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Abstract

We present an approach to analyze learning outcomes in a broad class of misspec-
ified environments, spanning both single-agent and social learning. We introduce a
novel “prediction accuracy” order over subjective models, and observe that this makes
it possible to partially restore standard martingale convergence arguments that apply
under correctly specified learning. Based on this, we derive general conditions to de-
termine when beliefs in a given environment converge to some long-run belief either
locally or globally (i.e., from some or all initial beliefs). We show that these conditions
can be applied, first, to unify and generalize various convergence results in previously
studied settings. Second, they enable us to analyze environments where learning is
“slow,” such as costly information acquisition and sequential social learning. In such
environments, we illustrate that even if agents learn the truth when they are correctly
specified, vanishingly small amounts of misspecification can generate extreme failures
of learning.
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1 Introduction

1.1 Motivation and overview

Motivated in part by empirical evidence that individuals face numerous systematic cognitive
biases and limitations, a growing literature recognizes the need to enrich classic economic
models of single-agent and social learning by allowing for the possibility that agents may hold
an incorrect, simplified or, for short, misspecified view of the data generating process. Many
papers have demonstrated how various forms of misspecification alter learning outcomes in
a wide range of economic applications, from learning about the return to effort by a worker
who is overconfident in her ability, to social learning about the quality of a new product by
consumers who are incorrect about others’ preferences.

Learning dynamics of such models tend to be non-trivial to analyze. A primary reason
is that when agents are misspecified, their belief (i.e., posterior ratio) process is no longer
a martingale (with respect to the true data generating process), so standard convergence
arguments do not apply. The analysis is further complicated by the fact that in most afore-
mentioned settings information depends endogenously on agents’ actions, and hence may
be influenced by their misspecification.1 As a result, much existing work has derived learn-
ing outcomes using approaches tailored specifically to each application, while only recently
the focus has turned to developing general tools to analyze the asymptotics of misspecified
learning dynamics (see Section 1.2 for a discussion of related literature).

This paper contributes to the latter goal by presenting an approach to analyze learning
outcomes in a broad class of misspecified environments, spanning both single-agent and
social learning. We introduce novel “prediction accuracy” orderings over subjective models
that allow one to partially restore the standard martingale convergence method. Based on
this, we derive general conditions to determine when beliefs in a given environment converge
to some long-run belief either locally or globally (i.e., from some or all initial beliefs). We
show that these conditions can be applied, first, to unify and generalize various convergence
results in previously studied settings. Second, they enable us to analyze a natural class of
environments, including costly information acquisition and sequential social learning, where
learning is “slow.” In such environments, we illustrate that even if agents learn the truth
when they are correctly specified, vanishingly small amounts of misspecification can generate
extreme failures of learning.

To nest a wide range of applications and make the logic of belief convergence transparent,
Section 2 sets up an abstract environment, where agents, actions, and preferences are not

1This contrasts with a literature in statistics that studies learning by a passive observer who receives
exogenous signals about which he is misspecified (e.g., Berk, 1966).
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explicitly modeled. Instead, we consider a belief process µt over some set of states of the
world, which from any initial belief µ0 evolves in the following manner. Each period t =

0, 1, . . ., a signal zt is drawn according to a true signal distribution Pµt that—capturing
endogeneity of signals—may depend on the current belief µt. Following the realization of zt,
belief µt is updated to µt+1 via Bayes’ rule based on the perception that the signal distribution
at each state ω and belief µt is P̂µt(·|ω). Capturing potential misspecification, the true signal
distribution need not coincide with any of the perceived distributions. Remark 1 illustrates
how leading economic models of single-agent and social learning map into this environment.

Section 3 analyzes belief convergence. We begin by introducing an order over states that
compares how well they predict the true signal distribution at any given belief: For any
q > 0, we say that state ω q-dominates state ω′ at belief µ if the perceived signal distribu-
tion P̂µ(·|ω) in state ω comes “closer” to the true distribution Pµ than does the perceived
distribution P̂µ(·|ω′) in state ω′. Here closeness is measured using the moment-generating
function (evaluated at q) of the perceived log-likelihood ratio of states. This order refines
the usual comparison based on Kullback-Leibler divergence, which features prominently in
existing analyses of misspecified learning. A simple but key observation is that, throughout
any range of beliefs where q-dominance obtains, the qth power of the posterior ratio process
becomes a nonnegative supermartingale. This allows one to locally restore standard martin-
gale convergence arguments from the correctly specified setting, providing a useful approach
to analyze asymptotic beliefs.

Building on this observation, we derive conditions that ensure that a given point-mass
belief δω is (i) locally stable, (ii) globally stable, or (iii) unstable, in the sense that the belief
process µt converges to δω either (i) from any initial belief that is sufficiently close to δω, or
(ii) from all initial full-support beliefs, or (iii) escapes any small enough neighborhood of δω.

By applying the above martingale observation, Theorem 1 shows that δω is locally stable
if state ω strictly q-dominates all other states ω′ at all beliefs µ in a neighborhood of δω,
except possibly at the belief µ = δω. We provide an analogous condition for instability. The
fact that these conditions do not impose q-dominance at the point-mass belief δω is essential
for analyzing environments with slow learning, a property we explain below.

Using martingale arguments, we also obtain two conditions for global stability that
strengthen the local stability criterion in Theorem 1 in complementary ways. Theorem 2
shows that δω is globally stable if state ω uniquely survives the iterated elimination of (glob-
ally) strictly dominated states. Proposition 1 restricts the prediction accuracy ranking only
near point-mass beliefs, but imposes more structure on how states are ordered.

Section 4 applies the preceding stability results to two classes of economic applications.
Section 4.1 considers single-agent active learning in rich one-dimensional state spaces, as
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in many important applications in the literature. We show that the iterated elimination
criterion in Theorem 2 is straightforward to verify in this setting and can be used to unify and
generalize convergence results in applications such as monopoly pricing with a misspecified
demand curve (e.g., Esponda and Pouzo, 2016; Heidhues, Kőszegi, and Strack, 2021), effort
choice by an overconfident agent (Heidhues, Kőszegi, and Strack, 2018), and optimal stopping
under the gambler’s fallacy (He, 2021).

Section 4.2 studies environments that feature slow learning: That is, as agents grow
confident in any state, their behavior generates less and less informative new signals, so the
speed of belief convergence vanishes near point-mass beliefs. This is a well-known property
of several important economic applications: For example, under sequential social learning,
later agents’ actions reveal less and less about their private information, as they increasingly
base their action choices on the information conveyed by earlier agents’ actions; likewise,
under costly information acquisition, an agent may acquire increasingly less precise signals
the more confident she becomes. Existing approaches to analyze learning outcomes under
misspecification (Section 1.2) do not in general apply to such settings, as these approaches
measure prediction accuracy using Kullback-Leibler divergence, which can be too coarse to
determine stability/instability when signal informativeness vanishes near point-mass beliefs
(see Remark 2). In contrast, our stability results based on q-dominance apply to these
settings, and we highlight that slow learning can lead to fragility against misspecification:
Even if agents learn the true state when they are correctly specified, vanishingly small
amounts of misspecification can generate extreme failures of learning. For example, under
social learning about the safety of a new product, if agents even slightly underestimate
others’ risk tolerance, then, regardless of the product’s actual safety, long-run beliefs always
become confident in the highest possible safety level (Section 4.2.2); similarly, if an agent
has even a slight tendency to distort feedback about her ability in an “ego-biased” manner
and if acquiring feedback is even slightly costly, then her long-run beliefs will display drastic
overconfidence in her ability (Section 4.2.1).

1.2 Related literature

Our paper builds on Esponda and Pouzo (2016), who define a general steady-state notion for
misspecified learning dynamics, Berk-Nash equilibrium, nesting other influential steady-state
concepts that capture more specific forms of misspecification (e.g., Eyster and Rabin, 2005;
Jehiel, 2005; Esponda, 2008; Spiegler, 2016). It is known that, while any locally stable belief
is a Berk-Nash equilibrium (Lemma 1 establishes this in our setting), the converse is not in
general true (e.g., Nyarko, 1991). We provide stability criteria that determine which Berk-
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Nash equilibria learning dynamics in a given environment converge to locally or globally. We
also point to natural settings where the set of stable equilibria is not robust to the details of
agents’ misspecification. Our martingale approach relies on measuring prediction accuracy
using q-dominance, which refines the measure based on Kullback-Leibler divergence that
underlies Berk-Nash equilibrium.

Several important earlier papers have examined the convergence of misspecified learning
dynamics in a variety of single-agent (e.g., Nyarko, 1991; Schwartzstein, 2014; Fudenberg,
Romanyuk, and Strack, 2017; Heidhues, Kőszegi, and Strack, 2018; He, 2021; Bushong and
Gagnon-Bartsch, 2019; Cong, 2019; Heidhues, Kőszegi, and Strack, 2021) and social learning
settings (e.g., Eyster and Rabin, 2010; Bohren, 2016; Gagnon-Bartsch, 2017; Bohren, Imas,
and Rosenberg, 2019). The approaches in these papers are either tailored to particular
environments and forms of misspecification or apply in more general settings but rely on
specific parametric assumptions (e.g., Gaussian signals in Fudenberg, Romanyuk, and Strack,
2017; Heidhues, Kőszegi, and Strack, 2021).

Our paper contributes to a recent focus in the literature on developing more unified ap-
proaches to establish convergence under misspecified learning. In binary-state environments,
Bohren and Hauser (2021) provide general conditions for local and global stability of beliefs
based on Kullback-Leiber divergence. A key challenge they address is to allow for heteroge-
neous models across different agents (as is natural under social learning), which we do not
consider in this paper.2 Instead, relying on our martingale approach based on q-dominance,
we derive results that apply to rich state spaces (e.g., Section 4.1) and environments with
slow learning (e.g., Section 4.2), to which their methods do not apply. In settings that do
not feature slow learning, Bohren and Hauser (2021) show that successful learning is robust
to small amounts of misspecification; complementary to this, Section 4.2 sheds light on ways
in which slow learning can lead to fragility against misspecification.

In general-state environments, Esponda, Pouzo, and Yamamoto (2021) (EPY) and Fu-
denberg, Lanzani, and Strack (2021a) (FLS) analyze action convergence under single-agent
learning. Unlike our paper, the convergence results in EPY and FLS do not apply to so-
cial learning settings or environments with infinite actions;3 at the same time, both papers
address important settings/questions to which our results do not apply. In particular, EPY
develop a methodology to analyze asymptotic action frequencies based on approximating
these by a differential inclusion. Unlike our paper, their paper also characterizes asymptotic
action frequencies when beliefs/actions do not converge. FLS provide tight conditions that

2Some of our results can be extended to heterogeneous models; see Appendix G of the previous version
Frick, Iijima, and Ishii (2020b).

3The more recent paper by Murooka and Yamamoto (2021) extends EPY to settings with infinite actions
and/or strategic externalities, but also does not consider social learning.
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relate action convergence to the agent’s payoffs, while our conditions for belief convergence
do not explicitly involve the agent’s incentives; their convergence proofs build on the martin-
gale approach we introduce in this paper. To analyze the agent’s forward-looking incentives,
FLS also derive results on the rate at which beliefs concentrate (see also Fudenberg, Lanzani,
and Strack, 2021b). The approaches in EPY and FLS are again based on Kullback-Leibler
divergence; as noted, this measure can be too coarse to identify long-run outcomes in settings
such as slow learning environments (Remark 2).

Some environments in the literature are not nested by the current framework, notably
models with intertemporally correlated signals and social learning settings with private action
observations.4 The latter includes our previous paper, Frick, Iijima, and Ishii (2020a), which,
similar to Section 4.2.2, highlights the fragility of social learning against misspecification
about others’ preferences. As we discuss (Section 4.2.3), the logic and nature of this fragility
result differs from the current paper, as the setting in Frick, Iijima, and Ishii (2020a) does
not display slow learning.

2 Model

2.1 Setup

We conduct our general analysis in the following abstract environment, where agents, actions,
and preferences are not explicitly modeled. This allows us to simultaneously nest a variety of
single-agent and social learning models and makes the logic of belief convergence transparent.
For any topological space X, we endow X with its Borel σ-algebra and let ∆(X) denote the
space of Borel probability measures on X.

There is a set of states Ω. For the analysis in the main text, we assume that Ω is
finite; Appendix B provides results for infinite state spaces. At the beginning of each period
t = 0, 1, . . ., there is a belief µt ∈ ∆(Ω); we endow ∆(Ω) ⊆ R|Ω| with the sup norm. The
initial belief µ0 is exogenous and has full support.5 The evolution of beliefs is determined
as follows: At the end of each period t, a signal zt from a topological space Z is drawn
according to Pµt , where Pµ ∈ ∆(Z) denotes the true signal distribution at current belief
µ. After signal zt realizes, belief µt is updated to µt+1 via Bayes’ rule according to a collection
of conditional perceived signal distributions : Specifically, at each current belief µ, the
perceived signal distribution conditional on state ω is P̂µ(·|ω) ∈ ∆(Z). We assume that, for

4See, e.g., Rabin (2002); Ortoleva and Snowberg (2015); Esponda and Pouzo (2019); Molavi (2019); Cho
and Kasa (2017) for the former, and Dasaratha and He (2020); Levy and Razin (2018) for the latter.

5The full-support assumption is without loss; if µ0 assigns zero probability to some states, the same
analysis and results below apply up to eliminating those states from Ω.
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each ω and µ, Pµ and P̂µ(·|ω) admit continuous Radon-Nikodym derivatives pµ and p̂µ(·|ω)

with respect to some σ-finite measure ν on Z; as usual, when Z is finite (resp. Z = R), we
take ν to be the counting (resp. Lebesgue) measure. The updated belief following signal zt
satisfies

µt+1(ω) =
µt(ω)p̂µt(zt|ω)∑

ω′∈Ω µt(ω
′)p̂µt(zt|ω′)

, ∀ω ∈ Ω.

By allowing the true and perceived signal distributions to depend on the current belief,
the model can nest applications where signals depend endogenously on agents’ actions, which
depend on their current beliefs; see Remark 1. Capturing possible misspecification, the true
signal distribution need not coincide with any of the perceived signal distributions. We refer
to the case where for some true state ω∗, Pµ = P̂µ(·|ω∗) for all µ, as the correctly specified
benchmark. Throughout, we impose the following regularity assumption:

Assumption 1.

1. (Absolute continuity). For each ω ∈ Ω and µ ∈ ∆(Ω), suppPµ ⊆ suppP̂µ(·|ω).

2. (Well-behaved likelihood ratios). There exist a ν-integrable function h : Z → R+ and

q∗ > 0 such that sup
µ,ω,ω′

(
p̂µ(z|ω)

p̂µ(z|ω′)

)q∗
pµ(z) ≤ h(z) for all z ∈ Z.6

3. (Belief continuity near point-mass beliefs). For each ω ∈ Ω, there is a neighborhood
B 3 δω such that for all ω′, ω′′ ∈ Ω, µ ∈ B and z ∈ Z, we have that pµ(z), p̂µ(z|ω′)

p̂µ(z|ω′′) , and

pµ(z) p̂µ(z|ω′)
p̂µ(z|ω′′) are continuous in µ.

Assumption 1.1 is standard in the literature and rules out belief-updating after signals
that are perceived to realize with zero probability. The remaining assumptions are technical
conditions that are satisfied in most applications in the literature: Assumption 1.2 is a reg-
ularity condition on the integrability of perceived likelihood ratios, which will be important
for our martingale approach based on moment generating functions in Section 3.1. This
rules out that the distribution of perceived log-likelihood ratios log p̂µ(z|ω)

p̂µ(z|ω′) , when z is drawn
from Pµ, is heavy-tailed (i.e., the moment-generating function is infinite at all non-zero ar-
guments); commonly used parametric distributions (e.g., Gaussian) are not heavy-tailed.
Assumption 1.3 imposes continuity with respect to beliefs on signal densities, but is only
assumed near point-mass beliefs; this simplifies the statements of our stability results.

Remark 1. We illustrate how two leading classes of applications map into this model.
Single-agent learning: The state space Ω represents an agent’s uncertainty about

the environment (e.g., a monopolist’s uncertainty about market conditions). Each period
6Throughout the paper, we use the convention that 0

0 = 0, 1
0 =∞, 0 log 0 = 0, and log∞ =∞.
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t = 0, 1, . . ., the agent chooses an action at (e.g., a price) from a discrete or continuous space
A and observes a signal zt ∈ Z (e.g., realized demand). Each action a induces a true signal
distribution Ga ∈ ∆(Z), but the agent updates her belief µt ∈ ∆(Ω) based on the perceived
signal distributions Ĝa(·|ω) ∈ ∆(Z) (e.g., the monopolist may hold a misspecified model of
the demand function). The agent’s action choice at = a(µt) is Markovian in her belief, for
example, because she maximizes subjective expected discounted payoffs (e.g., revenue).

Active learning environments of this form map into our model by setting Pµ = Ga(µ)

and P̂µ(·|ω) = Ĝa(µ)(·|ω). The above assumptions on P , P̂ translate into assumptions on
G, Ĝ, and a(·) in a direct manner. For example, Assumption 1.3 holds if a(·) is continuous
in µ near point-mass beliefs and Ga, Ĝa(·|ω) admit densities that satisfy the corresponding
continuity conditions with respect to a.7

In addition to monopoly pricing, Section 4 will analyze several other concrete active
learning problems, including costly information acquisition and effort choice. Beyond ac-
tive learning, our model can also capture single-agent learning settings where true signal
distributions are exogenous, but perceived signal distributions depend on µ due to certain
belief-dependent departures from Bayesian updating, such as confirmation bias.

