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Abstract

We introduce computationally simple, data-driven procedures for estimation and inference
on a structural function iy and its derivatives in nonparametric models using instrumental
variables. Our first procedure is a bootstrap-based, data-driven choice of sieve dimension
for sieve nonparametric instrumental variables (NPIV) estimators. When implemented with
this data-driven choice, sieve NPIV estimators of hy and its derivatives are adaptive: they
converge at the best possible (i.e., minimax) sup-norm rate, without having to know the
smoothness of hg, degree of endogeneity of the regressors, or instrument strength. Our
second procedure is a data-driven approach for constructing honest and adaptive uniform
confidence bands (UCBs) for hg and its derivatives. Our data-driven UCBs guarantee cov-
erage for hy and its derivatives uniformly over a generic class of data-generating processes
(honesty) and contract at, or within a logarithmic factor of, the minimax sup-norm rate
(adaptivity). As such, our data-driven UCBs deliver asymptotic efficiency gains relative
to UCBs constructed via the usual approach of undersmoothing. In addition, both our
procedures apply to nonparametric regression as a special case. We use our procedures to
estimate and perform inference on a nonparametric gravity equation for the intensive mar-
gin of firm exports and find evidence against common parameterizations of the distribution
of unobserved firm productivity.
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1 Introduction

In this paper, we propose computationally simple, data-driven procedures for choosing tuning
parameters when estimating and constructing uniform confidence bands (UCBs) for a non-

parametric structural function hg satisfying
Y = ho(X) + v, E[u|W] =0 (almost surely), (1)

where X is a vector of regressors, W is a vector of (conditional) instrumental variables, and
the conditional distribution of X given W is unspecified. We allow for the possibility that some
elements of X are endogenous and hence that E[u|X] # 0 with positive probability. Model (1)

nests nonparametric regression as a special case with W = X and ho(z) = E[Y|X = z].

As endogenous regressors are frequently encountered in applied work in economics, there
are already many theoretical results on nonparametric instrumental variables (NPIV) estima-
tion of hg in model (1).! To implement any NPIV estimator and construct UCBs for hg in
practice, researchers must choose various tuning (or regularization) parameters. To date there
is no work on sup-norm rate-adaptive procedures for data-driven choice of tuning parameters
for any nonparametric estimator of hg or its derivatives, nor are there data-driven procedures
for constructing UCBs for hg or its derivatives. In this paper, we fill these gaps for sieve NPIV
estimators of hg, which are simply two-stage least-squares estimators applied to basis functions
of X and W. Sieve NPIV estimators are very easy to compute and have been used in empirical

work across several fields of economics.?

Our first procedure is a bootstrapped-based, data-driven choice for the number of basis
functions J used to approximate hg (i.e., the sieve dimension), which is the key tuning parame-
ter to be chosen for sieve NPIV estimators h 7. When implemented with our data-driven choice
J, the resulting estimators h 7 and their (partial) derivatives dh j converge at the minimax

sup-norm rates. That is, the maximal estimation errors over the support of X:
sup |ﬁj(a:) — ho(xz)| and sup laaizj(:v) — 0%hg ()],
x T

vanish as fast as possible—among all estimators of hg and its derivatives *hg—as the sample
size increases, uniformly over a class of data-generating processes, for both nonparametric
regression and NPIV models. Following the statistics literature, we refer to this data-driven

procedure as sup-norm rate-adaptive: the estimators adapt to features of the data-generating

'Early publications on NPIV estimation include Newey and Powell (2003), Hall and Horowitz (2005), Blun-
dell, Chen, and Kristensen (2007), Darolles, Fan, Florens, and Renault (2011), and Horowitz (2011).

2Some examples include the analysis of household demand (Blundell et al., 2007; Blundell, Horowitz, and
Parey, 2017), demand for differentiated products (Compiani, 2020), and international trade (Adao, Arkolakis,
and Ganapati, 2020).



process that the researcher does not know ex ante, including the smoothness of hy and the
strength of the instruments, to converge at the optimal sup-norm rate. Simulation studies

reveal that the resulting sieve estimator h 7 is accurate even when hq is highly nonlinear.

Sup-norm rate-adaptive procedures for choosing tuning parameters are particularly im-
portant in NPIV estimation, as the performance of nonparametric estimators of hg in model
(1) is known to be more sensitive to tuning parameters than in nonparametric regression. It
is therefore attractive to practitioners that one single data-driven choice of sieve dimension J
attains the best possible sup-norm convergence rates when estimating both hg and 9%hg using
h j and 9°h j- Sup-norm rate-adaptive procedures are also useful for several inference prob-
lems. For instance, they are inputs to our data-driven UCBs. They are also useful for ensuring
that remainder terms are asymptotically negligible when performing inference on nonlinear

functionals of hg and its derivatives via sample splitting and other two-step inference methods.

Our second data-driven procedure is for constructing UCBs for the structural function hg
and its derivatives. Here we use the term “uniform” to indicate that the entire function lies
within the confidence bands with the desired asymptotic coverage probability. Our data-driven
UCBEs are centered at the adaptive estimators h j and 9°h j and have their widths determined
by a critical value that accounts for bias and sampling uncertainty. We show that our data-
driven UCBs are honest, in the sense that they guarantee coverage for hg and its derivatives
uniformly over a generic class of data-generating processes, and adaptive, in the sense that
they contract at, or within a logarithmic factor of, the minimax sup-norm rate. Moreover,
though not the focus of our paper, our UCBs for derivatives of hy provide an alternative, fully
data-driven approach to testing certain shape restrictions. For instance, (strict) monotonicity
can be tested by checking whether the UCB for the derivative of hg lies uniformly above or

below zero.

A recent literature on (non data-driven) UCBs for hg and functionals thereof in NPIV
models relies on undersmoothing to guarantee asymptotically valid inference.® That is, tuning
parameters are assumed to be chosen (deterministically) in the hope that bias is of smaller
order than sampling uncertainty. However, undersmoothing requires prior knowledge of model
features such as the smoothness of Ay and instrument strength, which are typically unknown
in real data applications. Undersmoothing is also asymptotically inefficient, in the sense that
undersmoothed UCBs are unnecessarily wide, as it uses a sub-optimal choice of tuning pa-
rameter. This issue is particularly important for NPIV models, as the variance of sieve NPIV
estimators increases much faster in the sieve dimension J than the variance of sieve nonpara-
metric regression estimators. Indeed, the maximal width of undersmoothed UCBs relative to
ours will become infinite as the sample size goes to infinity for the class of models for which

our bands contract at the minimax rate. Simulation studies demonstrate the efficiency gains

3See, for example, Horowitz and Lee (2012), Chen and Christensen (2018) and Babii (2020).



of our data-driven UCBs relative to undersmoothed UCBs in finite samples.

To illustrate the practical use of our data-driven procedures, we estimate a nonparametric
gravity equation of Adao, Arkolakis, and Ganapati (2020) for the intensive margin of firm
exports and construct UCBs for the function and its elasticity. Our estimates and UCBs provide
evidence against common parameterizations of the distribution of unobserved firm productivity
(Chaney, 2008; Eaton, Kortum, and Kramarz, 2011; Head, Mayer, and Thoenig, 2014; Melitz
and Redding, 2015) in monopolistic competition models of international trade. Though we
do not impose monotonicity a priori, our estimated function is monotone and our UCBs for
the function and its elasticity are narrow and informative. In particular, we reject a constant

elasticity specification for the intensive margin of firm exports.

Related Literature. Our first procedure is inspired by the bootstrap-based implementation
of Lepski’s method of Chernozhukov, Chetverikov, and Kato (2014) for density estimation
and Spokoiny and Willrich (2019) for linear regression with Gaussian errors. However, our
procedure does not follow easily from these existing procedures due to several challenges present
in nonparametric models with endogeneity. In particular, the structural function hgy in (1) is

identified by inverting the conditional moment restriction
E[Y|W] = Elho(X)|W] (almost surely).

The degree of difficulty of inverting E[ho(X)|W] to recover hg is a nonparametric notion of
instrument strength and plays an important role in determining the best possible convergence
rates for estimators of hg and 9%hg.* While adaptive procedures for nonparametric density
estimation or regression deal only with unknown smoothness of the estimand, our data-driven
procedures must also deal with uncertainty about the degree of difficulty of the inversion
problem. This is important, as the NPIV literature has typically classified the difficulty of the
inversion problem into “mild” and “severe” regimes, and the properties of NPIV models differ
fundamentally across these cases. Minimax convergence rates in the mild regime are achieved by
a choice of sieve dimension that balances bias and sampling uncertainty, much like in standard
nonparametric problems such as density estimation and regression. By contrast, minimax rates

in the severe regime are obtained by a bias-dominating choice of sieve dimension.

Our procedure for data-driven choice of sieve dimension delivers the minimax sup-norm
rate for hg and its derivatives across the whole spectrum of models, from nonparametric re-
gression to NPIV models in the severe regime. As we shall explain in Section 3, this adaptivity

is achieved through several novel modifications to existing bootstrap-based implementations

“See Hall and Horowitz (2005) and Chen and Reiss (2011) for minimax L?-norm rates, and Chen and
Christensen (2013, 2018) for minimax sup-norm rates for NPIV models. When the conditional density of X
given W is continuous, each of these minimax rates are slower than the corresponding rates for nonparametric
regression (Stone, 1982).



of Lepski’s method. Our procedure improves significantly on and supersedes an (unpublished)
earlier procedure from Section 3 of the working paper Chen and Christensen (2015a) on sup-
norm rate-adaptive estimation of NPIV models.” In particular, it uses the bootstrap to avoid
selection of several constants, it performs much better in practice, and its minimax sup-norm
rate-adaptive guarantees encompass both nonparametric regression and NPIV models in both

mild and severe regimes.

Our second procedure for data-driven UCBs builds on the statistics literature on honest,
adaptive UCBs for nonparametric density estimation (Giné and Nickl, 2010; Chernozhukov
et al., 2014) and Gaussian white noise models (Bull, 2012; Giné and Nickl, 2016). However,
none of these works allows for nonparametric models with endogeneity, and our procedures do
not follow easily from these existing methods due to the above-mentioned complications that
arise in NPIV models. In fact, our data-driven UCBs for hg and its partial derivatives apply

to nonparametric regression with non-Gaussian, heteroskedastic errors as a special case.’

Finally, our work also compliments several recent papers on (non data-driven) estimation
and inference for sieve NPIV models with shape constraints; see for example Chetverikov and
Wilhelm (2017), Chernozhukov, Newey, and Santos (2015), Blundell et al. (2017), Freyberger
and Reeves (2019), Zhu (2020), and Fang and Seo (2021). Each of these works assumes a
deterministic sequence of sieve tuning parameters satisfying regularity conditions that depend
on unknown model features. An exception is Breunig and Chen (2020) who study data-driven,
L?-norm rate-adaptive testing of NPIV models. Note, however, that in nonparametric models a
data-driven choice of tuning parameters for L?-norm rate-adaptive testing does not, in general,
lead to the minimax rate of estimation or testing in sup-norm (see, e.g., Chapter 8.1 of Giné
and Nickl (2016)). In theory the adaptive test of Breunig and Chen (2020) could be inverted
to construct a L?-norm confidence ball for hg or its derivatives, though doing so in practice
may be computationally challenging. It is also difficult to interpret L?-norm confidence balls in
nonparametric models. By contrast, our UCBs for hg and its derivatives are easy to compute,

plot, and interpret.

The remainder of our paper is structured as follows. Section 2 presents a motivating illustration
in the context of Engel curve estimation and an empirical application to international trade.
Section 3 introduces our computationally simple data-driven procedures. Section 4 presents the
main theoretical results on sup-norm rate adaptive estimation and honest and adaptive UCBs.
Additional simulation evidence is presented in Section 5 while Section 6 concludes. Appendix

A presents details on basis functions. Appendix B contains technical results and proofs of main

®See Horowitz (2014), Liu and Tao (2014), Breunig and Johannes (2016) and Jansson and Pouzo (2020) for
other data-driven procedures for choosing tuning parameters for sieve NPIV estimators. None of these papers
considered sup-norm rate adaptivity, which is required for constructing honest and adaptive UCBs.

5 Although a by-product of our main results, this appears to be a new addition to the literature on honest,
adaptive UCBs for nonparametric regression and its derivatives.



results in Sections 4.2 and 4.3. Supplemental Appendix C presents proofs of all the technical

results in Appendix B and proofs of the theorems in Section 4.4.

2 Motivating Illustration and Empirical Application

2.1 Motivating Illustration: Engel Curve Estimation

We first present an empirically relevant simulation exercise to illustrate why an adaptive choice
of sieve dimension J is important for sieve NPIV estimation and UCB construction. Our
Monte Carlo design mimics the British Family Expenditure Survey data set used by Blundell
et al. (2007) to nonparametrically estimate household Engel curves with endogenous log total
expenditure (X), using log gross earnings of the household head as an instrument (W). We
simulate data from a kernel estimate of the joint density of (X, W).” For each (X, W) draw,
we set

Y =ho(X) +u, u = E[ho(X)|W] — ho(X) + v, v~ N(0,0.01),

with v independent of (X, W). The structural function we use is ho(x) = ®(4.864x — 1.256),
similar to the simulation design 1 in Blundell et al. (2007). For each simulated data set, we
compute the estimator h j using the data-driven choice of sieve dimension J described in Section
3.1 as well as data-driven UCBs for hg formed as described in display (8).® We then compare
our data-driven procedures to “undersmoothed” estimators and UCBs based on a value of J
that is larger than the (unknown) optimal choice, in the hope that bias is of smaller order than
sampling uncertainty. We construct the undersmoothed value J* as described in Section 5.2 so
that it diverges faster than J by a logn factor. We compute the undersmoothed estimator hoju
and undersmoothed UCBs that are centered at h g« and whose widths are determined using
the approach of Chen and Christensen (2018), which uses a less conservative critical value that
only accounts for sampling uncertainty conditional on the choice of sieve dimension. Results

are presented in Table 1; additional results are presented in Table 2 in Section 5.

Columns 2-5 of Table 1 show that the maximal error for the undersmoothed estimator
is several multiples larger than that of the data-driven estimator h j- In most Monte Carlo
replications our data-driven choice was J = 3,% in which case J* = 6 for the smaller sample
sizes n = 1250 and 2500, and J* = 10 for the larger sample sizes n = 5000 and 10000. Evidently,

modest increases in .J above J can produce a significant deterioration in the properties of hy.

"We use data for families without children, as described in Blundell et al. (2007). We transform the raw data
by first standardizing the log total expenditure and log gross earnings of the household head by their sample
means and standard deviations, then taking a standard normal cumulative density function transformation of
the standardized data, so that the transformed data take values in [0, 1].

8We use B-spline sieve constructed as described in Appendix A.1 with 7 = 3 and ¢ = 2.

Interestingly, our procedure chooses J = 3 (nonlinear function) over J = 2 (linear function).



NPIV | ||h; —holles | [Ihyu — hollso | Coverage RMW

n mean med | mean med | 90% 95% | mean med
1250 | 0.184 0.149 | 0.576 0.496 | 0.980 0.986 | 1.701 1.584
2500 | 0.163 0.134 | 0.564 0.474 | 0.990 0.993 | 2.226 2.098
5000 | 0.152 0.129 | 0.662 0.565 | 0.981 0.989 | 3.961 3.801
10000 | 0.146 0.137 | 0.659 0.573 | 0.946 0.959 | 5.522 5.330

Table 1: Mean and median maximal estimation errors of i 7 (data-driven) and hyu (undersmoothed) (columns
2-5), coverage of data-driven 90% and 95% UCBs for ho (columns 6-7), and mean and median relative maximal
width (RMW) of undersmoothed 95% UCBs to data-driven 95% UCBs (columns 8-9) across 1000 Monte Carlo
simulations for the Engel curve design, with 1000 bootstrap replications per simulation.

Data-driven NPIV Undersmoothed NPIV Data-driven NP Regression

15

0.5 P

F igure 1: Estimated structural function hg and 95% UCBs for hg (solid lines) using our data-driven procedure
(left panel) and undersmoothing (center panel) for a sample of size 2500 (grey dots). The true function hg is
also shown (orange dashed lines). The right panel shows the estimated conditional mean function E[Y|X = z]
and 95% UCBs for the conditional mean function.

Turning to columns 8-9 of Table 1, we see that the maximal widths of undersmoothed 95%
UCBs are overall larger than the maximal widths of our data-driven 95% UCBs, and the relative
width is increasing with sample size. For instance, our data-driven 95% UCBs are roughly 50%
the width of undersmoothed bands for n = 2500 and 20% of the width of undersmoothed bands
for n = 10000. Importantly, this reduction in width is not at the cost of coverage: the results
in columns 6-7 of Table 1 show that our data-driven UCBs are slightly conservative. Note that
some conservativeness is to be expected, as our UCBs deliver uniform coverage guarantees over

a class of data-generating processes.

Figure 1 illustrates the improvement in terms of width of our data-driven UCBs relative to
undersmoothed UCBs for a sample of size n = 2500. In this sample, our data-driven procedure
chooses sieve dimension J = 3 while the undersmoothed estimator uses J* = 6. For comparison,
in Figure 1 we also plot a sieve nonparametric estimate of the conditional mean function
E[Y|X = z] and 95% UCBs for it using our data-driven procedures. While the UCB for the

conditional mean function is much narrower than the UCBs for the true structural function hy,



it excludes the true structural function over almost all the support of X. The true conditional

mean function falls entirely within these bands for this sample, however.

2.2 Empirical Application: International Trade

Adao et al. (2020) derive two semiparametric gravity equations for the extensive and intensive
margins of firm exports in a monopolistic competition model of international trade without
parametric restrictions on the distribution of firm heterogeneity. The (nonparametric) functions
identified by these equations characterize the elasticity of firm exports to changes in bilateral
trade costs. Adao et al. (2020) estimate the elasticities from aggregate bilateral trade data
using a sieve NPIV approach, approximating the unknown function with cubic splines and
using (functions of) cost shifters as instruments. In this section, we apply our procedure to
determine the sieve dimension in a data-driven manner and to construct data-driven UCBs for

the function characterizing the intensive margin and its elasticity.

Model and Data. We base our estimation on the gravity equation for the intensive margin

of firm exports derived by Adao et al. (2020), which may be expressed as
yij = log p(log vij) + Gi + 05 + wij

where y;; = log Z;; +0K" 2;; where ;; is the average sales of firms of country 7 selling in country
j and z; is a cost shifter, 0 v;;j is the share of such firms, ¢; and §; are origin and destination

fixed effects, and u;; is an idiosyncratic error term. Our goal is to estimate the function log p,

0log p(log v)

Dlog characterizes the elasticity of the intensive margin of firm exports

as its derivative
to changes in bilateral trade costs. We use the same data as Adao et al. (2020) use for their

baseline estimates, which is a sample of 1522 country pairs for the year 2012.

Implementation. We simplify the empirical implementation of Adao et al. (2020) in a num-
ber of respects so that our data-driven procedures can be applied in a transparent manner.
First, we maintain their assumption that the instrumental variable z;; and origin and des-
tination fixed effects are exogenous, but we further assume that E[log p(log vi5)|2ij, (i, 65] =
E[log p(log v45)|2i;] (almost surely). Under this assumption, the reduced form for y;; may then
be expressed as a nonparametric regression model with the same origin and destination fixed

effects:
yij = 9(zij) + G+ 0; + e, (2)

where ¢(z;;) = E[log p(log v45)|2i;] and Ele;j|zij, i, 0;] = 0. We estimate ¢; and §; from (2) by

regressing ¥;; on origin and destination dummies and the basis functions bx1, ..., bx i of z;; at

dimension K (Jpax) (these notations are defined in Section 3). We then apply our procedures

'9Adao et al. (2020) construct y;; based on external estimates of & and x7.
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Figure 2: Left panel: estimated structural function log p and 95% UCBs for log p (solid lines) using our data-
driven procedure. Right panel: estimated elasticity of p and 95% UCBs for the elasticity (solid lines) using our
data driven procedure. Nonparametric regression estimates (orange dotted lines) and estimates with log p and
the fixed effects jointly estimated in the second stage (blue dot-dashed lines) are also shown.

using Yi; = yij — G — 5j as the outcome variable (Y'), logv;; as the endogenous regressor
(X), and z;; as the instrumental variable (W). We also estimate just the single equation (2)
on its own rather than both semiparametric gravity equations as a system. In addition, we
use different basis functions to approximate hy and to estimate the reduced form. Specifically,
we use a B-spline sieve constructed as described in Appendix A.1 with » = 4 and ¢ = 2.
Finally, rather than restricting log p(log v) to be linear in the tails of log v, we instead compute

confidence bands over the 5th to 95th percentiles of logv.

Results. Figure 2 plots the estimated function log p and the elasticity of p, together with 95%
UCBs constructed as in displays (8) and (13), respectively. The estimated function log p appears
monotone and the UCBs for log p and the elasticity of p are both narrow and informative. The
estimated elasticity is similar to (but more upwards-sloping than) the estimate reported in
Adao et al. (2020), though our empirical implementation is different and so our results are not
directly comparable. Interestingly, a flat line does not fit between our UCBs for the elasticity
because the upper limit of the lower band exceeds the lower limit of the upper band. As such,
our UCBs for the elasticity of p can be interpreted as providing evidence against the Pareto
specification for unobserved firm productivity used e.g. by Chaney (2008), under which the
elasticity is constant. In addition, the estimated elasticity appears to be increasing in the
exporter firm share whereas Figure 1 of Adao et al. (2020) shows that several conventional
parameterizations (Eaton et al., 2011; Head et al., 2014; Melitz and Redding, 2015) of the
distribution of unobserved firm productivity all imply a decreasing elasticity. Indeed, decreasing

elasticities would necessarily fall outside our UCBs for the elasticity of p.



Recall that our estimation approach eliminates the fixed effects from the reduced form
and estimates log p instrumenting with (transformations of) z;; whereas Adao et al. (2020)
estimate log p and the fixed effects jointly, instrumenting with (transformations of) z;; and
the origin and destination dummies. As a robustness check of our approach, we estimate log p
and the fixed effects jointly, using the data-driven choice J computed using our procedure,
instrumenting with bK(j)l(zij), . -va(j)K(j)(Zij) (these notations are defined in Section 3)
and the origin and destination dummies, and using y;; as the dependent variable. Estimates
using this approach are also shown in Figure 2 and are similar to those obtained for our original
implementation. In particular, the estimated elasticity—which is the focus of the analysis of
Adao et al. (2020)—are almost identical to our baseline elasticity estimates for most of the

support of log v.

Finally, to clarify the importance of using an IV approach in this application, we also plot
nonparametric regression estimates of log p and the elasticity of p using y;; as the dependent
variable and regressing on the same basis functions of logv;; used for our NPIV estimator
(with dimension J ) and origin and destination dummies. The regression estimates are clearly
very different from those we estimate using NPIV, and lie outside the UCBs for large regions

of the support of log v.

We note in closing that our procedures can equally be applied to other IV-based nonparametric

analyses in international trade; see, e.g., Adao, Costinot, and Donaldson (2017).

3 Data-driven Procedures

Our data-driven estimation and UCB procedures are based on sieve NPIV estimators, which
are two-stage least-squares (TSLS) estimators applied to basis functions of X and W. Given

a random sample (X;,Y;, W;)" ; from model (1), the sieve NPIV estimator of hg is

~ N N _ —1 _
hyx(x) =v)¢ix, ésx = [(V)Bk)(BxBr) 'Bk¥s]" (V)Bk)(BxBk) 'BgY, (3)

where ’ denotes transpose, Y = (Y1,...,Y,)’, and
Ul = (b (@), .. b (x), =%, %)
by = (br1(w), . b (w)), By = (bly,, ..., b5 Y,

where 97 and bX are vectors of basis functions of dimensions J and K, respectively. The TSLS
interpretation regards ¢ as the J dimensional vector of endogenous variables and b% as the
K dimensional vector of (unconditional) instruments, and hence K > J as the default relation
(Blundell et al., 2007; Chen and Christensen, 2018). As the choice of K will be determined

10



by J in our data-driven procedure, in what follows we write K = K(J), hy = h JK(J), and

¢j = ¢y (y)- The estimator (3) nests a series least-squares regression estimator as a special
case when W = X, J = K, and b = ¢].

