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Abstract

Limit distribution theory in the econometric literature for functional coefficient cointe-
grating (FCC) regression is shown to be incorrect in important ways, influencing rates of
convergence, distributional properties, and practical work. In FCC regression the cointegrat-
ing coefficient vector β(·) is a function of a covariate zt. The true limit distribution of the
local level kernel estimator of β(·) is shown to have multiple forms, each form depending on
the bandwidth rate in relation to the sample size and with an optimal convergence rate of
n3/4 which is achieved by letting the bandwidth have order 1/

√
n when zt is scalar. Unlike

stationary regression and contrary to the existing literature on FCC regression, the correct
limit theory reveals that component elements from the bias and variance terms in the kernel
regression can both contribute to variability in the asymptotics depending on the bandwidth
behavior in relation to the sample size. The trade-off between bias and variance that is a
common feature of kernel regression consequently takes a different and more complex form
in FCC regression whereby balance is achieved via the dual-source of variation in the limit
with an associated common convergence rate. The error in the literature arises because
the random variability of the bias term has been neglected in earlier research. In station-
ary regression this random variability is of smaller order and can correctly be neglected in
asymptotic analysis but with consequences for finite sample performance. In nonstationary
regression, variability typically has larger order due to the nonstationary regressor and its
omission leads to deficiencies and partial failure in the asymptotics reported in the literature.
Existing results are shown to hold only in scalar covariate FCC regression and only when the
bandwidth has order larger than 1/n and smaller than 1/

√
n for sample size n. The correct

results in cases of a multivariate covariate zt are substantially more complex and are not
covered by any existing theory. Implications of the findings for inference, confidence inter-
val construction, bandwidth selection, and stability testing for the functional coefficient are
discussed. A novel self-normalized t-ratio statistic is developed which is robust with respect
to bandwidth order and persistence in the regressor, enabling improved testing and confi-
dence interval construction. Simulations show superior performance of this robust statistic
that corroborate the finite sample relevance of the new limit theory in both stationary and
nonstationary regressions.
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1 Introduction

Nonlinearities and parameter instabilities are commonly encountered phenomena in empirical
research with both cross section and time series data. Modeling strategies in both cases have
accordingly moved towards accommodating these features. A convenient mechanism for ac-
complishing such extensions is the use of functional coefficient (FC) regressions, which allow
responses to explanatory variables to change in a systematic fashion according to movements in
other relevant variables.

FC regression has provided a particularly useful tool for modeling comovement among non-
stationary time series that may depart from strict parametric cointegration while retaining the
essential property of stationary departures from long run linkages that characterize the data.
Such functional coefficient cointegration (FCC) models were introduced in Xiao (2009). They
embody notions of equilibrium that allow for responsive adjustment in the relationship to changes
that occur over time in relevant covariates. For instance, investment portfolios may realign in
response to movements in interest rates or certain financial indices; or asset prices may relate
to market fundamentals in a flexible manner that allows for the impact of relevant covariates,
such as the profitability of alternative investments. In the last decade, models of this type have
attracted much attention in the econometric literature, providing a flexible generalization of
the cointegration concept and enabling econometric tests of strict fixed coefficient cointegration
specifications in empirical work.

The prototypical FCC model of Xiao (2009) has the following form

yt =x′tβ(zt) + ut (1.1)

where the regressor xt is a d × 1 possibly nonstationary time series, the covariate zt is a q × 1
stationary time series and the error term ut is a scalar stationary error process. This model has
been extensively studied in the literature. An early paper by Cai et al. (2000) examined the
stationary xt case, Juhl (2005) examined the unit root autoregressive case, Xiao (2009) studied
the model (1.1) with full rank I(1) xt, and Cai et al. (2009) allowed both I(0) and I(1) variables
in xt. Subsequent papers have developed specification tests for constant coefficients or strict
cointegration (Sun et al., 2016), models with non-cointegrated structure (Sun et al., 2011; Wang
et al., 2019), and applications where time varying volatility is relevant (Tu and Wang, 2019).

In all of this work, kernel weighted local least squares regression is employed to estimate the
functional coefficient β(·). The derivation of the limit theory for these estimates follows standard
lines for kernel regression asymptotics that were developed in the stationary case, while allowing
for possible nonstationarity in the regressor xt or certain components of xt. In the prototypical
case the limit theory is given as mixed normal and the results have been extensively used in
the literature to develop test procedures for constant coefficients, confidence intervals for the
functional coefficients, optimal bandwidth selection, and specification testing.

The present work shows that the limit theory given in this literature is incorrect in all cases
where nonstationary regressors of integrated or near-integrated form are present in xt. The
errors originate from a missing term in the true limit theory that is associated with the random
variability of the kernel regression bias. In stationary regression this term can be neglected as
of smaller order than the usual variance expression. But in nonstationary regression, variability
in the bias has larger order due to the nonstationary regressor. Its omission leads to failure in
the reported asymptotic theory and the true limit distribution of the kernel regression estimator
involves component elements from both the bias and the variance. Only in scalar FCC regression
and only when the bandwidth is very small, viz., o(1/

√
n), are present results in the literature

correct. That bandwidth restriction when zt is scalar actually excludes optimal convergence,
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which occurs at the n3/4 rate and requires the bandwidth setting O( 1√
n

) in estimation of β(·).
Instead, optimal convergence leads to a limit distribution whose variance combines random
elements from both the bias and variance terms in the regression. In short, we show that terms
normally taken as ‘bias’ actually contribute to ‘variance’ and affect estimation and inference in
material ways that have been neglected in earlier work.

The problem that arises in the existing limit theory can be explained simply in the model (1.1)
when xt is a scalar exogenous regressor, zt is an independent univariate stationary process with
smooth density f(z), and ut is a scalar stationary error process with zero mean and variance
σ2u. The local level least squares estimate of β(z) is β̂(z) = (

∑n
t=1 xtytKtz) /

∑n
t=1 x

2
tKtz for

some suitable kernel function Ktz = K((zt−z)/h) with bandwidth h in the weighted regression.
The estimate β̂(z) satisfies the usual decomposition into ‘bias’ and ‘variance’ terms, which in
signal-normalized form is(

n∑
t=1

x2tKtz

)(
β̂(z)− β(z)

)
=

n∑
t=1

x2t [β(zt)− β(z)]Ktz +

n∑
t=1

xtutKtz. (1.2)

Limit theory is developed by analyzing each term on the right side of this equation in turn, as
well as the behavior of the kernel weighted signal function

∑n
t=1 x

2
tKtz. To do so in a rigorous

way requires the further decomposition of the right side as follows

n∑
t=1

x2tEξβt +

n∑
t=1

x2t ηt +

n∑
t=1

xtutKtz (1.3)

where ξβt = [β(zt)− β(z)]Ktz and ηt = ξβt − Eξβt. In (1.3), the first term in the decomposition
leads in the conventional way to the ‘deterministic’ bias term1 in the limit theory. The second
term leads to a random element in the limit that is induced by the bias. It is neglect of this
random element

∑n
t=1 x

2
t ηt that leads to the error in the literature. The relative magnitudes of

the terms in (1.3) change for stationary and nonstationary regressors, as is now explained.

(i) Stationary xt
For stationary xt and under commonly used regularity conditions for smooth FC regression,

the random element
∑n

t=1 x
2
t ηt in the bias is of smaller order than the variance component

in the third term
∑n

t=1 xtutKtz of (1.3). It is therefore typically ignored in the limit theory.
Indeed, under regularity conditions that enable use of laws of large numbers and triangular array
martingale central limit theory, the three components of (1.3) and the signal function have the
following standard asymptotic behavior (c.f., Li and Racine (2007), theorem 9.3) as n→∞ and
h→ 0 with the effective sample size nh→∞

1

nh

n∑
t=1

x2tEξβt = h2σ2xµ2(K)C(z) + op(h
2), (1.4)

n∑
t=1

x2t ηt = Op(
√
nh3), (1.5)

1√
nh

n∑
t=1

xtutKtz  N
(
0, ν0(K)σ2uσ

2
xf(z)

)
, (1.6)

1The designation ‘deterministic’ is used because the bias term is actually deterministic in the limit only in

the stationary case. In nonstationary regressor cases, the bias term has random elements that are induced by the

asymptotic behavior of sample moments of the regressor xt, which can influence the limit theory.
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1

nh

n∑
t=1

x2tKtz →p σ
2
xf(z), (1.7)

where µ2(K) =
∫
s2K(s)ds, ν0(K) =

∫
K(s)2ds,

∫
K(s)ds = 1, Ex2t = σ2x, Eu2t = σ2u, C(z) =

1
2β

(2)(z)f(z) + β(1)(z)f (1)(z) with g(j) signifying the j-th derivative of g, and where (1.5) is due

to the fact that 1√
nh3

∑bn·c
t=1 ηt  Bη(·), as is shown in Lemma B.1(b). Here and throughout

the paper we use  to signify weak convergence on the relevant probability space and →p for
convergence in probability. In view of (1.2) through (1.7), we can write

β̂(z)− β(z) =

∑n
t=1 x

2
tEξβt +

∑n
t=1 x

2
t ηt +

∑n
t=1 xtutKtz∑n

t=1 x
2
tKtz

(1.8)

=Op(
nh3 +

√
nh3 +

√
nh

nh
) = Op(h

2) +Op(1/
√
nh)

because
√
nh3 = o(

√
nh). The standard limit theory then follows, viz.,

√
nh
(
β̂(z)− β(z)− h2B(z) + op(h

2)
)

=

1√
nh

∑n
t=1 xtutKtz

1
nh

∑n
t=1 x

2
tKtz

+ op(1) N
(

0,
ν0(K)σ2u
σ2xf

(z)

)
,

(1.9)

giving the usual
√
nh convergence rate for the suitably centred FC estimator β̂(z), the deter-

ministic recentering bias function h2B(z) = h2µ2(K)C(z)/f(z), and a limiting normal distri-

bution with variance ν0(K) σ2
u

σ2
xf

(z)
. Notice that the second component of the bias,

∑n
t=1 x

2
t ηt =

Op(
√
nh3), is op(nh

3) provided nh3 → ∞, which holds for the usual optimal bandwidth choice

h = O(n−
1
5 ) in stationary FC regression. Moreover, as evident in (1.5), the second component

is op(
√
nh) whenever h→ 0, thereby ensuring that it is dominated by the variance term. In this

stationary case, therefore, the random component of the bias function does not affect either the
bias or the variance in the limit distribution of β̂(z).

(ii) Nonstationary xt
In the nonstationary case with integrated or near-integrated regressor xt the orders of mag-

nitude of the components (1.4) - (1.7) change in critical ways that affect the balance in these
components, thereby impacting the asymptotic behavior of β̂(z). First, nonstationarity in the
regressor xt changes signal strength. When xt is a scalar unit root process and nh → ∞ we
have, as shown in Lemma B.1(c)(i) in the Appendix,

1

n2h

n∑
t=1

x2tKtz =
1

nh

n∑
t=1

(
xt√
n

)2

Ktz  
∫
B2
x × f(z) (1.10)

in place of (1.7), where 1√
n
xbn·c  Bx(·), Brownian motion with variance ω2

x. In view of the

standardization in (1.10), the FCC regression signal
∑n

t=1 x
2
tKtz has stochastic order Op(n

2h)
rather than Op(nh) and the requirement for consistency might therefore be thought to be n

√
h→

∞ rather than nh → ∞; or, upon appropriate standardization of xt, the adjusted regression

signal is
∑n

t=1

(
xt√
n

)2
Ktz = Op(nh), suggesting that the usual effective sample size condition

nh→∞ is needed for consistency. However, the situation is considerably more subtle, as will be
discussed in the paper: it transpires that consistency continues to hold even when nh→∞ fails,
as will be demonstrated in the paper in Theorem 2.2 and the following Remarks. Importantly,
this is not the case when xt is stationary as discussed in Remark 2.9.
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Second, as shown in Lemma B.1(d) in the Appendix, the random element in the bias com-
ponent now converges to a stochastic integral at the rate Op(

√
n3h3). Specifically, when xt is a

scalar unit root process and nh→∞, we have

1√
n3h3

n∑
t=1

x2t ηt =
n∑
t=1

(
xt√
n

)2 ηt√
nh3
 
∫
B2
xdBη, (1.11)

where Bη(·) is the Brownian motion limit of the partial sum process 1√
nh3

∑bn·c
t=1 ηt, as shown in

Lemma B.1(b). The deterministic component of the bias is Op(n
2h3) and satisfies

1

n2h3

n∑
t=1

x2tEξβt =
1

nh3

n∑
t=1

(
xt√
n

)2

Eξβt  
(∫

B2
x

)
µ2(K)C(z),

analogous to the stationary case but with
∫
B2
x replacing σ2x. Vital for the correct limit theory,

the variance component
∑n

t=1 xtutKtz = Op(n
√
h) turns out to be dominated by the random

component of the bias because n
√
h = o(

√
n3h3) whenever nh2 → ∞, i.e. whenever h → 0

slower than 1/
√
n. Importantly, this result and (1.10) hold whenever nh → ∞. Similar results

apply with suitable changes in the limit formulae when xt is near integrated.
It follows that the random bias (second) component of the decomposition (1.3) dominates

the variance (third) term and therefore determines the form of the limit distribution of β̂(z)
whenever h → 0 slower than 1/

√
n, which is the usual case in kernel regression. When h → 0

at precisely the 1/
√
n rate both the random bias and variance terms contribute to the asymp-

totics. This balance in the components of (1.3) is explored rigorously in what follows and the
asymptotic consequences are given in Theorem 2.1 for the scalar zt case. In Section 1 of the
supplementary file that accompanies the paper, we report simulations that show the relevance
of these analytic findings on the relative magnitude of the components in (1.3) in finite samples.
These computations highlight the differences between the stationary and nonstationary cases for
practical work and the dominating role the random bias component plays when h → 0 slower
than 1/

√
n. For multivariate FC regression with vector zt, the limit theory is given in Theorem

2.3. This case involves further complications and is not a straightforward extension of the scalar
covariate case, as might be inferred from the present literature. We therefore deal with the
multivariate zt case separately in the following development.

We propose a new self-normalized t-ratio that incorporates both the traditional variance
term and the random bias component. The statistic is constructed using a sandwich variance
estimate that retains both asymptotically relevant and negligible components allowing them
to figure automatically to whatever bandwidth order is used. In doing so, the self-normalized
statistic accommodates all three categories of limit theory in Theorem 2.1 and is therefore
robust to bandwidth order. This statistic turns out to be robust to the persistence properties
of the regressor, so that the same statistic remains valid in the stationary model. Simulations
show excellent performance compared to other approaches. Both the asymptotic theory and
simulation findings recommend using this robust statistic for testing and confidence interval
construction. When the regressor is nonstationary and covariate zt is univariate the bandwidth
order h = O(n−1/2) gives rate optimality in estimation and performs well in inference.

To keep the exposition brief and focus on correcting limit theory in the literature, we confine
analysis to local level estimation and work with the prototypical model (1.1). Primary attention
is given to the nonstationary case where xt is a full rank integrated process independent of zt and
ut but attention is also given to the stationary regressor case. More general cases with serially
dependent errors, potentially cointegrated regressors, and endogeneity do not change the basic
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thrust of the present findings and full extensions to such cases are left for future work. The new
limit theory is derived in Section 2. Section 3 discusses implications of these asymptotics for rate
efficient estimation, inference and bandwidth selection. This section also develops the new robust
T -ratio, a corresponding T 2 statistic, and reports simulation findings. Section 4 concludes.
Proofs of the main results and key subsidiary lemmas are given in the Appendix. The online
supplement accompanying the paper provides additional simulation evidence corroborating the
new asymptotics. Testing the constancy of the functional coefficient is also studied in the online
supplement where an easy-to-implement test statistic is considered and found to have finite
sample size and power in accord with asymptotic theory.

Throughout the paper we use the notation µj(K) =
∫
K u

jK(u)du, and νj(K) =
∫
K u

jK2(u)du
for kernel moment functions, where K is the support of the kernel function K. The affix ‘q’ when
it appears in µqj and νqj is used to indicate the dimension of zt in the multivariate case. For any
random variables ξn and ηn, ξn ∼a ηn means ξn and ηn are asymptotically equivalent, namely
ξn = ηn{1 + op(1)}. We use ≡d to signify equivalence in distribution and, as in the usage above

and unless otherwise indicated,
∫

denotes
∫ 1
0 . According to the context, we use := and =: to

signify definitional equality.

2 FC Limit Theory in Cointegrated Systems

We consider a cointegrating equation model with full rank I(1) regressors and functional coef-
ficients dependent on a stationary covariate. The model matches that of Xiao (2009) and is a
prototype of more complex systems, including models with endogenous cointegrated regressors,
models with both I(0) and I(1) or near integrated regressors, and models with functionally
cointegrated regressors, as well as serially dependent errors. The analysis here is representative
of the complexities that are involved in all these more complex triangular systems of cointe-
grated equations. The purpose of the present paper is to derive the correct limit theory for the
prototype model as a foundation for the subsequent analysis of more complex systems.

2.1 Univariate zt

We first derive limit theory for the FC kernel estimator β̂(z) = (
∑

t xtx
′
tKtz)

−1 (
∑

t xtytKtz)
in model (1.1) with univariate zt. To avoid unnecessary complications in the asymptotics, it is
convenient to use the following simplifying assumptions. Extensions to more general cases are
discussed below but these are not needed for the purposes of the present contribution.

Assumption 1. (i) {xt} is a full rank unit root process, with innovations uxt = ∆xt and ini-

tialization x0 = op(
√
n), satisfying the functional law 1√

n
xbn·c  Bx(·), where Bx is vector

Brownian motion with variance matrix Ωxx > 0; {ut} is a martingale difference sequence

(mds) with respect to the filtration Ft = σ{{xs, zs}∞s=1;ut, ut−1, · · · }, E(u2t |Ft−1) = σ2u a.s.

and E(u6t ) <∞; and {zt, uxt} are strictly stationary α-mixing processes with mixing num-

bers α(j) that satisfy
∑

j≥1 j
c[α(j)]1−2/δ < ∞ for some δ > 2 and c > 1 − 2/δ with finite

moments of order p > 2δ > 4.

(ii) The density f(z) of zt and joint density f0,j(s0, sj) of (zt, zt+j) are bounded above and

away from zero over their supports with uniformly bounded and continuous derivatives to

the second order.
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(iii) {xt} and {zt} are mutually independent.

(iv) The kernel function K(·) is a bounded probability density function symmetric about zero

with support K that is either [−1, 1] or R = (−∞,∞).

(v) β(z) is a smooth function with uniformly bounded continuous derivatives to the second

order and E||β(zt)||2 + E||β(1)(zt)||2 + E||β(2)(zt)||2 <∞.

(vi) n→∞ and h→ 0.

