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Abstract

Housing fever is a popular term to describe an overheated housing market or housing price bubble.
Like other financial asset bubbles, housing fever can inflict harm on the real economy, as indeed the
US housing bubble did in the period following 2006 leading up to the general financial crisis and
great recession. One contribution that econometricians can make to minimize the harm created by a
housing bubble is to provide a quantitative ‘thermometer’ for diagnosing ongoing housing fever. Early
diagnosis can enable prompt and effective policy action that reduces long term damage to the real
economy. This paper provides a selective review of the relevant literature on econometric methods for
identifying housing bubbles together with some new methods of research and an empirical application.
We first present a technical definition of a housing bubble that facilitates empirical work and discuss
significant difficulties encountered in practical work and the solutions that have been proposed in
the past literature. A major challenge in all econometric identification procedures is to assess prices
in relation to fundamentals, which requires measurement of fundamentals. One solution to address
this challenge is to estimate the fundamental component from an underlying structural relationship
involving measurable variables. A second aim of the paper is to improve the estimation accuracy of
fundamentals by means of an easy-to-implement reduced-form approach. Since many of the relevant
variables that determine fundamentals are nonstationary and interdependent we use the IVX (Phillips
et al. (2009); Kostakis et al. (2015)) method to estimate the reduced-form model to reduce the finite
sample bias which arises from highly persistent regressors and endogeneity. The recursive evolving test
of Phillips, Shi, and Yu (2015a, PSY) is applied to the estimated non-fundamental component for the
identification of speculative bubbles. The new bubble test developed here is referred to as PSY-IVX.
An empirical application to the eight Australian capital city housing markets over the period 1999 to
2017 shows that bubble testing results are sensitive to different ways of controlling for fundamentals
and highlights the importance of accurate estimation of these housing market fundamentals.
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1 Introduction

Housing fever arises when fundamental economic factors do not justify ongoing rises in house prices.

Instead, prices are driven by repeated purchasing decisions by investors that are founded on expectations

of higher housing prices in future (Stiglitz, 1990), leading to house price bubbles that can harm the real

economy. During the expansion stage of a price bubble, there is a considerable inflow of resources into

the real estate sector, which crowds out more productive investment (Hirano et al., 2015) and domestic

saving (Caballero and Krishnamurthy, 2006), dampening corporation innovation and causing a shortage

of liquid assets. The collapse of a housing market bubble can result in extensive reductions in household

consumption (Skinner, 1996; Case et al., 2005) and unanticipated losses for lending institutions (Case

et al., 2000) which exacerbate the negative economic shock and which may lead to wider economic decline

and financial instability, as occured in dramatic fashion when the US housing bubble burst in 2006-2007.

Housing bubbles have attracted the attention of policymakers around the globe. For example, after

the subprime mortgage crisis, Donald Kohn, former vice-chairman of the Federal Reserve Board, urged

policymakers to “deepen their understanding about how to combat speculative bubbles to reduce the

chances of another financial crisis.”1 One mechanism to achieve such understanding is to use empirical

econometric models to assess whether a ‘speculative bubble’ is manifesting as a present and ongoing

risk in the data. The key methodological requirements in doing so are threefold: (i) the capacity to

identify a bubble in its expansionary phase, thereby distinguishing it from ‘normal’ periods of rising

prices; (ii) this capacity in turn requires an explicit identification condition for a market experiencing

such a phenomena; (iii) an empirical testing procedure that has power to detect deviations from ‘normal’

market behavior; (iv) quantification of economic fundamentals that drive markets during normal periods,

so that abnormal periods are revealed by way of deviance from fundamentals; and (v) a real time process

of assessment that enables early detection of speculative market behavior. In short, one contribution that

econometricians can make to deepen policy maker understanding of potential speculative bubbles is to

provide a ‘thermometer’ diagnostic for the presence of housing market fever (a.k.a. econometric bubble

detection techniques) that meets these requirements. The aim is to detect the ‘illness’ (a.k.a. presence

of speculations) accurately and promptly, thereby enabling effective policy actions.

This paper first provides a selective review of the literature on the econometric identification of housing

bubbles. We start with a technical definition of housing bubbles, followed by discussions on significant

challenges encountered and solutions proposed in the literature. By definition, the logarithmic price-

to-rent (PR) ratio consists of a fundamental and a bubble component in the presence of speculations.

The bubble component is explosive, periodically collapsing, and unobservable. We focus on challenges

brought by the periodically collapsing feature (Blanchard, 1979; Blanchard and Watson, 1982) and the

unobservable nature of bubbles.

The periodically collapsing feature results in low power in traditional approaches based on cointegra-

tion and unit root limit theory (Evans, 1991), which points to the need of either using nonlinear models

1See https://www.federalreserve.gov/newsevents/speech/kohn20100103a.htm.
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or working with subsamples for bubble testing. Popular solutions to the low discriminatory power of

standard methods are the recursive test proposed by Phillips, Wu, and Yu (2011) and the generalized

version of this test suggested in Phillips, Shi, and Yu (2015a, PSY). The PSY test is based on a right-

tailed unit root test (with an unit root null and an explosive alternative) and relies on a subsampling

algorithm to overcome the challenge of low power and to assist in date stamping multiple bubble episodes

in long historical time series. Since its development, this approach has enjoyed widespread use in em-

pirical applications and as a real time diagnostic of the state of asset price markets. For example, using

the PSY algorithm, the Federal Reserve Bank of Dallas provides quarterly exuberance indicators for 23

international housing markets.2 The present paper provides an overview to the PSY approach with a

practical illustration of its implementation to housing markets.

Several solutions have been proposed to address the challenge that bubbles are unobservable until

they collapse. To be effective, solutions must meet they key methodological requirements (i)-(v) given

above. The first proposal is to work with the raw data on house prices. According to the definition, house

prices themselves have explosive characteristics during the expansive phase of a bubble. It has therefore

become standard practice to apply bubble detection techniques to real house prices or log price/rental

(PR) ratios,3 where house rental data serves as a proxy for a market fundamental. The log PR ratios are

often replaced by log price-to-income ratios when rent data are not available (e.g., Hu and Oxley 2018;

Chen et al. 2019). The popularity of this solution is mostly due to its convenience. But the approach

is not flawless as explosive root tests are primarily designed to capture the key time series feature of

the bubble component, and this feature is only partly present as a component of house prices or log PR

ratios.

An alternative solution, therefore, is to decompose house prices or log PR ratios into a fundamental

and a non-fundamental component. The non-fundamental component comprises a bubble process and a

random element during speculative episodes but constitutes just a random error element during normal

market conditions. Campbell et al. (2009) propose a multi-step procedure to achieve this decomposition.

Their procedure involves: 1) forecasting future streams of rent growth and interest rates using a VAR

model; 2) calibrating model parameters from the data; and 3) ‘assembling’ the forecasted streams and cal-

ibrated parameters according to a structural economic definition of fundamentals. The non-fundamental

component is then computed as the difference between the log PR ratios and the estimated fundamentals.

