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Abstract

Inversion of the yield curve has come to be viewed as a leading recession indicator.

Unsurprisingly, some recent instances of inversion have attracted attention from eco-

nomic commentators and policymakers about possible impending recessions. Using a

variety of time series models and recent innovations in econometric method, this pa-

per conducts quasi-real-time forecasting exercises to investigate whether the predictive

capability of the yield curve extends to forecasting economic activity in general and

whether removing the term premium component from yields affects forecast accuracy.

The empirical findings for the US, Australia, and New Zealand show that forecast

performance is not improved either by augmenting simplistic models with information

from the yield curve or by making such a decomposition of yields. Results from simi-

lar research exercises in previous work in the literature are mixed. The results of the

present analysis suggest possible explanations that reconcile these conflicting results.

*Research support from the NSF under Grant No. SES 18-50860 and the Kelly Fund at the University
of Auckland is gratefully acknowledged



1 Introduction

In recent times an inverted US Treasury yield curve (hereafter referred to as the yield curve)

has come to be seen as a leading recession indicator. Indeed, in the US the last nine recessions

were each preceded by the morning star of an atypical “inversion” of the yield curve (Bauer

and Merterns (2018)). Curve plots of the yields of US Treasury securities against their

respective maturities are shown in Figure 1 illustrating typical and atypical shapes.

Figure 1: Left panel: a typical upward sloping yield curve following the 1990-1991 US
recession. Right panel: an atypical downward sloping ‘inverted’ yield curve prior to the 1981
US recession. Data source: FRBNY (2013)

An inverted yield curve refers to a scenario where the yield curve slopes downwards. It

is commonly believed that this phenomenon may signal an impending recession due to the

relationship between short-term, and long-term yields. According to the Pure Expectation

Hypothesis (Williams (1938), Hicks (1946), Meiselman (1962)), the price a risk-neutral in-

vestor should be willing to pay (or the yield they will accept) for each asset should lead to

a balancing equality of the form (1 + rl)
n =

∏n
i=1(1 + rsi) in which rl denotes the annual

return to the asset with the longer maturity of n years, and rsi denotes the expected annual

return on assets with a one-year maturity in year i. Intuitively, the expected return on each

asset should be equivalent, otherwise the risk-neutral investor would not purchase the asset

with the lower expected return.

In the face of an economic slowdown or contraction central banks typically aim to stim-

ulate economic activity through lower policy rates or in severe instances resort to unconven-

tional monetary policy instruments aimed to bring down the cost of borrowing (and thus,

the return on saving / investing) in order to increase consumer spending and firm investment

activity. If investors anticipate such an event and expect lower short-term yields in future,

they will accept relatively lower yields on long-term assets today, all else equal. With a

reduction in yields on assets with longer maturities, an upward sloping yield curve flattens



or even inverts. Accordingly, the shape of the yield curve reflects some information about

market participant expectations of future events, as recorded in the yields associated with

such events. An inverted yield curve may indicate that market participants expect a reces-

sion in the foreseeable future, which explains its potential predictive power of an impending

recession.

While an inverted yield curve may signal that market participants anticipate a forthcom-

ing economic downturn, the signal is by no means completely reliable. Not all investors are

risk-neutral. So long-term yields may reflect more than just investor expectations of short-

term yields. Issues such as a premium for re-investment risk, inflation risk, or illiquidity,

among other things do figure in decision making. A popular view is that long-term yields

comprise two components: an expectations component that reflects expectations about fu-

ture short-term yields; and a term premium component that reflects everything else.

These considerations raise questions that we seek to address in the current paper. First,

if the yield curve has some predictive power as a recession indicator, does the predictive

power extend to forecasting economic activity in general? Then, if the predictive power of

the yield curve is thought to arise from the information it contains on expectations about

future activity, does decomposing yields into the respective expectations and term premium

components improve this forecasting performance? To address these questions, a quasi-real-

time forecasting exercise is conducted using data from the United States, New Zealand, and

Australia.

