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Abstract

We analyze nonlinear pricing with finite information. We consider a multi-product

environment where each buyer has preferences over a d-dimensional variety of goods.

The seller is limited to offering a finite number n of d-dimensional choices. The limited

menu reflects a finite communication capacity between the buyer and seller.

We identify necessary conditions that the optimal finite menu must satisfy, for either

the socially effi cient or the revenue-maximizing mechanism. These conditions require

that information be bundled, or “quantized,”optimally.

We introduce vector quantization and establish that the losses due to finite menus

converge to zero at a rate of 1/n2/d. In the canonical model with one-dimensional

products and preferences, this establishes that the loss resulting from using the n-item

menu converges to zero at a rate proportional to 1/n2.
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1 Introduction

The theory of mechanism design addresses a wide set of questions, ranging from the design

of markets and exchanges to the design of constitutions and political institutions. A central

result in the theory of mechanism design is the “revelation principle,”which establishes that

if an allocation can be implemented incentive-compatible in any mechanism, then it can

be truthfully implemented in the direct revelation mechanism, whereby every agent reports

his private information, or type, truthfully. Yet, when the amount of private information

(the type space) of the agents is large, the direct revelation mechanism requires both the

agents to have abundant capacity to communicate with the principal and the principal to

have abundant capacity to process information. By contrast, the objective of this paper is

to study the performance of optimal mechanisms, when the agents can communicate only

limited information, and/or the principal can process only limited information. We pursue

our analysis in the context of a representative, but suitably tractable, mechanism design

environment: namely, the canonical problem of nonlinear pricing. Here, the principal (seller)

is offering a variety of choices to the agent (buyer), who has private information about his

own willingness-to-pay (preference or type) for the product.

Our distinct point of view, relative to the seminal analysis by Mussa and Rosen (1978) and

Maskin and Riley (1984), is that the information conveyed by the agents, and subsequently

the menu of possible choices offered by the seller, is finite, rather than uncountable as in the

earlier analysis. The limits to information may arise for various reasons, direct or indirect.

On the demand side, it may be too diffi cult or complex for the buyer, or consumer, to

communicate his exact preferences and resulting willingness-to-pay to the seller. On the

supply side, it may be too time-consuming for the seller to process the fine details of the

buyer’s preferences, or to identify the buyer’s preferences across many goods with close

attributes and only subtle differences.

Our analysis adopts a linear-quadratic specification (analogous to that of Mussa and

Rosen (1978) and Maskin and Riley (1984)) in which the buyer’s gross utility is the product

of his willingness-to-pay (or type) θ and the consumed quantity (or quality) q of the prod-

uct, whereas the cost of production is quadratic in the quantity (or quality). We reveal a

fundamental connection between the problem of optimal nonlinear pricing with limited in-

formation and the problem of optimally quantizing a source signal by using a finite number

of representation levels in information theory. In our setting, the socially effi cient quantity
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(quality) q for a buyer should be equated to his valuation θ if a continuum of choices were

available. In the case where a finite number of choices are accessible, q can take on only a

finite number of values. If we interpret θ as the source signal and q as the representation

level, then the total social welfare can be written in terms of the mean square error between

the source signal and the representation signal. Thus, the social welfare maximization prob-

lem can be characterized by the Lloyd-Max optimality conditions, a well-established result

in the theory of quantization. Furthermore, we can extend this analysis to the revenue max-

imization problem after replacing the buyer’s true valuation with the corresponding virtual

valuation. We estimate the welfare and revenue loss resulting from the use of a finite n-item

menu (relative to the continuum menu). In particular, we characterize the rate of conver-

gence for the welfare and revenue loss as a function of n. First, we examine this problem for

a given distribution on the buyer’s type, and then over all possible type distributions with

finite support.

We establish that the maximum welfare loss and the maximum revenue loss shrink to-

wards zero at a rate proportional to 1/n2. We thus use quantization theory to approach a

problem of mechanism design with limited information transmission.

Our approach extends naturally via vector quantization to the multidimensional non-

linear pricing problem. Here, the seller is offering a variety of heterogeneous products to

the buyer, who has private information about his preferences (types) for these products.

We maintain a linear-quadratic specification in multiple dimensions as in Armstrong (1996).

The advantage of the linear-quadratic model in one or many dimensions is its tractabil-

ity. In particular, we can frequently compute the lower and upper bounds explicitly. We

briefly discuss in the Conclusion how existing results in information theory would allow us to

provide results for general non-linear environments as long as certain regularity conditions,

such as concavity or convexity of the optimization program are maintained. In the multi-

dimensional environment we require an additional separability condition regarding the type

distribution. This condition was introduced earlier by Armstrong (1996) to guarantee the

incentive-compatibility of the menu in the continuous multi-dimensional setting.

We interpret the private information (the preference or type vector) as the signal vector

and the choice (quantity or quality vector) as the representation vector. The social wel-

fare maximization problem and the revenue maximization problem can still be characterized

by the Lloyd-Max optimality conditions for vector quantization. We estimate the welfare
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and revenue loss resulting from the use of a d-dimensional finite menu with n choices. We

establish an upper bound on the welfare loss by appealing to decomposition result, see

Lookabaugh and Gray (1989a). The upper bound uses subtle vector quantization methods

to design the multi-product finite menus over the entire type space. The gain from vector

quantization consists of three components: space-filling advantage, shape advantage, and

dependence advantage. Most notably, even in the extreme case when the types are distrib-

uted independently and uniformly across all dimensions, the vector quantization method can

still reduce the welfare loss and the revenue loss due to the space-filling advantage. This

is the main reason why we bundle the buyer’s preferences over multiple goods as a vector

instead of viewing them separately as independent dimensions. We then establish the vector-

quantization-based upper bound and the lower bounds on the welfare loss and the revenue

loss.

The role of limited information in mechanism design has recently attracted increased

attention. McAfee (2002) phrases the priority rationing problem as a two-sided matching

problem (between the buyer and services) and shows that a binary priority contract (“coarse

matching”) can already achieve at least half of the social welfare that could be generated

by a continuum of priorities. Hoppe, Moldovanu, and Ozdenoren (2010) extend the match-

ing analysis and explicitly consider monetary transfers between the agents. In particular,

they present lower bounds on the revenue which can be achieved with specific, but not

necessarily optimal, binary contracts. By contrast, Madarasz and Prat (2017) suggest a spe-

cific allocation– the “profit-participation”mechanism– to establish approximation results,

rather than finite optimality results, in the nonlinear pricing environment. While the above

contributions are concerned with single agent environments, there have been a number of

contributions to multi-agent mechanisms– specifically single-item auctions among many bid-

ders. Blumrosen, Nisan, and Segal (2007) consider the effect of restricted communication in

auctions with either two agents or binary messages for every agent. Kos (2012) generalizes

the analysis by allowing for a finite number of messages and agents. In turn, their equi-

librium characterization in terms of partitions shares features with the optimal information

structures in auctions as derived by Bergemann and Pesendorfer (2007).

Closer to our approach is Wilson (1989), who considers the impact of a finite number of

priority classes on the effi cient rationing of services. His analysis is less concerned with the

optimal priority ranking for a given finite class and more with the approximation properties
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of the finite priority classes. Wilson (1989) shows that the social welfare loss due to the

use of a finite number of priority classes converges to zero at a rate no faster than 1/n2,

where n is the number of classes. The analysis in Wilson (1989), however, is limited to

one-dimensional social welfare maximization and is not easily generalizable to the multidi-

mensional social welfare maximization problem or the revenue maximization problem. The

latter problems have remained open in general. In earlier work, Bergemann, Shen, Xu, and

Yeh (2012a), (2012b), some of use introduced the quantization technique to analyze an envi-

ronment with limited information. Bergemann, Shen, Xu, and Yeh (2012a) focused entirely

on the one-dimensional environment to obtain upper and lower bounds on worst-case welfare

and revenue. Their main results had a gap between lower and upper bounds in either case.

In the current work, Proposition 2 and 3 eliminate the gap by making use of the high rate

quantization results. Bergemann, Shen, Xu, and Yeh (2012b) considers a multi-dimensional

environment with some additional restrictions. In particular, the analysis is restricted to wel-

fare maximization in the absence of incentive constraints. Using some foundational results

in information theory, this paper represents the first systematic and comprehensive solution

to these problems in many dimensions,

Even in the absence of communication constraints, the multidimensional mechanism de-

sign does not represent a trivial generalization of its one-dimensional counterpart. In many

environments of interest, the preferences of an individual agent cannot be summarized by a

mere scalar, but are more suitably represented as a vector. A real-life example would be a

buyer who has to make choices in a supermarket where a large variety of commodities are

available. Hence, designing a smart pricing strategy (e.g., product bundling by offering a

combination of several distinct products for joint sale, rather than selling each item sepa-

rately) is of first-order concern in practice. In this respect, Wilson (1993) and Armstrong

(1996) provide two notable early contributions, with explicit solutions to specific multi-

dimensional screening problems. Rochet and Chone (1998) develop a systematic approach,

dubbed the dual approach, for a general class of environments, and pointed to the prevalence

of bunching (agents with different type profiles making the same choices). We refer readers

to Rochet and Stole (2003) for a detailed survey of multidimensional screening problems.