A second aim of the present paper is to enhance the estimation accuracy of the fundamental compo-

nent in the above process by developing an improved estimation procedure. The new approach employs

a ‘reduced form’ model, with the growth rate of PR ratios as the dependent variable and regressors that

capture housing market demand and supply factors such as rent, interest rates, employment, population,

GDP, and new housing completions. The goal is to separate variations that are driven by fundamentals

from the remaining drivers of market prices. Given the endogeneity and nonstationarity of many of these

2See https://www.dallasfed.org/institute/houseprice.
3See, for example, Pavlidis et al. (2016); Gomez-Gonzalez et al. (2018); Anderson et al. (2011); Caspi (2016); Yiu and

Jin (2013); Shi et al. (2016); Greenaway-McGrevy and Phillips (2016).
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elements in the regression specification, we estimate the regression model by the IVX method (Phillips

et al., 2009; Kostakis et al., 2015; Yang et al., 2020) to reduce finite sample bias in estimation, avoid

non-standard limiting distributions of the estimated coefficients caused by highly persistent regressors

and endogeneity, and so enhance inference. The fundamental component of market prices is then cal-

culated as the cumulative sum of the fitted values. Unlike the existing multi-step approach to finding

fundamentals, the new method is easy to implement by regression and has the advantage of allowing for

a comprehensive set of fundamental driver variables, which thereby help to isolate the non-fundamental

speculative component of prices.

There are two critical differences between the existing procedure and the new methods. The existing

structural approach relies on a structural form specification of fundamentals which is a function of the

return premium and the future streams of rent growth and interest rates. Implementation involves

the estimation of a VAR model and calibrations of several unknown parameters. Both the estimation

and calibration errors accumulate in the assembling step. By contrast, direct estimation of market

fundamentals by the new reduced form regression approach is achieved in a single step with a large

set of relevant regressor variables that affect fundamentals. The second key difference between the two

approaches lies in their data requirements. The structural approach requires the availability of house

prices and rents in dollar values (rather than indexes), which are sometimes hard to obtain in practice.

Dollar values are not required in the reduced-form approach as either dollar values or indexes may be

employed in the empirical regression.

With this new methodology for direct estimation of fundamentals, the non-fundamental time series

may be computed as a residual and the PSY test can be applied to the resulting non-fundamental

component, as in Shi (2017). This new approach to bubble testing is referred to as PSY-IVX testing.

The method is illustrated here to investigate the presence of speculative bubbles in eight Australian

capital city housing markets from 1999 to 2017. Australian housing markets experienced three significant

booms over the sample period. The first occurred in the early 2000s after the announcement of the 50%

capital gain tax discount; the second took place during the 2006-2007 commodity boom period; and the

last episode started in 2013 and lasted until the end of the sample. The PSY-IVX procedure finds strong

evidence of speculation in the early 2000s across multiple cities and over 2006-2007 in Perth and Darwin.

Little evidence of speculation is detected during the most recent housing boom.

Our findings are compared with those reported in the recent work of Shi, Rahman, and Wang (2020,

SRW), which computed the fundamental component using the structural procedure on the same data

set. The two approaches are in agreement on the first and last episodes but disagree on the 2006-2007

episode. SRW find no evidence of speculation in both Perth and Darwin over the 2006-2007 period.

Moreover, when applying the PSY test directly to the log PR ratios, longer and additional episodes of

speculation are identified. These variations in the results indicate the important role that controlling for

market fundamentals can play in housing bubble identification.

The remainder of the paper is organized as follows. Section 2 introduces technical definitions rele-
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vant to the analysis of bubbles in time series data. Section 3 discusses challenges and solutions for the

econometric identification of bubbles. The PSY-IVX approach for reduced-form determination of fun-

damentals is presented in Section 4. Section 5 reports the empirical application to Australian housing

markets. Summary and conclusions are given in Section 6.

2 Bubble Definition

An important starting point in any analysis of bubbles is a quantitative definition that can be used

in empirical research. A convenient and popular concept distinguishes between economic fundamentals

and speculative factors which produce bubbles, leading to a model that separates these components

(Blanchard and Watson, 1982). For housing market applications, let pt = log (Pt) and rt = log (Rt)

where Pt denotes real housing prices and Rt real housing rents. The log price-to-rent (PR) ratio (pt− rt)
is then decomposed into fundamental (Ft) and bubble (Bt) components as follows:

pt − rt = Ft +Bt, (1)

where

Ft =
κ

1− ρ
+

∞∑
k=0

ρk(∆rt+1+k − γt+1+k), (2)

Bt = lim
j→∞

ρjpt+j , (3)

with p̄ (respectively, r̄) being the sample mean of pt (rt), ρ = ep̄/ (ep̄ + er), κ = −log(ρ) + (1− ρ)(p̄− r̄),
γt = log (Γt), and Γt being the one-period gross return to housing. The decomposition (1) is obtained

from the definition of the one period gross return to housing, i.e.,

Γt+1 =
Pt+1 +Rt+1

Pt
, (4)

which can be rewritten in log form as γt+1 = log (ept+1 + ert+1)− pt. Applying a first order Taylor series

expansion gives the approximate relationship

pt − rt = κ+ ρ(pt+1 − rt+1) + ∆rt+1 − γt+1, (5)

and recursive substitution leads to the model’s equations (1)-(3). The infinite sums in (2) converge almost

surely when suptE(|∆rt|+ E|γt|) <∞ because |ρ| < 1.

The fundamental component Ft in (2) is a function of the future rent growth ∆rt+1+k and the future

log gross return to housing γt+1+k. It is standard in the literature (e.g., Campbell et al. 2009; Sun and

Tsang 2013; Shi 2017) to assume that the log gross return to housing equals the sum of the real interest
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rate (it) and a time-varying risk premium (ϕt), i.e.,

γt = it + ϕt. (6)

The risk premium is further assumed to take the simple form

ϕt = ϕ+ εt, (7)

where ϕ is the long-run risk premium and the zero mean error term εt captures short-term fluctua-

tions brought by either market fundamentals or bubbles (Shi, 2017; Shi et al., 2020). Under these two

assumptions, the fundamental component Ft can be written as

Ft = c+Rt − It − Ut, (8)

where

c =
κ− ϕ
1− ρ

,Rt =

∞∑
k=0

ρk∆rt+1+k, It =

∞∑
k=0

ρkit+1+k, and Ut =

∞∑
k=0

ρkεt+1+k.