2 Related literature

The literature investigating the relationship between the yield curve and economic activity

is extensive. For example, Stock and Watson (1989) proposed a range of indicators believed

to precede, coincide with or follow fluctuations in economic activity, the slope of the yield

curve being one of these. Estrella and Hardouvelis (1991) used a probit model to estimate

the probability of a recession in any given quarter, finding that an increasing yield spread

was associated with a lower probability of recession in the following four quarters. Further

examples, with similar results, examining how well yield curves estimate the probability

of recessions include Bernard and Gerlach (1998), Anderson and Vahid (2001), Estrella

and Trubin (2006), Ahrens (1999), Stock and Watson (2003), Duarte, Payá, and Venetis

(2004). The general consensus among the aforementioned studies is that there is empirical

evidence of a statistically significant relationship between an inversion of the yield curve,

and a forthcoming recession.

Other research has followed time series approaches such as forecasting output using vec-

tor autoregressions but with mixed results. Ang, Piazzesi, and Wei (2006) used a predictive

regression of real GDP growth on the yield spread and compared this with a vector autore-
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gressive model of order 1 (VAR(1)) that jointly models the dynamics between output and the

yield curve and imposes a no-arbitrage condition on bond yields. This model gave estimates

of the term premia on bonds, allowing for a decomposition of bond yields into expectations

and term premia components. Use of this decomposition improved the model fit of regres-

sions relative to those that use yield spreads. The authors computed out-of-sample forecasts

for each model and calculated RMSE ratios for each model relative to a simple AR(1).

Using Diebold-Mariano tests (Diebold & Mariano, 1995) showed no statistically significant

improvement in forecast performance compared with simple predictive regressions based on

the VAR(1) for any specification or forecast horizon. Further, many specifications struggled

to outperform an AR(1) model in this exercise. Bonser-Neal & Morley (1997) used data

from 11 countries to predict economic activity, and found that out-of-sample forecasts are

generally improved (relative to an AR(1) process) by incorporating the yield curve. Favero,

Kaminska, and Söderström (2005) regressed growth in output on a short-term interest rate,

inflation, and the yield spread to forecast future output growth. They estimated a decom-

position of yields into their expectations and term premia components, finding that these

components in place of the yield spread in the regression decreased forecast RMSE, but no

tests for statistical significance were undertaken. Lewis (2015) performed a real-time fore-

casting exercise similar to that of the present paper but with greater focus on using foreign

as well as domestic yield curves in these models to help forecast output, finding that use

of the yield curve to forecast output outperformed simple autoregressive forecasts in some

countries but not others.

The present paper makes three contributions to the literature. First, much past research

investigates the yield curve but does not decompose yields into their respective expectations

and term premia components. Papers that have used the decomposition have not compared

performance between models that do and those that do not; nor have they carried out sta-

tistical tests for significant differences in forecast performance. As indicated earlier, much of

the predictive power of the yield curve is believed to come from the expectations component

of yields. It is therefore to be expected that the decomposition will lead to forecast improve-

ments. The present work contributes to the literature by providing a systematic econometric

exploration of the practical empirical relevance of this decomposition. Understanding how

the decomposition affects the inferences we draw from the yield curve is crucial to learning

how best to forecast future levels of output and potentially other economic variables through

yield curve information.

Second, although many papers recursively estimate models and produce forecasts in an

attempt to evaluate the out-of-sample forecast performance of these models, they do not

take into account the data revisions that occur over the sample period. Measurements of

economic variables such as output, inflation, and unemployment are consistently revised

after their initial release. Failure to take this process of revised measurement into account

is unrepresentative of the real-time exercise of expectation formation and may exaggerate
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forecast performance. The present work specifically addresses this problem by ensuring

forecasts are based solely on information that would be available in real-time.

