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Abstract

We consider a model of Bayesian persuasion in which the Receiver can detect lies with positive

probability. We show that the Sender lies more when the lie detection probability increases. As

long as the lie detection probability is sufficiently small the Sender’s and the Receiver’s equilibrium

payoffs are unaffected by the lie detection technology because the Sender simply compensates

by lying more. When the lie detection probability is sufficiently high, the Sender’s (Receiver’s)

equilibrium payoff decreases (increases) with the lie detection probability.

JEL Codes: D83, D82, K40, D72

∗We are particularly grateful to Andrew Little for inspiring our initial analysis. We also thank Matt Gentzkow, Philippe
Jehiel, Navin Kartik, Elliot Lipnowski, Zhaotian Luo, Barry Nalebuff, Larry Samuelson, and Ian Turner for helpful comments.
†Yale School of Management and Cowles Foundation, Yale University, florian.ederer@yale.edu
‡Department of Economics, Yale University, weicheng.min@yale.edu

1

mailto:florian.ederer@yale.edu
mailto:weicheng.min@yale.edu


1 Introduction

Lies are a pervasive feature of communication even when communication is subject to intense public

and media scrutiny. For example, during his tenure as US President Donald Trump has made over

20,000 false or misleading claims.1 But such lies are also detectable. Monitoring and fact-checking

should constrain how much licence a sender of communication has when making false statements. But,

interestingly, in the face of increased fact-checking and media focus the rate of Trump’s lying increased

rather than decreased—a development that runs counter to this intuition.

In this paper we incorporate probabilistic lie detection in an otherwise standard model of Bayesian

persuasion (Kamenica and Gentzkow, 2011; Kamenica, 2019). Two players, a Sender and a Receiver, en-

gage in one round of communication. The Sender observes the binary state of nature and sends a message

to the Receiver. To clearly define whether a message is a lie or not we assume that the message space and

the state space are the same. The Receiver observes the message, and if the message is a lie, it is flagged as

such with some probability. The Receiver then takes an action. Whereas the Sender prefers the Receiver to

take the “favorable” action regardless of the state of nature, the Receiver wants to match the action to the

underlying state. Finally, payoffs (or utilities which we use interchangeably) are realized for both parties.

Our main assumption that lies are detectable is a natural one in many applications. Ekman and

Frank (1993) argue that there are two basic reasons why lies fail due to detection: facts and emotions.

First, facts may surface that contradict the message of the Sender. These fact do not necessarily tell all

the information about the state of the world, but they reveal that the Sender’s message was a lie. Second,

lies can be detected because emotions and physical reactions such as blushing or sweating provide strong

clues that the Sender is lying.

Our model delivers the following set of results. First, the Sender lies more frequently when the lie

detection technology improves. Second, as long as the lie detection probability is sufficiently small, the

equilibrium payoffs of both players are unaffected by the lie detection technology because the Sender

simply compensates by lying more frequently in the unfavorable state of nature by claiming that the

state is favorable. That is to say, the lie detection technology changes the Sender’s message strategy

but does not have an impact on the utilities of both players. Third, when the lie detection technology is
1See https://www.washingtonpost.com/politics/2020/07/13/president-trump-has-made-more-than-2000

0-false-or-misleading-claims/ for a comprehensive analysis of this behavior.
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sufficiently reliable, any further increase in the lie detection probability causes the Sender to also lie more

frequently in the favorable state of nature and the Sender’s (Receiver’s) equilibrium payoff decreases

(increases) with the lie detection probability.

Two recent papers (Balbuzanov, 2019; Dziuda and Salas, 2018) also investigate the role of lie detectabil-

ity in communication. The largest difference with respect to our paper lies in the commitment assumption

of the Sender. In all those papers, the communication game takes the form of cheap talk (Crawford and

Sobel, 1982) rather than Bayesian persuasion as in our paper. We defer a detailed comparison between

these papers and our work to Section 4. In Jehiel (2020) lie detection arises endogenously in a setting

with two rounds of communication and a Sender who in the second round cannot remember what lies she

sent in the first round. As the state space becomes arbitrarily fine, the probability of lie detection goes

to 1 because it is hard to guess exactly the same lie, and therefore only fully revealing equilibria arise.

Related theoretical work on lying in communication games also includes Kartik et al. (2007) and

Kartik (2009) who do not consider lie detection but instead introduce an exogenous cost of lying tied

to the size of the lie in a cheap talk setting. They find that most types inflate their messages, but only

up to a point. In contrast to our results they obtain full information revelation follows for some or all

types depending on the bounds of the type and message space.

A large and growing experimental literature (Gneezy, 2005; Hurkens and Kartik, 2009; Sánchez-

Pagés and Vorsatz, 2009; Ederer and Fehr, 2017; Gneezy et al., 2018) examines lying in a variety of

communication games Most closely related to our own work is Fréchette et al. (2019) who investigate

models of cheap talk, information disclosure, and Bayesian persuasion, in a unified experimental

framework. Their experiments provide general support for the strategic rationale behind the role of

commitment and, more specifically, for the Bayesian persuasion model of Kamenica and Gentzkow (2011).