The functional law in Assumption (i) is made for convenience and is assured by many prim-
itive conditions (e.g., Phillips and Solo (1992)). The mds condition in (i) and the independence
condition in (iii) are also convenient for the limit theory in the nonstationary case. They may be
relaxed at the cost of technical complications but these would distract from the central purpose
of the paper and are not pursued here. The α-mixing condition for {zt, uxt} is a standard weak
dependence condition that is useful in kernel regression and functional limit theory. Condition
(iv) is standard, although relaxation of the symmetry condition leads to some changes in the
results. In some cases where the bandwidths employed are very small it is convenient to use
kernels whose support K is the entire real line R, and this will be mentioned as required. The
moment conditions (v) on β(zt) and the first two derivatives, {β(1)(zt), β(2)(zt)} are needed for
the limit theory developed below. Condition (vi) places minimal requirements on (n, h) and the
following development uses various additional conditions. For instance, as discussed earlier in
the context of the asymptotic behavior of the kernel weighted regression signal in (1.10) and that
of the random component of the bias in (1.11), the effective sample size rate condition nh→∞
is needed for explicit limit results, just as it is in stationary nonparametric and functional co-
efficient regression. The effects on the various kernel weighted sample moments of relaxing this
particular condition are explored in the technical derivations and are discussed in the paper.
Other rate conditions are employed as needed.

Our first result details the limit theory for the FC cointegrating regression estimator β̂(z) in
model (1.1) under specific conditions on the bandwidth in relation to the sample size.

Theorem 2.1. Under Assumption 1, when nh→∞, the following hold:

(a) if nh2 → 0,

n
√
h[β̂(z)− β(z)− h2B(z)] MN (0,Ωu(z)), (2.1)

where B(z) = µ2(K)C(z)/f(z) and C(z) = 1
2β

(2)(z)f(z) + β(1)(z)f (1)(z);

(b) if nh2 →∞ and β(1)(z) 6= 0,√
n

h
[β̂(z)− β(z)− h2B(z)] 

(
f(z)

∫
BxB

′
x

)−1(∫
BxB

′
xdBη

)
≡dMN (0,Ωβ(z)),

(2.2)

where Bη(·) is Brownian motion with variance matrix Vηη = ν2(K)f(z)β(1)(z)β(1)(z)′;

(c) if nh2 → c for some constant c ∈ (0,∞) and β(1)(z) 6= 0,

n3/4[β̂(z)− β(z)− h2B(z)] MN
(

0, c
1
2 Ωβ(z) +

1

c
1
2

Ωu(z)

)
. (2.3)
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The (conditional) variance matrices in (2.1) and (2.2) are as follows:

Ωu(z) = ν0(K)σ2uf
−1(z)

(∫
BxB

′
x

)−1
, (2.4)

Ωβ(z) =
ν2(K)

f(z)

(∫
BxB

′
x

)−1(∫
BxB

′
x

(
B′xβ

(1)(z)
)2)(∫

BxB
′
x

)−1
. (2.5)

Remark 2.1. (Case (a)) (i) Case (a) is the result given in Xiao (2009) but without the

condition nh2 → 0 that is made explicit here. As the proof of Theorem 2.1 makes clear, the limit

theory (2.1) holds only when nh2 → 0, which requires a small bandwidth that goes to zero faster

than 1/
√
n. The proof of the theorem depends on the additional rate condition nh→∞, which

is needed to establish central limit theory and functional laws that are given in (i) of all the

items of Lemma B.1 for kernel weighted partial sums of various time series. This condition is

the usual effective sample size assumption made in kernel regression for stationary time series.

(ii) Notably in the present case, the nonstationarity of xt raises the signal strength of the

regression signal in (1.10), which leads to the O(n
√
h) convergence rate for β̂(z) given in (2.1).

Consistency and some limit theory for β̂(z) may be expected to hold even when h = o(1/n) and

the usual effective sample size requirement nh→∞ fails. More extreme situations of such small

bandwidths are considered below in Theorem 2.2.

(iii) When nh2 → 0 as in case (a), the bias term in the centering of β̂(z) in (2.1) is small

enough to be negligible and can be ignored in the limit theory since n
√
h × h2 = o(nh2) → 0.

Further, when h = o(1/
√
n) the convergence rate of β̂(z) is n

√
h = o(n

3
4 ), and thereby always

less than the optimal rate, which is shown to be O(n
3
4 ) in Case (c) under the additional condition

β(1)(z) 6= 0 on the derivative of the functional coefficient.

Remark 2.2. (Case (b)) Cases (b) -(c) are new. Case (b) covers the case of bandwidths

for which h → 0 slower than 1/
√
n. Notably in this case the convergence rate of β̂(z) has the

unusual form
√

n
h , which is o(n

3
4 ) and thus is again less than the optimal rate O(n

3
4 ). Inspection

of (2.2) suggests that undersmoothing to eliminate the bias term h2B(z) could be achieved in

Case (b) by setting the bandwidth h so that nh3 → 0, as then
√

n
h × h

2 =
√
nh3 → 0. When

nh → ∞ Lemma B.1(b)(i) shows that 1√
nh3

∑bn·c
t=1 ηt  Bη(·) holds, where ηt = ξβt − Eξβt,

ξβt = [β(zt) − β(z)]Ktz. This functional law plays a key role in the weak convergence of the

standardized sum 1√
n3h3

∑n
t=1 xtx

′
tηt to the stochastic integral

∫
BxB

′
xdBη that appears in (2.2).

The proof of Theorem 2.1 shows that when nh2 →∞, the limit theory is wholly determined by the

random element in the bias function rather than the usual variance term, as mentioned in earlier

remarks following (1.11). Because of its reliance on the bias function, the limit distribution in

(2.2) depends on the functional coefficient derivative β(1)(z) and the result, including the rate of

convergence
√

n
h , in turn relies on the non-zero derivative condition β(1)(z) 6= 0.

Remark 2.3. (Case (c)) Case (c) yields the optimal convergence rate O(n
3
4 ) which holds

when nh2 → c for some constant c ∈ (0,∞) and β(1)(z) 6= 0. The bandwidth that achieves

this optimal rate is h = O( 1√
n

). Notably, the bias term in (2.3) can be ignored in this case
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without any undersmoothing because n
3
4 × h2 = n−

1
4 → 0. More importantly, the asymptotics in

this case involve a composite form of two components, which are made explicit in the proof - see

(A.19). Those two terms correspond to Cases (b) and (a), respectively, and are, in fact, boundary

versions of those two cases in which h = O( 1√
n

). Thus, this boundary case where h = O( 1√
n

)

has the optimal convergence rate O(n
3
4 ) for β̂(z). Due to the mutual independence of {ut} and

{zt}, those two components are uncorrelated. This leads to the mixed normal distribution given

in (2.3). Note that the constant c adjusts the relative contributions to the asymptotic variance

that come from the random element in the bias function and the usual variance term.

Remark 2.4. (Degeneracy) From the definition of Ωβ(z), it is clear that if β(1)(z) = 0 the

limit distribution in (2.2) is degenerate, in which case there is a rise in the convergence rate.

The simplest example occurs when β(z) ≡ β is constant and the functional coefficient model

is parametric. In this case, ξβt = [β(zt) − β(z)]Ktz = 0 and ηt = 0 for all t, so there is no

approximation error bias in the limit theory. The limit distribution of β̂(z) is then determined

completely by the variance component and the result in (2.1) holds with B(z) = 0. More discus-

sion about this degenerate parametric case is given in Section 4 of the online supplement, where

testing constancy is discussed. A general treatment of cases where the functional coefficient is

locally flat to an arbitrary order in both stationary and cointegrating regressions is provided in

Phillips and Wang (2020).

Remark 2.5. (Implications for Robustness) In case (a) where nh2 → 0 the limit result

may be interpreted as the nonstationary analogue in terms of both bias and variance of the

stationary case, albeit up to rates of convergence and the limiting form of the regression sample

moment matrix. But this match between the stationary and nonstationary cases holds only when

nh2 → 0. Depending on the bandwidth employed in estimation the true limit theory has three

clearly different forms of mixed normal limit theory, only one of which delivers rate efficient

estimation and this occurs at the precise bandwidth rate h = O(n−1/2) which is excluded in case

(a). The three limit distribution forms seem to suggest that (i) bandwidth specific formulations of

the test statistic may be needed for inference, and (ii) major differences arise between stationary

and nonstationary cases. However, construction of a general self-normalized test statistic for

inference about the functional coefficient turns out to be possible and is applicable in all these

cases. This construction of a robust test for inference about β(z) is developed in the next section.

Theorem 2.1 allows for bandwidths that satisfy h → 0 slower than 1/n, thereby ensuring
that nh → ∞. As mentioned in Remark 2.1, this is a stationary time series effective sample
size requirement that enables the use of kernel limit theory for kernel weighted stationary time
series. As the following theorem shows, it is possible to relax this requirement in the presence
of a nonstationary regressor due to its stronger signal and the resulting enhancement of the
regression signal strength that weakens restrictions on the bandwidth. But when nh 6→ ∞ the
conditions that assure central limit theory break down and no invariance principle (IP) applies
even though FCC regression may still be consistent. Moreover, while nonstationarity may allow
for very small bandwidths in the asymptotic development, practical issues in kernel smoothing
inevitably affect computability and finite sample behavior, almost always requiring use of a
kernel K(·) with support K = R, as discussed earlier in connection with Assumption 1(iv).
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Theorem 2.2. Under Assumption 1, if nh → c for some c ∈ [0,∞), then β̂ (z) →p β (z) and
√
n
(
β̂ (z)− β (z)

)
= Op (1) but no invariance principle applies.

Some general discussion of this result and comparisons of convergence rates with Theorem
2.1 are in order. The condition nh → c ∈ [0,∞) means that h tends to zero as fast or faster
than O(n−1). Moreover nh → c ∈ [0,∞) implies nh2 → 0 and thereby matches the condition
of Case (a) of Theorem 2.1, removing the effective sample size condition nh→∞ and allowing
even smaller bandwidths. Theorem 2.1(a) allows for bandwidths in the region O(n−1) < h <
O(n−1/2) whereas Theorem 2.2 allows for bandwidths h ≤ O(n−1). Such smaller bandwidth
rates are naturally included subject to additional conditions that ensure computability of the
estimate β̂(z), which in turn relies on positivity of the finite sample weighted regression signal
(
∑

t xtx
′
tKtz). More detailed comments on this matter and other aspects of Theorem 2.2 follow.

Remark 2.6. (The intermediate case nh → c ∈ (0,∞)) From Theorem 2.2 when nh →
c ∈ (0,∞), the convergence rate of β̂ (z) is

√
n. The rate of convergence of β̂ (z) from Theorem

2.1(a) is n
√
h =
√
n
√
nh, which exceeds

√
n since nh→∞ in Theorem 2.1(a). Thus, when the

stationary process effective sample size nh diverges, the bandwidth h→ 0 slower than 1
n and the

convergence rate of β̂ (z) rises from
√
n to n

√
h. The bandwidth then plays a role in determining

the convergence rate. But when h → 0 as fast or faster than 1
n the convergence rate of β̂ (z) is

√
n and is unaffected by the bandwidth.

Remark 2.7. (nh→ 0 and n3h→∞) We may well wonder why there is no reduction in the

convergence rate below
√
n or even a failure of consistency if h → 0 faster than 1/n. In this

case, it turns out that in the decomposition of β̂(z)− β(z) (see (A.21) in the Appendix or (1.8)

in the scalar xt case) the terms involving the approximation error β(zt)−β(z) are small enough

to be neglected and dominated by (
∑n

t=1 xtx
′
tKtz)

−1∑n
t=1 xtutKtz. Suppose, for instance, that

n3h→∞, in which case the kernel weighted signal matrix

n∑
t=1

xtx
′
tKtz =

n∑
t=1

xtx
′
tEKtz +

n∑
t=1

xtx
′
tζtK = Op(n

2h) +Op(
√
n3h) = Op(

√
n3h)→∞, (2.6)

which means that persistent excitation still holds. The justification of (2.6) is as follows. Recall

that EKtz = hf(z) + o(h) and
∑n

t=1 xtx
′
t = Op(n

2) as n → ∞, so that
∑n

t=1 xtx
′
tEKtz =

Op(n
2h). The term

∑n
t=1 xtx

′
tζtK has zero mean and variance (using the scalar regressor case

for convenience of exposition)

E

(
n∑
t=1

x2t ζtK

)2

=

n∑
t=1

Ex4tEζ2tK = 3

n∑
t=1

t2ω4
x × {hν0(K)f(z) + o (h)}

= 3n3h× 1

n

n∑
t=1

(
t

n

)2

× ω4
xν0(K)f(z) = O(n3h) (2.7)

in the iid zt case. Hence,
∑n

t=1 xtx
′
tζtK = Op(

√
n3h). Consequently,

∑n
t=1 xtx

′
tKtz = Op(n

2h)+

Op

(√
n3h

)
= Op

(√
n3h

)
when nh → 0. In this case, we might expect the

√
n convergence

rate (corresponding to the intermediate case nh → c ∈ (0,∞)) to be reduced in line with the
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diminished signal. However, calculation shows the variance matrix of the critical covariance

term
∑n

t=1 xtutKtz to be

E

(
n∑
t=1

xtutKtz

)(
n∑
t=1

xtutKtz

)′
=

n∑
t=1

E
(
xtx
′
t

)
E
(
u2t
)
E
(
K2
tz

)
= h

n∑
t=1

t× Ωxxσ
2
u {f (z) ν0 (K) + o(1}

= n2h

(
1

n2

n∑
t=1

t

)
× Ωxxσ

2
u {f (z) ν0 (K) + o(1)} , (2.8)

where Ωxx is the long run variance matrix of ∆xt. Since E (
∑n

t=1 xtutKtz) = 0 and Var (
∑n

t=1 xtutKtz) =

Op
(
n2h

)
, it follows that

∑n
t=1 xtutKtz = Op

(√
n2h

)
. In this case, we deduce that

β̂ (z)− β (z) =

(
1√
n3h

n∑
t=1

xtx
′
tKtz

)−1
1√
n3h

n∑
t=1

xtutKtz + op
(
1/
√
n
)

= Op
(
1/
√
n
)
. (2.9)

The estimator β̂ (z) is then
√
n consistent because the first member on the right side of (2.9) is

the dominant Op (1/
√
n) term in the asymptotics and the op (1/

√
n) term in (2.9) comes from

the term involving approximation error β(zt) − β(z). More detailed justification regarding the

op(1/
√
n) term can be found in the proof of Theorem 2.2.

Remark 2.8. (n3h → 0) Remark 2.7 establishes consistency when n3h → ∞. We may well

have expected inconsistency if n3h→ 0 or h = o
(
1/n3

)
because in that event the kernel weighted

signal does not deliver persistent excitation. Indeed, in this event (2.7) continues to hold and∑n
t=1 xtx

′
tKtz = Op(

√
n3h) for nh→ 0 as before, yet now

∑n
t=1 xtx

′
tKtz = op(1) when n3h→ 0

and the signal matrix fails the persistent excitation condition. Nonetheless, conditioning on

Fx,z = σ {xt, zt}∞1 and using the scalar regressor case for convenience of exposition, we see that

Var

(∑n
t=1 xtutKtz∑n
t=1 x

2
tKtz

∣∣∣∣
Fx,z

)
=

∑n
t=1 x

2
tK

2
tzσ

2
u(∑n

t=1 x
2
tKtz

)2 =

n2h

(
1
n

∑n
t=1

(
xt√
n

)2 EK2
tz
h σ2u

)
n3h

(
1
n

∑n
t=1

(
xt√
n

)4 EK2
tz
h

) = Op

(
1

n

)
→ 0,

(2.10)

which holds even when n3h → 0. In view of (2.10) consistency appears to hold irrespectively

of whether the rate h → 0 so fast that the persistent excitation condition fails. Of course, if

h→ 0 too fast and the kernel support is compact then for finite n the signal is zero with positive

probability, viz., P
(∑n

t=1 x
2
tKtz = 0

)
> 0 and kernel estimation of the functional coefficient will

fail. Even for Gaussian and other kernels with infinite support the signal
∑n

t=1 x
2
tKtz may be

so small as to prevent or inhibit calculation in such cases. Nonetheless, the result indicates

that nonstationarity in the regressor continues to have a powerful influence on the asymptotic

properties of functional coefficient regression estimator β̂ (z) even when kernel weighted signal

strength is no longer asymptotically infinite.
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Remark 2.9. (Stationary case) For comparison, consider the stationary scalar xt and iid zt

case where, when nh→ c ∈ [0,∞), we have

1√
nh

n∑
t=1

x2tKtz =
√
nh

1

n

n∑
t=1

x2t
EKtz

h
+

1√
nh

n∑
t=1

x2t ζtK = Op(1), (2.11)

1

nh3

n∑
t=1

x2tEξβt =
1

n

n∑
t=1

x2t
Eξβt
h3

= Op(1), (2.12)

1√
nh3

n∑
t=1

x2t ηt =
1√
n

n∑
t=1

x2t
ηt√
h3

= Op(1), (2.13)

1√
nh

n∑
t=1

xtutKtz =
1√
n

n∑
t=1

xtut
Ktz√
h

= Op(1). (2.14)

Then

β̂ (z)− β (z) =

(
n∑
t=1

x2tKtz

)−1( n∑
t=1

x2tEξβt +
n∑
t=1

x2t ηt +
n∑
t=1

xtutKtz

)

=

(
1√
nh

n∑
t=1

x2tKtz

)−1(√
nh5

1

nh3

n∑
t=1

x2tEξβt + h
1√
nh3

n∑
t=1

x2t ηt +
1√
nh

n∑
t=1

xtutKtz

)

=

(
1√
nh

n∑
t=1

x2tKtz

)−1(
op(1) +

1√
nh

n∑
t=1

xtutKtz

)
= Op(1). (2.15)

The bias terms are evidently negligible in the above calculations because nh5 → 0 and h→ 0. In

addition, conditional on Fx,z = σ{xt, zt}∞1 the conditional error variance is

Var
(
β̂(z)− β(z)

∣∣∣
Fx,z

)
= Var

(∑n
t=1 xtutKtz∑n
t=1 x

2
tKtz

∣∣∣∣
Fx,z

)
=

∑n
t=1 x

2
tK

2
tzσ

2
u(∑n

t=1 x
2
tKtz

)2 6= 0, (2.16)

and β̂ (z) is evidently inconsistent in the stationary case. Unlike the nonstationary case, there

is no asymptotic divergence between the stochastic order of the regressor xt appearing in the

sample covariance
∑n

t=1 xtutKtz and that of the squared regressor x2t that appears in the signal∑n
t=1 x

2
tKtz. It is these differences in the stochastic order implications of the regressor that lead

to major differences regarding consistency between the stationary and nonstationary cases under

rapid bandwidth shrinkage when nh→ c ∈ [0,∞).

2.2 Multivariate zt

Next consider the general case where zt is multivariate of dimension q. Let z = (z1, · · · , zq)′
and zt = (z1t, · · · , zqt)′. For convenience in estimation we use the product kernel Ktzq :=
Kq(zt) := ktz1 × · · · × ktzq where ktzj = k((zjt − zj)/hj), j = 1, · · · , q, k(·) is a symmetric
second order kernel, and the hj , j = 1, · · · , q, are individual bandwidths that are assumed
to be the same up to a constant. The functional coefficient estimator now has the form
β̂(z) = (

∑n
t=1 xtx

′
tKtzq)

−1∑n
t=1 xtytKtzq. For notational simplicity, we use h to denote the

common bandwidth. Let µj(k) =
∫
ujk(u)du and νj(k) =

∫
ujk2(u)du.
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Theorem 2.3. Under Assumption 1 and β(1)(z) 6= 0, the following hold:

(a) If nhq →∞, we have

(1) when q = 1, see Theorem 2.1;

(2) when q ≥ 2,

√
nhq−2

(
β̂(z)− β(z)− h2µq2(k)D(z)f−1(z)

)
 

(
f(z)

∫
BxB

′
x

)−1(∫
BxB

′
xdBηq

)
(2.17)

≡dMN

0,
νq2(k)

f(z)

(∫
BxB

′
x

)−1 ∫
BxB

′
x

q∑
j=1

(
B′xβ

(1)
j (z)

)2(∫
BxB

′
x

)−1 , (2.18)

where D(z) =
∑q

j=1

[
β
(1)
j (z)f

(1)
j (z) + 1

2β
(2)
jj (z)f(z)

]
, β

(1)
j (z) = ∂β(z)/∂zj β

(2)
jj (z) =

∂2β(z)/∂z2j , and Bηq(·) is d-vector Brownian motion with variance matrix

Vηηq = νq2(k)f(z)
∑q

j=1 β
(1)
j (z)β

(1)
j (z)′.