Sieve NPIV estimators using B-spline bases and Cohen-Daubechies—Vial (CDV) wavelet
bases for hg are known to attain the minimax sup-norm rates for hg and its derivatives under
a theoretically optimal choice of tuning parameters (Chen and Christensen, 2018). As we
are concerned with sup-norm rate-adaptive estimation and UCBs, we therefore restrict our
attention to these bases in what follows. We refer the reader to Appendix A for further details

on these bases.

3.1 Data-driven Choice of Sieve Dimension

Appendix A describes the set 7 denoting all possible integer values of sieve dimension J for the
bases we use and the relation K (J) linking the sieve dimensions for the instrumental variables

and regressors. Our data-driven choice of sieve dimension J is computed in three simple steps.

Step 1. Compute a feasible index set for J, namely

T ={JeT:01008 Jmax)? < J < Jmax}, with

Jinax = min {J €T :Jylog J[(0.1logn)* v 5] < 10vn

< JT/log J+ [(0.1logn)4 v §ﬁ]} , (4)

where a V b = max{a,b}, J* =min{j € T : j > J}, and §; is the smallest singular value of
@;}mgjél}f where @b,J = B}((J)BK(J)/TL, @%J =V ¥;/n, and S, = B;((J)\I/J/n.

The (0.1logn)?* terms in (4) are included to accommodate nonparametric regression and
can be omitted for NPIV models. Note that §; = 1 and the index set j is deterministic for
nonparametric regression (where W = X). However, for NPIV models, §; decreases to zero as
J increases, and the index set J is random as jmax depends on §;1 (the estimated difficulty

of inversion).

Step 2. Let & = min{0.5,J;1 }. Compute a bootstrap-based critical value 6*(&), namely
the (1 — &) quantile of the sup statistic

sup |Z;(x,J, J2)|,
(z,J,J2)eS

11



where S = {(,J,J2) € X x J x J : Jo > J} with X denoting the support of X, and

1 1 /- . - R
Zi(w, J, Ja) = (ﬁ 3 <LJ,mb£§§”ui,J - sz,zbé‘vﬁh)ui,h)wi) . )
=1

N6z gmllsa
where (cw;)?_; are ITD N(0,1) draws that are independent of the data, and for .J, Jo € 7,

162,7,: 20 = 160,712 + 162,212 — 262,77,

with H&x,JHgd = é'x”],J and &$7J,J2 = f’J,IQJ,JQ (-EJQ,x), where
1 n
[ S G187 G 0 LK) K ()
Lya = W) [5Gy ySA 784Gy g Qg = n > s i, nby” (Bt
i=1

and ;5 =Y; — }AZJ(XZ'). Note that the variance term |6, 7.7, Hgd is no harder to compute than
standard errors for the difference of two TSLS estimators.

The critical value 6*(&) is calculated by computing SUD(, 7 1,)ed |Z} (z, J, J2)| across a large
number of independent draws of (w;)!"_;, then taking the (1 — &) quantile across the draws.
This bootstrap is simple to implement, as it avoids resampling the data and recomputing the
estimators across each iteration. In practice, the sup over x can be replaced by the maximum

over a fine grid.

Step 3. Compute our data-driven optimal choice of J as

J =min{J, J,}, (6)

where J,, = max{j €T :j < jmax} is the largest value of J that is smaller than Jmax, and

J = min {J cJ: sup \/ﬁ]h{(:c) ~ (@) < 1.19*(@)} .
(z,J2)EXX T Jy>J 162,705 |l sa
Theorem 4.1 and Corollary 4.1 below establish that the data-driven choice J leads to
estimators of hg and its derivatives that attain minimax sup-norm rates, and the performance
is guaranteed across nonparametric regression models and NPIV models in both the mild and
severe regimes. Section 5 presents additional simulation results which illustrate the performance
of our data-driven choice J in a highly nonlinear nonparametric regression design and an

additional nonparametric IV design.

Remark 3.1 Our procedure differs from bootstrap-based implementations of Lepski’s method
for density estimation and nonparametric regression without endogeneity in a number of ways.

For instance, it uses a search over a data-dependent index set J (see Step 1). This is an
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important modification for NPIV models, as the quality of the estimator hy deteriorates more
rapidly as J increases when the inversion problem is more difficult. As the degree of difficulty
depends on the conditional density of X given W and is therefore unknown, the approximate
degree of difficulty is inferred from data through §}1. The dependence on §;1 ensures J is
smaller for more severe problems and larger for milder problems. Moreover, our final choice
J (in Step 8) truncates the bootstrap-based Lepski estimator J at J,. While the truncation is
typically not binding for nonparametric regression and NPIV models in the mild regime, this

modification is important to achieve adaptivity for NPIV models in the severe regime.

3.2 Data-driven Uniform Confidence Bands

Our UCBs for hy are centered at the data-driven estimator h j and use a bootstrap-based

critical value. Recall I:JJ, Ui, 1, ||02,7|sd, and (wo;)i, from Step 2 above and let

L (LS g o
Zo(x, J) == | 7 Ljzby, " i gw; | . 7

n( ) HUCIZ7JHSd <\/ﬁ; Jz w; 1, J Wi ( )

The critical value z7_, (o = 0.05 for a 95% UCB) is calculated by repeatedly computing
Pl nerxg |Z (x, J)| across a large number of independent draws of (c;)!" ;, then taking

the (1 — «) quantile. This bootstrap is as simple to compute as that in Step 2 above.

Given the critical value z7_, our first UCB is

. 0, illsa -

hj((l:') — (era + Anﬁ*(d))T, hj((]}) + (Zikfoz + Ane*(d))w

with A, = 0.25loglogn. Theorem 4.2 below establishes the coverage properties of this UCB

| @

and its contraction rate in the mild regime. We recommend to use this UCB whenever J=J

from Step 3. If J = Jy, we recommend using the UCB

A 16, 5llsd . 16, jllsa
Cn(x> = |: x [z i ’S ! Z,J 0 + :| s

hj(x) —Zl-a \/ﬁ - "21:,7 hj(l’) + Zl—aT n
where

NG

and p is the minimal degree of smoothness assumed for hg (e.g., p = 1 if hg is assumed to be

) Gy illsa -
AL =4, max{Q*(&)H rflod J—P/d}

at least Lipschitz continuous). Theorem 4.3 below establishes the coverage properties of this

UCB and its contraction rate in the severe regime.

13



Lower and upper versions of (8) are given by

Cro(e) = [h ) - (Z;I_ﬁAne*(a))”U%”Sd, oo), and (10)

Cun(@) = ( =00, hj(z) + (2010 + Ane*(d))”(’%\/%”“l] ’

where z7 ;_,, is the (1 — ) quantile of SUD(, fexxd Zy(x,J) and —z{;,_, is the a quantile of

(11)

inf, fexss Z*(x,.J). One-sided versions of (9) are constructed similarly, again using A* in
place of A,,0%(& )H%j“sd/\/ﬁ

Section 5 presents additional simulation results which illustrate the performance of our
data~-driven UCBs in a highly nonlinear nonparametric regression design and an additional
nonparametric IV design, and their efficiency relative to undersmoothing. Finally, we note
that while we used Gaussian draws (o;)?_; in the bootstrap, it is also possible to use IID
draws from any distribution that has mean zero, unit variance, and finite third moment (e.g.

Rademacher draws or draws from the two-point distribution of Mammen (1993)).

4 Theory

In this section, we first outline the main regularity conditions before presenting the theoretical

results about adaptive estimation and uniform confidence bands.

4.1 Assumptions

We first state and then discuss the assumptions that we impose on the model and sieve space.

We require these to hold for some constants ay, c, C,Cr,Cq,0,0 >0 and v € (0,1).

For the first assumption, let L?(X) and L?(W) denote the classes of measurable functions
of X and W, respectively, with finite second moments, and let T : L?(X) — L?(W) denote
the conditional expectation operator Th(w) = E[h(X)|W = w]. In nonparametric regression

models where W = X, the conditional expectation T' reduces to the identity operator.

Assumption 1 (z) X has support X = [0,1]% and its distribution has Lebesgue density fx

which satisfies ay V< fx(z) <ay on X;

(i1) W has support W = [0,1]% and its distribution has Lebesque density fyy which satisfies
< fw(w) < ap on W;

(iii) T : L*>(X) — L?*(W) is an injective operator.

Assumption 2 IP’( ) =1;
(ii) P(E[u*|W] > ¢?) =

14



For the next assumption, let ¥ ; and Bx be the closed linear subspaces of L?(X) and
L?(W) spanned by 1,...,%; and bg1,...,bxk, respectively. The sieve measure of ill-
posedness is

_ Al 2 (x)
T] = sup

hew bl 220 ITPI 2wy

where HhH%Q(X) = E[h(X)?] with || - ||f2(wy is defined similarly. The measure 7; quantifies
the degree of difficulty of inverting E[ho(X)|W] to recover hg. The model (1) is said to be
mildly ill-posed (or in the mild regime) if 7; =< J/% for some ¢ > 0 and severely ill-posed
(or in the severe regime) if 77 < eC7'" for some C,¢ > 0, where d = dim(X). Note that
in nonparametric regression models 7; = 1 for all J, so the mildly ill-posed case includes
nonparametric regression as a special case with ¢ = 0.

In addition, let TI; : L?(X) — W, and g : L?(W) — By denote the least-squares

projection operators onto ¥ ; and By, respectively, i.e.:
IL;f = arg min |[f — gl/r2(x), Iy f =arg min ||f = gllL2w) -
gev 5 gEBK
We also define the TSLS projection operator Q; : L?(X) — ¥  as
) _ _ _ K(J
Qrho() = arg min [T (ho — h)|z2qw) = (6))[5)Gy ;5517 85Gy B b ()]
where Gy = E[bi\” (65 and 55 = EpE ) (42 )).

Assumption 3 (i) SUPRew A 12 ) =1 7| yTh — Th| 2wy < vy where v; < 1 for all
JeT andvy — 0 as J — oo;

(1) 77| T (ho — Who)l|L2owy < Crllho — ILyhol|p2(x) for all J € T;

(iti) |Q.(ho — ILsho)llso < Cqllho — Hholle for all J €T

By analogy with the definition of ||6 s||2;, the “population” sieve variance of hy(z) is
low,s12g = LyaS2sLy, where Lyo = (])'[S5G;585)718,Gyh and Q5 = E[u?by!” (b5 "))).
We also let ||o, s||? = [wg]’[SgG;}SJ]_l[@D;E]] which, in view of Assumption 2(i)(ii), satisfies

loz,7|| < loz,7]|sq¢ uniformly in .

Assumption 4 (i) QT}J <inficxy HO’LJH2 < SUp,ex HJMHZ < 67'3J forall J €T;

(i) imsup ;o sup,ex syet s>t (1027120 0.2 1120) < -

Assumptions 1, 2, and 3 are the same as (or slightly modifications of) Assumptions 1(i)-
(iii), 2(i)(iv), and 4 of Chen and Christensen (2018). To briefly summarize these conditions,

Assumption 1(i)(ii) are standard while Assumption 1(iii) is generically satisfied in models
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with endogeneity (see Andrews (2017)) and is trivially satisfied for nonparametric regression
because W = X and T reduces to the identity operator. Assumption 3 is trivially satisfied for
nonparametric regression models with Cr, Cg = 1. Assumption 3(i) is imposed to ensure that
the smallest singular value, denoted sy, of G;}/ 29 JG;}J/2 is a suitable analog of T}l, in the
sense that s}l = 77. Our results apply without this assumption, provided 7; is replaced by s}l
everywhere. We do however believe this is a mild condition on the approximation properties of
the basis used for the instrument space, as it is trivially satisfied with ||(IIxT —T)h|| 2wy = 0
for all h € ¥ ; when the basis functions for Bx and W ; form either a Riesz basis or eigenfunction
basis for the conditional expectation operator. Assumption 3(ii) is the usual L? “stability
condition” imposed in the NPIV literature. Assumption 3 (iii) is a L> “stability condition” to
control for the sup-norm bias. Assumption 4(i) is similar to a condition from Corollary 4.1 of
Chen and Christensen (2018). Assumption 4(ii) says essentially that the sieve variance ||o, s||%,
is increasing in J € T, uniformly in x. We view Assumption 4(ii) as a mild condition given
that J is increasing exponentially over 7. Indeed, by Assumption 2 and 4(i) and the fact that
J =254 for some L € N for CDV wavelet bases (B-splines are defined similarly, see Appendix
A), for any J, Jo € T with Jo > J we have

2
sup low |2y _ TV T o _ToLd

= < 94/2 < 9=d/2 - 1
vex 10e. 1120 TiNVJ2 T Towana

4.2 Main Results: Adaptive Estimation

We begin by defining the parameter space over which our procedure is adaptive. Let B5, oo (M)
denote the p-Holder ball of radius M (see Appendix A.3 for a formal definition). For given con-
stants Cr,Cqo, M >0 andp > p > %, let H? = HP(M, Cr,Cg) denote the subset of B5, (M)
that satisfies Assumption 3(ii)(iii) for any distribution of (X, W, ) satisfying Assumptions 1-4,
and let H = Upe[p,p] HP. For each hg € H, we let Py, denote the distribution of (X;, Y;, W;)22,
where each observation is generated by IID draws of (X, W, u) from a distribution of (X, W, u)
satisfying Assumptions 1-4 and setting Y = ho(X) + u.

Our first main result on adaptive estimation shows that h j converges at the optimal

sup-norm rate in both the mildly and severely ill-posed cases:

Theorem 4.1 Let Assumptions 1-4 hold.

(i) Suppose the model is mildly ill-posed. Then: there is a universal constant Cy1 for which

p
N logn \ 2(p+9)+d
sup sup Pho<||hj—h0||oo >C4.1< & > ) — 0
p€[p,p] ho€HP n
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(ii) Suppose the model is severely ill-posed. Then: there is a universal constant Cy1 for which

sup sup Pho(Hﬁj — hol|eo > C’4.1(logn)7p/<) — 0.
pE[p,p] ho€HP

Remark 4.1 The convergence rates in cases (i) and (ii) are the minimazx convergence rates

for estimating hg under sup-norm loss; see Chen and Christensen (2018).

In fact, adaptivity carries over to estimation of derivatives of hg without having to modify
the choice of sieve dimension J. Given a multi-index a € (N U {0})¢ with order |a| = Z?Zl a;
and any f: X — R, let
olal f(x
0%xy...0%xy
A natural estimator of 8%hg is 9*h 7 (i.e., just differentiate h 7). Our second main result on
adaptive estimation shows that 9°h j converges at the optimal sup-norm rate in both the

mildly and severely ill-posed cases:

Corollary 4.1 Let Assumptions 1-4 hold and let a € (NU{0})? with 0 < |a| < p.

(i) Suppose the model is mildly ill-posed. Then: there is a universal constant C} | for which

p—|a
o I 2(p+s)+d
sup sup Pp, (H(?ahj — 0%holloo > Ch 4 (ogn) ' ) — 0.
pE[p,p) ho€HP n

(i1) Suppose the model is severely ill-posed. Then: there is a universal constant C | for which

sup sup Py, ([|0%h s — 8hollee > C41 (logn)~#71aD/s) — 0,
pE[p,p] ho€HP

Remark 4.2 The convergence rates in cases (i) and (ii) are the minimaz convergence rates

for estimating 0%hy under sup-norm loss; see Chen and Christensen (2018).

To the best of our knowledge, Theorem 4.1 and Corollary 4.1 represent the first results
on adaptive estimation in sup-norm for NPIV models and, more generally, ill-posed inverse

problems with unknown operator.

4.3 Main Results: Adaptive Uniform Confidence Bands

It has been known since Low (1997) that it is impossible to construct confidence bands
that are simultaneously honest and adaptive over standard nonparametric classes (e.g. Holder

balls) of varying smoothness. As is standard following Picard and Tribouley (2000), Giné and
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Nickl (2010), Bull (2012), Chernozhukov et al. (2014), and many others, we content ourselves
with constructing adaptive confidence bands that deliver uniform coverage guarantees over a

“generic” subclass G of H.

To describe the class G, first note by the discussion in Appendix A.3 that there exists a
constant B < oo for which sup,cq ||h — I sh|lee < BJ 4 holds for all J € T and all p € [p, D]
For any small fixed B € (0, B) and any J € T, we therefore define

Gr = {he?—tpzﬁfg < ||h = TIh)|s for all JeTwithJEJ}, = .
PE[p,p]

Note that neither J nor B need to be known to implement our procedure, which is valid for
any B and J. Giné and Nickl (2010) present several results establishing the genericity of the
class G in unions of Holder balls (see also Chapter 8.3 of Giné and Nickl (2016)), which says,
in our notation, that for each p the set HP \ (Up>0,7e7GP) is nowhere dense in HP? under the
norm topology of HP. Thus, the set of functions in HP that do not belong to GP for some B
and J is topologically meagre. We refer the reader to Chapter 8.3 of Giné and Nickl (2016) for
further details on importance of the class G for the existence of adaptive uniform confidence

bands in Gaussian white noise models.

We say that a confidence band {C),(x) : x € X} is honest (asymptotically) over G with
level v if
liminf inf P, (ho(z) € Cp(z) V z€X)>1-a, (12)

n—o0 hgeg

and adaptive if for every € > 0 there exists a constant D for which

liminf inf inf P sup |Cr(z)| < Dr. >1—c¢,
n=00 pe[p,p| ho€GP ho(a:eg)(| n@)l < n(p)) B

where | - | is Lebesgue measure on R and 7,(p) is the minimax sup-norm rate of estimation
over ‘HP. Let Cy(x, A) denote the UCB from (8) replacing A, with a fixed positive constant
A. Our first main result is that C,(x, A) is honest and adaptive in the mildly ill-posed case:

Theorem 4.2 Let Assumptions 1-4 hold and suppose the model is mildly ill-posed. Then: there
is a constant A* > 0 (independent of o) such that for all A > A*, we have

(i) liminf inf Pp,(ho(z) € Cp(z,A) V z€X)>1—a;

n—oo hgeg

i) inf inf P ol )| < Cua(1 4 4) [ 2B
(i) pid pak, Pho sup [Cr(@, )l < Caz(1+ A)| = -1,

where Cyo > 0 is a universal constant.
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It follows immediately from Theorem 4.2(i) that the data-driven UCBs C,(z, A) have
uniform coverage over G for any sufficiently large A. The uniform coverage guarantees extend to
one-sided UCBs also. In practice, the constant A can actually be quite small; see the additional
simulation evidence in Section 5. Our recommended choice A,, = 0.25loglogn from Section
3 ensures that the bands in (8) are asymptotically valid over G and contract at rate that is

within a loglogn factor of the minimax sup-norm rate for mildly ill-posed NPIV models.

Remark 4.3 As the mildly ill-posed case nests nonparametric regression as a special case with
¢ =0, Theorem 4.2 shows that our UCBs are honest and adaptive for general nonparametric

regression models with non-Gaussian, heteroskedastic errors.

Our UCBs are centered at the data-driven estimator h 7 and have their width determined
by a critical value that accounts for both sampling uncertainty and bias. In this respect, our
approach is similar to the work Schennach (2020) for UCBs for a nonparametric regression
function based on estimates of the bias of kernel estimators. Although her UCBs are valid
pointwise, rather than uniformly, in hg (cf. display (12)), it is plausible that they could be

made honest under additional conditions.

Let C),(x, A) denote the UCB from (9) replacing A,, with a fixed positive constant A. Our
next main result is that C,(z, A) is honest in the severely ill-posed case, and contracts at the

optimal sup-norm rate when the degree of smoothness p = p:

Theorem 4.3 Let Assumptions 1-4 hold and suppose the model is severely ill-posed. Then:
there is a constant A* > 0 (independent of «) such that for all A > A*, we have

(i) liminf inf Pp,(ho(z) € Cp(z,A) V z€X)>1—a;

n—oo hgeg

(it) inf_~inf P, < sup |Cy(x, A)| < Cy3(1 + A)(log n)_p/g) -1,
pe[B7T)] ho€GP reX

where Cy.3 > 0 is a universal constant.

It follows immediately from Theorem 4.3(i) that the data-driven UCBs C,(z, A) have
uniform coverage over G for any sufficiently large constant A. Again our recommended choice
A, = 0.25loglogn from Section 3 ensures that the UCBs are asymptotically valid over G
and contract at rate that is within a loglogn factor of the optimal sup-norm rate if the true

smoothness is p = p.

Remark 4.4 The factor J2/4 i the definition of the UCB from (9) represents a possibly
conservative upper bound on the order of the bias component ||IL;ho — ho||oo. If the true degree

of smoothness is p > p, then this term is conservative and the UCB does not contract at the
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minimax rate of estimation. This raises the question as to whether it is possible to construct
UCBs that contract at the minimaz rate of estimation in severely ill-posed settings. As stated in
Chapter 8.3 of Giné and Nickl (2016), the existence of a rate-adaptive UCB implicitly requires
the estimation of certain aspects of the unknown function, such as its smoothness, to be feasible.
In mildly ill-posed settings, the condition ho € GP is sufficient to ensure that J diverges at the
oracle rate (n/log n)d/(Q(p+§)+d). As it turns out, this means J is sufficiently informative about
the unknown smoothness p to facilitate the construction of adaptive UCBs. In severely ill-posed
models the oracle choice of J is Jy,, = (alog n)¥s for some 0 < a < (2C)~'. Noticeably, here
the oracle choice is independent of p. Therefore, the adaptivity of J cannot be used to ascertain
any information about p. We conjecture that this negative result is not specific to our choice of
UCB construction: any UCB that is centered around an adaptive estimator that aims to mimic
the oracle iLJO’n over a sufficiently non-trivial class of functions (such as G) will likely face the

same “identifiability” problem of recovering information about p from (Jon)o ;.

Remark 4.5 It is helpful to compare the performance of our data-driven UCBs with under-
smoothed UCBs in the severely ill-posed case in which T; < eCI/e for some C,¢ > 0. Under-
smoothing is possible in theory by choosing J = (% logn — d+2ap loglog n)¥s with a € (0,1).
Undersmoothed UCBs using this J sequence will contract at a slower rate than our data-driven
UCBs if a < p/p. Note that choosing any constant in the exponent different from < or any
constant multiplying logn different from 1/(2C) will result in either a failure undersmoothing
(i.e., the bias term will dominate) or a potential failure of consistency of the undersmoothed

estimator; a similar point is made in Remark 1 of Horowitz and Lee (2012).

4.4 Adaptive Uniform Confidence Bands for Derivatives

Our data-driven UCBs for hg extend naturally to UCBs for derivatives 9%hg of hg, as we now
describe. UCBs for derivatives are implemented in exactly the same way as UCBs for hg, except

that we now use a bootstrap t-statistic process for 9%hgy, namely

( ZLJ:EW Uszz>a

where ||5¢ JHSd = Lizﬁlj(i/?}’m), and I:ﬁx = (8%5)’[@@;}@]-@{,@;} with 0% denoting
the derivative applied element-wise: 9% = (0% 1(x),...,0%p 1 (x)) . Let 2%, denote the
5 |28 (2, J)|. Our first UCB for 0%hg is analogous to the UCB for

Za*
()= ||azj|rsd

1 — a quantile of SUp(, )

ho from (8), namely

Waﬁ 17 ll=a

Cr(a) = |0%h(x) = (%0 + An87(a)) N “hi(@) + (224 + An07(a)) NG
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We recommend using this UCB in practice when J = J from Step 3 (see display (6)).

We require an additional condition to establish the theoretical properties of our UCBs
for derivatives. Let [0 ;[|2; = L% ,9Q,(L5,) with LY = (099)'[S,Gy 1S 5171S,Gy ) Also let
log 511> = [0°¢])'[S5G b,}S [0

Assumption 4 (continued) (iii) There exist constants ¢,C > 0 for which cr2.J'*2lal/d <
inf,ecx ||o*g7J||2 < Supgex HagJﬂz < Or2gH2alld for all J € T.

Assumption 4(iii) is only required for the theoretical results for derivatives we establish
in this subsection, and is similar to a condition from Corollary 4.1 of Chen and Christensen
(2018).

Let C%(x, A) denote the UCB C%(z) from (13) when A, is replaced by a fixed positive
constant A. Analogously to Theorem 4.2, we have the following result which establishes honesty

and adaptivity of C%(x, A) in mildly ill-posed models.