Finally, our paper is related to recent work on communication in political science. Whereas we focus on

an improvement of the Receiver’s communication technology (i.e., lie detection), Gehlbach and Vorobyev

(2020) analyze how improvements that benefit the Sender (e.g., censorship and propaganda) impact com-

munication under Bayesian persuasion. In a related framework which can be recast as Bayesian persuasion,

Luo and Rozenas (2018) study how the electoral mechanism performs when the government (the Sender)

can rig elections manipulating the electoral process ex ante and by falsifying election returns ex post.
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2 Model

Consider the following simple model of Bayesian persuasion in the presence of lie detection. Let w∈{0,1}

denote the state of the world and Pr(w=1)=µ∈ (0,1). The Sender (S, he) observes w and sends a

message m∈{0,1} to the Receiver (R, she). In Section 2.3 we specify the exact nature of the Sender’s

communication strategy.

2.1 Lie Detection Technology

If the Sender lies (i.e., m 6=w), the Receiver is informed with probability q∈ [0,1] that it is a lie and thus

learns w perfectly. With remaining probability 1−q, she is not informed. If the Sender does not lie (i.e.,

m=w), the message is never flagged as a lie so that the Receiver is not informed either. Formally, the

detection technology can be described by the following relation

d(m,w)=


lie, with probability q if m 6=w

¬lie, with probability 1−q if m 6=w

¬lie, with probability 1 if m=w

With a slight abuse of notation we denote d={lie,¬lie} as the outcome of the detection result. The

detection technology is common knowledge. In a standard Bayesian persuasion setup this detection

probability q is equal to 0, giving us an immediately comparable benchmark.

2.2 Utilities

Given both m and d, the Receiver takes an action a∈{0,1}, and the payoffs are realized. The payoffs

are defined as follows.

uS(a,w)=1{a=1}

uR(a,w)=(1−t)×1{a=w=1}+t×1{a=w=0}, 0<t<1
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That is, the Sender wants the Receiver to always take the action a=1 regardless of the state, while

the Receiver wants to match the state. The payoff from matching the state 0 may differ from the payoff

from matching the state 1. Given the payoff function, the Receiver takes action a=1 if and only if

Pr(w=1 |m,d)≥t

and therefore one could also interpret t as the threshold of the Receiver’s posterior belief above which

she takes a=1. Note that if t≤µ, there is no need to persuade because the Receiver will choose the

Sender’s preferred action a=1 even without a message. Therefore, we assume t∈(µ,1).

2.3 Strategies

We assume that the Sender has full commitment power as is common in the Bayesian persuasion

framework.2 Specifically, the strategy of the Sender is a mapping m :{0,1}−→∆({0,1}), and the strategy

of the Receiver is a mapping a :{0,1}×{lie,¬lie}−→∆({0,1}). Formally, the Sender is choosing m(·)

to maximize

Ew,d,m[uS(a(m(w),d(m(w),w)),w)]

where a(m,d) maximizes

Ew[uR(a,w) |m,d].

The two expectation signs are taken with respect to different variables. The expectation sign in the

Sender’s utility is taken with respect to both w, d and perhaps m if the strategy is mixed, whereas

the expectation sign in the Receiver’s utility is only taken with respect to both w. Due to the simple

structure of the model, it is without loss of generality to assume that the Sender chooses only two

parameters p0=Pr(m=0 |w=0) and p1=Pr(m=1 |w=1) to maximize Pr(a(m,d)=1) which we write
2For a detailed discussion and relaxation of this assumption see Min (2017), Fréchette et al. (2019), Lipnowski et

al. (2019), and Nguyen and Tan (2019). Titova (2020) shows that with binary actions and a sufficiently rich enough
state space verifiable disclosure enables the sender’s commitment solution as an equilibrium.
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as Pr(a=1) henceforth for brevity of notation. We denote the optimal reporting probabilities of the

Sender by p∗0 and p∗1, and the ex-ante payoffs under this reporting probabilities as US and UR.

3 Analysis

3.1 Optimal Messages

Given the Sender’s reporting strategy, the Receiver could potentially see four types of events to which

she needs to react when choosing action a.

First, the Receiver could observe the event (m=0,d=lie) which occurs with probability µ(1−p1)q.

Given the lie detection technology Receiver is certain that the message m=0 is a lie and therefore the

state of the world w must be equal to 1, that is

Pr(w=1 |m=0,d=lie)=1.

As a result, the Receiver optimally chooses a=1.

Second, the event (m=0,d=¬lie) could occur with probability µ(1−p1)(1−q)+(1−µ)p0. In that

case, the Receiver is uncertain about w because she does not know whether the Sender lied or not. Her

posterior probability is given by

Pr(w=1 |m=0,d=¬lie)=
µ(1−p1)(1−q)

µ(1−p1)(1−q)+(1−µ)p0
≡µ0.

Hence, the Receiver takes action a=1 if and only if µ0≥t. For brevity of notation we denote the

posterior following this event by µ0 (and thus omitting the lie detection outcome d=¬lie). When

p0=0,p1=1, this event occurs with 0 probability, so the belief is off-path and not restricted by Bayesian

updating. However, the off-path belief does not matter for the Sender, because if the Sender chooses

the strategy that renders (m=0,d=¬lie) a zero probability event, he does not care about how Receiver

responds to that event. For expositional convenience, define µ0=0 when p0=0,p1=1.

