for Sender (left) and Receiver (right)

Receiver’s indirect utility function is

U(π) =

pπ1 + (1− p)(1− π0) if pπ1 ≥ (1− p)π0,

1− p otherwise.

In general, these indirect utility functions are piecewise linear, with each piece defined
by the vector of Receiver’s chosen actions,

(
â(q0(π)), . . . , â(qJ−1(π))

)
.

Figure 2 (left) plots the level curves of this function V , with prior p = 0.3. Below
the line with slope (1− p)/p = 7/3 is a thick indifference set, shaded in gray. Experi-
ments in this region do not change Receiver’s action. Above this line, Sender’s utility
V is linear. The indifference curves are parallel lines with slope −(1− p)/p = −7/3,
with utility increasing towards the northeast. Figure 2 (right) plots the level curves
of the function U , with prior p = 0.3. Again, there is a thick indifference set below
the line of slope 7/3. Above this line, indifference curves are parallel lines with utility
increasing towards the perfectly revealing experiment (0, 1).

3.3 Optimality conditions

In terms of our formulation, standard BP maximizes Sender’s utility V over the entire
set of experiments. In Figure 2 (left), we can immediately read off the BP optimum
as the orange point (p/(1 − p), 1) = (3/7, 1). This experiment always recommends
conviction if the defendant is guilty and recommends conviction with probability
p/(1 − p) = 3/7 if the defendant is innocent. The total probability of conviction is
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therefore
(1− p)

(
p

1− p

)
+ p = 2p = 0.6.

The general expressions in terms of p remains correct for any p < 1/2.
In Figure 2 (left), we indicate in blue the two necessary conditions for optimality

from KG.

1. Certainty condition. Receiver is certain of the state whenever he takes Sender’s
worst action (KG, Proposition 4). Experiments satisfying this condition lie on
the horizontal blue line defined by π1 = 1. If the certainty condition is violated,
Sender can get strictly higher payoffs by shifting the experiment upward, that
is, recommending conviction slightly more often when the defendant is guilty.
This increases the probability of the conviction signal and makes Receiver more
confident in the defendant’s guilt upon seeing that signal.

2. Indifference condition. Receiver is indifferent between multiple actions whenever
he takes Sender’s preferred action (KG, Proposition 5). Experiments satisfying
this condition lie on the blue line with slope 7/3. If this indifference condition
is violated, Sender can get strictly higher payoffs by shifting the experiment
slightly to the right, that is, recommending conviction slightly more often when
the defendant is innocent. This increases the probability of the conviction signal
without changing Receiver’s willingness to convict upon receiving the signal.

The unique intersection of these two lines is the BP solution (3/7, 1).

4 Optimal experimental persuasion

In this section, we describe optimal experimental persuasion with and without gar-
bling.

4.1 No garbling

With no garbling, Sender maximizes her utility function V over the set Π of feasible
experiments. The feasible set Π is not assumed to have any special structure (besides
closedness), so we cannot hope to obtain a sharp characterization of the optimum.

As a running example, consider the binary environment from Section 3, now with
the feasible set Π = {A,A′, B, C,D}. This set is shown in Figure 3 (left) along
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Figure 3. Optimal persuasion without garbling (left) and with garbling (right)

with the indifference curves of Sender’s indirect utility function. Experiments B
and C lie below the indifference line, so they do not change Sender’s default action.
Experiments A, A′, and D change Sender’s action after realization s1. The optimal
experiment is A′, which is highlighted in orange in the left panel. Experiment A′

violates both the indifference condition and the certainty condition. The improving
perturbations described in Section 3.3 are not feasible within the set Π.

Experiment A′ is Blackwell dominated by experiment A, yet experiment A′ gives
Sender higher utility. Here, A and A′ have the same value of π1, but experiment A′

would still give higher utility if it were slightly perturbed.

4.2 With garbling

Figure 3 (right) shows the same primitive set Π = {A,A′, B, C,D} together with the
set ↓Π of feasible synthetic experiments, shaded in gray. The Blackwell undominated
experiments are A, B, and D. The dominated experiments A′ and C do not affect
the set ↓Π. The garbling solution is to perform the primitive experiment A and then
garble the result to generate the synthetic experiment S. In the garbling regime,
there is no loss of generality in removing all Blackwell dominated experiments. Any
garbling of a Blackwell dominated experiment can be replicated by a suitable garbling
of a Blackwell dominating experiment.