(b) If nhq → 0, then

(1) when q = 1, see Theorem 2.2;

(2) when q = 2, we have

√
n
(
β̂(z)− β(z)

)
∼a

(
1√
n3hq

n∑
t=1

xtx
′
tKtzq

)−1
1

n
√
hq

n∑
t=1

xtutKtzq = Op(1); (2.19)

(3) when q > 2, we have

(i) if nh2 → 0, then (2.19) continues to hold;

(ii) if nh2 → c ∈ (0,∞), then we have

√
n
(
β̂(z)− β(z)

)
∼a

(
1√
n3hq

n∑
t=1

xtx
′
tKtzq

)−1(
c1/2√
n3hq+2

n∑
t=1

xtx
′
tηtq +

1

n
√
hq

n∑
t=1

xtutKtzq

)
= Op(1); (2.20)

(iii) if nh2 →∞, then

1

h

(
β̂(z)− β(z)

)
∼a

(
1√
n3hq

n∑
t=1

xtx
′
tKtzq

)−1
1√

n3hq+2

n∑
t=1

xtx
′
tηtq = Op(1). (2.21)

(c) If nhq → c ∈ (0,∞), then

(1) when q = 1, see Theorem 2.2;

(2) when q = 2, then (2.20) continues to hold;

(3) when q > 2, (2.21) continues to hold.

12



Theorem 2.3 is the multivariate extension of Theorems 2.1 and 2.2. From Part (a), observe
that when the condition nhq →∞ holds and q = 2, the convergence rate is

√
n, irrespective of

h. The bias can be ignored in this case when the undersmoothing condition nhq+2 = nh4 → 0
holds. When q > 2, the convergence rate is

√
nhq−2 and declines as q increases, just as it does

in the multidimensional zt case for stationary time series (Li and Racine, 2007). Further, when
q ≥ 2, β̂(z) has the limit distribution in (2.18) with a sandwich form variance matrix that relies

on the first derivatives {β(1)j (z) = ∂β(z)/∂zj}qj=1, analogous to case (b) of Theorem 2.1 where

q = 1 and the convergence rate is
√
n/h. If these derivatives are zero at the point of estimation

z, then β̂(z) has faster convergence rate than
√
nhq−2 and its limit distribution depends on

higher derivatives of the functional coefficient β(z). This flat derivative case involves further
complexities and is studied elsewhere.

Cases (b) and (c) of Theorem 2.3 show that β̂(z) is still consistent even when nhq → ∞
fails. In this event, there is no invariance principle and the result corresponds to Theorem 2.2
when q = 1. Notably when q > 2 and nhq → 0, nh2 → c ∈ (0,∞) in case (b)(3)(ii) or when
q = 2 and nhq → c ∈ (0,∞) in case (c)(2), the limit behavior is described by (2.20), for which
no invariance principle applies but where, like Theorem 2.1(c), both bias and variance terms
contribute to large sample behavior.

Analogous to the condition nh→∞ in the case of q = 1, the condition nhq →∞ is needed
to establish functional laws for normalized partial sums of stationary elements involving the
kernel weights that enter the asymptotics, such as ζtK = Ktz − EKtz and ζtKq = Ktzq − EKtzq.
Weak convergence of such quantities fails when nhq 6→ ∞. The result is consistent estimation
but without an accompanying central limit distribution theory.

3 Rate Efficient Estimation and Robust Inference

3.1 Optimal bandwidth order and rate efficient estimation

This section explores the implications of the new limit theory on bandwidth selection and the
convergence rate of the local level estimator β̂(z). Suppose h = O(nγ) with γ < 0 and the
estimation error β̂(z) − β(z) = Op(n

gq(γ)), where gq(γ) is a function of γ and the subindex q
indicates dependence on the dimension of zt. The optimal bandwidth order, denoted γ∗q , is the
order for which gq(γ) achieves its minimum value and delivers the optimal convergence rate

β̂(z) − β(z) = Op(n
gq(γ∗q )). To facilitate comparisons that are meaningful for inference it is

convenient to require that the rate ngq(γ) is such that an invariance principle (IP) holds when
γ = γ∗q .

We first look at the case where q = 1. According to Theorem 2.1(a), we have −1 < γ < −1/2
and g1(γ) = −(1 + γ/2). When γ = −1/2, we have nh2 = O(1) and g1(γ) = −3/4 based on
Theorem 2.1(c). Theorem 2.1(b) deals with the case where −1/2 < γ < 0 and then g1(γ) =
max{2γ,−1−γ

2 }. It follows that g1(γ) = −1−γ
2 when −1/2 < γ < −1/3 and g1(γ) = 2γ when

−1/3 ≤ γ < 0. In view of Theorem 2.2, we have g1(γ) = −1/2 for γ ≤ −1. Collectively, we
obtain

g1(γ) =


−1/2 γ ≤ −1 No IP

−(1 + γ/2) −1 < γ ≤ −1/2 IP

−1−γ
2 −1/2 < γ < −1/3 IP

2γ −1/3 ≤ γ < 0 IP

. (3.1)

The function g1(γ) is plotted in Figure 1(a), in which the dashed part of the function depicts
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(a) q = 1 (b) q = 2 (c) q ≥ 3

Figure 1: Plots of the function gq(γ). The solid (blue) line depicts the region where an invariance

principle holds in the limit theory and the dashed (blue) line depicts the region where no invariance

principle applies.

regions where no IP holds, including the boundary point where the solid line commences. Evi-
dently when γ = −1/2, the function g1(γ) achieves its minimum −3/4, the optimal bandwidth
order is O(n−1/2), β̂(z) achieves its fastest rate of convergence n−3/4, and the mixed normal
limit theory of Theorem 2.1 (c) applies. In this case, the bias in (2.3) can be neglected because
n3/4 × h2 = n−1/4 → 0, and the optimal limit theory when q = 1 is given by

n3/4[β̂(z)− β(z)] MN
(

0, c
1
2 Ωβ(z) +

1

c
1
2

Ωu(z)

)
,

which is attained with h = O(n−1/2) and where the constant c > 0 is given by the limit nh2 → c.
When zt is of dimension q, similar analyses can be conducted based on Theorem 2.3. When

q = 2, we have

g2(γ) =


−1/2 γ ≤ −1/2 No IP

−1/2 −1/2 < γ < −1/4 IP

2γ −1/4 ≤ γ < 0 IP

. (3.2)

Figure 1(b) plots the function g2(γ) for q = 2. The optimal choice of γ in this case is evidently
γ∗2 ∈ (−1/2,−1/4]. Within this range for γ we have

√
n consistency and asymptotic mixed

normality, as given in (2.18). The bias term can again be ignored when γ∗2 ∈ (−1/2,−1/4)
because

√
nhq−2 × h2 = n1/2+2γ → 0 when γ < −1/4.

For higher dimensions with q ≥ 3, following Theorem 2.3 we deduce that

gq(γ) =


−1/2 γ ≤ −1/2 No IP

γ −1/2 < γ ≤ −1/q No IP

−1+γ(q−2)
2 −1/q < γ ≤ −1/(q + 2) IP

2γ −1/(q + 2) < γ < 0 IP

, (3.3)

where the final two (IP) convergence rates come from Theorem 2.3(a)(2), the last involving the
order of the bias term. The plot of gq(γ) for q ≥ 3 is shown in Figure 1(c). Under the premise
that an invariance principle holds in the limit, the optimal bandwidth order that balances bias
and variance is obtained with parameter setting γ∗q = −1/(q + 2), for which the convergence

rate is n2/(q+2). As is evident in Figure 1(c), some smaller bandwidths with γ ≤ −1/q may lead
to a faster rate of convergence in estimation than is achieved at γ = −1/(q + 2), but such rates
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sacrifice invariance principle asymptotics in the limit. For convenience in practical work, the
optimal bandwidth order parameter setting γ∗q = −1/(q + 2) is therefore suggested in this case.
The corresponding optimal limit distribution theory is given by (2.18) and here the bias cannot

be neglected because
√
nhq−2 × h2 = n

1
2
+
γ∗q (q−2)

2
+2γ∗q = n0 = O(1).

3.2 Behavior of t-ratios constructed according to limit theory

To illustrate the differences in the asymptotics presented in Theorems 2.1, we conduct simula-
tions of the distributions of the following standardized and bias corrected infeasible t-ratios

t1(z) =
n
√
h(β̂(z)− β(z)− h2B(z))√

Ωu(z)
, (3.4)

t2(z) =

√
n/h(β̂(z)− β(z)− h2B(z))√

Ωβ(z)
, (3.5)

t3(z) =
n3/4(β̂(z)− β(z)− h2B(z))√

c−1/2Ωu(z) + c1/2Ωβ(z)
, (3.6)

using the exact formulae for the asymptotic bias function B(z) and the true asymptotic variances
Ωu(z) and Ωβ(z). Note that c is a nonzero constant depending on the bandwidth formula. Since
we adopt h = σ̂zn

−1/2 in this specific case where nh2 = O(1), we set c = σ2z , the variance of zt.
When nh2 → 0, we have from Theorem 2.1

t1(z) N(0, 1), t2(z) = Op

(√
n/h

nh1/2

)
= Op

(
1√
nh2

)
→∞, t3(z) = Op

(
n

3
4

nh
1
2

)
= Op

(
1

(nh2)
1
4

)
→∞.

When nh2 = O(1), we have t1(z), t2(z) = Op(1) and t3(z) N(0, 1). When nh2 →∞,

t1(z) = Op

(
n
√
h√

n/h

)
= Op

(√
nh2

)
→∞, t2(z) N(0, 1), t3(z) = Op

(
n3/4√
n/h

)
= Op((nh

2)
1
4 )→∞.

We plot the empirical densities of these t-ratios in Figure 2. The simulation design sets
the innovations of xt to be iid N (0, 1), ut to be iid N (0, 1), and zt to iid U(0, 2), making
these components mutually independent. The functional coefficient function is β(z) = 1 + z3.
We evaluate the t-ratios at z = 1. The bandwidth is given by h = ch × σ̂zn

γ with γ ∈
{−4/5,−1/2,−1/5} and the second order Epanechnikov kernel is used in estimation. We use
the constant coefficient ch = 2 when γ = −4/5, which mitigates the signal failure that can
accompany extremely small bandwidths as discussed in Remark 2.8, and let ch = 1 otherwise.
Three sample sizes n = 100, 200, 800 are used. The number of replications is 10,000.

The main findings in Figure 2 are summarized as follows. First, when h = O(n−4/5), which
implies nh2 → 0, the empirical densities of t1(z) are very close to the standard normal density
for all sample sizes, whereas the densities of t2(z) and t3(z) appear to diverge from the standard
normal. The divergence of t3(z) is apparently much slower than that of t2(z) and this is due
to its slower divergence rate in the asymptotic theory in this case. Second, when h = O(n−1/5)
which implies nh2 → ∞, panel (b) of Figure 2 shows that the distribution of t1(z) diverges
significantly from the standard normal as n increases whereas the distribution of t2(z) appears
to move slowly towards the standard normal. The density of t3(z) also diverges from standard
normal but at a slower rate than t1(z). Third, when h = O(n−1/2), which implies nh2 = O(1),
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the asymptotic theory suggests that all three t-ratios are Op(1), but only t3(z) has a standard
normal limit distribution. This feature is corroborated by the appearance of the densities in
panel (c) of Figure 2, where the empirical density of t3(z) is seen to be extremely close to
standard normal for all sample sizes, whereas the densities of t1(z) and t2(z) are stable as n
increases but are clearly differentiated from the standard normal for all sample sizes. Overall,
these results support the analytic findings concerning the limit behavior of the three t-ratios
with different bandwidth orders.
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Figure 2: Empirical densities of the three t-ratios ti(z), i = 1, 2, 3 defined in (3.4)-(3.6) shown

against the standard N (0, 1) density.

One approach to practical implementation is to employ estimated bias and variance compo-
nents in the formulation of t1(z), t2(z), t3(z) leading to estimated ratios of the form

t̂1(z) =
n
√
h(β̂(z)− β(z)− h2B̂(z))√

Ω̂u(z)
, (3.7)
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t̂2(z) =

√
n/h(β̂(z)− β(z)− h2B̂(z))√

Ω̂β(z)
, (3.8)

t̂3(z) =
n3/4(β̂(z)− β(z)− h2B̂(z))√

ĉ−1/2Ω̂u(z) + ĉ1/2Ω̂β(z)
, (3.9)

where B̂(z), Ω̂u(z) and Ω̂β(z) are consistent estimates. Details regarding these estimates are
provided in Section 3 of the online supplement, where the empirical densities of the estimated
t-ratios are displayed in Figure S1. The patterns exhibited are very similar to those of Figure 2
across all panels, although some discrepancies are evident for sample size n = 100. Again these
findings are broadly consistent with the asymptotic results of Theorem 2.1. In consequence, these
estimated statistics suffer from the same sensitivities to bandwidth choice and divergences from
standard N (0, 1) limit theory as the infeasible statistics {t1(z), t2(z), t3(z)}. This case-specific
approach to inference is evidently unsatisfactory for practical work.

3.3 Robust self-normalized T -ratio and T 2 statistic

The statistics
{
t̂j(z) : j = 1, 2, 3

}
in (3.7)-(3.9) all make explicit use of the rates of convergence

and the explicit limit distribution theory of β̂(z) for the different bandwidth ranges. In doing so,
this framework for inference differs substantially from the stationary case and is not well suited
for empirical implementation because of the multiple asymptotic forms and the highly variable
performance of each individual statistic over the different bandwidth ranges, documented in
the online supplement. We therefore suggest a new approach to develop a robust statistic that
covers all three nonstationary xt cases as well as the stationary case.

The approach constructs a self-normalized statistic that includes the two potentially relevant
(‘bias’ and ‘variance’) components that contribute to the variation of β̂(z), but without prior
standardization on them. By combining these two sources of potential variation in the statistic
the new construction succeeds in automatically standardizing each component according to the
bandwidth employed, thereby covering all three versions of the limit theory in Theorem 2.1 as
well as the stationary xt case.

The new statistic uses a sandwich form for the variance matrix estimate in self-normalization.
In the multiple regressor with single covariate zt case, define the standardized and bias corrected
estimation error

T̂ (z) = Vn(z)−
1
2 [β̂(z)− β(z)− h2B̂(z)] (3.10)

with self-normalizing sandwich form matrix Vn(z) = A−1nz Ωn(z)A−1nz where

Ωn(z) = ν0(K)σ̂2u

n∑
t=1

xtx
′
tKtz +

n∑
t=1

xtx
′
t(x
′
tβ̂

(1)(z))2(zt − z)2K2
tz, (3.11)

and Anz =
∑n

t=1 xtx
′
tKtz. In (3.11) σ̂2u, β̂(1)(z), and B̂(z) denote consistent estimates of the cor-

responding error variance, derivative, and bias components. These consistent estimates may be
obtained in the usual manner, details of which are discussed later under practical implementation
and in Section 3 of the online supplement.

Theorem 3.1 below shows that T̂ (z) is robust and asymptotically pivotal with the same
standardN (0, Id) limit theory for each of the three bandwidth ranges (a), (b) and (c) of Theorem
2.1, as well as for stationary xt. The statistic T̂ (z) may therefore be used to form a robust
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test across bandwidths and persistence properties of the regressor xt. Specifically, joint robust
inference about β(z) across bandwidths and for both stationary and nonstationary regressors is
possible using a test based on a quadratic form in T̂ (z), just as in Hotelling’s T 2 statistic. This
test statistic is

T̂2(z) = T̂ (z)′T̂ (z) = [β̂(z)− β(z)− h2B̂(z)]′Vn(z)−1[β̂(z)− β(z)− h2B̂(z)], (3.12)

which is asymptotically χ2
d in both stationary and nonstationary regressor cases. To include the

stationary case in the analysis we introduce the following Assumption.

Assumption 2. (i) {ut} is a martingale difference sequence (mds) with respect to the filtra-

tion Ft = σ{{xs, zs}∞s=1;ut, ut−1, . . .}, E(u2t |Ft−1) = σ2u a.s., and E(u4t ) < ∞; and {xt, zt}
are strictly stationary and independent α-mixing scalar processes with mixing numbers α(j)

that satisfy
∑

j≥1 j
c[α(j)]1−2/δ < ∞ for some δ > 2 and c > 1 − 2/δ with finite moments

of order p > 2δ > 4 and E[xtx
′
t|zt = z] is positive definite a.s.

(ii) The density f(z) of zt, joint density f0,j(s0, sj) of (zt, zt+j), joint density f(x, z) of (xt, zt),

and conditional density f(x|z) of xt given zt = z are bounded above and away from zero

over their supports with uniformly bounded and continuous derivatives to the second order.

(iii) {xt} and {zt} are mutually independent.

Assumptions 2(i)-(iii) retain the martingale difference condition on the equation errors {ut}
and the mutual independence condition of {xt} and {zt} that was made in Assumption 1(iii).
The latter requirement was not critical in the nonstationary case but considerably complicates
the limit theory by introducing dependences in the limit processes and additional terms in the
limiting stochastic integral representations. In the stationary case, dependence between xt and
zt can be handled by suitable conditioning arguments in the kernel limit theory and standard
methods (Li and Racine, 2007, chapter 9.3). The proof of Theorem 3.1 applies when Assumption
2(iii) is relaxed and specialization to the mutual independence case provides concordance with
the conditions for the nonstationary regressor case, thereby establishing robustness of the test
statistic. Specifically, under Assumption 2 in the stationary case and the earlier conditions given
in Assumptions 1 in the nonstationary case we have the following common result.

Theorem 3.1. Under Assumptions 1(iv)-(vi) and either Assumptions 1(i)-(iii) or Assumptions

2(i)-(iii), when nh→∞, T̂ (z) N (0, Id) and T̂2(z) χ2
d.

Remark 3.1. The simple idea leading to (3.10) and the statistic (3.12) comes from the following

decomposition of the estimation error (see (A.8) in the proof of Theorem 2.1 and (1.8) in the

scalar regressor case)

β̂(z)− β(z)−

(
n∑
t=1

xtx
′
tKtz

)−1 n∑
t=1

xtx
′
tEξβt

=

(
n∑
t=1

xtx
′
tKtz

)−1 n∑
t=1

xtx
′
tηt +

(
n∑
t=1

xtx
′
tKtz

)−1 n∑
t=1

xtutKtz

=

(
n∑
t=1

xtx
′
tKtz

)−1{ n∑
t=1

xtx
′
tηt +

n∑
t=1

xtutKtz

}
. (3.13)
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As evident from (3.13) and discussed in the Introduction, the two components within the right

side braces both contribute to finite sample variation in β̂(z). Correspondingly, the central sand-

wich matrix Ωn(z) in (3.11) within Vn(z) is designed to capture finite sample variation from

these two sources. This matrix accounts for all cases where the random element of the ‘bias’

term and/or the usual ‘variance’ term contribute to the limit distribution, thereby ensuring that

the sandwich matrix Vn(z) is a suitable normalizing matrix in all cases, covering stationary re-

gression models as well as cointegration models. The data-based specification of Vn(z) ensures

automatic embodiment of these necessary components to cover the full asymptotic theory and no

further normalization is needed.