Third, (m= 1, d= lie) occurs with probability (1−µ)(1−p0)q. Because a lie was detected the
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Receiver is again certain about w and therefore her posterior probability is given by

Pr(w=1 |m=1,d=lie)=0,

which immediately implies the action a=0.

Fourth, (m=1,d=¬lie) occurs with probability µp1+(1−µ)(1−p0)(1−q). The Receiver is again

uncertain about w. Her posterior is given by

Pr(w=1 |m=1,d=¬lie)=
µp1

µp1+(1−µ)(1−p0)(1−q)
≡µ1

and the Receiver takes action a=1 if and only if µ1≥t. Analogously, for brevity of notation we denote

the posterior following this event by µ1 (and thus omitting the lie detection outcome d=¬lie). Similarly,

if p0=1,p1=0, then this event occurs with 0 probability and the belief µ1 is not well-defined, but again

this does not matter for Sender. For simplicity, define µ1=0 when p0=1,p1=0.

Given these optimal responses by the Receiver, the relationships between the posteriors µ0,µ1 and

the posterior threshold t divide up the strategy space into four different types of strategies which we

denote by I, II, III, and IV respectively. For each strategy type, the Receiver’s response as a function

of (m,d) is the same, making it then easy to find the specific optimal strategy. We are then left to pick

the best strategy out of the four candidates. These types of strategies are defined as follows:

I. µ0<t, µ1<t: For this type of strategy, the Receiver only chooses a=1 if (m=0,d=lie) and a=0

otherwise because the posteriors µ0 and µ1 are insufficiently high to persuade her to choose S’s

preferred action. Only if the Sender lies in state w=1 and his message is detected as a lie, is the

Receiver sufficiently convinced that a=1 is the right action. The maximal probability that the

Receiver chooses a=13 is given by

PrI(a=1)= sup
p0,p1∈[0,1]

µ(1−p1)q s.t. µ0<t,µ1<t (1)

II. µ0≥t, µ1<t: The Receiver chooses a=1 if (m=0,d=lie) or (m=0,d=¬lie) and a=0 otherwise.
3The choice set of the maximization problem is not closed, so the maximum may not be achieved a priori.
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The maximal probability that the Receiver chooses a=1 is given by

PrII(a=1)= sup
p0,p1∈[0,1]

µ(1−p1)+(1−µ)p0 s.t. µ0≥t,µ1<t (2)

III. µ0<t, µ1≥t: The Receiver chooses a=1 if (m=0,d=lie) or (m=1,d=¬lie) and a=0 otherwise.

The maximal probability that the Receiver chooses a=1 is given by

PrIII(a=1)= sup
p0,p1∈[0,1]

µp1+µ(1−p1)q+(1−µ)(1−q)(1−p0) s.t. µ0<t,µ1≥t (3)

IV. µ0≥ t, µ1≥ t: The Receiver chooses a=1 if (m=0,d= lie), (m=0,d=¬lie) or (m=1,d=¬lie)

and a=0 otherwise. The maximal probability that the Receiver chooses a=1 is given by

PrIV(a=1)= sup
p0,p1∈[0,1]

1−(1−µ)(1−p0)q s.t. µ0≥t,µ1≥t (4)

Table 1 summarizes when the Receiver chooses a=1 under the different types of strategies. Notably,

given the definition of off-path beliefs, (0,1) is a type III strategy and (1,0) is a type I strategy. We are

d=lie d=¬lie
m=0 I, II, III, IV II, IV
m=1 III, IV

Table 1: Cases where Receiver chooses a=1 under I, II, III, and IV.

now ready to state the main proposition of our model.

Proposition 1. Let q=1− µ(1−t)
t(1−µ) ∈(0,1). If q≤q, the Sender’s optimal strategy is a type III strategy,

in which the Sender always tells the truth under w=1, but lies with positive probability under w=0. If

q>q, the Sender’s optimal strategy is a type IV strategy, in which the Sender lies with positive probability

under both states.

In Figure 1 we graphically illustrate how these four strategy types are divided. The proof involves

sequential comparisons between the four type-optimal strategies. First, there exists some type II strategy

that is better than all type I strategies. Consider a particular strategy p0=p1=0 of type II (i.e., the
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Sender totally misreports the state). Following this strategy, the Receiver takes action a=1 if and only

w=1, which occurs with probability µ. This strategy may not be optimal among all type II strategies,

but it is sufficient to beat all strategies of type I since for those strategies the Receiver takes action a=1

only if w=1 and (m=0,d=lie), which occurs with a probability less than µ.

0 1

1
p∗

II

I

III

p0

p1
µ0=t
µ1=t

(a) q≤q
0 1

1

p∗

p̂

II

IV

I

III

p0

p1
µ0=t
µ1=t

(b) q>q

Figure 1: Equilibrium message strategies for different detection probabilities q.