Throughout our analysis, the state space is fixed. Kamenica and Gentzkow (2011,
p. 2598) explain that the state can be redefined as the outcome of an experiment:

[I]t may seem restrictive to assume that Sender can generate signals that
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are arbitrarily informative. This assumption, however, is innocuous under
an appropriate interpretation of the state ω. We can define ω to be the
realization of the most informative signal Sender can generate. Then, his
choice of π is equivalent to a choice of how much to garble information
that is potentially available. [emphasis added]

This redefinition assumes that there exists a most informative experiment. Of course,
if all the feasible experiments can be performed simultaneously, then there is neces-
sarily a most informative (compound) experiment. But as long as there is some
constraint on Sender’s time or resources, there will likely be multiple Blackwell un-
dominated experiments.10

Without a most informative experiment, Sender’s domain of optimization is not
necessarily convex, as is clear in Figure 3 (right). The next result gives an essential
equivalence in the 2 by 2 setting.11

Theorem 2 (Convexity)
Suppose I = J = 2. If the set Π has a most informative experiment, then ↓Π is
convex. If the set Π does not have a most informative experiment and Π is finite,
then ↓Π is not convex.

To understand the structure of optimal persuasion with garbling, we seek necessary
conditions for optimality. We could observe that the optimum is the solution to an
auxiliary BP problem in which the state is redefined as the realization of a particular
primitive experiment. But then the hypotheses and conclusions would be stated
in terms of the redefined state space. The interpretation would depend on which
primitive experiment was performed to achieve the optimal synthetic experiment.
Instead, we provide a characterization in terms of the true state space.

To state the characterization result, we need a few definitions. Sender’s ordinal
preferences are state-independent if for all actions a and a′ and states ω and ω′, we
have

v(a, ω) ≥ v(a′, ω) ⇐⇒ v(a, ω′) ≥ v(a′, ω′).

10An alternative approach would be to define a sequence of auxiliary persuasion problems, one for
each Blackwell undominated experiment. We could solve each problem separately and then compare
the values of the solutions. This approach becomes unwieldy if the Blackwell frontier has many
experiments, and it would not provide graphical intuition for the main persuasion problem.

11Beyond the 2 by 2 setting, there is no canonical way to order the signal realizations, so mixtures
of experiments are difficult to interpret.
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If Sender’s ordinal preferences are state-independent, then we can refer to better and
worse actions for Sender, without reference to the state. Receiver’s default action is
his action â(p) at the prior p. An action a is induced by an experiment π if there
exists j with q̄j(π) > 0 such that â(qj(π)) = a.

Theorem 3 (Indifference condition)
Suppose that Sender’s ordinal preferences are state-independent and that Receiver
does not take a best action by default. Under experimental persuasion with garbling,
after each signal realization, Receiver either (i) takes the worst action among all the
induced actions, or (ii) is indifferent between multiple actions.

If no signal realization from any experiment in Π makes Receiver indifferent be-
tween multiple actions, then Theorem 3 implies that optimal persuasion must involve
nontrivial garbling.

The conditions of Theorem 3 hold in the leading binary example of the prosecutor
and the judge. Therefore, under optimal persuasion Receiver must be indifferent
when he convicts the defendant. By contrast, the certainty condition does not hold,
as can be seen in Figure 3. Whenever Receiver acquits, however, he is certain of the
realization of the primitive experiment.

5 Applications and discussion

In this section, we discuss social welfare and the broader applicability of our frame-
work. Section 5.1 compares social welfare under BP and EP, noting the effect of
redefining the state. Section 5.2 considers two different microfoundations for the fea-
sible set—Brownian observations and a cost constraint. Section 5.3 shows how our
framework can accommodate non-Bayesian belief updating.