Social learning: Consider a sequential social learning setting à la Smith and Sørensen
(2000). There is a fixed and unknown state ω∗ ∈ Ω (e.g., the safety of a new product). Each
period t = 0, 1, . . ., agent t chooses a one-shot action zt ∈ Z = {0, 1} (e.g., whether or not to
adopt the product) after observing the public sequence (z0, . . . , zt−1) of predecessors’ actions
and a private signal st ∈ R that is drawn i.i.d. conditional on state ω∗ according to a cdf
Φ(·|ω∗). Agents have private preference types θt ∈ R (e.g., risk attitudes), which are drawn
independently across agents, states, and signals according to a cdf F . Starting with some
full-support common prior µ0 ∈ ∆(Ω), agent t chooses zt to maximize her expected utility,

zt ∈ z(µt, θt, st) := argmax
z∈Z

Eµt [u(z, θt, ω)|θt, st],

where µt denotes the public belief, i.e., the Bayesian update of µ0 based solely on the public
action sequence (z0, . . . , zt−1). In Section 4.2.2, we will analyze this setting when agents are
misspecified about others’ preferences: In updating beliefs to µt, all agents misperceive the
type distribution F in the population to be some other cdf F̂ .8

To map this into our model, consider the public belief process µt and identify signals
7Note that if A is discrete, then a(·) is not in general globally continuous (unless there is a dominant

action), but Assumption 1.3 is satisfied as long as, for each ω, there is a neighborhood Bω 3 δω such that
a(µ) is constant across all beliefs µ ∈ Bω. The formulation also allows A to be a set of mixed actions; in this
case, we treat Z as the product space of realized signals and actions.

8Alternatively or additionally, agents might misperceive the private signal distributions Φ(·|ω).
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with actions zt. Given µt, zt is stochastic due to the random realization of agent t’s type θt
and private signal st. The true probability of each action z given public belief µ is9

pµ(z) = pµ(z|ω∗) = Prθ∼F,s∼Φ(·|ω∗) [z ∈ z(µ, θ, s)] ;

however, because agents misperceive the type distribution F to be F̂ , public beliefs are
updated according to the perceived action probabilities

p̂µ(z|ω) = Prθ∼F̂ ,s∼Φ(·|ω) [z ∈ z(µ, θ, s)] .

Beyond this particular setting, our model also nests any other social learning environment
in which agents’ actions are Markovian in a public belief, including learning from market
prices (e.g., Vives, 1993) or strategic experimentation (e.g., Bolton and Harris, 1999). N

2.2 Stability notions

Given any true and perceived signal distributions and initial belief µ0, our model generates a
Markov process over beliefs. Let Pµ denote the induced probability measure over sequences
of beliefs (µt) with µ0 = µ. We seek to analyze which states ω long-run beliefs can grow
confident in, in the sense that process µt converges to the point-mass belief δω either locally
or globally as a function of initial beliefs. Formally, we consider the following stability
notions:10

Definition 1. Consider any ω ∈ Ω. Belief δω is:

1. locally stable if for any γ < 1, there exists a neighborhood B 3 δω such that Pµ[µt →
δω] ≥ γ for each initial belief µ ∈ B;

2. globally stable if Pµ[µt → δω] = 1 for each initial belief µ;

3. unstable if there exists a neighborhood B 3 δω such that Pµ[∃t, µt 6∈ B] = 1 for each
initial belief µ ∈ B.

Local stability requires that beliefs converge with positive probability to δω from any
initial belief in some open set B around δω, where the probability of converging to δω can be
made arbitrarily close to 1 as long as B is small enough.11 More strongly, global stability

9We assume that the true and perceived probability that the set of interim-optimal actions z(µ, θ, s) is
single-valued is 1. The additional restrictions imposed in Section 4.2.2 will ensure that this is the case.

10Similar stability notions are considered by Smith and Sørensen (2000); Bohren and Hauser (2021).
11We do not consider a stronger version of local stability that allows for γ = 1. Unless global stability

holds, this notion is too demanding in most settings (due to the possibility of signal realizations that push
beliefs outside neighborhood B).
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requires that beliefs converge to δω with probability 1 from any initial belief (recall that
initial beliefs are assumed full-support). By contrast, δω is unstable if starting from any
initial belief µ in some small enough neighborhood B of δω, beliefs eventually escape B with
probability 1. Clearly, if δω is unstable, it is not locally stable.12

By focusing on the stability/instability of point-mass beliefs δω, this paper does not
analyze when long-run beliefs are mixed, i.e., assign positive probability to multiple states.
Long-run beliefs are never mixed in environments that satisfy an identification condition,
whereby at any mixed µ, there is a possible signal realization that leads beliefs to update
in favor of one state in the support of µ rather than some other state (see Lemma 10 in
Appendix A for the formal statement). This condition is satisfied in most existing settings
studied in the misspecified learning literature, including all applications in this paper. At
the same time, this rules out some important applications, such as active learning settings
where agents stop observing informative signals at some mixed belief (e.g., McLennan, 1984,
bandit problems) and social learning settings that feature herding or confounded learning
(Bikhchandani, Hirshleifer, and Welch, 1992; Banerjee, 1992; Smith and Sørensen, 2000).
Section 5 briefly discusses how our techniques might be extended to such settings, which
have thus far been studied mostly without misspecification.

2.3 Berk-Nash equilibrium and slow learning

A necessary condition for stability has been proposed by Esponda and Pouzo (2016). For
any P, P̂ ∈ ∆(Z) with densities p, p̂, define the Kullback-Leibler (KL) divergence of
P̂ relative to P by KL(P, P̂ ) :=

´
log p(z)

p̂(z)
dP (z). When signals are drawn repeatedly ac-

cording to the distribution P , this measures how close P̂ comes to predicting the long-run
signal distribution, by considering the expected log-likelihood ratio of signals between P

and P̂ . Given any true and perceived signal distributions, we call belief δω a Berk-Nash
equilibrium (BeNE) if

ω ∈ argmin
ω′∈Ω

KL
(
Pδω , P̂δω(·|ω′)

)
. (1)

Condition (1) is a fixed-point requirement, which says that at belief δω, the perceived signal
distribution that comes closest to the true signal distribution Pδω is the distribution P̂δω(·|ω)

in state ω. Thus, if beliefs converge to δω, then state ω itself best predicts the induced long-
run signal distribution. This is a straightforward adaptation of Esponda and Pouzo (2016) to
our setting, focusing only on point-mass beliefs.13 Analogous to Esponda and Pouzo (2016),

12Note that it is possible that δω is neither unstable nor locally stable, for example, if, for every neighbor-
hood B 3 δω, whether or not beliefs converge to δω varies across initial beliefs µ0 ∈ B.

13Esponda and Pouzo (2016) consider settings where multiple agents choose actions given their beliefs
about a payoff-relevant parameter and about other agents’ behavior. A BeNE requires agents’ beliefs to
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we show that this is a necessary condition for δω to be locally stable:

Lemma 1. If δω is not a BeNE, then δω is unstable.

While condition (1) is necessary for local stability, it is not in general sufficient, as many
environments feature multiple BeNE, some of which are stable while others are unstable.
Thus, our sufficient conditions for stability will take the form of refinements of BeNE.

A class of environments with a particularly stark multiplicity of BeNE is the following.
We say that slow learning obtains if, for any ω, ω′, ω′′ ∈ Ω and ν-almost all z,

lim
µ→δω

p̂µ(z|ω′) = lim
µ→δω

p̂µ(z|ω′′). (2)

That is, the (perceived) information content of each signal z vanishes as the belief µ grows
confident in any particular state ω. Under (2), the expected change in log-posterior ratios,
EPµt [log µt+1(ω′)

µt+1(ω′′)
− log µt(ω′)

µt(ω′′)
] =

´
log

p̂µt (z|ω′)
p̂µt (z|ω′′)

dPµt(z), vanishes as beliefs µt approach any
point-mass belief δω, capturing the sense in which learning is slow. Under Assumption 1,
slow learning implies that p̂δω(z|ω′) is constant in ω′ at each δω. From this it is immediate
that every point-mass belief δω is a BeNE.

As a large literature highlights (for surveys, see Vives, 2010; Chamley, 2004), slow learn-
ing is a central feature of many social learning models (e.g., the sequential social learning
environment in Remark 1): In these settings, new action observations convey less and less
information as the public belief grows confident, because agents base their action choices
increasingly on the public belief rather than their private information.14 As we illustrate
in Section 4.2.1, slow learning also arises naturally in single-agent settings if information
acquisition is costly, in which case the agent acquires less and less informative signals as
she grows confident in any state. By contrast, if every action chosen by the agent generates
non-vanishingly informative signals about the state (as in the applications in Section 4.1),
then learning is not slow.

minimize KL-divergence relative to the feedback about the parameter and others’ behavior that is generated
by their optimal actions at these beliefs. They also allow for mixed BeNE and show that if beliefs converge
to µ∗ with positive probability, then µ∗ must be a BeNE belief (see their Lemma 2 and Theorem 2).

14Herding is an extreme form of slow learning, where belief-updating ceases completely at some mixed
belief. But even absent herding, sequential social learning is generally slow, as quantified by Vives (1993);
Hann-Caruthers, Martynov, and Tamuz (2018); Rosenberg and Vieille (2019). These papers employ different
quantifications of learning speed, but all the settings studied satisfy (2).
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3 Stability analysis

3.1 Prediction accuracy orders and martingale approach

Before presenting our conditions for local stability, instability, and global stability of beliefs,
we introduce orders over states that compare how well they predict the true signal distribu-
tion at each belief µ. These prediction accuracy orders will play a central role in our stability
analysis and the martingale arguments on which it relies.

Given any belief µ, say that state ω KL-dominates ω′ at µ, denoted ω %KL
µ ω′, if

KL
(
Pµ, P̂µ(·|ω)

)
−KL

(
Pµ, P̂µ(·|ω′)

)
:=

ˆ
log

(
p̂µ(z|ω′)
p̂µ(z|ω)

)
dPµ(z) ≤ 0. (3)

That is, at belief µ, the perceived signal distribution in state ω achieves lower KL-divergence
relative to the true distribution than does the perceived signal distribution in state ω′. Write
ω �KL

µ ω′ if inequality (3) is strict. Note that δω is a BeNE if and only if ω %KL
δω

ω′ for all ω′.
Our analysis relies on the following refinement of %KL

µ . Given any q > 0, say that ω
q-dominates ω′ at µ, denoted ω %q

µ ω
′, if

ˆ (
p̂µ(z|ω′)
p̂µ(z|ω)

)q
dPµ(z) ≤ 1, (4)

and write ω �qµ ω′ if inequality (4) is strict. To see the connection between q-dominance

and KL-dominance, consider the random variable X = log
(
p̂µ(z|ω′)
p̂µ(z|ω)

)
, i.e., the perceived log-

likelihood ratio of states ω′ vs. ω, when signals z are drawn according to the true signal
distribution Pµ. Then the left-hand side of (3) is the expectation of X, while the left-hand
side of (4) is the moment-generating function MX(q) = E[eqX ] of X evaluated at q.

Whereas %KL
µ is complete (by the representation on the LHS of (3)), %q

µ is in general
incomplete. However, the q-dominance orders are nested and approximate KL-dominance
as q → 0:

Lemma 2. Fix any belief µ and states ω, ω′.

1. If ω �qµ ω′ for some q > 0, then ω �KL
µ ω′ and ω �q′µ ω′ for all q′ ∈ (0, q).

2. If ω �KL
µ ω′, then there exists q > 0 such that ω �qµ ω′.

To understand the role that q-dominance will play in our analysis, first consider the
correctly specified benchmark, where for some true state ω∗, Pµ = P̂µ(·|ω∗) for all µ. In this
case, ω∗ %1

µ ω for all µ and ω; indeed, (4) holds with equality when q = 1.15 This implies

15That is,
´ ( p̂µ(z|ω)

p̂µ(z|ω∗)

)
dPµ(z) =

´ ( p̂µ(z|ω)
pµ(z)

)
pµ(z) dν(z) = 1.
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a well-known property of correctly specified learning: The posterior ratio process µt(ω)
µt(ω∗)

is a
nonnegative martingale with respect to Pµ0 and the filtration generated by (µt), as

EPµ0

[
µt+1(ω)

µt+1(ω∗)
|(µs)s≤t

]
=

µt(ω)

µt(ω∗)

ˆ (
p̂µt(z|ω)

p̂µt(z|ω∗)

)
dPµt(z) =

µt(ω)

µt(ω∗)
.

The martingale property is central to analyzing long-run beliefs under correctly specified
learning. In particular, it implies that, by Doob’s convergence theorem, µt(ω)

µt(ω∗)
converges

almost surely (a.s.) to a nonnegative random limit.
Under misspecified learning, there is in general no state that globally 1-dominates all

other states. As a result, the martingale property is lost. However, the definition of %q
µ

immediately implies a key observation: Throughout any region of beliefs where q-dominance
obtains, the qth power of the posterior ratio process becomes a nonnegative supermartingale.

Lemma 3. Suppose there exist q > 0 and B ⊆ ∆(Ω) such that ω %q
µ ω
′ for all µ ∈ B. Then,

for any initial belief µ0, the process `t defined by

`t :=

(
µmin{t,τ}(ω

′)

µmin{t,τ}(ω)

)q
with τ := inf{s : µs 6∈ B} (5)

is a nonnegative supermartingale with respect to Pµ0 and the filtration generated by µt.

Proof. Observe EPµ0 [`t+1|(µs)s≤t] =

`t
´ ( p̂µt (z|ω′)

p̂µt (z|ω)

)q
dPµt(z) ≤ `t if µs ∈ B ∀s ≤ t

`t otherwise.

Under the assumptions in Lemma 3, standard martingale methods from the correctly
specified setting, such as Doob’s convergence theorem and Markov’s inequality, can be ap-
plied locally, to the stopped process `t. Such arguments will play a key role throughout our
stability analysis, by providing useful information on the asymptotic behavior of the original
belief process µt. As we discuss in Remark 2, q-dominance is essential to this approach, as
analogous arguments do not apply under KL-dominance.

3.2 Local stability and instability

Based on the preceding observations, our first main result provides sufficient conditions for
belief δω to be locally stable or unstable:

Theorem 1. Consider any ω ∈ Ω. Belief δω is:

1. locally stable if there exists q > 0 and a neighborhood B 3 δω such that

ω �qµ ω′ for all ω′ 6= ω and µ ∈ B \ {δω}. (6)
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2. unstable if there exists q > 0 and a neighborhood B 3 δω such that

for some ω′ 6= ω, we have ω′ �q
µ ω for all µ ∈ B \ {δω}. (7)

By the first part, δω is locally stable if for some q, state ω strictly q-dominates all other
states at all beliefs in some neighborhood of δω, except possibly at the belief δω, where this
dominance need only be weak.16 Thus, condition (6) strengthens BeNE, which requires that
ω weakly KL-dominates all other states at the belief δω, in two ways: First, by comparing the
prediction accuracy of ω against other states at beliefs in a neighborhood B of δω; second,
by imposing strict q-dominance rather than weak KL-dominance throughout B \ {δω}. The
second part provides an analogous condition for instability; combined with Lemma 2, this
result also implies Lemma 1.

The proof of Theorem 1 is a simple application of the martingale construction in the
previous section. To see the idea, suppose that Ω = {ω, ω′} is binary. For the first part, con-
sider the stopped process `t(ω′) :=

(
µmin{t,τ}(ω

′)

µmin{t,τ}(ω)

)q
with τ := inf{s : µs 6∈ B}. By Lemma 3,

this is a nonnegative supermartingale. Thus, by Doob’s convergence theorem, `t converges
a.s. to a nonnegative random limit `∞. Based on this, we first show that if the belief pro-
cess µt remains in B forever with positive probability, then conditional on this event, µt
converges to δω a.s.: Otherwise, the random limit belief µ∞ ∈ B would be mixed with
positive probability, which we show is impossible by (6). Second, by applying Markov’s
inequality to `∞, we show that the probability that µt remains in B forever can be made
arbitrarily close to 1 by restricting to initial beliefs µ0 in a small enough subneighborhood
B′ ⊆ B around δω. Combining these observations implies that δω is locally stable. For the
second part of Theorem 1, we apply Doob’s theorem to the nonnegative supermartingale
`t(ω

′) :=
(
µmin{t,τ}(ω)

µmin{t,τ}(ω′)

)q
with τ := inf{s : µs 6∈ B}, to show that µt a.s. leaves B.

The fact that conditions (6) and (7) do not impose strict dominance at the point-mass
belief δω is essential for applying Theorem 1 to environments with slow learning: Indeed,
under (2), the difference in prediction accuracy across states vanishes as µ approaches any
point-mass belief.17

Note that conditions (6) and (7) feature existential quantifiers over q and B. The follow-
ing example illustrates how q and B can be found straightforwardly from the relationship
between P and P̂ ; we will apply similar observations to analyze the economic applications
in Section 4.2.

Example 1. Consider Z = {0, 1} and any δω. Under slow learning, perceived signal prob-
16The weak dominance ω %qδω ω

′ follows from (6) and Assumption 1.
17That is, (3) and (4) hold with equality when µ = δω.
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abilities p̂µ(1|ω′) become independent of ω′ as µ approaches δω. Suppose these perceptions
understate the truth in any small enough neighborhood B of δω, i.e., p̂µ(1|ω′) ≤ pµ(1) for all
ω′ and µ ∈ B (the opposite case is analogous). Consider two possibilities near δω:

• Perceived signal probabilities in state ω are closest to the truth: That is, p̂µ(1|ω′) <
p̂µ(1|ω) for all ω′ 6= ω and µ ∈ B \ {δω}. Then, ω �qµ ω′ for any q ∈ (0, 1).18 Thus, δω
is locally stable by (6).

• Perceived signal probabilities in some other state ω′ are closer to the truth: That is,
for some ω′ 6= ω, p̂µ(1|ω′) > p̂µ(1|ω) for all µ ∈ B \ {δω}. Then, analogously, ω′ �qµ ω
for all q ∈ (0, 1). Thus, δω is unstable by (7). N

At the same time, an immediate corollary of Theorem 1 is the following more demanding
sufficient condition for local stability, which is easy to verify in environments that do not
feature slow learning (or other ties in prediction accuracy). Call δω a strict BeNE if
ω �KL

δω
ω′ for all ω′ 6= ω. By Lemma 2 and Assumption 1, any strict BeNE satisfies (6).

Corollary 1. If δω is a strict BeNE, then δω is locally stable.