Theorem 4.4 Let Assumptions 1-4 hold, |a| < p, and suppose the model is mildly ill-posed.
Then: there is a constant A* > 0 (independent of o) such that for all A > A*, we have

(i)  liminf 1nf Pho(ﬁ ho(z) € Ca(z, A) YV zeX)>1—a;

n—o0

p—|al

1 2(pFs)+d

(i)  inf inf Ph0<sup|cg(x,A)| 504,4(1+A)< Og”) T ) 1,
pE[p,p] ho€GP TEX n

where Cy4 > 0 is a universal constant.

Remark 4.6 As the mildly ill-posed case nests nonparametric regression as a special case
with ¢ = 0, Theorem 4.4 shows that our UCBs are honest and adaptive for derivatives of hg in

general nonparametric regression models with non-Gaussian, heteroskedastic errors.

In the severely ill-posed case we again require a larger bias-adjustment. To this end, let

A H ||sd ~ “ ” Hsd R
Ch(z) = |0%hj(x) — A2, —=— — A}, 0°hj(z) + 21— =— +AZ*]7 (14)

where

NG

We recommend using this band in practice when J = .J, from Step 3 (see display (6)). Let

; 167 llsa
A% = A, max {9*(@)” , Jlal-p)/d

Cf(x, A) denote the band (14) when A, is replaced by a fixed positive constant A. Analogously
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to Theorem 4.3, the following result shows C¢(x, A) is honest over G and shrinks at the optimal

rate when hg is p-smooth:

Theorem 4.5 Let Assumptions 1-4 hold, |a| < p, and suppose the model is severely ill-posed.
Then: there is a constant A* > 0 (independent of ) such that for all A > A*, we have

(1) liminfhinfgIPhO (0%ho(z) € C(z,A) V z€X)>1—a;
0E

n—o0

(i) inf inf Py, < sup |Ch(z, A)| < Cys(1 + A)(]Ogn)(alp)/<> 1,
PE[p,p] ho €GP TEX

where Cy5 > 0 is a universal constant.

We conclude this subsection by presenting one-sided versions of our UCBs for 0%hg, which
are useful for testing shape restrictions such as monotonicity, concavity, or convexity. Lower

and upper UCBs for 0%hg in the mildly ill-posed case are

a ai ax %/ ~ ||&ij||sd
1o = [0 G+ A @) =2, o)
; . e sllsa
Cirn(x) = | =00, O j(x) + (21— + Anb" (@) — = ;

NG

e )EXKT 2% (x,J) and —2{1_q I8
the a quantile of inf ()X x T 23 (z, J). One-sided UCBSA in the severely ill-posed case are con-
structed similarly, replacing An6*(&)([62 7lsa/ v/n with A%*. The uniform coverage guarantees
established in Theorem 4.4(i) and 4.5(i) extend to these one-sided UCBs in the mildly and

severely ill-posed cases, respectively.

where the critical value z%’fl_ o 1s the 1 — a quantile of sup

5 Additional Simulations

In this section we present additional simulation results to complement those presented in
Section 2.1. We first present coverage properties of the data-driven band Cy,(z, A) from (8) for
different A for the Engel curve design from Section 2.1. We then present a simulation design
for a challenging nonlinear nonparametric regression. We finally present another simulation

design for a NPIV model with a non-monotonic structure function hg.

5.1 Additional Results for Section 2.1

The UCBs reported in Section 2.1 use our recommended default choice of A, = 0.25loglogn,

which is guaranteed to deliver asymptotically valid coverage irrespective of the design, and are
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therefore slightly conservative. To investigate how coverage depends on A, Table 2 shows the
coverage of our 95% bands C,,(x, A) for hy across simulations for different A. It appears that

any A > 0.5 delivers valid coverage for the Engel curve design in Section 2.1.

NPIV A

n 0.00 0.01 005 010 050 1.00
1250 | 0.855 0.858 0.877 0.901 0.982 0.999
2500 | 0.855 0.865 0.886 0.907 0.985 1.000
5000 | 0.760 0.772 0.813 0.845 0.978 0.998
10000 | 0.467 0.488 0.571 0.644 0.951 0.999

Table 2: Coverage of data-driven 95% UCBs C,(z, A) for ho for different A (columns 2-7) across 1000 Monte
Carlo simulations for the Engel curve design from Section 2.1, with 1000 bootstrap replications per simulation.

5.2 Nonparametric Regression

For this nonparametric regression (NPR) design, we simulate X ~ U[0,1] and U ~ N(0,1)
independently, and then set
Y =sin(157X) cos(X) + U . (15)

The conditional mean function ho(x) = sin(157z) cos(z) is very wiggly over [0, 1] and requires
a high value of J to be selected in order to well approximate hg (see Figure 3). For each
simulated data set, we compute our data-driven estimator h j with J chosen using the procedure
described in Section 3.1 and data-driven UCBs for hg as described in display (8). As in Section
2.1, we compare our data-driven procedures to undersmoothing. We choose the undersmoothed
sieve dimension J* by setting its corresponding resolution level (see Appendix A) to be L* =
| L + logy(log(n))], where L is the resolution level corresponding to J and |a] denotes the
largest integer less than or equal to a. This choice ensures that J* diverges faster than J by
a factor of logn. We compute the undersmoothed estimator hyw and UCBs that are centered
at hyu and whose widths are determined using the bootstrap-based approach of Chen and

Christensen (2018).!! Results are presented in Table 3 for a B-spline basis of order 3.

While this simulation design is very different from that in Section 2.1, the findings pre-
sented in Table 3 are similar. In particular, the maximal estimation error of our data-driven
estimator is several multiples smaller than that of the undersmoothed estimator. Moreover,
undersmoothed UCBs are relatively wider than our data-driven UCBs for large n, despite the
fact that our data-driven UCBs still provide (conservative) coverage guarantees. Here the con-
servativeness arises because of our default choice of A,, = 0.25loglog n, which is guaranteed to

deliver asymptotically valid coverage irrespective of the design. For this NPR design, a much

" The UCB construction from Chen and Christensen (2018) implicitly assumes the chosen sieve dimension is
non-random whereas our undersmoothed UCBs use a random choice J* and are therefore possibly too narrow.
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NPR | |[hj—holloo | |[ge — holleo | Coverage RMW

n mean med | mean med | 90% 95% | mean med
1250 | 0.590 0.534 | 1.648 1.349 | 0.999 0.999 | 1.499 1.195
2500 | 0.399 0.362 | 0.907 0.823 | 1.000 1.000 | 1.200 1.140
5000 | 0.290 0.262 | 0.955 0.868 | 1.000 1.000 | 1.707 1.610
10000 | 0.206 0.188 | 0.645 0.591 | 1.000 1.000 | 1.726 1.669

Table 3: Mean and median maximal estimation errors of h 7 (data-driven) and hyu (undersmoothed) (columns
2-5), coverage of data-driven 90% and 95% UCBs for ho (columns 6-7), and mean and median relative maximal
width (RMW) of undersmoothed 95% UCBs to data-driven 95% UCBs (columns 8-9) across 1000 Monte Carlo
simulations for the NPR design (15), with 1000 bootstrap replications per simulation.

NPR A

n 0.00 0.01 0.05 010 050 1.00
1250 | 0.951 0.960 0.970 0.981 0.998 1.000
2500 | 0.984 0.984 0.990 0.998 1.000 1.000
5000 | 0.986 0.991 0.997 0.999 1.000 1.000
10000 | 0.991 0.993 0.998 1.000 1.000 1.000

Table 4: Coverage of data-driven 95% UCBs C,(z, A) for ho for different A (columns 2-7) across 1000 Monte
Carlo simulations for the NPR design (15), with 1000 bootstrap replications per simulation.

smaller value of A suffices to deliver valid coverage. Table 4 shows the coverage of our 95%
bands C,(x,A) for hg across simulations for different A, from which we see that even A = 0
suffices for valid coverage. The reason is that for this NPR design the set J is large and the
estimator h varies a lot across different .J due to the wiggliness of hg. Therefore, the critical
value z7_,, which is the quantile of a sup-statistic over X’ x J , is relatively more conservative
than for the NPIV designs in Section 2.1 and the next subsection. This extra conservativeness

suffices to deliver valid coverage in this NPR design even with A = 0.

To illustrate the performance of our data-driven procedures, in Figure 3 we plot our data-
driven estimator h 7 and 95% UCBs for the conditional mean function for a sample of size 2500.
In this sample, our data-driven choice of sieve dimension is J = 34. The data-driven estimator
h 7 well approximates the true conditional mean function hg, which lies entirely within the 95%
UCBs. We also plot two undersmoothed estimators using the first (“l-undersmoothed”) and
second (“2-undersmoothed”) smallest values of J exceeding .J, which are J = 66 and J = 130,
respectively for this basis, along with 95% UCBs that are centered at the “undersmoothed”
estimators and whose widths are determined using the procedure of Chen and Christensen
(2018). The undersmoothed bands are of a similar width to our data-driven bands for this
sample, even though they use a less conservative critical value which only accounts for sam-
pling uncertainty conditional on the choice of sieve dimension. However, the undersmoothed

estimator is much wigglier and does not approximate hg as well: the maximal estimation error
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Figure 3: Estimates and 95% UCBs for ho (solid lines) using our data-driven procedure (top left panel) and
undersmoothing (top right and bottom left panels) for a sample of size 2500 for the NPR design (15). The true
conditional mean function hg is also shown (orange dashed lines). The bottom right panel shows estimates and
95% UCBs constructed using the largest sieve dimension less than J.

of our h 7 is 0.289 while the 1-undersmoothed estimator has maximal estimation error 0.473
in this sample. Finally, in case the choice J = 34 seems unnecessarily large, we also plot an
estimate of ho using the largest sieve dimension that is smaller than .J, which is J = 18 for
this basis (“l-oversmoothed”). It is clear that this value of J is too small, as the oversmoothed

estimator fails to well approximate hg around the center of the support of X.

5.3 Nonparametric IV

For our second NPIV simulation design, we draw (U, V) from a bivariate normal distribution
with mean zero, unit variances, and correlation 0.75, draw Z ~ N(0, 1) independent of (U, V),
and then set W = ®(Z) where ®(-) denotes the standard normal cumulative distribution
function, X = ®(D(Z+V)+ (1 —D)V) where D is an independent Bernoulli random variable
taking the values 0 and 1 each with probability 0.5, and

Y =sin(4X)log(X) + U . (16)

The structural function ho(z) = sin(4x) log(x) is plotted in Figure 4 and is non-monotonic and

more nonlinear than the structural function for the Engel curve example in Section 2.1.

As in Section 2.1 and the previous subsection, for each simulated data set we compute
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NPIV | ||h; —holles | [Ihyu — hollso | Coverage RMW

n mean med | mean med | 90% 95% | mean med
1250 | 0.520 0.463 | 1.076 1.006 | 1.000 1.000 | 1.111 1.071
2500 | 0.399 0.361 | 0.904 0.831 | 0.999 0.999 | 1.321 1.269
5000 | 0.308 0.278 | 1.218 1.164 | 1.000 1.000 | 2.441 2.389
10000 | 0.253 0.236 | 1.165 1.093 | 0.999 1.000 | 3.352 3.283

Table 5: Mean and median maximal estimation errors of h 7 (data-driven) and hyu (undersmoothed) (columns
2-5), coverage of data-driven 90% and 95% UCBs for ho (columns 6-7), and mean and median relative maximal
width (RMW) of undersmoothed 95% UCBs to data-driven 95% UCBs (columns 8-9) across 1000 Monte Carlo
simulations for the NPIV design (16), with 1000 bootstrap replications per simulation.

NPIV A

n 0.00 0.01 0.05 010 050 1.00
1250 | 0.989 0.990 0.995 0.998 1.000 1.000
2500 | 0.974 0.978 0.982 0.988 1.000 1.000
5000 | 0.957 0.961 0.974 0.984 1.000 1.000
10000 | 0.861 0.869 0.898 0.928 1.000 1.000

Table 6: Coverage of data-driven 95% UCBs C,(z, A) for ho for different A (columns 2-7) across 1000 Monte
Carlo simulations for the NPIV design (16), with 1000 bootstrap replications per simulation.

our data-driven estimator h 7 and UCBs from (8), and compare these with an estimator using
an undersmoothed sieve dimension J* (computed as described in the previous subsection) and
undersmoothed UCBs whose widths are determined using the bootstrap-based procedure of
Chen and Christensen (2018). Results are presented in Table 5 for a B-spline basis which is
constructed as described in Appendix A.1 with » =4 and ¢ = 2.

Here we again see that the maximal estimation errors of our data-driven estimator is
several times smaller than that of the undersmoothed estimator, especially for large sample
sizes. Our data-driven UCBs are around 10% narrower than undersmoothed UCBs for the
smaller sample sizes, and around 70% narrower than undersmoothed UCBs for the larger
sample sizes, even though our data-driven bands are conservative using our default choice
A, = 0.25loglogn. As seen in Table 6, a value A > 0 is required for correct coverage for
this NPIV design, by contrast with the previous nonparametric regression design. The reason
for this difference is that here the set J is fairly small, so the critical value z]_, is relatively
less conservative. For this NPIV design, a value of A > 0.1, such as our default choice A,, =

0.25log log n, suffices for correct coverage.

In Figure 4 we plot our data-driven estimator h 7 and 95% UCBs for hg for a sample
of size 2500, alongside corresponding estimates and UCBs based on undersmoothing. In this

sample, our data-driven procedure chooses J = 4, the undersmoothed estimator uses J“ = 7.

While both UCBs contain the true structural function hg, the data-driven bands are narrower
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F igure 4: Estimated structural function ho and 95% UCBs for hg (solid lines) using our data-driven procedure
(left panel) and undersmoothing (center panel) for a sample of size 2500 for the NPIV design (16). The true
structural function hg is also shown (orange dashed lines). The right panel shows the estimated conditional
mean of Y given X and 95% UCBs for the conditional mean function.

and more accurately convey the shape of hg than the undersmoothed bands, which are much
more wiggly. For comparison, we also show data-driven estimates of the conditional mean
function E[Y'|X] and its UCBs. Although our data-driven procedure chooses J = 4 for both
NPIV and nonparametric regression implementations, the maximal widths of the data-driven
bands for NPIV is just under four times the maximal width of the bands for nonparametric
regression. Note, however, that the true structural function hg falls outside the UCBs for the
conditional mean function over almost all of the support of X, again illustrating the importance

of estimating the structural function using instrumental variables for this design.

6 Conclusion

We introduce computationally simple, data-driven procedures for adaptive estimation and
honest, adaptive UCBs for a structural function and its derivatives in nonparametric models
using instrumental variables. Our first contribution is a data-driven choice of sieve dimension
for sieve NPIV estimators. With this data-driven choice, estimators of the structural function
and its derivatives converge at the minimax sup-norm rate, both for nonparametric regression
models and NPIV models in both the mild and severe regimes. Our second contribution is a
data-driven procedure for constructing UCBs for the structural function and its derivatives.
The UCBs guarantee coverage uniformly over a generic class of data-generating processes
and contract at the minimax sup-norm rate for nonparametric regression and NPIV models
in the mild regime, and at near-optimal rates for NPIV models in the severe regime. We
illustrate the usefulness of our procedures with an empirical application to international trade

and several simulations, including an empirically relevant Engel curve design and a highly
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nonlinear nonparametric regression design. Although our methodology and theory are currently
developed for model (1), they can be readily extend to other related models, such as partially
linear NPIV and additive NPIV models.

A Basis Functions and Holder Classes

A.1 B-splines

We first describe the construction of B-spline bases in the univariate and multivariate cases,

then review some of their relevant properties.

We first consider the univariate case. The construction follows DeVore and Popov (1988)
and Chapter 5.2 of DeVore and Lorentz (1993). The basis is characterized by a resolution level
I € NU{0} and order r € N (or degree r — 1). Let N, denote the r-fold convolution of the
indicator function of the unit interval, N, = Tjgqj * -+ * Ljg 1) (r-times). A (dyadic) B-spline

basis on [0, 1] with resolution level [ and order r is
Ynix)=NQax+r—j), j=1,....204r—1=1J1.

In the multivariate case we generate bases supported on [0, 1]d with resolution level [ and
order r by taking tensor products of univariate bases. Here each basis function is of the form
Hle Wy, () with ¥, € {¢g1,...,%,, }. It follows that any B-spline basis of order r and
resolution level I must have dimension J = (2! 4+ r — 1)9. The set of possible sieve dimensions
J as [ varies over all resolution levels is therefore 7 = {(2! +r —1)?: 1 € NU {0}}.

As discussed further in Appendix A.3 below, the order r for the basis for the endogenous
variable X should be chosen such that » — 1 > p, where p is the maximal assumed degree of
smoothness for hg. Equivalently, our procedures deliver adaptivity over any smoothness range
[p,p] with » —1 > p > p > d/2 when implemented with an order-r B-spline basis for X.
Choosing r is therefore similar to choosing the order of a kernel in kernel-based nonparametric

estimation.

We construct a B-spline basis bk, ...,bxx for the d,,-dimensional instrumental variable
W similarly. Here we use a basis of order 7 + 1 because the reduced form is smoother than hg
(taking a conditional expectation is a smoothing operation similar to convolution). Given the
resolution level [ for the basis for X, the resolution level for the basis for W is I, = [(I+q)d/dw]
for some ¢ € N U {0}, where [a] denotes the smallest integer greater than or equal to a.
Linking l,, to [ in this manner defines a mapping K (J) between the two bases that satisfies
limy_,oo K(J)/J = ¢ € (0,00), which is a condition Chen and Christensen (2018) use to

establish that sieve NPIV estimators can attain their optimal sup-norm rates. By analogy with
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NPIV q=20 qg=1 q=2 q=3 q=41

n mean med | mean med | mean med | mean med | mean med
1250 | 0.158 0.124 | 0.151 0.118 | 0.139 0.112 | 0.146 0.123 | 0.201 0.183
2500 | 0.112 0.090 | 0.112 0.090 | 0.107 0.087 | 0.121 0.096 | 0.180 0.158
5000 | 0.097 0.078 | 0.095 0.077 | 0.090 0.075 | 0.112 0.083 | 0.162 0.144
10000 | 0.086 0.071 | 0.084 0.070 | 0.081 0.068 | 0.099 0.072 | 0.134 0.112

Table 7: Mean and median maximal estimation errors HiL]“ — ho||lec of our data-driven estimator fLJ- across
1000 Monte Carlo simulations for the Engel curve design from Section 2.1, with 1000 bootstrap replications per
simulation.

TSLS estimators for linear models, we clearly also need K(J) > J. In practice, we recommend
taking ¢ as the second- or third-smallest value for which K(J) > J holds for all J (i.e., ¢ =1
or ¢ = 2 if both X and W are of the same dimension). We advise against choosing g any larger,

as the number of basis functions increases exponentially in the resolution level.

In Table 7 we report the average and median maximal estimation errors for our data-
driven estimator h j across simulations for the design from Section 2.1. Results shown are for
a B-spline of order 3 for ¢ j1,...,% s and order 4 for bg1,...,bxxk, where K and J are linked

via l, = [ + ¢ for different values of q.

We now review some properties of B-spline bases that are used (sometimes implicitly)
in the technical arguments below. The following Lemma summarizes Lemmas E.1 and E.2 of
Chen and Christensen (2018). Let (y,; = supg¢o, 14 HG;}J/szgng.

Lemma A.1 Let Assumption 1(i) hold. Then: there are constants Cy,ac > 0 depending only
on ay for which

(i) supyepo e [0 [l < Cop;

(“) 01;1!]_1 < )\min(Gw,J) < )\max(Gd),J) < Cq/ﬂ]_lf
(iii) V' J < Cpg < acVJ.

Our choice of basis bx1,...,bxx for W satisfies essentially the same properties, in view
of the fact that J < K(J) < J. Let Gy = sup,ejo 1]dw ||G;}/2b5(J)||g2.

Corollary A.1 Let Assumption 1(i) hold. Then: there are constants Cy,ac > 0 depending
only on ay for which

(i) SUPyefo1)dw o Pl < Co;

(ZZ) Cl;lj_l < )\min(Gb,J) < Amax(Gb,J) < CbJ_l;
(’l"ii) \/j S Cb,J S ac\/j.

We also use some continuity properties of the basis in the proofs. Note that N,.(-) is r — 1

times continuously differentiable on (0,r). It therefore follows by Lemma A.1(ii) that the basis
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functions are Holder continuous, in the sense that HG;lj/z([@Dm‘]l] — [ Dl < CI*||21 — xQH%
holds for some positive constants C,w, w’. Finally, this basis also satisfies a Bernstein inequality
(or inverse estimate): [|0%f|loo < J1/|| f|loo holds for any f € ¥ (the closed linear subspace
of L?(X) spanned by v1,...,%7;) and multi-index a with |a| <7 — 1.

A.2 CDV Wavelets

We first describe the construction of CDV wavelet bases in the univariate and multivariate

cases, then review some of their relevant properties.

We first consider the univariate case. The construction follows Cohen, Daubechies, and
Vial (1993); see also chapter 4.3.5 of Giné and Nickl (2016). The basis is characterized by
a resolution level | € N and an order N € N. Let (¢,%) be a Daubechies pair consisting
of a scaling function ¢ and wavelet 1 of order IN. The function ¢ has support contained in
[-N + 1, N] and ¢ has support contained in [0,2N — 1]. We translate ¢ to have support
[~N + 1, N] as well. Let L denote the smallest integer for which 2 > 2N and define

orj(x) =282  — j), ;=288 —j), je{N,...,2F - N - 1}.12

The functions ¢ ; and ¢ ; with N < j < 2L — N — 1 are supported on [27F,1 — 271].

We augment these with NN left and right boundary corrected functions ¢y ; = aplff; and

PLoL_Nyj = @rLigjht for j € {0,...,N — 1}, with support contained in [0, (2N — 1)/2F] and
[1— (2N —1)/2%, 1], respectively. The boundary corrected functions are constructed as a finite

linear combination of translates of ¢ (Giné and Nickl, 2016, p. 363-364). For each | > L we
left
l7j

and ¥y 00Ny = Lblryijght for j € {0,...,N —1}. This yields a total of J; = 2! basis functions,

similarly augment v, j € {N, ..., 2! — N — 1} with boundary corrected functions P =1

namel
Y . 2L 1 -1 2k_1
Wnji=1..., i} = {SOL,j}j:o U (Uk:L{wk,j}j:O )

In the multivariate case we generate bases supported on [0,1]% by taking tensor products of
univariate bases. The set of possible sieve dimensions .J as [ varies over all resolution levels is
therefore T = {24 : 1= L+ 1,L+2,...}.

We say that the CDV wavelet sieve space is S-regular if the Daubechies functions ¢ and
1 are S times continuously differentiable on R. A S-regular basis can always be chosen by
choosing the order N such that 0.18(N — 1) > S (Giné and Nickl, 2016, Theorem 4.2.10(e)).
As discussed further in Appendix A.3 below, the regularity S of the basis for the endogenous
variable X should be chosen such that S > p, where p is the maximal assumed degree of

smoothness for hg. Equivalently, our procedures deliver adaptivity over any smoothness range

12We use this conventional notation without confusion with the 7, basis functions spanning ¥ ;.
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[p,p] with S > D > p > d/2 when implemented with a S-regular CDV wavelet basis for X.
As with choosing the order r of B-splines, choosing S (equivalently, N) is therefore similar to

choosing the order of a kernel in kernel-based nonparametric estimation.

A CDV wavelet basis bg1,...,bxk for the dy,-dimensional instrumental variable W is
constructed similarly, using a basis of regularity S+ 1. Given the resolution level [ for the basis
for X, the resolution level for the basis for W is [, = [(l + ¢)d/dy | for some ¢ € N. Linking
ly to I in this manner again defines a mapping K (J) between the two bases that satisfies
limj_oo K(J)/J =c € (0,00). As with B-splines, we recommend that g should be the second-
or third-smallest value for which K (J) > J holds for all J.

We now review some properties of B-spline bases that are used (sometimes implicitly)
in the technical arguments below. The following Lemma summarizes Lemmas E.3 and E.4 of
Chen and Christensen (2018). Let (y ;= sup,¢jo,1)4 ||G;’1J/2wg{\|gz.

Lemma A.2 Let Assumption 1(i) hold. Then: there are constants Cy,ac > 0 depending only

on ay for which

(i) sup,epoa |47 le < CyV'J;
(ii) Cy' < Amin(Gy.1) < Amax(Gy.s) < Cy;
(’l"ii) \/j S Q/,J S ac\/j.