5.1 Welfare

We discuss the welfare implications of our analysis in the leading binary example.
When the state is ω1 (guilty), both Sender and Receiver prefer a1 (convict), so there
is no conflict of interest. When the state is ω0 (innocent), Sender prefers a1 (convict)
and Receiver prefers a0 (acquit), so the social planner’s preferred action is determined
by which player gets a higher Pareto weight.
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Figure 4. Pareto frontier in BP (orange) and EP (blue)

Figure 4.I shows the Pareto frontier in two different settings. Under BP, when all
experiments are available, the Pareto frontier is the orange segment connecting the
fully informative experiment (FI) to the BP optimum. In every experiment on the
Pareto frontier, action a1 is taken in state ω1. If a social planner maximizes a social
welfare function, then the optimum will be FI if Receiver gets more weight and BP
if Sender gets more weight. The entire Pareto frontier is socially optimal if the two
players get the same weight

Next, consider experimental persuasion (EP) with garbling when there is one
primitive experiment, A. The Pareto frontier for this regime is shaded in blue. The
EP optimum, which is a garbling of A, is second-best efficient, but it is not first-best
efficient because πEP

1 < 1. Redefining the state, as proposed by KG, could obscure
this sense of inefficiency, which reflects what would be feasible if more experiments
became available. In this binary setting, any first-best efficient experiment can be
garbled into the BP optimum. Therefore, if the EP optimum differs from the BP
optimum, then the EP optimum is not first-best efficient.

Figure 4.II shows experimental persuasion with garbling when there are two prim-
itive experiments, A and B. The Pareto frontier for this regime, shaded in blue, is
the union of two line segments. One segment consists of garblings of B.12 The other
segment consists of garblings of A and it contains the optimum EP. The dashed lines
are indifference curves for Receiver. The most preferred experiment for Receiver is

12This segment does not include the right endpoint. Relative to this endpoint, experiment A
makes Sender strictly better off and keeps Receiver indifferent.
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Figure 5. Feasible sets for Brownian motion (left) and cost constraint (right)

B and for Sender is EP. Moving along the Pareto frontier from B in the southwest
to EP in the northeast, Sender’s utility increases while Receiver’s utility decreases.
This example illustrates that under EP, the Pareto frontier may depend on primitive
experiments such as B that are not used at the EP optimum.

5.2 Microfoundations for the feasible set

We have taken the feasible set of experiments as a primitive. We can use the same
approach, however, in any persuasion problem once we derive the set of feasible
experiments. We consider two leading examples.

Brownian motion Consider the binary environment from Section 3, but now sup-
pose that Receiver observes a diffusion process

Xt = µt+ σWt,

where Wt is a standard Brownian motion; the volatility parameter σ is strictly posi-
tive; and the drift µ equals +1 and −1 in states ω1 and ω0, respectively.13 If Receiver
observes this process at different times, his belief is determined by the the last real-
ization he observes, say Xt. Receiver updates his likelihood ratio to ϕ(Xt)p/(1− p),

13This monitoring process is considered in Henry and Ottaviani (2019) and Morris and Strack
(2019).
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where
ϕ(Xt) = exp(2Xt/σ

2).

In particular, if Xt = 0, Receiver’s beliefs are unchanged. If Xt is positive (negative),
Receiver updates his beliefs in the direction of state ω1 (ω0).

First, suppose Receiver observes the full path of the process until time t. The
random variable Xt can take infinitely many values, but we need only keep track of
Receiver’s induced action. Therefore, this monitoring structure induces an experiment
π̄t = (π̄t0, π̄

t
1), where π̄ti denotes the probability that Receiver takes action a1 in state

ωi. Letting Pi denote the law of the process in state ωi, we have

π̄ti = Pi(ϕ(Xt) ≥ (1− p)/p),

for i = 0, 1. Figure 5 (left) plots the curve t 7→ π̄t (with σ = 1), which ranges from
the trivial experiment (0, 0) at t = 0 to the fully informative experiment (0, 1) in the
limit as t → ∞. Of course, Receiver’s payoff from π̄t is increasing in t. It can be
shown that Sender’s payoff is also increasing in t.14

If Sender can stop the process at any time, then it is optimal for Sender to stop the
process as soon as Receiver is willing to choose action a1, which is Sender’s preferred
action. If Sender follows this policy, then at time t, the resulting experiment π̂t is
given by

π̂ti = Pi (maxs≤t ϕ(Xt) ≥ (1− p)/p) ,

for i = 0, 1. Figure 5 (left) plots the curve t 7→ π̂t (with σ = 1), which ranges from
the trivial experiment (0, 0) at t = 0 to the BP solution ((1− p)/p, 1) as t→∞. The
time-1 experiments π̂1 and π1 are indicated on the graph. Sender prefers π̂1 to π̄1.