The fundamental component Ft is now a function of the real interest rate, which could be stationary

or non-stationary (Rose, 1988; Rapach and Weber, 2004). The quantity Rt (respectively, It) is the

aggregated discounted future values of housing rent growth (respectively, the real interest rate) based on

perfect foresight. The expected value of Ft conditional on information at period t is then

Et (Ft) =
κ− ϕ
1− ρ

+

∞∑
k=0

ρkEt (∆rt+1+k)−
∞∑
k=0

ρkEt (it+1+k) . (9)

The bubble component Bt equals the present value of the asset price computed out to the infinite

future. When the so-called ‘transversality condition’ is satisfied, we have limj→∞ ρjpt+j = 0. Then

Et (Bt+1) = 0 and there is no speculative behaviour in the market. On the other hand, when the

‘transversality condition’ is violated (limj→∞ ρjpt+j 6= 0), the bubble component follows a sub-martingale

process such that

Et(Bt+1) =
1

ρ
Bt. (10)

By definition, the coefficient 1/ρ is greater than unity. This implies that the size of the bubble is expected

to be larger in the next period, thereby representing speculative behaviour. Unlike the fundamental

component, Bt is an explosive process.

Furthermore, in practice bubbles are typically not sustained and instead collapse periodically. So, an

important empirical characteristic is that the explosive dynamic of a bubble does not prevail indefinitely,

which leads to the common phenomenon that periods of both expansion and collapse may be experienced

in the same sample period. Various mechanisms to model this phenonema have been suggested and
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analyzed in the literature. For instance, under the data generating process proposed by Blanchard and

Watson (1982), probabilities of a bubble collapse (π) and survival (1− π) are set a priori in the model,

so that

Bt+1 =

{
(πρ)

−1
Bt + εt+1 with probability π

εt+1 with probability 1− π
,

where Et (εt+1) = 0. Similarly, Evans (1991) proposed a data generating process of the following form

Bt+1 =

{
ρ−1BtεB,t+1 if Bt < b[
ζ + (πρ)

−1
θt+1 (Bt − ρζ)

]
εB,t+1 if Bt ≥ b

, (11)

where εB,t+1 = exp
(
vt+1 − τ2/2

)
with vt+1 ∼ i.i.d N

(
0, τ2

)
, θt follows a Bernoulli process which takes

value 1 with probability π and zero otherwise, and ζ is the residual magnitude of the process when the

bubble collapses. The rate of expansion depends on the size of the bubble. If the bubble size is smaller

than b, the rate of expansion is 1/ρ. However, when it exceeds b, the bubble expands at a faster rate

1/(πρ) and faces a probability of collapsing (π). Importantly, both DGPs satisfy the condition in (10).4.

3 Challenges and Solutions

The econometric identification of bubbles in time series data presents many challenges. In this Section we

discuss some of the challenges that have arisen in econometric testing due to the fact that bubbles have

multiple features and are typically short-lived and episodic. Speculative bubbles appear and subsequently

collapse, leading to what has been called in the literature their periodically collapsing feature. This

characteristic implies the presence of multiple structural changes in the generating mechanism that switch

speculative behavior on and off. Such switches need to be detected and dated in the data if the historical

course of a bubble is to be identified. Various solutions have been presented in the literature and the

main approaches are described in what follows.

3.1 Periodically collapsing bubbles

Diba and Grossman (1988) studied the use of a right-tailed unit root test for bubble detection. The null

hypothesis of this test is that there is no bubble in the market, so that the data follow a martingale

process. The alternative hypothesis of interest is that speculative bubbles are present and the process is

explosive. The effectiveness of this very simple test is severely compromised by the fact that a bubble may

be present for only a short subperiod and it may periodically re-emerge and collapse. Evans (1991) showed

that such right-tailed unit root tests have low discriminatory power when bubbles collapse periodically

as they do in generating mechanisms of the form given in (11).

4Several papers have considered explicit data generating processes for pt − rt that are designed for empirical work with
data in the presence of bubbles. See, for example, Phillips et al. (2011); Phillips et al. (2015a); Phillips and Shi (2019).
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To address these deficiencies in unit root testing algorithms, several approaches have been proposed.

These methods typically seek to incorporate the switching mechanism or nonlinearity in the data gen-

erating process into the empirical model specification to assist in overcoming the low power of unit root

testing. The approaches include Markov-switching ADF tests (Hall et al., 1999; Shi, 2013), regime-

switching models (Brooks and Katsaris, 2005; Van Norden, 1996; Van Norden and Vigfusson, 1998), and

methods based on subsampling techniques (Phillips et al., 2011; Homm and Breitung, 2012; Phillips et al.,

2015a). The most popular solution is the recursive evolving test proposed by Phillips et al. (2015a,b) and

various extensions of this procedure that have been developed to improve its performance in practical

work. An overview of this PSY test is given in what follows.

Let yt denote the data series of interest. Under the null hypothesis of no bubbles, yt is assumed to

follow a martingale process with an asymptotically negligible drift (Phillips et al., 2014) such that

yt = cT−η + yt−1 + εt, with constant c and η > 0.5, (12)

where εt is a martingale difference sequence (m.d.s) and T is the sample size. The purpose behind the

intercept cT−η in (12) is to allow for the presence of a small (or asymptotically negligible) drift in the

data, which is induced by the unit autogregressive root in (12). This formulation is effective in capturing

the mild drift that tends to occur in asset prices which grow over long periods. The alternative hypothesis

is that yt is a mildly explosive process with generating mechanism

yt = δT yt−1 + εt with δT = 1 + cT−α, c > 0 and α ∈ [0, 1). (13)

In (13), the autoregressive coefficient δT = 1 + cT−α exceeds unity but by virtue of its specification is in

the vicinity of unity and tends to unity as T →∞. The vicinity of unity for δT is deliberately prescribed to

be wider than the commonly employed local to unity form (for which δT = 1 + cT−1). Such formulations

were introduced by Phillips and Magdalinos (2007) and called mildly (or moderately) explosive. They are

particularly useful in capturing periods of speculative exuberance in financial asset and real estate asset

prices. This specification of the alternative hypothesis is consistent with the sub-martingale property of

bubbles in (10).

The testing procedure is developed from a regression model of the form

∆yt = β0 + β1yt−1 +

K∑
i=1

λi∆yt−i + εt, (14)

where β0, β1, and λi are model coefficients, K is the lag order, and εt is the error term. The key parameter

of interest is β1. We have β1 = 0 under the null and β1 > 0 under the alternative. The model is estimated

by Ordinary Least Squares (OLS) and the t-statistic associated with the estimated β1 is referred to as

the ADF statistic.

The construction of the PSY statistic requires computing the ADF statistic recursively from a subsam-
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ple sequence. It is convenient for both exposition and asymptotics to measure time in sample fractions,

in which case the total sample ranges fractionally from 0 to 1. Let r1 and r2 be, respectively, the start

and end points of a certain subsample. We require a minimim window of r0 to initiate the regression.

So the full window subsample size rw satisfies rw = r2 − r1 ≥ r0. The ADF statistic computed from this

subsample is denoted ADF r2r1 . With this subsample arrangement, it is possible to investigate the presence

of speculative bubbles using the PSY test for each observation falling between r0 and 1. Suppose the

observation of interest is some point r ∈ [r0, 1]. In this case the end point of all the relevant subsamples

is taken to be r (i.e., r2 = r). In searching for the subsample with the greatest probability of being ex-

plosive, the PSY procedure allows the start point to vary within its feasible range so that r1 ∈ [0, r − r0].