Our choice of basis bx1,...,bxx for W satisfies essentially the same properties, in view
of the fact that J < K(J) < J. Let Gy = sup,ejo 1]dw ||G;}/2b5(J)||gz.

Corollary A.2 Let Assumption 1(i) hold. Then: there are constants Cy,ac > 0 depending

only on ay for which

(i) Supyeo e 106 o < CoV/T;

(“) Cljl S AmiH(Gb,J) S )\max(Gb,J) S Cb,‘
(iii) VT < Gy < acV'J.

We also use some continuity properties of the basis in the proofs. As ¢ and ¢ are S
times continuously differentiable on their supports, it follows by Lemma A.2(ii) that the basis
functions are Holder continuous, in the sense that HG;IJ/Q([%ZI] WL e < CI?|2y — xQHl‘ﬁQI
holds for some positive constants C,w, w’. Finally, this basis also satisfies a Bernstein inequality
(or inverse estimate): ||0%f||oo < J19/4|| f||loo holds for any f € W (the closed linear subspace
of L?(X) spanned by 11, ..,%;s) and multi-index a with |a| < S.

A.3 Holder Classes

Let BY oo = {h € L*°([0,1]%) : ||| g». _ < o0} denote the Holder space of smoothness p where
| -1/ gr,  denotes the Hélder norm of smoothness p > 0 (see Giné and Nickl (2016), pp. 370-1),
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and let Bb oo(M) = {h € B%  : ||h|lgr, . < M} denote the Hélder ball of smoothness p and
radius M.

The space B% o may equivalently be defined by the error in approximating a function
using the CDV wavelet or dyadic B-spline sieves (see Giné and Nickl (2016) for the wavelet
construction and DeVore and Popov (1988) for the dyadic B-spline construction). To do so, let
U ; be a CDV wavelet sieve space of regularity S > p or dyadic B-spline sieve space of order
r > p+1 at resolution level L that generates J. In either case, let d(h, ¥ ;) = inf ey, ||h—g||oo-
We then have

h € BY

0,00

= ||h||oo + sup JPUd(h,V;) < co
J:JeT
Moreover, ||hoo + sup.jer JP/4d(h, ¥ ;) is equivalent to |h|l gz, - But note that
d(h, W) < |[h =1lshlleo < (14 [[sloc)d(h, ¥),

by Lebesgue’s lemma (DeVore and Lorentz, 1993, p. 30), where [[IL;|[oo := supp,p|j.. <1 [TLsP]0o
is the L norm of the L?(X) projection onto V¥ ;. Previously, Huang (2003) and Chen and
Christensen (2015b) established that ||I1 ]|

by a (tensor product) B-spline or CDV wavelet basis, respectively. In this case,

< 1 under Assumption 1(i) when W is spanned

~

h € BP

0,00

— |hlloo + sup JP4||h — T h||s0 < o0,
J.JeT

and ||h|oo + sup . je7 JP/ || h — T sh|| o is equivalent to || - B2,

B Technical Results and Proofs of Main Results

In this Appendix we first introduce notation. We then present technical results that are used

to establish the main results. We finally prove the main results in Subsections 4.2 and 4.3.

B.1 Notation

For any given sequence (Z;)"_; of random vectors in R™ and any function g : R™ — Rk,
n
1=

we denote Ey[g(Z)] = L 3" | g(Z;). We use the following notation for vectors and matrices
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formed from the basis functions

vl = (W), ---,¢JJ($))'7 b = (brr(w), ..., bxx(w)),
G = s NG 0l Go= swp |G, 1/2bK“>|uz
z€[0,1 wel0,1]dw
Gy, = WXWX)] ) Gp,y = [bgu)(b{/(vu))/] )
Sy = EBED )] S5 = G, PR (wh) e

Estimators of the matrices above and their orthogonalized versions are

N ~ K(J), K(J
Gy = [1/1}7((1/1‘7)/] G,y = [bw( )(bw( ))/],
o 1 2 1/2 o 2p [ K(T) K ~1/2
b = / E, [¢% (¥%)] 1/1J/ ; Gb,J:GbJ/ E, by ( )(bw( ))]Gb,J/ ;
So ~1/2 K(J ~1/2
Sy = [ Dwy], 55 =G, Y Ea oy ()]G,
Recall that II; is the L?(X) projection onto ¥ ;. We also define
Asho = ho —sho, h(z) = ]l'185G 1851 85 Gy B by ho(X)]
Sieve variances and related terms are
16,0, 120 = 162,124 + 162,534 — 262,5,7 » 162,712 = 62,07,
102,0,0: 120 = 102,124 + 02,524 — 202,5,7 » 02,7124 = 02,07
where
Gatgy = L1aQ(Liya) Lya = [¥))(18)G, 58,71 8,G, 5 .
00,02 = L1aQ0 (L) Lz =[]V [5G, 5 S07185G, ),
with
Qs =E, [UJUJQb (Dpl (JQ)} L g =Y - hy(Xy), Qy =0y,
Qyy=E [U%gvmbé(v(h)} ) Qy=Q,7.
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For bootstrap and related processes, we use the notation

Z)(x,J) = ! (\/»ZLJx Wi Uszz> ) (17)

162,11 sa

~ 1 1
L, J) = (\/ﬁ ZLJ,xbfvf‘”uiwi> , (18)

72,7l sa

Zn(l'a‘]) ! (\FZLJw W, uz) . (19)

HU:E JHsd

The law of the processes Z! (x, J) and Zn(z,J) is determined from (w;); conditional on the
data Z" := (X;,Y;, W;)?_ ;. We let P* denote their probability measure (i.e., with respect to

the (w;)"_; conditional on the data) and E* denote expectation under P*.

In view of the discussion in Appendix A, we have finite positive constants a; and a; for
which

ac > Cyp/VI>1, ac > Gu/vVE(J) =1, ap > K(J)/J.

By Lemma A.1 of Chen and Christensen (2018), under Assumptions 1(i) and 3(i) there is a

finite positive constant a, for which

a;ts;t <71y <s;yt (20)

forall Je€T.

Finally, we also shorten “with Py, probability approaching 1 (uniformly over hy € H)” to
“wpal H-uniformly”. We also write HP = H N B5 o(M) and GP = G N B5, oo (M).

B.2 Technical Results

In this Subsection we present several technical results that are used in the proofs of the main
results in Subsections 4.2 and 4.3. The proofs of these technical results are provided in the

Online Supplemental Appendix.

We first state two preliminary lemmas used in the proof of Theorem 4.1. The first relates

to resolution levels in the mildly ill-posed case. For D > 0 and p € [p, p|, define

ﬂ@*(&) -B
Vn =bJ } (21)
Jgr(p, D)y=inf{JeT:J>Jy(p,D)}.

Jo(p, D) = sup {J eT 1y
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Lemma B.1 Let Assumptions 1-4 hold and let 75 =< J/% with ¢ > 0. Then: with Jmax(R) as
defined in (24) for any R >0 and Ji (p, D) as defined in (21) for any D > 0, we have

inf inf Py (JF(p, D) < Jumax(R)) — 1.
i, ho(Jo (P, D) (R)) —

The second preliminary lemma relates to resolution levels in the severely ill-posed case.
For R >0 and p € [p, p], define

JE o (R) = sup {J eT :1m5J\/]logJ < R\/ﬁ} ) (22)
My(p,R) =sup{J €T : TJJ%+%\/10gJ < Ry/n}, (23)

M (p,R) =inf{J €T :J> My(p,R)}.

Note that My(p, R) is (weakly) decreasing in p. In particular, as p/d +1/2 > p/d +1/2 > 1,

we have J7 . (R) > Mo(p, R) > Mo(p, R) > My(p, R) for each R and each p € [p,p].

Lemma B.2 Let 75 < exp(CJg/d) for some C,¢ > 0. Then for any R > 0, the inequality
M (p, R) > J}ax(R) holds for all n sufficiently large.

max

B.2.1 Uniform-in-J Convergence Rates for hy

For any positive constant R, define

Jmax(R) = sup {J € T :Jy/logJ[(logn)* V7] < R\/ﬁ} : (24)
Recall that A yhg = hg—II7hg. The main result we will prove in this subsection is the following:

Theorem B.1 Let Assumptions 1, 2(i), and 3 hold, and for any positive constant R let Jyax =

jmaX(R). Then: there exists a universal constant Cg1 > 0 such that

(1) hinef;{ﬁ”ho (HBJ —holloo < CpallAshollee ¥V J €T NIL, Jmax]> -1,
0

v/ J log Jmax

@) iut By (1 = sl < Cmars Y%

v JeTﬂ[l,JmaX]) —1.
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B.2.2 Uniform-in-J Estimation of Sieve Variance Terms

Recall the definition of Jyay(R) from (24). In the remainder of this subsection, for any fixed
R >0, let Jpax = Jmax(R). Also let Jypm — oo arbitrarily slowly. Given Jyax and Jiin, define

Je

min

(25)

On = T - -

jmax l J_rnax j2 ]' jmax 1/3

og N ( max 108 > N
TIn =4J €T : Jnin < J < Jnax}, and S, = {(2, J,J2) € X X Ty X Ty : J2 > J}. The main
result we will prove in this subsection is the following:

Lemma B.3 Let Assumptions 1-4 hold. Then: there exists universal constants Cg3 > 0 and
Np3 € N such that:

(i) for every x € X and J,Jo € T with Jo > J > Np.3, we have

Cpillow.nllsa < lowgnllsa < Crasllow,|lsd;

(ii) we have

12,1, _1' < 03.35n> —1.

inf ]P)h < sup
hoeH "\ (2,7, 70)eSn | 102,005 ||sd

Lemma B.4 Let Assumptions 1-3 hold. Then: there is a universal constant Cg4 > 0 such
that

inf ]P’h0< sup 921,03 = O, 0,2 < CB.45n> —1.
hoeH (2,J,J2)ESn oz, sllsalloz, sl sa

In particular,

162124

inf Py, sup ||Um,J ||§d

hoeH ( (2, J)EXX T

1‘ < CB.45n> — 1.

B.2.3 Uniform Consistency of jmax

For the following lemma, recall Jyay from (4) and Jyax(R) from (24). The main result that we

prove in this subsection is the following:

Lemma B.5 Let Assumptions 1-3 hold. Then: replacing 10y/n with M+/n for any M > 0 in
the definition of Jmax from (4), there exists Ry, Re > 0 which satisfy

inf ]Pho <Jmax(R1) S jmax S Jmax(R2)> —1.
hoEH
Remark B.1 For any Ro > Ry > 0 there exists a finite positive constant C' for which

jmax(Rl) S jmax(RZ) S ijax(Rl)-
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Lemma B.5 therefore provides an asymptotic rate of divergence for Jinax-

B.2.4 Uniform-in-J Bounds for the Bootstrap

For the following Lemma, recall the process Z*(x,J,.J;) from (5), and the set S and critical
value 6*(&) from Section 3.1. The first main result that we prove in this subsection is the

following:

Lemma B.6 Let Assumptions 1-4 hold. Then with Jmax(R) as defined in (24) for any R > 0,

there exists constants Cy, Cs > 0 for which

hian P, (C4 log Jmax (R) < 0%(&) < Cs4/log jmaX(R)) — 1.
0E

The second is a companion result concerning the critical value involved in the uniform

confidence band construction:

Lemma B.7 Let Assumptions 1-4 hold. For a given o € (0,1), let z{_, denote the 1 — «
quantile of SUD(, 1eax s |Z (z, J)|. Then: with Jyax(R) as defined in (24) for any R > 0,there
exists a constant Cp7 > 0 for which

htréfﬂ Ph, <zi‘_a < Cpri/log JmaX(R)> — 1.

B.2.5 Uniform Consistency for the Bootstrap

Recall Jyax(R) from (24). In this subsection, for any fixed R > 0, let Jpax = Jmax(R). Also let
Jmin — 00 with Jpin < Jmax. Define J, = {J € T & Jin < J < Jmax} and S, = {(z, J, J2) €
X X Tn X T+ Jo > J}. The main result we prove in this subsection is:

Theorem B.2 Let Assumptions 1-4 hold and let Jyim =< (log jmax)2. Then: there exists a
sequence v, | 0 for which the following inequalities hold wpal H-uniformly:

; —h
(i) sup IP’hO< sup \/ﬁw <s| - IP’*( sup  |Z;(x,J)| < 5)’ <Y,
s€ER (z,J)EXXTn HUI,Jnsd (z,J)EXXTn
hy(z)—h — (hy(z)—h
(i) sup Ph()( sp | J(@) = hap (@) = (h(@) = hy () Ss)
s€R (z,J,J2)ESn 16,0, | sa

—P*( sup |Z;;<:c,J,J2>rgs) <.

(z,J,J2)ES
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B.3 Proofs of Main Results in Subsections 4.2 and 4.3

Proof of Theorem 4.1. We first list some constants that will be used throughout the proof.
Fix Ry > 0 in the definition of Jyax(R2) from (24) sufficiently large so that by Lemma B.5 we
have infp ey Pho(jmax < Jmax(R2)) = 1. Let Jimax = Jmax(R2) for the remainder of the proof.
By Theorem B.1(i), there exists Cp.1 > 0 which satisfies

hirg-[lpho <‘ﬁ] — HJh()HOO < CB_1HHJh() — hOHoo VJe [1, jmax] N T) — 1. (26)
0

For our choice of sieves, there exists Bs > 0 which satisfies

sup sup JgHHJhO —holleo < By VYV JET. (27)
pE[p,p] hoeHP

Lemmas B.3 and B.5, Assumption 4(i), and the fact that 6, | 0 (cf. (25)) imply that there
exists Co,C3 > 0 which satisfy

J R
inf Pho( sup Wg(/‘g)—n, inf Ph0< sup H%,J,Jszd§02>_>L
hoeH (w,7,72)e8 10z.7.72|sd hoeH R

(28)

Additionally, by Lemma B.6 there exists constants Cy, Cs > 0 which satisfy
hian P, (C4\/log Jmax < 0°(&) < Cs4/log jmax> — 1. (29)
o<

Part (i), step 1: We verify that J achieves the optimal rate under mild ill-posedness. Fix
€ > 1 (we take £ = 1.1 in the main text) and let D > 0 be such that 2B5(C;+1)D~1C3 < (¢—1).
Recall Jo(p, D) and Jy (p, D) from (21); we drop dependence of these quantities on (p, D)

hereafter to simplify notation. By Lemma B.1, inf ¢, 5 infp,eqr Pho (J < Jmax) — 1. It then
follows from Lemmas B.1 and B.5 that infpe[gﬂ infp,enr Pp, (Jar < jmax) — 1. We therefore

assume for the remainder of the proof of part (i) that Jar < Jimaxs Jmax-

Note by Lemma B.5 that J C Ty = {J €T :01(00gJmax)? < J < Jmax} wpal H-
uniformly. Then for all J € J with J > Ji©, by the triangle inequality, displays (26) and (27),
and definition of Jy, we may deduce that

Vo = g lloo = g = by = (s = o y)loe
< |lhy = Tholloo + lIfz+ =Tyt holloo + 1Ty o — holloo + [TLihio — holloc
< 2By(1 4 Cy)(JF) P/

< 2By(1 + cl)Dfle*(a)TJJ,/Jg/n
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wpal uniformly for hg € H? and p € [p,p]. By (28), we also have that for all J € J with
J>Jy

TJS’\/JS—STJ\/jSC?)Ha—I,JS'7JHSd V ze€ X

wpal uniformly for hy € HP and p € [p, p]. Combining the preceding two inequalities and using
the definition of D, we obtain that for all J € J with J > Jg“,

|y (x) = h e ()] |y () = Dy () = (R (@) = Dy (2))]
sup V0" < sup v/ T b (- 1)6Y(@)
T€EX H%,JJ,JHsd zeX Ham,Jgr,JHsd
wpal uniformly for hg € HP and p € [p,p]. It follows by definition of J that

sup sup Py, (j > JJ)
pE€[p,p] ho€MP

Vilhys @) —ha@)|
< sup sup Pp, sup  sup - > 0% (&)
pe[g,ﬁ] hoEHP Jej:(]>]3’ TEX H0-1'7JJ7JHSCZ
hy(z) —h — (hy(z) —h
< sup Pho( sup \/ﬁ| J(x) JQE‘T) ( J(x) Jz(l‘))| > 0*(@)) +0(1) (30)
ho€H (z,J,J2)€S HULJ,JQ ”8d

To control the r.h.s. probability in (30), let J(J) = {J € T : 0.1(logJ)? < J < J},
S(J) = {(x,J,J3) € X x T(J) x J(J) : Jo > J}, and let 0*(&; J) denote the (1 —0.5AJ~1)
quantile of SUD(, 7 1,)e8(J) |Z} (x, J, J2)|. Then by Lemma B.5, the union bound, and Theorem
B.2(ii), we have

hy(z) —h — (hy(z) - h
sup IP’hO< sup Vnlhy(x) hgir) (hj(x) = hy,(x))] - 9*(&0
ho€H (z,J,J2)€S 162,07, | sa
Tl Vil (@) = hay (@) = (hy(@) = huy ()] .
< sup Z Pho( sup 2 2 > 0" (&; J))
O e T T T (1) (@,J,J2)€8(J) 162,7.72 I
jmax(R2) 5
< Y (Jrmrom) o, (31)

jele:jmax(Rl)

because 7, | 0 and, by our choice of sieve and Remark B.1, for some constant C' > 0 we have

#{J eT: jmax(Rl) <J< jmax(RZ)} < #{J eT: jmax(Rl) <J< ijax(Rl)}
< #{l €Nt Jnax(R1) <2 < Chnax(R1)} < C.

In view of (30), this proves J < Ji~ wpal uniformly for kg € HP and p € [p, ).

Whenever J < JO+ < jmax, Jmax, it follows by definition of J and display (28) that wpal
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uniformly for hg € HP and p € [p,p], we have
iy = holloe < [lFj = foyelloc + I = hollos
< 0259*(64)7'Jgr \/ J0+/n + ”ngr - BJS‘HOO + ”ﬁjgr — ho| -

Then by Theorem B.1, definition of J;", and the lower bound on 6*(&) in display (29), we may

deduce that there exists a constant C > 0 for which

. . ;o %/ A 4
pér[;fm h()lg;,f{pIP)h()(HhJ holleo < CO (Oé)TJS—\/JO /n) — 1L

As the model is mildly ill-posed, there exists a constant C’ > 0 for which s JD+ < C'7y\/Jo-
It then follows by definition of Jy that

inf  inf P h:—h oo<CC,DJ7p/d 1 .
peu[lg,ﬁ]holgﬂp ho (H J 0lfoo < 0 )% )

By the upper bound on #*(&) in display (29) and the fact that v/log Jmax < v/Iogn (because
the model is mildly ill-posed), there exists a constant E' > 0 such that by defining

Jn(p, E) = sup {J €T :75\/(Jlogn)/n < EJ—p/d}

we have infye, 7 infpenr (Ji:(p, E) < Jo(p, D)) — 1. 1t follows from 7 =< J/4 that J(p, E) =<
(n/logn)¥@@+)+d) The desired result now follows from (32).

Part (i), step 2: We verify that J achieves the optimal rate under mild ill-posedness. By

step 1, we have inf,c, 5 infp,eqr Pp, (J < Jif) — 1. As such, if we can show that Jp > J&
wpal H-uniformly then J = J wpal H-uniformly and the result follows by step 1.

By the lower bound on #* (&) in display (29) and the fact that y/log Jimax < v/Iogn (because
the model is mildly ill-posed), we may deduce that there exists a constant E’ > 0 such that
infpepp ) infroenr (J,];(p, E') > Jf(p,D)) — 1 where

JH(p, E') = inf {‘] €T 15/ (Jlogn)/n > E’J_p/d} .

But note that max,c(, 7 Jg (p, E') = Jg(g, E’). The result now follows by Lemma B.5, noting

that jmaX(Rl)/Jg (p, E') — oo when the model is mildly ill-posed because p > d/2.

Part (ii), step 1: We verify that J,, achieves the optimal rate under severe ill-posedness.

We do so assuming a CDV wavelet basis, though we note a similar argument applies (albeit
with more complicated notation) for B-spline bases. Note that when the model is severely

ill-posed, for any R > 0 we have n® < T Joax(R) fOr some 8> 0and so 7y (g > (log n)* for all
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sufficiently large n. Therefore Jyax(R) = Ji.(R) for all n sufficiently large, where J} . (R)

is defined in (22). By Theorem B.1, Lemma B.5, and Remark B.1, we may deduce that there
exist constants D, D’ > 0 for which

by = holloo < g —hj lloo + 1hj = hollso

< D2 B 1yt 2 e () lom(2 T R )

< D' <( dJI;ax(RQ))_g + To—djx \/2 max R2 log( djglax(RQ))/n>

wpal uniformly over H? and p € [p,D].

Recall the definition of Mo(p, R2) from (23). By Lemma B.2, for all p € [p,p] we have
that Mo(p, Ra) > Mo(p, Ry) > 27 J;;

max

(R2) holds for all n sufficiently large, in which case by
definition of My(p, R2) we must have

P

Ty )\ 2 T (F2) 1082~ T (R2)) 1 < Ro(2 i (R2)) 5
Combining the preceding two inequalities then yields
1f2j, = holles < D'(1+ Ro)2”(Ja(R2)) 4

wpal uniformly over H? and p € [p,D].

(Ry) when 75 =< exp(CJ/?) for C,¢ > 0. Suppose
(R2)/(logn)¥s = 0. Then along a subsequence {n}x>1 we have J%, (R2) =

It remains to show (logn)¥s < J*

max

. . 7*
liminf, o0 J¥ ok

(275C Yy, logny, )< for some sequence uy,, | 0. Then 24J%  (Ry) € T satisfies

Un, — %
Tod Jx (Ro 2 T o (R2) \/log 24.J%  (Ra))/ni < ny, " 2(lognk)d/<\/1oglognk. m 0,

thereby contradicting the definition of J*

max

(R2) from (22) for all sufficiently large k.

Part (ii), step 2: We verify that J achieves the optimal rate under severe ill-posedness.

For any constant D > 0, by definition of J we have
sup sup Pho(%j — holloo > D(logn)_p/g)
pE€[p,p] hocHP

< sup sup Ph0(||izj — hollse > D(logn)™P/S and J < jn)
p€[p,p] hoeHP

+ sup sup Pho(Hh — holloo >D(logn)_p/§).
pE[p,p] hoEHP

By part (ii), step 1, the constant D can be chosen sufficiently large so that the second term on
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the r.h.s. is o(1). For the first term, note that ||iLJ — hplloo < HlAlJ - izjn||oo + HIA”LJH — hol|oo, SO

it suffices to show that there exists a constant D > 0 for which

sup sup Py, (|h; — hj [loo > D(logn) ™/ and J < J,) = 0.
pElpp hoeHP "

But by definition of J and displays (28) and (29), we have

sup sup PhO(HiLj - ﬁj oo > D(logn) /¢ and J < jn)
pe[gvﬁ] hOer "

< sup sup Py, <§Cg€*(d)7-jn\/jn/n > D(logn)p/§> +o(1)

pE€[pp] hoeHP

< m{;p] 1 |:€CQC5TQ—dj;]aX(R2)\/2dJI;aX(RQ) log(2=4.J% .. (R2))/n > D(logn)™P/¢| + o(1) .
pE|P,p

By step 1, we have 7'27dj;;ax(R2)\/2_dj;;ax(R2) log(2-4J%,. (R2))/n < (logn)~P/< uniformly for
p € [p,p], so the constant D can be chosen sufficiently large that the indicator function on the

r.h.s. is zero uniformly for p € [p,p] for all n sufficiently large. m

Proof of Corollary 4.1. Part (i): Recall J = Jy(p, D)T from (21). We have
10°h ; — 8%hollos < [|0%h; — aaﬁJJnm + Haaﬁjo+ — aa%nm + HaaiLJO+ — 9%ho]|oo -

As J < Ji < Jimax, Jmax holds wpal uniformly for hg € HP and p € [p, D], by part (i), step 1
of the proof of Theorem 4.1, we may appeal to a Bernstein inequality (or inverse estimate) for

our choice of basis to write
105 = 0 holloe < () (I = g lloo g = gl ) +110°F 5 = 9Bl

By similar arguments to the proof of Corollary 3.1 of Chen and Christensen (2018), we may
also deduce ]\8“iLJ()+ — N |oo S (JF)Uel=P)/d and so

10 = Rolloe S ()14 (g = gt oo + Wy = Byt llow + (J) 7% .