Remark 3.2. An alternative form of the sandwich matrix Ωn(z) in (3.11) is

Ω∗n(z) = ν0(K)σ̂2u

n∑
t=1

xtx
′
tKtz +

n∑
t=1

xtx
′
t(x
′
t[β̂(zt)− β̂(z)]Ktz)

2 (3.14)

where the ‘bias’ term influence manifests immediately through the presence of the estimated

approximation error β̂(zt) − β̂(z) in the second term of (3.14). The sandwich matrix Ωn(z)

uses instead the linear approximation β̂(1)(z)(zt − z) involving the estimated derivative β̂(1)(z)

which more directly focuses attention on behavior at the point of estimation z. Simulations (not

reported) show that the use of the sandwich matrix Ωn(z) rather than Ω∗n(z) improves finite

sample performance in the T ratio statistic, leading to the recommended form Ωn(z) in (3.11).

Importantly, neither of the two terms in the sandwich matrices Ωn(z) and Ω∗n(z) is normalized.

As shown in the proof of Theorem 3.1, explicit normalization is unnecessary. The respective

orders of magnitude of the two terms in (3.11) (and (3.14)) automatically determine which term

plays a role in the asymptotic theory or indeed whether both terms are needed. Thus, when

nh2 → 0 the first term in Ωn(z) or Ω∗n(z) dominates, mirroring the limit theory in Theorem

2.1(a); when nh2 → ∞ the second term in Ωn(z) and Ω∗n(z) dominates, mirroring the limit

theory in Theorem 2.1(b); and when nh2 → c ∈ (0,∞) these terms have the same order and both

influence the limit theory of T̂ (z), thereby capturing the rate efficient behavior of the estimator

β̂(z), mirroring Theorem 2.1(c). As shown in the proof of Theorem 3.1 in the stationary case

only the first term of Ωn(z) or Ω∗n(z) figures in the limit theory. Nonetheless, finite sample

behavior is in all cases influenced by the two terms. As the simulations reported below confirm,

this analysis is corroborated in the good finite sample performance of the robust statistic T̂ (z).

Remark 3.3. To fix ideas in the nonstationary case, it is convenient to write (3.13) in stan-

dardized and centered form as

β̂(z)− β(z)− h2
(

1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1

n2h3

n∑
t=1

xtx
′
tEξβt

=
1

n
√
h

(
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1

n
√
h

n∑
t=1

xtutKtz +

√
h

n

(
1

n2h

n∑
t=1

xtx
′
tKtz

)−1
1√
n3h3

n∑
t=1

xtx
′
tηt.

(3.15)

19



Then, if nh2 → 0 the first term of (3.15) dominates because h
n = o( 1

n2h
); similarly, if nh2 →∞,

the second term dominates because 1
n2h

= o(hn); and when nh2 → c ∈ (0,∞) both terms are

O(n−3/4) because 1
n
√
h
∼a 1

c1/4n3/4 and
√

h
n ∼a

c1/4

n3/4 . The sandwich matrix Ωn(z) in (3.11)

accommodates all these possibilities by the inclusion of an estimated sample variance term for

each component that contributes to the variation of β̂(z). Thus, ν0(K)σ̂2u
∑n

t=1 xtx
′
tKtz estimates

the conditional variance of the martingale
∑n

t=1 xtutKtz and
∑n

t=1 xtx
′
t(x
′
tβ̂

(1)(z))2(zt − z)2K2
tz

estimates the conditional variance of the martingale
∑n

t=1 xtx
′
tηt. The composition of these

components in Ωn(z) may then be considered an estimate of the overall martingale conditional

variance, making it a suitable variance matrix in the sandwich form Vn(z) for self-normalization

of the estimation error of β̂(z). A similar rationale for the use of Ωn(z) applies in the stationary

case, thereby justifying the robustness of the statistic to persistence properties of the regressor.

Remark 3.4. These heuristic arguments suggest that the approach employed here to produce a

test statistic that is robust to bandwidth choice and persistence in the regressor may be used in

more general cases such as those where there may be conditional or unconditional heterogeneity

in the equation error ut. Extensions of the present framework to such cases may be considered

in future work.

Simulations were conducted to assess the finite sample performance of the self-normalized
t-ratio T̂ (z). We focus here on the scalar regressor case where T̂ (z) is a scalar test statistic.
In the multiple regressor case, the elements of T̂ (z) may be used for individual tests about the
components βi(z) and the T̂2(z) statistic may be used for testing joint hypotheses about β(z).

Figure 3 shows the finite sample densities of T̂ (z) under different bandwidths with panel
(a) for nonstationary xt and panel (b) for stationary xt. The DGP for the nonstationary case
is the same as that for Figure 2 and Figure S1 in the online supplement. So is the bandwidth
used in the computation. In the stationary model the regressor xt follows the autoregression
xt = 0.5xt−1+εt where εt is iidN (0, 1). From Figure 3 the densities of the self-normalized t-ratio
T̂ (z) are all very close to that of standard normal except for some discrepancy in the stationary
case when γ = −1/5. Further, comparing panel (a) of Figure 3 with the diagonal plots in Figure
S1 of the online supplement, which demonstrate the performance of the correctly standardized
t-ratios that apply under specific bandwidth orders, we find that T̂ (z) outperforms the correctly
standardized individual t-ratios under all three bandwidth orders and the improvement is more
prominent for small γ. Similarly, comparison between panel (b) of Figure 3 and Figure 4, which
shows the finite sample densities of the conventional t-ratio in the stationary case2, suggests
that T̂ (z) continues to dominate the conventional t-ratio in performance accuracy. Only in the
case of bandwidth γ = −1/5 are the results comparable in the stationary case. Overall, the self-
normalized t-ratio T̂ (z) outperforms the other approaches almost uniformly and shows strong
robustness to bandwidth and persistence properties of xt. These simulation findings support
the analytic results in recommending the use of T̂ (z) and T̂2(z) in applications.

Practical implementation of T̂ (z) relies on computing some estimated components, which
we now clarify. The variance σ2u is estimated by n−1

∑
t û

2
t where ût = yt − xtβ̂(zt) and β̂(zt)

is estimated via local level estimation with bandwidth σ̂zn
−1/2. The choice γ = −1/2 is rate

2The conventional t-ratio is computed as
√
nh[β̂(z) − β(z) − h2B̂(z)]/

{
σ̂2
uν0(K)f̂−1(z)(Ex2t )−1

}1/2

, which

matches the construction of t̂1(z) in the nonstationary case.
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efficient in the nonstationary case and achieves undersmoothing in the stationary case. Bias
estimation of B(z) requires estimation of f(z), f (1)(z), β(1)(z) and β(2)(z). The traditional
kernel density estimator is used to estimate f(z) employing the conventional optimal bandwidth
order n−1/5. The density derivative f (1)(z) is estimated by the derivative of the kernel density
estimator, which is −(nh2)−1

∑n
t=1K

(1)((zt − z)/h), with the conventional optimal bandwidth
order n−1/7 used for that purpose. Local linear estimation was used to estimate the first order
derivative β(1)(z) and the second derivative β(2)(z) was estimated by local quadratic estimation.3
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(a) xt is nonstationary
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(b) xt is stationary

Figure 3: Empirical densities of the self-normalized t-ratio T̂ (z) in (3.10) with the asymptotic

standard N (0, 1) density for reference.

To appreciate the benefit of using the robust statistics T̂ (z) and T̂2(z) for inference across
the support of zt, we computed average coverage rates of confidence intervals constructed by
inverting the respective t-ratio statistics. Computations used the same simulation design and
involved 10, 000 replications at grid points with a step length of 0.1 over the interval [0.1, 1.9]

3For nonstationary models no results in the present literature guide bandwidth choices for estimating deriva-

tives of functional coefficients. The bandwidths employed in the simulations were based on the optimizing order

obtained from calculations of the bias and variance orders by the authors. For instance, in local linear estimation

of the first order derivative β(1)(z), balancing bias and variance in the stationary regressor case leads to the

bandwidth order n−1/7, just as in the standard stationary nonparametric model setting (Li and Racine, 2007,

Theorem 2.9). For the nonstationary regressor case, similar calculations yield an optimal rate of n−2/7. We

therefore employed the intermediate rate n−1.5/7 in the simulations to cover both stationary and nonstationary

regressor cases. For present purposes consistent estimation of the bias function B(z) only requires consistent

estimation of f(z), f (1)(z), β(1)(z) and β(2)(z). So rate-efficient bandwidth order selection is likely of secondary

importance and this was confirmed in simulation performance. Note that no derivative estimation is needed for

the sandwich form Ω∗n(z) in the construction of T̂ (z).
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Figure 4: Empirical densities of the conventional t-ratio in the stationary case with the standard

N (0, 1) density for reference.

in the support of zt. The results for a nominal asymptotic 95% confidence band are collected in
Table 1.

In the nonstationary case, the entries in the left panel of Table 1 use the incorrect limit theory
in the literature for which the limit distribution given in (2.1) is used to construct confidence
intervals for all bandwidth orders. So the coverage rates shown for the bandwidth parameters
γ = −1/2 and γ = −1/5 are based on the wrong limit distribution in this panel. The results show
severe undercoverage for both bandwidths. The problem of undercoverage is exacerbated as γ
increases because the omitted random bias contribution to variation becomes more important for
larger bandwidths. Even more severe distortion is evident when γ = −1/5 because in this case
coverage rates decrease rather than increase as the sample size rises. This additional distortion
occurs because the neglected random bias contribution turns out to be of greater importance
than the traditional variance term. The confidence intervals constructed from t̂1(z) therefore
shrink at a faster rate as the sample size rises, leading to decreased coverage.

Table 1: Average Coverage Rates of the 95% Confidence Intervals

Based on t̂1(z) Based on correct t̂i(z) Based on T̂ (z)

γ -4/5 -1/2 -1/5 -4/5 -1/2 -1/5 -4/5 -1/2 -1/5

xt is nonstationary

n = 100 0.76 0.77 0.52 0.76 0.90 0.74 0.94 0.93 0.90

n = 200 0.79 0.80 0.51 0.79 0.91 0.76 0.94 0.94 0.91

n = 400 0.82 0.82 0.49 0.82 0.92 0.78 0.95 0.94 0.92

n = 800 0.84 0.83 0.45 0.84 0.93 0.80 0.95 0.95 0.93

xt is stationary

n = 100 0.75 0.82 0.70 - - - 0.92 0.91 0.83

n = 200 0.78 0.87 0.75 - - - 0.93 0.92 0.85

n = 400 0.81 0.89 0.78 - - - 0.94 0.93 0.86

n = 800 0.83 0.91 0.81 - - - 0.94 0.94 0.87

Note: Correct t̂i(z) involves normalization for that bandwidth region.

The middle panel of Table 1 shows results based on the limit theory presented in Theorem 2.1
for the nonstationary regressor case, namely the correctly standardized t-ratios t̂i(z), i = 1, 2, 3
where each statistic is normalized according to the limit theory that applies for the particular
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Figure 5: Coverage rate curves of the 95% confidence bands over the support of zt with different

bandwidth orders and n = 200 based on 10,000 replications: the black dash-dotted line is based

on the robust statistic T̂ (z), the blue solid line is based on the correct limit theory in Theorem

2.1 for the separate bandwidths, and the red dashed line is based on the traditional result in

(2.1).

bandwidth region. When γ = −1/2, the coverage rates are very close to the nominal rate and
converge to the nominal rate as the sample size increases, thereby corroborating the new asymp-
totic theory. When γ = −4/5, the coverage rate is smaller than the nominal rate but increases
with the sample size. This discrepancy from the nominal rate reflects the finite sample effect
of ignoring the variation, measured asymptotically by Ωβ(z), associated with the random bias
component even though this variation is negligible asymptotically for this bandwidth. Similarly,
the undercoverage when γ = −1/5 is caused by ignoring the variance component Ωu(z) in finite
samples. The right panel of Table 1 is based on the self-normalized t-ratio T̂ (z). The coverage
rates are all very close to the nominal rate even when sample size is small, demonstrating strong
uniform improvement over that in the middle panel for all bandwidth orders.

In the stationary case, the left panel shows the result based on the usual t-ratio, i.e., the
t-ratio plotted in Figure 4. Although this usual t-ratio is asymptotically standard N (0, 1) for
all three bandwidth orders, confidence intervals based on it evidently still suffer from severe
undercoverage problems for each bandwidth. But as the right panel shows, the self-normalized
t-ratio T̂ (z) raises the coverage rate uniformly for all bandwidth choices. The improvement is
more profound when γ = −4/5 and γ = −1/2, for which the coverage rates of the confidence
intervals based on T̂ (z) are all close to the nominal rate. Even in the case where γ = −1/5, use
of T̂ (z) delivers improvements over the usual t-ratio.

Figure 5 plots coverage rate curves over the support of zt for sample size n = 200, which
is representative of results for other sample sizes. Evidently, when xt is nonstationary, the
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coverage rate curves based on the robust statistic T̂ (z) (given by the black dash-dotted line) are
the highest across all three bandwidths and are very close to the nominal level when γ = −4/5
and −1/2, consistent with the best performance in Table 1. When γ = −4/5 the red dashed line
(based on existing limit theory and t̂1(z)) overlaps with the blue solid line (based on the correct
limit theory in this paper) because for this bandwidth the existing limit theory is correct and
given by (2.1). But when γ = −1/2 and −1/5 the red dashed lines show a decreasing pattern
of coverage probability as z increases. This pattern is explained by the fact that the derivative
β(1)(z) is an increasing function of z and so too is Ωβ(z), which depends on this derivative.
Hence, the consequence of neglecting the additional variance term Ωβ(z) when computing the
confidence bands becomes far worse when z is large, leading to more severe undercoverage.
Importantly, when γ = −4/5 and −1/2, the blue solid lines and the black dash-dotted lines are
very flat over the entire support of zt. But when γ = −1/5 these curves reveal undercoverage in
the region of small z. This undercoverage is much less severe for inference based on the robust
statistic T̂ (z), shown by the black dash-dotted line. Low coverage manifested by the blue solid
line for small z occurs because the specific design function β(z) = 1 + z3 used in this simulation
has derivative function β(1)(z) = 3z2 which is small and tends to zero as z → 0, so that Ωβ(z)
is correspondingly small and tends to zero with z. Hence, neglecting Ωu(z) as the statistic ti(z)
does when γ = −1/5 leads to particularly low coverage when z is small as well as the low average
coverage rate shown in Table 1 under the panel ‘Based on correct t̂i(z)’. In the extreme case
where Ωβ(z) = 0, we have the degeneracy problem discussed in Remark 2.4. Degeneracy leads
to a different limit theory, which will be considered in a separate study.
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Figure 6: Left scale: Plots of β̂(z) (solid blue curve) with 95% confidence bands based on the

self-normalized t-ratio T̂ (z) (dashed black lines) for different bandwidth orders and n = 200

from 10,000 replications. Right scale and curve (solid orange line): confidence interval width.

Panel (b) of Figure 5 shows the coverage rate curves in the stationary case. The red dashed
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line is again based on the usual t-ratio. Evidently, across all three bandwidths the coverage
rate curves based on the robust statistic T̂ (z) are uniformly higher over the entire support of
zt than those constructed from the usual t-ratio, giving coverage rates that are very close to
the nominal rate when γ = −4/5 and −1/2. For γ = −1/5 the curves based on T̂ (z) show
some undercoverage, as in the nonstationary case and for the same reason given above for small
z, while still offering better coverage than intervals based on the usual statistic. These results
reveal the gains from using the robust statistic T̂ (z) for inference in the stationary case rather
than the usual t-ratio.

Figure 6 displays the average fitted functional coefficient curves and the corresponding 95%
confidence bands based on the self-normalized statistic T̂ (z) with panel (a) showing results for
nonstationary xt and panel (b) for stationary xt. The widths of the corresponding confidence
bands are plotted using the right scale. The curves are computed at grid points from 0.1 to 1.9
by step length 0.05 for sample size n = 200 with an Epanechnikov kernel and 10,000 replications.
Evidently, for both stationary and nonstationary xt, the confidence bands are the widest when
γ = −4/5, suggesting the coefficient estimates have the largest amount of variation in this case,
or equivalently, that estimation accuracy is worse when γ = −4/5. In the nonstationary case,
estimation is most efficient when γ = −1/2 with the sharpest confidence bands shown in the
middle plot of panel (a) of Figure 6, and the close-to-nominal coverage rates over the whole
support of zt evident in the middle plot of panel (a) of Figure 5. These findings corroborate
the limit theory which establishes the rate-efficient order γ = −1/2 in the nonstationary case
in Section 3.1 and results given in Table S2 of the online supplement where the IMSE is found
to be smallest when γ = −1/2. In the stationary regressor case, the confidence bands are
narrowest when γ = −1/5 suggesting estimation is most efficient when γ = −1/5. This outcome
is consistent with the conventional result that the rate-efficient bandwidth order in stationary
FC estimation is γ = −1/5. But while the confidence band is a bit wider when γ = −1/2 than
when γ = −1/5 in the stationary case, it has coverage rate closer to the nominal rate as is
evident in panel (b) of Figure 5. Based on coverage accuracy γ = −1/2 is therefore a good
bandwidth choice for both stationary and nonstationary cases.

In sum, these simulations reinforce the analytic findings that T̂ (z) has good performance
characteristics compared with other approaches, demonstrates robustness to the persistence
properties of the regressor xt, and provides good coverage probability in confidence band con-
struction with the bandwidth rate γ = −1/2 that is optimal for estimating the functional
coefficient in the nonstationary case.

4 Conclusion

Since the earliest work on spectral density estimation for stationary time series it has been
traditional in nonparametric work to separate bias and variation in the analysis of nonparametric
estimation and inference, emphasizing trade-offs between them that need to be balanced in
applications. In contrast to such trade-offs, the present paper shows how useful the (normally
ignored) random elements of the bias component can be in sharpening accuracy in estimation
and reliability in inference. The analysis of nonstationary functional coefficient models reveals
that these elements both figure in the limit theory variance. Taking them into account can
deliver rate efficient estimation and provide substantial gains in confidence interval accuracy
in finite samples. A key development is the construction of robust statistics that embody the
effects of both bias and variance in a normalization that takes a new sandwich matrix form.
The finite sample gains from this construction that are evident in nonstationary regressions are
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shown to carry over to stationary models. It may therefore be expected that this approach to
inference will prove useful in other areas of nonparametric estimation and inference.

The analysis given here confines attention to local level estimation and the functional coeffi-
cient cointegrating regression model (1.1) where xt is a full rank integrated process. Corrections
to the existing literature that are shown to apply in this prototypical model are also relevant in
other functional coefficient models. Many extensions of the present development are possible.
These include models with stationary and nonstationary regressors, near integrated or cointe-
grated regressors, endogeneity, and error processes more general than martingale differences. In
all these cases similar influences to those demonstrated here arise from the presence of random
variability in the bias term. In particular, models such as (1.1) where the regressors xt have both
I(1) and I(0) components (Cai et al., 2009) suffer the same difficulties as those presented here
for the full rank I(1) case; and models with multiple covariates zt encounter similar complexities
in the development of the correct limit theory as those shown in Theorem 2.3.