The rest of the paper is organized as follows. First, we introduce the basic nonlinear

pricing model in the following section. Then, in Section 3, we establish the link to the

quantization problem in information theory in the one-dimensional product space. Moreover,
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we introduce the Lloyd-Max conditions that the optimal finite menu must satisfy. In Section

4, we generalize our approach to the multi-product environment by using vector quantization.

In Section 5, we conclude with a brief summary and note some open issues for our future

research. The Appendix collects all proofs not presented in the main body of the paper.

2 Model

We consider a seller (she) who is providing d heterogeneous goods to a buyer (he) with a

continuum of possible preferences. Each buyer’s preferences over these goods is characterized

by a d-dimensional vector θ = (θ1, . . . , θd) ∈ Rd+, called the buyer’s type vector, where for
1 ≤ l ≤ d, θl represents his preference (type) for good l. Let Θ = [0, 1]d, where the unit

hypercube is without loss of generality as long as we consider a compact d-dimensional type

space. The joint probability distribution of θ, denoted by F (θ), is assumed to be commonly

known. We denote by Fl the marginal distribution function of type θl. We assume that the

joint density function f is continuous almost everywhere (a.e.) in the support (i.e., the type

space):

Θ =
{
θ ∈ Rd+ : f (θ) > 0

}
.

We further assume that the buyer’s preferences over d products, θ1, . . . , θd, are identically,

but not necessarily independently, distributed.

A buyer with type θ who receives a quantity (or quality) vector q = (q1, . . . , qd) ∈ Rd+
and makes a monetary payment t receives the following net utility:

U (θ, q, t) = θTΦq − t, (1)

where Φ =
(
φij
)
d×d is a d × d symmetric matrix which captures the interactions among

different goods. We assume that φii > 0 for all i.

The firm has a quadratic cost function for providing the vector q:

c (q) =
1

2
qTΣq. (2)

The matrix Σ = (σij)d×d is a d × d symmetric positive-definite matrix which characterizes
the interactions in the production cost of multiple products. All of its diagonal elements are

assumed to be positive: σii > 0 for all i. The seller’s profit is given by:

R (q, t) = t− c (q) = t− 1

2
qTΣq. (3)
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This setting, usually called the linear-quadratic model, has been used extensively in the

literature (see the seminal analysis of Mussa and Rosen (1978) for the one-dimensional case

and Armstrong (1996) for the multidimensional model). For the multidimensional model,

it is helpful to notice that we can always rewrite the above model by a standard change of

basis argument in the "standard form," with

Φ = Σ = Id, (4)

where Id is the d× d identity matrix (see Lemma 2 in the Appendix).

3 One-Dimensional Product Space

We begin the analysis with the one-dimensional version of the model; thus, d = 1. This will

allow us to introduce some key notions in the classic setting of nonlinear pricing, first analyzed

by Mussa and Rosen (1978). We begin with the social welfare maximization problem and

then proceed to the revenue maximization problem.

3.1 Welfare Maximization

In the presence of private information, the socially effi cient allocation can be implemented by

a direct mechanism (q (θ) , t (θ)). In the effi cient direct mechanism the buyer is offered a menu

{q (θ)}θ∈[0,1] in which type θ is allocated the quantity (quality) q (θ) against a (monetary)

transfer t (θ). An effi cient mechanism maximizes the expected social welfare as the sum of

the buyer’s net utility and the seller’s profit:

Eθ
[
θq (θ)− 1

2
q (θ)2

]
.

For a buyer with type θ, it is socially optimal to provide a production level equal to his type:

q∗ (θ) = θ. The maximized social welfare for a given distribution F is:

WF , Eθ
[
θq∗ (θ)− 1

2
q∗ (θ)2

]
=

1

2
E
[
θ2
]
. (5)

The socially optimal menu thus requires an uncountable infinity, or continuum, of reports

θ ∈ [0, 1] and a corresponding continuum of allocations, hence our definition of WF .
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The mechanism, as a special case of the Vickrey-Clark-Groves mechanism, must satisfy

two sets of constraints: the individual rationality (or participation) constraint, θq (θ)−t (θ) ≥
0, for all θ ∈ [0, 1]; and the incentive constraint, θq (θ)−t (θ) ≥ θq (θ′)−t (θ′), for all θ, θ′ ∈ Θ.

By contrast, we are interested in finding the optimal menu when the buyer can commu-

nicate his type only in a finite language; or equivalently, when the seller can process only

finitely many different messages; or equivalently, when the seller can produce only finitely

many alternative versions of her product.

An n-item menu is composed of n <∞ different allocations {qk} , k = 1, . . . , n, where qk
is the quantity (quality) of the k−th item of the menu. Let {Pk = [θk−1, θk)}nk=1 represent a

corresponding partition of the set of buyer types, [0, 1], where 0 = θ0 ≤ θ1 ≤ . . . ≤ θn = 1.1

A buyer with type θ ∈ Pk is assigned quantity q (θ) = qk. A finite menu (and its associated

assignments) given by {Pk, qk}nk=1 is called an n-item menu henceforth. We shall refer to

menu as the partition of the type space and the allocation. At this stage, we omit the

transfers {tk}nk=1 which follow directly from incentive compatibility. Let M be the set of all

n-item menus:

M , {{Pk, qk}nk=1 : Pk = [θk−1, θk) , 0 = θ0 ≤ θ1 ≤ . . . ≤ θn = 1} . (6)

We choose a finite menu {Pk, qk}nk=1 from M to maximize the expected social welfare for a

given distribution F :

WF (n) , max
{Pk,qk}nk=1∈M

{
Eθ
[
θq − 1

2
q2

]}
. (7)

We ask how well the optimal n-item menu {P ∗k , q∗k}
n
k=1 can approximate the performance

of the optimal continuous menu {q∗ (θ)}θ∈[0,1] as measured by the welfare loss: WF −WF (n).

It is easy to see that a tight lower bound on the welfare loss over all distributions is zero,

i.e., infF {WF −WF (n)} = 0. This can be achieved by the discrete uniform distribution

Pr
[
θ = k

n

]
= 1

n
for k = 1, ..., n. In what follows we will therefore focus on the upper bound

on the welfare loss over all distributions with finite support. Thus, let F be the set of all

distribution functions on [0, 1]. Our main task is to estimate the worst-case behavior of the

welfare loss over all distributions F ∈ F .

1In general, a partition need not consist of intervals (only) due to the nature of the optimization problem

in (7); however, it can be shown that the optimal partition consists of intervals.
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Definition 1 (Welfare Loss)

For a given distribution F , the welfare loss of the optimal n-item menu relative to the con-

tinuous menu given is:

LF (n) , WF −WF (n) ;

and across all distributions F ∈ F the maximum welfare loss is:

L (n) , sup
F∈F

LF (n) .

If we view θ as a continuous signal that must be represented by a representation point qk
in the interval Pk, then this is an instance of the quantization problem in information theory.

The intervals {Pk}nk=1 and the corresponding representation points {qk}
n
k=1 are jointly chosen

to minimize the mean square error when we view the quantity q as the predictor of type θ. In

information theory, this error is often referred to as the distortion D due to the quantization:

D , min
{Pk,qk}nk=1∈M

{
Eθ
[
(θ − q)2]} . (8)

Given the distribution F , the distortion D is equivalent to the welfare WF (n) as defined

above in (7). With this perspective, we can interpret the finite menu {P ∗k , q∗k}
n
k=1 as the

solution to a scalar quantization problem. Henceforth, we use the terms quantizer and finite

menu interchangeably.

The optimal scalar quantizer {P ∗k , q∗k}
n
k=1 must satisfy the following optimality conditions:

θ∗k =
1

2

(
q∗k + q∗k+1

)
, q∗k = E [θ|θ ∈ P ∗k ] , k = 1, . . . , n; (9)

with θ∗0 = 0 and θ∗n = 1. Thus, θ∗k, which separates two neighboring intervals P
∗
k and P

∗
k+1,

must be the arithmetic average of q∗k and q
∗
k+1. At the same time, q

∗
k, the representation

level for the interval P ∗k =
[
θ∗k−1, θ

∗
k

)
, must be the conditional mean for θ, given that θ

falls in this interval. These two necessary conditions are often referred to as Lloyd-Max

optimality conditions as they were independently established by Lloyd (1957) (and published

in 1982) and later byMax (1960). The Lloyd-Max optimality conditions remain valid in many

dimensions. In Section 4, we therefore interpret {P ∗k }
n
k=1 as a Voronoi partition (a set of the

nearest-neighbor regions) with respect to {q∗k}
n
k=1, and q

∗
k is chosen as the conditional mean

of θ, given that θ lies in the region P ∗k (see Lloyd (1982)).
2

2The optimality conditions (9) are not suffi cient conditions, and Lloyd (1957) provides counterexamples.