It now follows by similar arguments to part (i), step 1 of the proof of Theorem 4.1 and definition
of Jy that there exists a constant C' > 0 for which

iof  inf P - Phgl < gD/ .
pen[lg,ﬁ]honelﬂp ho (H@ 7= 0%hollee < CJg >_>

The result follows from noting, as in the proof of part (i), step 1 of the proof of Theorem 4.1,
that infy,cp, 5 infhoepr (J,”{(p, E) < Jo(p, D)) — 1 where J*(p, E) < (n/logn)¥@@+)+d) and

42



by part (i), step 2 of the proof of Theorem 4.1 (which shows that J = J wpal ‘H-uniformly).
Part (ii): Recall J}

max

(R) from (22) and .J,, from the definition of .J. By similar arguments
to part (ii), step 1 of the proof of Theorem 4.1, and the proof of Corollary 3.1 of Chen and
Christensen (2018), we may deduce

10%h 5 — 0ol

— |a| —d 7 p - -
< (Jhan(B2)) ((2 e (B2) ™+ 7oz ()2 T (R2) og(2 dJﬁ%ax<Rz>>/n>

wpal uniformly over H” and p € [p,p]. It follows by part (ii), step 1 of the proof of Theorem
4.1 that
10°h; = 0%holloe S (logn)(el=P)/d

wpal uniformly over H? and p € [p,D].

By similar arguments to part (ii), step 2 of the proof of Theorem 4.1, it suffices to show
that there exists a constant C' > 0 for which

sup sup IP’hO(H@“Bj - 0“@; oo > C(logn)e=P)/s and J < jn) —0.
pElp,p) ho€HP "

But for any J<.J, by a Bernstein inequality (or inverse estimate) for our choice of basis, we

have

~

10%h5 = 0% ; lloo S ()™ hs = 1 lloo S (Tiax(R2))V Ry — T oo

wpal uniformly over HP and p € [p,p], where the second inequality is because Jn < Jmax <
Jmax(R2) wpal H-uniformly by Lemma B.5 and because Jypax(Ra) = Ji.(R2) for all n
sufficiently large. But note by severe ill-posedness and definition of .J*

¥ ax(R2), we have that
C(Jhax(R2))*/? < log 7y g,y < log(Rav/n) < logn, and so Ji,.(R2) < (logn)¥/<. The result

now follows by part (ii), step 2 of the proof of Theorem 4.1. m

Proof of Theorem 4.2. In some of what follows, we use the fact that the sieve dimensions
for CDV wavelet bases are linked via J+ = 2%.J for J € 7. We do so for notational convenience;

a similar argument (but with more complicated notation) applies for B-spline bases.

Part (i), step 1: By part (i), step 2 of the proof of Theorem 4.1, we have J = J wpal

‘H-uniformly. It therefore suffices to prove the claim with J in place of J. Fix Ry > 0
in the definition of Jyax(R2) from (24) sufficiently large so that by Lemma B.5 we have
infp ey ]P’ho(jmax < Jmax(R2)) — 1. Let Jymax = Jmax(R2) for the remainder of the proof.
Recall the constants C; from (26), B and B from the discussion preceding the statement of
this theorem, and Cy and C5 from (29). Also note that by Lemmas B.3 and B.5, Assumption
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4(i), and the fact that d,, | 0 (cf. (25)) imply that there exists Ca, C3 > 0 which satisfy

inf Pp,

<C3) =1, inf P W glsd o) 1. (33
hocH - 3) ’ht%?—t ho( sup ) (33)

sup
(x,J)exxJ TJ\F

z,J)EXXT ||UI,J||Sd

( TV
(

Let v = inf je7(1 + ||[J|loo) ™' > 0, where ||II]|so < 1 is the Lebesgue constant for ¥
(see Appendix A.3). Choose 8 € (0,1) and E > 0 such that (vBS 2% — (Cp,+1)B) > 0 and
“L(wBBP/4 — (Cp+1)B) > Cy(& + 1), where € > 1 (we take € = 1.1 in the main text).

Define Jy(p, E) as in (21). It is established in part (i), step 1 of the proof of Theorem 4.1
that Jo(p, E) = (n/logn)¥®+9)+d) By Lemma B.5 and mild ill-posedness, for any constant
C > 0 we have Jo(p, E)/(log Jmax)? > C wpal uniformly for hg € HP? and p € [p, P]. Therefore,
inf{J € T : J > BJo(p, E)} > log Jmax wpal uniformly for ho € HP and p € [p, D).

Fix any J € J with J < BJo(p, E') (this is justified wpal uniformly for hy € HP and
p € [p,p] by the preceding paragraph) and note (dropping dependence of Jy on (p, £))

1h = hgllco = hy = hgy — hy + hy = By + Ry — ho + holls
> |[h = holloo = 1o = holleo = s = B = (hgy = Byl co-
For a given hg € GP, let ho y € argminpecy, ||h — hol|oo. Recall J from the definition of G and

note that inf{J : J € J } > J holds wpal H-uniformly by Lemma B.5. Recalling the Lebesgue
constant ||II7||s from Appendix A.3, we may then deduce

IRy = Bolloe = 1Po.s — holleo = (14 [TLs]lee) o — Tshglee > vBJ P4,

for all J € J wpal, uniformly for all hg € GP and all p € [p,p]. It follows by (26) and the

discussion preceding the statement of this theorem that

g = by lle = 0BJP/4 — (Cpy + DBJG P = by — by — (hy — by l1se
> (BB — (Cpy +1)B)J; Pl _hy — by — (hgo — ho)lloo

Vot (&)
T Jn

where the second line uses J < (Jy and the third uses definition of E and Jy(p, E). It now

> Cy(E+ 1)1y, ~ g = hy = (g = gyl »
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follows by the preceding display and (33) that

sup sup B (F < Bolp, E))

pE[p,p] ho€GP
hy(z) — h
< sup sup Ph0< inf  sup vl {(x) 5 ()] < f&*(ol))
p€(p,p] ho €GP JeJ:J<BJoxzeX HUJC,J,JO Hsd
< sup sup Ph()( sup vnlhs(@) = hJQE:E) = (hy(@) = hyy (2))] > 0*(d)> +0o(1)
pelp,p] hoeGr (2.0,J2)€8 162,75 | sa
hy(z)—h — (hy(z) — h
< sup Ph0< sup  YUR() = hopz) = (@) = Ry @) 9*(@)) +0(1) =0,
hoet (z,J,J2)€8 62,505 || sa

where the final line is by (31).

Part (i), step 2: Recall J (p, D) from part (i), step 1 of the proof of Theorem 4.1. By the
previous step of this proof and part (i), step 1 of the proof of Theorem 4.1, we have

inf inf Py, (BJo(p, E) < J < Jy (p,D)) — 1. (34)
p€[p,p] ho€G?

Therefore, by (26), (33), (34), and definition of B, for every hg € GP and x € X we have

hi(z)—h __j-r/d o d —p/d
| J(m) 0(1‘)| S (CB_l + 1)CgBJ _ S (CB.I + 1)CgBB_p/d2p (2 JO(p7E)) 7
Tj\ﬁ T80 (p,E)] V BJo (s E)

wpal uniformly for hg € GP and p € [p,p] and = € X, where T[8Jo(p,E)] denotes the ill-
posedness at resolution level inf{J € T : J > BJy(p, E)}. It now follows from definition of

16, 3llsa

2¢.Jo(p, E) = JS‘ (p, E) from (21) that whenever the preceding inequality holds, we have

hi(x) —h = 5
Sup \/ﬁ| J(:BA) O(ZE‘)’ < C3(CB,1 + 1)Bﬁfp/d71/22p+d/2E71M9*(d) < Aoe*(@) ,
veX 16, jllsa T18Jo(p.E)]

where the final inequality holds uniformly for hg € GP and p € [p,p] for some constant Ag > 0

because sup jcr Tod s/ Trgy] < 0o by virtue of mild ill-posedness. It follows from the preceding
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display that for any A > Ao,

inf IP’hO (ho(z) € Cp(z,A) V z € X)

ho€g
() — ho(z )\S

|h
> inf inf Py <sup\f
p€[p,p] ho €GP "\ zex HU;EJHsd

o+ Ae*(d)) +o(1)

|y () = hj(@)] )
> inf inf Pp,( su <zi_,)+o(1
pE[p,p] hOEQP h0<$62€\/> ”O—m JHSd ! ( )

> inf inf Pho( sup \/ﬁ‘h‘](x) —hy(@)] < zi‘a> +o(1),
pE[p,pl hoc€G? (

B e, J)eEXXT 62,7l
where the final line is because J € J, = {J € T : 0.1(10g Jmax(R2))? < J < Jmax(R1)}
and J D J,, both hold wpal unlformly for hg € GP and p € [p,p]; the former holds by (34)
and Lemma B.1 and the latter holds by Lemma B.5. Let z]__, denote the 1 — a quantile of
SUP(z,1)exxg | Zn(x, J)|. As 27_, < 27_, must hold whenever J 2 J,,» we therefore have

inf Py, (ho(x) € Cp(z,A) ¥V z € X)
ho€gG

hy(z) —h
> inf inf Py, < sup \/ﬁ‘ J(xA) s(@)l < z’{_a> +o(1)=(1-a)+o(1),
pE[p,p] ho€GP (x,J)EXXT 62,1l sd

where the last equality follows from Theorem B.2(i) and the definition of z7_,.
Part (ii): By Lemmas B.4, B.6, and B.7 and Assumption 4(i), we have

sup |Cy(z, A)| S (14 A)1; (jlog Jmax) /1
rEX

wpal H-uniformly. Then by (34) with Jy = Jo(p, D) and A = 1 + A, we have that

= = \/1 Jimax
sup (2, A)| < Ar s/ (g 108 Jans) /1 S ATgo (Jol0g ) [ O*g Iyl
zeX

holds wpal uniformly for g € GP and p € [p,p] and for all A > 0, where the second inequality
follows from the fact that the model is mildly ill-posed and the third is by definition (21). It
follows by Lemma B.6 that there is a constant C' > 0 (independent of A) for which

inf inf Py, (sup |Gy (z, A)| < C(1+ A)(Jo(p, D))—P/d) 1.
pE[p,pl ho€G? TEX

The result now follows from part (i), step 2 of the proof of Theorem 4.1, which shows that
infpe[ﬂﬂ infy, cpp (J:;(p, E) < Jo(p, D)) — 1 with J¥(p, E) < (n/log n)d/(z(p+<)+d). n

Proof of Theorem 4.3. In some of what follows, we use the fact that the sieve dimensions
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for CDV wavelet bases are linked via Jt = 29J for J € T. We do so for notational convenience;

a similar argument (but with more complicated notation) applies for B-spline bases.

(R) (see (22)) holds
for any R > 0 for all n sufficiently large (see part (ii), step 1 of the proof of Theorem 4.1), we
have that J* (Rl) < jmax < Iy

max max
Recall My(p, Rz) from (23). By Lemma B.2, for all p € [p,p] we have that My(p, R2) >
Mo(p, Rg) > 27%J% .. (R2) holds for all n sufficiently large. Then by Lemmas B.4, B.6, and B.7

max
and Assumption 4(i), there exist constants C, C’ > 0 for which

Part (ii): First note by Lemma B.5 and the fact that Jyax(R) = J

max

(R2) wpal H-uniformly.

sup G, A)] < C(1+A)75y/ (T 10g( T (R2)) e+ AT 2/ < € (14)

max
reX

(Ro)) P AT 21

holds wpal uniformly for hg € H? and p € [p,p], where the second inequality is by definition
of My(p, R). The proofs of Theorem 4.1 and Corollary 4.1 show that J . (R2) =< (logn)¥<
in the severely ill-posed case. Therefore, it suffices to show that there is a constant ¢ > 0 for

which J > c¢(logn)%< holds wpal uniformly for hg € G? and p € [p, D]

Recall g and E from the proof of Theorem 4.2 and Jy(p, E) from (21). By similar arguments
to Lemma B.2, we may deduce that inf{J € T : J > BJo(p, E)} > log Jmax wpal uniformly
for hg € HP and p € [p,p]. It then follows by the same argument as part (i), step 1 of the proof
of Theorem 4.2 that J > BJo(p, E) holds wpal uniformly for hg € GP and p € [p,p]. But by
Lemma B.6 and the fact that log J*

max

(R2) < loglogn for severely ill-posed models, it follows
that there is a constant C” > 0 for which, by defining

J*(p,C") = sup {J e T :77\/(Jloglogn)/n < C”J_P/d} ,

we have inf,c(, 5 infp,eqr Pro (Jo(p, ) > J*(p, C")) — 1. Finally, we may deduce by a similar
argument to part (ii), step 1 of the proof of Theorem 4.1 that J*(p,C") > (logn)¥s for all
p € [p,p], which establishes the desired behavior of J.

Part (i): By Theorem B.1 and Lemma B.5, there exists a constant Ag > 0 for which

~

[hj(2) = ho(z)| < |hj(x) = hj(@)] + Ao 2/
holds for all z € X wpal H-uniformly. Then for any A > Ay, we have

B~(x)—?l”(33)
inf P, (ho(z) € Cp(z, A) ¥z € X) > inf P ol
inf Py (ho(z) € Cule, 4) V€ X) 2 int ho(sup 6, 7T

<zZz¥ | +o(1).
ho€G oeX —= 1a> ()

Suppose that Ji,. (Ra) > 2245, (R1) € T. Then by definition of J

max

(R) and Remark
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B.1, we have

T T ax (R2) - T T ax (R2) Jr?lax(RQ) IOg er;lax(RQ) <2 R2
To2d g (Ry)  Te2dgx  (Ry) 2247 (R1)v/log Ji o (R1)

max

But note that if J*

max

(RQ) > 22dJ*

 ax(R1) then by severe ill-posedness we have

T ax (R2) > T2 (B1) _ C((22 e (R1) = (20 (R1)S/ D) (O25(2 1) (Sirax (B1))S/ 4 _ +00,
T2k (R1) 2405, (Ry)
which contradicts (35). Therefore, J} .. (R1) € {279 .. (R2), J} . (R2)} holds for all n suffi-
ciently large, from which it follows by Lemma B.5 that Jmax € {2745, (Ra), J5a (R2)} wpal
H-uniformly. Therefore, J < 27%.J*

max
have that J > cJ*

max

p € [p,p]. Therefore, J e J, ={JeT:cJk

max

(R2) holds wpal H-uniformly. But by part (ii) we also
(R2) holds for a sufficiently small ¢ > 0 wpal uniformly hg € GP and
(R2) < J < 27U nax(R2)} and J 2 J,, both
hold wpal uniformly for hg € GP and p € [p,p].

Let z]_,, denote the 1 —a quantile of sup(, jexxs \Z} (z, J)|. As 27_,, < z]_, must hold
whenever J 2 J , we therefore have

hlnf Ph, (ho(x) € Cp(z, A) V x € X)
0€

|y (2) = hs()]
z inf_ inf Ph< sup  V/n <zio) +o(1)=(1-a)+o(1),
pERAhoe? U\ . neaxg, 162, lsd ' (1) ={-a)+ol)

where the last equality follows from Theorem B.2(i) and the definition of zj__,. =
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Online Appendix to “Adaptive Uniform Confidence Bands for
Nonparametric IV”

Xiaohong Chen Timothy Christensen Sid Kankanala

C Swupplemental Results and Proofs

In this Supplemental Appendix we first present additional technical lemmas and proofs of
all the technical results in Appendix B. We then present lemmas and proofs of theorems in
Subsection 4.4 on UCBs for derivatives of NPIV functions.

C.1 Supplemental Results: Proofs of Technical Results in Appendix B

Proof of Lemma B.1. In what follows, we drop dependence of Jya.x on R to simplify
notation. As infy ey P, (0*(@) > Cyy/log jmax) — 1 for some constant C4 > 0 (cf. Lemma
B.6), we have Jy(p, D) < Jy wpal uniformly for hg € H? and p € [p, D], where

~ - D
Jo :=sup {J €T :15J4/(log Jmax)/n < CJ1/2_p/d} .
4
Note that Jy is deterministic and independent of p. It therefore suffices to show that the
inequality JNO+ < Jmax holds for all n sufficiently large, where jar =inf{JeT:J> jo}. To
do so we argue by contradiction. Suppose that j0+ > Jmax. Then by definition of Jy, we have

_ — D _
Tj_ Jr;ax (log JmaX)/n S H(Jr;ax)l/z_g/d ’
4

:=sup{J € T : J < Jumax}- It follows from the fact that 2=LJ+ =< J < 2EJ~ for

some L € N and 75 < J/? that whenever jar > Jmax, We must have

where J ..

ijax Jmax (]‘Og jmaX)/n S jlll/a?xig/d . (36)

On the other hand, by definition of Jyax from (24) we may similarly deduce

((log n)4 vV Tfmax>jmaX\/ (log Jmax)/n =< 1 (37)

The result now follows by noting that for ¢ > 0 we have that 7;  grows like some power of

n, so displays (36) and (37) yield a contradiction for all n sufficiently large. Similarly, with



¢ = 0 displays (36) and (37) lead to (logn)~* < jiﬁ:g/d, which yields a contradiction for all
n sufficiently large because Jnax grows like some power of n. m

Proof of Lemma B.2. As every J € T can be expressed as J = 24 for some L € N, we
can define J},.(R) and My(p, R) through the resolution levels. We do so here for the case of
CDV wavelet sieves, but our results apply equally (but with more complicated notation) for

B-spline bases. Let
L} .(R) =sup{L e N: 7—2Ld2Ld\/10g(Td> < Ryn},
Lo(R) =sup{L e N: Tora2E4, [log(2Ld) < Ry/n},

where kK = p/d + 1/2. Define the sequences

2
T = <7'21d2ld\/10g(2ld)) , Yy = <T21d2md log(2ld)>

Note that y;/z; = 22~ D4 5 o0 as | — oo because £ > 1. As 77 =< exp(CJ/?) for some
C,¢ > 0, we have

2

o 202" 92Ikd log(zld)
Tip1 2020059201+ 1)d Jog (2(1+1)d)

as | — o0o. Let L be sufficiently large that z; < y; < x;4; for all [ > L. Then for any n € N for
which R2n > x L, we have that

R’n € [z,y) = L. (R)=1, Lo(R)=1—-1,
R’n € [y, x141) = L. (R) = Lo(R) =1,

max

in which case L}, (R) — 1 < Lo(R) < L} .«
My (r,R) > J;

max

(R). Therefore, we have shown that the inequality
(R) holds for all sufficiently large n. =

C.1.1 Supplemental Results: Uniform-in-J Convergence Rates for hy
We first state and prove some preliminary lemmas before proving Theorem B.1.

Lemma C.1 Let Assumptions 1(i)(ii) hold. Then: for any Jmax — o0 with (loglog Jyax)?/n —

0, we have

inf Py, ( [ LRENHINT)
hoeH ’

ZZ

< (1+ap)|Asholloo\/ Jmax/n ¥ J € [1, Jmax] 07'> — 1.



Proof of Lemma C.1. If there exists J € T for which ||ho—II;ho||cc = 0, then the inequality
is trivially true at that J. Fix any J € T N[1, Jyax] for which ||hg — I hg||cc > 0 and note that

n

Gy P (B —E) o Asho(X)] =3 e

i=1
where
eig =G, ) (bfVEJ)AJhO(Xi) - E[bﬂ”Amo(X)]) .
The e1,7,...,en, are IID centered random vectors of dimension K(J) and || > 7" e; sllpz =

SUDy, QK (): ]| 2 =1 S v'e; . For any fixed v € QX)) with [|v]|,2 = 1, we have that

A shol?
E[(U,Ci,J)2] < ” Jn20|oo’
‘v/ei,ﬂ < 2HAJh0HOO<b,J 7

n

27\ "/? K(J)
E ]) < [[Ashollocy/ —,
Iz n

n
§ €]
i=1

< (E
where the final inequality is because E[||e; s[|2] < n=![|AsholloElGy ¥ 260\ ||2] and L2(W)-

orthonormality of the elements of Gb_}/ 2b5 ), By Talagrand’s Inequality (Giné and Nickl,

2016, Theorem 3.3.9), we may deduce

o

n
§ €.J
i=1

£2

K(J)

n

jmaX
NS

n
E €i,J
=1

> [|Asholloo
02

JmaX
< ex — .
=P ( 2140, (2R (D) + \/Jmax/3)/\/ﬁ>

As the right-hand side does not depend on hg and #{J € T : J < Jmax} < logy(Jmax)/d, a

union bound yields

supPhO< U {

K(J) + \/Jmax>
218l (V . })

n
g €i,J
i=1

hoeH JET:JSjmax
1 B jmax
< exp (log log Jmax — J ) >
dlog 2 2+ AaX 712 G0) 2V E i) + v Jinax/3) [V
_ Tmax
< loglog Jmax — c——=———7~= |
< lengxp< 08 108 Jma 2+C<]maX/\/ﬁ>

where final inequality holds for some universal constant C' > 0 because (3 j =< VJ (cf. Lemmas
A1 and A.2) and K(J) = apJ. If limsup J2,./n < oo then this final term in the preceding



display — 0 because Jpax — o0o. Alternatively, if liminf J2, /n = co then for n sufficiently
large the final term in the preceding display is bounded by ﬁgQ exp(loglog Jmax — v/1/(2C))
which vanishes provided (loglog Jmax)?/n — 0. =

Lemma C.2 Let Assumptions 1(i)(ii) and 2(i) hold and let Jyax — 00 with (loglog Jmax)3/n —

0. Then: there is a universal constant Cco > 0 such that

hlen7£0Ph0< sup HG_l/2 E, by, i) ulllpe < chy/jmax/n> — 1.

JZJSJmaxa‘IET

Proof of Lemma C.2. Define u}” = u;1{|u;| < n'/%} and u; = u;1{|u;| > n'/6}. We may

then write

G;}/QEn[bg(J)u] = Z“H + Z~ =T+ Ty
=1

where =7 i= n_lG 1/2 (bWEJ)uii - E[b{,f,(‘])ui]).
Control of T1J Note || > Bl = SUP, QK () o] p=1 2oie1 v'E7 ;. By Assumption
2(i), let 02 > 0 be such that E[u?|W] < o2 (almost surely). For any fixed v € QX() with

|lv]|;z = 1, we have that

E[(vE:.)7] < n*lE[ ', Bl (08, Gy P olunl? } 7
‘UIE_;,_J" < Qn_g’/GCb,jmax ,

n 1/2 =
K max
< (B> =i, <o K(Jmax)
& o e K

By Talagrand’s Inequality (Giné and Nickl, 2016, Theorem 3.3.9) and #{J € T : J < Jmax} <
logy (Jmax)/d, we may deduce by a union bound argument that for any C > 0,

j max
>
htréf ]Ph0< U {||T1J||Z2 o\/ - +0 })

JET:JSjmax

n

=J
\_J+7,L

=1

E

< Z exp ( o Jmax >
e 20% +4n=13G, ;. (20 /K (Jmax) + CV/ Jmax/3)

C2jmax
202 +4C'n=1/3 ] pax

1 _

< dlog2 exp <log log Jmax —
holds for n sufficiently large, where the final line holds for some C’ > 0 because ¢ j < Vi
(cf. Lemmas A.1 and A.2) and K (Jmax) X Jmax. If limsup J2 . /n < oo then the final term in
the preceding display — 0 because Jyax — 0o. Alternatively, if liminf J3 . /n = oo then for n
sufficiently large the final term in the preceding display is bounded by @ exp(log log Jmax —

4



n'/3C") for some C” > 0 and therefore vanishes because (loglog Jimax)?/n — 0.

Control of T j: As (5 =< VJ for all J € T (cf. Lemmas A.1 and A.2), we may deduce
that sup jer.7< ... J*I/QHE{JHW < 7w 1{ || > n'/6}. As such, for any C” > 0, we have

_ C//I _
sup Pho< sup I 2Ty, gl > > < (") B[ [ul*1{]u] > n'/6}] - 0
ho€H JET,J<Jmax \/ﬁ

by Assumption 2(i). m

Lemma C.3 Let Assumption 1(i)(ii) hold and let Jyax — 00 with (Jmax 10g Jmax)/n — 0.