The PSY test statistic itself is then defined as

PSYr = sup
r1∈[0,r−r0],r2=r

{
ADF r2r1

}
.

The PSY statistic corresponds to the largest ADF statistic in the sequence. Under the null hypothesis

of (12), Phillips et al. (2015b) show that this statistic has the following limit distribution

PSYr →d sup
r1∈[0,r−r0],r2=r


1
2rw

[
W (r)

2 −W (r1)
2 − rw

]
−
∫ r
r1
W (s) ds [W (r)−W (r1)]

r
1/2
w

{
rw
∫ r
r1
W (s)

2
ds−

[∫ r
r1
W (s) ds

]2}1/2

 , (15)

where W (·) denotes standard Brownian motion. As is apparent from (15), the limit distribution is

free of nuisance parameters and depends only on the process W (·), the start and end points (r0, r) and

the window width rw. Critical values for the PSY statistic recursive sequence may be constructed by

simulation from the asymptotic distribution (15) or by bootstrap methods, as discussed in Phillips et al.

(2015a).

Another contribution of Phillips et al. (2015b) is to provide estimates of the bubble origination and

termination dates (denoted by re and rf , respectively) and to establish their consistency under a periodi-

cally collapsing bubble generating process. Let cvr denote the critical value of the PSY statistic obtained

from the above limiting distribution. The origination (resp. termination) of the bubble is estimated as

the first chronological observation that the PSYr statistic goes above (resp. below) the critical value.

Denote the estimated origination and termination dates by r̂e and r̂f , respectively. Under the given

data generating process and some regularity conditions, the estimators converge to the true value as the

sample size T goes to infinity, i.e.,

r̂e →p re and r̂f →p rf .
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3.2 Unobservable bubble processes

Although Bt has the distinguishing time series feature of explosive submartingale behavior, it is not

directly observable and may not even be present in a given series. This complicates inference. Asset

prices are available and the fundamental component may be written in the form (8), leaving the bubble

component as a residual. But the decomposition is not straightforward because the fundamental com-

ponent must itself be measured. From (8) the fundamental component is defined in terms of its relation

to the future income stream of the asset (rent growth) and the future cost for owning the property (the

real rate of interest). Measurement of (8) therefore requires a methodology for computing these separate

components. Different approaches have been suggested to perform the construction.

Solution I: use pt − rt instead

The log price-to-rent ratio is composed as the sum of the fundamentals series Ft, which is at most I(1),

and the explosive series Bt, if it is present. The log PR ratio is then I(1) in the absence of bubbles and

explosive in the presence of bubbles. The problem of identifying the presence of a speculative bubble in

an asset price series can therefore be reduced to detecting the presence of explosive dynamics in the log

price-to-rent ratio. But this reduction brings complications for inference.

In particular, the presence of Ft in the log PR ratio introduces additional elements in testing explo-

siveness. Tests for an explosive root are designed for the unobserved Bt series not for series like log PR

ratios with the additional fundamentals I(1) component. To be specific, the null hypothesis of the PSY

explosive root test is a martingale process with an asymptotically negligible drift (12). This specification

matches well the bubble process Bt which has zero mean. But the log PR ratio is governed by Ft under

the null and has a mean value of

c+ (µ∆r − µi) /(1− ρ)

with µ∆r and µi being the long run mean of ∆rt and it, according to (8). The drift value is nonzero

and may be non-negligible. Moreover, the fundamentals component that affects asset prices is present

in the PR ratio under the bubble alternative and therefore contaminates the pure bubble process Bt.

Misspecifications such as these in both the null and alternative hypotheses may result in a different null

limit distribution of the test statistic and false inferences concerning the presence of a bubble.

Solution II: decomposition

Another approach to tackle the unobservable bubble problem is to decompose pt−rt into its fundamental

and non-fundamental components based on (1) and (9). See, for example, Campbell et al. (2009); Sun and

Tsang (2013); Shi (2017). The estimation of the fundamental component Ft requires unbiased forecasts

of future streams of the rent growth rate and the real interest rate, as well as estimates of parameters κ,

ϕ, and ρ in (9). The forecasting is accomplished using a VAR model, while the parameters are obtained
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by calibration. Suppose the VAR is stationary with companion form

Zt+1 = Π0 + ΠZt + εt+1

where Zt is a K × 1 vector containing ∆rt and it (along with other related variables and their lags in the

companion form) and εt+1 is the error term. The expected value of Zt+k conditional on information at

period t is

Et (Zt+k) =
(
IK −Πk

)
(IK −Π)

−1
Π0 + ΠkZt, (16)

which provides forecasts for future rent growth rates and interest rates.

Let d1 (respectively, d2) be a 1 × K row vector with all elements equal to zero, except that the

one corresponding to ∆rt (respectively, it) is unity. The conditional expected value of the fundamental

component is then

Et (Ft) = c+ (d1 − d2) (1− ρ)
−1

(IK − ρΠ)
−1

Π0 + (d1 − d2) Π (IK − ρΠ)
−1
Zt, (17)

by combining results in (16) and (9). The VAR model coefficients can be estimated by maximum likelihood

and the other parameters (i.e., ρ, κ, ϕ) can be calibrated from the data. Denote the resulting estimated

market fundamental by F̂t. The estimated non-fundamental component, denoted by N̂F t, is the difference

between pt − rt and F̂t and has the residual form

N̂F t = pt − rt − Et (Ft)−
[
F̂t − Et (Ft)

]
= Bt − Ut +

∞∑
k=0

ρk [∆rt+1+k − Et (∆rt+1+k)]−
∞∑
k=0

ρk [it+1+k − Et (it+1+k)]−
[
F̂t − Et (Ft)

]
.

The non-fundamental component includes not only the bubble component Bt but also the noise term

Ut, the forecast errors of ∆rt and it, and the estimation error of Et (Ft). Since the bubble component

Bt can be expected to dominate N̂F t, econometric methods such as the PSY test can be used to detect

explosive bubble behaviour in N̂F t when it is present, as suggested in Shi (2017).

To summarize, the decomposition is based on fitting the structural form of Ft in (17) and involves the

following steps in practice: (i) estimate a suitable VAR model for the components of the fundamental; (ii)

calibrate the additional parameters ρ, κ, and ϕ from the data; (iii) compute the fundamental components

according to equation (17); and (iv) calculate the non-fundamental component using (1).