Trushkin (1982) provides general conditions on the probability density function, in particular that the density

is logconcave, for the necessary conditions to lead to a unique solution.
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Figure 1: Quantizer and representation points for welfare maximization with uniform distri-

bution and n = 5.

A commonly used scalar quantizer is the uniform quantizer, by which is meant that (i)

the boundary points are equally spaced, θk − θk−1 = ∆, and (ii) the representation points

are the midpoints of the quantization interval. For specific distributions it is possible to

obtain the closed form of the optimal finite menus from the Lloyd-Max conditions. Here

we consider the uniform distribution θ ∼ U [0, 1], for which the welfare loss can be exactly

established, and a fortiori the resulting convergence rate as n increases.

Proposition 1 (Welfare Loss for Uniform Distribution)

The optimal n-item menu {P ∗k , q∗k}
n
k=1 , P

∗
k =

[
θ∗k−1, θ

∗
k

)
is given by:

θ∗k =
k

n
, q∗k =

k − 1
2

n
, k = 0, . . . , n; (10)

and the associated welfare loss is LU (n) = 1/24n2.

The optimal scalar quantization for the uniform distribution illustrates how the Lloyd-

Max conditions are used to obtain the optimal finite menu. The resulting boundary points

{θ∗k}
n
k=0, as well as the representation points {q∗k}nk=0, share the uniformity with the under-

lying distribution of the values. In particular, the optimal quantizer is a uniform quantizer.

The partition point {θ∗k} and the probability weight of the representation points are illus-
trated in Figure 1 for the uniform distribution with n = 5.

The uniform distribution intuitively makes quantization diffi cult as (i) the uncertainty is

uniformly spread and (ii) the optimal allocation is a uniform response to the true underlying

state. We now show that this intuition can be made precise in the sense that the welfare loss
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associated with the uniform distribution is indeed an upper bound on welfare loss across all

possible distributions as n becomes large. The asymptotic results in quantization theory are

often referred to as high-rate quantization, as the number of representation points is allowed

to become large.

3.2 High-Rate Quantization

For a general class of distributions, analytical solutions to the Lloyd-Max conditions are not

available. We therefore design a sequence of finite menus to obtain an upper bound on the

welfare loss. In these menus the quantities {qk} are consistent with the Lloyd-Max conditions
(9). This construction estimates how fast the maximum welfare loss converges to zero as the

number of classes n tends to infinity.

We first introduce the so-called high-rate non-uniform quantizing scheme, which provides

an asymptotic optimal quantization result (see Gersho and Gray (2007)). Specifically, con-

sider a distribution f(θ) on [0, 1] and define the overall quantization distortion, namely the

mean square error due to the quantization, to be

D =
n∑
k=1

∫ θk

θk−1

(θ − qk)2f(θ)dθ,

where θ0 = 0 and θn = 1. When (a) n is suffi ciently large and (b) the input distribution

f is suffi ciently smooth, the conditional type distribution in each quantization interval is

approximately uniform. In turn, the distortion can be approximated by:

D ≈
n∑
k=1

f(θk)
(θk − θk−1)2

12
.

Meanwhile, when n is suffi ciently large, we denote by N(θ)∆θ the number of quantization

levels that lie between θ and θ + ∆θ for a small increment ∆θ, where ∆θ is larger than any

quantization interval length (θk − θk−1), and the term λ(θ) = N(θ)/n is referred to as the

point density of the quantizer. When ∆θ is suffi ciently small, the quantizer density integral

satisfies ∫ 1

0

λ(θ)dθ =

∫ 1

0
N(θ)dθ

n
= 1.

It follows that there are approximately nλ(θ)∆θ uniformly spaced intervals between θk and
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θk + ∆θ, and thus the length of each quantization interval is

θk − θk−1 ≈
length of increment ∆θ

number of intervals between θk and θk + ∆θ

≈ ∆θ

nλ(θk)∆θ

=
1

nλ(θk)
.

Therefore, an approximation of the total distortion can be given as:

D ≈ 1

12

n∑
k=1

f(θk)

(
1

nλ(θk)

)2

,

which can be further approximated by an integral, as n is large:

D ≈ 1

12n2

∫ 1

0

f(θ)

λ2(θ)
dθ.

By applying Hölder’s inequality, this distortion integral can be further lower-bounded

(see Theorem 2 in Zador (1982)):

lim inf
n→∞

n2D ≥ 1

12

(∫ 1

0

f(θ)1/3dθ

)3

, (11)

and the equality holds with the optimal quantizer density distribution, given by:

λ∗(θ) =
f(θ)1/3∫ 1

0
f(t)1/3dt

.

Under the assumption that n is suffi ciently large, the high-rate non-uniform distortion

(11) provides a lower bound of the quantization distortion, thus:

D ≈ 1

12n2

(∫ 1

0

f(θ)1/3dθ

)3

.

Note that the high-rate non-uniform quantizing above assumes a suffi ciently large n,

yielding an arbitrarily high quantization rate, and quantizing points {θk} that are not neces-
sarily uniformly distributed in the whole region [0, 1]. We then derive an asymptotic bound

for welfare loss using the high-rate non-uniform quantizing result.

Proposition 2 (Bound on Welfare Loss)

If n is suffi ciently large, then

L (n) ≤ 1

24n2
. (12)
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Combining the above result with Proposition 1, we obtain a sharp characterization of the

asymptotic behavior of L(n). A version of the one-dimensional social welfare maximization

problem in (7) was considered earlier in Wilson (1989) and in Bergemann, Shen, Xu, and Yeh

(2012a). Wilson (1989) obtained an approximate solution to (7) by a version of a uniform

quantizer of the distribution function of θ, and then by expanding the social welfare on each

quantization interval by the Taylor series around zero up to the order of 1/n3, where n is the

total number of intervals. His version of the uniform quantizer requires that each element of

the partition contains the same probability (rather than maintaining the distance between the

partition points). Proposition 3 in Wilson (1989) establishes that the effi ciency loss resulting

from an n-item menu is of an order no more than 1/n2; i.e., WF (n) ≥ WF − O (1/n2). In

Bergemann, Shen, Xu, and Yeh (2012a), Proposition 3 obtains a larger, and a fortiori weaker,

upper bound on the welfare loss by also relying on a uniform quantizer.

3.3 Revenue Maximization

We now analyze the problem of revenue maximization. In contrast to the social welfare

problem, here, the seller wishes to design a menu {q(θ), t(θ)}θ∈[0,1] to maximize her expected

net revenue, i.e., the difference between the gross revenue that she receives from the buyer

minus the cost of providing the demanded quantity (quality) for given distribution F :

RF = max
{q(θ),t(θ)}

{
Eθ
[
t (θ)− 1

2
q (θ)2

]}
.

As before, the contract offered has to satisfy two sets of constraints, namely the incentive

constraints and the individual rationality (or participation) constraints. The revenue max-

imization problem is transformed into a welfare maximization problem (without incentive

constraints) after replacing the valuation θ with the corresponding virtual valuation:

ψ (θ) , θ − 1− F (θ)

f (θ)
. (13)

The virtual valuation is below the true valuation, and the inverse of the hazard rate (1 −
F (θ))/f (θ) accounts for the information rent. This problem has been analyzed first by

Mussa and Rosen (1978) and Maskin and Riley (1984). The expected revenue of the seller

(without communication constraints) is then:

R∗F , Eθ
[
q∗ (θ)ψ (θ)− 1

2
(q∗ (θ))2

]
,
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and the resulting optimal contract exhibits:

q∗ (θ) , max {ψ (θ) , 0} . (14)

We identify the lowest value θ at which the virtual valuation attains a nonnegative value as

θ , min {θ|ψ(θ) ≥ 0} and hence the corresponding revenue is

RF = Eθ
[
q∗ (θ)ψ (θ)− 1

2
q∗ (θ)2

]
=

1

2

∫ 1

θ

ψ2 (θ) dF (θ) . (15)

With the monotonicity of ψ (θ), we can relabel the type θ directly in terms of the corre-

sponding virtual valuation θ̂: θ̂ , ψ (θ), and define the associated intervals {Pk}nk=1 directly

in terms of the new variable θ̂:

θ ∈ Pk = [θk−1, θk)⇔ θ̂ ∈ P̂k =
[
θ̂k−1, θ̂k

)
, 1 ≤ k ≤ n,

where θ̂k = ψ(θk), 1 ≤ k ≤ n. After this change of variable, we define a distribution function

G(θ̂) in terms of the original distribution function F (θ) : G(θ̂) = G (ψ (θ)) , F (θ).3 Then,

the revenue of an n-item menu can be written in terms of the virtual type θ̂:

RF (n) = Eθ
[
qψ (θ)− 1

2
q2

]
= Eθ̂

[
qθ̂ − 1

2
q2

]
. (16)

Definition 2 (Revenue Loss)

For a given distribution F , the revenue loss of the optimal n-item menu relative to the

continuous menu is:

L̂F (n) , RF −RF (n) ;

and across all distributions F ∈ F the maximum revenue is:

L̂ (n) , sup
F∈F

L̂F (n) .