Second, there exists some type III strategy that is better than all type II strategies. Within type

II strategies, we just need to focus on the ones with p1=0 because lying more under state w=1 relaxes

both constraints and is beneficial for the Sender. Now, for any type II strategy of the form (p0,0),

consider a strategy (p̃0,1) such that p0=(1−p̃0)(1−q). It can be verified that this is a type III strategy.

Moreover, this new strategy is equally good as (p0,0) for the Sender by construction.

To see the intuition for this result note that the type II and III strategies are totally symmetric if the

lie detection technology is not available (q=0) since in that case the messages have no intrinsic meanings

and we could always rename the messages. However, the introduction of a lie detection technology

(q>0) generates an intrinsic meaning for the message the Sender uses. In particular, an on-path message

that was not detected as a lie always carries some credibility for the state to which it corresponds. Now,

this additional source of credibility breaks the symmetry. By definition, type II strategies are such that

(m=0,d=¬lie) suggests w=1 with a sufficiently high probability, while (m=1,d=¬lie) suggest w=0

with a sufficiently high probability. Loosely speaking, it is harder to persuade the Receiver to take a=1
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using type II strategies since the Sender needs to counter the intrinsic credibility of messages.

By transitivity, both type I and type II strategies are suboptimal relative to type III strategies and we

only need to focus on the comparison between type III and type IV strategies. Interestingly, as suggested by

Figure 1 (a), type IV strategies do not exist when q is small. The proof is given in Appendix A. Intuitively,

when q=0 our setup yields the standard Bayesian Persuasion benchmark, which essentially only involves

two events (m=0,d=¬lie) and (m=1,d=¬lie). In that case, we know it is impossible to induce a=1

under both events because by the martingale property, the posteriors following two events must average to

the prior, suggesting some posterior is lower than the prior and must induce a=0. However, the presence

of lie detection extends the information from m to a couple (m,d), and the martingale property only

requires the four posteriors’ average over the prior. Furthermore, the posterior following (m=1,d=lie) is

0. Therefore if q is sufficiently large, it is possible to support the two posteriors following (m=1,d=¬lie)

and (m=0,d=¬lie) to be both higher than the prior and even higher than the threshold t.

In addition, as shown by Figure 1 (a), the constraint µ0 < t is implied by the constraint µ1 ≥ t.

Hence, the set of type III strategies is compact and the associated maximization problem admits a

solution. Combining this observation with the previous arguments, we immediately obtain the first half

of Proposition 1, i.e., the Sender’s optimal strategy is a type III strategy if q≤ q. In particular, the

optimal strategy takes the following form:

p∗0=
q−q
1−q

and p∗1=1 (5)

This is reminiscent of Kamenica and Gentzkow (2011), where the Receiver is indifferent between two

actions when she takes the preferred action a= 1, and certain of the state when she takes the less

preferred action a=0.

If the detection probability q is larger than q, the two lines that characterize the constraints in the

right panel of Figure 1 intersects, implying the set of type III strategies is not closed anymore. However,

the associated maximization problem still admits a solution: (p0,p1)=(0,1), which is a type III strategy

according to off path beliefs specified earlier. This strategy can be shown to be optimal within type III

strategies in two steps. First, increasing p1 relaxes both constraints and improves the Sender’s expected

payoff at the same time, i.e., being more sincere in the favorable state benefits the Sender unambiguously.
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So, the optimal type III strategy, if it exists, must be of the form (p0,1). Second, the whole segment

from (0,1) to (1,1) are type III strategies when q>q. Hence, the optimal strategy on this segment is

the leftmost point (0,1) as it involves sending the persuasive message m=1 as frequent as possible.

Yet, this optimal type III strategy, denoted as p̂ in Figure 1 (b), is no longer globally optimal because

the set of type IV strategies is non-empty, and the optimal type IV strategy is better than p̂. In fact,

we could show a much stronger statement that p̂ is worse than any type IV strategy p whenever the

latter is feasible. To this end, we decompose the the value of a strategy for the Sender into two parts,

the expected payoff in the favorable state w=1 and the expected payoff in the unfavorable state w=0.

The strategy p̂ induces a= 1 for sure when w= 1 because the Sender always truthfully sends m= 1

and that is credible. Meanwhile, any strategy p of type IV also induces a=1 for sure. Such a strategy

could induce three different events: (m=1, d=¬lie), (m=0, d=¬lie), (m=0, d= lie). The first two

events successfully persuade the Receiver to take a=1 by definition of type IV strategies. The last event

directly informs the Receiver that w=1, so it also induces a=1. Hence, the strategy p̂ and p agree

in the expected payoff in the favorable state w=1. However, they differ in the expected payoff in the

unfavorable state w=0. Given p̂, the Sender always lies and sends the message m=1 when w=0, which

induces a=1 only if the lie is not detected. Given p, the Sender sometimes tells the truth by sending

the message m=0 as well, but by definition of type IV strategies, m=0 is now a risk free way to induce

a=1 since it will never be flagged as a lie in the unfavorable state w=0. Hence, the strategy p results

in a higher expected payoff for Sender in the unfavorable state and does so also overall. Mathematically,

US(p̂)= µ︸︷︷︸
Pr(w=1)

×
Pr(a=1)︷︸︸︷

1 +(1−µ)︸ ︷︷ ︸
Pr(w=0)