Furthermore, this procedure requires house price and rent data in dollar values, which are, unfortu-

nately, often available as indexes instead. Suppose P 0
t and R0

t are, respectively, the real house price index

and the real rent index. Provided that we know their dollar values for one period (i.e., Pi and Ri for any

i ∈ [1, T ]), one could recover the dollar values of the entire time series by re-standardization such that

Pt = c1P
0
t and Rt = c2R

0
t

11



with c1 = Pi/P
0
i and c2 = Ri/R

0
i for all t. The values of c1 and c2 (hence Pi and Ri) affect both the left

and right sides of equation (1) since

pt − rt = p0
t − r0

t + log c1 − log c2,

ρ =
c1e

p̄0

c1ep̄
0 + c2er̄

0 , and κ = −log(ρ) + (1− ρ)(log c1 − log c2 + p̄0 − r̄0).

Following earlier convention we use lower case letters to denote logarithms of the correponding variables,

i.e., p0
t = log

(
P 0
t

)
and r0

t = log
(
R0
t

)
. Clearly Pt and Rtcannot be simply replaced by P 0

t and R0
t in the

calculation of Ft and Bt, unless c1 = c2.

4 The PSY-IVX Approach

We introduce the new PSY-IVX approach in this section. Let yt = ∆pt −∆rt be the growth rate of the

price-to-rent ratio. We formulate the following regression model for yt

yt = α+ βxt + εt, (18)

xt = ρxxt−1 + uxt with ρx = Ik +
Cx
Tα

, (19)

where α ∈ (0, 1] , Cx = diag(cx1, ..., cxk), and cxi ≤ 0. Here xt is a k × 1 vector containing fundamental

variables that capture housing demand and supply, and (εt, uxt) are disturbances. The fundamental

driver variables xt are assumed to satisfy (19) with an autoregressive coefficient matrix ρx which is in the

vicinity of the identity matrix Ik, so that the variables xt may be I(1), near integrated, or even mildly

stationary, thereby allowing a great deal of flexibility in the characteristics that drive fundamentals. This

flexibility is achieved by using the general setting for the coefficient matrix ρx given in (19). Mildly

explosive components of xt are excluded by requiring that cxi ≤ 0 for all i = 1, .., k.

In this formulation, the aim is to separate variations in the observed variable yt that are due to the

market fundamentals from those that are induced by speculative behaviour. It is therefore important

in this regression not to include variables in xt that may be contaminated by speculative thinking and

behaviour, such as consumer sentiment and risk premia. For instance, in the subsequent application we

consider two possible empirical settings for xt. One contains only the real interest rate and the log of

real housing rents. The second set includes four additional variables: log employment, log population,

log real disposable income (approximated by real final demand in the relevant state), and log housing

supply (proxied by new housing completions).

To accommodate potential serial correlation and conditional heteroskedasticity in the residuals, εt is
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assumed to follow an AR(q)-GARCH(m,n) process as in Yang et al. (2020), so that

εt =

q∑
i=1

φiεt−i + vt, with vt = σtηt and ηt
i.i.d∼ (0, 1), (20)

σ2
t = ω0 +

m∑
i=1

ωiv
2
t−i +

n∑
j=1

γjσ
2
t−j . (21)

This specification reduces to the standard case with no serial correlation in εt and homoskedasticity when

φi = ωi = γj = 0.

As discussed below, the model (18)-(19) is estimated using the IVX-AR method. The fundamen-

tal component is then computed as the cumulative sum of the fitted values ŷt. Unlike the structural

decomposition outlined in the previous section, this reduced-form approach is easy to implement and

allows great flexibility in terms of the properties and numbers of the driver variables xt, which is likely to

improve estimation accuracy. Furthermore, this methodology does not need observations of house prices

and rents in dollar values (only indexes are required), thereby aiding practical implementation.

4.1 The IVX Estimation Method

It is now well known that the OLS estimate of β suffers finite sample and second order asymptotic bias

and standard t and Wald tests that are based on OLS estimation are invalid when the predictive variable

xt is highly persistent (i.e., when ρx is in the vicinity of the identity matrix). These characteristics likely

apply in most predictive regressions, including the present model and real estate context. Due to omitted

variables and joint determination of yt and xt there is usually contemporaneous and serial correlation

between uxt and εt, leading to regressor endogeneity. Even in predictive models with martingale difference

equation errors εt, endogeneity is still present when the regressors are nonstationary due to potential feed-

forward correlation between εt and ux,t+k for k ≥ 1.

Several approaches have been proposed to tackle these issues. One method is to use Bonferroni bounds

(Campbell and Yogo, 2006). Another uses weighted empirical likelihood (Zhu et al., 2014). Yet another

uses a general estimation procedure based on endogenous instrumentation known as IVX estimation. The

IVX method has been shown to be valid under a broad spectrum of persistence and for multiple regressor

cases. Phillips et al. (2009) gave the limit properties of IVX estimation and testing for settings where

xt is local-to-unity and mildly integrated in the stationary direction. The theory was extended to mixed

models with mildly integrated and mildly explosive regressors by Phillips and Lee (2016).

The IVX method is a linear estimation procedure, its construction does not rely on any external

information, and orthogonality (with respect to the errors) and relevance (to the regressors) are shown

to hold asymptotically without further assumptions. A particularly attractive feature of this approach

is that the Wald statistic for testing parameter restrictions has a limiting chi-square distribution and

is therefore easy to implement in practical work. A recent modification to this method is designed to
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provide effective accommodation of serially correlated and conditional heteroskedastic errors, as in (20)

and (21). In particular, Yang et al. (2020) proposed a parametric adjustment of the IVX method which

uses an autoregressive error correction to improve size properties of testing based on IVX estimation.

This method, called IVX-AR, appears to be more effective in controlling size than the nonparametric ad-

justments that are built into standard IVX estimation (Phillips and Lee, 2016). The method is described

below and is particularly useful when the equation errors are serially correlated rather than martingale

differences.

Let φ = (φ1, . . . , φq), yφ,t = yt−
∑q
j=1 φjyt−j and xφ,t = xt−

∑q
j=1 φjxt−j , based on the autoregressive

error specification (20). The predictive regression can be rewritten after this Cochrane-Orcutt transform

as

yφ,t = αφ + βxφ,t−1 + vt,

where αφ = α
(

1−
∑q
j=1 φj

)
. The instrumental variables are denoted by zφ,t and constructed from xφ,t

as

zφ,t =

t∑
j=1

ρt−jz ∆xφ,j with ρz = Ik +
Cz
T β

for some Cz and β ∈ (0, 1) ,

where zφ,0 = 0 and k is the dimension of xt. We set Cz = −Ik and β = 0.95 in the empirical application,

as suggested by KMS (2015). These settings ensure that the instruments zφ,t are all mildly integrated pro-

cesses, which is important in ensuring good asymptotic properties that include pivotal limit distributions

for conventional t and Wald test statistics. By construction,

zφ,t = zt −
q∑
j=1

φjzt−j with zt =

t∑
j=1

ρt−jz ∆xj .

The instrumental variables are less persistent than the corresponding variables xt from which they are

derived when the variables in xt are unit root or near unit processes.