Bohren (2016) (extended by Bohren and Hauser (2021) to heterogeneous beliefs) derived
an analog of Corollary 1 under binary states |Ω| = 2 and finite Z. Their proofs use a “local
approximation” argument that is different from our martingale approach and does not extend
to settings that feature slow learning.19

While Corollary 1 is not applicable under slow learning, a convenient feature is that it
only involves considering KL-prediction accuracy differences at the single belief δω. Under
slow learning, Theorem 1 can be used to derive a condition for local stability with a similar
feature: This condition only involves computing the derivative of the KL-prediction accuracy
differences at the belief δω; see Online Appendix D.1.

Remark 2. To understand the importance of refining KL-dominance to q-dominance, sup-
pose (6) is weakened to the assumption that in some neighborhood B 3 δω,

ω �KL
µ ω′ for all ω′ 6= ω and µ ∈ B \ {δω}. (8)

18Indeed, p̂µ(1|ω′) < p̂µ(1|ω) ≤ pµ(1) implies
∑
z pµ(z)

(
p̂µ(z|ω′)
p̂µ(z|ω)

)q
≤
∑
z p̂µ(z|ω)

(
p̂µ(z|ω′)
p̂µ(z|ω)

)q
< 1 for any

q ∈ (0, 1), where the final inequality follows from Jensen’s inequality and the concavity of f(x) = xq.
19Specifically, they locally bound the log-likelihood ratio process under (P, P̂ ) by the corresponding process

under a different environment (Q, Q̂) with the property that Qµ, Q̂µ are independent of µ and that beliefs
converge to δω a.s. (by the law of large numbers). The construction of (Q, Q̂) requires the log-likelihood
ratio process under (P, P̂ ) to have non-vanishing drift near δω, which implies that ω �KL

δω
ω′ for ω′ 6= ω.
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Then the stopped processes log
(
µmin{t,τ}(ω

′)

µmin{t,τ}(ω)

)
with τ := inf{s : µs 6∈ B} are supermartin-

gales. However, since these supermartingales are unbounded below as µt approaches δω, the
above arguments based on Doob’s convergence theorem and Markov’s inequality no longer
apply. Indeed, Online Appendix D.2 provides an example where (8) holds but δω is unstable.
This illustrates that KL-dominance conditions are not in general enough to determine local
stability/instability. N

Finally, we note that when Ω is infinite, strict BeNE need not be locally stable, as shown
by Proposition 1 in Heidhues, Kőszegi, and Strack (2021). Appendix B.2 provides conditions
for local stability under infinite states.

3.3 Global stability

Global stability is significantly more demanding than local stability. For instance, even if δω
is the unique locally stable belief, it need not be globally stable. In this section, we use our
martingale approach to obtain two sufficient conditions for global stability that strengthen
the local stability criterion in Theorem 1 in complementary ways. Both conditions place
some additional restrictions on the environment, but we illustrate their usefulness with the
applications in Section 4.

3.3.1 Iterated elimination of dominated states

Our first approach extends the previous local stability arguments by constructing super-
martingales that apply not only near δω but more globally.

We employ a generalization of global stability to sets of beliefs: Call M ⊆ ∆(Ω) a
globally stable set if Pµ[infν∈M ‖µt−ν‖ → 0] = 1 for every initial belief µ. Note that ∆(Ω)

is trivially globally stable. We show that global stability is preserved under the following
process of iterated elimination of dominated states , defined similarly to the iterated
elimination of dominated strategies in games: For each subset Ω′ ⊆ Ω, let

S(Ω′) := {ω ∈ Ω′ : 6 ∃ω′ ∈ Ω′ s.t. ω′ �KL
µ ω for all µ ∈ ∆(Ω′)}.

Then recursively define S0(Ω) := Ω, Sk+1(Ω) := S(Sk(Ω)) for all k = 0, 1, . . ., and S∞(Ω) :=⋂
k∈N S

k(Ω). We say that belief continuity holds if Assumption 1.3 is satisfied not only
near point-mass beliefs, but at all beliefs µ ∈ ∆(Ω).20

20That is, for each ω, ω′ ∈ Ω, µ ∈ ∆(Ω) and z ∈ Z, we have that pµ(z), p̂µ(z|ω)
p̂µ(z|ω′) , and pµ(z)

p̂µ(z|ω)
p̂µ(z|ω′)

are continuous in µ. Belief continuity can be dropped in Theorem 2 and Proposition 1, up to slightly
strengthening the corresponding dominance requirements; see also footnote 31.
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Theorem 2. Assume belief continuity holds. Then ∆ (S∞(Ω)) is globally stable. In partic-
ular, if S∞(Ω) = {ω} for some ω ∈ Ω, then belief δω is globally stable.

To prove Theorem 2, we show inductively that ∆
(
Sk(Ω)

)
is globally stable for all k. Since

∆(Ω) is globally stable, it suffices to show that whenever ∆(Ω′) is globally stable for some
Ω′ ⊆ Ω, then so is ∆ (S(Ω′)). This can again be established using martingale arguments. To
see the idea, suppose that S(Ω′) = Ω′ \ {ω′}. Then by Lemma 2 and belief continuity, there
exist q > 0 and ω′′ ∈ Ω′ such that ω′′ �qµ ω′ for all µ ∈ ∆(Ω′), and hence also ω′′ �qµ ω′ for
all µ in any small enough neighborhood B ⊇ ∆(Ω′).21 Thus, by Lemma 3,(

µmin{t,τ}(ω
′)

µmin{t,τ}(ω′′)

)q
with τ = inf{s : µs 6∈ B} (9)

is a nonnegative supermartingale. Similar to Theorem 1, this implies that (i) from any initial
µ ∈ B, µt remains forever in B with positive probability; and (ii) µt(ω′) converges to 0 a.s.
conditional on remaining in B. We show that combined with the assumption that ∆(Ω′)

(and hence B ⊇ ∆(Ω′)) is globally stable, this yields that ∆(Ω′ \ {ω′}) is globally stable.
Note that although the definition of iterated elimination uses strict KL-dominance, q-

dominance again plays an essential role in the proof, by allowing us to construct the non-
negative supermartingale (9). Appendix B.1 shows that Theorem 2 remains true unchanged
in arbitrary compact metric state spaces, by extending the above martingale arguments.

At a high level, the iterated elimination approach can be seen as an abstract generalization
of arguments in Heidhues, Kőszegi, and Strack (2018) and He (2021), who analyze specific
single-agent settings with one-dimensional states and actions.22 Their analysis considers the
largest interval of states that is contained in the support of the agent’s long-run belief and
shows, using iterated contraction arguments, that this must collapse to a singleton. While
their proofs involve analyzing the slope of the agent’s perceived log-likelihood functions with
respect to the one-dimensional state, our proof is based on constructing the nonnegative
supermartingales (9), which does not require any order structure over states.

3.3.2 Global stability via uniform local dominance

Theorem 2 requires that eliminated states are dominated at all beliefs in a subsimplex
∆(Sk(Ω)), which is restrictive in some applications. In such settings, an alternative approach
to obtain global stability is to restrict the prediction accuracy order only locally, near point-
mass beliefs, but to impose more structure on how states are ranked. The following result

21Call B a neighborhood of a set M ⊆ ∆(Ω) if there exists ε > 0 such that Bε(µ) ⊆ B for all µ ∈M .
22He (2021) allows for two-dimensional states, but proves that the analysis can be reduced to the one-

dimensional case in the long-run. As noted, Theorem 2 extends to any compact metric space of states.
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provides one formalization of this approach that is useful for our applications in Section 4.2:

Proposition 1. Suppose that belief continuity holds and states Ω = {ω1, . . . , ωN} can be
enumerated in such a way that

(i) for each ω, there exists q > 0 and a neighborhood B 3 δω such that for all m and n
with m > n, we have ωn �qµ ωm for all µ ∈ B \ {δω};

(ii) for all n 6= N and mixed µ, there is z ∈ suppPµ with p̂µ(z|ωn) > p̂µ(z|ωm) for all
m > n.

Then δω1 is globally stable.

Condition (i) requires that, near all point-mass beliefs δω, the prediction accuracy ranking
is the same: states with a lower index dominate higher states.23 For binary Ω, (i) amounts
to imposing the local stability condition (6) from Theorem 1 on δω1 and the instability
condition (7) on δω2 . However, when |Ω| > 2, (i) is more demanding than imposing local
stability on δω1 and instability on all other δωn ; we explain the role of this added strength
below. Condition (ii) is relatively weak, in that it does not restrict the prediction accuracy
ranking. One natural condition that implies (ii) is if perceived signal distributions satisfy
the monotone likelihood ratio property, as is the case in many applications.

When Ω is binary, the logic behind Proposition 1 is analogous to Bohren (2016), who
derived a similar result (under a strengthening of condition (i) that requires strict KL-
dominance at point-mass beliefs, ruling out slow learning). By condition (i), there are
neighborhoods B1 3 δω1 and B2 3 δω2 such that from any initial belief in B1, µt converges
to δω1 with positive probability, while from any initial belief in B2, µt a.s. leaves B2. By
condition (ii), one can find some T such that with positive probability, µt reaches B1 within
T periods from any initial belief µ 6∈ B1 ∪ B2. Combining these observations, a simple
recursive argument shows that µt converges to δω1 a.s. from any initial belief.

Beyond binary states, say if Ω = {ω1, ω2, ω3}, a complication with the above argument
is the following:24 Even if δω1 is locally stable and δω2 and δω3 are unstable, condition (ii) is
consistent with beliefs getting stuck in a neighborhood of the subsimplex ∆({ω2, ω3}) and
cycling forever between δω2 and δω3 . However, this is ruled out by the uniform ranking over
states that condition (i) imposes near point-mass beliefs. Indeed, as we show using similar
martingale arguments as before, the latter ensures that whenever beliefs approach δω2 or δω3 ,
they must escape in the direction of δω1 with positive probability.

23For example, if Z = {0, 1}, then by the same logic as in Example 1, this is the case if near all δω, we have
pµ(1) ≤ p̂µ(1|ω1) < . . . < p̂µ(1|ωN ); as we will see, this arises naturally in the applications in Section 4.2.

24Bohren and Hauser (2021) address related challenges under binary states but heterogeneous models.
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Finally, one might also be interested in a weak form of global stability, which only requires
that from all initial beliefs, process µt converges to δω1 with positive probability (rather than
with probability one, as ensured by our results). Using similar arguments as above, it can be
shown that δω1 is globally stable in this weak sense if it satisfies the local stability condition
(6) and if condition (ii) in Proposition 1 is only imposed for n = 1. Note that under this weak
notion, multiple beliefs δω can be globally stable (for specific examples, see, e.g., Bohren,
2016; Fudenberg, Romanyuk, and Strack, 2017).

4 Applications

We now apply the preceding stability results to two classes of economic applications.

4.1 Active learning under one-dimensional states

First, we consider single-agent active learning under rich one-dimensional states, Ω ⊆ R,
as in many important applications in the literature. We show how the iterated elimination
criterion in Theorem 2 is straightforward to verify in this setting, providing a simple and
unified method to establish global stability.

For ease of exposition, we assume that Ω = [ω, ω] is a compact interval; as noted, Ap-
pendix B.1 shows that Theorem 2 remains valid in this case.25 Consider an active learning
environment as in Remark 1. Recall that Ga and (Ĝa(·|ω))ω∈Ω denote the true and perceived
signal distributions when action a is chosen. Assume that the agent’s action set A ⊆ R is
an interval, that her action choices a : ∆(Ω)→ A are FOSD-increasing and continuous, and
that KL(Ga, Ĝa(·|ω)) is strictly quasi-convex in ω and continuous in (a, ω).26

These assumptions ensure that for each ω, there is a unique state m(ω) that is KL-
dominant at δω, i.e., m(ω) �KL

δω
ω′ for all ω′ 6= m(ω). Observe that ω is a fixed point of the

one-dimensional map m : Ω→ Ω if and only if δω is a strict BeNE.
The following result shows that iterated elimination of dominated states corresponds to

iterated application of the map m. Moreover, simple conditions that only involve considering
the fixed points of the maps m or m2 yield that S∞(Ω) = {ω̂} is a singleton, which by
Theorem 2 implies that δω̂ is globally stable. When m is increasing, iterated elimination

25Similar analysis goes through whenever Ω is a finite but sufficiently dense subset of [ω, ω], as in this case
S∞(Ω) approximates S∞([ω, ω]) (see Appendix F of the previous version, Frick, Iijima, and Ishii, 2020b).

26A natural setting that satisfies strict quasi-convexity is the following. Suppose Ga = Hφ(a) and Ĝa(·|ω) =
Hφ̂(a,ω) for some family (Hθ)θ∈Θ ∈ ∆(R) of distributions that satisfy the strict monotone likelihood ratio
property with respect to the parameter θ ∈ Θ ⊆ R. Given this, standard arguments show that if φ̂ is strictly
increasing in ω, then −KL(Hφ(a), Hφ̂(a,ω)) is strictly single-peaked in ω, and hence KL(Hφ(a), Hφ̂(a,ω)) is
strictly quasi-convex in ω.
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yields a unique state ω̂ if and only if m has a unique fixed point; this is analogous to
the classical result in games with strategic complements, where dominance solvability is
equivalent to uniqueness of Nash equilibrium (Milgrom and Roberts, 1990). When m is
decreasing, iterated elimination yields a unique state if and only if m2 has a unique fixed
point; this is analogous to Zimper’s (2007) result that, under strategic substitutes, dominance
solvability is equivalent to the stronger requirement that a twofold iteration of best-responses
has a unique fixed point.

Proposition 2. For all k = 1, 2, . . . ,∞, we have Sk(Ω) = mk(Ω). Moreover:

1. Suppose m is weakly increasing. Then S∞(Ω) = {ω̂} if and only if ω̂ is the unique
fixed point of m.

2. Suppose m is weakly decreasing. Then S∞(Ω) = {ω̂} if and only if ω̂ is the unique
fixed point of m2.

Deriving m is straightforward in many applications in the literature, and many natural
forms of misspecification that are considered induce an increasing or decreasing m. To nest
these applications, assume further that Z = R and that action a induces the true signal
distribution according to z = g(a) + ε, but the agent perceives signals in state ω to follow
z = ĝ(a, ω) + ε, where g : A → R and ĝ : A × Ω → R are continuously differentiable with
∂ĝ
∂ω
> 0, and the mean-zero noise term ε is distributed according to a log-concave and strictly

positive density on R.27 Then, letting a(ω) := a(δω), any interior m(ω) ∈ (ω, ω) solves

ĝ(a(ω),m(ω)) = g(a(ω)), (10)

i.e., m(ω) perfectly explains the observed signal distribution and hence must be the KL-
minimizer. Thus, m is weakly increasing if and only if dg

da
(a(ω)) ≥ ∂ĝ

∂a
(a(ω),m(ω)), and

decreasing if and only if dg
da

(a(ω)) ≤ ∂ĝ
∂a

(a(ω),m(ω)) for all ω, capturing that the agent either
under- or overstates the marginal effect of her actions on signals.

For example, based on this, one can establish global stability in the following applications:

• Misspecified monopoly pricing: Consider a monopolist who is learning about his
demand function. Here, z = g(a) + ε represents the true demand faced by the mo-
nopolist when he sets price a ∈ A = R+, where g(a) = g(a, ω∗) = ω∗ − βa. The true
intercept of demand ω∗ ∈ [ω, ω] ⊆ R+ is unknown to the monopolist. In updating

27The assumption that signals can take any real values is not essential. For example, the same conclusion
holds under binary signals, Z = {0, 1}, where the true and perceived probabilities of signal 1 are respectively
g(a) and ĝ(a, ω) for each a and ω.
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beliefs about ω∗, he misperceives the slope of demand β to be β̂, where β, β̂ > 0. Thus,
ĝ(a, ω) = ω − β̂a for each ω. Each period t, the monopolist myopically maximizes
expected revenue, i.e., his price at as a function of his belief is a(µt), where

a(µ) = argmax
a∈R+

a×
(
Eµ[ω]− β̂a

)
=

Eµ[ω]

2β̂
.

In particular, a(ω) = ω

2β̂
. By the above, map m is increasing/decreasing if the mo-

nopolist over-/underestimates the slope of demand β, and m(ω) = ω∗ + ω

2β̂
(β̂ − β)

when this is interior. If | β̂−β
2β̂
| < 1, then m and m2 are contractions, and thus admit a

unique fixed point ω̂, where ω̂ = 2β̂ω∗

β̂+β
when this is interior. Hence, δω̂ is globally stable

by Proposition 2 and Theorem 2. While Esponda and Pouzo (2016) and Heidhues,
Kőszegi, and Strack (2021) establish analogous results using stochastic approximation
arguments that rely on Gaussian signal distributions, our approach does not require
this parametric assumption.

• Effort choice under overconfidence: In Heidhues, Kőszegi, and Strack (2018)
(HKS), g and ĝ take the form g(a) = Q(a, β, ω∗) and ĝ(a, ω) = Q(a, β̂, ω) for some
function Q. Here, signals z can be interpreted as output, actions a as effort choice,
states ω as project quality (with true quality ω∗), and β and β̂ as the agent’s true
and perceived ability. The agent chooses a(µ) to maximize expected output. When
the agent is overconfident (β̂ > β), the natural assumptions that HKS impose on the
output function Q ensure that m is increasing with a unique fixed point ω̂, where
ω̂ < ω∗ (see Online Appendix C.2.1). Thus, Proposition 2 and Theorem 2 immediately
imply HKS’s result that the pessimistic belief δω̂ is globally stable.

• Optimal stopping under the gambler’s fallacy: Similar reasoning yields the global
stability result in He (2021), where m can again be seen to be increasing and admit a
unique fixed point (see Online Appendix C.2.2).

Esponda, Pouzo, and Yamamoto (2021) (Section 7) consider a similar one-dimensional
state setting and provide conditions for local/global stability and instability.28 While we
consider continuous actions in this section, their results assume finite actions; however, the
more recent paper by Murooka and Yamamoto (2021) extends their approach to continu-
ous actions. The approaches in Esponda, Pouzo, and Yamamoto (2021) and Murooka and
Yamamoto (2021) are based on characterizing limiting action frequencies by means of a dif-

28Our iterated elimination approach can also be extended to study local stability in the current setting;
see Appendix B.2.
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ferential inclusion; different and complementary to this, we provide an approach based on
iterated elimination that uses martingale arguments to establish belief convergence.