Then: there is a universal constant Cc3 > 0 such that

sup  max {[1G5.s — Ticc e, 1650 — Lolle, 185 = S5l b < Coy (max 10 ) /1
JET:J<Jmax

wpal H-uniformly. Moreover, there exists universal constants 0 < ¢ < ¢ < oo which satisfy:

inf, Pry (Amin(G,7) < Amin(Gys) < min(Gyg) ¥ J €1, Jmax] NT) = 1,
nf P, (Amax(Gps) < Anax(Gps) < P (Gps) ¥ T € [LJmmax] NT) = 1,
inf Pry (Amin(Gp.s) < Amin(Gp.s) < min(Gry) ¥ J € [1,Jmax] NT) = 1,

inf, Pry (Amax (Go.1) < Amax(Gg) < Emax(Gos) ¥ J € (1, Jmax] NT) = 1.

Proof of Lemma C.3. The first result on the convergence rate of the three matrix estimators
may be deduced from the exponential inequalities in Lemma F.7 of Chen and Christensen
(2018) using a union bound argument, Lemmas A.1 and A.2, and K(J) = apJ for all J € T.

For the final claim, by Weyl’s inequality we have

)\min(édz,J) — Amin(Gy.,7)

)

Amax (C,1) = Amax(Gp)| < 1Gug = Gl

<Gyl |Ghs = Tl
= )‘maX(Gw,J)HGI()),J - IK(J)HEQ

and so the desired result for )\max(@w, J) from the first claim because \/ (Jmax 10g Jmax ) /1 — 0.
The result for )\min(éwJ) follows similarly, using Amax(Guy,7)/Amin(Gy,7) S 1 (cf. Lemmas A.1
and A.2). The result for G, ; follows similarly, using K(J) = apJ forall J € 7. m

Lemma C.4 Let Assumptions 1 and 3(i) hold and let Jyax — 00 with I \/(jmax log Jiax)/n —



0. Then: there is a universal constant Cc.4 > 0 such that:

(i) inf Pho< sup 772 ((G9)"Y289); (GE )T — (8] |lee
hoeH JETO[, Jmax]

< CC.4\/(jmaX log jmax)/”) —1;

(i7) inf Pho( sup 7, [SG{((Go )28 (G )Y = (S Y e
hoeH JETN[L, Jmax]

< 00.4\/(jmax IOg Jmax)/”) — 1.

Proof of Lemma C.4. Part (i): First note that

1((Gs. /)~ V28) 7 (G )2 — (89 |2
< (G2 )V28)7 — (SN e G )2 + 11(Go. )2 = Il (S)] |2 =2 T1,5 + To.

Control of T3 j: By Lemma C.3, we have max ;.7 j<j \|(@2J)_1/2||@2 < 2 wpal H-
uniformly. It then follows by Lemmas F.2 and F.3 of Chen and Christensen (2018) that
I(GE )" 2]

1(Gs.))"V2 = 1||e < —
)\min (Gg,J) + 1

o 2 _
1GE =1l < SIGE; — 1l VT € [1 Jmax] 0T (38)

wpal H-uniformly. Finally, as [|(S9); [l = s;' < a,7s for all J € T (cf. (20)), it follows by
Lemma C.3 that

. 9 - -
it Fhy(swp @) (S e < 0 Cony/ Umclor Towd/n ) 1
hoe " JETN[1,Jmax] / 7 : 3 \/

Control of T7 j: It remains to bound ||((C/§27J)_1/2§3); —(89); |l Note
(G285 =SSl < 1G5 )72 = 1Nl 2l1S5 N2 + 1155 — SSlle2

and [|SG[l;z < 1 for all J € T. It follows by Lemma C.3, that max ;cr. ;<. ”3‘}”22 < 2 wpal
‘H-uniformly. Using (38) and applying Lemma C.3, we may deduce

. e 7 Jinax 108 Jinax
inf Pho( sup (G} 1) 71/285 = S5l < 50 TR0
ho€H JET:J<Jmax

> — 1. (39)

n

As Tty \/(jmaX 1og Jmax)/n — 0, s}l < a,7y holds for all J € 7, and J — 75 is monotone,



we have

o~ -~ 1
nt Pry( swp s (GRS - Shle < 5) L
ho€H JETN[L, Jmax]

From this observation and Lemma F.4 of Chen and Christensen (2018), we can deduce that

inf Pho< s 721G5.) 7285 — (597 Nl < "/ (Jumax log Jmaxvn) — 1 (40)
ho€H JETO[, Jmax]
with €7 = 105 20

Part (ii): We start by observing that

1S5 {((G5.)~1255); ( z,J> V2= (59 e
= |[S5155 (Gp )7t S5171 S (G )t = 85185 S8 ||
< ||S5155 (G5.) 7' S5 85 (G )G )T = D

+[1(S5 = (G5~ 289)1ST (G S5 55 (G ) 2 o
+ | g,J)71/2SJ[SJ( b)) 189189 (GO )" 1/2—53[53/53]7153/“@ = T35+ Ty+T5.

Control of T3 j: By the proof of part (i), we have

T35 < HS%‘@“((Ag,J)_l/Qgg)f||ezH(AZ,J)_UZ —Ing

NP 2 - - _
< (@50 289)7 Nl % 5 Csy (Tmax 10g )/ ¥ T € T 1 [1, o]

wpal H-uniformly. For the remaining term, by the reverse triangle inequality we have
Ao \—1/23o\— -1 Ao \—1/23o\— -
1G5 289 Mlee < 55 + 110G 289 = (S e -

It follows by similar arguments to those used to deduce (40) that

1((Gs ) "V28))] Mle2 < arry <1 +C"ry \/(jmax log J_max)/n) V J €T N[, Jmax)

(1+f)

wpal H-uniformly with C"" = a+Cc.3. The conditions on Jyay then imply that

inf ]P’h0< sup 75 ((Gg ) TYV289)] Nl < 2aT> =1 (41)
hoeH JETN[1, Jmax]

and hence

4 — —
inf Ph0< sup TJ_1T3’J < faTC'c_g\/(JmaX log Jmax)/n> — 1.
ho€H JETAL Tunax] 3



Control of Ty j: Use Ty y < [|S§ — (G5 )~ /28] 2 (G5 ) ~/259); |2 with (39) and (41).

Control of T5 ; : The norm is the difference between two projection matrices corresponding
to the columns of (@g J)*l/ 2§3 and 59, respectively. The desired result may be deduced from
Lemma F.6 of Chen and Christensen (2018) using (39) and (41). m

Proof of Theorem B.1. Part (i): As ||hy — holloo < [|hs — Hyhollse + |Ashol|se, it suffices
to show

hiréf}_tlp’h()(”ilj —HJhOHOO < DHAJhOHOO v JeTn [ijax]) —1

0

where D > 0 is a universal constant. We write the expression as

hy(z) = yho(z) = Qs (A sho)(x)
+ WG, 2801 Gy (B — E) [0 A sho(X)]
Y@, Y2 G2 — (Gy Y2807 16y Y B D A (X))
=T j(x)+Ts j(x) + T3 j(x).

Control of ||T7 j||eo: Follows immediately from Assumption 3(iii).

Control of ||T2, j||eo: By Lemma C.1, we have

HG_I/Q(]En —B) b Aho (X))l < (14 ap)|Asholloo\/ Tmax/n ¥ T € [1, Jmax] N T
wpal H-uniformly. For the remaining term, we note that
1) (G, 2S00 e < 16,0l lest < Coasyt YT €T N1, Jax)

Combining the preceding two displays and noting that max TETAL, Tax] Cp,g =< V Jmax (cf.

Lemmas A.1 and A.2), we obtain for some finite positive constant C’

J -
inf Py ( [|T2.0]l0 < C's7 20| A ol 0o 1, Jmax L.
int By (1Tl < O'57 2518 ol ¥ T €701 Tow]) -

As s}l < a,7y (cf. 20) and J — 7, is monotone, the last display above holds with a,C’ in
place of C" and 75 in place of 531. It then follows from ijaxjmax/\/ﬁ < (log Jmax) Y2 =0
that

hiréfHPho (HTQ’JHOO <JJAjshollee ¥V JE€TN [l,jmax]> — 1.

Control of ||T3 j|loo: Note that

173 lloo < Coa (G507 28)7 (G )72 = (S |Gt PEn [t A s (X)] | -



As the functions that make up the vector Gy 1/ b5 are L?(W)-orthonormal, the Bessel

inequality implies
1G, P A sho(X)] e = Gy Y *Elbyy VEIA 8o (X)W]ll2 < ITA shol 120w

Using the reverse triangle inequality, we may deduce from the preceding bound, Lemma C.1

and Assumption 3(ii) that

1G, 2B [ A sho(X)] | o < ((1+ab)\/m+ﬁ_l> 1A hollse ¥ T € TNO[L, Jinas]

holds wpal H-uniformly. Moreover, by Lemma C.4(i),

(@528 (@)™ = (597 ||, < Ceariy/ Umaxlog Juwd /n ¥ T € T AL, T

wpal H-uniformly. Combining these bounds and noting that max ;e ;<7 CpJ =<V Jmax (cf.

Lemmas A.1 and A.2), there is a finite positive constant C such that

HT3,JH<>0 < 07_3 <(1 + ab) \/ jmax/n + TJ1> jmax (108; jmax)/nHAJhOHoo vJeTn [17 jmax]
wpal H-uniformly. As 77 Jmaxy/ (10g Jmax) /1 < R, we obtain
1T5.70l0 < CA+ R)||Asholle ¥V J €T NI, Jmax]

wpal H-uniformly.
Part (ii): First note that

lhy = hglloo = sup |(¥]) (65 — &7)| < sup ¢ [ ]|(é5 — &1)lew -
reX zeX

As (yp,y = sup ‘|1/}$JHK1||G;1J/2||E2 < V/J (cf. Lemmas A.1 and A.2) and 7; < s}l < a,7y for all
zeX '

J €T (cf. (20)), it is enough to show that there exists a finite constant C' > 0 which satisfies

nf Py, (Ha,] —&lloe < CIG Y sy (log Janax) /n ¥ T € T AL, Jmax]) 1
0

Given a sequence M,, — oo, let uj’ = wil{|wi| < M,} — Elu; 1{|u;| < My} and v, = u; — uf



We may then write

. —1/2 12 o K(J
e —éslloe < ||(G b}/ S G, J/ ]En[bw( Jut] oo
—1 2 —1/2 J) —
+ (G, SJ) GbJ/ En[bw( ) Il oo
+ (G280 G, Y2 — (G2 S YGy P Ealbyy )

=Ty y+T55+Te-

=<

Control of Ty ;: We have

T4J = Imax
1<m<J

—1/2 — ~—1/2,K(J
, Gm,g(Wi) = ((Gb,J/ S, Gb,y bWE D

nzqu

where (v),, denotes the mth element of a vector v. By Lemma F.5 of Chen and Christensen

(2018) and the Cauchy—Schwarz inequality, we obtain

—1/2
2Mo||G 2ot
nsy '

—1 2 —1/2, K(J
Yl SH7 1l ) b e <

\qm 7 (Wi)u; (42)
Let (A)mm denote the mt" diagonal element of a square matrix A. By virtue of Assumption 2,

there exists 02 > 0 which satisfies E[(u;")?|W;] < 02 (almost everywhere). Therefore,

1 2 o? -1/2 1/2
El{ o am,g(Wi)u, Sﬁ((G S1) Gyt 7S ) o
2
o oN—
< SIS 7 = QHG SR < 2||G Folls

By Bernstein’s inequality (Giné and Nickl, 2016, Theorem 3.1.7) and the union bound, for any

constant C' > 20 we have that

—-1/2 1 -
htléf}[ Phy U, {T4,J > CHGwJ ||Z2SJ (log Jmax)/n}
JETAL, Tmax]
C?1og Jmax
< Z 2Jexp<— 5 08 Jma = >%O
JETOIL, Junas] 202 +8C My Gy,7\/ (108 Jmax) / (91)
provided
sup Man,J (10g jmax)/n — 0.
JeT:J<Jmax

In view of Lemmas A.1 and A.2 and the fact that K(J) = apJ for all J € T, any M, that
satisfies M, \/ Jmax (10g Jmax)/n — 0 suffices. In the control of T; 5,7 below, we shall provide an

explicit form for M, that satisfies this latter sufficient condition.

10



Control of T5 j: Similar to (42), we have
1 n
~1/2 _
ITs.4] < ~ Z\qm Jur | <G, les cb,Jn;\ui .
1=

AS SUD jeT7< Joae S0K () = vV Jmax (cf. Lemmas A.1 and A.2), it follows that

sup —1/2 1 7 Z‘ _‘ max
JETNLJmax] |Gy 7" 2557 v/ (108 Jmax) /10 log Jinax

and so, by virtue of the fact that u; = u;1{|u;| > My} — E[u;1{|u;| > M,}], we obtain

sup Ep,

sup T, ;| } Elu|*1{|ul > My }] Jmax
hoeH JETN[1,Jmax] HG¢ J H£25J (10g Jmax)/n

M3 log Jmax

As E[jul*] < oo by Assumption 2(i)), setting M2 = \/nJmax/(10g Jmax) ensures the r.h.s. of
the preceding display goes to 0 asymptotically. It follows by Markov’s inequality that

|T5J|<HG_1/ lezs 710/ (10g Jua)/m ¥ T € TOVL, Jnas]

wpal H-uniformly. Also note that Mn\/ Jmax (10 Jmax) /1 = (J2

max

(log jmax)/n)1/3 — 0, as

required for control of T} ;.

Control of Tg j: As || - ||oc < || - ||,z on R™, we have

16,5
p 1/2 —
JETN[1,Jmax] ||G ||528J (10g Jmax)/n
||((Gz,ﬂ—lﬂ?z);@z,J)—l/? — (87 Ile2

S sup 3 — X sup
JeTm[lyjmax] SJ (log Jmax)/n JGT:JSjmaX

1G5 Pty V]

The first term in the r.h.s. product is bounded by Cca7y = +/ Jmax Wpal H-uniformly by
Lemma C.4(i) and the fact that s; < 7';1. The second term in the product is bounded
Cc_gx/jmax/n wpal H-uniformly by Lemma C.2. The result now follows because Jpax by

definition satisfies ijaxjmaxx/ (log Jmax)/m < R. m

C.1.2 Supplemental Results: Uniform-in-J Estimation of Sieve Variance Terms

We first state and prove some preliminary lemmas before proving Lemma B.3.

Lemma C.5 Let Assumptions 1, 2(i) and 3 hold. Then: there is a universal constant Cc. 5 for

11



which
inf Pho( sup |75, — Q7 5lle < C’Q55n> — 1.
hoet (J,J2)ETn

Proof of Lemma C.5. First write

g gl gy = u? + (7 — wi) (G gy — wi) +wi( gy — w;) + w7 — ;) -

As such, we have the bound

199 7, = Q7 pllee <

—-1/2 K(J) K (J —1/2 0
G,/ (nz S (b 2>>'> Gyt =9,
=1

€2

(o)
=1 »
o (i s
e2
b, BN 7 K(J) 1 K(J _
" GbyQ <n Z(ui’J = ) (@i, — ui)bwg )(bWE 2))/> Gb,}f
i=1 p

=T 55, +T2 55, + 13,50, + T4 .1,

Control of T1 j 5, : Given a sequence M,, — oo, let u; = uj +u; where

—1/2 —1/2, K(J
uf =il {uf max (|G, ;205 1%, 11G, 0200 1) < M2}

and set Efi]’h = (uf)QG;}mb‘%‘]) (bﬁh))’(;;}]f —E[(uf)zG;}/szVf,EJ)(b{ngJz))’G;Z2]. We may
then write

12 (1 KO) Oy | 612 o _ 1Nz 1o
Gy, k(1) (n > by (b, )’) Goitimy = Va == Bt =D S
=1

: n -
=1 =1

By definition of u;” and Jensen’s inequality, we have HEZ+ T ez < 2M32 for all i. By Assumption
2(i) there is 0 > 0 such that E[u?|W] < o2 (almost everywhere). For any v € RE()) satisfying
||lv]|;z = 1, we have that

—_ —_ 1 2 J 1/2, K(J K(J —1/2
VEES, 5, G L) T = [ "G, Jé ? HZQ ‘G, / by, ( )(bWz(- ))/Gb"/ v]
S MgO,QE I:U/Gb_’(l]/2b{/‘ifj)(bé[(/fj))/G(:(lj/2U:| _ M,,%O'Q

and so |E[=]; 1 (EF; 1) le < M7o?. Similarly, |[E[(Z; ;)'E; 1, ]lle < Mzo®. By Bernstein’s

12



inequality for random matrices (Tropp, 2012, Theorem 1.6), for any C' > 0 we have

n

1 -
Py, < EZJ,Jz > C M/ (log Jmax)/n) < 2K (J2)exp < —

n -
=1

C? log Jmax )
202 + 4C M,/ (108 Jmax)/(90) )

As K(J) < apd, it follow by a union bound argument that

sup Pp, < Sup Z Siddy = CMy/(log Jmax)/n)
hoeH T e Tn M

C? log Jmax >
— —0
202 4+ 4C M,/ (10g Jmax )/ (97)

< 2exp <3 log Jinax —

for any C' > ¢+/6 provided M,\/(10g Jymax)/n — 0 which holds for M,, defined below.

For %Z?:l E; 77,> Dy definition of u;", the Cauchy-Schwarz inequality, and the fact that
VI < Gy < C'\/J for all J € T for some C’ > 0 implies that

_ —-1/2, K(J K (J: —1/2
Sup H(“z )2Gb,J/ bWS )(bWE 2))/Gb7J§
JyJQEJTL

< (C) max|u1’2ﬂ{cl\/ max’uz‘ > M, }

EQ

And so by Markov’s inequality, for any C > 0 we have

sup Pho( sup Z“;J 7, > CMy/(log jmax)/n>
hOEH JJQGJTL

(C/)4J23x\/> 4
< o= 'Ll > M/ (C'V )} = 0

with M3 = J2../n/(log Jmax) because E[|u|*] < co under Assumption 2(i) and this choice of
M, satisfies M,,// Jmax — 0. This choice of M, also satisfies the requirement imposed above,

namely M,,\/(10g Jmax)/n = (J2 (108 Jmax) /)3 3 — 0 because J2 . (log Jax/n) — 0.
We have therefore shown that for any C' > /6,

_ 1
J2. logJ 3

sup Pho( sup TLJ,J2>C<M> >—>0.

hoeH J,J2€Tn n

Control of Ty j j,: First note |a; j—u;| < ||ﬁ J—ho]|co- Using the Cauchy—Schwarz inequality,

13



for any v; € RE() and vy € RE(2) satisfying ||v1 |2 = ||valz = 1 we may deduce

b,Jo

Ull (n E ui(ﬁ@‘] — UZ)G;}/ngEJ)(ngJQ))/G_1/2> V2
=1
n

N 1 _
< llhy — ol 12 va<z<1+u2>a

1/2, K(J)\ 3 K(J)y, ~—1/2
n i b,J/ bW,(- ))bwg ))/Gb,J/ >“1
i=1
s, — ol L2+ >0+ )G

() (K >),G—1/2>

It follows by the variational characterization of singular values that

n

1 —1/2, K(J) 1, K(J)\s r—1/2
S (1+u)G, Vo oy a6, Y
n =1

Note that

sup Ty jj, < sup HhJ — hplloo X sup
JaJQGJn JE 'n

62.

fz 1+u

~ _ 1 < _
G, PG Y = G+ G (n > u?bfé”(b%ﬁ"’)') G,
=1

Using Lemma C.3, control of T} ; j, above, and the fact that Q9 ; < 0”1 for some ¢° > 0 (b
Assumption 2(i)), we may deduce that for any ¢ > 0

n

1 _

i=1

sup Pho( sup
hoeH JETn

>1+02+c> —0.
62

Theorem B.1 and Appendix A.3 now imply that

Jmax log J,
lnf Pho ( Sup T27J7J2 < Cl <Jm1n + TJmax M) ) 1
ho€# J,J2€Tn n

with C' = (1 + 02 + ¢)Cp1max{(1 + Cn)B, 1}
Control of T3 j j,: Identical to that of Tb ; j,

Control of T} j j,: Similar logic to that for T5 ; ;, implies that there exists a constant
C"” > 0 which satisfies

17 - jmax log jmax 2
inf Pp,| sup Tujg <C|J &4+ \——7"— —1
ho€EH J,J2ETn n

5 als

mi

The result follows becasuse (Jr;i/d + \/ (Jimax 10g Jmax ) /n)? < J i p/d
all sufficiently large n. m

+ v/ (Jmax 10g Jmax) /n for

14



Proof of Lemma B.4. Define

~

A = (G ) IS8 (G )T SN TG T2 (]) . Awur = SII(SSYSITIGL Y ()
and so

~ oot Ao ~ / o

Ox,J,Jy — Ox,J,Js = ’Yx,JQJ,JQ”Ya:,Jz - ’Yx,JQJ,JQ’Ya:,Jz
_ (A 100 2 I O0 (A 2 (00 o N\l
= (2,0 — Vo,7) QF 1,52,05 + V2,027 1, (Yo, do — Yo,a) + %,J(QJ,JQ - QJ,JQ)%,JQ

=T 270 +122.7700 +T32.7 -

First note ||og s = H(zﬁi)’Gl}f{Sﬁ)fHW = ||72,7l¢2- By Assumption 2, there is a universal
constant C' > 0 such that C 71|y s|| < |lozsllsa < Clloz,s|| for all (z,J) € X x T. Therefore,

N 1/2 J\/ —1/2
H’YI,J _’Y:C,JH 2 ( (0 ) 0 \—1/280\— /Ao \— ( wx) oN—
£ = (G5 )~V289); (G )~ — —2L2(89);
’ sd ’Ux JHsd HO-»TJHSd 2
1/2
~1/2G o \=1/2 _ (qo\—
H ||UzJ||sd J) 62} SJ) (G ) (SJ)Z } 22

—1/2§3>;<A2,J>—1/2 - (89}

o (43)

By Lemma C.4(ii) and the fact that 7;__ \/Jmax (log Jmax)/n — 0, we can deduce that

inf Py, < sup
hoeH * (z,J)EX X Tn

W_1’§c>> mf]P’h( sup H%C’J_WSC>—>1
| sd ho€H (2,J)EXX Tn ||U$,J||sd

(44)
holds for any ¢ > 0. Finally, from Assumption 2(i) we may deduce that sup; j,c7 129 7,2 < o?

where o2 is such that E[u?|W] < ¢? (almost everywhere).

Control of T1 4 s 7, We have

Ty 0,005 = |(Bs = Va,0) QG 1,500 | < 02w, — Yo slle2 1wt |l 2

It then follows by (43), (44), and Lemma C.4(ii) that

T
inf Pp, T ,0.22]

( jmax 1Og Jmax)
su — | = 1.
hoet (@,J,J2)EX X T X T oz, llsallow,,llsa

02(1 + c)CC’CAijx -

Control of T5 ;. j 5,: Follows similarly to 11 4 . J,.

Control of T3 ; j 7,: We have

T3,0.0.| = V2050, = Q70075 55| < Azl e, 212195, — Q5 5, L2 -

15



It then follows by (44) and Lemma C.5 that

T:
inf IP’h0< sup 1 To2.0,02] < (1+ 0)200_5(5n> —1
ho€H (@,,J2)€X x Tn x T 1|02, ||sdll 0w, 2 s

as required. m

Proof of Lemma B.3. Part (i): By the triangle inequality, we have ||og 1, |sd — |0z,

‘sd <
o200 llsd < o, 7llsa+ ||0z,1, || sa sO the upper bound follows from Assumption 4(i) and (weak)
monotonicity of J — 7. For the lower bound, Assumption 4(ii) implies that there exists N € N
such that for all J > N, we have

1
qp  Aomalsd 1=y

veX,hreTidy>J 10,0 | sa 2

and 50 |75 lsd > [0ty lsd = [0a,sllsa > 3(1 = ) [G,s, ]l for every o € X and J, 1o € T
with Jo > J > N.