Third, the vast majority of empirical studies of predictability of the yield curve relate to

the United States. It is important to consider evidence in other country contexts to assess

the external validity of findings for the US. There are some examples in the literature in

which data from other countries is used. But this paper appears to be the first to utilise

the decomposition of yields into expectations and term premia components outside of the

United States.

A final contribution of the paper is to provide a diagnostic econometric approach that

helps to reconcile conflicting results that have appeared within the existing literature. Most

past research on this topic involves the issue of multiplicity in inference or problems involved

in testing multiple hypotheses. No previous works have attempted to adjust for this com-

plication in drawing inferences on the predictability of the yield curve. Correspondingly,

the likelihood increases of spurious findings of statistically significant results. To address

this risk, the present paper implements recent methods to control the family wise error rate

(FWER). With these controls in place, many results that were statistically significant prior to

the adjustments turn out to be no longer significant; and several results that claim increased

accuracy in out-of-sample forecasts by augmenting models with yield curve information have

less credibility.

3 Data and Forecasts

Adrian, Crump and Moench (2013) estimate the yield on US Treasury securities for varying

maturities as well as the decomposition into their expectations and term premia components.

These estimates are publicly available and were sourced from the Federal Reserve Bank of

New York website (FRBNY, 2019). Vintage data, which provide initial estimates of GDP,

the date at which they were revised, and the revised figures for the United States, Australia,

and New Zealand, were sourced from the Archival Federal Reserve Economic Data website

(FRBSL, 2019), the Australian Bureau of Statistics (ABS, 2019), and Adam Richardson

(Richardson, 2019), respectively. The model proposed in Adrian, Crump and Moench (2013)

was estimated with both Australian data (Jennison, 2017), (sourced from the Australian

Office of Financial Management (AOFM, 2019), and New Zealand data (Callaghan, 2019)

(provided by Adam Richardson (Richardson, 2019)).

Unfortunately, vintage data on these estimates of yields, expectations, and term premia

are not available. So a strict real-time forecasting exercise is not possible. Instead, the

results of the study can be interpreted in the following manner.

• When comparing models that do not make use of the yield curve with models that do,

any improvement in forecast performance should be treated as an upper bound on the
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improvement in forecast accuracy one could reasonably expect in practice.

• When comparing models which make use of total yields to models which use the de-

composition of yields, any difference in forecast performance likely reflects what one

would expect to see in practice. This is because estimates of yields and estimates of

their decomposition are based on the same information available at the same time. So

neither model has an informational advantage over the other in this regard and may

therefore be a minor issue in assessing the practical import of the following findings.

Indeed, as noted in Lewis (2015), estimates of yields derived from the Nelson-Siegel

model (Nelson and Siegel, 1987) do not tend to change substantially after re-estimating

the model when data revisions have been implemented. As estimates of yields used

in Adrian, Crump & Moench (2013), Jennison (2017), and Callaghan (2019) are all

based on the Nelson-Siegel-Svensson model (Svensson, 1994), it seems reasonable to

assume that these estimates do not change in the face of data revisions and reflect the

information that would be available to practitioners in real time. But it is unclear how

data revisions may affect estimates of the decomposition of yields.

In conducting this forecasting exercise the data were split into two time periods – the model

selection period and the forecast period. The division is somewhat arbitrary. Since model

selection and forecasts are performed using only data that would be available in real time,

any increase in the sample period for model selection comes at the expense of a reduction in

the sample period for forecasting, and vice versa. This trade-off produces a corresponding

trade-off between the statistical power of tests used for model diagnostics and the statistical

power of tests used to compare forecasts. The sub-periods are therefore chosen so that

roughly half the data in each case is used for model selection and half the data for forecast

evaluation. The precise dates of the sub-periods involved are detailed in the following table.