Next, let y
φ,t

= yφ,t − 1
T

∑T
t=1 yφ,t and xφ,t = xφ,t − 1

T

∑T
t=1 xφ,t be demeaned versions of yφ,t and

xφ,t, and define the observation matrices Y φ =
(
y
φ,1
, . . . , y

φ,T

)′
T×1

, Xφ =
(
xφ,1, . . . , xφ,T

)′
T×k, and

Zφ = (zφ,1, . . . , zφ,T )
′
T×k. The IVX-AR estimation algorithm is as follows.

Step 1: For a given φ, compute the IVX estimator

β̂(φ) = Y ′φZφ
(
X ′φZφ

)−1
=

T∑
t=1

y
φ,t
z′φ,t−1

[
T∑
i=1

xφ,i−1z
′
φ,i−1

]−1

and obtain the residuals v̂φ,t = y
φ,t
− β̂(φ)xφ,t−1.
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Step 2: Find the optimal φ by minimizing the sum of squared residuals

φ∗ = arg min
φ

(
T∑
t=1

v̂2
φ,t

)
.

Step 3: Compute the IVX-AR estimator β̂IV X using simple instrumental variables regression as

β̂IV X = Y ′φ∗Zφ∗
(
X ′φ∗Zφ∗

)−1
.

The intercept is estimated by α̂IV X = ȳ − β̂IV X x̄.

HAC robust Wald test statistics are constructed as follows. Let θ = (α, β′)
′

be the (k + 1) × 1

parameter vector and θ̂IV X the corresponding IVX-AR estimate of θ. The null and alternative hypotheses

to be tested are

H0 : Rθ = r and H1 : Rθ 6= r,

where R is a p× (k + 1) matrix imposing full rank restrictions on the coefficients, r is a p× 1 vector, and

p is the number of restrictions. Let ε̂t = yt − α̂+ β̂xt−1 and ût = xt −
∑q
j=1 φ̂jxt−j , where α̂, β̂, and φ̂j

are the OLS estimates of the coefficients. The HAC-robust wald statistic is defined as

WIV X =
(
Rθ̂IV X − r

)′
Q−1

(
Rθ̂IV X − r

)
,

where

Q = R
(
Z ′φ∗Xφ∗

)−1
M
(
X ′φ∗Zφ∗

)−1
R′,

M = Z ′φ∗Zφ∗ σ̂2
ε − T z̄T z̄′T Ω̂FM , z̄T =

1

T

T∑
t=1

zt−1,

Ω̂FM = σ̂2
ε − Ω̂εuΩ̂−1

u Ω̂′εu,

with σ̂2
ε = 1

T

∑T
t=1 ε̂

2
t . The estimated quantities

Ω̂u = Σ̂u + Λ̂u + Λ̂′u and Ω̂εu = Σ̂εu + Λ̂′uε

employ the following variance, covariance, long run variance and long run one-sided covariance matrix

estimates Σ̂u = 1
T

∑T
t=1 ûtû

′
t, Σ̂εu = 1

T

∑T
t=1 ε̂tû

′
t, Λ̂u = 1

T

∑H
h=1

(
1− h

H+1

)∑T
t=h+1 ûtû

′
t−h, and Λ̂uε =

1
T

∑H
h=1

(
1− h

H+1

)∑T
t=h+1 ûtε̂

′
t−h, constructed in the usual fashion from regression residuals. In our

empirical application, we use the Wald test to make inferences concerning the significance of β and

thereby predictability of yt using the regressors xt. The bandwidth H in long run variance and covariance

estimation is set to be T 1/3.
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The estimated fundamentals F̂t are formed as the partial sums of ŷt, where ŷt = α̂IV X + β̂IV Xxt−1.

That is, we set F̂1 = p1− r1 and for t ≥ 2 construct F̂t = F̂1 +
∑t
i=2 ŷt. The residual component, denoted

by et, is et = pt − rt − F̂t.

4.2 Implementation of the PSY Procedure

We apply the PSY procedure to this calculated residual component et = pt − rt − F̂t representing the

data after removing the estimated fundamentals F̂t. Thus, to implement the PSY algorithm for bubble

detection we set yt in equation (14) equal et. By construction, the data series has a zero mean which

is consistent with the specification of the null hypothesis (12). The minimum window size r0 is set to

0.01 + 1.8/
√
T , as suggested in Phillips et al. (2015a). The lag order of the ADF model (14) is selected

by BIC with a maximum lag order of 4.

We employ the composite bootstrap procedure proposed in Phillips and Shi (2020) for the computation

of critical values. This bootstrap algorithm is designed to improve finite sample size control in PSY testing

in two ways: (i) by allowing for potential unconditional heteroskedasticity in the residuals; and (ii) by

addressing the multiplicity issue that arises from multiple testing in recursive methods such as PSY.5

This approach helps to control the probability of making false positive conclusions over a period of length

Tb. If Tb = T , we allow the possibility of making at least one false positive conclusion over the entire

sample period to be 5%. For real-time monitoring where T grows larger each period, Tb can be set to a

fixed time period. The length of the time period is a matter of choice, taking into account that a more

extended period leads to more conservative tests. In our empirical application below we set Tb to be one

year. Results are similar when we set Tb to be two years. The full procedure is detailed below.

Step 1: Estimate the regression model (14) under the null (β = 0). The estimated coefficient and

residuals are denoted, respectively, by β̂0 and ε̂t.

Step 2: Simulate a sample of T0 + Tb − 1 observations from the equation

ybt = β̂0 + ybt−1 + εbt (22)

with initial values yb1 = y1. The residuals εbt = wtε̂j , where wt is a random draw from the standard

normal distribution and ε̂j is bootstrapped from the residual sequence obtained in Step 1.

Step 3: Compute the PSY test statistic sequence from the simulated data series ybt , denoted by PSY br ,

and calculate the quantity

Mb = sup
r∈[r0,1]

(
PSY br

)
.

5This bootstrap algorithm is based on the wild bootstrap procedure of Harvey et al. (2016). The asymptotic properties of
this bootstrap procedure in the presence of conditional heteroskedasticity are presently unknown. But simulation evidence
indicates that the method provides a considerable improvement in size control.
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Step 4: Repeat Steps 2-3 B = 2, 999 times.

Step 5: Take the 95% percentile of the
{
Mb

}B
b=1

sequence as the critical value for use in the PSY bubble

detection procedure.

5 Australian Housing Markets

There are eight capital cities in Australia: Sydney, Melbourne, Brisbane, Adelaide, Perth, Hobart, Dar-

win, and Canberra, with Sydney and Melbourne being the two largest cities. Figure 1 shows the location

of each city. We investigate the presence of speculative bubbles in the eight capital city housing markets

from 1999:Q1 to 2017:Q4 by applying the PSY-IVX approach to detection. Test results are compared

with (i) those presented in SRW where housing market fundamentals are computed using the structural

approach, and (ii) those obtained from the standard PSY procedure applied directly to log price-to-rent

ratios with no adjustment for fundamentals.