Primary among the effects that govern the correct limit theory are: (i) more complex trade-
offs involving the bias and variance components in the limit theory; (ii) new optimal rates of
convergence; (iii) multiple limit theory results that depend intimately on bandwidth choice; (iv)
much greater complexity in models with functional coefficients involving high dimensional co-
variates; and (v) cases of consistent estimation where the usual effective sample size condition
fails but no invariance principle limit theory holds. In addition, similar considerations to those
raised here apply to other nonparametric estimators such as local polynomial estimators. Ex-
tensions of the results given in the present paper to encompass these various complexities are
left for future work.
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Appendix

A Proofs of Theorems

Proof of Theorem 2.1 We analyze the components in the following normalized decomposition
of the estimation error(

n∑
t=1

xtx
′
tKtz

)(
β̂ (z)− β (z)

)
=

n∑
t=1

xtx
′
t[β(zt)− β(z)]Ktz +

n∑
t=1

xtutKtz

=
n∑
t=1

xtx
′
tEξβt +

n∑
t=1

xtx
′
tηt +

n∑
t=1

xtutKtz, (A.1)

as in the scalar regressor case (1.3), with ξβt = [β(zt) − β(z)]Ktz and ηt = ξβt − Eξβt. Starting
with the kernel weighted signal matrix, we have

1

n2h

n∑
t=1

xtx
′
tKtz =

1

nh

n∑
t=1

xt√
n

x′t√
n
E (Ktz) +

1

nh

n∑
t=1

xt√
n

x′t√
n
ζtK (A.2)

where ζtK = Ktz − E (Ktz) and EKtz = h
∫
K (r) f (z + rh) dr = hf(z) + O(h3). Since

EK2
tz = h

∫
K2 (r) f (z + rh) dr = hf(z)

∫
K2(r)dr+ o(h) = hf(z)ν0(K) + o(h), where νj(K) =∫

ujK2(u)du, it follows that Var(ζtK) = EK2
tz − (EKtz)

2 = O(h) and so ζtK = Op(
√
h). We

deduce that when nh→∞

1

n2h
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xtx
′
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1

n

n∑
t=1

xt√
n

x′t√
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{
f(z) +O(h2)

}
+

1√
nh
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xt√
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x′t√
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ζtK√
nh

=
1

n

n∑
t=1

xt√
n

x′t√
n

{
f(z) +O(h2)

}
+Op(

1√
nh

) 

(∫
BxB

′
x

)
f (z) (A.3)

which follows because (i) n−1/2xbn·c  Bx (·) by assumption, (ii) (nh)−1/2
∑bn·c

t=1 ζtK  BζK(·)
from Lemma B.1(a), and (iii) weak convergence to the matrix stochastic integral

n∑
t=1

xt√
n

x′t√
n

ζtK√
nh
 
∫
BxB

′
xdBζK , (A.4)

holds, as shown in Lemma B.1(d).

When nh→ c for some c ∈ [0,∞) we have in place of (A.3)

√
nh

n2h

n∑
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xtx
′
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√
nh

n
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xt√
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x′t√
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{
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xt√
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nh) +

1√
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xt√
n

x′t√
n

ζtK√
h

= Op(1), (A.5)

and no invariance principle applies. The failure occurs because although 1√
nh

∑n
t=1 ζtK = Op(1)

it does not satisfy a central limit theorem and, correspondingly, the functional law given in

Lemma B.1(a)(i) fails, as explained in the proof of Lemma B.1(a)(ii). As a result of (A.5), the

kernel weighted signal matrix
∑n

t=1 xtx
′
tKtz = Op(

√
n3h) when nh → c ∈ [0,∞). As discussed
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later in the proof of Theorem 2.2, it turns out that in this case where nh 6→ ∞ the estimator

β̂(z) is still consistent but does not satisfy an invariance principle as n → ∞. In what follows

in the present proof, we proceed under the condition that nh→∞.

Next, from the proof of Lemma B.1(b), we have Eξβt = h3µ2(K)C(z) + o(h3) and so the

first term in (A.1) is, upon normalization and use of standard weak convergence methods,

1

nh3

n∑
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xt√
n

x′t√
n
E (ξβt) µ2(K)

(∫
BxB

′
x

)
C(z) (A.6)

with C(z) = 1
2β

(2)(z)f(z) +β(1)(z)f (1)(z). The second term of (A.1) is, upon normalization and

using Lemma B.1 (d),
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where Bη is vector Brownian motion with variance matrix V ar(Bη) = ν2(K)f(z)[β(1)(z)β(1)(z)′].

The final term of (A.1) is, upon normalization and using Lemma B.1(a),

1

n
√
h

n∑
t=1

xtutKtz =

n∑
t=1

xt√
n

utKtz√
nh
 
∫
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where BuK(r) is the limit Brownian motion of 1√
nh

∑bn·c
t=1 utKtz with variance σ2uf(z)ν0(K).

Standardizing by the weighted signal matrix and recentering (A.1) we have the estimation error

decomposition

β̂(z)− β(z)−
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=
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which we write in standardized form as
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We now consider various cases depending on the bandwidth contraction rates in relation to the

sample size.

Part (a)

In this case where nh2 → 0 the bandwidth h = o(1/
√
n). Upon rescaling (A.9) by n

√
h and

using results (A.3)-(A.7) we then have

n
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
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the mixed normality following from the independence of Bx and BuK . Joint weak convergence

of the numerator and denominator components of the matrix quotient in the second term of

(A.10) follows from Lemma B.1(f). In view of (A.3) and (A.6)(
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giving the bias function and leading to the stated result (2.1) for case (a). �

Part (b)

When nh2 → ∞ the bandwidth goes to zero slower than O(1/
√
n). We now rescale (A.9) by√

n/h, giving
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using Lemma B.1(c) and (A.3) and where Bη(·) is Brownian motion with variance matrix Vηη =

ν2(K)f(z)β(1)(z)β(1)(z)′. The weak convergence 1√
n3h3

∑n
t=1 xtx

′
tηt  

(∫
BxB
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xdBη

)
in (A.14)

depends on the functional law 1√
nh3

∑bn·c
t=1 ηt  Bη(·), as shown in the proof of Lemma B.1(b).

Joint weak convergence of the respective components in (A.14) follows from Lemma B.1(f).

Further, since Bη(r) is singular Brownian motion whenever d > 1 we may write the inner

product Bx(r)′Bη(r) in the equivalent form Bx(r)′Bη(r) =
(
Bx(r)′β(1)(z)

)
Bf (r), where Bf is

scalar Brownian motion with variance ν2(K)f(z). Then, in view of the independence of Bx and
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Bη, we have ∫
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which leads to the mixed normal limit distribution given in (A.15) and the stated result (b). �
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The asymptotics are jointly determined by the two terms of (A.17). Conditional on Fx, these

terms are uncorrelated as their conditional covariance matrix is
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Using Lemma B.1 (d)(ii) and (e), we find that since nh→∞ and nh2 → c > 0
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(1)(z)
)2) (∫

BxB
′
x

)−1
, Ωu(z) = ν0(K)σ2uf

−1(z)
(∫
BxB

′
x

)−1
.

Joint weak convergence of the three matrix components in (A.19) holds in view of Lemma B.1(f).

It follows that β̂(z) is O(n
3
4 ) convergent. �
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Proof of Theorem 2.2

Using the same notation as earlier, we analyze the decomposed estimation error

(
β̂ (z)− β (z)

)
=

(
n∑
t=1

xtx
′
tKtz

)−1 n∑
t=1

xtx
′
tEξβt

+

(
n∑
t=1

xtx
′
tKtz

)−1 n∑
t=1

xtx
′
tηt +

(
n∑
t=1

xtx
′
tKtz

)−1 n∑
t=1

xtutKtz. (A.21)

The kernel weighted signal matrix under
√
n3h normalization has the following form

1√
n3h

n∑
t=1

xtx
′
tKtz =

√
nh

n

n∑
t=1

xt√
n

x′t√
n

EKtz

h
+

n∑
t=1

xt√
n

x′t√
n

ζtK√
nh

=

√
nh

n

n∑
t=1

xt√
n

x′t√
n

{
f(z) +O(h2)

}
+

1√
n

n∑
t=1

xt√
n

x′t√
n

ζtK√
h
. (A.22)

When nh → c ∈ [0,∞) the ‘usual’ effective sample size nh is asymptotically deficient. In this

case, the first term of (A.22) satisfies
√
nh
n

∑n
t=1

xt√
n

x′t√
n

{
f(z) +O(h2)

}
 
√
cf (z)

∫
BxB

′
x and

is therefore Op (1) if c > 0 and op(1) if c = 0. To analyze the second term we proceed as

follows. Since xt is full rank I (1) it is sufficient to consider the scalar case, which we write

as 1√
n

∑n
t=1

(
xt√
n

)2
ζtK√
h
. Since EKtz = h

∫
K (r) f (z + rh) dr = hf(z) + O(h3) and EK2

tz =

h
∫
K2 (r) f (z + rh) dr = hf(z)

∫
K2(r)dr+O(h3) = hf(z)ν0(K) + o(h) it follows that ζtKh :=

ζtK√
h

= Ktz−E(Ktz)√
h

is a zero mean triangular array with variance

σ2ζh = Var(ζtK/
√
h) =

{
EK2

tz − (EKtz)
2
}
/h

=

∫
K2 (r) f (z + rh) dr − h

(∫
K (r) f (z + rh) dr

)2

= f(z)ν0(K) +O(h).

By stationarity of zt and Markov’s inequality P (|ζtKh| > M) ≤ Eζ2tKh/M2 = M−2 {f(z)ν0(K) +O(h)} ,
so that for every ε > 0 there exists a constant Mε such that suph→0 P (|ζtKh| > Mε) < ε and

ζtKh = Op (1) uniformly in t as h→ 0. It is shown in Lemma B.1(a)(ii) that while the normalized

sum 1√
n

∑n
t=1

ζtK√
h

= Op(1) it does not satisfy a central limit theorem because nh 6→ ∞ and the

Lindeberg condition fails.

Next, by independence of xt and zt, we have E 1√
n

∑n
t=1

(
xt√
n

)2
ζtK√
h

= 1√
n

∑n
t=1 E

(
xt√
n

)2
E ζtK√

h
=

0 and, when zt is serially independent, so is ζtK . Thus,

E

(
1√
n

n∑
t=1

(
xt√
n

)2 ζtK√
h

)2

=
1

n

n∑
t=1

E
(
xt√
n

)4

E
(
ζtK√
h

)2

→ ν0(K)f(z)

∫
EB4

x > 0 a.s.,

as cross product terms are all zero for independent {zt} . When zt is serially dependent we have

the additional cross product terms

2

n

∑
s>t

E

{(
xt√
n

)2( xs√
n

)2
}
E
(
ζtK√
h

ζsK√
h

)
=

2

n

n∑
t=1

n−t∑
j=1

E

{(
xt√
n

)2(xt+j√
n

)2
}
E
(
ζtK√
h

ζt+jK√
h

)
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=
2

n

n∑
t=1

n−t∑
j=1

E

{(
xt√
n

)2(xt+j√
n

)2
}
γζ (j)

h
=

2

n

n∑
t=1

n−t∑
j=1

E

{(
xt√
n

)2(xt+j√
n

)2
}
h2f0,j (z, z) + o

(
h2
)

h

∼a
2nh

n2

n∑
t=1

n−t∑
j=1

E

{(
xt√
n

)2(xt+j√
n

)2
}
f0,j (z, z)

≤ 2nh× sup
j≥1

f0,j (z, z)× E
{∫ 1

0
Bx (r)2

∫ 1

r
B2
x (s) dsdr

}
→ 2c sup

j≥1
f0,j (z, z)× E

{∫ 1

0
Bx (r)2

∫ 1

r
B2
x (s) dsdr

}
,

where we use the fact that EKtzKt+jz =
∫ ∫

K
(
s0−z
h

)
K
(
sj−z
h

)
f0,j (s0, sj) ds0dsj =

∫ ∫
K (p0)K (pj)

×f0,j (z + p0h, z + pjh) dp0dpjh
2 = h2f0,j (z, z)+o

(
h2
)

and so γζ (j) = EKtzKt+jz−EKtzEKt+jz =

h2f0,j (z, z)+o
(
h2
)
. From these calculations of the mean and variance, it follows that the second

term of (A.22)

1√
n

n∑
t=1

(
xt√
n

)2 ζtK√
h

= Op (1) (A.23)

and then the kernel weighted signal
∑n

t=1 x
2
tKtz = Op

(√
n3h

)
.

To prove consistency of β̂ (z) we consider each term on the right side of (A.21) in turn.

(i) Using ξβt = [β(zt)−β(z)]Ktz we have, as shown in Lemma B.1(b)(i), Eξβt = h3µ2(K)C(z)+

o(h3) and then (
1√
n3h

n∑
t=1

xtx
′
tKtz

)−1
1√
n3h

n∑
t=1

xtx
′
tEξβt

=

(
1√
n3h

n∑
t=1

xtx
′
tKtz

)−1
1√
n

n∑
t=1

xt√
n

x′t√
n

h3µ2(K)C(z) + o(h3)√
h

=

(
1√
n3h

n∑
t=1

xtx
′
tKtz

)−1
h5/2√
n

n∑
t=1

xt√
n

x′t√
n
{µ2(K)C(z) + o(1)}

=

(
1√
n3h

n∑
t=1

xtx
′
tKtz

)−1
h2
√
nh

n

n∑
t=1

xt√
n

x′t√
n
{µ2(K)C(z) + o(1)}

=Op

(
h2
√
nh
)
. (A.24)

(ii) Next, using ηt = ξβt − Eξβt we may show that ηt√
h3

= Op (1) uniformly in t as h → 0

using the results of Lemma B.1(b) and by arguments similar to those used above in proving that
ζtK√
h

= Op (1) uniformly in t as h → 0. As in the proof of (A.23) and Lemma B.1(b)(ii) we find

that
n∑
t=1

(
xt√
n

)2 ηt√
nh3

= Op (1) , (A.25)
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so that
∑n

t=1 xtx
′
tηt = Op

(√
n3h3

)
and then(

1√
n3h

n∑
t=1

xtx
′
tKtz

)−1
1√
n3h

n∑
t=1

xtx
′
tηt =

(
1√
n3h

n∑
t=1

xtx
′
tKtz

)−1
×Op

(√
n3h3√
n3h

)
= Op (h) .

(A.26)

It follows that (
∑n

t=1 xtx
′
tKtz)

−1∑n
t=1 xtx

′
tηt = Op (h).

(iii) We have E
∑n

t=1 xtutKtz = 0 and

Var

(
n∑
t=1

xtutKtz

)
= σ2u

n∑
t=1

E
(
x2t
)
E
(
K2
tz

)
= O

(
n2h

)
,

so that
∑n

t=1 xtutKtz = Op

(
n
√
h
)

and(
1√
n3h

n∑
t=1

xtx
′
tKtz

)−1
1√
n3h

n∑
t=1

xtutKtz

=

(
1√
n3h

n∑
t=1

xtx
′
tKtz

)−1
×Op

(
n
√
h√

n3h

)
= Op

(
1√
n

)
. (A.27)

Note that in the present case where nh → c ∈ [0,∞), the normalized sum
∑n

t=1
utKtz√
nh

does

not satisfy a central limit theorem because nh 6→ ∞, as explained in Lemma B.1(a)(ii), and

correspondingly
∑n

t=1
xt√
n
utKtz√
nh

= Op(1), but does not converge weakly to a stochastic integral.

Combining (i), (ii) and (iii) with (A.21) and scaling the estimation error by
√
n yields the

following when nh→ c ∈ [0,∞)

√
n
(
β̂ (z)− β (z)

)
=

(
1√
n3h

n∑
t=1

xtx
′
tKtz

)−1 √
n√
n3h

n∑
t=1

xtx
′
tEξβt

+

(
1√
n3h

n∑
t=1

xtx
′
tKtz

)−1 √
n√
n3h

n∑
t=1

xtx
′
tηt +

(
1√
n3h

n∑
t=1

xtx
′
tKtz

)−1 √
n√
n3h

n∑
t=1

xtutKtz

= Op

(√
n× h2

√
nh
)

+Op
(√
n× h

)
+

(
1√
n3h

n∑
t=1

xtx
′
tKtz

)−1 √
n√
n3h

n∑
t=1

xtutKtz

= op (1) +

(
1√
n3h

n∑
t=1

xtx
′
tKtz

)−1
1√
n2h

n∑
t=1

xtutKtz = Op (1) , (A.28)

so that β̂ (z) is
√
n convergent but without an invariance principle. �

Proof of Theorem 2.3

Part (a) The analysis follows the proof of Theorem 2.1, with changes to accommodate multi-

variate zt. We outline the key elements of the derivation here. By standard theory, e.g., Li and

Racine (2007), we have EKtzq = hqf(z) +o(hq) and EK2
tzq = hqf(z)νq0(k) +o(hq). Then, setting

ζtKq = Ktzq − EKtzq, we have Var(ζtKq) = O(hq) and ζtKq = Op(
√
hq). Next, similar to the

calculations in Lemma B.1(b) we find for q ≥ 1

Eξβtq = E[β(zt)− β(z)]Ktzq =

∫
[β(zt)− β(z)]Kq(zt)f(zt)dzt
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= hq
∫

[β(z + hs)− β(z)]Kq(s)f(z + sh)ds

= hq+2

∫ q∑
j=1

([
β
(1)
j (z)f

(1)
j (z) +

1

2
β
(2)
jj (z)f(z)

]
s2j

)
Kq(s)ds+ o(hq+2)

= hq+2
q∑
j=1

[
β
(1)
j (z)f

(1)
j (z) +

1

2
β
(2)
jj (z)f(z)

]
µq2(k) + o(hq+2)

= hq+2D(z)µq2(k) + o(hq+2), (A.29)

where D(z) =
∑q

j=1

[
β
(1)
j (z)f

(1)
j (z) + 1

2β
(2)
jj (z)f(z)

]
and µq2(k) =

∫
Πq
j=1s

2
jk(sj)dsj = (µ2(k))q.

In a similar fashion, Eξβtqξ′βtq = hq+2
∑q

j=1[β
(1)
j (z)β

(1)
j (z)′]f(z)νq2(k) + o(hq+2), where νq2(k) =∫

Πq
j=1k(sj)

2s2jdsj = (ν2(k))q.

The multivariate zt version of (A.1) is(
n∑
t=1

xtx
′
tKtzq

)(
β̂ (z)− β (z)

)
=

n∑
t=1

xtx
′
t[β(zt)− β(z)]Ktzq +

n∑
t=1

xtutKtzq.