Country Model selection period Forecast period

United States 1971Q1 to 1993Q3 1994Q2 / 1996Q1 to 2019Q1

New Zealand 1992Q2 to 2003Q4 2004Q2 / 2006Q1 to 2019Q1

Australia 1992Q3 to 2005Q3 2006Q1 / 2007Q4 to 2019Q3

Table 1: Model selection and forecast periods

The gaps that appear in the table between the end of each selection period and the

forecast period are due to the lags that occur in the release of the data. For example, in Q1

of 2004, NZ GDP data for 2003Q4 was released. So if we were interested in forecasting NZ

output in the next period, we would be producing a forecast for 2004 Q2.

Policymakers are typically concerned with the change in output from one period to an-

other rather than the level of output itself. Accordingly, two forecasts are produced for each
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case – a “short-term” and a “long-term” forecast. A “short-term” forecast will be a forecast

of GDP growth in the following quarter from when the forecast is made. A “long-term”

forecast will be defined as a forecast of GDP growth two years from the quarter of the

forecast.

4 Model Selection

In each case, the selected model is first compared to a relatively simple benchmark. If the

model incorporating yield curve information fails to outperform benchmarks as simple as an

autoregressive process, the yield curve evidently has little predictive power in out-of-sample

forecasts of economic activity. Next, VARs are estimated with (i) variables GDP growth

and some measure of the yield curve, and (ii) variables GDP growth and some measure of

the expectations component of the yield curve. The measures employed in these regressions

for the yield curve and expectations components are the spread between the two and 10

year yields and expectations components. A key limitation of this approach is that it omits

some information in the yield curve, such as yields at different maturities or the level of the

yield spread. The latter may require a nonlinear formulation as a 100 basis point drop in

the yield spread from 3% to 2% may not be associated with the same decline in economic

activity as a 100 basis point drop from 0.5% to -0.5%. Nonetheless, this measure offers a

parsimonious and convenient way of introducing yield curve information into the models. As

is well known and as noted in this context by Ang, Piazzesi and Wei (2006), parsimonious

time series models often lead to superior out-of-sample forecast performance.

4.1 The benchmark

An autoregression is used as a benchmark and lag selection is performed using BIC. Residuals

from the model with the lowest BIC value are assessed for serial correlation. If the test

outcome supports martingale difference errors, the model with this lag structure is taken as

the forecasting model. If the test indicates that the residuals exhibit serial correlation, the

test will be performed again on the next model with the lowest BIC, until one satisfies the

necessary diagnostic checks. If no model satisfies the test for serially correlated residuals at

the 5% level of significance, the procedure is to perform the tests again with a significance

level of 10%, and so on incrementing the level until one does pass the test. As seen below,

each case has at least one model which satisfies the necessary diagnostic checks at the 5% level

of significance, so this aspect of the procedure turns out not to be of practical importance

in the empirical application.

These tests for serial correlation are conducted using the robust test developed in recent

work by Dalla et al. (2020), hereafter, referred to as the robust test. Tests that are most

commonly used to detect serial or cross-correlation rely on i.i.d. innovation assumptions.
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In practical work with economic and financial data, i.i.d innovation conditions are often

too strong and such tests frequently find spurious evidence of such correlation. Moreover,

optimal forecasting procedures typically rely on martingale difference residuals. Dalla et al.

(2020) propose a test that allows for very general martingale difference errors. Their robust

test reduces size distortion, helps to avoid spurious inference, and is better suited to finding

an optimal forecasting model.

Details of the lag selection choices and results of the robust test are summarised below

in Table 2, and Figures 2 to 4.

Lags United

States

New

Zealand

Australia

1 244.12 119.26 107.91

2 248.54 119.00 111.77

3 252.98 122.16 114.59

4 257.36 121.08 114.02

5 261.66 124.67 114.67

6 265.96 127.72 117.40

7 269.04 131.19 121.00

8 260.51 127.33 123.67

Table 2: BIC for autoregressive processes with varying lags

Figure 2: Results of the tests for serially correlated residuals of an AR(1) in the US case
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Figure 3: Results of the tests for serially correlated residuals of an AR(2) in the NZ case

Figure 4: Results of the tests for serially correlated residuals of an AR(1) in the Australian
case

In the figures above, the results of the standard Ljung-Box test for serial correlation

are presented alongside those of the robust test. The results are largely consistent with

8



each other, generally indicating that none of the models which achieve the lowest BIC have

serially correlated residuals. Therefore, the models chosen to serve as a benchmark take the

following form

GDP Growtht = α0 +

p∑
i=1

GDP Growtht−i + εt,

where p = 1 in the United States and Australian cases, and p = 2 in the New Zealand case.