4.2 Slow learning and fragility of long-run beliefs

Next, we present two applications that illustrate how to apply our results to environments
with slow learning. Our analysis highlights how slow learning can render long-run beliefs
fragile against misspecification. Section 4.2.3 contrasts these findings with other recent work
that has examined the robustness of learning outcomes to misspecification.

Throughout, we consider finite state spaces Ω = {ω1, . . . , ωN} ⊆ R+, with ω1 < . . . < ωN .

4.2.1 Costly information acquisition

Consider a single-agent active learning setting, where the agent learns about some state (e.g.,
her ability) by acquiring costly information (e.g., seeking out expert feedback). The fixed
and unknown true state is ω∗ ∈ Ω. Each period t, the agent chooses a precision parameter
γt ∈ [0, γ] at cost C(γt). She then observes a signal zt that is 1 (“good news”) with probability
γtω

∗+β and 0 (“bad news”) otherwise; here, β is the state-independent base rate of the high
signal, over which the agent has no control. In updating her beliefs µt ∈ ∆(Ω), the agent
misperceives the base rate β to be β̂. For example, if β̂ < β, this implies a form of “ego-
biased” belief-updating: the agent overreacts to good news about her ability, but underreacts
to bad news (e.g., Eil and Rao, 2011; Mobius, Niederle, Niehaus, and Rosenblat, 2014).

Note that true and perceived signal distributions are (Blackwell-)more informative the
greater γt and are uninformative when γt = 0. Assume the agent has positive value to
information, as captured by a utility v : ∆(Ω) → R that is continuous and strictly convex
in her current belief.29 Each period, she chooses γt as a function of her current belief µt to
myopically maximize expected utility net of the cost (myopia is assumed for simplicity):30

γt = γβ̂(µt) ∈ argmax
γ∈[0,γ]

Êµt [v(µt+1(γ))]− C(γ), (11)

where µt+1(γ) denotes the agent’s random posterior following period-t signal realizations and
the expectation Êµt is with respect to the perceived signal distribution. Assume γ ∈ (0, 1) and
β, β̂ ∈ (0, 1−γ) are such that true and perceived signal probabilities pµ(1|ω∗) = γβ̂(µ)ω∗+β

29For example, suppose that v(µ) = maxa∈R Eµ[−(a− ω)2] is the indirect utility to a prediction problem
that the agent must solve at the end of each period (where realized payoffs are not observed until some
exogenously distributed stopping time).

30All results generalize to forward-looking agents, where the continuation value remains strictly convex
since the instantaneous term is strictly convex. In particular, note that Lemma 5 (slow learning) remains
valid with the same proof, as the continuation value is continuous in µ.
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and p̂µ(1|ω) = γβ̂(µ)ω + β̂ are always well-defined and nondegenerate. We also assume that
γβ̂(µ) is continuous in µ.31

First, suppose that the agent incurs the same constant cost C(γ) = c for any precision
choice γ, so information is effectively costless. Then learning is successful when the agent is
correctly specified (β̂ = β) and successful learning is robust to small amounts of misspecifi-
cation. Formally, say that learning is successful at ω∗ if, when the true state is ω∗, we
have Pµ[µt → δω∗ ] = 1 for all beliefs µ ∈ ∆(Ω) with µ(ω∗) > 0.

Lemma 4. Suppose C is constant. For any β, there exists ε > 0 such that for any β̂ with
|β̂ − β| ≤ ε, learning is successful in all true states ω∗.

When information is costless, then for all β̂, the agent always chooses the maximal
precision γ. This implies that when β̂ = β, the true state ω∗ strictly dominates all other states
ω at all beliefs µ, where, importantly, the relative prediction accuracy

∑
z pµ(z)

(
p̂µ(z|ω)

p̂µ(z|ω∗)

)q
<

1 is independent of µ. Given this, the same is true whenever β̂ is sufficiently close to β, based
on which we conclude that learning is successful.

Next, suppose information is costly, in the sense that C is strictly increasing in γ. The
key departure this introduces is the following:

Lemma 5. Suppose C is strictly increasing. For any β̂, limµ→δω γβ̂(µ) = 0 for every ω.

That is, if information is (even slightly) costly, then the agent stops acquiring informa-
tion in the limit as she becomes confident in any particular state ω, because her value to
information vanishes as she grows confident. Lemma 5 implies that costly information leads
to slow learning, since the agent’s perceived signal probabilities satisfy

lim
µ→δω

p̂µ(1|ω′) = lim
µ→δω

γβ̂(µ)ω′ + β̂ = β̂, ∀ω, ω′.

Based on this, we show that learning under costly information is fragile against misspec-
ification: Suppose learning is successful whenever the agent is correctly specified. Then, in
sharp contrast with Lemma 4, arbitrarily small amounts of misspecification not only break
successful learning, but indeed render the agent’s long-run belief independent of the true
state ω∗: If β > β̂ (resp. β < β̂), then regardless of ω∗, she becomes confident in the highest
(resp. lowest) possible state.

31Without continuity, the main result (Proposition 3) remains valid under the following assumption: for
any compact set K of mixed beliefs, infµ∈K γβ̂(µ) > 0. This is slightly stronger than the current assumption
(“successful learning at all states when β̂ = β”), which is equivalent to the requirement that γβ̂(µ) > 0 for
all mixed µ (Lemma 6). The robustness of costless learning (Lemma 4) does not rely on continuity.
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Figure 1: Prediction accuracy ranking of ω1 vs. ω2 as a function of µ when ω∗ = ω1. Left: β̂ = β.
Right: β > β̂. Here DKL

µ (ω2, ω1) := KL(Pµ(·|ω∗), P̂µ(·|ω2))−KL(Pµ(·|ω∗), P̂µ(·|ω1)).

Proposition 3. Suppose C is strictly increasing and for any β, β̂ with β = β̂, learning is
successful at all states ω∗. Then:

1. For any β, β̂ with β > β̂, δωN is globally stable in all true states ω∗.

2. For any β, β̂ with β < β̂, δω1 is globally stable in all true states ω∗.

When feedback is costless, then, by Lemma 4, a small propensity for ego-biased in-
terpretation of signals does not prevent the agent from learning her ability. In contrast,
Proposition 3 shows that if obtaining feedback requires just a slight amount of effort, then
even arbitrarily small amounts of this bias are greatly amplified over time, leading to drastic
overconfidence in the long run.

To see the idea, suppose that Ω = {ω1, ω2} and the true state is ω1. For any β̂, the
fact that learning is successful at all states when β = β̂ means that γβ̂(µ) > 0 for all mixed
µ; otherwise the agent’s belief would get stuck at some initial mixed beliefs. At the same
time, by Lemma 5, limµ→δω γβ̂(µ) = 0. As a result, when β = β̂, the true state ω1 strictly
dominates ω2 at all mixed beliefs, but in contrast with costless learning, the gap in prediction
accuracy now vanishes as beliefs approach δω1 or δω2 . As shown in Figure 1, this makes the
prediction accuracy ranking near point-mass beliefs highly sensitive to misspecification.32

Indeed, if β > β̂, the ranking between ω1 and ω2 is reversed: Since γ is very small near
point-mass beliefs, the true probability γω1 + β of the high signal exceeds the perceived
probabilities γω2 + β̂, γω1 + β̂ in both states, but because ω2 > ω1, the perceived probability
in state ω2 comes closer to the truth. By the logic in Example 1, this implies ω2 �qµ ω1 for
all q ∈ (0, 1) and µ near δω1 and δω2 . Intuitively, if signals are precise (γ is high), the true
state always explains the agent’s observations best, but if signals are sufficiently imprecise
(γ is low), then overestimating the state can partly compensate for underestimating the base
rate of the high signal. Finally, since ω2 strictly dominates ω1 near both point-mass beliefs
and the probabilities of the high signal are increasing in states, Proposition 1 applies up to

32The figure uses KL-dominance for the sake of graphical illustration, but the proof relies on q-dominance.
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relabeling states in decreasing order. Thus, when β > β̂, δω2 is globally stable.33

Finally, to understand when Proposition 3 applies, we clarify which cost functions lead to
successful learning when the agent is correctly specified. To state this, we slightly strengthen
the requirement that the utility v : ∆(Ω)→ R is strictly convex, as follows:

Lemma 6. Suppose v is twice continuously differentiable with a positive-definite Hessian.
Fix any β̂. For any twice continuously differentiable cost function C with C ′(0) = C ′′(0) = 0,

γβ̂(µ) > 0 for all mixed µ. (12)

Moreover, (12) is necessary and sufficient for learning to be successful at all ω∗ when β = β̂.

Lemma 6 provides “Inada” conditions on C which ensure that small amounts of infor-
mation are very cheap. Thus, the agent remains willing to acquire a positive amount of
information whenever she is not completely certain about the state. These conditions are
satisfied, for example, by any power function C(γ) = γd with d > 2.34

4.2.2 Sequential social learning

Consider the sequential social learning setting from Remark 1, with the following additional
assumptions. Private signals st at each state ω are drawn according to a positive and
continuous density φ(·|ω) that satisfies the monotone likelihood ratio property. True and
perceived type distributions F and F̂ admit positive densities over R. The utility difference
v(θ, ω) := u(1, θ, ω)−u(0, θ, ω) between the two actions is strictly increasing and continuous
in types and states (θ, ω), with limθ→−∞ v(θ, ω) < 0 and limθ→+∞ v(θ, ω) > 0; that is,
sufficiently low (risk-averse) types always prefer action 0 (not adopt) and sufficiently high
(risk-tolerant) types always prefer action 1 (adopt).

Then the true and perceived probabilities of observing action 0 at public belief µ are

pµ(0|ω∗) =

ˆ
F (θ∗(µs))φ(s|ω∗) ds, p̂µ(0|ω) =

ˆ
F̂ (θ∗(µs))φ(s|ω) ds,

where µs ∈ ∆(Ω) denotes the Bayesian update of µ following private signal realization s,
and θ∗(ν) denotes the type who is indifferent between action 0 and 1 at belief ν. Note that

33Proposition 3 does not rely on the specific true and perceived signal distributions in the text: Indeed,
writing signal probabilities as functions of the agent’s choice γ and assuming slow learning, part 1 (resp. 2)
generalizes as long as (i) p̂γ(1|ωN ) < pγ(1|ω∗) (resp. p̂γ(1|ω1) > pγ(1|ω∗)) for all ω∗ ∈ Ω and small enough
γ > 0, and (ii) p̂γ(1|ωn) is strictly increasing in n at each γ > 0. Unlike the specification in the text, this
allows for specifications where the true and perceived long-run signal distributions (i.e., at γ = 0) coincide.

34The restriction C ′′(0) = 0 on the second derivative is related to the Radner-Stiglitz non-concavity in the
value of information (Chade and Schlee, 2002). Since the agent’s marginal value of information is zero at
γ = 0, the restriction C ′(0) = 0 on the first derivative is not enough to ensure a positive choice of γ.
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θ∗(ν) exists and is unique for each ν by the above assumptions. We write θ∗ω := θ∗(δω) and
θ∗i := θ∗ωi . Observe that θ∗i is strictly decreasing in i, as ω1 < . . . < ωN .

We first note that when agents are correctly specified, learning is successful:

Lemma 7. Suppose that F̂ = F . Then learning is successful in all true states ω∗.

An analogous result is established by Goeree, Palfrey, and Rogers (2006). Observe that
herding is ruled out here due to rich preference heterogeneity (in particular, the existence of
dominant types), despite the fact that private signals need not have unbounded precision.

However, we observe next that sequential social learning leads to slow learning:

Lemma 8. For all F̂ , ω, and ω′, we have limµ→δω
´
F̂ (θ∗(µs))φ(s|ω′) ds = F̂ (θ∗ω).

Lemma 8 shows that as the public belief becomes confident in any given state ω, the
perceived probability of observing action 0, limµ→δω p̂µ(0|ω′) = F̂ (θ∗ω), is the same in all
states ω′; that is, (2) holds. This reflects the familiar slow-learning logic under sequential
social learning that we discussed in Section 2.3.

Similar to costly information acquisition, this again leads successful learning to be highly
fragile against misspecification. The following result classifies possible learning outcomes:

Proposition 4. Fix any F and F̂ . In each true state ω∗:

1. δωN is globally stable if F (θ∗i ) < F̂ (θ∗i ) for all i, locally stable if F (θ∗N) < F̂ (θ∗N), and
unstable if F (θ∗N) > F̂ (θ∗N).

2. δω1 is globally stable if F (θ∗i ) > F̂ (θ∗i ) for all i, locally stable if F (θ∗1) > F̂ (θ∗1), and
unstable if F (θ∗1) < F̂ (θ∗1).

3. For each n ∈ {2, . . . , N − 1}, δωn is unstable if F (θ∗n) 6= F̂ (θ∗n).

Depending on the nature of misspecification, Proposition 4 highlights three general pos-
sibilities. First, beliefs might converge globally to a point-mass on the highest (resp. lowest)
state. Similar to Proposition 3, this occurs if agents systematically underestimate (resp.
overestimate) the type distribution (e.g., extent of risk tolerance in the population), no mat-
ter how close F̂ is to F and regardless of the true state ω∗. Second, the extreme beliefs
δω1 and/or δωN might be locally stable, if agents overestimate the share of very high types
(above θ∗1) and/or of very low types (below θ∗N). Finally, if agents underestimate both the
shares of very high types and of very low types (i.e., underestimate type heterogeneity), then
generically all point-mass beliefs are unstable, so beliefs cycle.35

35Relatedly, Gagnon-Bartsch (2017) considers sequential social learning with “taste projection” and shows
that a point-mass on the true state can be unstable under arbitrarily small misspecification. His environment
can be seen to also feature slow learning, but due to the difference in the nature of misspecification, his setting
requires large misspecification in order for a point-mass on an incorrect state to be locally/globally stable.
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To see the idea, consider any ωi. If F (θ∗i ) < F̂ (θ∗i ), then Lemma 8 implies that at all public
beliefs µ close to the point-mass belief δωi , the perceived probability of action 0, p̂µ(0|ω) ≈
F̂ (θ∗i ), is strictly higher in all states ω than the actual probability pµ(0|ω∗) ≈ F (θ∗i ). At the
same time, by the assumptions on signals and utilities, p̂µ(0|ω) is strictly decreasing in ω at
all mixed µ. Thus, at all mixed µ close to δωi , the perceived action distribution comes closest
to the actual one at the highest state ωN . Analogously, if F (θ∗i ) > F̂ (θ∗i ), then the lowest
state ω1 dominates all other states near δωi . Based on this, the local stability and instability
results follow from Theorem 1, while Proposition 1 implies the global stability results.

4.2.3 Discussion

Our finding that slow learning can lead to fragility against misspecification complements
other recent work. Bohren and Hauser (2021) (BH) establish a general robustness result
for misspecified learning in their setting: If learning is successful under correct specification,
then learning is also successful whenever agents’ perceptions are close enough to the true
model. The key difference is that they consider environments that do not feature slow learn-
ing, because, even near point-mass beliefs, agents take actions that generate non-vanishingly
informative signals. For instance, this is naturally the case under costless learning as well as
the examples analyzed in Section 4.1. Intuitively, robustness in these settings results from the
fact that, under correct specification, the difference in prediction accuracy between the true
state ω∗ and all other states is bounded away from zero; given this, the same remains true
under small enough amounts of misspecification, similar to the logic in Lemma 4. By con-
trast, when learning is slow, as in Sections 4.2.1–4.2.2, then differences in prediction accuracy
vanish near point-mass beliefs. As illustrated above, this renders the prediction accuracy
ranking, and hence stable beliefs, highly sensitive to small amounts of misspecification.

Even under costly information acquisition or social learning, the usual slow-learning logic
might hold only approximately if other offsetting forces are introduced: For example, agents
might have access to small amounts of exogenous costless information each period (similarly,
under social learning, BH introduce a small fraction of “autarkic” agents, who act solely based
on their private information, ignoring others’ actions). For a fixed positive amount of such
exogenous information, the results in BH imply that learning is successful whenever agents’
perceptions are within some small enough threshold ε > 0 of the true model. Complementary
to this, our analysis implies that the smaller the amount of exogenous information, the
smaller is ε (i.e., the more sensitive is learning to misspecification), and in the limit as there
is no exogenous information, vanishingly small amounts of misspecification can generate
extreme failures of learning. The following example illustrates this point:
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Example 2. Consider the setting in Section 4.2.1. Suppose that true and perceived proba-
bilities are β+(γ(µ)+α)ω∗ and β̂+(γ(µ)+α)ω, where α > 0 captures exogenous information.
Then for any β̂ > β (resp. β̂ < β), there exists α > 0 such that whenever α < α, then δωN
(resp. δω1) is globally stable at all ω∗. Here, α can be chosen to be decreasing in ε = |β̂−β|,
with α(ε)→ 0 as ε→ 0. N

Taken together, these results suggest that some policy interventions, such as releasing
additional public signals or shutting down some agents’ observations of others’ actions, might
be used to “robustify” learning against misspecification, but that the effectiveness of such
interventions would depend on the relative strength of additional information and agents’
amount of misspecification.

The slow learning channel we highlight also complements other fragility results in the
literature. Frick, Iijima, and Ishii (2020a) (FII20) study a different social learning model,
with a continuum of states and continuum of agents, who each privately observe the action
of a random other agent each period. Importantly, the fact that action observations are
private means that the setting in FII20 is not nested by the current paper, nor by BH, as
these papers require a public belief process. As a result, the preceding discussion on ro-
bustness/fragility without/with slow learning does not apply. Indeed, as FII20 show, their
setting does not feature slow learning: Agents view their new private action observations
as non-vanishingly informative, no matter how confident they themselves have become in a
particular state.36 Yet, despite the absence of slow learning, FII20 establish that arbitrar-
ily small misspecification about the type distribution F can lead beliefs to converge to a
state-independent point-mass, similar to the current fragility result in Proposition 4. The
mechanism behind the two fragility results is quite different.37 One notable manifestation of
this difference is that the fragility result in FII20 relies on a continuous state space: FII20
show that, in their setting, successful learning is robust if the state space is finite, in contrast
with Proposition 4.