=
n∑
t=1

xtx
′
tEξβtq +

n∑
t=1

xtx
′
tηtq +

n∑
t=1

xtutKtzq, (A.30)

where ηtq = ξβtq − Eξβtq for q ≥ 1. As in the scalar zt case, we analyze each of the components

of (A.30) in turn. Starting with the signal matrix we have

1

n2hq

n∑
t=1

xtx
′
tKtzq =

1

n

n∑
t=1

xt√
n

x′t√
n
E
(
Ktzq

hq

)
+

1√
nhq

n∑
t=1

xt√
n

x′t√
n

ζtKq√
nhq

,

where ζtKq = Op(
√
hq), from above. We deduce that when nhq →∞

1

n2hq

n∑
t=1

xtx
′
tKtzq =

1

n

n∑
t=1

xt√
n

x′t√
n
{f(z) + o(1)}+

1√
nhq

n∑
t=1

xt√
n

x′t√
n

ζtKq√
nhq
 

(∫
BxB

′
x

)
f (z) ,

(A.31)

which follows because (i) n−1/2xbn·c  Bx (·) by assumption, (ii) (nhq)−1/2
∑bn·c

t=1 ζtKq  BζKq(·)
in the same way as in Lemma B.1(a) when q = 1, and (iii) weak convergence to the matrix

stochastic integral

n∑
t=1

xt√
n

x′t√
n

ζtKq√
nhq
 
∫
BxB

′
xdBζKq, (A.32)

holds, just as shown in the scalar zt case in Lemma B.1(d) with q = 1.

By contrast, when nhq → c for some c ∈ [0,∞), we have in place of (A.31) and (A.32)

1√
n3hq

n∑
t=1

xtx
′
tKtzq =

√
nhq

n

n∑
t=1

xt√
n

x′t√
n

Ktzq

hq

=

√
nhq

n

n∑
t=1

xt√
n

x′t√
n
{f(z) + o(1)}+

n∑
t=1

xt√
n

x′t√
n

ζtKq√
nhq
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∼a
√
cf(z)

∫
BxB

′
x +

n∑
t=1

xt√
n

x′t√
n

ζtKq√
nhq

= Op(1). (A.33)

No invariance principle holds here because
∑n

t=1
xt√
n

x′t√
n

ζtKq√
nhq

= 1√
n

∑n
t=1

xt√
n

x′t√
n

ζtKq√
hq

has zero

mean and finite variance matrix asymptotically, just as in Lemma B.1(c)(ii) when q = 1, and
1√
nhq

∑n
t=1 ζtKq = Op(1) but does not satisfy a central limit theorem, just as in Lemma B.1(a)(ii)

when q = 1. Results analogous to those given in the scalar zt case now apply. As witnessed

in the scalar zt case, no invariance principle applies, which complicates inference, even though

β̂(z) may be consistent. This case is pursued in detail in the proof of part (b) below. We now

proceed under the condition that nhq →∞, as in the statement of Theorem 2.3 (a).

From (A.29) we have Eξβtq = hq+2µq2(k)D(z) + o(hq+2) and so the first term in (A.30) is,

upon normalization and as in Lemma B.1(b)(i),

1

nhq+2

n∑
t=1

xt√
n

x′t√
n
E (ξβtq) µq2(k)

(∫
BxB

′
x

)
D(z), (A.34)

with D(z) =
∑q

j=1

[
β
(1)
j (z)f

(1)
j (z) + 1

2β
(2)
jj (z)f(z)

]
. The second term of (A.30) is, upon normal-

ization and with derivations mirroring those in the proof of Lemma B.1(d)(i),

1√
n3hq+2

n∑
t=1

xtx
′
tηtq =

n∑
t=1

xt√
n

x′t√
n

ηtq√
nhq+2

 
∫
BxB

′
xdBηq, (A.35)

whereBηq is vector Brownian motion with variance matrix Vηηq = νq2(k)f(z)
∑q

j=1[β
(1)
j (z)β

(1)
j (z)′].

The final term of (A.30) is, upon normalization and using the analogue for q ≥ 1 of Lemma

B.1(a)(i),

1

n
√
hq

n∑
t=1

xtutKtzq =

n∑
t=1

xt√
n

utKtzq√
nhq

 
∫
BxdBuKq, (A.36)

where BuKq is the limit Brownian motion of 1√
nhq

∑bn·c
t=1 utKtzq with variance σ2uf(z)νq0(k). Stan-

dardizing by the weighted signal matrix and recentering (A.30) we have

β̂(z)− β(z)−

(
n∑
t=1

xtx
′
tKtzq

)−1 n∑
t=1

xtx
′
tEξβtq

=

(
n∑
t=1

xtx
′
tKtzq

)−1 n∑
t=1

xtx
′
tηtq +

(
n∑
t=1

xtx
′
tKtzq

)−1 n∑
t=1

xtutKtzq, (A.37)

which we rewrite as

β̂(z)− β(z)− h2
(

1

n2hq

n∑
t=1

xtx
′
tKtzq

)−1
1

n2hq+2

n∑
t=1

xtx
′
tEξβtq

=

√
1

nhq−2

(
1

n2hq

n∑
t=1

xtx
′
tKtzq

)−1
1√

n3hq+2

n∑
t=1

xtx
′
tηtq +

1

n
√
hq

(
1

n2hq

n∑
t=1

xtx
′
tKtzq

)−1
1

n
√
hq

n∑
t=1

xtutKtzq.

(A.38)

35



Rescaling (A.38) by
√
nhq−2 gives

√
nhq−2

β̂(z)− β(z)− h2
(

1

n2hq

n∑
t=1

xtx
′
tKtzq

)−1
1

n2hq+2

n∑
t=1

xtx
′
tEξβtq


=

(
1

n2hq

n∑
t=1

xtx
′
tKtzq

)−1
1√

n3hq+2

n∑
t=1

xtx
′
tηtq +

√
nhq−2

n
√
hq

(
1

n2hq

n∑
t=1

xtx
′
tKtzq

)−1
1

n
√
hq

n∑
t=1

xtutKtzq

=

(
1

n2hq

n∑
t=1

xtx
′
tKtzq

)−1
1√

n3hq+2

n∑
t=1

xtx
′
tηtq +

1√
nh2

(
1

n2hq

n∑
t=1

xtx
′
tKtzq

)−1
1

n
√
hq

n∑
t=1

xtutKtzq

=

(
1

n2hq

n∑
t=1

xtx
′
tKtzq

)−1
1√

n3hq+2

n∑
t=1

xtx
′
tηtq + op(1), (A.39)

because nh2 →∞ which is implied by nhq →∞ with q ≥ 2. Combining (A.39) with (A.35) and

(A.31), we obtain

√
nhq−2

β̂(z)− β(z)− h2
(

1

n2hq

n∑
t=1

xtx
′
tKtzq

)−1
1

n2hq+2

n∑
t=1

xtx
′
tEξβtq


=

(
1

n2hq

n∑
t=1

xtx
′
tKtzq

)−1
1√

n3hq+2

n∑
t=1

xtx
′
tηtq + op(1)

 

(
f(z)

∫
BxB

′
x

)−1(∫
BxB

′
xdBηq

)
≡dMN

(
0,

νq2(k)

f(z)

(∫
BxB

′
x

)−1 ∫
BxB

′
x

(
B′xβ

(1)(z)
)2(∫

BxB
′
x

)−1)
, (A.40)

where Bηq is Brownian motion with variance matrix Vηηq and β
(1)
j (z) = ∂β(z)/∂zj , as above. To

verify the representation in the final line of (A.40) we note that conditional on Bx the process

B′xBηq is scalar Brownian motion with variance B′xVηηqBx = νq2(k)f(z)
∑q

j=1[B
′
xβ

(1)
j (z)]2. Thus,

in view of the independence of Bx and Bηq, we have the following mixed normal representation

∫
BxB

′
xdBηq ≡dMN

0, νq2(k)f(z)

∫
BxB

′
x

q∑
j=1

(
B′xβ

(1)
j (z)

)2 . (A.41)

Combining (A.40) with (A.31) and (A.34) for explicit representation of the bias component, we

have

√
nhq−2

(
β̂(z)− β(z)− h2 ν

q
2(k)

f(z)
D(z)

)
 

(
f(z)

∫
BxB

′
x

)−1(∫
BxB

′
xdBηq

)

≡dMN

0,
νq2(k)

f(z)

(∫
BxB

′
x

)−1 ∫
BxB

′
x

q∑
j=1

(
B′xβ

(1)
j (z)

)2(∫
BxB

′
x

)−1 , (A.42)

which leads to the limit theory (2.17) and the mixed normal representation (2.18), proving the

stated result. The limit theory (A.42) requires nhq →∞ which, as indicated earlier, is needed to

36



establish weak convergence to the stochastic integral (A.35) that plays a key role in determining

the limit (2.17). The effect of relaxing this condition is considered next. �

We take the case where nhq → c ∈ [0,∞) and start the analysis with some preliminaries. As

noted above in the discussion of (A.33)

1√
n3hq

n∑
t=1

xtx
′
tKtzq ∼a

√
cf(z)

∫
BxB

′
x +

n∑
t=1

xt√
n

x′t√
n

ζtKq√
nhq

= Op(1), (A.43)

with no invariance principle holding because nhq 6→ ∞. Next, in place of (A.35), (A.32), and

(A.36) we have

1√
n3hq+2

n∑
t=1

xtx
′
tηtq =

1√
n

n∑
t=1

xt√
n

x′t√
n

ηtq√
hq+2

= Op(1), (A.44)

1√
n3hq

n∑
t=1

xtx
′
tζtKq =

1√
n

n∑
t=1

xt√
n

x′t√
n

ζtKq√
hq

= Op(1), (A.45)

1

n
√
hq

n∑
t=1

xtutKtzq =
1√
n

n∑
t=1

xt√
n

utKtzq√
hq

= Op(1), (A.46)

and again no invariance principles hold, as established in Lemma B.1(a)(ii),(b)(ii), and (d)(ii)

for the case q = 1. It follows that in place of the decomposition leading to (A.38) we now have

β̂(z)− β(z)− h2
(

1

n2hq

n∑
t=1

xtx
′
tKtzq

)−1
1

n2hq+2

n∑
t=1

xtx
′
tEξβtq (A.47)

=

(
1√
n3hq

n∑
t=1

xtx
′
tKtzq

)−1
1√

n3hq+2

n∑
t=1

xtx
′
tηtq ×

√
n3hq+2

√
n3hq

+
n
√
hq√

n3hq

(
1√
n3hq

n∑
t=1

xtx
′
tKtzq

)−1
1

n
√
hq

n∑
t=1

xtutKtzq

=h

(
1√
n3hq

n∑
t=1

xtx
′
tKtzq

)−1
1√

n3hq+2

n∑
t=1

xtx
′
tηtq +

1√
n

(
1√
n3hq

n∑
t=1

xtx
′
tKtzq

)−1
1

n
√
hq

n∑
t=1

xtutKtzq

(A.48)

=Op(h) +Op(1/
√
n).

Accordingly, the asymptotics rely on one or other or both of the terms in (A.48). For the bias

term in (A.47) we observe that

h2

(
1

n2hq

n∑
t=1

xtx
′
tKtzq

)−1
1

n2hq+2

n∑
t=1

xtx
′
tEξβtq

= h2
n2hq√
n3hq

(
1√
n3hq

n∑
t=1

xtx
′
tKtzq

)−1
1

n

n∑
t=1

xt√
n

x′t√
n

Eξβtq
hq+2

= h2
√
nhq

(
1√
n3hq

n∑
t=1

xtx
′
tKtzq

)−1
1

n

n∑
t=1

xt√
n

x′t√
n

Eξβtq
hq+2
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= Op(h
2
√
nhq).

Part (b) In this case we have nhq → 0.

(1) The q = 1 case is covered in Theorem 2.2.

(2) When q = 2, evidently nh2 → 0 and h = o(1/
√
n) so that the second term in (A.48)

dominates. We then have

√
n
(
β̂(z)− β(z)

)
∼a

(
1√
n3hq

n∑
t=1

xtx
′
tKtzq

)−1
1

n
√
hq

n∑
t=1

xtutKtzq = Op(1). (A.49)

In this case, the bias is neglected since
√
nh2
√
nhq → 0.

(3) When q > 2, we deduce three cases for nh2:

(i) nh2 → 0. In this situation (A.49) continues to hold.

(ii) nh2 → c ∈ (0,∞). In this situation both terms of (A.48) contribute to the asymptotics.

We have

√
n
(
β̂(z)− β(z)

)
∼a

(
1√
n3hq

n∑
t=1

xtx
′
tKtzq

)−1(
c1/2

1√
n3hq+2

n∑
t=1

xtx
′
tηtq +

1

n
√
hq

n∑
t=1

xtutKtzq

)
= Op(1).

(A.50)

The bias term is neglected because
√
nh2
√
nhq → 0 and theOp(1) order of 1√

n3hq+2

∑n
t=1 xtx

′
tηtq =

1√
n

∑n
t=1

xt√
n

x′t√
n

ηtq√
hq+2

follows as in Lemma B.1 (c)(ii) and (d)(ii).

(iii) nh2 →∞. In this situation, the first term in (A.48) dominates. We have

1

h

(
β̂(z)− β(z)

)
∼a

(
1√
n3hq

n∑
t=1

xtx
′
tKtzq

)−1
1√

n3hq+2

n∑
t=1

xtx
′
tηtq = Op(1). (A.51)

The bias term is neglected because 1
hh

2
√
nhq → 0.

Part (c) In this case we have nhq → c ∈ (0,∞).

(1) When q = 1 the case is covered in Theorem 2.2.

(2) When q = 2 we have nh2 → c ∈ (0,∞). In this situation, (A.50) continues to hold.

(3) When q > 2 then nh2 →∞ and so (A.51) holds. �

Proof of Theorem 3.1

We consider the nonstationary and stationary regressor cases in turn. The statistic studied in

all cases is T̂ (z) = Vn(z)−1/2
(
β̂(z)− β(z)− h2B̂(z)

)
where

Vn(z) = A−1nz

{
σ̂2uν0(K)

n∑
t=1

xtx
′
tKtz +

n∑
t=1

xtx
′
t

[
x′tβ̂

(1)(z) (zt − z)Ktz

]2}
A−1nz , (A.52)

with Anz =
∑n

t=1 xtx
′
tKtz. The estimates σ̂2u, β̂(1)(z) and B̂(z) are obtained in the usual manner,

as discussed in Section 3 of the online supplement.
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Nonstationary xt We establish the result for the three bandwidth ranges given in Theorem

2.1 in turn. The derivations make extensive use of the results in Lemma B.1.

Case (a) Here nh2 → 0. From Lemma B.1(c) we have

1

n2h

n∑
t=1

xtx
′
tKtz  f (z)

∫
BxB

′
x, (A.53)

and by consistency of the derivative kernel estimate β̂(1)(z)→p β
(1)(z) as n→∞ it follows that

1

n3h3

n∑
t=1

xtx
′
t

[
x′tβ̂

(1)(z) (zt − z)Ktz

]2
=

1

nh

n∑
t=1

xt√
n

x′t√
n

[
x′t√
n
β̂(1)(z)

]2(zt − z
h

)2

K

(
zt − z
h

)2

=
1

nh

n∑
t=1

xt√
n

x′t√
n

[
x′t√
n
β(1)(z)

]2
E

{(
zt − z
h

)2

K

(
zt − z
h

)2
}
{1 + op (1)}

= f(z)ν2(K)
1

n

n∑
t=1

xt√
n

x′t√
n

[
x′t√
n
β(1)(z)

]2
{1 + op (1)}

 f(z)ν2(K)

∫
BxB

′
x

[
B′xβ

(1) (z)
]2
, (A.54)

using standard weak convergence methods. Since σ̂2u = 1
n

∑n
t=1 û

2
t →p σ

2
u and in view of (A.53)

and (A.54) we deduce that when nh2 → 0

n2hVn(z) =

(
Anz
n2h

)−1{
σ̂2uν0(K)

∑n
t=1 xtx

′
tKtz

n2h
+

nh2

n3h3

n∑
t=1

xtx
′
t

[
x′tβ̂

(1)(z) (zt − z)Ktz

]2}(Anz
n2h

)−1
=

(
Anz
n2h

)−1{
σ̂2uν0(K)

∑n
t=1 xtx

′
tKtz

n2h
+Op

(
nh2

)}(Anz
n2h

)−1
 

(
f (z)

∫
BxB

′
x

)−1{
σ2uν0(K)f (z)

∫
BxB

′
x

}(
f (z)

∫
BxB

′
x

)−1
=

σ2uν0(K)

f (z)

(∫
BxB

′
x

)−1
= Ωu(z). (A.55)

The required result in this case now follows directly from Theorem 2.1(a) because

T̂ (z) =
(
n2hVn(z)

)−1/2 {
n
√
h
[
β̂(z)− β(z)− h2B̂(z)

]}
∼a Ωu(z)−1/2

{
n
√
h
[
β̂(z)− β(z)− h2B(z)

]}
 N (0, Id) . (A.56)

Case (b) Here nh2 →∞ and in place of (A.55) we have, using (A.53) and (A.54),

n

h
Vn(z) =

(
Anz
n2h

)−1{n
h
σ̂2uν0(K)

∑n
t=1 xtx

′
tKtz

n4h2
+
n

h

1

n4h2

n∑
t=1

xtx
′
t

[
x′tβ̂

(1)(z) (zt − z)Ktz

]2}(Anz
n2h

)−1
=

(
Anz
n2h

)−1{ 1

nh2
σ̂2uν0(K)

∑n
t=1 xtx

′
tKtz

n2h
+

1

n3h3

n∑
t=1

xtx
′
t

[
x′tβ̂

(1)(z) (zt − z)Ktz

]2}(Anz
n2h

)−1
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(
f (z)

∫
BxB

′
x

)−1{
f(z)ν2(K)

∫
BxB

′
x

[
B′xβ

(1) (z)
]2}(

f (z)

∫
BxB

′
x

)−1
=

ν2(K)

f (z)

(∫
BxB

′
x

)−1{∫
BxB

′
x

[
B′xβ

(1) (z)
]2}(∫

BxB
′
x

)−1
= Ωβ(z). (A.57)

The required result in this case now follows from Theorem 2.1(b) because

T̂ (z) =
(n
h
Vn(z)

)−1/2{√n

h

[
β̂(z)− β(z)− h2B̂(z)

]}
∼a Ωβ(z)−1/2

{√
n

h

[
β̂(z)− β(z)− h2B(z)

]}
 N (0, Id) , (A.58)

when nh2 →∞.

Case (c) Here nh2 → c ∈ (0,∞) and we have

n3/2Vn(z) =

(
Anz
n2h

)−1{
n3/2σ̂2uν0(K)

∑n
t=1 xtx

′
tKtz

n4h2
+ n3/2

1

n4h2

n∑
t=1

xtx
′
t

[
x′tβ̂

(1)(z) (zt − z)Ktz

]2}(Anz
n2h

)−1
=

(
Anz
n2h

)−1{ 1√
nh2

σ̂2uν0(K)

∑n
t=1 xtx

′
tKtz

n2h
+

√
nh2

n3h3

n∑
t=1

xtx
′
t

[
x′tβ̂

(1)(z) (zt − z)Ktz

]2}(Anz
n2h

)−1
 

(
f (z)

∫
BxB

′
x

)−1{σ2uν0(K)f (z)√
c

∫
BxB

′
x +
√
cν2(K)f(z)

∫
BxB

′
x

[
B′xβ

(1) (z)
]2}(

f (z)

∫
BxB

′
x

)−1
=

1

f (z)

(∫
BxB

′
x

)−1{σ2uν0(K)

c1/2

∫
BxB

′
x + c1/2ν2(K)

∫
BxB

′
x

[
B′xβ

(1) (z)
]2}(∫

BxB
′
x

)−1
=

1

c1/2
Ωu(z) + c1/2Ωβ(z). (A.59)

The required result in this case now follows from Theorem 2.1(c) because

T̂ (z) =
(
n3/2Vn(z)

)−1/2 {
n3/4

[
β̂(z)− β(z)− h2B̂(z)

]}
∼a
{

1

c1/2
Ωu(z) + c1/2Ωβ(z)−1/2

}−1/2 {
n3/4

[
β̂(z)− β(z)− h2B(z)

]}
 N (0, Id) ,

(A.60)

when nh2 → c ∈ (0,∞). Thus, the statistic T̂ (z) has robust standard N (0, Id) asymptotics for

all bandwidth choices covering cases (a), (b) and (c), thereby including the rate efficient case

where the bandwidth h = O
(
n−1/2

)
and convergence rate is O(n3/4).