4.2 The model with yields

In each case a vector autoregression (VAR) or vector error correction model (VECM) with

GDP growth and the yield spread are used. Augmented Dickey-Fuller (Dickey and Fuller,

1979) and Phillips-Perron (Phillips and Perron, 1988) tests were performed for each variable

with the outcomes summarised in Table 3 below.

Country GDP Growth Yield Spread Expectations Spread

United States I(0) I(0) I(1)

New Zealand I(0) I(0) I(0)

Australia I(0) I(1) I(1)

Table 3: Results of the unit root tests

Lags United

States

New

Zealand

Australia

1 -1.91 -2.39 -2.87

2 -1.68 -2.53 -2.45

3 -1.31 -1.72 -1.74

4 -0.63 -0.64 -0.76

5 0.32 0.79 0.45

6 1.44 2.64 2.00

7 2.81 4.97 4.18

8 4.35 7.75 6.76

Table 4: MSC for VARs with varying lags (minima bolded)

In view of the unit root test findings an appropriate way to proceed in a model with the

yield spread is to estimate a VAR of the form

yt = A0 +

p∑
j=1

Ajyt−j + εt
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Where yt = (GDP Growtht, Yield Spreadt)
> in the United States and New Zealand case, and

(GDP Growtht, ∆Yield Spreadt)
> in the Australian case. An information criterion approach

is again adopted for model selection and the resulting multivariate Schwarz criteria (MSC)

are presented in Table 3.

In both the US and New Zealand cases the robust tests do not indicate issues with auto

or cross-correlation among the residuals for the model with the lowest MSC. A VAR(1) is

therefore fitted for the US and a VAR(2) for New Zealand. While the MSC favours a VAR(1)

in the Australian case, there appears to be serial correlation among the residuals at lag 4

onwards. Estimating a VAR(4) resolves this issue, as does the following restricted VAR

(RVAR)

yt = A0 +
4∑
j=1

Ajyt−j + εt, such that A2 = A3 = 0,

= A0 + A1yt−1 + A4yt−4 + εt,

where yt = (GDP Growtht,∆Y ield Spreadt)
>. Further, this RVAR(4) achieves a MSC of

-2.76, which is lower than the MSC of both the VAR(1) and the unrestricted VAR(4). This

model is therefore selected for practical implementation.

4.3 The model with expectations

Following the empirical results of the unit root tests, a VAR(p) is estimated, with yt = (GDP

Growtht, Expectations Spreadt)
> for New Zealand, and (GDP Growtht, ∆Expectations

Spreadt)
> for Australia and the US. The respective findings for model selection are shown in

Table 4 below. The MSC criteria indicate a VAR(1) is suited to the US and Australian data,

and a VAR(2) to New Zealand. Further testing shows that none of these models have resid-

uals exhibiting serial or cross-correlation. So these models are selected for implementation

in the forecast exercises.

5 Forecast Comparisons

Each of the selected models was used to produce short-term and long-term forecasts and fore-

cast errors were calculated using the most recent vintage version of the data. In conducting

forecast comparisons we need to take account of multiplicity in testing. Hypothesis testing

is conventionally conducted using a statistic whose distribution (obtained by finite sample,

asymptotic, or bootstrap analysis) under the null hypothesis is used to assess significance,

leading to rejection of the null if the critical value is exceeded. However, in multiple and

sequential hypothesis testing, the likelihood of exceeding the critical value typically increases

as more hypotheses are tested. In the present application, testing multiple hypotheses is an
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issue as several different models are being compared and these at various forecast horizons.