Part (ii): As |a — 1| < |a® — 1| for a > 0, it suffices to bound

162,7,5 1124

-1
02,0112

I

where

20+ 02,0512 — 200.0.,)-

162,02 l12 = (1525020 + 160,22 l12 = 260.0.02), Nowg.nll2 = (o

By the triangle inequality and Lemma B.4, we have

2
[162,502112 = 105,52 12a] < Cadn (I slloa + l0wrllsa) ¥ (@, J2) € S

holds with Py, probability approaching 1 (uniformly over hg € Upe[pﬂ?’-[p). To complete the

proof, note that by Part (i) and Assumption 4(i), we have

[90.1llsa + 102, ssllsa _ <‘uam,J||sd +1) “cns (nvw +1> . CB_3< 7/6+1>

02,7, || sd |o2,75 || sd T,/ CTo

where the final inequality is by (weak) monotonicity of J — 7;. =
C.1.3 Supplemental Results: Uniform Consistency of Jimax
We first present a preliminary Lemma before proving Lemma B.5 and Remark B.1.

Lemma C.6 Let Assumptions 1(i)(ii) hold and let Jpax — 00 with (Jmax 10g Jmax)/n — 0.
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Then: there is a finite positive constant Ccg such that

inf Py, ( sup |57 —sg| < CC‘G\/(jmax log Jmax)/n> — 1.
hoeH JETAL, Jmax]

Proof of Lemma C.6. By Weyl’s Inequality and the triangle inequality, we have

187 — s <11, /28,6, — S9)1ee
< |G, Y2386 5GP — 89l + 189 — 59l
—1212 2 5—1/2 1/2 73—1/2 Ao o
<G, 6,5 Ir\eaw|sJ\|gerG1/ G2 e + 185Gy AG Y2 = e + 1155 =SSl

By Lemma C.3, there is Cc 3 such that

jmax 10g jmax
n

||§3 - Sf}Hﬁ <Ccs vV Je [ijax] NnT

wpal H-uniformly. As ||S9|;2 < 1, this also implies that ||S9||,2 < 2 holds wpal H-uniformly.
For the remaining terms, first note that @b7 7 and @1/,7 7 are invertible for all J € T N [1, Jyax]
wpal H-uniformly by Lemma C.3. Then by Lemma F.3 of Chen and Christensen (2018),
we may deduce (with an identical argument for the terms involving éd,, J) that the following

inequalities hold for all J € T N [1, Jynax] wpal H-uniformly:

2 ~1/2 ~—1/2 1/2 1/2
G, *G7 — 1l = 1G, 2(G] - Gy D)lee

1 ~ A—1/2
< 1Gh.s — Gosll2l|C, 5 2 e

\/)\min (@b,J) + Arnin(Gb,J)
1

<
\/)\min (Gb,J) + Amin (Gb,J)

IG,IZNG, Y Pl x 163 — Illez

Lemma C.3 together with Lemmas A.1 and A.2 ensures that the term in the preceding display
that is pre-multiplying H@g 7—1I||¢2 is bounded by some finite constant C for all J € TN[1, Jyax]

wpal H-uniformly. The conclusion then follows by Lemma C.3. m

Lemma C.7 Let Assumptions 1 and 3(i) hold and let Jyax — 00 with I \/(jmax log Jiax)/n —
0. Then: there is a finite positive constant Cc7 > 1 such that

inf Pho( sup le ’§}1 - ’TJl < C’C.7> — 1.
hoeH JETN(L, Jmax]

Proof of Lemma C.7. First note that by Lemma C.6, display (20), and the conditions on
Jmax in the statement of the Lemma, that for any € > 0 the inequality |35 — s;| < es; holds
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for all J € T N [1, Jmax] wpal H-uniformly, and therefore |3;' — s;!| < 2es7" holds for all
J € TN [1, Jmax] wpal H-uniformly. The result now follows by display (20). =

Proof of Lemma B.5. Part (i): We show that there exists a R; sufficiently small so that
inf e Pho (Jmax (R1) < jmax) — 1. For any Ry > 0, let T(R1) = T N [1, Jmax(R1)]. Note
that ijaX(Rl)(jmaX(Rl) log Jimax(R1))/n — 0 and so by definition of Jinax and Jmax(R1), and
Lemma C.7, we have

sup ]P)ho (jmax < JmaX(R1)>

hoEH
< sup Pp, ( sup J+/log J[(log n)* v §}1] > 2M\/ﬁ>
ho€H JET(Ry1)

< sup ]P’ho( sup J\/logJ[(log n)t v §31] > QR% sup J+/log J[(log n)t v TJ])

hoeH JET(R1) 1 JeT(R1)

< sup Pp, <Cc.7 sup Jy/log J[(logn)* Vv 7] > M sup Jy/log J[(logn)* \/TJ]) +o(1),

hoeH JET(Ry) Ry jeT(Rry)

which converges to 0 provided R; is sufficiently small that Co7R; < M.

Part (ii): We now show infj, cy Pho(jmax < Jmax(R2)) — 1 holds for Ry sufficiently large.

If Jopax > Jmax(R2), then Jyax(R2) must fail at least one of the two inequalities given in the
definition of Jyay in (4). Suppose it fails the first, so that

jmax(RQ) log jmax(RZ) [(log n)4 \ §}n];ax(R2)] > 2M\/ﬁ .
This implies that either Jmax < Jmax(R2) (a contradiction), or

inf Jy/log J[(logn)* v §;'] > 2M/n,

JGT Rz
which has probability tending to 0 (H-uniformly) by Lemma C.7.
Now suppose jmaX(Rg) fails the second inequality defining jmax so that

Jmax (R2) ™ logjmaX(Rg)+[(logn)4v§ 1 (R2)+] < 2M+/n. (45)

Note that irrespective of the degree of ill-posedness, we have (J. 1log Jmax(R2)T)/n — 0, so
by Lemma C.6 we see that

N jmax(R2)+ log jmax(R2)+
htIéfH Ph, <5JmaX(R2)+ < 8 Jmax(R2)*+ T CC.6\/ o — 1.

If the inequality C’CG\/ max (R2)T1og Jnax(R2)T) /n < S Jonan (R2)* holds, then SJ (Ra)*
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0'553n1m( iyt = 0577, (my)+ and so by (45) and definition of Jiax(R2) in (24), we have

2M /0 > Jmax(R2) " \/10g Jmax(Ro) T [(log n)* v Sjmax(Rg) ]

> 0.5Jmax(R2)T\/10g Jmax(R2) T [(logn)* v T}max(R2)+j| > 0.5Rav/n,

which is impossible whenever Ry > 4M.
Conversely, if CC_G\/(jmaX(R2)+ log Jimax (R2) ™) /n > 8 Joax(Ro)+ DOlds then

§i > 1 _ n _
Jmax(Rz2) 2Cc.6 Jmax<R2>+ log Jmax(R2)+

and so this would imply that, for all n sufficiently large that we can ignore the (logn)?* term,

we have

2M+/n > jmaX(R2)+ log Jiax(R2)™ [(log n) V SJmax(R2)+]

\/— J +
> max R2 log Jmax (F2 \/ R n . Jmax (R2 ) \/ﬁ
max 2

2Ccs >+ log Jmax<R2) 2Cc6

which is impossible since Jiax(R2)T — co. m

Proof of Remark B.1. By definition of Jyax(R) we have Jyax(R1) < Jmax(R2). Suppose
Jmax (Rz2) is not bounded by a multiple of Jyax(R1), in which case Jyax(R2)/Jmax(R1) — +00.
Then Jpax(R2) > Jmax(R1)T = inf{J € T : J > Juax(R1)} for all n sufficiently large, in

which case
Rivn < Jmax(R1) T\ /1og Jmax(R1) T [(log n)4 Vv ijax(R1)+}

< Jmax(R2)1\/10g Jmax (R2)[(log n)* V 77 (r,y] < Rav/n,
which rearranges to give

J_max(R2) log jmax(RQ) [(log n)4 \ ijax(Rg)] < @

jmax(R1)+ IOg jmax(Rl)+ [(IOgn)4 vijax(R1)+] a Rl 7

which in turn implies Jpax(R2)/Jmax(R1)T < Ra/R; because J +— \/@[(log n)t v TJ] ia
increasing in J for each n. As Jpax(R1)T = (1 +0(1))2%Jmax(R1), this final bound contradicts
jmaX(RZ)/jmax(R1> — +00. 1



C.1.4 Supplemental Results: Uniform-in-J Bounds for the Bootstrap

Before proving Lemmas B.6 and B.7, we first state and prove a preliminary lemma. Recall the
definition of Z} from (17) and Zy, from (18).

Lemma C.8 Let Assumptions 1-4 hold. Let Jyax = Jmax(R) from (24) for any R > 0, let
Jmin — 00 with Jyin < Jmax, let Tn = {J € T ¢ Jmin < J < Jmax}, and let &, from (25) be

defined with this Jyin and Jyax. Then: given any A > 0, there exists a > 0 which satisfies:
2 (2, J) — Zn(z, J)‘ > adn/log jmax> Jmax> 1,
(1) inf Py, (IP’*( sup Zn(x, J)‘ > ay/log jmax) < Jmax) — 1,
hoeH (2,J)EXX Tn,
(i4i) inf Py, <IP’*< sup  |Z)(z,J)| > ay/log Jmax> Jmax> — 1.
ho€EH (

z,J)EX X Tn

1) inf Pp, < < sup
Q hoeH (2,J)EX X Tn

Proof of Lemma C.8. By Assumption 2, the eigenvalues of {19 are bounded away from 0
and oo uniformly in J. It follows by Lemma C.5 that the eigenvalues of (AZ‘} are bounded away

from 0 and oo uniformly in J € J,, wpal H-uniformly. Whenever 5\23 is invertible,

G2
Zy(x,J) = W(( ba)” 1/25‘]) (GO )26y,
_ (el -
Pnlie ) = W(Sﬂ Q)V2(Q9)V2ar, where G, ~ N(0,Q9).
z,J || sd

Part (i): We have

2 (2, J) = Zn(z, )|

[ _1/2¢J] ~No \—1/2Go\— /Ao \— 0\— ()0 00\ — * sd
< \((( ) IS (G0 — (5 () @) )6 x4
”Ux JHsd ’ sd
(el . 0.1l
+' (S9); (Q)V2(Q9)~V2a;, —7HA$’JH d =Tiz7+Tou.
HUI,JHsd HUJL‘,J”sd

Control of T 4 s: In view of Lemma B.4, we have sup,c v je 7, [|0z,7]sa/ 02,7 sa < 2 wpal

‘H-uniformly. It therefore suffices to control the process

—1/2 J
AZp(z,J) = [W(( &

oz, llsd (G728 (G )72~ (S;)l(Q§)1/2(§3)—1/2> G
We first bound the terms [|AZy (z, J)l| ey and [AZy (w1, J) — ALy (2, J) | 2o, for a1 # a2,
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where the L?(PP*) norm is with respect to (w;)";, conditional on Z". Wpal H-uniformly, we

have

oz, sllsall AZn (2, J)|| L2 )

ez ( (@) 28507 (Go) ™72 = (S3)r ()20 2 (6251

EQ

H (ST S (((Gbﬂ 1230)(8g.,) /2 — (89 (%)) 1/2)@3)1/2

e?

Given the uniform bounds on the eigenvalues of 29 and Q?I for J € J, wpal H-uniformly,

there exists a finite positive constant C' for which

1AZ (2, )| 2 ey < G, Pl (897

[0l o "

53(« 0 ) V28 (g) 1/2—<53>;<93>1/2@3>1/2)

42

holds for every (x,J) € X x J,. By Assumption 2, there is a universal constant C’ > 0 such
that C' Loz 5|l < |loz.sllsa < C'|loz, || for all (z,J) € X x T, which yields

|AZ, (2, J) | 2oy < CC"

S&(((Az,ﬂ 1289)1 (G, 1”—(53);(93)”?@3)”?)

e
We now show that the remaining term converges uniformly for J € J, at rate d,, uniformly
for hg € H. First note

|

53(((AZ,J) VES) (G )T = (89 (99)12(Q5)” 1”)

The first term on the r.h.s. can be bounded using Lemma C.4(ii) by a quantity which in turn

e?

SJ(« 0 ) 289 (B <53>;)

; HI (@)

02 2

can be bounded by a multiple of §,. For the second term on the r.h.s., we use Lemma C.5 and
Lemmas F.2 and F.3 of Chen and Christensen (2018) to deduce that

_ (0°\1/2/Q0\—1/2 "
it o (s - 2042, < 075, ) o

for some constant C” > 0, from which it follows that

inf Ph0< sup  [[AZp(x, )| p2(p) < C""5n> — 1, (47)
hoeH (2,J)EXX Tn

for some constant C"' > 0.
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By analogy with (46), for a finite positive constant C' we have

Gl Gl
HAZn(ﬂflJ)—AZn(@,J)HLQ(P*)SCH( vt Vol Dv 2><SJ>Z
Tomlod~ Towaslud p

X

53(«1])1/25%);(?;»1/2 - <S§>;<93>1/Q@3>1/2)

82'
As above, the second norm on the right-hand side converges uniformly for J € 7, at rate d,,

uniformly for hg € H. For the first term, by similar steps to the proof of part (ii) below it
follows that

inf ]Ph
hoeH 0

sup sup
JETn x1,22€X x1F#T2 Jw—1/2Hx1 - $2H2}2/

AZ (21, ) — AZy (39,
( |AZp (21, J) (z2 )‘|L2(P)§C,,,,6n>_>1 (48)

where w, w’ are the Holder continuity constants for the sieve 1)/ and C" is a positive constant.

Finally, by (47) and (48), with D = C"" vV C"" we have that

|AZn (21, J) — Al (3, J)|| 2@+
sup  sup - o 1/2 - = ( ), sup  [|[AZp(x, J)|[ 2@y < D (49)
JeTn I1,I72£EXZ OnJ ||x1 - 552”@2 (z,J)EXX Tn
T1#To

wpal H-uniformly. The process X x J,, > (x,J) — AZjy(x,J) is sub-gaussian with respect to
the pseudometric ||AZy(z1, J1) — Zn(z2, J2) |20+ = nl(®1, J1), (22, J2)]. If (49) holds then
for any € > 0 the e-covering number N(X X J,, ¢n,€) of X x J,, with respect to ¢y, is

D(SnJmax> v

€

N(X X Tnyon,€) S <

for some v > 0. It follows by Theorem 2.3.6 of Giné and Nickl (2016) that

Dén D6, J, -
E* sup |AZy (z, J) ] 5/ log <m>de < D'§,0/10g Jmax
[( | 0 €

2,J)EX X Tn

for some D’ > 0. For any A > 0, it now follows from the above display and Theorem 2.5.8 of
Giné and Nickl (2016) that wpal H-uniformly, we have

P* sup  |AZp(x,J)| > (D' + V2AD)d,1\/log Jmax> <JA.
((ac,J *

)EX X Tn

Control of Ty ;. ; : The argument is similar to the above. Lemma B.4 yields a convergence

rate of &, for the term sup, jycxx, [102,7/sa/loz,sllsa — 1|, while the \/log Jmax appears as
the order of the supremum of a suitably normalized Gaussian process.
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Part (ii): By analogy with (46), for any J € J,, and z1,x2 € X, we have

G vd) Gl
~ X —
s )~ Bt ey = (20 - =) s ()12
|021,71lsa Haxz,JHsd 22
Note the r.h.s. expression is of the form |||71H - Hz%ll" which we may bound using the fact that
for any norm || - ||, we have
o e =yl
—_—— Vz,yeR"\ {0}
Hl’H [yl H ][ v Iyl

By Assumption 4, (||o4,,sllez V [|02s,7]e2) "t < (\/ersv/J)~L. For the numerator, we have

H Goaf h] = GLP]) (SH7 @) < 053165 ()~ Dl

for some finite positive constant C', because the eigenvalues of {29 are uniformly bounded away
from 0 and co. By Hélder continuity of the sieve 17 and s}l < a,;7y (cf. (20)), we may deduce

that there is a finite positive constant C’ for which
|Zn (21, J) = Zp (2, J) || 2pey < C' TV |2y — 22| VY T € T

Note Zy(z, J) is sub-Gaussian with respect to the metric ¢y (21, J1), (22, J2)) = || Zp (1, J) —
L (2, J5) | 2(p+)- As in the proof of part (i), we may deduce that the covering number N (X' x
Tns on,€) of X x T, under ¢,, at all € > 0 is of the form

jmax Y
N(X X Tnyon,€) S <>

€

for some finite positive constant v. As sup(, jexxg, E* [in(:r, J)?] = 1, the result follows by
applying Theorems 2.3.6 and 2.5.8 of Giné and Nickl (2016) as in the proof of part (i).
Part (iii): Follows by similar arguments to part (ii). m

Proof of Lemma B.6. First note by Lemma B.5 that there exist constants Ry, Ro > 0 such
that
jmax(Rl) S j S jmaX(RZ) (50)

wpal H-uniformly. This implies that J 2 {J €T :01(log Jmax(R2))? < J < Jmax(R1)}
wpal H-uniformly. Also note that Jyax(R1) < Jmax(R2) by Remark B.1, which implies that

J contains at least two elements—and hence that S is nonempty—wpal H-uniformly.

For the lower bound, note that for every fixed (z, J, J2) € S, the quantity 7 (x,J, J2) is a

N(0,1) random variable under P* and so it follows that 6*(&) is not smaller than the (1 — &)
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quantile of the N(0,1) distribution and, in view of (50), no smaller than the (1 — Jyax(R1)™!)
quantile of the N (0, 1) distribution wpal H-uniformly. Standard approximations to the N (0, 1)
quantile function (e.g. DasGupta (2008), Example 8.13) yield

(1 = Jmax(R1) ™)) < 1/1og Jmax(R1) = (14 0(1))1/1og Jmax(R) ,

where the final equality is by Remark B.1. We have therefore shown that there exists a constant
C4 > 0 for which

htléf:}-[ ]Pho <C4 log jmax(R) S 9*(&)) - 1 :

For the upper bound, note by (50) that JC {J €T :0.1(10g Jmax(R1))* < J < Jmax(R2)}
wpal H-uniformly. Then by Lemmas B.3 and B.4 (with Jyin = 0.1(10g Jmax(R1))?, Jmax =
Jmax(R2), and T = {J € T : Jmin < J < Jimax}) and Assumption 4(i) imply that there is a

finite positive constant C' for which

1 1 n A K(J) ~ K(Js)
Zi(w, J, )| = | —— = (LJb D s — L obE 0 Ve
| n( )| ||Ux,J,J2||sd <\/’ﬁ g YTUW; 2, 2,2YW; 2,J2 i
1 1 . K(J) 1 1 <A . K(J2)
<Cl|l/—/——— E Ljzby, "' gwi| + | e = Ly, b ,2ﬁ‘7jw'
<H%JHsdﬁi:l o e rax,hrsdﬁzizl 2wt

C (123, )| + |Z3 (. J2)| )

holds for all (z, J, J2) € S, := {(z, J, J2) € X X T, X Ty, : J2 > J} wpal H-uniformly. It follows
by this inequality and (50) that

0* (&) < 2C x (1 — Jax(R2)™1) quantile of SUD (3, )Yex x T | Ln (T, T

wpal H-uniformly. The result now follows by Lemma C.8(iii) and Remark B.1. =

Proof of Lemma B.7. First note by the proof of Lemma B.6 that T C Tn = {JeT:
0.1(log Jmax(R1))? < J < Jmax(R2)} wpal H-uniformly. Therefore, wpal H-uniformly we have
2o < Z1_q» the 1 —a quantiles of sup(, ey, 7, |Z} (x, J)|.

Let ¢, denote the pseudometric on X x 7, given by ||Z(x1, J1) — Z5 (2, Jo)|l L2p+) =
onl(z1, J1), (x2, J2)]. It follows by a similar argument to Lemma C.10 that

M)

€

N(Xxjn,gan,e) SD<

for constants D,v > 0. It now follows by Theorems 2.3.6 and 2.5.8 of Giné and Nickl (2016)

that
nt P (5000, ez, 50 )] < Oyflog Tuas(R0)) =+ 1
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for some constant C' > 0 is some universal constant. As Jiyax(R) X Jmax(R2) by Remark B.1,
we have z;_, < C'v/10og Jmax wpal H-uniformly for some constant C’ > 0. m

C.1.5 Supplemental Results: Uniform Consistency for the Bootstrap

Before proving this result, we will first state and prove several preliminary results. Define
Fn = {g tg(w,u) = jIHO'%JHS_dlLJ’xb,L[E(J)U for some (z,J) € X' x jn} u {0}. (51)

Also let Fpy — Fpn = {1 — 92 : 91,92 € Fu}, F2 = {q192 : 91,92 € Fn}, and (F, — F)? =
{(g1 — 92)(93 — 94) : 91,92,93,94 € Fn}. We say a class of functions F of (w,u) is VC(F, M)
if |[f| < F for all f € F (i.e., F is an envelope for F,,) and there exist constants D,v > 0 for
which

M v
sup N | iz el Fllzng) < 0 () vee 01]

where the supremum is over all discrete probability measures on W xR for which || F'||z2(g) > 0,

and N(F,d,€) denotes the e-covering number of the set F under the pseudometric d.

Lemma C.9 Let Assumptions 1, 2, 3(i) and 4(i) hold. Then: there exists sufficiently large
positive constant C for which F(w,u) = C~/Jmax|u| is an envelope for F,, and

(i) Fn is VO(F, Jmax);

(ii) F2 is VO(F2, Jmax):
(iii) Fp — Fn is VO2F, Jymax);
(iv) (Fn — Fn)? is VOAF?, Jax).

Proof of Lemma C.9. First, by Assumptions 2 and 4(i), we may deduce that there is a finite
positive constant C such that |g(w,u)| < CVJ|u| < C\/ Jmax|u| for each g € F,,. We therefore

let
F(w,u) = CV Jmax|ul
denote the envelope of F,.

Part (i): Let
Fng = {g cg(w,u) = HO'a;’JHS_dILJ@be((J)’UJ for some =z € X} U {0},

and note that F,, = Ujcz, (Fn,g U —Fy g), where —F, j={—g:9 € Fn s}
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Also let Ay = (29)1/259[(59)'S9)~" and observe that
LyablsPu= (G, Tull 45(95) 726 20,

where the minimum and maximum eigenvalues of 29 are uniformly (in J and hg) bounded
away from 0 and +oo0 by Assumption 2. Also note supy,ey supy, |Gy ; 12 K(‘])H@z < V/Jmax by

Assumption 1(ii). Now, for any x¢,z1 € X', we have

Lyaobsu LywblsPu| _ || AAGL ) AlGy ]

”HHAJ[ P e 1AG e e e

V jmax|u|

lowollsa— Nowsslsa
—1/2 —1/2
Vol — Y _
_([ xo] [ - x1]> \/Kaxlu’
N 172, N 172, )
|ASG ,J a:o]HZ? V| J[ b, Vi ez lle
where the second line uses the fact that for any norm || - || on R™ we have
—H e =yl Vaz,yeR"\{0}.
Myl |fL"|| i
< J s —1/2 —1/2 J <
Note || A, < 571 < a-7y. As the sieve ¢/ is Holder continuous, i.e. 1G] e J Vs e S
JYzo — w1 |5 , uniformly in J for some positive constants w,w’, we have
LJmObK(J)u B LJxlb K() U TJJwaL'O - 1‘1”@ V max|U’
020, s o2y, lsd 020,71 V |02y,
It now follows by Assumption 4(i) that
K(J) K (J)
Lj..b Lj..b y _1 ,
] fot S S < e — [l S T o — i [EF. (52)
HO'GCO,J |sd ”09017J||Sd

It now follows by compactness of X (Assumption 1(i)) that there exists finite positive constants
D, v for which

jma-X v
sup N Ll L) < D(22) e @]

where the supremum is over all discrete probability measures @ on W x R with || F'[|2(g) > 0.
The result now follows (with a suitable modification of D and v) by noting that the covering
numbers for F,, = Ujcz, (Fn,gU—F,,s) are at most twice the sum of the covering numbers for

each respective F,, y, and because |J,| S 1og(Jmax)-

Part (ii): Fix any Jo,J1 € Jpn. Let (x,)oco be an e-cover for X'. Choose 0p,0; € O for
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which ||z; — xo,||¢, < € for i =0, 1. Then by (52), we have

K(J) K(J)
v Lz, bw uLjg, bu u < e %e ‘g2

LyaobisDu Ly, 65

1020, 7llsa N0y, 7 sa 10s0,Mlsd 100y ,75a

The result now follows similarly to part (i).