We can now give the worst-case distribution for one-dimensional revenue maximization

with the asymptotic upper bound for revenue loss.

3We note that the critical bounds are established by distributions that generate monotone virtual valu-

ations . Thus the restriction to monotone, or “regular environments”in the language of Myerson (1979), is

without loss of generality.
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Proposition 3 (One-dimensional Revenue Bound)

If n is suffi ciently large, then

L̂ (n) ≤ 1

24n2
. (17)

Similar to the welfare maximization case, the above upper bound is indeed attained

by a specific distribution, namely the uniform distribution. But in contrast to the welfare

maximization problem, it is the uniform distribution on the upper half of the unit interval ;

thus, [1/2, 1]. In this interval, the virtual utility is guaranteed to be positive everywhere.

Thus, the convergence rate of the revenue loss induced by the optimal n-item menu for

the uniform distribution is of order 1/n2. It follows that the convergence rate for revenue

maximization is identical to the one we established for the social welfare maximization en-

vironment in Proposition 2.

Proposition 4 (One-dimensional Revenue Loss)

If n is suffi ciently large, then

L̂(n) =
1

24n2
.

Additionally, we find that for any finite menu the seller tends to serve fewer consumers

when compared to the case of a continuous menu. Thus, for example, the Lloyd-Max opti-

mality conditions in the case of the uniform distribution yield that

θ∗0 (n) =
n+ 1

2n+ 1
>

1

2
= θ∗0.

The difference θ∗0 (n)− θ∗0 shrinks to 0 as n goes to infinity. This is a consequence of the fact
that the seller’s ability to extract revenue is more limited in the case of finite menus. To

compensate, the seller would like to reduce the service coverage in order to pursue higher

profits. This is illustrated in Figure 2 below.

4 Multidimensional Product Space

In this section, we consider the multidimensional version of the nonlinear pricing problem,

which leads to the design of finite menus over multiple products. We demonstrate that our

quantization view generalizes to the multidimensional environment. The optimal design of

finite menus requires the technique of vector quantization. We present bounds on the welfare

and revenue loss arising from the communication constraints. In particular, we show that in
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Figure 2: Quantizer and representation points for revenue maximization with uniform dis-

tribution on [0, 1] and n = 5.

many cases it is beneficial to bundle the buyer’s preferences over multiple goods as a vector,

instead of treating them separately as independent quantities as repeated scalar quantization

would suggest, thereby enabling the true joint design of finite menus over multiple goods.

4.1 Multidimensional Welfare Maximization

With a continuous menu, the social welfare of (1)-(3) is maximized by solving the d-dimensional

linear-quadratic program:

WF = max
q(θ)

Eθ
[
θT q − 1

2
qT q

]
;

and it is socially optimal to provide a quantity (quality) vector equal to the type vector

q∗ (θ) = θ. The maximal social welfare for a given distribution F therefore equals:

WF = Eθ
[
θT q∗ (θ)− 1

2
q∗ (θ)T q∗ (θ)

]
=

1

2
Eθ
[
θT θ
]
. (18)

Any finite menu is now defined as a partition of the d−dimensional buyer’s type space Θ,

i.e., Pi ∩ Pj = ∅ if i 6= j, and ∪nk=1Pk = Θ. All consumers with type vector θ ∈ Pk will

be allocated the kth quantity (quality) vector qk. Now, {Pk, qk}nk=1 describes a finite multi-

product menu, called the n-item menu. If we view θ as the signal vector and qk as the

representation vector of θ in the region Pk, then this becomes the d-dimensional n-region

vector quantization problem, where the partition {Pk}nk=1 and the set of representation points

{qk}nk=1 are jointly chosen to minimize the mean square error or distortion:

min
{Pk,qk}nk=1∈M

{
Eθ
[
‖θ − q‖2

]}
.
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In this manner, any multi-product finite menu {Pk, qk}nk=1 can be viewed as a vector quan-

tizer. We can therefore use the two terms “vector quantizer" and “finite multi-product

menu" interchangeably.

As in the scalar case, we need to guarantee that the allocations are incentive compatible.

With multiple dimensions, this requirement is much more complex than the monotonicity

condition in the scalar case. There, the monotonicity condition is a necessary and suffi cient

condition for incentive compatibility. In the following we will follow the approach introduced

by Armstrong (1996) and require a separability condition of the type distribution.

Armstrong (1996) introduced a multiplicative separability condition in the analysis of

many-item nonlinear pricing. This condition allows him to establish the incentive compat-

ibility of the menu which is an intractable problem in more general environments. This

condition states that the “average taste”across all dimensions– in our context L2 norm of

the taste vector ‖θ‖2 of a consumer– does not provide any additional information about

which of her taste parameters θi, are likely to be greater than others, for any one of the di-

mensions, i = 1, ..., d. Thus, the value of the average states does not convey any information

on which the ray from the origin the vector θ lies.

Definition 3 (Separability Condition)

A joint distribution F is separable if the density f satisfies:

f(θ) = f1(‖θ‖2)× f2(θ)

and f2 is homogeneous of degree zero in θ.

We denote the class of separable density functions by FS. The above separability condi-
tion implies that we can write the density in terms of polar coordinates f = f (r, φ), where

r = ‖θ‖2 and φ is the vector of angles with respect to the given orthonormal basis. We

describe this more formally in (25) further down.

A second implication of the separability condition is that for a distribution F to belong

to FS it has to have support on the positive orthant of the d-dimension unit ball rather than
the d-dimensional unit cube.

Since the separability condition requires the distribution to be supported on a d-dimensional

ball, our main task is to quantify the worst-case behavior of the welfare loss, given earlier

in Definition 1 and now augmented by the dimension d, namely LF (n, d), over all separa-

ble distributions F ∈ FS. Given the separability condition, a natural generalization of the
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uniform distribution in the multidimensional type space is the uniform distribution on the

positive orthant of the d-dimensional unit ball, denoted as the uniball distribution (or Ub),
namely Ub(θ) = 1/V+(d), where

V+(d) =
1

2d
π
d
2

Γ
(
d
2

+ 1
)

is the volume of the positive orthant of the d-dimension unit ball and Γ (·) is the gamma
function.

A possible quantization scheme in the multidimensional environment would be to sepa-

rately and repeatedly perform the scalar quantization we investigated in the previous section

in every dimension. Such repeated scalar quantization would create a set of regions that are

orthotopes, i.e., the Cartesian product of intervals in d dimensions.

However, as one might have anticipated, in general repeated scalar quantization does not

result in the optimal n-item menu. Indeed, in higher dimensions, we can use more subtle

vector quantization methods to design better finite menus. To achieve this, we bundle the

buyer’s preferences over multiple goods as a vector, instead of viewing them separately as

independent choices.

For an arbitrary multidimensional distribution F , the optimal vector quantization typi-

cally cannot be established explicitly. In some special cases it can be iteratively approximated

with the multidimensional version of the Lloyd-Max optimality condition.

Nevertheless, Lookabaugh and Gray (1989a) establish that when the number of items per

dimension is suffi ciently large, then the gain from vector quantization gain can be decomposed

into three distinct terms that allow for an explicit calculation of the loss. We use this

decomposition approach in the next result.

Proposition 5 (Welfare Loss for Uniball Distribution)

For the uniball distribution, assuming d and n
1
d are suffi ciently large, then

LUb(n, d) =
1

8n
2
d

.

We illustrate the optimal vector quantization for the case of the uniform distribution on

the unit-ball in Figure 3. By contrast, in Figure 4 we display the solution for the repeated

scalar quantization. The vector quantization bundles across the dimensions, whereas the

scalar quantization creates orthotopes of varying size along each dimension.
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Figure 3: Quantizer and representation points for welfare maximization with uniball distri-

bution for d = 2, n = 16.