Figure 1: Locations of the Australian eight capital cities. This map is sourced from the Australia Bureau
of Meteorology.

The sample period and data sources are identical to those of SRW for the ease of comparison. House

prices are obtained from the SIRCA (2018) CoreLogic RP database at a monthly frequency, and rent

indices are downloaded from the Australian Bureau of Statistics (ABS) at a quarterly frequency. The

rent indexes are translated into dollar values using rent prices at 2014:Q4 provided by CoreLogic6 and

then converted to real data series with the state level CPI (excluding shelter) obtained from ABS. The

real interest rate it is computed as the nominal mortgage rate less inflation expectations. The nominal

mortgage rate is the monthly standard variable home loan rate offered by banks to owner-occupiers, and

inflation expectations are proxied by taking the trimmed mean of 12-month ahead consumer inflation

6This is strictly unnecessary. With the present method, similar testing results should be obtained with the use of indexes,
as explained earlier.
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expectations, compiled by the Melbourne Institute at a quarterly basis. Both datasets are downloaded

from the Reserve Bank of Australia. We convert monthly data into quarterly by averaging.

Figure 2: House price-to-rent ratios in the eight capital cities and the national real interest rate.

(a) Price-to-rent ratios (b) Real interest rate

The price-to-rent ratios of the eight markets are displayed in Figure 2(a). There are several episodes

of rapid expansion in the housing markets over the sample period. The first wave occurs in the early

2000s, which is after the introduction of a 50% capital gain tax discount in late 1999 and involves most

cities in the study. We observe either a decrease or flattening of the PR ratios in all markets from 2004:Q2

onwards except Perth and Darwin where the momentum continues until early 2007. Another wave of

dramatic rises in the PR ratios (particularly in Sydney and Melbourne) starts from 2013 and lasts until

the end of the sample period. Figure 2(b) presents the real interest rate, which fluctuates throughout

the sample period. There are two sharp drops in the real interest rate. One occurs in the early 2000s

following the burst of the dot-com bubble, and the second occurs during the subprime mortgage crisis

period 2008-2009. There are two relatively calm periods, which overlap with the periods of housing

booms.

The dependent variable yt in (18) is the growth rate of the price-to-rent ratio (i.e., ∆pt −∆rt). The

regressors are log real rents and the real interest rate. The lag order q in (20) is selected by the Bayesian

information criteria (BIC) with a maximum order of 5 applied to the OLS residuals of (18). Table 1

shows the estimated coefficients from OLS and IVX. The significance of the OLS estimates are drawn

from the standard t-statistic, while those of the IVX estimates are from the HAC constructed Wald

statistic. Evidently, both variables are negative and highly significant in all cities (except rt in Sydney

when using IVX). There are some slight differences in the estimated coefficients between OLS and IVX.

The estimated market fundamentals of the eight cities, along with their log price-to-rent ratios, are

displayed in Figure A.1. The two estimation methods (OLS and IVX) do not lead to obvious differences

in F̂t. The discrepancy between the log price-to-rent ratio and the estimated fundamental is generally
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Table 1: Estimated β using OLS and IVX

Sydney Melbourne Brisbane Adelaide
OLS IVX OLS IVX OLS IVX OLS IVX

rt -0.05*** -0.03 -0.16*** -0.15*** -0.16*** -0.17*** -0.24*** -0.26***
it -2.34*** -1.84*** -2.11*** -2.00*** -1.44*** -1.57*** -0.93 -1.30***

Perth Hobart Darwin Canberra
OLS IVX OLS IVX OLS IVX OLS IVX

rt -0.15*** -0.15*** -0.28*** -0.30*** -0.09*** -0.09*** -0.14*** -0.13***
it -2.15*** -2.24*** -1.34*** -1.56*** -0.98*** -1.26*** -1.45*** -1.60***

Note: *,**,*** to denote the 90%, 95%, and 99% significance, respectively. The significance of the OLS estimates

are drawn from the standard t statistic, while those of the IVX estimators are based on the HAC-robust wald

statistic.

more significant in the first half of the sample than the second half.

Figure 3 shows the estimated non-fundamental components from IVX (black line) and the identified

bubble periods using the PSY procedure (shaded), which is referred to as PSY-IVX-2 (as the regression

model for computing ŷt includes two explanatory variables). The minimum window has 16 observations

(4 years). Evidently from these results the early 2000s housing boom is found to be driven by speculation.

More specifically, we find evidence of bubbles in five capital cities (Sydney, Brisbane, Adelaide, Hobart

and Canberra) out of eight over this period. The identified bubble periods fall between 2003:Q1 and

2004:Q2. Interestingly, we do not find any evidence of housing speculation over the more recent period

of 2013-2017, except in Sydney and that lasts only for one quarter (2015:Q3). This finding highlights

the vital role played by market fundamentals (especially the real interest rate) in influencing tests for the

presence of speculation over this period. Complementary to these findings, the tests show evidence of an

additional substantial bubble period in the Perth and Darwin housing markets. These bubble periods

coincide with the commodity boom (Ye, 2008), spanning from 2006 to 2007.

5.1 Controlling for Other Fundamental Factors

Next, we examine the impact of other potential fundamental factors on the price-to-rent ratios, as in SRW

and Shi (2017). Variables considered include employment, population, state final demand, and housing

supply (proxied by the one-year moving average of new housing completions).7 Due to the unavailability

of the city level data, we use data at the state level instead for those variables. Since most population

are concentrated in the capital cities (Costello et al., 2011), this approximation is not expected to have

significant impact on the results. All variables are downloaded from ABS at the quarterly frequency.

Again, the data are identical to those used in SRW.

The regressor xt in (19) now contains six variables: real rent growth, the real interest rate, and the

four state level variables mentioned above. The additional fundamental variables are plotted in Figures

7State final demand is an estimate of the level of spending in the local economy by the private and public sectors. It
serves as an alternative to disposable income which is unavailable at either the city or state level.
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Figure 3: The estimated non-fundamental components (black line) and identified bubble periods from
the PSY-IVX-2 method (shaded)

(a) Sydney (b) Melbourne

(c) Brisbane (d) Adelaide

(e) Perth (f) Hobart

(g) Darwin (h) Canberra
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A.3 and A.4 and the estimated market fundamentals are in Figure A.2. The OLS and IVX estimators

evidently provide similar results for all cities except Canberra. In particular, the IVX method reveals

a stronger housing fundamental in Canberra than OLS over the period of 2006-2008. By comparing

Figures A.1 and A.2, one can see that the discrepancy between the log PR ratios and the estimated

fundamentals becomes visibly smaller for Sydney and Melbourne, larger in Canberra based on IVX, and

remains roughly the same for other cities, after the consideration of the four additional variables.

The identified bubble periods are listed in Table 2 (labeled as PSY-IVX-6), along with results from

PSY-IVX-2. There is a broad agreement between PSY-IVX-6 and PSY-IVX-2 in bubble testing results.