×
Pr(m=1)︷︸︸︷

1 × (1−q)︸ ︷︷ ︸
Pr(d=¬lie)

and

US(p)=µ×1+(1−µ)×[p0×1+(1−p0)×(1−q)]

where the first term (µ×1) is the same for the two expressions, but the second term is larger for US(p)

since p0 is not multiplied by 1−q but instead by 1. As argued, the main benefit of p relative to p̂ is

that the “safer” message m=0 is sent more frequently in p, so the optimal type IV strategy must involve
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the highest p0, or the least lying in the unfavorable state. Such a strategy, given by p∗ in Figure 1 (b),

is also globally optimal by previous arguments (provided that q>q). The expressions are given by

p∗0=
1−q

(2−q)q
(q−q) and p∗1=

1−q
(2−q)q

[
1

1−q
−(1−q)

]
(6)

Although the optimal strategy features partial lying under both states, the Sender still lies more in the

unfavorable state than in the favorable state (p∗0<p
∗
1).

Interestingly, the difference in Sender’s payoff between the strategy p̂ and p∗ is non-monotone in the

detection probability q. When q=q, p̂ coincides with p∗, so they are equally good. When q=1, it is as

if the Receiver is informed with the state with probability 1, so any strategy results in the same payoff

for the Sender. Only when q∈(q,1), p∗ yields a strictly higher payoff than p̂.

Finally, the threshold q where the optimal strategy switches from a type III to a type IV strategy,

is decreasing in µ and increasing in t. To see the intuition for this result, fix the lie detection probability

q∈(0,1). If a weak signal is sufficient to persuade the Receiver (i.e., the prior µ is already close to the

threshold t), a type IV strategy is optimal for the Sender. On the other hand, if the signal has to be

very convincing to persuade the Receiver (i.e., the threshold t is much larger than the prior µ), a type

III strategy is optimal for the Sender.

3.2 Comparative Statics

We now consider the comparative statics of our model with respect to the central parameter of the lie

detection probability q to show how the optimal communication and the utilities of the communicating

parties changes as the lie detection technology improves.

3.2.1 Optimal Messages

Proposition 2 describes how the structure of the optimal message strategy (p∗0, p
∗
1) changes as the

detection probability varies. Figure 2 plots these optimal reporting probabilities as a function of q. For

comparison, the probabilities pBP0 and pBP1 are the equilibrium reporting probabilities that would result

in a standard Bayesian persuasion setup without lie detection.
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Proposition 2. As the lie detection probability q increases,

1. p∗0=Pr(m=0 |w=0) is decreasing over [0,q], and has an inverse U shape over (q,1].

2. p∗1=Pr(m=1 |w=1) is constant over [0,q], and decreases over (q,1].

If q≤q=1− µ(1−t)
t(1−µ), p

∗
0 is decreasing in q and p∗1 is constant at 1. In this range of q, the Sender’s optimal

strategy lies in III which involves truthfully reporting the state w=1 (i.e., p1 =1), but progressively

misreporting the state w=0 as the lie detection technology improves (i.e., p0<1 and decreasing with q).

If q>q, p∗0 initially increases and then decreases. In contrast, p∗1 decreases over the entire range of [q,1].

In this range, the Sender’s optimal strategy lies in IV which involves misreporting both states of the world.

0 q 1

pBP
0

1

III IV

q

p∗0

(a) p∗0≡Pr(m=0 |w=0)

0 q 1

pBP
1 =1

III IV

q

p∗1

(b) p∗1≡Pr(m=1 |w=1)

Figure 2: Equilibrium reporting probabilities p∗0 and p∗1 as a function of q for µ= 1
3 and t= 1

2

For q=0 we have the Bayesian benchmark. Recall from Kamenica and Gentzkow (2011) that if an

optimal signal induces a belief that leads to the worst action for the Sender (a=0 in our case), the Receiver

is certain of her action at this belief. In addition, if the optimal signal induces a belief that leads to the best

action for the Sender (a=1 in our case) the Receiver is indifferent between the two actions at this belief.

Now consider the addition of a lie detection technology. As the lie detection probability q increases,

(m=1,d=¬lie) becomes more indicative of the favorable state w=1 and therefore the Receiver would

strictly prefer to take the favorable action a=1. As a response, the Sender would like to send the message

m=1 more often while still maintaining that (m=1,d=¬lie) sufficiently persuades the Receiver to take
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the action a=1. Because the Sender already sends the message m=1 with probability 1 under w=1,

the only way to increase the frequency of m=1 is to send such a message more often in the unfavorable

state w=0 (i.e., lie more frequently if w=0). In other words, the Sender increases the frequency of lying

just enough about the unfavorable state (w=0) to make the Receiver indifferent when choosing the

favorable action a=1.

Recall that in the canonical Bayesian persuasion setup the Receiver is just held to her outside utility

of getting no information whatsoever. When lie detection q goes up the Receiver is now more certain

that (m=1,d=¬lie) means w=1 and would therefore obtain a larger surplus from the improvement

in the lie detection technology. However, as long as p∗0 is greater than 0 the Sender can simply undo

this improvement by lying more about w=0 (i.e., reduce p∗0 even further) thereby “signal-jamming” the

information obtained by the Receiver.