As we consider the optimal quantization in the positive orthant, one might guess that

the “worst scenario” (i.e., achieving the largest welfare loss) would be the case when the

type probability is equally distributed in the d-dimensional unit ball– thus, the uniball dis-

tribution. In fact, we now show that the uniball case gives an asymptotic upper bound of

the welfare loss in the presence of the separability condition.

Proposition 6 (Multidimensional Welfare Loss Bound)

Given both d and n
1
d are suffi ciently large, for any distribution F ∈ FS

L(n, d) ≤ 1

8n
2
d

. (19)

Combining Proposition 5 and Proposition 6, establishes the asymptotic behavior of the

welfare loss L(n, d). We note that our analysis here assumed the separability condition (see

Definition 3). We have separately developed a similar analysis for multidimensional welfare

loss in the absence of the separability condition. The upper bound for the welfare loss without

the separability condition is a fortiori larger than the bound with the separability condition.

The details are presented in Proposition 9 in the Appendix. Proposition 9 presents the

corresponding result to Proposition 5 in the absence of the separability condition. We show

that the upper bound in then attained by the multidimensional uniform distribution on the

unit cube. Now, the quantization region is not restricted anymore to the positive orthant of
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Figure 4: Repeated scalar quantizer and representation points for welfare maximization with

uniball distribution and d = 2, n = 16.

the unit ball, and given instead by the unit cube. Without the restriction to the separability

condition, the bound shows a linear degradation in the dimensionality d of the allocation

problem, namely d/n2/d.

4.2 Multidimensional Revenue Maximization

We complete our analysis by considering the revenue maximization problem in many dimen-

sions. The problem for the seller in the direct mechanism without communication constraints

is given by maximizing

RF = max
{q(θ),t(θ)}

Eθ
[
t (θ)− 1

2
q (θ)T q (θ)

]
,

subject to the individual rationality and incentive constraints.

In an important contribution, Armstrong (1996) shows that the firm’s revenue– given

the separability condition (see Definition 3)– can be written as:

RF = Eθ
[
ψ (θ)T q (θ)− 1

2
q (θ)T q (θ)

]
,

where

ψ (θ) = h (θ) θ, h (θ) = 1− β (θ)

f (θ)
, β (θ) =

∫ +∞

1

f (rθ) rd−1dr. (20)
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The optimal continuous menu satisfies:

q∗ (θ) =

{
ψ (θ) if θ ∈ Θ+

0 if θ ∈ Θ\Θ+
,

where Θ+ = {θ ∈ Θ : h (θ) ≥ 0} is the active type space. The maximum revenue can there-

fore be expressed as:

RF = Eθ
[
ψ (θ)T q∗ (θ)− 1

2
q∗ (θ)T q∗ (θ)

]
=

1

2

∫
Θ

ψ (θ)T ψ (θ) dF (θ) . (21)

The finite version of the revenue maximization problem specifies a menu which contains

n < ∞ different items. Armstrong (1996) already observed that some consumers with low

type vectors in the active type space Θ will leave the market when a finite menu is offered.

Thus, there exists a region P0 ⊆ Θ, determined endogenously, such that all consumers with

θ ∈ P0 will choose q0 = 0, t0 = 0. The seller chooses {Pk, qk}nk=0 to maximize the expected

revenue:

RF (n) = max
{Pk,qk}nk=0∈M

{
Eθ
[
ψ (θ)T q − 1

2
qT q

]}
. (22)

Virtual Type Space Define for θ ∈ Θ, the virtual type vector

θ̂ = ψ (θ) = h (θ) θ. (23)

As in the one-dimensional analysis, we can transform the partition {Pk}nk=0 of the active

type space into a partition
{
P̂k

}n
k=0

of the virtual type space Θ as follows:

θ ∈ Pk ⇔ θ̂ ∈ P̂k = {ψ (θ) : θ ∈ Pk} .

In the virtual space, the expected revenue for an n-item menu can be written as:

Eθ
[
ψ (θ)T q − 1

2
qT q

]
= Eθ̂

[
θ̂
T
q − 1

2
qT q

]
,

and the expected revenue of the optimal n-item menu is given as:

RF (n) = max
{P̂k,qk}n

k=0
∈M
Eθ̂

[
θ̂
T
q − 1

2
qT q

]
.

The problem is now formally equivalent to the earlier multidimensional welfare maximization

problem (7). We now consider how well the optimal n-item menu can approximate the
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performance of the optimal continuous menu. We can further write the revenue loss from

quantization as:

L̂F (n, d) , 1

2
Eθ̂

[(
θ̂ − q

)T (
θ̂ − q

)]
,

where we extend the expression L̂F (n) given by the earlier Definition 2 to account for the

dimension d.

One can see that the above expression is indeed the multidimensional welfare loss in

terms of the virtual type θ̂. Let G
(
ψ
(
θ̂
))

= F (θ) denote the virtual type distribution and

g(·) denote the density function; then,

L̂F (n, d) = LG (n, d) . (24)

Similar to the case for welfare maximization, we are interested in the worst-case behavior of

the revenue loss over all joint distributions with a d-dimensional support set (i.e., the type

space) with positive and finite volume, and with the separability condition, thus

L̂ (n, d) , sup
F∈FS

L̂F (n, d) .

Bounds on Revenue Loss Using the relationship between the revenue maximization

problem and the vector quantization problem, we can obtain upper and lower bounds on the

revenue loss, as in the social welfare case.

Before investigating the multidimensional revenue loss upper and lower bounds, one may

ask the following question: given that the original type distribution F satisfies the separabil-

ity condition, does the virtual type distribution G also satisfy it? The answer is positive and

we will show this important property in the following lemmas, which describe the behavior

of the virtual type under the separability condition.

The separability condition requires the independence of the angle and the norm of the

type distribution. A hyperspherical coordinate system, (see Blumenson (1960)) naturally

captures this property. In this way, the type distribution can be written in the product

form as follows. We first introduce the hyperspherical coordinate transformation to the type

vector space. Namely, for a d-dimensional type θ ∈ [0, 1]d, let r ∈ [0, 1] and φ ∈ [0, π
2
]d−1,



23

such that:

θ1 = r cos(φ1),

θ2 = r sin(φ1) cos(φ2),

· · · (25)

θd−2 = r sin(φ1) · · · sin(φd−3) cos(φd−2),

θd−1 = r sin(φ1) · · · sin(φd−2) cos(φd−1).

We then denote the type distribution density function after the coordinate transformation

as fT (r, φ); i.e. f(θ) = fT (r, φ). The separability condition (3) can then equivalently be

written as:

f(θ) = fT (r, φ) = fr(r)× fφ(φ). (26)

We can similarly transform the density of the virtual utility as the next lemma establishes.

Lemma 1 (Separability of Virtual Utility Function)

Let g(·) be the probability density function of the virtual type vector distribution. If g(θ) is

transformed to gT (r, φ) with the hyperspherical coordinate transformation, then

gT (r, φ) = gr(r)× gφ(φ).

Lemma 1 shows that the distribution after the virtual valuation transformation (namely

G(·)) also satisfies the separability condition, and thus the active type space Θ to be quantized

is essentially the area between the positive orthant of a d-dimensional sphere with unit radius

and a d-dimensional sphere with radius r, where r ∈ (0, 1)– both centered at 0. Our previous

analysis of multidimensional welfare maximization therefore applies to G(·).

Proposition 7 (Upper Bound on Multidimensional Revenue Loss)

For any F ∈ FS, given both d and n
1
d are suffi ciently large, the revenue loss satisfies

L̂F (n, d) ≤ 1

8n
2
d

. (27)

Proof. Given distribution F ∈ FS, by (24), L̂F (n, d) = LG (n, d). By Lemma 1, it follows

that the distribution G also satisfies the separability condition, and thus by Proposition 6:

L̂F (n, d) ≤ 1/8n
2
d ,
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which completes the proof.

In the one-dimensional revenue maximization scenario, the upper bound of L̂(n) given

by the high-rate non-uniform quantizer is indeed tight, since a type distribution that meets

the bound is presented. However, in the multidimensional case a distribution that attains

the upper bound in Proposition 7 may not exist, as Armstrong (1996) has shown that there

always exist some customers that are not served by the finite menu when d ≥ 2.

Nonetheless, we next show that the upper bound on the revenue loss is indeed achieved

when the virtual type probability is equally distributed in the quantization area. While an

explicit form of the original type distribution leading to a uniball-distributed virtual type is

hard to find, we provide a family of special truncated beta distributions whose virtual type

distribution asymptotically approaches the uniball distribution. Thus, the corresponding

revenue loss asymptotically approximates the upper bound stated in Proposition 8.