The limiting experiments π̄∞ and π̂∞ are special cases of a general family of exper-
iments induced by observing the process {Xt} until it hits one of two thresholds—a
lower threshold

¯
x in [−∞, 0] and an upper threshold x̄ in [0,∞]. In particular, π̂∞

corresponds to no finite thresholds, i.e.,
¯
x = −∞ and x̄ = ∞. The experiment π̂∞

corresponds to
¯
x = −∞ and x̄ = (σ2/2) log((1−p)/p), which is precisely the BP solu-

14Letting αp = (1− p)/p, it can be shown that

d

dt
V (π̄t) =

pσ
√
αp

(2t
√
π)3/2

logαp exp

{
− t

2σ2
− σ2

8t
log2 αp

}
> 0.
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tion. Henry and Ottaviani (2019) observe that in their setting with costly Brownian
observations, the solution converges to the BP solution as the costs vanish.

In general, if x̄ < (σ2/2) log((1 − p)/p), then the process will stop before Xt

is high enough to convince Receiver to take action a1. This policy corresponds to
the experiment (0, 0) and is clearly suboptimal. For x̄ ≥ (σ2/2) log((1 − p)/p), the
resulting experiment π̄∞(

¯
x, x̄) is given by

π̄∞(
¯
x, x̄) =

(
1− e2

¯
x/σ2

e2x̄/σ2 − e2
¯
x/σ2 ,

e−2
¯
x/σ2 − 1

e−2
¯
x/σ2 − e−2x̄/σ2

)
,

which can be computed from standard formulas for Brownian hitting times.15

With only a single threshold, we have

π∞(−∞, x̄) = (e−2x̄/σ2

, 1), π∞(
¯
x,∞) = (0, 1− e2

¯
x/σ2

).

With no lower threshold, the action a1 is always taken in state ω1, so the exper-
iment lies along the top horizontal line (shaded in orange), which is precisely the
BP Pareto frontier as shown in Section 5.1. As x̄ increases from the critical value
(σ2/2) log((1− p)/p), the experiment moves from the BP solution to the fully infor-
mative experiment. With no upper threshold, the action a1 is never taken in state
ω0, so the experiment lies along the vertical line (shaded in orange). As

¯
x decreases

from 0 to −∞, the experiment moves from the trivial experiment (0, 0) to the fully
informative experiment.

While experiments on the north and west boundaries have at most one finite
threshold, experiments in the interior have both thresholds finite. In fact, each such
experiment (π0, π1) is induced by a Brownian motion with thresholds (

¯
x, x̄) through

the formula
(
¯
x, x̄) =

σ2

2

(
log

1− π1

1− π0

, log
π1

π0

)
.

The upper threshold x̄ determines Receiver’s belief when taking action a1, which is
captured by the slope of the line from the bottom left corner (0, 0) to π. Conversely,
the lower threshold

¯
x determines Receiver’s belief when taking action a0, which is

captured by the slope of the line from π to the top right corner (1, 1).
15The solution applies the optional stopping theorem to the exponential martingale associated

with {Xt}.
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Figure 6. Sender’s indifference curves for costly experiments (left) and frequentist decisions
(right).

Cost constraint Suppose Sender must pay a cost c(π) to perform experiment π.
The feasible set for Sender consists of all experiments with cost at most c̄ , for some
given budget c̄. The shape of the cost function (and the size of the budget) then
determine the shape of the feasible set. With our experimental approach, it is natural
for the feasible set to be prior-independent, so we work with a prior-independent cost
function.

Consider the family of cost functions axiomatized in Pomatto et al. (2020), which
are prior-independent and have constant marginal cost. Figure 5 (right) plots three
level curves for the symmetric cost function from Pomatto et al. (2020) (i.e., β01 =

β10).16 For each budget c̄, the feasible experiments lie between the corresponding level
curve and the 45-degree line. As c̄ increases, the curves move towards the northwest.
In each case, Sender’s most preferred feasible experiment (indicated by a circle) lies
on the indifference line. These optimal experiments converge to the BP solution as
c̄→∞.
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5.3 More general preferences

The key object of our analysis is Sender’s indirect utility function over experiments,
V (π). We assumed that Sender’s utility depends only on Receiver’s action choices,
and that Receiver selects his actions by performing Bayesian updating. But our
approach allows for much more general preferences, as long as we can compute the
indirect utility function V (π). In order to focus on alternative preference structures,
we assume in this section that all experiments are feasible.