However, once the detection probability q rises above q it is no longer possible for the Sender to just

lie about the unfavorable state because he already maximally lies about it at q. His optimal messaging

strategy is now a type IV strategy when q>q. Under a type IV strategy the Receiver only ever takes

the unfavorable action a=0 if he receives a message m=1 that is flagged as a lie. This is because with

a type IV strategy the Receiver has access to such a good lie detection technology that a lie involving

the message m=1 is sufficiently likely to be detected as a lie and will then induce the unfavorable action

a=0. At the same time the Receiver is also very likely to be notified of a lie involving the message m=0

which the Sender can use to his advantage to ensure that the Receiver chooses the favorable action a=1.

At q=q the Sender therefore wants to increase the frequency of the message m=0 which he achieves

by both increasing p0 and decreasing p1. However, when the detection probability is close to 1, (i.e.,

the lie detection technology is almost perfect) p1 is close to 0 and any message m=1 is very likely to

be a lie. To make sure that a message m=1 which is not detected as a lie still sufficiently persuades

the Receiver to choose a=1 (i.e., does not violate the constraints µ0≥t and µ1≥t required for a type

IV strategy), the Sender also has to decrease p0 while decreasing p1.
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3.2.2 Utilities

Recall that the equilibrium payoffs of the Sender and the Receiver are denoted by US and UR. We now in-

vestigate how US and UR are affected by improvements in the lie detection technology. The results are sum-

marized in Proposition 3 and graphically depicted in Figure 3. For comparison, the utilities UBP
S and UBP

R

are the equilibrium utilities that would result in a standard Bayesian persuasion setup without lie detection.

Proposition 3. As the lie detection probability q increases,

1. US is constant over [0,q], and decreases over (q,1].

2. UR is constant over [0,q], and increases over (q,1].

0 q 1

UBP
S

III IV

q

US

(a) Sender’s Equilibrium Payoff

0 q 1

UBP
R

III IV

q

UR

(b) Receiver’s Equilibrium Payoff

Figure 3: Equilibrium Payoffs as a function of q for µ= 1
3
, t= 1

2

The Sender’s equilibrium payoff does not change for q ≤ q and decreases with q for q > q. As

long as q≤ q the Sender receives exactly the same utility that he would receive under the Bayesian

Persuasion benchmark. Any marginal improvement in the lie detection technology (i.e., increase in q) is

completely offset by less truthful reporting when w=0 (i.e., decrease in p∗0). However, for q>q any further

improvements reduce the Sender’s utility. In the limit case where q=1 the Sender has no influence anymore

and the action a=1 in only implemented when the state is actually w=1 which occurs with probability µ.

Analogously for the case of the Sender’s utility, the Receiver’s utility is also constant at the Bayesian

persuasion benchmark as long as q≤q and then increases with q for q>q as the lie detection technology

15



starts to bite. If having access to the lie detection technology required any costly investment, the Receiver

would only ever want to invest in improving lie detection if it raised q above the threshold q. In the

limit, the Receiver is just as well off as she would be under perfect information.

4 Discussion

4.1 Extensions

Our baseline model considers the role of lie detection in a simple setting with binary states. We now

investigate how alternative assumptions modify our analysis.

4.1.1 Detection Technology

First, consider a different detection technology that informs the Receiver with probability r that a

message is truthful. That is to say, rather than being able to probabilistically detect a lie the Receiver

can detect that a message is truthful. This is perhaps a less realistic assumption as it is often easier

to detect whether the Sender has lied than whether he has sent a truthful message.

In our setting truth detection turns out to be payoff-equivalent to lie detection. Therefore, all of

our insights about the equilibrium payoffs as a function of the lie detection probability q in Figure 3

also hold for the truth detection probability r. However, under truth detection the Sender’s optimal

message is completely flipped and has some very unnatural features. For a low detection probability

r>0 it is optimal for the Sender to always lie in the favorable state (i.e., p1=0) and to choose p1 such

that the Receiver is indifferent between a=0 and a=1.

Second, combining lie detection and truth detection such that they are perfectly positively correlated

is equivalent to state detection. With probability q=r the Receiver learns the state w regardless of the

message sent by the Sender. With such a state detection technology the analysis becomes much simpler

as we just return to the Bayesian persuasion benchmark. This is because the Sender’s message does

not influence at all whether the Receiver learns the state and any message m is only relevant whenever

the Receiver does not learn the state.
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4.2 Related Literature

Balbuzanov (2019) and Dziuda and Salas (2018) also study strategic communication in the presence of a

lie detection technology but in a cheap talk setting. The largest difference between these two papers and

ours therefore lies in the commitment power of the Sender. Although it is debatable whether the extreme

cases of full commitment (as in Bayesian persuasion) or no commitment (as in cheap talk) constitute

more plausible assumptions about real-life communication setting, we believe our model is an important

step towards studying the communication games with lie detection under (partial) commitment.