Stationary xt We start with the decomposition

Anz[β̂(z)− β(z)] =
∑
t

xtx
′
t[β(zt)− β(z)]Ktz +

∑
t

xtutKtz, (A.61)

or, equivalently,

Anz

{
β̂(z)− β(z)−A−1nz

∑
t

E[xtx
′
t[β(zt)− β(z)]Ktz|zt = z]

}
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=
∑
t

{
xtx
′
t[β(zt)− β(z)]Ktz − E[xtx

′
t[β(zt)− β(z)]Ktz|zt = z]

}
+
∑
t

xtutKtz. (A.62)

From Lemma B.2 we have

Anz =
∑
t

xtx
′
tKtz ∼a nhE[xtx

′
t|zt = z]f(z) =: nhMz, (A.63)

A−1nz
∑
t

E[xtx
′
t[β(zt)− β(z)]Ktz|zt = z] ∼a h2µ2(K)M−1z CS(z) =: h2BS(z), (A.64)

1√
nh3

n∑
t=1

{xtx′t[β(zt)− β(z)]Ktz − E{xtx′t[β(zt)− β(z)]Ktz}} N
(

0, ν2(K)f(z)E{xtx′t[x′tβ(1)(z)]2|zt = z}
)
,

(A.65)

1√
nh

∑
t

xtutKtz  N (0, ν0(K)σ2uf(z)E[xtx
′
t|zt = z]), (A.66)

with Mz = f(z)E[xtx
′
t|zt = z], BS(z) = µ2(K)M−1z CS(z) and

CS(z) = E
{
xtx
′
t

[
β(1)(z)

fz (xt, z)

f(xt|zt = z)
+

1

2
β(2)(z)f (z)

] ∣∣∣∣zt = z

}
, (A.67)

where fz (s, z) = ∂f (s, z) /∂z, f(xt, zt) is the joint density of (xt, zt) at (s, z) and f(xt|zt = z)

is the conditional density of xt given zt = z. Importantly, as shown in Lemma B.2, when xt and

the covariate zt are independent we have

CS(z) = E
{
xtx
′
t

} [
β(1)(z)f (1)(z) +

1

2
β(2)(z)f(z)

]
, Mz = f(z)E[xtx

′
t], (A.68)

so that

h2BS(z) = h2µ2(K)M−1z CS(z) = h2
µ2(K)

f(z)

[
β(1)(z)f (1)(z) +

1

2
β(2)(z)f(z)

]
= h2B(z), (A.69)

which reproduces the standard deterministic bias function in the stationary case (1.9).

Using these results in (A.62) gives

Anz[β̂(z)− β(z)− h2BS(z)] ∼a
√
nh3N

(
0, f(z)ν2(K)E{xtx′t[x′tβ(1)(z)]2|zt = z}

)
+
√
nhN

(
0, ν0(K)σ2uf(z)E[xtx

′
t|zt = z]

)
. (A.70)

Since ut is a martingale difference with respect to the filtration Ft = σ{{xs}∞s=1; {zs}∞s=1;ut, ut−1, · · · },
the covariance between 1√

nh3

∑
t{xtx′t[β(zt) − β(z)]Ktz − Extx′t[β(zt) − β(z)]Ktz|zt = z]} and

1√
nh

∑
t xtutKtz is zero. So the two normal distributions on the right side of (A.70) are inde-

pendent. Hence, as nh→∞,

Anz[β̂(z)− β(z)− h2BS(z)]

∼a N
(

0, nh3f(z)ν2(K)E[xtx
′
t(x
′
tβ

(1)(z))2|zt = z] + nhν0(K)σ2uf(z)E[xtx
′
t|zt = z]

)
=
√
nhN

(
0, h2f(z)ν2(K)E[xtx

′
t(x
′
tβ

(1)(z))2|zt = z] + ν0(K)σ2uf(z)E[xtx
′
t|zt = z]

)
. (A.71)
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With h→ 0 and in view of (A.63), we have

√
nh[β̂(z)− β(z)− h2BS(z)] ∼a

(
Anz
nh

)−1
N
(
0, ν0(K)σ2uf(z)E[xtx

′
t|zt = z]

)
,

 
(
f(z)E[xtx

′
t|zt = z]

)−1N (0, ν0(K)σ2uf(z)E[xtx
′
t|zt = z]

)
= N

(
0,
ν0(K)σ2u
f(z)

(
E[xtx

′
t|zt = z]

)−1)
=: N (0,ΩS(z)) . (A.72)

The components σ2uf(z)E[xtx
′
t|zt = z] and f(z)ν2(K)E[xtx

′
t(x
′
tβ

(1)(z))2|zt = z] in (A.71) can be

consistently estimated by σ̂2u
1
nh

∑
t xtx

′
tKtz and 1

nh3
∑

t xtx
′
t(x
′
tβ

(1)(z))2(zt−z)2K2
tz, respectively.

So h2

nh3
∑

t xt(x
′
tβ

(1)(z))2x′t(zt − z)2K2
tz + ν0(K)σ̂2u

1
nh

∑
t xtx

′
tKtz is a suitable estimate of the

variance matrix in (A.71) for self normalization. In particular, we have

nhVn(z) =

(
Anz
nh

)−1{
σ̂2uν0(K)

∑n
t=1 xtx

′
tKtz

nh
+

h2

nh3

n∑
t=1

xtx
′
t

[
x′tβ̂

(1)(z) (zt − z)Ktz

]2}(Anz
nh

)−1
=

(
Anz
nh

)−1{
σ̂2uν0(K)

∑n
t=1 xtx

′
tKtz

nh
+Op

(
h2
)}(Anz

nh

)−1
 
(
f (z)E[xtx

′
t|zt = z]

)−1 {
ν0(K)σ2uf (z)E[xtx

′
t|zt = z]

} (
f (z)E[xtx

′
t|zt = z]

)−1
=
ν0(K)σ2u
f (z)

(
E[xtx

′
t|zt = z]

)−1
= ΩS(z). (A.73)

Using a consistent estimate B̂S(z) of BS(z), it then follows that the t-ratio defined in (3.10) has

a standard normal N (0, Id) distribution in the limit. Thus,

T̂ (z) = (nhVn(z))−1/2
{√

nh
[
β̂(z)− β(z)− h2B̂S(z)

]}
∼a ΩS(z)−1/2

{√
nh
[
β̂(z)− β(z)− h2BS(z)

]}
 N (0, Id) . (A.74)

When xt and zt are mutually independent as in Assumption 2 (iii), in place of (A.63) we have
1
nhAnz →p E(xtx

′
tKtz) = Σxxf(z) with Σxx > 0 and ΩS(z) = ν0(K)σ2

u
f(z) Σ−1xx . Then BS(z) may be

replaced by B(z) as in (A.69) and we have the specialization

T̂ (z) = (nhVn(z))−1/2
{√

nh
[
β̂(z)− β(z)− h2B̂(z)

]}
∼a ΩS(z)−1/2

{√
nh
[
β̂(z)− β(z)− h2B(z)

]}
 N (0, Id) , (A.75)

with the same limit theory as in the nonstationary regressor case. This correspondence ensures

that the robust test statistics T̂ (z) and T̂2(z) have the same limiting form in both stationary

and nonstationary cases under comparable conditions.

T̂2(z) asymptotics

The limit distribution T̂2(z)  χ2
d now follows directly from the limit theory T̂ (z)  N (0, Id)

given above in both stationary and nonstationary cases. �
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B Useful Lemmas

Lemma B.1. Under Assumption 1, the following hold as n→∞:

(a) (i) If nh → ∞, { 1√
nh

∑bn·c
t=1 ζtK ,

1√
nh

∑bn·c
t=1 utKtz}  {BζK(·), BuK(·)}, where {BζK , BuK}

are independent Brownian motions with respective variances ν0(K)f(z), and ν0(K)σ2uf(z),

with ζtK = Ktz − EKtz and Ktz = K( zt−zh );

(ii) If nh → c ∈ [0,∞), then { 1√
nh

∑bn·c
t=1 ζtK ,

1√
nh

∑bn·c
t=1 utKtz} = Op(1) but no invariance

principle holds.

(b) (i) If nh → ∞ and β(1)(z) 6= 0, 1√
nh3

∑bn·c
t=1 ηt  Bη(·), Brownian motion with variance

matrix Vηη = ν2(K)f(z)β(1)(z)β(1)(z)′, where ηt = ξβt − Eξβt, ξβt = [β(zt)− β(z)]Ktz;

(ii) If nh→ c ∈ [0,∞), then 1√
nh3

∑bn·c
t=1 ηt = Op(1), but no invariance principle holds.

(c) (i) If nh→∞, 1
n2h

∑n
t=1 xtx

′
tKtz  

(∫
BxB

′
x

)
f (z);

(ii) If nh→ c ∈ [0,∞), 1√
n3h

∑n
t=1 xtx

′
tKtz = Op(1) but no invariance principle holds.

(d) (i) If nh→∞, 1√
n3h

∑n
t=1 xtx

′
tζtK  

∫
BxB

′
xdBζK , and 1√

n3h3

∑n
t=1 xtx

′
tηt  

∫
BxB

′
xdBη ≡d

MN
(

0,
∫
Bx(r)Bx(r)′

(
Bx(r)′β(1)(z)

)2)
;

(ii) If nh → c ∈ [0,∞), 1√
n3h

∑n
t=1 xtx

′
tζtK = Op(1) but no invariance principle holds, and

1√
n3h3

∑n
t=1 xtx

′
tηt = Op(1) but no invariance principle holds;

(e) (i) If nh→∞, 1
n
√
h

∑n
t=1 xtutKtz  

∫
BxdBuK ;

(ii) If nh→ c ∈ [0,∞), 1
n
√
h

∑n
t=1 xtutKtz = Op(1) but no invariance principle holds.

(f) If nh→∞, Xu,n = 1√
nh

∑bn·c
t=1 utKtz, Xζ,n = 1√

nh

∑bn·c
t=1 ζtK , and Xη,n = 1√

nh3

∑bn·c
t=1 ηt, then

the following joint convergence holds{
Xu,n, Xζ,n, Xη,n,

1
n2h

∑n
t=1 xtx

′
tKtz,

1
n
√
h

∑n
t=1 xtutKtz,

1√
n3h

∑n
t=1 xtx

′
tζtK ,

1√
n3h3

∑n
t=1 xtx

′
tηt

}
 {BuK(·), BζK(·), Bη(·),

(∫
BxB

′
x

)
f (z) ,

∫
BxdBuK ,

∫
BxB

′
xdBζK ,

∫
BxB

′
xdBη}.

Proof of Lemma B.1

Part (a) (i) The joint limit result stated for { 1√
nh

∑bn·c
t=1 ζtK ,

1√
nh

∑bn·c
t=1 utKtz} is standard

for partial sums involving kernel functions of strictly stationary weakly dependent time se-

ries (Xiao, 2009; Sun et al., 2011). Straightforward calculations in the present case show that

EKtz = hf(z)+o(h), and EK2
tz = hf(z)ν0(K)+o(h), so that Var(ζtK) = hf(z)ν0(K)+o(h) and

ζtK = Ktz−E (Ktz) = Op(
√
h). Further, Var(utKtz) = hν0(K)σ2uf(z)+o(h) and E(utKtzKsz) =

0 for all t and s. So the standardized partial sums processes { 1√
nh

∑bn·c
t=1 ζtK ,

1√
nh

∑bn·c
t=1 utKtz}

are uncorrelated, uniformly tight, and the stated joint functional law follows by standard weak

convergence methods for triangular arrays (e.g., Davidson (1994, Theorem 27.17 for martin-

gale difference arrays, and chapter 29.3 for dependent arrays)). The resulting limit processes
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(BζK(r), BuK(r)) are independent with respective variances ν0(K)f(z) and ν0(K)σ2uf(z). The

effective sample size condition nh→∞ is required for this result.

Part (a) (ii) If nh→ c ∈ [0,∞) then the effective sample size condition nh→∞ fails. In this

case,
(

1√
nh

∑bn·c
t=1 ζtK ,

1√
nh

∑bn·c
t=1 utKtz

)
= Op(1) but no invariance principle applies because

of failure in the Lindeberg condition. To demonstrate, it is sufficient to consider the case of
1√
nh

∑bn·c
t=1 ζtK and iid {zt}. In this case the stability condition

E

(
1√
n

n∑
t=1

ζtK√
h

)2

=
1

n

n∑
t=1

E
(
ζtK√
h

)2

= f(z)ν0(K) +O(h),

is satisfied but the Lindeberg condition fails. To see this, note that ζtK = K( zt−zh )−EK( zt−zh ) =

K( zt−zh ) +O(h). Given ε > 0, we have

1

n

n∑
t=1

E

{(
ζtK√
h

)2

1[|ζtK |>ε
√
nh]

}
=

∫
[K( zt−zh ) +O(h)]2

h
1[|K(

zt−z
h

)+O(h)|>ε
√
nh]f(zt)dzt

=

∫
(K(p) +O(h))2 1[|K(p)+O(h)|>ε

√
nh]f(z + ph)dp

→

{
f(z)ν0(K) > 0 if nh→ 0∫

K2(p)1[|K(p)|>ε
√
c]dpf(z) > 0 if nh→ c ∈ (0,∞)

.

A similar proof applies in the case of 1√
nh

∑bn·c
t=1 utKtz. �

Part (b) (i) We compute the first and second moments of ηt = ξβt − Eξβt and show that

ηt = Op(h
3/2). First

Eξβt = E[β(zt)− β(z)]Ktz =

∫ 1

−1
[β(s)− β(z)]K((s− z)/h)f(s)ds

= h

∫ 1

−1
[β(z + hp)− β(z)]K(p)f(z + hp)dp

= h3[
1

2
β(2)(z)f(z) + β(1)(z)f (1)(z)]

∫ 1

−1
p2K(p)dp+ o(h3)

= h3C(z)µ2(K) + o(h3), (B.1)

with C(z) = 1
2β

(2)(z)f(z) + β(1)(z)f (1)(z). Next

Eξβtξ′βt = E[(β(zt)− β(z))(β(zt)− β(z))′K2(
zt − z
h

)]

= h

∫ 1

−1
(β(z + hs)− β(z))(β(z + hs)− β(z))′K2(s)f(z + hs)ds

= h3[β(1)(z)β(1)(z)′]f(z)

∫ 1

−1
s2K2(s)ds+ o(h3)

= h3[β(1)(z)β(1)(z)′]f(z)ν2(K) + o(h3). (B.2)

It follows that

Var(ηt) = Eξβtξ′βt − (Eξβt)(Eξβt)′ = h3ν2(K)f(z)[β(1)(z)β(1)(z)′] + o(h3), (B.3)
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and ηt = Op(h
3/2). Next, in view of (B.1) the serial covariances satisfy

Cov(ξβt, ξβt+j) = Eξβtξ′βt+j − (Eξβt) (Eξβt+j)′ = Eξβtξ′βt+j +O(h6),

and by virtue of the strong mixing of zt, measurability of β(·), and Davydov’s lemma the

covariances satisfy the bound

|Cov(ξβt, ξβt+j)| ≤ 12
(
E |ξβt|δ

)2/δ
|α(j)|1−2/δ = Aβh

2+2/δ|α(j)|1−2/δ + o(h2+2/δ), (B.4)

whereAβ = 12(
∫
|β(1)(z̃p)|δ|p|δK(p)δdpf(z))2/δ, since E |ξβt|δ = h1+δ

∫
|β(1)(z̃p)|δ|p|δK(p)δdpf(z)+

o(h1+δ) in a similar way to (B.1), and where z̃p is on the line segment connecting z and z + hp.

Further, for j 6= 0 and using the joint density f0,j(s0, sj) of (zt, zt+j) we have

Eξβtξ′βt+j = E[(β(zt)− β(z)) (β(zt+j)− β(z))′KtzKt+j,z]

=

∫ ∫
(β(s0)− β(z)) (β(sj)− β(z))′K

(
s0 − z
h

)
K

(
sj − z
h

)
f0,j(s0, sj)ds0dsj

= h2
∫ ∫

(β(z + hp0)− β(z))(β(z + hpj)− β(z))′K(p0)K(pj)f0,j(z + hp0, z + hpj)dp0dpj

= h4[β(1)(z)][β(1)(z)]′f0,j(z, z)

∫
p1K(p1)dp1

∫
p2K(p2)dp2

+ h5
{

1

2

(
[β(1)(z)][β(2)(z)]′ + [β(2)(z)][β(1)(z)]′

)
f0,j(z, z)

+[β(1)(z)][β(1)(z)]′
[
∂f0,j
∂s0

(z, z) +
∂f0,j
∂sj

(z, z)

]}∫
p1K(p1)dp1

∫
p22K(p2)dp2

+ h6
{

1

4
[β(2)(z)][β(2)(z)]′f0,j(z, z) + [β(1)(z)][β(1)(z)]′

∂2f0,j
∂s0∂sj

(z, z) +
1

2
[β(1)(z)][β(2)(z)]′

∂f0,j
∂s0

(z, z)

+
1

2
[β(2)(z)][β(1)(z)]′

∂f0,j
∂sj

(z, z)

}∫
p21K(p1)dp1

∫
p22K(p2)dp2 + o

(
h6
)

= h6
{

1

4
[β(2)(z)][β(2)(z)]′f0,j(z, z) + [β(1)(z)][β(1)(z)]′

∂2f0,j
∂s0∂sj

(z, z) +
1

2
[β(1)(z)][β(2)(z)]′

∂f0,j
∂s0

(z, z)

+
1

2
[β(2)(z)][β(1)(z)]′

∂f0,j
∂sj

(z, z)

}
[µ2(K)]2 + o(h6). (B.5)

We now deduce that the long run variance matrix of ηt is

VLR(ηt) = E

[
1√
nh3

n∑
t=1

ηt

][
1√
nh3

n∑
t=1

ηt

]′
=

1

nh3

n∑
t=1

Eηtη′t +
1

nh3

∑
t6=s

Eηtη′s

=
1

h3
Eηtη′t + o(1)→ ν2(K)f(z)[β(1)(z)β(1)(z)′] =: Vηη, (B.6)

which follows from (B.3) and standard arguments concerning the o(1) magnitude of the sum of

the autocovariances of kernel weighted stationary processes. In particular, from the α mixing

property of zt and using a sum splitting argument and results (B.1), (B.4) and (B.5) above, we

have

1

nh3

∑
t6=s

Eηtη′s =
1

h3

n−1∑
j=−n+1,j 6=0

[
1− |j|

n

]
[Eξβtξ′βt+j − (Eξβt) (Eξβt+j)′]
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=
1

h3

M∑
j=−M,j 6=0

[
1− |j|

n

]
[Eξβtξ′βt+j − (Eξβt) (Eξβt)′] +

1

h3

∑
M<|j|<n

(
1− |j|

n

)
[Eξβtξ′βt+j − (Eξβt) (Eξβt)′]

= O

(
Mh6

h3

)
+O

 1

h3

(
E |ξβt|δ

)2/δ ∑
M<|j|<n

α
1−2/δ
j

 = O
(
Mh3

)
+O

 h2
1+δ
δ

h3Ma

∑
M<|j|<∞

jaα
1−2/δ
j


= O

(
Mh3

)
+O

 h
2
δ

hMa

∑
M<|j|<∞

jaα
1−2/δ
j

 = O
(
Mh3

)
+O

 1

h1−2/δMa

∑
M<|j|<∞

jaα
1−2/δ
j


= O

(
Mh3

)
+ o

(
1

(Mh)1−2/δ

)
= o (1) ,

for a suitable choice of M →∞ such that Mh→∞ Mh3 → 0 and M
n → 0 and with a > 1−2/δ

and δ > 2. It then follows by arguments similar to the central limit theory for weakly dependent

kernel regression in Robinson (1983), Masry and Fan (1997), and Fan and Yao (2003, theorem

6.5) that the standardized partial sum process of ηt satisfies a triangular array functional law

giving

1√
nh3

bn·c∑
t=1

ηt  Bη(·), (B.7)

where Bη is vector Brownian motion with variance matrix Vηη = ν2(K)f(z)β(1)(z)β(1)(z)′. The

effective sample size condition nh→∞ is required for this result.