First, suppose that experiments are costly.17 Figure 6 (left) shows Sender’s indif-
ference curves if each experiment π entails a mutual information cost

c(π) = 3[H(p)− EH(q(π))].

In this case, we define a new indirect (net) utility function V̄ (π) = V (π)− c(π). The
indifference curves are plotted in black, only for experiments that change Receiver’s
action. Dashed lines indicate how these curves would extend continuously, if it were
not for the discontinuity in Sender’s preferences along the indifference line. The
optimal experiment is indicated by the blue circle. This experiment satisfies the
indifference condition, but it is less costly than the BP solution.

Next, suppose experiments are costless but Receiver uses a frequentist decision
rule. This assumption captures the drug approval process, as follows. Sender is a
pharmaceutical company and Receiver is the FDA. The states are ω0 (ineffective
drug) and ω1 (effective drug), and the actions are a0 (reject) and a1 (approve). An
experiment (clinical trial) is defined by its significance π0 and power π1. In this case,
it is more convenient to relabel the signal realizations so that π0 ≤ 1/2. This way, the
set of experiments is represented as the left half of the unit square.18 The FDA’s policy
for regulating clinical trials is based only on significance, not power (Isakov et al.,

16In the special binary case, this cost function can be expressed as

C(π0, π1) = (π0 − π1)

[
log

π0
π1
− log

1− π0
1− π1

]
.

17Gentzkow and Kamenica (2014) also study costly persuasion. Since they assume an unrestricted
feasible set (and use a posterior-separable cot function), they are able to adapt their concavification
approach.

18Sender’s utility is still defined for the entire unit square, but much of the square is redundant,
provided that Receiver’s decision rule is invariant to relabeling the signal realizations. It suffices to
plot Sender’s preferences over a subset S of [0, 1]2 with the property that [0, 1]2 = S ∪ (1− S).
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2019). Pharmaceutical companies want their drugs to be approved and understand
this FDA policy. Moreover, they have flexibility in designing the experiment, through
the sample size or stopping criterion (Schulz and Grimes, 2005).

Figure 6 (right) shows Sender’s indirect utility function in this setting. The vertical
line is given by π0 = α, where α is the FDA’s significance threshold. An experiment
π with π0 > α will not be considered for approval, so the region to the right of
this vertical line is a thick indifference set. Experiments left of this vertical line will
be considered for approval. Sender’s payoff is the ex ante probability that the null
of ineffectiveness is rejected. The indifference curves are parallel lines, with utility
increasing to the northeast. The optimal experiment for Sender is (α, 1), indicated
by the circle.

Compare Sender’s indifference curves for a non-Bayesian FDA in Figure 6 (right)
with Sender’s indifference curves with a Bayesian receiver in Figure 2 (left). Since
Sender is Bayesian in both cases, her preferences are piecewise linear. For all exper-
iments on a fixed line through the origin, a Bayesian Receiver must take the same
action after seeing s1. This property can fail for a frequentist receiver. In Figure 6,
for example, every line through the origin will cross the significance threshold.

The tension between frequentist and Bayesian approaches to drug approval has
spawned a heated policy debate. Isakov et al. (2019) argue that different diseases
and therapies require different trade-offs between type-I and type-II error. The FDA
does have some leeway to incorporate these considerations. Recently, the FDA offered
“accelerated approval” to Biogen’s Alzheimer’s drug Aduhelm, despite weak clinical
evidence, because of the severity of Alzheimer’s and the absence of alternative treat-
ments (Belluck and Robbins, 2021). Our results can shed light on this debate by
formalizing the trade-offs presented by firms’ strategic responses to the FDA’s drug
approval criteria.
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A Proofs

A.1 Proof of Theorem 1

First we prove that V is upper semicontinuous. Denote the mixed extension of v to
A×∆(Ω) by the same symbol v, and use analogous notation for u. We have

V (π) =
∑
i,j

piπijv(â(qj(π)), ωi)

=
∑
j

q̄j(π) max
a∈a∗(qj(π))

v(a, qj(π)).