Parts (iii) and (iv): These follow now from parts (i) and (ii) by standard arguments. m

For the following lemma, recall the process Z, defined in (19). Define the pseudometric
on on X X Tp by @n((x0, o), (21, J1))? = Eno[(Zn (20, Jo) — Zn (21, J1))?].

Lemma C.10 Let Assumptions 1, 2, 3(i) and 4 (i) hold. Then: there exist constants D,v > 0
for which

€

jmax v
N(Xxjn,gon,e)SD< > vV e>0,
uniformly for hg € H.

Proof of Lemma C.10. Fix J € J, and let zp,21 € X. Then by similar arguments and

notation to the proof of Lemma C.9(i), we obtain

| AGER) AdG
wn<<xo’”<xl"]))‘HHAJ[ Pl A5G P ]ele
AN(G ) ~ (G vl

S T2 |z — m|F

H 1A,[G Wzomp VIASG, Y0 NIl lle

The compactness of X (Assumption 1(i)) now implies that there are constants D,v > 0 for
which

N(Xx{J},cpn,e)gD<i> Ve>0,

holds uniformly in hy. The result follows (with possibly different D and v) by noting that the
covering numbers of X x 7, are at most the sum of these individual covering numbers over
J € Jn and | T| < 1og(Jmax). ®

Recall the definition of Z, from (18) and Z,, from (19). Also let

Jmax /108 Jmax (logn)? V Jmax 10g Jmax (log n)? 1/3
T, = + :
vn vn

Enriching the original probability spaces as necessary, we also define on this space a (tight)
Gaussian processes B,, € £>°(X x J,) which is independent of the data Z,, and has identical
covariance function to Z,. We also enrich the bootstrap probability space as necessary to

support a random variable FZ =4 B,
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Lemma C.11 Let Assumptions 1, 2, and /(i) hold. Then: there exists finite positive constants
D, D’ such that:

(i) There exists a random variable B, =4 SUP(y Jyex x g, |Bn (@, J)| which satisfies

_ 1 1
sup Py, (‘Bn —  sup  |Zp(z,J)| ‘ > DTn) < D'< = + 0gn> .
ho€H (z,J)EXXTn log(Jmax) n

1) There exists a sequence of sets ), with inf, cy Pr, (2™ € Q) — 1 such that for every
0 0

Z" € Qy,, there exists a random variables E:; =, B,, which satisfies

- — Jmax /108 Jmax | 1
IP”‘( sup Zn(x,J)‘ - B, >D{\/ axV 08 Jmax 0BT | ])
(z,J)EX X Tn Vn Vuplogn

<D jmax V IOg jmax(log n)2un
Vn ’

where u, — oo is a sequence which is o(logn).

Proof of Lemma C.11. Part (i): We very the conditions of Corollary 2.2 in Chernozhukov,
Chetverikov, and Kato (2014b). Consider the set F,, defined in (51) and note that F(w,u) =
C/ Jmax|u| with sufficiently large C is an envelope for F,, (see Lemma C.9). We may deduce

by similar arguments to the proof of Lemma C.8 that there is a constant C’ > 0 for which

I1Za( Dlzzeny) < lowlied (G546 SDE | L 1€ e <

for all (z,.J) € X x T and hg € M, in which case supy,cy supge 7, En[g(W,u)?] < C'. Also
note |g(w,u)]* < F(u)g(w,u)?, and so it follows by the preceding display and Assumption 2
that there is a constant C” > 0 for which

sup sup Ep, Ug(VV, u)|3] < C"\ Jiax -

As shown in Lemma C.9(i), there exists constants C"” v > 0 which satisfy
j v
sup N7 |-y el Flin) < € (F22) e 1]

where the supremum is over all discrete probability measures Q on W x R. Finally, note
that by definition we have log(Jmax) = O(logn). Applying Corollary 2.2 of Chernozhukov
et al. (2014b) with b, < v/ Jmax, 02 S 1, K, < logn, SUDPp, e IEhOHF(u)\‘l]l/4 < v/ Jmax, and

o 1 = \/log Jimax vields the desired result.
Part (ii), step 1: To prove part (ii) we adapt arguments from the proof of Theorem A.2 in
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Chernozhukov et al. (2014a). Recall the sets F,, F2, and (F, — F,)? defined in Lemma C.9.
By part (i), we have |g(w, u)| < C?Jpaxu? for g € F2. Moreover, as g(w,u)? < F?|g(w,u)| for
g € F2, we may deduce by similar arguments to part (i) that there is a constant C’ > 0 for

which supy, ez supge 72 Eng [9(W, 1)?] < O’ Jmax.
Let M, = (n/(log Jmax))/* and note that

sup |(Ep — Eno)gl < sup [(En — Eng) (91juj<ar,)| + sup |(Br — Eng) (91u>01,) |
9eFR geF? gEF2

=: Tl,n + TQ’n.

Control of T ,,: Note g1y >, < F21L|u|>Mn and so we have

Sup2 |(En - Eho) (gﬂ|u\>Mn)} < C2<]_max (En[u21|u|>Mn] + Eho [u2]]-\u|>Mn]> )
9eFn

from which it follows by Markov’s inequality that

jmax V log jmax 202\/77 SUPpaeH Eho [u4ﬂ|u|>Mn]
sup Ppy | T2 > < = 5 -0 (53)
hoeH \/’E V log Jmax Mn

by Assumption 2(i) and definition of M,,.

Control of T} ,,: Let Fgﬂlu\SMn = {h: h(w,u) = g(w,w) L, <nm, ,9 € F2}. Tt follows from
Lemma C.9(ii) that F2 1, <p, is VC(F?, Jmax). Standard algebraic manipulations then yield

\/S‘lpgef% En (92T u| <y, ) -
/0 \/10g N(F2Lyj<ntns |- 1r2qe,)s €) de SEF= (| r2p,)\/ 108 Jmax

uniformly for hg € H. By Jensen’s inequality we also have

1/2 _ =
sup Ep, [HFQHLQ(E»”)] < sup Ep, [F4] / < Jmax
hoeH hoeH

by Assumption 2(i). It follows by the preceding two displays and Theorem 3.5.1 of Giné and
Nickl (2016) that there is a constant C”” > 0 for which

Jinax logj <
En, LSGUJ% |EnlgLjui<ar,] — Eng [911|u§MnH] < CW%-

Theorem 3.3.9 of Giné and Nickl (2016) then implies that for some C”” > 0 we have

_ _ , _
sup Py, (Tm > (1+ gy Imax V108 o Vk’g‘]‘“) < exp ( " ‘fr;ax(log max) /1 > 0. (54)
ho€H \/ﬁ (Jmax/n + Jmax/n)
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Combining (53) and (54), we have therefore shown that there is a constant D > 0 for

which ~ _
Jmax V ]'Og Jmax
—r = ") =1.
NZD

A analogous argument (increasing D if required) shows that

inf P Enlg] —E <D
hoeH ho(;&%’ nlol = Eralall =

jm XV 1 jm X
inf Ph0< sup |Enlg] — Epglg]| < pIEaxy _Cormax 08 Jma > — 1.
ho€H GE(Fn—Fn)? vn

Part (ii), step 2: As every g € F,, can be uniquely identified to some (z,J) € X x J,,, we

shall view the bootstrap process Z, from (18), empirical process Z,, from (19), and Gaussian
process B,, in the statement of the lemma as processes over the index set F,, in what follows.

By Lemma C.10, can choose a finite subset T}, C F,, for which

sup inf Ep, [ (f(W,u) — g(W, u))2] < DJmax (log jmaX)/”
feF, 9€Tn

and log(|Ty|) < log(nJmax) < logn both hold uniformly for hg € H.
Define

Zn =max|Zu(9)|,  Zn= sup |Zn(g)|, Bn=max|Bu(9)|, Bn= sup |Bu(g)].
9€Tn 9EFn 9€Tn 9EFn

By Theorem 3.2 in (Dudley, 2014), we extend B, (-) as a process over the linear span of 7, in
a way that ensures it has linear sample paths. We similarly extend 2n over the linear span of
Fu. It then follows that |Z,, — Z,| < SUPgee, |zn(g)| and |B, — B,| < sup,eg, |Bn(g)|, where

gn = {g =g01—92:01,92 € Fn 5 Eho[(gl(W,U) _QZ(Wyu))z] < Djmax \/ (logjmax)/n} .

To control sup,eg, |Zn(g)| and supgce [Bn(g)l, let 07 = 2D Jmaxy/(10g Jmax)/n and note
that the definition of &, and step 1 imply supyee, |En[g?]| < 02 wpal H-uniformly. It follows

by Theorem 2.5.8 of Giné and Nickl (2016) that
* > * > 1
P ((sup [Zal0)] < 2| sup (o)l + v2oTTogn ) 21—+
geén g€én n

wpal H-uniformly. As |g| < 2F for each h € &,, it follows by Theorem 2.3.6 of Giné and Nickl
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(2016) and Lemma C.9 that for any hg € H,

E*

on/ClIF | 2s,)
S 20 Floge, [ VIou N(Ew |2,y 260 Fll e, ) e

jmaX F
=S on\/log <H ||L2(P")> ;
On

wpal H-uniformly. The definitions of F, o, Jmax and the fact that SUPp, e Epo[Jul?] < oo

Za(g)|

9€€n

imply that
inf Py, (1og (|| Fll 28, /0n) < 2log n) 1.
hoeH

Combining the preceding three displays, we see that there is a finite positive constant C” for

which
P <
ge€n

holds wpal H-uniformly.

n

An(g)‘ < C//Un V logn> >1- l .

We now prove an analogous bound for the Gaussian process B,,. By Theorem 2.5.8 of Giné
and Nickl (2016) and definition of o,,, we have

inf Ph0<sup B.(9)| < Eho[sup 1By (g )\] + a,%logn) >1- l (55)
ho€H 9cEn 9cEn n

Equip the linear span of F, with the pseudometric d,(g,¢’) = ||Bn(g9) — Bn(g')HLz(phO) and
note d,(g,g') < V20, hold for g,¢ € &, by construction. Also note that N(&,,dn,¢) <
N(Fp,dn,e/2)%. As B, () (vestricted F,,) has the same covariance kernel as Z, from (19) on
X X Jpn, we have N(Fp, dy,€) < (Jmax/€)? for some positive constant v by Lemma C.10. Now
by Theorem 2.3.6 of Giné and Nickl (2016), we may deduce

V0og N(&,,dy, €)de < opn/logn,

\/io'n
} <

sup Ep, [ sup |B,(g)|
ho€H g€eEn

where we used the fact that log(Jmax/0n) < logn. Combining this with (55) yields

1
inf Py, < sup B, (g)| < C’"'an\/logn> >1——,

ho€H g€€n

3

for some finite positive constant C"”.

Part (ii), step 3: By part (ii), steps 1 and 2, the following three inequalities hold wpal
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‘H-uniformly:

P*(

where ¢, = D'o,+/logn for some finite constant D’ > 0. We work for the remainder of the

proof of this part on the sequence of events upon which the above three inequalities hold.

— 1
Tn 70 <Gi) 21— sup [Ealg] ~ Enlgll S 7,

1 -
ggn) >1-=, Py (‘Bn—Bn
n gEF?

—1/2 noting that 0, =

Let u, — oo be a sequence which is o(logn). Set g, = (up logn)
o(logn). Fix any Borel subset A C R. Let A° = {z € R : infycad(z,y) < €} denote the
e-enlargement. By Lemma 4.2 of Chernozhukov et al. (2014b) (with the choices 3 = §~1y/logn
and 0 = p,, in the notation of Chernozhukov et al. (2014b)), there exists g, € C*°(R) which

satisfies

elogn
(1= &) pen < an(t) < en+ (1 — ) gensson s €n = ng ,

"

where the firs three derivatives of g, satisfy ||¢,|loo < 05", 14”100 < 05,2v10gn, and ||¢” ||oo <
0,3v/logn. Also note that

max |En[g192] — En, [9192]] < sup [Enlg] — Epo[g]] < o7
91,92€Tn gEF2

uniformly for hy € H. Hence by Comment 1 of Chernozhukov, Chetverikov, and Kato (2015),
noting that log T, < logn and that ¢!

~ n

E*[41(Z1)] — Eng [an(Bn)] ‘ < 0p 202/ logn + o, ony/logn < 0, on/logn,

uniformly for hg € H. We then have for finite constants C,C” > 0 that

on < 1 by definition of Jyax, we have

P*(Z, € A) <P*(Z, € A) +n7!
<(1—e€,) 'E* [qn (Zn)] +nt
< (1= €n) "By [ (Bn)] +n 7 + Coptony/logn
(1= €3) Yep + Py (Bn € A T3en) =t 4 Cprlo,/logn
-

<
<(1—e, Le, + P, (En € A2¢"+39") +2n7 ' + C’lean\/logn
S ]P)ho (En c AQCH“Fan) + C/leo_n /logn,

uniformly for hg € H. It now follows from the preceding inequality by Lemma 4.1 of Cher-
nozhukov et al. (2014b) that there exists a random variable Ez =4 B, which satisfies

p* (‘ZL _B

> 2¢, + 3Qn) < C'gglan\/logn,

uniformly for hg € H. =
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Proof of Theorem B.2. Part (i), Step 1: Recalling the definition of Z,, from (19), note that

‘\/’}LJ() Zn(x7‘])

162, |5
= \/ﬁhj(’.ro)— ; ‘?J(w) o Zn(x7 J) + e 1’ \/ﬁhj(x) — hJ(x) = Tl,:v,J + TQ,m,J-
x,J ||sd sd sd

Control of T7 ;. ;: Expanding the definition of fzJ(x) — ﬁj(x) yields

(G 2w g A .
Tiag = |~ (S S3((G )™ 259 (G )72 = (5900 (G *Bu/v)
—1 2
< |Gy (s | [|ss@sn s @s = o), e
o HJJ:,JHsd 22
Assumption 2 implies that [[ogsllsa = 0wl = G} 2] (S |l uniformly for (z,J) €

X x T. It then follows by Lemmas C.2 and C.4 that there is a constant C' > 0 for which

7max 1 7max
J; n\/ og J, > N

lnf ]Ph() < Sup TLJL',J S Cijax (56)
(

hoet 2, J)EX X T
Control of Ty, ;: By Lemma B.4 and the fact that |1 —a| < |1 — a?| for a > 0, we have

\/ﬁfu(ll) — hy(x)

sd

sup T2,x,J < C'B.45n X sup
(z,J)EXXTn (z,J)EX X Tn

wpal H-uniformly. Recall B,, from Lemma C.11. By (56) and definition of Jyay, we have

B[+ B,)

wpal H-uniformly. By Lemma C.11(i) it suffices to control B, =4 SUD(y, Jyex x g, 1Bn(, J)],

sup — |Zn(x, J)| -

sup T .5 < CR.40, X <1 +
(z,J)EXXTn

(z,J)EX X Tn

where B, is a Gaussian process with the same covariance function as Z,. We may deduce by
similar arguments to the proof of Lemma C.8 that there is a constant C' > 0 for which

1)l < C

52

1B, Dllz2e,) = W2, 2oy < lowallsd |G 2021 (597

for all (z,J) € X x T and hy € H. Applying Theorem 2.5.8 of Giné and Nickl (2016) yields

sup Pho (Bn > Eho [771] + \/ 202" log jmax) < ng( -0,

hoeH
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for any constant C’ > 0. The remaining term Ey,[B,] may be shown to be O(\/ Jmax) uniformly
for hy € H using Theorem 2.3.6 of Giné and Nickl (2016) and similar arguments to the proof
of Lemma C.8. It follows that

inf I[Dh0< sup  Thp g < C"6py/log JmaX> —1
hoEH (

z,J)EX X Tn

for some constant C” > 0, and hence that

i@ = k@) g o

162,754

inf Ph ( sup < Cl”én \/ log jmax) —1 )
ho€H (2,J)EX X Tn

for some constant C” > 0. Note 6,1/10g Jmax — 0 by definition of Jy . and because Jpin =
(log Jimax)? and 2p > d.

Part (i), Step 2: By step 1 and Lemma C.11(i), we have

hy(x) —hs(z)| —
BT = 0@ B < o) 1
sup N e <Cxn| —

(z,J)EX X Tn

f P
int B,

for some constant C' > 0, where x,, = YTy, +8,1/10g Jyax with T, from Lemma C.11(i). Lemma

2.3 in Chernozhukov et al. (2014b) (noting supy,cy Eno [Bn] < V/10g Jmax from step 1) yields
hy(z) —h —
sup sup IP’hO< sup \/EM < s) — Pp, (Bn < s)
ho€H seR (z,J)EX X Tn sd

< (\/mg T + 1og<x;1>) Fo(1). (57)

We now apply a similar argument to the bootstrapped process. By the proof of Lemma
B.6 we have E*[sup jecxx, \zn(x,J)H < Vlog Jmax wpal H-uniformly. Then by Lemma
C.11(ii) and Lemma 2.3 in Chernozhukov et al. (2014b), we have for some C” > 0 that

inf Pp, | sup
hoEH 0 < sE€R

in(:r,J)‘ < s) — Ppy(Bn < )

< (B0 Viow T 410851 ) 3 ) > 1. (58)

IP’*( sup
(z,J)EXX Ty

where

571 _ \/Jmax V IOg Jmax lo

(log n)2uy,

— gn + # ~ Jmax \/ IOg Jmax
Vn Vuy logn’ "
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and u, — oo is a sequence which is o(logn). Finally, by an anti-concentration inequality

(Chernozhukov et al., 2014a, Corollary 2.1) wpal H-uniformly, for all a > 0 we have

P* < < adp/log jmax>

In view of Lemma C.8(i), we therefore have for some C” > 0 that

~

sup |Zy (2, J)| — s
(z,J)EXXTn

sup < ad, 1og Jmax -

seR

inf P su
ho€EH h0< P

(o Eaeiss) -2 sp zeaiss)|
seR (z,J

VEX X Tn (z,J)EX X Tn

< "6, log jmax) -1 (59)

The desired result now follows from combining (57), (58), and (59) and observing each of
Xn V108 Jmax, Bn\/10g Jmax, and 7, are o(1) because Jyin < (log Jmax)? and 2p > d.

Part (ii): Follows by a similar argument to part (i). m

C.2 Supplemental Results: UCBs for Derivatives

Here we present supplemental results for the proofs of Theorems 4.4 and 4.5. Throughout this
subsection, for any fixed R > 0, let Jpax = Jmax(R). Also let Jyi — o0 as n — oo with
Jmin < Jmax- Define J,, = {J € T : Jin < J < Jmax}- Also recall 6, from (25).

Lemma C.12 Let Assumptions 1-3 hold. Then: there is a universal constant Cc12 > 0 such
that )
165,115

-1
HU%,JIEd

inf Py, ( sup < Cp.4b ) — 1.
hoeH " (2,J)EX X Tn "

Proof of Lemma C.12. The proof follows by identical arguments to the proof of Lemma B.4,
replacing 4,7 and 7,7 with 42 ; := (Gg ;)"'89[(59)(Gy ,)~'89)71G,*(0°0) and 42 =
S?][(53)’53]—1%}/2(8%5), respectively. ®

Lemma C.13 Let Assumptions 1-4 hold. For a given o € (0,1), let 2§*, denote the 1 — «
quantile of Sup . 1y 7 |Z8*(x, J)|. Then: with Jmax(R) as defined in (24) for any R > 0,there
exists a constant Co13 > 0 for which

hiorg;{ P, (Zilia < Ccaszy/log JmaX(R)> — 1.

Proof of Lemma C.13. Follows by identical arguments to the proof of Lemma B.7, noting

that 9¢; is Hélder continuous provided p > |a|. m
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Lemma C.14 Let Assumptions 1-4 hold and let Jyin < (log Jmax)?. Then: there exists a
sequence v, J 0 for which

Ohy(z) — 8%y (x)

165 sllsa

vn

sup
seR

S'Yn

Ph0< sup <s|- IP’*( sup 2% (x,J)| < s)
(2,J)EX X Tn (2,J)EX X Tn

holds wpal H-uniformly.

Proof of Lemma C.14. The proof follows by similar arguments to the proof of Theorem
B.2(i), replacing F,, with

Fy o= {g cg(w,u) = :I:||ag7JHS_d1Lf‘}7xbf(J)u for some (z,J) € X x Jn} u {0},

where LY, = (0°0])/[S,Gy 185] 718, Gy b As sup,e |G, Y 20%w] || < JV/2Hal/ it follows by
Assumption 4(iii) that F(w,u) = Cv/Jmax|u| is an envelope for F¢ for sufficiently large C.
The VC properties of F? and related classes then follow similarly to Lemma C.9 by Holder

continuity of 9%);. The empirical process

Z (.CU J) ”O-xszd ( ZLJ:E W; uz)

induces a pseudometric over X x J,, whose covering number behaves as in Lemma C.10, again
by Hélder continuity of 9%);7. We may then establish a result analogous to Lemma C.11 for

Gaussian approximation to the supremum of the process Z¢ and its bootstrap analogue

z;zl(x’J) ELJx g(J Uity
Ho—x JHSd

over X X J,. The remainder of the proof now similarly to the proof of Theorem B.2(i). m

C.3 Proofs of Theorems 4.4 and 4.5 on UCBs for Derivatives

Proof of Theorem 4.4. The proof follows similar arguments to the proof of Theorem 4.2.

Here we state the necessary modifications.

Part (i), step 1: Identical to part (i), step 1 of the proof of Theorem 4.2.

Part (i), step 2: Note that by Theorem B.1 and a similar argument to the proof of Corol-
lary 3.1 of Chen and Christensen (2018), we have

Jnf Py <||aaiw — %R |se < CeJUI=PVA 7 T € [1, Jinax] N T) —1
0E
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for some constant Cs > 0. Moreover, by Lemma C.12 and Assumption 4(iii) there is a constant
C7 > 0 for which

1/2+|a|/d
inf Ph0< sup TJJT < C7> — 1.
hoeH (z,J)eXxT "Ux,J“Sd
It now follows by (34) that
0%h j(x) — 8*ho ()| Jpld (24Jo(p, E)) P/

< CsCr < CgCrBP/d2P

165 fllsa VI T80 EN V BIo (P, E)

wpal uniformly for hg € GP and p € [p,p] and z € X'. The remainder of the proof of this

part now follows by identical arguments to part (i), step 2 of the proof of Theorem 4.2, using
Lemma C.14 in place of Theorem B.2(i).

Part (ii): By Lemmas B.6, C.12, and C.13 and Assumption 4(iii) we have

sup [C%(z, A)| S (1 + A)r;JY2HV 4 [(log Jnax) /n
rxeX

wpal H-uniformly. Then by display (34), with Jy = Jo(p, D) we have that

sup |C(w, A)| S (14 A)7+ (Jg) 21/ (log Tinax) /1

reX
a T log jmax al—
§ (1+A)TJ0J(|) /d (Jolongax)/n,S (1+A)\/§Jé| =p)/d

holds wpal uniformly for hy € GP and p € [p,p], where the second inequality follows from
the fact that the model is mildly ill-posed and the third is by definition (21). The result now

follows by similar arguments to part (ii) of the proof of Theorem 4.2. m

Proof of Theorem 4.5. The proof follows similar arguments to the proof of Theorem 4.3.

Here we state the necessary modifications.

Part (i): By Lemma B.5, Theorem B.1, and similar arguments to the proof of Corollary
3.1 of Chen and Christensen (2018), there exists a constant Ay > 0 for which

0°h (@) — 0 ho(a)| < |0°hj(x) — 9*h ()| + AgJ I/
holds for all z € X wpal H-uniformly. Then for any A > Ap, we have

9°h;(x) — 9°h;(x)

167 Tl

inf P (8%o(z) € C%z, A) Vo € X) > inf P
nf ho (0%ho(z) € Cp(a, A) Va )—hloneg ho(igg

Sﬁz)+mn.

The remainder of the proof now follows similarly to the proof of Theorem 4.3, using Lemma
C.14 in place of Theorem B.2(i).
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Part (ii): By Lemmas B.2, B.6, C.12, and C.13 and Assumption 4(iii), there exist constants
C,C" > 0 for which

sup [C%(z, A)| < C(1 + A)Tjjl/2+la‘/d\/1og(Jr;aX<R2)) /n+ AJjla-p/d
TEX

< C'(1+ AT

max

(RZ))(ICL\—p)/d + A Jj(lal=p)/d

holds wpal uniformly for hg € H” and p € [p,p]. The remainder of the proof now follows
similarly to the proof of Theorem 4.3. m
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