Proposition 8 (Revenue Loss for Truncated Beta Distribution)

Let Fb be a special truncated beta distribution, specifically,

fb(θ) =


(d+3)2d−1Γ(d/2)

2πd/2
‖θ‖ 1−d2 , if

(
2
d+3

) 2
d+1 ≤ ‖θ‖ ≤ 1;

0, otherwise.

Then, if d is suffi ciently large, and n1/d is suffi ciently large, we have

L̂Fb (n, d) ≈ 1

8n
2
d

. (28)

In Figure 5 we illustrate the resulting quantizer. Thus, by combining the results of

Proposition 7 and 8, we have indeed obtained the following asymptotic bound on the multi-

dimensional revenue loss, namely:

L̂(n, d) ≈ 1

8n
2
d

.

5 Conclusion

We explored the consequences of economic transactions with limited information within the

concrete setting of the nonlinear pricing model. Using the linear-quadratic specification,

we relate both social welfare maximization and revenue maximization to the quantization
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Figure 5: Quantizer and representation points for revenue maximzation with beta distribu-

tion and d = 2, n = 16.

problem in information theory. Using this link, we introduce the Lloyd-Max conditions that

the optimal finite menu for the socially effi cient and the revenue-maximizing mechanism must

satisfy. Additionally, we study the performance of the finite menus relative to the optimal

continuous menu. Our analysis shows that for both social welfare and the seller’s revenue,

the losses due to the usage of the n-item finite menu converge to zero at a rate proportional

to 1/n2.

Based on the information-theoretic approach in the one-dimensional environment, we gen-

eralize our results to the multi-product environment. We introduce the vector quantization

gain and a decomposition method, and obtain a vector-quantization-based upper bound and

a lower bound on the welfare loss and the revenue loss. The vector-quantization-based upper

bound is tighter than the repeated scalar upper bound, and the improvement becomes sig-

nificant in higher dimensions, and/or when a correlation among the buyer’s preferences over

multiple products exists. This shows that it is beneficial to bundle the buyer’s preferences

over multiple goods, and then design the finite menus jointly in multiple dimensions.

We restricted attention to a linear-quadratic payoff environment throughout. A natural

question is therefore to what extent our results would generalize (or require modification)

in a broader class of non-linear environments. We briefly discuss how existing results in

information theory may assist us.
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A first observation is that given a general utility u(θ, q) and cost function c(q), the finite

menu that maximizes social welfare:

W = Eθ[u(θ, q)− c(q)]

is equivalent to the optimal quantizer for minimizing the expected distortion Eθ[d(θ, q)],

where

d(θ, q) = c(q)− u(θ, q).

Thus, a generalization to nonlinear payoff environments is equivalent to a distortion

function different from the mean squared error used in this paper. Indeed, the high-rate

non-uniform quantization results were generalized in various directions, for example to a

locally quadratic distortion in Li, Chaddha, and Gray (1999), to the p-th power distortion

d(x, y) = |x−y|p in Zador (1982) and more recently to the Orlicz-norm distortion in Dereich
and Vormoor (2011). In particular, Lookabaugh and Gray (1989b), developed an argument

for vector quantization gain under the p-th power distortion which we could use to obtain ap-

proximation results similar to the ones obtained here. The information-theoretic arguments

appear therefore portable to non-linear environments. It follows that the critical and open

challenge would seem to be a general characterization of incentive compatible allocation in

many dimensions.

While the nonlinear pricing environment is of interest by itself, it also represents an

elementary instance of the general mechanism design environment. The simplicity of the

nonlinear pricing problem arises from the fact that it can be viewed as a relationship between

the principal (here, the seller) and a single agent (here, the buyer), even in the presence of

many buyers. The reason for this simplicity is that the principal does not have to solve

allocative externalities. By contrast, in auctions and other multi-agent allocation problems,

the allocation (and hence the relevant information), with respect to a given agent, constrains

and is constrained by the allocation to the other agents.

Finally, the current analysis focused on limited information and the ensuing problem of

effi cient source coding. But clearly, from an information-theoretic as well as an economic

viewpoint, it is natural to augment the analysis to reliable communication between the agent

and principal over noisy channels– the problem of channel coding– which we plan to address

in future work.
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6 Appendix

The appendix collects auxiliary results and the remaining proofs of the results in the main

body of the text.

Lemma 2 (Standard Form)

For every utility and revenue function given by (1) and (3) there is an equivalent standard

form given by (4).

Proof. We say that the utility and the cost function have the standard form if Φ =

Σ = Id (the d × d identity matrix). We can transform the utility and the cost function

into the standard form as follows: We diagonalize the symmetric positive-definite matrix Σ:

Σ = P TΛP , where Λ = diag (λ1, ..., λd), λi > 0 is the i-th eigenvalue of Σ, and P is a unitary

matrix (i.e., P TP = Id). Let B = Λ1/2P and A = Λ−1/2PΦT , where Λi = diag
(
λi1, ..., λ

i
d

)
,

i = ±1
2
. Then, it is easy to show that ATB = Φ and BTB = Σ. If we introduce the new type

vector θ̂ = Aθ and the new quantity (quality) vector q̂ = Bq, then the buyer’s net utility

and the cost function can be written in the standard form in terms of θ̂ and q̂:

u (θ, q) = θTΦq = θTATBq = θ̂
T
q̂,

c (q) =
1

2
qTΣq =

1

2
qTBTBq =

1

2
q̂T q̂.

Thus, without loss of generality, we focus on the standard form with Φ = Σ = Id.

Proof of Proposition 1. The conditional mean in any interval Pk is E [θ|θ ∈ Pk] =

(θk + θk−1) /2. From (9), the optimal menu {P ∗k , q∗k}
n
k=1 must satisfy:

θ∗k =
q∗k + q∗k+1

2
, q∗k =

θ∗k−1 + θ∗k
2

, k = 1, . . . , n.

Hence, θ∗k+1 − 2θ∗k + θ∗k−1 = 0. Note that θ∗0 = 0, θ∗n = 1, and thus we have a unique solution

to the Lloyd-Max conditions given by (10). The expected social welfare is

WU (n) = Eθ
[
θq∗ (θ)− 1

2
q∗ (θ)2

]
=

n∑
k=1

∫ θ∗k

θ∗k−1

[
θq∗k −

1

2
q∗2k

]
dθ =

1

6
− 1

24n2
.

By contrast, the social welfare realized by the optimal continuous menu is WU = 1
2
E
[
θ2
]

=

1/6, which yields as welfare loss: LU (n) = 1/24n2.

Proof of Proposition 2. Let F denote the type distribution supported on [0, 1],

and f(·) the density function. As n goes to infinity, by Gersho and Gray (2007), pp. 186,
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the quantization loss of the Lloyd-Max quantizer is approached by a high-rate non-uniform

quantizer. Specifically, the minimum quantization distortion is given by:

D =
1

12n2

(∫ 1

0

f(x)1/3

)3

.

Thus, we have the corresponding welfare loss

LF (n) =
1

2
D =

1

24n2

(∫ 1

0

f(x)1/3dx

)3

.

Note that by Hölder’s inequality, we have∫ 1

0

f(x)1/3dx ≤
[∫ 1

0

f(x)dx

] 1
3
[∫ 1

0

1dx

] 2
3

=

[∫ 1

0

f(x)dx

] 1
3

= 1,

where the equality holds when f(x) = 1, x ∈ [0, 1]. We then arrive at the upper bound of

welfare loss given n is large,

LF (n) ≤ 1

24n2
,

which completes the proof.

Proof of Proposition 3. Let g(·) denote the virtual type distribution, and LG(n)

denote the quantization loss by the Lloyd-Max algorithm applied on the g(·) distribution in
interval [0, 1] with n quantizing levels (i.e., the Lloyd-Max applied on the virtual type), then

we have L̂F (n) = LG(n). Thus, as in the welfare maximization case, we have:

LG(n) =
1

24n2

(∫ 1

0

g(x)1/3dx

)3

.

Evaluating the RHS, we have∫ 1

0

g(x)1/3dx ≤
[∫ 1

0

g(x)dx

] 1
3
[∫ 1

0

1dx

] 2
3

=

[∫ 1

0

g(x)dx

] 1
3

(a)

≤ 1



29

where (a) holds since
∫ 1

0
g(x)dx ≤

∫ 1

−∞ g(x)dx =
∫ 1

0
f(x)dx = 1. Thus, we have the upper

bound of revenue loss given n is large,

L̂F (n) ≤ 1

24n2
,

which completes the proof.

Proof of Proposition 4. Consider the uniform distribution with support on [1/2, 1]:

F (θ) =

0 if θ ∈ [0, 1
2
).

2, if θ ∈ [1
2
, 1].