The belief qj(π) is defined only if q̄j(π) 6= 0, but the terms with q̄j(π) = 0 vanish
anyway, so we can formally define the summation over realizations sj with q̄j(π) 6= 0.
The functions (a, q) 7→ v(a, q) and (a, q) 7→ u(a, q) are both continuous. By Berge’s
theorem, the correspondence q 7→ a∗(q) is upper hemicontinuous, and hence the
function q 7→ maxa∈a∗(q) v(a, q) is upper semicontinuous. Fix π such that q̄j(π) > 0 for
all j. Since the map π 7→ qj(π) is continuous, the entire sum is upper semicontinuous
at π. To complete the proof, observe that if q̄j(π) = 0 for some j, then we can restrict
the summation to those j for which q̄j(π) is positive and repeat the argument. For
any sequence πn converging to π, the contribution of the excluded terms converges
to 0 in the limit (since v is bounded).

The set Π0 of all experiments is compact, so it suffices to check that the feasible
set is closed. In the no-garbling regime, this is immediate by assumption. For the
garbling regime, it remains to check that ↓Π is also closed. Consider a sequence of
experiments πn in ↓Π that converges to some experiment π in Π0. For each n, write
πn = π̄nGn for some π̄n in Π and some garbling matrix Gn. Since Π and the space
of garblings are both compact, we can find a convergent subsequence (π̄nk , Gnk) of
(π̄n, Gn). Denote the limit by (π̄, G). Since matrix multiplication is jointly continuous,

π = lim
k→∞

π̄nkGnk = π̂G,

Hence π is in ↓Π.
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A.2 Proof of Theorem 2

First, suppose that Π has a most informative experiment π̂. Then ↓Π = ↓ π̂. This
set is convex because the space of garbling matrices is convex. (This direction of the
theorem holds for arbitrary I and J .)

For the converse, suppose I = J = 2. Suppose that Π is finite and Π does not have
a most informative experiment. Then there exist two experiments π and π′ that are
Blackwell undominated and Blackwell incomparable. Consider the open line segment
(π, π′) connecting π and π′. We claim that ↓ π ∩ (π, π′) and ↓ π′ ∩ (π, π′) are both
empty.

Now we complete the proof, assuming the claim. We have

(π, π′) ∩ ↓Π =
⋃
π′′∈Π

(π, π′) ∩ ↓ π′′ =
⋃
π′′∈Π
π′′ 6=π,π′

[π, π′] ∩ ↓ π′′,

where the second equality follows from the claim. The right side is a closed set, being
a finite union of closed sets, so it cannot equal (π, π′). Therefore, ↓Π is not convex.

Now we prove the claim. By symmetry, it suffices to prove that ↓ π ∩ (π, π′)

is empty. Suppose for a contradiction that there exists λ ∈ (0, 1) such that π �
λπ + (1− λ)π′. It is clear geometrically (and straightforward to check algebraically)
that in the 2 by 2 setting, we have π � ψ if and only if ψ can be expressed as a convex
combination of the three experiments 0 = (0, 0), 1 = (1, 1), and π. Therefore, there
exist nonegative α and β with α + β ≤ 1 such that

λπ + (1− λ)π′ = α0 + β1 + (1− α− β)π.

Solving for π′ we have

π′ =
α

1− λ
0 +

β

1− λ
1 +

1− α− β − λ
1− λ

π. (7)

The coefficients on the right side sum to 1, but we must check that they are nonneg-
ative. By our signal-labeling convention, π′1 ≥ π′0 and π1 ≥ π0. Since π′ and π are
undominated, both inequalities must be strict. Therefore, the last coefficient in (7)
must be positive, and we conclude that π � π′, which is a contradiction.
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A.3 Proof of Theorem 3

Let π in ↓ Π be an optimal experiment in the garbling regime. Write π = π̄G for
some primitive experiment π̄ in Π and some garbling matrix G. To simplify notation,
write aj = â(qj(π)) for each j.

Suppose for a contradiction that for some j with q̄j(π) > 0, action aj is not
the worst among the induced actions and Receiver is not indifferent between mul-
tiple actions after signal sj. Then there exists j′ with q̄j′(π) > 0 such that Sender
strictly prefers aj to aj′ . Fix ε in (0, 1) and consider the garbling matrix G′ =

id +ε(ej′j − ej′j′).19 Set π′ = πG′ = π̄(GG′). Since GG′ is a garbling matrix, we
know π′ is in ↓ π. For all ε sufficiently small, this modification leaves the Receiver’s
best response unchanged, and shifts positive probability from action aj′ to action aj,
strictly increasing Sender’s utility, contrary to the optimality of π.

19Here, eij denotes the standard basis J × J matrix with (i, j)-element equal to 1 and all others
equal to 0.
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