There are methods designed to adjust critical values or p-values to address such issues, in-

cluding the Dunn-Bonferroni or Holm-Bonferroni corrections. These methods rely on the

assumption that test statistics are independent and are therefore unlikely to be appropriate

in the present application. For example, with dependent data if model A outperforms model

B and model B outperforms model C, then relative to the case of independent statistics, it is

more likely there is statistical significance when comparing Model A to Model C. Failing to

account for this and applying Dunn-Bonferroni or Holm-Bonferroni corrections may penalise

testing the third hypothesis involving Model C more harshly than is necessary, thereby in-

creasing the probability of a type II error (or failure to reject a false null hypothesis). A

similar argument applies when considering tests that involve multiple forecast horizons.

To address dependence among the test statistics in the present application a bootstrap

procedure that closely follows those developed in White (2000) and Romano and Wolf (2005)

is implemented. Although the context of this application differs slightly from that of White

(2000) and Romano & Wolf (2005), their methods are still suited to resolve the issue of

multiplicity. In applying these methods some limitations are worthy of note.

(i) The methods for dealing with multiplicity were developed in the context of recursive

estimation of models but not in recursions that involve updates to vintage data. Using

the most recent revisions of the observations may result in estimates of the sampling

distribution of the test statistics of interest that differ slightly from the true distribution

of interest. But differences of this type may not be of great concern as White (2000)

established that re-estimating parameters in a recursion is not required to achieve

consistent estimates of the sampling distributions of the relevant test statistics. If we

accept that we do not need to decrease the variance of our estimates of parameters by

updating them as more information becomes available in order to achieve a consistent

estimate of the desired sampling distributions, we may reasonably expect a similar

result to hold for data revisions.

(ii) The methods do not specifically deal with data that mixes different numbers of obser-

vations. Ideally, one would implement the StepM algorithm for the US, NZ, and Aus-

tralian cases simultaneously; otherwise the correction will not be conservative enough.

As an illustration, suppose 10 hypotheses are to be tested and suppose the hypotheses

are split into two groups of 5 hypotheses, with the Bonferroni correction applied within

each group. For hypotheses with p-values in the interval α
10
≤ p < α

5
, significance is

declared at the α level, even though the correct inference is the opposite. A similar

argument applies to the StepM algorithm. Although it may affect the resulting esti-

mate of the joint sampling distribution of each test statistic, data is merged to avoid

this difficulty. The bootstrap is performed using the final vintage observations, where

observations at the beginning of the US and NZ data, and at the end of the Australian
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data have been dropped in order to make the range of observation dates equivalent

across each country. The final table used for the bootstrap contains observations rang-

ing from 1992Q3 to 2019Q1, for a total of 107 observations.

Notwithstanding these limitations, corrections to address the issue of multiplicity were im-

plemented in the following way.

The bootstrap method

Many conventional bootstrap methods return a sample with i.i.d. observations by construc-

tion. But in the case of time series data this construction seldom matches the true generating

process due to the presence of serial dependence in the observations. Several methods to

address this concern have been proposed and the approach adopted here is the station-

ary bootstrap procedure of Politis & Romano (1991), where bootstrap resampling has the

following steps.

1. Select M ,the number of times to resample the data (Y1, Y2, ..., YT ).

2. Draw Gi,m ∼ Geometric(1
q
), and Ui,m ∼ Discrete Uniform(1, T ) as i.i.d. random vari-

ables for m = 1, 2, ...,M , and i = 1, 2, ...

3. Construct the blocks Bi,m = (YUi,m, YUi,m+1, ..., YUi,m+Gi,m−1) for m = 1, 2, ...,M ,

i = 1, 2, .... If j > T , define Yj = Yj(mod T ). For example, if T = 100, and j = 341,

341(mod 100) = 41, so Y341 = Y41. Thus, rather than trying to resample from a time

period we do not observe, the modulus function allows the time period we do resample

to be bounded above by the latest observation in the sample.