Cho and Kasa (2017) consider single-agent learning under a Markovian fundamental.
Their setting is also not nested by ours and does not feature slow learning, but they show
that long-run beliefs can be discontinuous against the details of the agent’s misspecification.
Their discontinuity result holds away from the correctly specified benchmark and relies on
intertemporal correlation in the signal process.

36This is because, under random matching in a continuum population, the history observed by an agent’s
new match in each period almost surely has no overlap with her own history of observations.

37Specifically, in Section 4.2.2, slow learning implies that all point-mass beliefs are BeNE, and the logic
behind Proposition 4 is that misspecification can discontinuously change which of these beliefs are stable.
By contrast, FII20 highlight a discontinuity at the level of the equilibrium correspondence: all point-mass
beliefs are BeNE under correct specification, but misspecification can discontinuously shrink the BeNE set
to a single state-independent point-mass.
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5 Concluding remarks

This paper presents an approach to analyze belief convergence in a broad class of misspec-
ified learning environments, including single-agent and social learning. The key ingredients
underlying our approach are (i) a novel prediction accuracy order over subjective models, q-
dominance, and (ii) the observation that throughout any region of beliefs where q-dominance
obtains, standard martingale arguments from the correctly specified setting can be applied
locally. Based on this, we obtain conditions for local/global stability or instability of long-
run beliefs. One difference with existing approaches is that our results can be applied to
study the impact of misspecification when learning is slow. When this is the case, as is
natural under costly information acquisition or social learning, we illustrate that successful
learning can be highly fragile against misspecification. We also apply our results to unify
and generalize various convergence results in previously studied settings.

Fruitful directions in which to extend our results include multi-agent settings with het-
erogeneous beliefs (partially addressed in Appendix G of the previous version, Frick, Iijima,
and Ishii, 2020b) and Markov decision problems. Another important direction that we leave
open is to analyze when a mixed belief (or region of mixed beliefs) µ∗ is stable: This can
be seen as an extreme form of slow learning, where belief-updating ceases completely before
agents have become confident in any given state, and arises in some important economic
applications (see Section 2.2). We expect that stability conditions for this case might be
obtained by again requiring a suitable transformation of the posterior ratio process to be a
nonnegative supermartingale near µ∗.38

Appendix

Appendix A contains all proofs for Section 3 (Lemma 1 is immediate from Theorem 1). Appendix B
extends the stability analysis to infinite state spaces. The proofs for the applications in Section 4,
as well as all supplemental material referenced in the text, appear in Online Appendices C–D.

38More specifically, our q-dominance condition for local stability of δω in Theorem 1 ensures that f(µt) =(
µt(ω

′)
µt(ω)

)q
is a nonnegative supermartingale at beliefs near δω. To establish the local stability of a mixed

belief µ∗, a similar approach would be to construct a function f that is minimized at µ∗ and such that f(µt)
strictly decreases in expectation near µ∗ (similar arguments establish stability of a region of mixed beliefs
µ∗). The key new step would be to identify suitable conditions on P and P̂ that yield such a function f .
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A Proofs for Section 3

A.1 Preliminary results

Say belief continuity holds at M ⊆ ∆(Ω) if for each ω, ω′ ∈ Ω, µ ∈M and z ∈ Z, we have that
pµ(z), p̂µ(z|ω)

p̂µ(z|ω′) , and pµ(z) p̂µ(z|ω)
p̂µ(z|ω′) are continuous in µ.

Lemma 9. Assume belief continuity holds at M ⊆ ∆(Ω). Pick q∗ > 0 as in Assumption 1.2. For
all ω, ω′ and q with 0 < q ≤ min{q∗, 1},

´ ( p̂µ(z|ω)
p̂µ(z|ω′)

)q
pµ(z) dν(z) is continuous in µ on M .

Proof. Fix ω, ω′ and q ∈ (0, q∗]. Consider µ ∈ M and a sequence µn → µ. Observe that belief
continuity implies that, for each z,(

p̂µn(z|ω)

p̂µn(z|ω′)

)q
pµn(z)→

(
p̂µ(z|ω)

p̂µ(z|ω′)

)q
pµ(z).

When pµ(z) > 0, the claim is clear. When pµ(z) = 0, this holds because p̂µn (z|ω)
p̂µn (z|ω′)pµn(z) →

p̂µ(z|ω)
p̂µ(z|ω′)pµ(z) = 0 and q ≤ 1.

Given the above observation, the desired continuity holds by the dominated convergence theo-
rem, as

(
p̂µ(·|ω)
p̂µ(·|ω′)

)q
pµ(·) is dominated by the ν-integrable h(·) (by Assumption 1.2 and q ≤ q∗).

The following result shows that mixed beliefs are unstable under an identification condition.
The argument is similar to Theorem B.1 in Smith and Sørensen (2000):

Lemma 10. Take any compact set K ⊆ ∆(Ω) at which belief continuity holds. Suppose there exist
ω, ω′ such that for each µ ∈ K, we have (i) µ(ω), µ(ω′) > 0 and (ii) p̂µ(z|ω) 6= p̂µ(z|ω′) for some
z ∈ supp(Pµ). Then for any initial belief µ0, Pµ0

[∃τ <∞ s.t. µt ∈ K ∀t ≥ τ, and ∃ limt
µt(ω)
µt(ω′)

] = 0.

Proof. For each µ ∈ K, (ii) yields some zµ ∈ supp(Pµ) such that
∣∣∣log p̂µ(zµ|ω)

p̂µ(zµ|ω′)

∣∣∣ > 0. Since perceived
signal densities are continuous in z, there exists a neighborhood Zµ 3 zµ with

inf
z∈Zµ

∣∣∣∣log
p̂µ(z|ω)

p̂µ(z|ω′)

∣∣∣∣ > 0, Pµ(Zµ) > 0.

By belief continuity at K, there exists a neighborhood Bµ 3 µ such that

inf
z∈Zµ,µ′∈Bµ

∣∣∣∣log
p̂µ′(z|ω)

p̂µ′(z|ω′)

∣∣∣∣ > 0, inf
µ′∈Bµ

Pµ′(Zµ) > 0.

By compactness of K, there is a finite subcover (Bµi)
n
i=1 of K. Thus, there is γ > 0 such that

inf
z∈Zµi ,µ′∈Bµi

∣∣∣∣log
p̂µ′(z|ω)

p̂µ′(z|ω′)

∣∣∣∣ > γ, inf
µ′∈Bµi

Pµ′(Zµi) > γ, for all i = 1, . . . , n.

Suppose for a contradiction that Pµ0
[∃τ <∞ s.t. µt ∈ K ∀t ≥ τ, and ∃ limt

µt(ω)
µt(ω′)

] > 0 for some
initial belief µ0. Since the belief process is Markov, there exists an initial belief µ′0 ∈ K such that
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Pµ′0 [µt ∈ K ∀t, and ∃ limt
µt(ω)
µt(ω′)

] > 0. Given this initial belief µ′0, take ` from the support of the

distribution of limt
µt(ω)
µt(ω′)

conditional on the event {µt ∈ K ∀t, and ∃ limt
µt(ω)
µt(ω′)

}. Then

Pµ′0

[
µt ∈ K ∀t and ∃T <∞ s.t.

∣∣∣∣log
µt(ω)

µt(ω′)
− `
∣∣∣∣ ≤ γ/2 ∀t ≥ T] > 0. (13)

But for any t, if µt ∈ K and
∣∣∣log µt(ω)

µt(ω′)
− `
∣∣∣ ≤ γ/2, then there exists i such that µt ∈ Bµi . Hence,

by construction, there is probability at least γ > 0 that
∣∣∣log µt+1(ω)

µt+1(ω′) − `
∣∣∣ > γ/2. Since the process

is Markov, this implies that the event in (13) occurs with zero probability, a contradiction.

A.2 Proof of Lemma 2

Consider the random variable log p̂µ(z|ω′)
p̂µ(z|ω) , where z is distributed according to Pµ. The correspond-

ing moment-generating function M(q) :=
´ ( p̂µ(z|ω′)

p̂µ(z|ω)

)q
dPµ(z) is well-defined for q ∈ [−q∗, q∗] by

Assumption 1.2. Note that M ′(0) =
´

log p̂µ(z|ω′)
p̂µ(z|ω) dPµ(z) and that M is convex with M(0) = 1.

Part 1. If ω �qµ ω′ for some q > 0, then M(q) < 1 = M(0). Thus, convexity of M implies for
all q′ ∈ (0, q) that M(q′) ≤ q′

qM(q) + (1− q′

q )M(0) < 1, i.e., ω �q
′

µ ω′. By convexity of M , we also
have M ′(0) ≤ 1

q (M(q)−M(0)) < 0, whence ω �KL
µ ω′.

Part 2. If ω �KL
µ ω′, then M ′(0) < 0. Thus, for all small enough q > 0, M(q) < M(0) = 1,

i.e., ω �qµ ω′.

A.3 Proof of Theorem 1

First part: Suppose there exist q > 0 and B 3 δω such that (6) holds. We can (i) choose B
small enough that belief continuity holds at B (by Assumption 1.3), and (ii) assume that q < 1 (by
Lemma 2). For any initial belief µ0 with induced probability measure Pµ0

over sequences of beliefs
and each ω′ 6= ω, define the stochastic process `t(ω′) :=

(
µmin{t,τ}(ω′)
µmin{t,τ}(ω)

)q
, where τ := inf{s : µs 6∈ B}.

By (6) and Lemma 3, each `t(ω′) is a nonnegative supermartingale. Thus, by Doob’s convergence
theorem, there exists an L∞-random variable `∞(ω′) such that `t(ω′)→ `∞(ω′) occurs a.s.

To prove that δω is locally stable, it suffices to show the following two claims:

Claim 1: For any initial belief µ0, Pµ0
[µt ∈ B ∀t and µt → δω] = Pµ0

[µt ∈ B ∀t].

Proof of Claim 1. Consider any initial belief µ0 such that Pµ0
[µt ∈ B, ∀t] > 0. We show that

Pµ0
[µt → δω|µt ∈ B ∀t] = 1. Conditional on the event {µt ∈ B, ∀t}, we have τ = ∞, so the fact

that `t(ω′) → `∞(ω′) a.s. implies that each µt(ω′)
µt(ω) converges a.s. to a finite value. Suppose for a

contradiction that for some ω′ 6= ω, Pµ0
[limt

µt(ω′)
µt(ω) > 0 | τ = ∞] > 0. Then there exists a compact

K ⊆ B such that µ(ω′), µ(ω) > 0 for all µ ∈ K and Pµ0
[∃T s.t. µt ∈ K∀t ≥ T and ∃ limt

µt(ω′)
µt(ω) | τ =

∞] > 0. But this contradicts Lemma 10, because for any µ ∈ B \ {δω}, (6) yields some z ∈ suppPµ

with p̂µ(z|ω) 6= p̂µ(z|ω′). Hence, we have Pµ0
[limt

µt(ω′)
µt(ω) = 0 | τ = ∞] = 1 for all ω′ 6= ω. Thus,

Pµ0
[µt → δω | τ =∞] = 1, as claimed.
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Claim 2: For any γ > 0, there exists a neighborhood B′ ⊆ B of δω such that Pµ0
[µt ∈ B ,∀t] ≥ γ

for any initial belief µ0 ∈ B′.

Proof of Claim 2. Fix any γ > 0. Pick ε+ > 0 such that {µ ∈ ∆(Ω) :
∑

ω′ 6=ω

(
µ(ω′)
µ(ω)

)q
< ε+} ⊆ B.

Pick ε− > 0 such that ε−
ε+
≤ 1− γ. For any µ0 ∈ B′ := {µ ∈ ∆(Ω) :

∑
ω′ 6=ω

(
µ(ω′)
µ(ω)

)q
< ε−}, we have

Pµ0
[∃t, µt 6∈ B] ≤ Pµ0

[
∑
ω′ 6=ω

`∞(ω′) ≥ ε+] ≤ Eµ0
[
∑
ω′ 6=ω

`∞(ω′)]/ε+ ≤
ε−
ε+
,

where the second inequality uses Markov’s inequality and the third follows from Fatou’s lemma and
the fact that each `t(ω′) is a nonnegative supermartingale. Thus, Pµ0

[µt ∈ B, ∀t] ≥ γ.

Second part: Suppose there exist q > 0 and a neighborhood B 3 δω such that (7) holds for
some ω′ 6= ω, where we again assume without loss that belief continuity holds at B and q < 1. Up
to restricting to a subneighborhood of B, we can assume that there exists ε > 0 such that µ(ω) > ε

for all µ ∈ B. Fix any initial belief µ0 ∈ B \ {δω}. Let τ := inf{s : µs 6∈ B}. To prove instability of
δω, it suffices to show that Pµ0

[τ < ∞] = 1. Consider the process `t :=
(
µmin{t,τ}(ω)
µmin{t,τ}(ω′)

)q
, which is a

non-negative supermartingale by (7) and Lemma 3. Hence, Doob’s convergence theorem yields an
L∞-random variable `∞ such that `t → `∞ a.s.

Suppose for a contradiction that with positive probability, we have τ = ∞. Conditional on
τ = ∞, we have

(
µt(ω)
µt(ω′)

)q
= `t for all t. Thus, conditional on τ = ∞, µt(ω)

µt(ω′)
converges a.s. to

an L∞ random limit limt
µt(ω)
µt(ω′)

, which must be strictly positive since µ(ω) > ε for all µ ∈ B.
Hence, there exists some compact set K ⊆ B \ {δω} such that µ(ω), µ(ω′) > 0 for all µ ∈ K and
Pµ0

[∃T s.t. µt ∈ K∀t ≥ T and ∃ limt
µt(ω)
µt(ω′)

| τ = ∞] > 0. But this contradicts Lemma 10, because
(7) implies that for each µ ∈ K, there exists z ∈ suppPµ with p̂µ(zµ|ω) 6= p̂µ(zµ|ω′).

A.4 Proof of Theorem 2

This result is a special case of Theorem 3 in Appendix B.

A.5 Proof of Proposition 1

We call K ⊆ ∆(Ω) an unstable set if there exists a neighborhood B of K such that Pµ0
[∃t, µt 6∈

B] = 1 for every initial belief µ0 ∈ B \K. We call K ⊆ ∆(Ω) transient if Pµ0
[∃t s.t. µt 6∈ K] = 1

for any initial belief µ0 ∈ K. We invoke the following lemma, which we prove in Appendix A.5.1.

Lemma 11. Suppose that belief continuity holds. Consider Ω = {ω1, . . . , ωN} and suppose that

(i) δω1
satisfies the condition for local stability in Theorem 1;

(ii) ∆ ({ω2, . . . , ωN}) is unstable;

(iii) for any mixed µ ∈ ∆(Ω), there is z ∈ supp(Pµ) with p̂µ(z|ω1) > p̂µ(z|ωn) for all n 6= 1.
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Then δω1
is globally stable.

To prove Proposition 1, we verify the assumptions in Lemma 11. Assumptions (i) and (iii)
in Lemma 11 follow from assumptions (i) and (ii) in Proposition 1 applied with n = 1. Thus, it
remains to show that ∆({ω2, . . . , ωN}) is unstable. We prove inductively that ∆({ωN−m, . . . , ωN})
is unstable for all m = 0, . . . , N−2. For m = 0, this holds since δωN is unstable by assumption (i) in
Proposition 1 and Theorem 1. For the inductive step, we prove the following lemma; this completes
the proof, because assumptions (i)–(ii) in Proposition 1 imply assumptions (i)–(iii) in the lemma.

Lemma 12. Fix any n ∈ {2, . . . , N − 1}. Suppose that the set ∆({ωn+1, . . . , ωN}) is unstable
and belief continuity holds at some neighborhood of this set. Assume that (i) there exist q > 0

and a neighborhood Bn 3 δωn such that ωn �qµ ωk for all k > n and µ ∈ Bn \ {δωn}; (ii) δωn is
unstable; and (iii) for each mixed belief µ ∈ ∆({ωn, . . . , ωN}), there exists z ∈ supp(Pµ) such that
p̂µ(z|ωn) > p̂µ(z|ωk) for all k > n. Then ∆({ωn, . . . , ωN}) is unstable.

Proof. Note first that since ∆({ωn+1, . . . , ωN}) is unstable, there exists εn+1 > 0 such that ∆n+1 :=

{µ ∈ ∆(Ω) : µ({ωn+1, . . . , ωN}) ≥ 1 − εn+1} is transient. Moreover, we can assume that Bn in
assumption (i) takes the form {µ ∈ ∆(Ω) : µ(ωn) > 1 − κ} for some κ > 0, where, by choosing κ
sufficiently small, assumption (ii) ensures that Bn is transient.