The virtual type is given by:

ψ(θ)

< 0 if θ ∈ [0, 1
2
);

= 2θ − 1 if θ ∈ [1
2
, 1],

with its inverse function for the positive input:

ψ−1(θ̂) =
θ̂ + 1

2
, θ̂ ∈ [0, 1]

and the virtual type distribution

g(θ̂) = f(ψ−1(θ̂))(ψ−1)′(θ̂) = 1 , θ̂ ∈ [0, 1].

Thus,

L̂(Up, n) =
1

24n2

(∫ 1

0

g(x)1/3dx

)3

=
1

24n2
.

The revenue loss for distribution Up thus attains the bound exactly:

L̂(n) =
1

24n2
,

which completes the proof.

Given the joint distribution F ∈ F , for each dimension θl, 1 ≤ l ≤ d, consider a K-level

scalar quantizer {Pl,k, ql,k}Kk=1 ∈ M on [0, 1] where M is the set of all scalar quantizers for

the marginal distribution Fl:

M =
{
{Pl,k, ql,k}Kk=1 : Pl,k = [θl,k−1, θl,k) , 0 = θl,0 ≤ θl,1 ≤ . . . ≤ θl,n = 1

}
.
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We construct the corresponding d-dimensionalKd-region repeated scalar quantizer {P ′k, q′k}
Kd

k=1

in the type space [0, 1]d as:

{P ′k}
Kd

k=1 = {P1,k1 × . . .× Pd,kd : kl ∈ {1, . . . , K} , 1 ≤ l ≤ d} ,

{q′k}
Kd

k=1 =
{

(q1,k1 , . . . , qd,kd)
T : kl ∈ {1, . . . , K} , 1 ≤ l ≤ d

}
.

One can see that the set of regions {P ′k}
Kd

k=1 are orthotopes, i.e., the Cartesian product of

intervals in d dimensions. A simple upper bound on the welfare loss in multiple dimensions

is the repeated scalar quantizer.

Given an identical type distribution F , with Fl being the marginal distribution, the

social welfare loss of the repeated scalar quantizer with n quantization levels each dimension

is given by
∑d

l=1 LFl (n).

Let the welfare loss of the optimal vector quantizer with n · d quantization levels be
LF (n · d, d), then LF (n · d, d) ≤

∑d
l=1 LFl (n) since the repeated scalar quantizer is a special

case of vector quantizer.

Moreover, the vector quantization gain for social welfare is defined by the ratio of the

welfare loss induced by the repeated scalar quantizer to the welfare loss induced by the

optimal vector quantizer, namely

GW =

∑d
l=1 LFl (n)

LF (n · d, d)
. (29)

Denote by f and fl the joint density function and the marginal density function, respec-

tively. When the number n of items in each dimension becomes suffi ciently large, the vector

quantization gain can be decomposed as follows as, established by Lookabaugh and Gray

(1989a), p. 1022:

GW ≈ F (d)× S(fl, d)×M(fl, f, d), (30)

where F (d), S(fl, d), andM(fl, f, d) are called the space-filling advantage, shape advantage,

and dependence advantage, respectively.

Specifically, when d ≥ 3, it is optimal to choose the admissible polytopes as close

as possible to the d-dimensional sphere, leading to an asymptotic space-filling advantage,

limd→∞ F (d) = πe/6, as established by Conway and Sloane (1985).
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Given the dimension d, the shape advantage S (fl, d) depends solely on fl (e.g., the

uniform distribution does not provide any shape advantage):

S (fl, d) =

[∫
(fl (θl))

1/3 dθl

]3

[∫
(fl (θl))

d/d+2 dθl

]d+2
. (31)

The dependence advantage M (fl, f, d) is determined by both f and fl, (e.g., any inde-

pendent and identical distribution does not provide any dependence advantage):

M (fl, f, d) =

[∫
(fl (θl))

d/d+2 dθl

]d+2

[∫
. . .
∫

(f (θ1, . . . , θd))
d/d+2 dθ1 . . . dθd

](d+2)/d
. (32)

Proof of Proposition 5. The welfare loss is computed using the decomposition given

by (30):

LUb(n, d) ≈
d× LÛb(n)

F (d)× S
(
Ûb, d

)
×M

(
Ûb,Ub, d

)
(a)
≈
d
[∫ 1

0
Ûb(θ)

1
3dθ
]3

24n
2
d

× 6

πe
×

[∫ 1

0
· · ·
∫ 1

0

(
1

V+(d)

d
d+2

)
dθ1 · · · dθd

] d+2
d[∫ 1

0
Ûb(θ)

1
3dθ
]3

=
d× V+(d)

2
d

4πen
2
d

(b)
≈ 1

8n
2
d

,

where Ûb denotes the marginal distribution of Ub, which need not be computed explicitly; (a)

used the one-dimensional optimal high-rate non-uniform quantizer and (b) holds by Stirling’s

approximation.

Proof of Proposition 6. Under the assumption that both d and n1/d are suffi ciently

large, let f(x) denotes the type probability density distribution. Then, by Gersho and Gray

(2007), pp. 339, generalizing the non-uniform high-rate quantizing result into d-dimension,

the optimal quantization distortion is given by:

D ≥ d

(d+ 2)n
2
d

(
π
d
2

Γ
(
d
2

+ 1
))− 2

d [∫
θ

f(θ)
d
d+2dθ

] d+2
d

(33)
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where Γ(·) is the common gamma function. The equality holds if n is suffi ciently large, and
the optimal high-rate non-uniform quantizer is used, denoted as Dmin.

Thus, the welfare loss is upper bounded by

LF (n, d) =
1

2
Dmin =

d

2(d+ 2)n
2
d

(
π
d
2

Γ
(
d
2

+ 1
))− 2

d [∫
θ

f(θ)
d
d+2dθ

] d+2
d

Applying Hölder’s inequality, we have∫
θ

f(θ)
d
d+2dθ ≤

(∫
θ

f(θ)dθ

) d
d+2
(∫

θ

1dθ

) 2
d+2

(a)

≤ (V+(d))
2
d+2

where (a) holds, since given the separability condition the quantization space is at most the

positive orthant of the d-dimension unit ball.

Thus, when d is suffi ciently large the welfare loss is upper-bounded by

LF (n, d) ≤ d

2(d+ 2)n
2
d

(
π
d
2

Γ
(
d
2

+ 1
))− 2

d
(

1

2d
π
d
2

Γ
(
d
2

+ 1
)) 2

d

=
d

8(d+ 2)n
2
d

≈ 1

8n
2
d

,

which completes the proof.

Proof of Lemma 1. We define the cumulative density function of original type vector

θ = (rθ, φθ) for polar coordinates to be

FT (r, φ) = Pr {rθ ≤ r} ,

where φ1 ≤ φ2 denotes the inequality for all d− 1 components of vector φ.

Since f(θ) satisfies the separability condition, we have:

FT (rθ, φθ) =

∫ rθ

0

∫
φ≤φθ

fT (r, φ)dφdr

=

∫ rθ

0

fr(r)dr ×
∫
φ≤φθ

fφ(φ)dφ

= Pr {rθ ≤ r} × Pr {φθ ≤ φ} .
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Similarly, we define the cumulative density function of virtual type vector θ̂ =
(
rθ̂, φθ̂

)
for polar coordinates to be

GT (r, φ) = Pr
{
rθ̂ ≤ r, φθ̂ ≤ φ

}
,

with

GT (rθ̂, φθ̂) =

∫ r
θ̂

0

∫
φ≤φ

θ̂

gT (r, φ)dφdr.

Because θ̂ = φ(θ) = h(θ)θ, with h(θ) ∈ R, we know that the virtual valuation transformation
preserves the angle φ̂ = φ. Thus, we have

Pr
{
rθ̂ ≤ rh(θ), φθ̂ ≤ φ

}
= Pr {rθ ≤ r, φθ ≤ φ} .

On the other hand, we know that h(θ) only depends on ‖θ‖ (namely r). Specifically,

h(θ) = 1−
∫ +∞

1
fr(tr)fφ(φ)td−1dt

fr(r)fφ(φ)

= 1−
∫ +∞

1
fr(tr)t

d−1dt

fr(r)
.

Thus, we can denote hr(r) = h(θ) and then:

GT (rhr(r), φ) = Pr
{
rθ̂ ≤ rhr(r), φθ̂ ≤ φ

}
= Pr {rθ ≤ r, φθ ≤ φ}

= Pr {rθ ≤ r} × Pr {φθ ≤ φ} .

Taking the derivative, we have

∂2GT (rhr(r), φ)

∂r∂φ
= gT (rhr(r), φ)) (hr(r) + rh′r(r)) .

And thus

gT (rhr(r), φ)) =
fr(r)

(hr(r) + rh′r(r))
× fφ(φ).