4. Construct the resample Bm = (Y ∗1,m, Y
∗
2,m, ..., Y

∗
T,m) = (B1,m, B2,m, ...) by combining

the individual blocks Bi,m until T observations are attained in the resample for m =

1, 2, ...,M . If the final block contains more than enough observations to reach a length

of T observations in Bm, discard the remainder that are unnecessary. For example, if

T = 50, B1,m had a length of 30, B2,m had a length of 15, and Bm,3 had a length of

10, only the first 5 observations in block Bm,3 would be used.

After generating the resampled observations, the resampled observations are used to estimate

each model and produce the forecasts and forecast errors in the same way as the first set

of forecast errors. The StepM algorithm described in Romano and Wolf (2005) is then

performed in the following way.

1. Formulate H0,k as the hypothesis that model k fails to outperform the benchmark

model, for k = 1, 2, ..., K. For each of these K hypotheses, calculate the corresponding

test statistics, ω1, ω2, ..., ωK .
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2. Order these test statistics in descending order, ωr1 , ωr2 , ..., ωrK , such that ωr1 ≥ ωr2 ≥
... ≥ ωrK to obtain indices r1, r2, ..., rK

3. Let j = 1, and R0 = 0.

4. For a suitably chosen critical value, cj (discussed below), construct the confidence

region:

Cj = ×
Rj−1+1≤k ≤K

[ωrk − cj,∞)

5. For Rj−1 + 1 ≤ k ≤ K, if 0 /∈ [ωrk − cj,∞), reject H0,rk .

6. Stop upon failure to reject any of the remaining hypotheses. Otherwise, let Rj be the

number of hypotheses rejected so far and set j 7→ j+ 1. Calculate a new critical value,

cj, then repeat steps 3 to 6.

The critical value cj

To obtain the appropriate critical value at each step of the algorithm described above,

bootstrap procedures are used in the following way:

1. Given observations (Y1, Y2, ..., YT ), use the bootstrap method described above to re-

sample (Y ∗1,m, Y
∗
2,m, ..., Y

∗
T,m) for m = 1, 2, ...,M .

2. Calculate the test statistics ω∗k,m to test the null hypothesis that within bootstrap

sample m model k fails to outperform the benchmark model, for k = 1, 2, ..., K, and

m = 1, 2, ...,M .

3. Set ω+
j,m = maxRj−1+1≤k≤K(ω∗rk,m − ωrk).

4. Compute cj from the (1− α)th quantile of the distribution of (ω+
j,m)Mm=1

This procedure delivers an estimate of the joint distribution of all test statistics, enabling

estimation of the probability that the maximum among K test statistics will exceed a certain

value, so that the critical values can be adjusted accordingly.

The Diebold-Mariano test statistics for forecast comparisons using the loss function Lt =

(yt − ŷt)2 are presented in Table 5 below.

DM test statistics using the loss function Lt = (yt − ŷt)2

Country Short-term test statistic Long-term test statistic

United States -0.957 (p = 0.829) -1.482 (p = 0.928)

New Zealand 1.201 (p = 0.118) 1.836 (p = 0.036)

Australia 2.543 (p = 0.007) 2.58 (p = 0.007)

Table 5: Diebold-Mariano test statistics at varying forecast horizons
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The confidence region constructed using an average block length of 30 is therefore

C1 = [−3.17,∞)× · · · × [−7.24,∞)

Where the critical value at the first step of the algorithm is c1 = 5.76.