We claim that we can choose ε > 0, γ ∈ (0, 1), and εn ∈ (0, εn+1) such that, defining

∆n := {µ ∈ ∆(Ω) : µ({ωn, . . . , ωN}) ≥ 1− εn}, B′n := {µ ∈ ∆n :
∑
k>n

(
µ(ωk)

µ(ωn)

)q
≤ ε},

the following three properties are satisfied:

B′n ⊆ Bn (14)

∀µ ∈ ∆n \ (∆n+1 ∪B′n),∃Zµ ⊆ Z with Pµ(Zµ) ≥ γ and inf
z∈Zµ

p̂µ(z|ωn)

p̂µ(z|ωk)
− 1 ≥ γ for all k > n (15)

εn+1

εn+1 − εn
≤ 1 + γ. (16)

Indeed, first pick ε > 0 sufficiently small that µ(ωn) ≥ 1−κ/2 holds for every µ ∈ ∆({ωn, . . . , ωN})
with

∑
k>n

(
µ(ωk)
µ(ωn)

)q
≤ ε. Then (14) is satisfied for all sufficiently small εn ∈ (0, εn+1). To

show (15), note that by assumption (iii) and continuity of signal densities in z, for all µ ∈
∆({ωn, . . . , ωN})\{δωn , . . . , δωN}, there exists Zµ ⊆ Z with Pµ(Zµ) > 0 and infz∈Zµ

p̂µ(z|ωn)
p̂µ(z|ωk) −1 > 0

for all k > n. By belief continuity, for each such µ, there exists an open neighborhood Bµ 3 µ

such that infµ′∈Bµ Pµ′(Zµ) > 0 and infz∈Zµ,µ′∈Bµ
p̂µ′ (z|ωn)
p̂µ′ (z|ωk) − 1 > 0 for all k > n. Moreover, given

ε > 0, but independent of the choice of εn, µ(ωn), . . . , µ(ωN ) are bounded away from 1 for all
µ ∈ ∆({ωn, . . . , ωN}) \ (∆n+1 ∪ B′n). Thus, ∆({ωn, . . . , ωN}) \ (∆n+1 ∪ B′n) is contained in some
compact set K ⊂ ∆({ωn, . . . , ωN}) \ {δωn , . . . , δωN}. Hence, by taking a finite subcover (Bµi)i=1,...,I

of K, there is γ ∈ (0, 1) such that infµ′∈Bµi Pµ′(Zµi) ≥ γ and infz∈Zµi ,µ′∈Bµi
p̂µ′ (z|ωn)
p̂µ′ (z|ωk) − 1 ≥ γ for all
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k > n and i ∈ 1, . . . , I. For all small enough εn, we can then ensure that (15) and (16) hold, where
the former is guaranteed by requiring ∆n \ (∆n+1 ∪B′n) to be included in the cover (Bµi)i=1,...,I .

For ε, γ, and εn as chosen above, we establish the following two claims:
Claim 1: There exists T ∈ N such that Pµ0

[∃t ≤ T s.t. µt ∈ B′n ∪∆c
n] ≥ γT for every initial belief

µ0 ∈ ∆n \∆n+1.

Proof of Claim 1. Observe first that µ0(ωn+1)
µ0(ωn) , . . . ,

µ0(ωN )
µ0(ωn) are uniformly bounded from above for all

µ0 ∈ ∆n\∆n+1, as µ0(ωn) ≥ εn+1−εn > 0. Thus, there exists T with
∑

k>n

(
µ0(ωk)
µ0(ωn)(1 + γ)−T

)q
≤ ε.

Starting with any initial belief µ0 ∈ ∆n \ ∆n+1, we recursively construct sequences of signal
realizations z0, z1, . . . , zT ′ with T ′ ≤ T − 1 and corresponding updated beliefs µ1, µ2, . . . , µT ′+1.
Suppose we have constructed z0, . . . , zt−1 for some t ∈ {0, . . . , T}. We distinguish two cases:

(a) If µt ∈ B′n ∪∆c
n, set T ′ = t− 1 and terminate the construction of the signal sequence.

(b) Suppose µt ∈ ∆n\(∆n+1∪B′n). Then by (15), we can pick any signal zt ∈ Zµt , which satisfies
p̂µt (zt|ωn)
p̂µt (zt|ωk)−1 ≥ γ for all k > n. We claim that the updated belief µt+1 satisfies µt+1({ωn+1, . . . , ωN}) ≤
µt({ωn+1, . . . , ωN}), so µt+1 6∈ ∆n+1. Indeed, suppose to the contrary that µt+1({ωn+1, . . . , ωN}) >
µt({ωn+1, . . . , ωN}). By choice of zt, we have µt+1(ωn)

µt+1(ωk) ≥
µt(ωn)
µt(ωk) (1 + γ) for each k > n. Thus,

µt+1(ωn)
µt(ωn) ≥ maxk>n

µt+1(ωk)
µt(ωk) (1 + γ) ≥ µt+1({ωn+1,...,ωN})

µt({ωn+1,...,ωN}) (1 + γ) > 1 + γ. At the same time,

µt+1(ωn)

µt(ωn)
≤ 1− µt+1({ωn+1, . . . , ωN})

1− µt({ωn+1, . . . , ωN})− εn
<

1− µt({ωn+1, . . . , ωN})
1− µt({ωn+1, . . . , ωN})− εn

≤ εn+1

εn+1 − εn

where the first inequality holds because µt ∈ ∆n and the third because µt 6∈ ∆n+1. Thus, εn+1

εn+1−εn ≥
µt+1(ωn)
µt(ωn) > 1 + γ, which contradicts (16).

Note that the construction above ensures that case (a) must occur at the latest at t = T ,
so that T ′ ≤ T − 1. Indeed, if (b) holds for all t < T , then µT ∈ B′n, as

∑
k>n

(
µT (ωk)
µT (ωn)

)q
≤∑

k>n

(
µ0(ωk)
µ0(ωn)(1 + γ)−T

)q
≤ ε by (b) and the choice of T . This proves Claim 1, as by construction

and (15), signal realizations (z0, . . . , zT ′) of the above form occur with probability at least γT ′+1.

Claim 2: Let τ := inf{t : µt 6∈ B′n}. There exists ξ ∈ [0, 1) such that Pµ0
[τ < ∞] = 1 and

Pµ0
[µτ ∈ ∆n \B′n] ≤ ξ for every initial belief µ0 ∈ B′n.

Proof of Claim 2. Note that Pµ0
[τ < ∞] = 1 is immediate from (14) and the fact that Bn is

transient. To show the existence of ξ, define `t :=
∑

k>n

(
µmin{t,τ}(ωk)
µmin{t,τ}(ωn)

)q
. By (14) and assumption

(ii), `t is a nonnegative supermartingale, and in particular Eµ0
[`1] < `0 ≤ ε for every initial belief

µ0 ∈ B′n. Since Eµ0
[`1] is continuous in µ0 by Lemma 9 and B′n is compact, there exists ξ ∈ [0, 1)

such that Eµ0
[`1] ≤ ξε holds for every initial belief µ0 ∈ B′n. Hence,

Pµ0
[µτ ∈ ∆n \B′n]ε+ Pµ0

[µτ 6∈ ∆n \B′n] · 0 ≤ Eµ0
[`τ ] ≤ Eµ0

[`1] ≤ ξε,

where the first inequality holds by definition of B′n. Thus, Pµ0
[µτ ∈ ∆n \B′n] ≤ ξ.
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To complete the proof of Lemma 12, for each initial belief µ0, define g(µ0) := Pµ0
[µt ∈ ∆n∀t].

We verify that supµ0∈∆n
g(µ0) = 0. First, take any µ0 ∈ ∆n∩∆n+1 and set τ ′ := inf{t : µt 6∈ ∆n+1},

which satisfies Pµ0
[τ ′ <∞] = 1 since ∆n+1 is transient. By the Markov property,

g(µ0) = Pµ0
[µτ ′ ∈ ∆n]Eµ0

[g(µτ ′)|µτ ′ ∈ ∆n] + Pµ0
[µτ ′ /∈ ∆n] · 0 ≤ sup

µ∈∆n\∆n+1

g(µ).

This implies that
sup
µ0∈∆n

g(µ0) = sup
µ0∈∆n\∆n+1

g(µ0). (17)

Next, take any µ0 ∈ B′n and define τ := inf{t : µt 6∈ B′n} as in Claim 2. By the Markov property,

g(µ0) = Pµ0
[µτ ∈ ∆n]Eµ0

[g(µτ )|µτ ∈ ∆n] ≤ ξ sup
µ∈∆n

g(µ) = ξ sup
µ∈∆n\∆n+1

g(µ)

where the inequality holds by Claim 2 and the equality by (17). Thus,

sup
µ∈Bn

g(µ) ≤ ξ sup
µ∈∆n\∆n+1

g(µ). (18)

Last, take µ0 ∈ ∆n\∆n+1 and let τ ′′ := inf{min{t : µt ∈ ∆c
n∪B′n}, T+1}. By the Markov property,

g(µ0) = Pµ0
[τ ′′ ≤ T ]Eµ0

[g(µτ )|τ ′′ ≤ T ] + Pµ0
[τ ′′ > T ]Eµ0

[g(µτ )|τ ′′ > T ]

≤ Pµ0
[τ ′′ ≤ T ] sup

µ∈Bn
g(µ) + Pµ0

[τ ′′ > T ] sup
µ∈∆n

g(µ)

≤ γT sup
µ∈Bn

g(µ) + (1− γT ) sup
µ∈∆n

g(µ) ≤ (γT ξ + 1− γT ) sup
µ∈∆n\∆n+1

g(µ),

where the second inequality follows from Claim 1 and the fact that supµ∈Bn g(µ) ≤ supµ∈∆n
g(µ)

by (18), and the final inequality holds by (17)–(18). Thus, supµ∈∆n\∆n+1
g(µ) = 0 and the desired

conclusion follows from (17).

A.5.1 Proof of Lemma 11

Fix any γ ∈ (0, 1). Given assumption (i), Claims 1 and 2 in the proof of Theorem 1 ensure that
there exist neighborhoods B1 ⊇ B′1 3 δω1

such that

Pµ0
[µt ∈ B1∀t] = Pµ0

[µt ∈ B1∀t, and µt → δω1
] ≥ γ for all initial beliefs µ0 ∈ B′1. (19)

By assumption (ii), ∆({ω2, . . . , ωN}) admits a neighborhood ∆2 such that Pµ0
[∃t s.t. µt /∈ ∆2] = 1

for all initial beliefs µ0 ∈ ∆2\∆({ω2, . . . , ωN}). Since initial beliefs have full support, we equivalently
have that Pµ0

[∃t s.t. µt /∈ ∆2] = 1 for all initial beliefs µ0 ∈ ∆2. Thus, ∆2 is transient.
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Observe that there exist T ∈ N and η > 0 such that, for every initial belief µ0 6∈ ∆2,

Pµ0
[∃t ≤ T s.t. µt ∈ B′1] ≥ η (20)

Indeed, pick L > 1 large enough that (i) µ ∈ B′1 for all µ with log µ(ω1)
µ(ωn) ≥ L for each n > 1, and (ii)

log µ(ω1)
µ(ωn) ≥ 1/L for all µ 6∈ ∆2 and n > 1. By continuity of pµ(z), p̂µ(z|ω1)

p̂µ(z|ωn) in (z, µ) and assumption

(iii), there exists ε > 0 such that for all µ in the compact set {µ ∈ ∆(Ω) : L ≥ minn>1 log µ(ω1)
µ(ωn) ≥

1/L}, there is Zµ ⊆ Z such that Pµ(Zµ) > ε and log p̂µ(z|ω1)
p̂µ(z|ωn) > ε for all n 6= 1 and z ∈ Zµ. Starting

from any initial belief µ0 6∈ ∆2, consider any realization of signals (zt) and corresponding beliefs (µt)

such that zt ∈ Zµt . This ensures log µt(ω1)
µt(ωn) ≥ 1/L + tε for each n > 1 and t. Along this sequence,

µt′ ∈ B′1 for some t′ ≤ L−1/L
ε . Thus, claim (20) holds by choosing T ≥ L−1/L

ε and η = εT .
For each initial belief µ0, define h(µ0) := Pµ0

[µt → δω1
]. To show global stability of δω1

, we
will prove that infµ∈∆◦(Ω) h(µ) = 1. Note first that for any initial belief µ0, τ := inf{t : µt 6∈ ∆2}
satisfies Pµ0

[τ <∞] = 1 as ∆2 is transient. Thus, by the Markov property of µt, we have h(µ0) =

Eµ0
[h(µτ )] ≥ infµ∈∆◦(Ω)\∆2

h(µ), whence

inf
µ∈∆◦(Ω)

h(µ) = inf
µ∈∆◦(Ω)\∆2

h(µ). (21)

Next, take any initial belief µ0 ∈ B′1 and τ ′ := inf{t : µt 6∈ B1}. By the Markov property and (19),

h(µ0) = Pµ0
[τ ′ =∞]Pµ0

[µt → δω1
|τ ′ =∞] + Pµ0

[τ ′ <∞]Eµ0
[h(µτ ′)|τ ′ <∞]

= Pµ0
[τ ′ =∞] + Pµ0

[τ ′ <∞]Eµ0
[h(µτ ′)|τ ′ <∞] ≥ γ + (1− γ) inf

µ∈∆◦(Ω)
h(µ).

Combining this with (21) yields

inf
µ∈B′1

h(µ) ≥ γ + (1− γ) inf
µ∈∆◦(Ω)\∆2

h(µ). (22)

Finally, consider any initial belief µ0 6∈ ∆2 and let τ ′′ := min{inf{t : µt ∈ B′1}, T + 1}. Then,
by the Markov property and (20)-(22), we have

h(µ0) = Pµ0
[τ ′′ ≤ T ]Eµ0

[h(µτ ′′)|τ ′′ ≤ T ] + Pµ0
[τ ′′ > T ]Eµ0

[h(µτ ′′)|τ ′′ > T ]

≥ Pµ0
[τ ′′ ≤ T ] inf

µ∈B′1
h(µ) + Pµ0

[τ ′′ > T ] inf
µ∈∆◦(Ω)

h(µ)

≥ η inf
µ∈B′1

h(µ) + (1− η) inf
µ∈∆◦(Ω)

h(µ) ≥ ηγ + (1− ηγ) inf
µ∈∆◦(Ω)\∆2

h(µ).

This holds for all µ0 6∈ ∆2, so infµ∈∆◦(Ω)\∆2
h(µ) = 1. By (21), infµ∈∆◦(Ω) h(µ) = 1.
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B General states

We provide local and global stability conditions for infinite state spaces, by extending the martingale
approach in the main text. Assume Ω is a compact metric space and endow ∆(Ω) with the Prokhorov
metric d. In addition to Assumption 1, we impose the following standard assumption, which is
automatically satisfied if Ω is finite:

Assumption 2 (Continuity in states). For each µ ∈ ∆(Ω) and z ∈ Z, p̂µ(z|ω) is continuous in ω.

As in Section 2, given any full-support initial belief µ0, the belief process µt is induced by (Pµ)

and (P̂µ(·|ω)) using Bayes’ rule. In particular, after signal zt is drawn according to pµt , µt is updated
to µt+1 by setting µt+1(Ω′) =

´
Ω′ p̂µt (zt|ω) dµt(ω)´
Ω
p̂µt (zt|ω) dµt(ω)

for each measurable Ω′ ⊆ Ω.

B.1 Global iterated dominance

For global stability, we extend Theorem 2. For each nonempty Ω′ ⊆ Ω, let

S(Ω′) := {ω ∈ Ω
′
:6 ∃ω′ ∈ Ω

′ s.t. ω′ �KL
µ ω for all µ ∈ ∆(Ω

′
)},

where Ω
′ denotes the closure of Ω′ in Ω. Under belief continuity, S(Ω′) is nonempty and compact

(Lemma 14). Thus, S∞(Ω′) :=
⋂
k∈N S

k(Ω′) is nonempty and compact by Cantor’s intersection
theorem. The following result shows that Theorem 2 remains true unchanged:

Theorem 3. Assume belief continuity holds. Then ∆ (S∞(Ω)) is globally stable.

We prove Theorem 3 in Appendix B.4. All proofs in Appendix B rely on Lemma 15, which
extends our supermartingale construction via q-dominance to infinite state spaces.

B.2 Local iterated dominance

To obtain a condition for local stability, we also use the above iterated dominance approach. We
consider a set-valued notion of local stability: M ⊆ ∆(Ω) is a locally stable set if for any γ < 1,
there exists a neighborhood B of M such that Pµ0

[infν∈M d(µt, ν) → 0] ≥ γ from each initial
belief µ0 ∈ B. We also generalize the notion of strict BeNE to sets of beliefs: For each nonempty
measurable Ω′ ⊆ Ω, call ∆(Ω′) a strict BeNE set if for all ω 6∈ Ω′, there exists ω′ ∈ Ω

′ such that

ω′ �KL
µ ω for all µ ∈ ∆(Ω

′
).

Note that if Ω′ = {ω′} is a singleton, this definition reduces to δω′ being a strict BeNE. We prove
the following result in Appendix B.5:

Theorem 4. Suppose Ω′ is open and belief continuity holds at some neighborhood of ∆(Ω′). If
∆(Ω′) is a strict BeNE set, then ∆(Sk(Ω′)) is locally stable for all k = 0, 1, . . . ,∞.
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Theorem 4 implies Corollary 1 when Ω is finite. However, a strict BeNE δω need not be locally
stable under general Ω, as {ω} need not be open.

Similar to the application of Theorem 3 in Section 4.1, Theorem 4 is straightforward to apply
under one-dimensional states, because in this case local iterated dominance again corresponds to
iterated application of the map m:

Example 3. Consider the environment in Section 4.1. Proposition 5 (Online Appendix C.1) gen-
eralizes Proposition 2 by showing that if Ω′ ⊆ Ω is an open interval such that m(Ω

′
) ⊆ Ω′, then

Sk(Ω′) = mk(Ω
′
) for all k = 0, 1, . . . ,∞. For any such Ω′, the fact that S(Ω′) = m(Ω

′
) ⊆ Ω′ implies

that Ω′ is a strict BeNE set. Thus, by Theorem 4, ∆(m∞(Ω
′
)) is locally stable.

For example, consider any BeNE δω̂. Then if m is continuously differentiable near ω̂ with
|m′(ω̂)| < 1, this implies that δω̂ is locally stable, because for some small enough open interval
Ω′ 3 ω̂, we have m(Ω

′
) ⊆ Ω′ and m∞(Ω

′
) = {ω̂}. N

B.3 Preliminary results for the proofs of Theorems 3–4

Lemma 13. Pick q∗ as in Assumption 1.2. For each µ and q ∈ (0, q∗],
´ ( p̂µ(z|ω)

p̂µ(z|ω̃)

)q
pµ(z) dν(z) is

continuous in ω and ω̃.

Proof. For all z such that pµ(z) > 0, p̂µ(z|ω)
p̂µ(z|ω̃) is continuous in ω, ω̃ by Assumptions 1.1 and 2.