It follows that the virtual type distribution gT (r, φ)) could be written as the product of two

functions which solely depend on r and φ, respectively. Thus, the virtual type distribution

satisfies the separability condition.
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Proof of Proposition 8. First, we show that fb(θ) is indeed a valid probability

density distribution. For convenience of the integration, we denote by S(r) the area of a

(d− 1)-dimensional sphere with radius r in the positive orthant, namely

S(r) =
1

2d
2πd/2

Γ(d/2)
rd−1

Define the radius direction probability fr(·) such that fr(‖θ‖) = fb(θ); then we have∫
θ

fb(θ)dθ =

∫ 1

0

fr(r)S(r)dr

=

∫ 1

( 2
d+3)

2
d+1

(d+ 3)2d−1Γ (d/2)

2πd/2
r
1−d
2

1

2d
2πd/2

Γ(d/2)
rd−1dr

=

∫ 1

( 2
d+3)

2
d+1

d+ 3

2
r
d−1
2 dr

= 1

which shows that fb(θ) is a valid probability density distribution. It is obvious that Fb ∈
FS; thus by Lemma 1 the virtual type distribution also satisfies the separability condition.
Specifically corresponding to (20),

β (θ) =

∫ ∞
1

fb(rθ)r
d−1dr =

∫ 1

‖θ‖ fr(t)t
d−1dt

‖θ‖d

=


‖θ‖−d

∫ 1

‖θ‖At
1−d
2 td−1dt = 2A

d+1
‖θ‖−d

(
1− ‖θ‖ d+12

)
, if

(
2
d+3

) 2
d+1 ≤ ‖θ‖ ≤ 1

‖θ‖−d
∫ 1

( 2
d+3)

2
d+1

At
1−d
2 td−1dt = 2A

d+3
‖θ‖−d , if ‖θ‖ <

(
2
d+3

) 2
d+1

where A = (d+3)2d−1Γ(d/2)

2πd/2
is the coeffi cient in fb(θ). Thus, we have

h (θ) = 1− β (θ)

fb(θ)

=


1−

2A
d+1
‖θ‖−d

(
1−‖θ‖

d+1
2

)
A‖θ‖

1−d
2

= d+3
d+1
− 2

d+1
‖θ‖− d+12 , if

(
2
d+3

) 2
d+1 ≤ ‖θ‖ ≤ 1;

< 0 , if ‖θ‖ <
(

2
d+3

) 2
d+1 .

Let θ =
(

2
d+3

) 2
d+1 , since h (θ) < 0 when ‖θ‖ < θ, and h (θ) ≥ 0 when ‖θ‖ ≥ θ, we know

that θ is indeed the radius threshold for a positive virtual valuation. The virtual type ψ(θ)

corresponding to positive h (θ) is defined as

θ̂ = ψ(θ) =

(
d+ 3

d+ 1
− 2

d+ 1
‖θ‖− d+12

)
θ, for θ ≤ ‖θ‖ ≤ 1.
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Let g(θ̂) denote the distribution of virtual type θ̂. Since θ̂ has the same angle as θ, but

a different magnitude, and fb(θ) only depends on the magnitude ‖θ‖, we know g(θ̂) only

depends on ‖θ̂‖, i.e., g(θ̂) = gr(‖θ̂‖).
Let

GR(r) = Pr(‖θ̂‖ ≤ r)

denote the probability that the virtual type magnitude is no more that r, with r ∈ [0, 1].

Similarly, define

FR(r) = Pr(‖θ‖ ≤ r).

We then have

FR(r) = Pr(‖θ‖ ≤ r)

= Pr(
d+ 3

d+ 1
‖θ‖ − 2

d+ 1
‖θ‖− d−12 ≤ d+ 3

d+ 1
r − 2

d+ 1
r−

d−1
2 )

= GR(ψr (r)), (34)

where

ψr (r) =
d+ 3

d+ 1
r − 2

d+ 1
r−

d−1
2 .

On the other hand, we could calculate GR(ψr (r)) and FR(r) separately for r ≥ θ, where

FR(r) =

∫ r

0

fr(t)S(t)dt

=
A

2d
2πd/2

Γ(d/2)

∫ r

θ

t−
d−1
2 td−1dt

=
d+ 3

d+ 1
r
d+1
2 − 2

d+ 1
,

and

GR(ψr (r)) =

∫ ψr(r)

0

gr(t)S(t)dt.

Thus by (34), ∫ ψr(r)

0

gr(t)S(t)dt =
d+ 3

d+ 1
r
d+1
2 − 2

d+ 1
.

Taking the derivative of both sides, we have

gr(ψr (r))S(ψr (r))ψ′r (r) =
d+ 3

2
r
d−1
2 . (35)
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Recall that the minimum quantization distortion for a multidimensional variable θ̂ achieved

with the high-rate non-uniform quantizer is given by

Dmin =
1

n2/d

d

d+ 2

(
2πd/2

dΓ(d/2)

)− 2
d
[∫

θ̂

g(θ̂)
d
d+2dθ̂

] d+2
d

.

Given the correspondence in (24), we can compute the revenue loss as:

L̂Fb (n, d) =
1

2
Dmin

=
1

n2/d

d

2(d+ 2)

(
2πd/2

dΓ(d/2)

)− 2
d
[∫ 1

0

gr(r̂)
d
d+2S(r̂)dr̂

] d+2
d

.

The integral term can be further written as∫ 1

0

gr(r̂)
d
d+2S(r̂)dr̂ =

∫ 1

θ

gr(ψr(r))
d
d+2S(ψr(r))ψ

′
r(r)dr

(a)
=

∫ 1

θ

(
d+ 3

2
r
d−1
2

) d
d+2

S(ψr(r))
2
d+2 (ψ′r(r))

2
d+2 dr

=

(
1

2d
2πd/2

Γ(d/2)

) 2
d+2

M,

where (a) holds by (35) and

M =

∫ 1

( 2
d+3)

2
d+1

(
d+ 3

2
r
d−1
2

) d
d+2
(
d+ 3

d+ 1
r − 2

d+ 1
r−

d−1
2

) 2(d−1)
d+2

(
d+ 3

d+ 1
+
d− 1

d+ 1
r−

d+1
2

) 2
d+2

dr

Thus, we have

L̂Fb (n, d) =
1

n2/d

d

2(d+ 2)

(
2πd/2

dΓ(d/2)

)− 2
d
(

1

2d
2πd/2

Γ(d/2)

) 2
d

M
d+2
d

=
1

8n2/d

d

d+ 2
d
2
dM

d+2
d . (36)

Note that all terms in (36) are computable and one can take this as an accurate lower

bound of L̂(n, d). Nevertheless, we now make the necessary approximation to (36) and show

that it asymptotically approaches the upper bound 1/8n2/d, given by Proposition 7.
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Provided d is suffi ciently large, we can approximate M to be

M ≈
∫ 1

θ

d

2
r
d
2

(
r − 2

d
r−

d
2

)2 (
1 + r−

d
2

) 2
d
dr

(b)
≈
∫ 1

θ

d

2
r
d
2

(
r − 2

d
r−

d
2

)2

dr

≈
∫ 1

θ

d

2
r
d
2

[
r2 +

4

d2
r−d − 4

d
r−

d
2

]
dr

≈
∫ 1

θ

d

2
r
d
2dr +

∫ 1

θ

2

d
r−

d
2dr +

∫ 1

θ

2dr

(c)
≈
∫ 1

θ

d

2
r
d
2dr

=
d

d+ 3

where (b) holds since
(

1 + r−
d
2

) 2
d ≈ 1 given d is large. (c) holds since

∫ 1

θ
2
d
r−

d
2dr ≈ 0 and∫ 1

θ
2dr ≈ 0.

Thus, the revenue loss can be approximated as

L̂Fb (n, d) ≈ 1

8n2/d

d

d+ 2
d
2
d

(
d

d+ 3

) d+2
d

≈ 1

8n2/d
,

which completes the proof.

Proposition 9 (Welfare Loss for Multi-dimensional Uniform Distribution)

Given d and n
1
d are large, for the d-dimensional uniform distribution U (i.e., θl are i.i.d.

uniformly distributed on [0, 1] for l = 1, · · · , d), we have

LU (n, d) ≈ d

4πen
2
d

.

Proof. Following the decomposition given by (30), we know that the welfare loss for the

multidimensional uniform distribution can be calculated as

LU(Kd, d) =
d× 1

24K2

GW

,

where K = bn 1
d c, and

GW ≈ SF × S ×DP ≈ πe

6
× 1× 1,
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thus,

LU(Kd, d) =
d

24K2
× 6

πe
=

d

4πeK2
.

We then have that given d and n
1
d are suffi ciently large,

LU(n, d) ≈ d

4πen
2
d

,

which completes the proof.
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