Noting that 0 ∈ [ωrj − c1,∞) for j = 1, 2, ..., 18 (the total number of hypotheses being

tested), the process stops at the first step of the StepM algorithm after failing to reject

any null hypotheses. We conclude that the empirical evidence is insufficient to claim that

any improvement in forecast performance has been achieved by augmenting the models with

yield curve information or through the decomposition of yields into their expectations and

term premia components. This conclusion continues to hold under various adjustments to

the tests that include: (i) assessing hypotheses at the 10% level of significance; (ii) changing

the average block length in the stationary bootstrap to 20 or 40 (from 30) observations; (iii)

using differences between average forecast losses for the models as the test statistic in place

of the Diebold-Mariano test statistic; or (iv) using the loss function Lt = |yt − ŷt| instead of

Lt = (yt − ŷt)2. Overall and notwithstanding the fact that the methodology employed here

has some limitations as noted earlier, the conclusions reached appear robust to a wide range

of adjustments, including multiplicity, the particular test statistics used in the comparisons,

and significance levels employed in the tests.

6 Discussion and Future Research

Our empirical findings reveal no cases in which forecasting with a model that includes yield

curve information leads to more accurate forecasts than those made using a simple autore-

gressive process. Further, decomposing yields into expectations and term premia compo-

nents does not improve forecast accuracy relative to an autoregression or a model with total

yields. Overall, these results suggest that whilst the yield curve may act as a leading reces-

sion indicator, this property does not translate materially into better out-of-sample forecast

performance of economic activity, at least for the countries and periods studied here. In

contrast to these findings, results of previous research tend to be mixed and no general

consensus on predictability has emerged within the existing literature. Since our findings

contrast with some of the present evidence, potential reasons for the difference are worth

discussing.

First, the predictive content of yield curve information has been examined in different

contexts that may justify different conclusions. Previous studies may use data from differ-

ent countries or different time periods and estimates of yields vary across papers as there

are various ways they may be estimated and decomposed into expectations and term pre-

mia. Second, many empirical exercises do not perform quasi-real-time forecasting exercises

or compensate for the effects of data revisions. Such revisions may well enhance with up-
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dated information the capability of the yield curve as an aid in forecasting economic activity,

whereas no strong evidence is found here using quasi-real-time forecasting methods. Third,

the use of vintage data may lead to decreased statistical power. Forecasting with more re-

cent data is likely to enhance accuracy and the use of vintage data introduces noise in the

forecast errors, making small improvements more difficult to distinguish from randomness.

In addition to data updating, there are issues associated with methodology. Best practice

has generally been followed in model specification. But there is no general consensus on per-

forming specification searches. Papers may apply different information criteria or sequential

testing algorithms and reach different conclusions on specification with the same data; and

the same criteria could lead to different outcomes when data for different time periods is

used. Similarly, results may differ depending on the specific tests used to assess serially

correlated residuals or the specific variables included in a model.

Finally, the present findings and methodology employed in conducting tests tell a cau-

tionary tale concerning empirical model building. Without attention to the issue of multi-

plicity in the present exercise several differences in forecast performance would be judged

statistically significant. Best practice in testing multiple hypotheses does not sustain this

interpretation. Much previous research has concluded that the yield curve helps to fore-

cast output and other studies reported mixed results across models, forecast horizons and

countries. No previous studies to our knowledge have addressed the effects of multiplicity

on inferential validity. Some past conclusions may hold up under more robust methods but

only a complete re-analysis of the relevant data with appropriate methodology attending to

multiplicity would reveal how many statistically significant findings would be sustained and

how many would not.

Several avenues for future research seem promising beyond replication studies with more

robust methods of inference. Forecast performance may be time-varying: if central banks

improve ability to forecast recessions and offset them, the correlation between an inverted

yield curve and a subsequent recession may attenuate over time; and similar effects may

apply to the forecast performance of the yield curve in general. The methodology employed

here may be used in forecasting other variables. Given the role of interest rates and the yield

curve in many macroeconomic models, financial models, and general policy relevance, their

potential in forecasting other variables than GDP growth seems worthy of investigation.

Finally, to better reflect the small open economy features of New Zealand and Australia

and their susceptibility to shocks in large economies such as the US and China, it seems

appropriate for models to be augmented with term spreads from other countries to examine

whether these variables may enhance forecast performance.
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