Thus,
´ ( p̂µ(z|ω)

p̂µ(z|ω̃)

)q
pµ(z) dν(z) is continuous in ω and ω̃ by the dominated convergence theorem, as(

p̂µ(·|ω)
p̂µ(·|ω̃)

)q
pµ(·) is dominated by the ν-integrable function h(·) (Assumption 1.2).

Lemma 14. Take any nonempty Ω′ ⊆ Ω such that belief continuity holds at ∆(Ω
′
). Then S(Ω′) is

nonempty and compact.

Proof. Take any ω ∈ Ω
′ \ S(Ω′). Then, by definition of S(Ω′), there is φ(ω) ∈ Ω

′ such that´
log p̂µ(z|ω)

p̂µ(z|φ(ω)) dPµ(z) < 0 for each µ ∈ ∆(Ω
′
). Thus, for each µ ∈ ∆(Ω

′
), Lemma 2 yields qµ ∈ (0, q∗]

such that, for all q ∈ (0, qµ],

ˆ (
p̂µ(z|ω)

p̂µ(z|φ(ω))

)q
pµ(z) dν(z) < 1.

By belief continuity, the LHS is continuous in µ at ∆(Ω
′
) (Lemma 9). Thus,

´ ( p̂µ′ (z|ω)
p̂µ′ (z|φ(ω))

)qµ
pµ′(z) dν(z) <

1 for all µ′ in some neighborhood Bµ of µ. Since ∆(Ω
′
) is compact, by taking a finite subcover of

{Bµ : µ ∈ ∆(Ω
′
)}, we can choose qµ =: q to be independent of µ. Thus, at ω′ = ω, we have

max
µ∈∆(Ω

′
)

ˆ (
p̂µ(z|ω′)
p̂µ(z|φ(ω))

)q
pµ(z) dν(z) < 1. (23)

Since the LHS of (23) is continuous in ω′ by Lemma 13 and the maximum theorem, there is a
neighborhood Bω 3 ω such that for all ω′ ∈ Bω ∩Ω

′, maxµ∈∆(Ω
′
)

´ ( p̂µ(z|ω′)
p̂µ(z|φ(ω))

)q
pµ(z) dν(z) < 1. By
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Lemma 2, this implies φ(ω) �KL
µ ω′ for all µ ∈ ∆(Ω

′
) and ω′ ∈ Bω ∩Ω

′. Thus, Ω
′ \ S(Ω′) is open in

Ω
′, which implies that S(Ω′) is closed in Ω

′ and hence compact.
Next, suppose that S(Ω′) is empty. Then the above observation shows that for each ω ∈ Ω

′,
there exists φ(ω) ∈ Ω

′ and a neighborhood Bω of ω such that φ(ω) �KL
µ ω′ for all µ ∈ ∆(Ω

′
) and

ω′ ∈ Bω ∩ Ω
′. By compactness of Ω

′, {Bω : ω ∈ Ω
′} admits a finite subcover {Bωi : i = 1, . . . , I}.

Then for each i ∈ {1, . . . , I}, there exists j ∈ {1, . . . , I} such that φ(ωj) �KL
µ φ(ωi) for all µ ∈ ∆(Ω

′
).

By transitivity of KL dominance, this yields i ∈ {1, . . . , I} such that φ(ωi) �KL
µ φ(ωi), which is

impossible. Thus, S(Ω′) is nonempty.

The following lemma extends the supermartingale construction via q-dominance to general Ω.
For any M ⊆ ∆(Ω) and ε > 0, let Bε(M) := {ν ∈ ∆(Ω) : infµ∈M d(µ, ν) < ε}. Note that (24)
below ensures that each `it :=

(
µmin{t,τ}(Ai)
µmin{t,τ}(A′i)

)qi
with τ := inf{s : µs 6∈ Bε(D)} is a nonnegative

supermartingale. Moreover, the lemma shows that `it → 0 a.s. conditional on τ =∞.

Lemma 15. Suppose belief continuity holds at a neighborhood of some nonempty compact set D ⊆
∆(Ω). Let Ω′ ⊆ Ω be a compact set such that for any ω′ ∈ Ω′, there exists ω ∈ Ω with ω �KL

µ ω′ for
all µ ∈ D. Then there exist a family of measurable sets of states {Ai}Ii=1, a family of open sets of
states {A′i}Ii=1, ε > 0, and qi > 0 for each i such that

⋃
iAi = Ω′ and

ˆ (´
Ai
p̂µ(z|ω) dµ(ω)/µ(Ai)´

A′i
p̂µ(z|ω) dµ(ω)/µ(A′i)

)qi
dPµ(z) ≤ 1− ε (24)

for each i and µ ∈ Bε(D) with µ(Ai), µ(A′i) > 0. Moreover, for any initial belief µ0,

Pµ0
[µt(Ω

′)→ 0, µt ∈ Bε(D) ∀t] = Pµ0
[µt ∈ Bε(D) ∀t]. (25)

Proof. By assumption, for each ω ∈ Ω′, there exists φ(ω) ∈ Ω such that, for all µ ∈ D,

ˆ
log

p̂µ(z|ω)

p̂µ(z|φ(ω))
pµ(z) dν(z) < 0. (26)

Claim 1: For each ω ∈ Ω′, there exist qω ∈ (0, q∗] and ζω > 0 such that, for all µ ∈ Bζω(D),

ˆ (
p̂µ(z|ω)

p̂µ(z|φ(ω))

)qω
pµ(z) dν(z) ≤ 1− ζω. (27)

Proof of Claim 1. For each ω ∈ Ω′ and µ ∈ D, (26) and Lemma 2 yield qω,µ ∈ (0, q∗] such that

ˆ (
p̂µ(z|ω)

p̂µ(z|φ(ω))

)q
pµ(z) dν(z) < 1

for all q ∈ (0, qω,µ]. By belief continuity, the LHS is continuous in µ in a neighborhood of D
(Lemma 9). Thus,

´ ( p̂µ′ (z|ω)
p̂µ′ (z|φ(ω))

)qω,µ
pµ′(z) dν(z) < 1 for all µ′ in some neighborhood Bµ of µ.
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Since D is compact, by taking a finite subcover of {Bµ : µ ∈ D}, we can choose qω,µ =: qω to be
independent of µ. Since the subcover of D is open, (27) holds for ζω > 0 sufficiently small.

Claim 2: For each ω ∈ Ω′, there exists εω > 0 such that, for any µ ∈ Bζω(D) with µ(Bεω(ω) ∩
Ω′), µ(Bεω(φ(ω))) > 0, we have

ˆ (´
Bεω (ω)∩Ω′ p̂µ(z|ω′) dµ(ω′)/µ(Bεω(ω) ∩ Ω′)´
Bεω (φ(ω)) p̂µ(z|ω′) dµ(ω′)/µ(Bεω(φ(ω)))

)qω
pµ(z) dν(z) ≤ 1− ζω/2. (28)

Proof of Claim 2. Fix ω ∈ Ω′. For each µ ∈ Bζω(D), we first observe that

max
µ̂∈∆(Bε(ω)),µ̂′∈∆(Bε(φ(ω)))

ˆ ( ´
p̂µ(z|ω′)dµ̂(ω′)´
p̂µ(z|ω′)dµ̂′(ω′)

)qω
pµ(z) dν(z) (29)

is continuous in ε by the maximum theorem: Indeed,
( ´

p̂µ(z|ω′)dµ̂(ω′)´
p̂µ(z|ω′)dµ̂′(ω′)

)qω
is continuous in µ̂, µ̂′,

since for each z, p̂µ(z|·) is continuous and bounded (by Assumption 2 and compactness of Ω). Thus,´ ( ´ p̂µ(z|ω′)dµ̂(ω′)´
p̂µ(z|ω′)dµ̂′(ω′)

)qω
pµ(z) dν(z) is continuous in µ̂, µ̂′ by the dominated convergence theorem, as( ´

p̂µ(·|ω′)dµ̂(ω′)´
p̂µ(·|ω′)dµ̂′(ω′)

)qω
pµ(·) is dominated by h(·) (Assumption 1.2). Therefore, by (27), there exists

εω,µ > 0 such that (29) is strictly less than 1− ζω/2 for all ε ∈ (0, εω,µ].
Moreover (29) is continuous in µ by the maximum theorem, as

´ ( ´ p̂µ(z|ω′)dµ̂(ω′)´
p̂µ(z|ω′)dµ̂′(ω′)

)qω
pµ(z) dν(z)

is continuous in µ by belief continuity (using the same argument as in Lemma 9). Therefore,
maxµ̂∈∆(Bεω,µ (ω)),µ̂′∈∆(Bεω,µ (φ(ω)))

´ ( ´ p̂µ′ (z|ω′)dµ̂(ω′)´
p̂µ′ (z|ω′)dµ̂′(ω′)

)qω
pµ′(z) dν(z) < 1 − ζω/2 for all µ′ in some

neighborhood Bµ of µ. Since Bζω(D) is compact, by taking a finite subcover of {Bµ : µ ∈ Bζω(D)},
we can choose εω,µ =: εω to be independent of µ. This establishes (28).

Since {Bεω(ω)∩Ω′ : ω ∈ Ω′} covers the compact set Ω′, there is a finite subcover {Bεωi (ωi)∩Ω′ :

i = 1, . . . , I}. Thus by setting Ai := Bεωi (ωi) ∩ Ω′, A′i := Bεωi (φ(ωi)), qi := qωi for each i, and
ε := mini min{εωi , ζωi/2}, we obtain (24) for each i and any µ ∈ Bε(D) with µ(Ai), µ(A′i) > 0.

For the “moreover” part, define `it :=
(
µmin{t,τ}(Ai)
µmin{t,τ}(A′i)

)qi
for each i = 1, . . . , I, where τ := inf{s :

µs 6∈ Bε(D)}. For any initial belief µ0, `it is a nonnegative supermartingale by (24). Thus, Doob’s
convergence theorem yields an L∞ random variable `i∞ such that `it → `i∞ a.s. Observe that, for
any initial belief µ0 ∈ Bε(D), Markov’s inequality and (24) imply

Pµ0
[`i1 ≥ (1− ε/2)`i0] ≤ Eµ0

[`i1]

(1− ε/2)`i0
≤ 1− ε

1− ε/2
.

Thus, conditional on any µt ∈ Bε(D), the probability that `it+1 is less than (1 − ε/2)`it is at least
ε/2

1−ε/2 . This implies that Pµ0
[`i∞ > 0, τ =∞] = 0 for any initial belief. Since, conditional on τ =∞,

we have `it = µt(Ai)
µt(A′i)

for each i and t, this ensures the desired claim.
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B.4 Proof of Theorem 3

Call M ⊆ ∆(Ω) Lyapunov stable if for any neighborhood B of M and γ < 1, there exists a
neighborhood B′ of M such that Pµ0

[µt ∈ B ∀t] ≥ γ for every initial belief µ0 ∈ B′. We start with
a preliminary lemma:

Lemma 16. Let Ω′ ⊆ Ω be a nonempty and measurable set such that ∆(Ω′) is Lyapunov stable and
belief continuity holds at a neighborhood of ∆(Ω′). Then ∆(S(Ω′)) is Lyapunov stable.

Proof. Write Ω′′ := S(Ω′), which is nonempty and compact by Lemma 14. If Ω′′ = Ω′, the claim
is immediate, so assume Ω′′ ( Ω′. Take any neighborhood B of ∆(Ω′′) and any γ < 1. Pick N
large enough that ∆(B1/N (Ω′′)) ⊆ B. By Lemma 15, there exist a family of measurable sets of
states {Ai}Ii=1, a family of open sets of states {A′i}Ii=1, ε > 0, and qi > 0 for each i such that⋃
iAi = Ω

′ \B1/N (Ω′′) and (24) holds for each i and µ ∈ Bε(∆(Ω
′
)) with µ(Ai), µ(A′i) > 0.

Define C := {µ ∈ Bε′(∆(Ω
′
)) :

∑
i

(
µ(Ai)
µ(A′i)

)qi
≤ ε′}, where by construction of {Ai}Ii=1, we can

choose ε′ ∈ (0, ε) small enough that C ⊆ B. Set τ := inf{t : µt 6∈ C}. Then from any initial belief,
each `it :=

(
µmin{t,τ}(Ai)
µmin{t,τ}(A′i)

)qi
is a nonnegative supermartingale by (24), and thus a.s. converges to an

L∞ limit `i∞.
For each η > 0, define C ′η := {µ ∈ ∆(Ω) :

∑
i

(
µ(Ai)
µ(A′i)

)qi
, µ(Ω\Ω

′
) ≤ η}, which is a neighborhood

of ∆(Ω′′). For any initial belief µ0 ∈ C ′η, we have

Pµ0
[τ <∞] ≤ Pµ0

[∃t s.t. µt 6∈ Bε′(∆(Ω
′
))]+Pµ0

[∃t s.t.
∑
i

(
µt(Ai)

µt(A′i)

)qi
> ε′, µs ∈ Bε′(∆(Ω

′
))∀s ≤ t].

By Lyapunov stability of ∆(Ω′), we can pick η sufficiently small that the first term is less than 1−γ
2

for all µ0 ∈ C ′η. Moreover, the second term is less than Pµ0
[
∑

i `
i
∞ > ε′] ≤ Eµ0

[
∑

i `
i
1]/ε′ ≤ η/ε′

by Markov’s inequality, Fatou’s lemma and the fact that
∑

i `
i
t is a nonnegative supermartingale.

Thus, by taking η sufficiently small, Pµ0
[µt ∈ B∀t] ≥ Pµ0

[µt ∈ C∀t] ≥ γ for every initial belief
µ0 ∈ C ′η.

Proof of Theorem 3. Let Ωk := Sk(Ω) for k = 0, 1, . . ., which is a nested sequence of nonempty
compact sets (Lemma 14). We inductively show that Pµ0

[µt(Ω
k) → 1] = 1 for all initial beliefs µ0

and every k ≥ 0. Case k = 0 is true by definition.
Suppose the claim is true for all k = 0, 1, . . . , κ − 1 and consider k = κ. Take any N with

Ω \ B1/N (Ωκ) nonempty. By Lemma 15 applied with Ω′ = Ω \ B1/N (Ωκ) and D = ∆(Ωκ−1), there
exists ε > 0 such that (25) holds for each initial belief µ0.

Take any γ < 1. Then by Lyapunov stability of ∆(Ωκ−1) (Lemma 16) there exists a neighbor-
hood B of ∆(Ωκ−1) such that Pµ0

[µt ∈ Bε(∆(Ωκ−1))∀t] ≥ γ for every initial belief µ0 ∈ B. Thus,
for any initial belief µ0, (25) and the inductive hypothesis that Pµ0

[µt(Ω
κ−1)→ 1] = 1 imply

Pµ0
[µt(Ω \B1/N (Ωκ))→ 0] ≥ Pµ0

[∃t s.t. µt ∈ B]γ = γ.
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Since this holds for all γ < 1 and N large enough, we have

Pµ0
[µt(Ω

κ)→ 1] = Pµ0
[µt(B1/N (Ωκ))→ 1∀N ] = 1,

for all initial beliefs µ0, completing the inductive step. Finally, for all initial beliefs µ0,

Pµ0
[µt(S

∞(Ω))→ 1] = Pµ0
[µt(Ω

k)→ 1∀k] = 1.

Thus, ∆(S∞(Ω)) is globally stable.

B.5 Proof of Theorem 4

Lemma 17. Suppose Ω′′ is open and belief continuity holds at some neighborhood of ∆(Ω′′). If
∆(Ω′′) is a strict BeNE set, then ∆(Ω′′) is locally stable and Lyapunov stable.

Proof. Based on the fact that ∆(Ω′′) is a strict BeNE set, we can apply Lemma 15 with Ω′ = Ω\Ω′′

and D = ∆(Ω
′′
). This yields measurable sets of states {Ai}Ii=1 with

⋃
iAi = Ω \ Ω′′, open sets of

states {A′i}Ii=1, ε > 0, and qi > 0 for each i such that (24) holds for each i and µ0 ∈ Bε(∆(Ω
′′
))

with µ(Ai), µ(A′i) > 0, and (25) holds for each initial belief µ0.
To show Lyapunov stability of ∆(Ω′′), take any γ < 1 and neighborhood B of ∆(Ω′′). Given

any η > 0, consider the neighborhood of ∆(Ω′′) of the form

Cη :=

{
µ ∈ ∆(Ω) :

∑
i

(
µ(Ai)

µ(A′i)

)qi
< η

}
.

Pick η+, η− > 0 small enough that Cη+
⊆ B ∩Bε(∆(Ω′′)) and η−

η+
≤ 1− γ. For any i and any initial

belief µ0, `it :=
(
µmin{t,τ}(Ai)
µmin{t,τ}(A′i)

)qi
with τ := inf{s : µs 6∈ Cη+

} is a nonnegative supermartingale by

(24), so Doob’s convergence theorem yields an L∞ random variable `i∞ such that `it → `i∞ a.s. For
any initial belief µ0 ∈ Cη− ,

Pµ0
[∃t, µt 6∈ B] ≤ Pµ0

[
∑
i

`i∞ ≥ η+] ≤ Eµ0
[
∑
i

`i∞]/η+ ≤
η−
η+
,

where the second inequality uses Markov’s inequality and the third follows from Fatou’s lemma and
the fact that each `it is a nonnegative supermartingale. Thus, Pµ0

[µt ∈ B∀t] ≥ γ for all µ0 ∈ Cη− ,
proving that ∆(Ω′′) is Lyapunov stable.

To show that ∆(Ω′′) is locally stable, take any γ < 1. Since ∆(Ω′′) is Lyapunov stable, there
exists a neighborhood B of ∆(Ω′′) such that Pµ0

[µt ∈ Bε(∆(Ω′′)) ∀t] ≥ γ for any initial belief
µ0 ∈ B. Thus, (25) implies that for any initial belief µ0 in B,

Pµ0
[µt(Ω

′′)→ 1] ≥ Pµ0
[µt(Ω

′′)→ 1, µt ∈ Bε(∆(Ω′)) ∀t] ≥ γ,
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showing that ∆(Ω′′) is locally stable.