First, there is substantial evidence of speculation between 2003 and 2004, involving four (respectively, five)

cities according to the PSY-IVX-6 (respectively, PSY-IVX-2) method. Second, there is little evidence of

bubbles during the 2013-2017 housing boom. The PSY-IVX-2 detects three one-quarter episodes (15:Q3

in Sydney, 16:Q2 in Brisbane, and 13:Q4 in Perth), while the PSY-IVX-6 only finds one short period in

Perth (2016:Q1-Q2). Finally, both methods detect the episode related to the commodity boom in Perth

and Darwin, although the identified period in Darwin is shorter with the PSY-IVX-6 method.

The consistency in findings between PSY-IVX-2 and PSY-IVX-6 suggests the dominating impact of

rents and interest rates on the dynamics of housing prices, with exceptions in the Canberra and Darwin

housing markets. We identify a significantly shorter bubble period between 2006 and 2007 in Darwin

and no bubbles between 2003 and 2004 in Canberra, after controlling for the four additional fundamental

factors.

We compare the testing results of PSY-IVX with those from SRW, listed in the fourth column of

Table 2. SRW computes fundamental components using the structural procedure and applies the PSY

test on the estimated residuals. As we can see, these two approaches lead to similar findings for the

2003-2004 period. Specifically, SRW finds evidence of speculation in three cities (Brisbane, Adelaide,

and Hobart) over this period, while PSY-IVX-2 and PSY-IVX-6 identify bubbles in, respectively, four

and five markets. For the 2013-2017 housing boom, SRW detects some short periods of speculation in

both the Sydney and Melbourne housing markets, whereas the PSY-IVX approach suggests no bubble

in the Melbourne housing market. Another difference between these two approaches occurs in the Perth

and Darwin markets during the 2006-2007 commodity boom period. Unlike the PSY-IVX method, SRW

concludes that the 2006-2007 housing boom in Perth and Darwin is purely driven by fundamentals.

Finally, the last column of Table 2 presents results obtained from the standard PSY test, which is

applied directly to the log price-to-rent ratios. The PSY procedure identifies more substantial evidence of

bubbles, with more cities and longer bubble periods identified for each housing boom episode. The vari-

ations in testing results of those approaches highlight the importance of an accurate market fundamental

estimator.
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Table 2: The identified bubble periods in the Australian housing markets

PSY-IVX-2 PSY-IVX-6 SRW PSY

Sydney 03:Q1 - Q3
15:Q3

03:Q4 - 04:Q1 16:Q3
17:Q1
17:Q3

03:Q2 - Q3
14:Q3 - 15:Q4
16:Q2 - 17:Q3

Melbourne NA NA 17:Q2-Q3 06:Q2 - 08:Q1
15:Q3
16:Q2 - 17:Q3

Brisbane 03:Q2-04:Q1
16:Q2

03:Q3 - 04:Q1 03:Q4 03:Q2 - 04:Q1
07:Q3 - 08:Q1
16:Q1 - Q2
16:Q4 - 17:Q3

Adelaide 03:Q2 - 04:Q1 03:Q2 - 04:Q1 03:Q2 - 04:Q1 03:Q2 - 04:Q2
07:Q3 - 08:Q2

Perth 06:Q1-Q4
13:Q4

06:Q1 - Q4
16:Q1 - Q2

NA 03:Q2 - 07:Q1

Hobart 03:Q4 - 04:Q2 03:Q4 - 04:Q1 03:Q2 - 04:Q3 03:Q2 - 04:Q4

Darwin 06:Q4 - 07:Q4 07:Q3 NA 03:Q4 - 08:Q1

Canberra 03:Q2 - Q4 NA NA 03:Q2 - Q4
07:Q3 - 07:Q4
16:Q4 - 17:Q3

6 Conclusion

It has become standard in the econometrics literature to apply explosive root bubble tests directly to log

prices or to log price-to-rent ratios in analyzing housing market exuberance. This approach is justified by

the fact that the model specification underlying explosive root tests is consistent with the submartingale

dynamic of a bubble process during its expansive phase. But log prices and log PR ratios involve

fundamentals as well as the bubble process, at least when it is present, leading to a potential mismatch

between the model for the data and typical empirical testing. Contamination of this type can lead to

false conclusions on bubble detection. One solution to the mismatch is to apply the PSY explosive root

tests to the non-fundamental component, which may be separately computed by regression. This is the

approach that is adopted in the present paper.

One procedure for decomposing log PR ratios into a fundamental and non-fundamental component is

based on a structural definition of fundamentals and involves multiple steps. That method requires data

on house prices and rents in dollar values, which are often not available. Instead, this paper proposes a

reduced-form approach for the estimation of housing market fundamentals, which is easy to implement and

has general properties that improve estimation accuracy. Specifically, the reduced-form model is estimated

by IVX-AR methodology, which is known to reduce the finite sample bias and non-standard limit theory
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that originates in persistent regressors, endogeneity, serial correlation and conditional heteroskedasticity.

Bubble testing is then performed on the non-fundamental component using the PSY procedure. The

combined procedure is called PSY-IVX.

The PSY-IVX bubble detector is applied to the eight Australian capital city housing markets from

1999 to 2017 with two different sets of fundamental variables. The first set includes only rents and interest

rates, while the second set is more extensive and has four additional variables (employment, population,

state final demand, and new housing completions). Similar results from these two settings are obtained

for most cities, except Canberra and Darwin. The PSY-IVX method finds strong evidence of bubbles in

the early 2000s in half of the cities. Analysis leads to the conclusion that the 2006-2007 housing boom in

Perth and Darwin was driven by speculation, whereas the 2013-2017 housing expansion was driven mainly

by market fundamentals. Our findings disagree with earlier results in SRW for the period between 2006

and 2007, and with direct use of the PSY procedure on log price-to-rent ratios, which identifies more

episodes and longer episodes of bubbles. These variations in the results of empirical tests reveal the

importance of controlling for market fundamentals in assessing evidence for bubbles and the source of

expansions in housing price data.
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Figure A.1: Log price-to-rent ratios and estimated market fundamentals from PSY-IVX-2

(a) Sydney (b) Melbourne

(c) Brisbane (d) Adelaide

(e) Perth (f) Hobart

(g) Darwin (h) Canberra
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Figure A.2: Log price-to-rent ratios and estimated market fundamentals from PSY-IVX-6

(a) Sydney (b) Melbourne

(c) Brisbane (d) Adelaide

(e) Perth (f) Hobart

(g) Darwin (h) Canberra
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Figure A.3: Fundamental variables

(a) Sydney (b) Sydney

(c) Melbourne (d) Melbourne

(e) Brisbane (f) Brisbane

(g) Adelaide (h) Adelaide
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Figure A.4: Fundamental variables (cont.)

(a) Perth (b) Perth

(c) Hobart (d) Hobart

(e) Darwin (f) Darwin

(g) Canberra (h) Canberra
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