Part (b) (ii) When nh→ c ∈ [0,∞) we prove that

1√
nh3

bn·c∑
t=1

ηt = Op(1), (B.8)

but with no invariance principle applying. This result mirrors the finding in Part (a)(ii) for

{ 1√
nh

∑bn·c
t=1 ζtK ,

1√
nh

∑bn·c
t=1 utKtz}. In the present case and without loss of generality, let xt be

scalar and {zt} be iid, so that ηt = ξβt−Eξβt = ξβt +O(h3), since Eξβt = h3C(z)µ2(K) + o(h3)

from (B.1). The martingale stability condition

E

(
1√
n

n∑
t=1

ηt√
h3

)2

=
1

n

n∑
t=1

E
(

ηt√
h3

)2

= ν2(K)f(z)
(
β(1)(z)

)2
+O(h),

is satisfied so that 1√
nh3

∑n
t=1 ηt = Op(1), giving (B.8). But the Lindeberg condition fails and

no invariance principle holds. The proof is similar to that of Part (a)(ii) but has additional

complications due to the form of the sequence ηt. First note that ηt = [β(zt)−β(z)]Ktz +O(h3).

Then, given ε > 0, nh 6→ ∞ and β(1)(z) 6= 0, we find that

1

n

n∑
t=1

E

{(
ηt√
h3

)2

1[|ηt|>ε
√
nh3]

}
=

∫
[[β(zt)− β(z)]Ktz +O(h3)]2

h3
1[|[β(zt)−β(z)]Ktz+O(h3)|>ε

√
nh3]f(zt)dzt

=

∫
[β(1)(z)hpK(p) +O(h2)]2

h2
1[|β(1)(z)hpK(p)+O(h2)|>ε

√
nh3]f(z + ph)dp
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=
(
β(1)(z)

)2
f(z)

∫
p2K2(p)1[|β(1)(z)pK(p)|>ε

√
nh]dp+O(h)

→

{
f(z)

(
β(1)(z)

)2
ν2(K) > 0 if nh→ 0

f(z)
(
β(1)(z)

)2 ∫
p2K2(p)1[|pK(p)β(1)(z)|>ε√c]dp > 0 if nh→ c ∈ (0,∞)

,

and the Lindeberg condition fails in both cases since β(1)(z) 6= 0. �

Part (c) (i) This result (i) is established using standard methods in (A.3) in the proof of

Theorem 2.1.

Part (c) (ii) As in (A.5) in the proof of Theorem 2.1, when nh → c ∈ [0,∞) we have the

following decomposition

√
nh

n2h

n∑
t=1

xtx
′
tKtz =

√
nh

n

n∑
t=1

xt√
n

x′t√
n

{
f(z) +O(h2)

}
+

n∑
t=1

xt√
n

x′t√
n

ζtK√
nh

∼a cf(z)

∫
BxB

′
x +

1√
n

n∑
t=1

xt√
n

x′t√
n

ζtK√
h

+ op(1) = Op(1). (B.9)

The second term of (B.9) is Op(1) but with no invariance principle. To see this, we proceed in

a similar fashion to Part (b) (ii). For convenience and without loss of generality, let xt be scalar

and zt be iid. We then have E
(

1√
n

∑n
t=1

(
xt√
n

)2
ζtK√
h

)
= 0 and

E

(
1√
n

n∑
t=1

(
xt√
n

)2 ζtK√
h

)2

= E

(
1

n

n∑
t=1

(
xt√
n

)4
)
× E

(
ζtK√
h

)2

= E
(∫

B4
x

)
× {f(z)ν0(K) +O(h)} = O(1),

so that 1√
n

∑n
t=1

(
xt√
n

)2
ζtK√
h

= Op(1), as required. No invariance principle holds in this case

because 1√
nh

∑bn·c
t=1 ζtK = Op(1) without an invariance principle when nh→ c ∈ [0,∞) by virtue

of Part (a)(ii). �

Part (d) (i) By Assumption 1, Lemma B.1(a) and (b) and when nh → ∞ we have the joint

convergence(
1√
n
xbn·c,

1√
nh

∑bn·c
t=1 ζtK ,

1√
nh3

∑bn·c
t=1 ηt

)
 
(
Bx(·), BζK(·), Bη(·)

)
, (B.10)

where the Brownian motions {Bx, BζK , Bη} are independent by virtue of (i) the exogeneity of

xt and (ii) the independence of {BζK , Bη}. The latter follows from the fact that the contempo-

raneous covariance EζtKηt = h3ν2(K)[12β
(2)(z)f(z) + β(1)(z)f (1)(z)] + O(h4) = O(h3) and the

cross serial covariance EζtKηt+j = O(h4) for j 6= 0, so that combined with the weak dependence

of zt and an argument along the same lines as that leading to (B.6) we have

E

 1√
nh

bn·c∑
t=1

ζtK ×
1√
nh3

bn·c∑
t=1

ηt

 =
1

h2
E (ζtKηt) + o(1) = o(1).
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Convergence to the stochastic integral limits,

1√
n3h

n∑
t=1

xtx
′
tζtK =

n∑
t=1

(
xt√
n

x′t√
n

)
ζtK√
nh
 
∫
BxB

′
xdBζK , (B.11)

1√
n3h3

n∑
t=1

xtx
′
tηt =

n∑
t=1

(
xt√
n

x′t√
n

)
ηt√
nh3
 
∫
BxB

′
xdBη (B.12)

then follows by a triangular array extension of Ibragimov and Phillips (2008, theorem 4.3) when

nh→∞. Both stochastic integrals have mixed normal distributions, viz.,∫
Bx ⊗BxdBζK ≡dMN

(
0, ν0(K)f(z)

∫
BxB

′
x ⊗BxB′x

)
, (B.13)∫

BxB
′
xdBη ≡dMN

(
0, ν2(K)f(z)

∫
BxB

′
x

(
Bx(r)′β(1)(z)

)2)
, (B.14)

and the stated result (i) holds.

Part (d) (ii) When the rate conditions nh→∞ fails and, instead nh→ c ∈ [0,∞) applies, it

follows from Part (a)(ii) and Part (b)(ii) that 1√
nh

∑n
t=1 ζtK = Op(1) and 1√

nh3

∑n
t=1 ηt = Op(1),

respectively, but with no invariance principles holding. Correspondingly, in place of (B.11) and

(B.12), we have in the same manner as before in the proof of Part (c)(ii)

1√
n3h

n∑
t=1

xtx
′
tζtK =

1√
n

n∑
t=1

(
xt√
n

x′t√
n

)
ζtK√
h

= Op(1), (B.15)

1√
n3h3

n∑
t=1

xtx
′
tηt =

1√
n

n∑
t=1

(
xt√
n

x′t√
n

)
ηt√
h3

= Op(1), (B.16)

again without invariance principles. �

Part (e) (i) Write

1

n
√
h

n∑
t=1

xtutKtz =
n∑
t=1

(
xt√
n

)(
utKtz√
nh

)
 
∫
BxdBuK ,

and the result follows by standard limit theory directly from Part (a), the mutual independence

of xt, ut and zt, and an array extension of Ibragimov and Phillips (2008, theorem 4.3).

Part (e) (ii) If nh→ c ∈ [0,∞), it follows from Part (a) (ii) that 1√
nh

∑n
t=1 utKtz = Op(1) but

no invariance principle holds. In a similar fashion and as in Parts (c)(ii) and (d)(ii), we deduce

that

1√
n2h

n∑
t=1

xtutKtz =
n∑
t=1

(
xt√
n

utKtz√
nh

)
= Op(1), (B.17)

with no invariance principle holding. �
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Part (f) By Assumption 1 and Lemma B.1(a), (b), (d) when n→∞ and nh→∞ we have the

joint weak convergence(
1√
n
xbn·c,

1√
nh

∑bn·c
t=1 utKzt,

1√
nh

∑bn·c
t=1 ζtK ,

1√
nh3

∑bn·c
t=1 ηt

)
 
(
Bx(·), BuK(·), BζK(·), Bη(·)

)
,

(B.18)

where the Brownian motions {Bx, BuK , BζK , Bη} are independent by virtue of the exogeneity of

xt and zt and the independence of {Bx, BζK , Bη}. It then follows by a triangular array extension

of joint weak convergence to stochastic integrals for α-mixing time series (Liang et al., 2016,

theorem 3.1) that{
1

n2h

n∑
t=1

xtx
′
tKtz,

1

n
√
h

n∑
t=1

xtutKtz,
1√
n3h

n∑
t=1

xtx
′
tζtK ,

1√
n3h3

n∑
t=1

xtx
′
tηt

}

 

{∫
BxB

′
xf(z),

∫
BxdBuK ,

∫
BxB

′
xdBζK ,

∫
BxB

′
xdBη

}
.

The conditions of Liang et al. (2016, theorem 3.1) require sixth moments of the component

innovations and α mixing numbers that decay according to a power law α(j) = 1
jγ with γ > 6.

This condition is satisfied by the mixing conditions of Assumption 1 when δ = 3 > 2 and

c = 1
2 > 1 − 2

δ = 1
3 and α(j) = 1

jγ with γ = 6(1 + ε) > 6 for some ε > 0. For in that case, the

summability condition ∑
j≥1

jc[α(j)]1−2/δ =
∑
j≥1

1

j
γ
3
− 1

2

=
∑
j≥1

1

j
3
2
+2ε

<∞ (B.19)

holds and the innovations have finite moments of order p > 2δ = 6. �

Lemma B.2. Under Assumption 1(iv)-(vi) and Assumption 2(i)(ii), when nh→∞ and h→ 0

the following hold:

(a) 1
nh

∑n
t=1 xtx

′
tKtz

p−→ f(z)E[xtx
′
t|zt = z],

(b) E (xtx
′
t[β(zt)− β(z)]Ktz) = h3µ2 (K)CS(z) + o

(
h3
)
,

(c) A−1nz
∑n

t=1 E[xtx
′
t[β(zt)− β(z)]Ktz|zt = z] ∼a h2BS(z),

(d) 1√
nh3

∑n
t=1{xtx′t[β(zt)−β(z)]Ktz−E (xtx

′
t[β(zt)− β(z)]Ktz)} N

(
0, ν2(K)f(z)E{xtx′t[x′tβ(1)(z)]2|zt = z}

)
,

(e) 1√
nh

∑n
t=1 xtutKtz  N (0, ν0(K)σ2uf(z)E[xtx

′
t|zt = z]),

with Anz =
∑n

t=1 xtx
′
tKtz, Mz = f(z)E[xtx

′
t|zt = z], BS(z) = µ2(K)M−1z CS(z),

CS(z) = E
{
xtx
′
t

[
β(1)(z)

fz (xt, z)

f(xt|zt = z)
+

1

2
β(2)(z)f (z)

] ∣∣∣∣zt = z

}
(B.20)

and where fz (s, z) = ∂f (s, z) /∂z, f(xt, zt) is the joint density of (xt, zt) at (s, z) and f(xt|zt =

z) is the conditional density of xt given zt = z. When Assumption 2(iii) holds and xt and zt are

mutually independent BS(z) = B(z) = µ2(K)
f(z)

[
β(1)(z)f (1)(z) + 1

2β
(2)(z)f(z)

]
.
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Proof. (a)

1

nh

n∑
t=1

xtx
′
tKtz =

1

nh

n∑
t=1

E[xtx
′
tKtz] +

1

nh

n∑
t=1

{xtx′tKtz − E[xtx
′
tKtz]}

=
1

nh

n∑
t=1

E
{

[xtx
′
t|zt = z]EKtz

}
+Op

(
1√
nh

)
(B.21)

=
1

nh

n∑
t=1

E[xtx
′
t|zt = z]hf(z) +Op

(
1√
nh

)
= E[xtx

′
t|zt = z]f(z) + op(1), (B.22)

proving (a). The second equality (B.21) is justified as follows. Taking the scalar xt case with

no loss of generality, we have E[x2tKtz]
2 = E[x4t |zt = z]hf(z)ν0(K) = O(h) and Var(x2tKtz) =

O(h). Then, by central limit theory for conventional kernel-weighted centred sums of stationary

processes, we have
∑n

t=1{xtx′tKtz − E[xtx
′
tKtz]} = Op(

√
nh), giving (B.21).

(b) The following decomposition is useful for analyzing the bias component

n∑
t=1

xtx
′
t[β(zt)− β(z)]Ktz =

n∑
t=1

E{xtx′t[β(zt)− β(z)]Ktz}

+
n∑
t=1

{xtx′t[β(zt)− β(z)]Ktz − E{xtx′t[β(zt)− β(z)]Ktz}}. (B.23)

We first evaluate E{xtx′t[β(zt)− β(z)]Ktz}. For some z̃t on the line segment between zt and z,

and some r̃h on the line segment between rh and 0, we have

E{xtx′t[β(zt)− β(z)]Ktz} = E
(
xtx
′
t[β

(1)(z)(zt − z) +
1

2
β(2)(z̃t)(zt − z)2]Ktz

)
=

∫
s

∫
p
ss′[β(1)(z)(p− z) +

1

2
β(2)(z̃t)(p− z)2]K

(
p− z
h

)
f (s, p) dsdp

=

∫
s

∫
r
ss′[β(1)(z)rh+

1

2
β(2)(z + r̃h)r2h2]K (r) f (s, z + rh) dsdrh

=

∫
s

∫
r
ss′[β(1)(z)rh+

1

2
β(2)(z + r̃h)r2h2]

[
f (s, z) + fz

(
s, z + r̃h

)
rh
]
K (r) dsdrh

= h3
∫
s

∫
r
ss′[β(1)(z)fz (s, z) +

1

2
β(2)(z)f (s, z)]K (r) r2dsdr + o

(
h3
)

= h3µ2 (K)

∫
s
ss′[β(1)(z)fz (s, z) +

1

2
β(2)(z)f (s, z)]ds+ o

(
h3
)

= h3µ2 (K)

∫
s
ss′[β(1)(z)

fz (s, z)

f (s|z)
+

1

2
β(2)(z)f(z)]f (s|z) ds+ o

(
h3
)

= h3µ2 (K)E
{
xtx
′
t

[
β(1)(z)

fz (xt, z)

f(xt|zt = z)
+

1

2
β(2)(z)f (z)

] ∣∣∣∣zt = z

}
+ o

(
h3
)

=: h3µ2 (K)CS(z) + o
(
h3
)
, (B.24)

where CS(z) is given in (B.20), thereby establishing (b).
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(c) The bias function now follows from (B.22) and (B.24)

A−1nz

n∑
t=1

E[xtx
′
t[β(zt)− β(z)]Ktz|zt = z] ∼a [nhE[xtx

′
t|zt = z]f(z)]−1nh3µ2(K)CS(z)

= h2µ2(K)M−1z CS(z) = h2BS(z), (B.25)

Note that when xt and the covariate zt are independent we have

CS(z) = E
{
xtx
′
t

} [
β(1)(z)f (1)(z) +

1

2
β(2)(z)f(z)

]
, Mz = f(z)E[xtx

′
t], (B.26)

giving

h2BS(z) = h2µ2(K)M−1z CS(z) = h2
µ2(K)

f(z)

[
β(1)(z)f (1)(z) +

1

2
β(2)(z)f(z)

]
= h2B(z), (B.27)

reproducing the standard deterministic bias function of the stationary case in (1.9) and that of

the nonstationary case in Theorem 2.1. Hence, under the same independence condition between

xt and zt, the bias function BS(z) in the stationary case aligns precisely with the nonstationary

version B(z). This correspondence ensures that the robust test statistics T̂ (z) and T̂2(z) have

the same limiting form in both stationary and nonstationary cases under those comparable

conditions.

(d) The elements of the sum in the second term on the right side of (B.23) are stationary with

zero mean and variance matrix of order O(h3). In particular,

E
{
xtx
′
t [β(zt)− β(z)]Ktz}{Ktz[β(zt)− β(z)]′xtx

′
t

}
= E

{
xt

[
x′tβ

(1)(z̃) (zt − z)
]2
x′tK

2
tz

}
= E

{
xt

[
hx′tβ

(1)(z̃)

(
zt − z
h

)]2
x′tK

2

(
zt − z
h

)}

= h3
∫
s

∫
r
s[s′β(1)(z + r̃h)]2s′f (s, z + rh)K2 (r) r2dsdr + o

(
h3
)

= h3ν2 (K)

∫
s
s[s′β(1)(z)]2s′f (s, z) ds+ o

(
h3
)

= h3ν2 (K) f (z)

∫
s
s[s′β(1)(z)]2s′f (s|z) ds+ o

(
h3
)

= h3ν2 (K) f (z)E
{
xt[x

′
tβ

(1)(z)]2x′t|zt = z
}

+ o
(
h3
)
. (B.28)

It follows that the variance matrix of the time series {xtx′t[β(zt)− β(z)]Ktz − E{xtx′t[β(zt)− β(z)]Ktz}
is h3ν2 (K) f (z)E

{
xtx
′
t[x
′
tβ

(1)(z)]2|zt = z
}

+ o
(
h3
)
. Then, by standard central limit theory for

kernel-weighted centred stationary processes, we have

1√
nh3

n∑
t=1

{xtx′t[β(zt)−β(z)]Ktz−E{xtx′t[β(zt)−β(z)]Ktz}} N
(

0, ν2(K)f(z)E{xtx′t[x′tβ(1)(z)]2|zt = z}
)
,

(B.29)

giving result (d).
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(e) Since ut is a martingale difference with E(u2t |Ft−1) = σ2u a.s. and Ft = σ{{xs, zs}∞1 ;ut, ut−1, . . .},
we have E(xtutKtz) = 0 and

E(xtx
′
tu

2
tK

2
tz) = σ2uE[xtx

′
t|zt = z]E(K2

tz) = hν0(K)σ2uf(z)E[xtx
′
t|zt = z] = O(h).

Hence xtutKtz = Op(
√
h). Then, by standard central limit theory for kernel-weighted centred

stationary processes we have 1√
nh

∑n
t=1 xtutKtz  N (0, f(z)ν0(K)σ2uE[xtx

′
t|zt = z]), as stated.

�
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