Our paper also differs from Balbuzanov (2019) in the payoff functions. In Balbuzanov (2019) the

Sender and the Receiver have some degree of common interest whereas in our model there is no common

interest. Due to this difference the Sender’s type-dependent preferences in Balbuzanov (2019) permit

fully revealing equilibria in some cases as it allows the Receiver to tailor message-specific punishment

actions. In particular, fully revealing equilibria exist for some intermediate degree of lie detectability

if the Sender’s bias is small. However, the Sender in our model never reveals the state perfectly due

to the conflict in payoffs.

Dziuda and Salas (2018) do not allow for common interest and therefore, like in our paper, fully

revealing equilibria are impossible in their paper. In their continuous state model there are many off-path

beliefs to be specified. To discipline these off-path beliefs, they impose two refinements and show that in

all remaining equilibria, the lowest types lie, while some higher types tell the truth. Our model violates

the second refinement in Dziuda and Salas (2018) and thus irrespective of the commitment power of the

Sender our paper is not nested by theirs.

Both papers feature a type of non-monotonicity result with respect to the relationship between lie

detection and lying that is similar to that in our paper. In Balbuzanov (2019), the set of detection

probabilities that permits fully revealing equilibrium obtains for low lie detection probabilities, but

not for higher ones. Although in the baseline model of Dziuda and Salas (2018) a lower lie detection

probability leads to less truth-telling, in an extension of their model they show that if the Sender is given

an opportunity to make costly investments in decreasing the lie detectability, then for an intermediate

region of the cost, the mass of liars can increase with the investment cost.
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5 Conclusion

In this paper we analyze the role of probabilistic lie detection in a model of Bayesian persuasion between

a Sender and a Receiver. We show that the Sender lies more when the lie detection probability increases.

As long as the lie detection probability is sufficiently small the Sender’s and the Receiver’s equilibrium

payoff are unaffected by the lie detection technology because the Sender simply compensates by lying

more. Once the lie detection probability is sufficiently high, the Sender is no longer able to maximally

lie about the unfavorable state and the Sender’s (Receiver’s) equilibrium payoff decreases (increases)

with the lie detection probability. Our model rationalizes that a sender of communication chooses to

lie more frequently when it is more likely that their false statements will be flagged as lies.

Our paper explores the impact of lie detection on communication in a setting with complete commit-

ment to a communication strategy by the sender and thereby establishes a useful benchmark relative to

the diametrically opposed assumption of no commitment in existing cheap talk models with lie detection.

However, how does lie detection influence communication behavior in intermediate settings with partial

commitment? And what role does lie detection play under Bayesian persuasion with a richer state and

message space? We leave these and other interesting questions to future research.
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A Proofs

A.1 Proof of Proposition 1

We now show that type I and II strategies are suboptimal because the resulting implementation prob-

abilities PrI(a=1) and PrII(a=1) are dominated by the probability PrIII(a=1) resulting from III. To

see this, note first that

PrI(a=1)≤µ≤PrII(a=1) (7)

The second inequality holds because (p0,p1)=(0,0) is a type II strategy and gives value µ. In fact, for

a type II strategy, it is optimal to set p1 =0 because this loosens both constraints, and improves the

objective. Given this, µ1=0<t is loose. Hence the optimum requires

µ0=
µ(1−q)

µ(1−q)+(1−µ)p0
=t (8)

and hence

PrII(a=1)=µ+
(µ
t
−µ
)

(1−q) (9)

Similarly, in the maximization problem within type III strategies, it is optimal to set p1=1. Then

µ0=0<t becomes loos. The optimum requires p0 to be as small as possible while ensuring that µ1≥t.

Define q≡1− µ(1−t)
t(1−µ)∈(0,1), then there are two cases to consider.

• µ
µ+(1−µ)(1−q) ≤ t or q ≤ q. In this case, there exists p∗0 s.t. µ1 = t, that is µ

µ+(1−µ)(1−p∗0)(1−q)
= t.

Therefore, PrIII(a=1)= µ
t
.

• µ
µ+(1−µ)(1−q)>t or q>q. In this case, µ1≥t can never bind. Thus, the best option is to set p=0

which implies PrIII(a=1)=µ+(1−µ)(1−q).

Clearly, in either case we have PrIII(a=1)>PrII(a=1) and therefore both type I and II strategies are

suboptimal. It therefore remains to compare PrIII(a=1) and PrIV(a=1).
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(1) If µ
µ+(1−µ)(1−q)≤ t, the type IV strategies do not exist, i.e., there is no way to choose p0,p1 such

that µ1≥t and µ0≥t. If that were the case we would have

µp1
µp1+(1−µ)(1−p0)(1−q)

≥t (10)

and

µ(1−p1)(1−q)
µ(1−p1)(1−q)+(1−µ)p

≥t⇐⇒ µ(1−p1)
µ(1−p1)+(1−µ) p

1−q
≥t (11)

which would imply

µp1+µ(1−p1)
µp1+µ(1−p1)+(1−µ)(1−p0)(1−q)+(1−µ) p

1−q
≥t (12)

and therefore

t≤ µ

µ+(1−µ)(1−p0)(1−q)+(1−µ) p
1−q
≤ µ

µ+(1−µ)(1−q)
(13)

where the last inequality is binding if q=0 or p=0. This in turn yields t< µ
µ+(1−µ)(1−q) which is

a contradiction. Hence, if µ
µ+(1−µ)(1−q)≤t, the optimal strategy is

p∗0=1−
µ(1−t)
t(1−µ)
1−q

and p∗1=1 (14)

Alternatively,

p∗0=
q−q
1−q

and p∗1=1 (15)

(2) If µ
µ+(1−µ)(1−q)>t, it is now possible to induce µ1≥t,µ0≥t. In particular, the constraints can be

rewritten as two lines where the coordinates are p0 and p1. In particular, we have

µ1≥t⇔(1−t)µp1≥t(1−µ)(1−p0)(1−q) (16)

22



which passes through (1,0) and
(

0, t(1−µ)(1−q)
(1−t)µ

)
where t(1−µ)(1−q)

(1−t)µ <1 by assumption. We also have

µ0≥t⇔µ(1−t)(1−p1)≥t(1−µ)
p

1−q
(17)

which passes through (0,1) and
(
µ(1−t)(1−q)
t(1−µ) ,0

)
where µ(1−t)(1−q)

t(1−µ) <1 because t>µ.

Since the objective is to maximize 1− (1−µ)(1−p0)q, we want to find the point in type IV

strategies with the largest value of p0. Clearly, this point is at the intersection of the two lines

in Figure 1(b), given by

p∗0=1−
1−(1−q)µ(1−t)

t(1−µ)
(2−q)q

and p∗1=1−
1−(1−q) t(1−µ)

µ(1−t)
(2−q)q

(18)

where µ(1−t)
t(1−µ)∈(1−q,1) by assumption. Alternatively,

p∗0=
1−q

(2−q)q
(q−q) and p∗1=

1−q
(2−q)q

[
1

1−q
−(1−q)

]
(19)

As a result, we have PrIII(a=1)<PrIV(a=1) because the following inequality holds

PrIII(a=1)=µ+(1−µ)(1−q)=1−(1−µ)q<1−(1−µ)q(1−p∗0)=PrIV(a=1). (20)

A.2 Proof of Proposition 2

• If q≤q,

p∗0=
q−q
1−q

and p∗1=1 (21)

Clearly, p∗0=1− 1−q
1−q decreases in q and p∗1 is constant in q.

• If q>q,

p∗0=
1−q

(2−q)q
(q−q) and p∗1=

1−q
(2−q)q

[
1

1−q
−(1−q)

]
(22)
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This implies

∂p∗0
∂q

=
(−2q+1+q)·(2−q)q−(2−2q)(1−q)(q−q)

(2−q)2q2
(23)

=
−q2+(q2−2q+2)q

(2−q)2q2
(24)

Therefore,
∂p∗0
∂q
≥0⇐⇒ 1

q
≤ q

2−2q+2

q2
=1+

2−2q

q2
(25)

RHS decreases in q, meaning the sign of the derivative at most changes one time. Since the

derivative is positive at q=q, but negative at q=1, we conclude that p∗0 is first increasing and

then decreasing in q over (q,1].

On the other hand, p∗1 can be written as a product of (1−q)
(2−q) and

1
1−q
−(1−q)
q

. Each term decreases

in q, the it follows that p∗1 decreases in q over (q,1].

A.3 Proof of Proposition 3

The expected payoff of the Sender is Pr(a=1). There are two cases depending on whether q>q.

• If q≤q, then the Receiver chooses a=1 whenever (m=1, d=¬lie) or (m=0, d= lie). But the

latter occurs with probability 0 in the equilibrium. So,

US=µ+(1−µ)(1−p0)∗(1−q)=
µ

t
(26)

which is constant in q.

• If q>q, then the Receiver chooses a=1 always unless (m=1,d=lie). So,

US=1−(1−µ)(1−p∗0)q=1− t(1−µ)−µ(1−t)(1−q)
t(2−q)

(27)
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which is decreasing in q as

∂US
∂q

=
−µ(1−t)t(2−q)−t[t(1−µ)−µ(1−t)(1−q)]

t2(2−q)2
(28)

=
−µ(1−t)−t(1−µ)

t(2−q)2
(29)

<0 (30)

The Receiver’s expected payoff is t·Pr(a=w=0)+(1−t)·Pr(a=w=1). Again, there are two cases.

• If q≤q, then the Receiver matches the state w=0 correctly if (w=0,m=0) or if (w=0,m=1,d=

lie), and matches the state w=1 correctly if w=1. In sum,

UR=(1−µ)t·[p∗0+(1−p∗0)q]+µ(1−t) (31)

=(1−µ)t·[1−(1−p∗0)(1−q)]+µ(1−t) (32)

=(1−µ)t·
[
1−µ(1−t)

t(1−µ)

]
+µ(1−t) (33)

=(1−µ)t (34)

which is constant in q.

• If q>q, then the Receiver matches the state w=0 correctly if (w=0,m=1,d=lie), and matches

the state w=1 correctly if w=1. In sum,

UR=(1−µ)t·(1−p∗0)q+µ(1−t) (35)

=(1−µ)t·
1−(1−q)µ(1−t)

t(1−µ)
2−q

+µ(1−t) (36)

=
(1−µ)t+t(1−µ)

2−q
(37)

which is increasing in q.
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