Proof of Theorem 4. For Ω′ as in the theorem, let Ωk := Sk(Ω′) for each k = 0, 1, . . . ,∞. Suppose
∆(Ω′) is a strict BeNE set. Then ∆(Ω′) is Lyapunov stable (Lemma 17), which combined with
Lemma 16 implies that ∆(Ωk) is Lyapunov stable for each k ∈ N.

Fix any γ < 1. By Lemma 17, ∆(Ω′) is locally stable. Thus, there exists a neighborhood B0 of
∆(Ω′) such that Pµ0

[µt(Ω
′) → 1] ≥ γ for any initial belief µ0 ∈ B0. We show inductively that for

each k ∈ N, Pµ0
[µt(Ω

k)→ 1] ≥ γ for any initial belief µ0 ∈ B0.
For k = 0, the claim is true by choice of B0. Thus, suppose the claim holds for k ≤ κ − 1 and

consider the case k = κ. Take any N > 0 such that Ω \ B1/N (Ωκ) is nonempty. By Lemma 15
applied with D = ∆(Ωκ−1), there exists ε > 0 such that for all initial beliefs µ0,

Pµ0
[µt(Ω \B1/N (Ωκ))→ 0, µt ∈ Bε(D) ∀t] = Pµ0

[µt ∈ Bε(D) ∀t]. (30)

Since ∆(Ωκ−1) is Lyapunov stable, for any η < 1, there exists a neighborhood C of ∆(Ωκ−1) such
that, for any initial belief µ0 ∈ C, Pµ0

[µt ∈ Bε(∆(Ωκ−1)) ∀t] ≥ η. Thus, for any initial belief
µ0 ∈ B0,

Pµ0
[µt(B1/N (Ωκ))→ 1] ≥ Pµ0

[∃t s.t. µt ∈ C]η ≥ γη,

where the first inequality uses (30) and the second uses the inductive hypothesis that Pµ0
[µt(Ω

κ−1)→
1] ≥ γ. Since η can be chosen arbitrarily close to 1, Pµ0

[µt(B1/N (Ωκ)) → 1] ≥ γ. Since N can be
chosen arbitrarily large, this implies Pµ0

[µt(Ω
κ) → 1] = Pµ0

[µt(B1/N (Ωκ)) → 1 ∀N ∈ N] ≥ γ, as
claimed.

This shows that ∆(Sk(Ω′)) is locally stable for all k ∈ N. Finally, to complete the proof, observe
that, for any initial belief µ0 ∈ B0,

Pµ0
[µt(S

∞(Ω′))→ 1] = Pµ0
[µt(Ω

k)→ 1 ∀k] ≥ γ.

Thus, ∆(S∞(Ω′)) is also locally stable.
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C Proofs for Section 4

C.1 Proof of Proposition 2

Consider the setting in Section 4.1. We prove a slight generalization of Proposition 2 that can also
be combined with Theorem 4 (Appendix B) to show local stability of δω̂:

Proposition 5. Take any compact interval interval Ω′ ⊆ Ω such that m(Ω′) ⊆ Ω′. Then Sk(Ω′) =

mk(Ω′) for all k = 0, 1, . . . ,∞. Moreover:

1. If m is increasing on Ω′, then S∞(Ω′) = {ω̂} iff ω̂ is the unique fixed point of m in Ω′.

2. If m is decreasing on Ω′, then S∞(Ω′) = {ω̂} iff ω̂ is the unique fixed point of m2 in Ω′.

Proof. For each ω, let a(ω) := a(δω). Since KL(Ga, Ĝa(·|ω)) is continuous in a and a(ω) is continu-
ous in ω, the mapm is continuous. Take any compact interval Ω′ ⊆ Ω such thatm(Ω′) ⊆ Ω′. We first
show by induction that for all n = 0, 1, . . . ,∞, Sn(Ω′) = mn(Ω′) =: Ωn for some sequence of com-
pact intervals Ωn that is decreasing with respect to set inclusion. For n = 0, S0(Ω′) := Ω′ =: m0(Ω′),
so there is nothing to prove. Suppose the claim holds for all n ≤ k. We show that S(Ωk) = m(Ωk).

To see that m(Ωk) ⊆ S(Ωk), take any ω ∈ m(Ωk). Then there is ω′ ∈ Ωk with ω �KL
δω′

ω′′ for
all ω′′ ∈ Ω \ {ω}. Thus, there does not exist ω′′ ∈ Ω such that ω′′ �KL

µ ω for all µ ∈ ∆(Ωk) =

∆(Sk(Ω′)). Moreover, ω ∈ Ω′, as Ωk = Sk(Ω′) ⊆ Ω′ and m(Ω′) ⊆ Ω′ by assumption. This implies
ω ∈ Sk+1(Ω′) = S(Ωk).

To see that S(Ωk) ⊆ m(Ωk), take any ω ∈ Ωk \ m(Ωk). Since m is continuous and Ωk is
a compact interval, so is m(Ωk), say m(Ωk) = [ωk+1, ωk+1]. Thus, either (i) ω < ωk+1 or (ii)
ω > ωk+1. Consider case (i); a symmetric argument applies to case (ii). For any ω′′ ∈ Ωk, we
have ω < ωk+1 ≤ m(ω′′), which implies KL(Ga(ω′′), Ĝa(ω′′)(·|ω)) > KL(Ga(ω′′), Ĝa(ω′′)(·|ωk+1)) by
the strict quasi-convexity assumption on KL. Moreover, for any µ ∈ ∆(Ωk), the intermediate value
theorem yields ω′′ ∈ Ωk such that a(µ) = a(ω′′), as a(·) is FOSD-increasing and continuous. Thus,
for all µ ∈ ∆(Ωk), KL(Ga(µ), Ĝa(µ)(·|ω)) > KL(Ga(µ), Ĝa(µ)(·|ωk+1)), i.e., ωk+1 �KL

µ ω. Since
ωk+1 ∈ m(Ωk) ⊆ S(Ωk) by the previous paragraph, this shows ω 6∈ S(Ωk).

Thus, by induction, Sk(Ω′) = mk(Ω′) =: Ωk for all k ∈ N, and hence also S∞(Ω′) :=
⋂
k S

k(Ω′) =⋂
km

k(Ω′) =: m∞(Ω). Moreover, since the Ωk = [ωk, ωk] form a decreasing sequence of compact
intervals, S∞(Ω′) = [ω∞, ω∞] is nonempty, with ω∞ = limk ωk and ω∞ = limk ωk.
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For the “moreover” part, supposem is increasing. Then Sk(Ω′) = [ωk, ωk] = [m(ωk−1),m(ωk−1)]

for all k ≥ 1. By continuity of m, this implies that ω∞ and ω∞ are fixed points of m in Ω′. Thus,
the “if” direction holds. For the “only if” direction, suppose ω∞ = ω∞ =: ω̂. Then for any fixed
point ω ∈ Ω′ of m, we have ω ∈ mk(Ω′) = Sk(Ω′) for all k ∈ N, so ω∞ ≤ ω ≤ ω∞, i.e., ω = ω̂.

Finally, suppose m is decreasing. Then Sk(Ω′) = [ωk, ωk] = [m2(ωk−2),m2(ωk−2)] for all k ≥ 2.
By continuity of m, this implies that ω∞ and ω∞ are fixed points of m2. Thus, the “if” direction
holds. For the “only if” direction, suppose ω∞ = ω∞ =: ω̂. Then for any fixed point ω ∈ Ω′ of m2,
we have ω ∈ mk(Ω′) = Sk(Ω′) for all even k ∈ N, so again ω∞ ≤ ω ≤ ω∞, i.e., ω = ω̂.

C.2 Details for the applications in Section 4.1

C.2.1 Effort choice under overconfidence

As in Heidhues, Kőszegi, and Strack (2018) (HKS), assume Q is twice continuously differentiable
with (i) Qaa < 0, and Qa(a, β, ω) > 0 > Qa(a, β, ω) for all (β, ω); (ii) Qβ, Qω > 0; (iii) Qaω > 0;
(iv) Qaβ ≤ 0; (v) |Qω| < κ for some constant κ > 0. Then standard arguments guarantee that
the optimal action a(µ) is continuous and FOSD-increasing. Moreover, if β̂ > β, any state ω > ω∗

is dominated by ω∗ at all beliefs, because 0 > Q(a, β, ω∗) − Q(a, β̂, ω∗) > Q(a, β, ω∗) − Q(a, β̂, ω)

for all a. Thus, m(ω) ≤ ω∗ for all ω. Hence, for all ω, Qa(a(ω), β, ω∗) − Qa(a(ω), β̂,m(ω)) ≥
Qa(a(ω), β, ω∗)−Qa(a(ω), β̂, ω∗) > 0, which by (10) implies that m is increasing. HKS also assume
that m has a unique fixed point ω̂; their Proposition 1 shows that this obtains under several specific
functional forms Q, or if β̂ − β is sufficiently small, Qβ is bounded and Qω is bounded away from
0. Given this, Proposition 2 and Theorem 2 imply that δω̂ is globally stable.

C.2.2 Optimal stopping under the gambler’s fallacy

In He (2021), each period consists of a two-stage decision problem. In the first stage, output x1

follows N (m∗1, σ
2). If the realized x1 is lower than the agent’s stopping threshold a, then second-

stage output x2 is observed, which follows N (m∗2, σ
2). The agent knows the first-stage mean m∗1

and the variance σ2 in both stages, but is uncertain about the second-stage mean m2. Thus, the
state space Ω = [m2,m2] represents values of second-stage means, with true state ω∗ = m∗2.39

While in reality there is no correlation between x1 and x2, the agent perceives negative correlation.
That is, her perceived distribution of x2 given m2 and conditional on period-1 realization x1 is
N (m2 − γ(x1 − m∗1), σ2), where γ ≥ 0 captures the extent of the agent’s bias. Given current

39He (2021) also considers the case in which the agent updates beliefs about both m1 and m2, assuming
that the state space Ω is a bounded parallelogram in R2 whose left and right edges are parallel to the y-axis
and whose top and bottom edges have slope −γ. In this case, any ω = (m1,m2) with m1 6= m∗1 is dominated
by ω′ := (m1 + d,m2 − γd) such that |m1 − m∗1| > |m1 + d − m∗| for some d. This is because ω′ yields
a lower KL-divergence for the first-stage, while it provides the same second-stage prediction as ω after any
realization of x1. Therefore, after one round of elimination, we can focus on the one-dimensional state space
that corresponds to values of m2.
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belief µ ∈ ∆(Ω), the agent chooses the threshold a ∈ R to maximize the expected value of u :

R × (R ∪ {∅}) → R, where u(x1, x2) denotes the utility when she draws (x1, x2), and u(x1, ∅)
denotes the utility when she only draws x1. Under the assumptions in He (2021), a(·) is continuous
and FOSD-increasing in µ.

This model maps to the setting in Section 4.1 by letting g(a) := ω∗ and ĝ(a, ω) := ω −
γ(E[x1|x1 ≤ a] − m∗1). By (10), m is increasing, as g′(a) − ∂ĝ

∂a(a, ω) = γ ∂E[x1|x1≤a]
∂a ≥ 0 for all

a. As He (2021) shows, there is a unique BeNE δω̂, where ω̂ < ω∗. Thus, Proposition 2 and
Theorem 2 imply that δω̂ is globally stable.

C.3 Preliminary results for Section 4.2

The following result shows that δω is globally stable whenever ω strictly q-dominates all other states
at all mixed beliefs.

Proposition 6. Consider any ω ∈ Ω. Suppose that belief continuity holds and for some q > 0, we
have ω %q

µ ω′ for all ω′ 6= ω and all µ, with strict dominance for all mixed µ. Then δω is globally
stable.

Proof. Fix any initial belief µ0. By Lemma 3, `t(ω′) :=
(
µt(ω′)
µt(ω)

)q
is a nonnegative supermartingale

for each ω′ 6= ω, since ω %q
µ ω′ for all µ. Thus, by Doob’s convergence theorem, there exists an L∞

random variable `∞(ω′) such that `t(ω′) → `∞(ω′) ≥ 0 a.s. Hence, the belief process µt converges
a.s. Let µ∞ denote the limit. Suppose for a contradiction that µ∞ 6= δω with positive probability,
which implies that for some ω′ 6= ω, `∞(ω′) > 0 with positive probability. Then there exists a
compact set K ⊆ ∆(Ω) with µ(ω), µ(ω′) > 0 for each µ ∈ K such that Pµ0 [∃τ s.t. µt ∈ K ∀t ≥
τ and ∃ limt

µt(ω′)
µt(ω) ] > 0. But for each µ ∈ K, we have ω �qµ ω′, which implies that p̂µ(z|ω) > p̂µ(z|ω′)

for some z ∈ supp(Pµ). This yields a contradiction with Lemma 10.

A corollary of Proposition 6 is that if the true signal distribution coincides with the perceived
signal distribution at some state ω∗ (i.e., the environment is correctly specified), then δω∗ is globally
stable under an appropriate identification condition at mixed beliefs:

Corollary 2. Suppose belief continuity holds and for some ω∗ ∈ Ω, (i) Pµ = P̂µ(·|ω∗) for all
µ ∈ ∆(Ω), and (ii) P̂µ(·|ω∗) 6= P̂µ(·|ω) for all ω 6= ω∗ and all mixed µ. Then δω∗ is globally stable.

Proof. Take any q ∈ (0, 1) and ω 6= ω∗. For each belief µ, we have

ˆ (
p̂µ(z|ω)

pµ(z)

)q
pµ(z) dν(z) ≤

(ˆ
supp(Pµ)

p̂µ(z|ω) dν(z)

)q
= (P̂µ(suppPµ|ω))q ≤ 1, (31)

where the first inequality holds by Jensen’s inequality applied to the concave function xq. Since
Pµ = P̂µ(·|ω∗) by (i), this shows ω∗ %q

µ ω. Consider any mixed µ. If the second inequality in
(31) holds with equality, then (ii) ensures p̂µ(z|ω)

pµ(z) 6=
p̂µ(z′|ω)
pµ(z′) for some z, z′ ∈ suppPµ, in which case

3



the first inequality in (31) is strict. In either case, ω∗ �qµ ω. Thus, the conclusion follows from
Proposition 6.

C.4 Proof of Lemma 4

Fix any q ∈ (0, 1) and true state ω∗ ∈ Ω. We will find ε > 0 such that learning is successful at ω∗

for any β̂ with |β̂ − β| < ε. This ensures the desired conclusion by finiteness of Ω. Consider any β̂.
Since C is constant and v is strictly convex, we have γβ̂(µ) = γ for all mixed µ. Thus, for each mixed
µ, the true and perceived probabilities of signal 1 satisfy pµ(1) = β+ γω∗ and p̂µ(1|ω) = β̂+ γω. If
β̂ = β, then Jensen’s inequality implies that for any ω 6= ω∗ and mixed µ,

∑
z

pµ(z)

(
p̂µ(z|ω)

p̂µ(z|ω∗)

)q
< 1, (32)

where the value of the left-hand side is independent of µ. Hence, there exists ε > 0 such that for
any β̂ with |β̂ − β| < ε and any mixed µ and ω 6= ω∗, (32) continues to hold, so that ω∗ �qµ ω.
Thus, for any β̂ with |β̂−β| < ε, Proposition 6 implies that δω∗ is globally stable in any state space
Ω′ ⊆ Ω with ω∗ ∈ Ω′, i.e., learning is successful at ω∗.

C.5 Proof of Lemma 5

Consider any strictly increasing cost function C. We will prove the following: Fix any β̂, ω ∈ Ω,
and γ̃ > 0. Then there exists a neighborhood B 3 δω such that γβ̂(µ) < γ̃ for all µ ∈ B.

At any belief µ, let Vµ(γ) denote the agent’s expected payoff to precision γ; that is,

Vµ(γ) =
(
β̂ + γµ · ω

)
v (µ(γ)) +

(
1− β̂ − γµ · ω

)
v
(
µ(γ)

)
, (33)

where ω := (ω1, . . . , ωN )′ ∈ RN and µ(γ) and µ(γ) denote the posteriors updated from µ under
precision choice γ and perception β̂ following signals 1 and 0, respectively. By (11), γβ̂(µ) ∈
argmaxγ∈[0,γ] Vµ(γ)− C(γ) for all µ.

Since C is strictly increasing, C(γ̃) > C(0). Thus, by continuity of v, there exists a neighborhood
B 3 δω such that for each µ ∈ B and γ ∈ {0, γ},

|Vµ(γ)− v(δω)| < C(γ̃)− C(0)

2
. (34)

Note that Vµ(γ) is increasing in γ for all µ. Thus, it follows that (34) holds for each µ ∈ B and
γ ∈ [0, γ]. This implies that for any γ ∈ [0, γ] and µ ∈ B,

Vµ(γ)− Vµ(0) ≤ |Vµ(γ)− v(δω)|+ |Vµ(0)− v(δω)| < C(γ̃)− C(0). (35)

4



Hence, for all γ ≥ γ̃ and µ ∈ B, we have

Vµ(γ)− C(γ) ≤ Vµ(γ)− C(γ̃) < Vµ(0)− C(0),

where the first inequality uses the fact that C is increasing and the second inequality uses (35).
Thus, for all µ ∈ B, we have γβ̂(µ) < γ̃, as claimed.

C.6 Proof of Proposition 3

Fix any true state ω∗ ∈ Ω and consider any β̂. The assumption that learning is successful at all
states if β̂ = β implies that for all mixed µ, we have γβ̂(µ) > 0. Now suppose that β < β̂; the
argument for β > β̂ is analogous.

Consider any ω ∈ Ω. By Lemma 5, there exists B 3 δω such that γβ̂(µ) < β̂−β
ωN−ω1

for all µ ∈ B.
Consider any ω′, ω′′ ∈ Ω with ω′ < ω′′. Then, for any µ ∈ B \ {δω}, we have β + γβ̂(µ)ω∗ <

β̂ + γβ̂(µ)ω′ < β̂ + γβ̂(µ)ω′′. By the same argument as in Example 1 (see footnote 18), this implies
that for all q ∈ (0, 1) and µ ∈ B \ {δω}, we have ω′ �qµ ω′′. Note also that for each mixed µ,
γβ̂(µ) > 0 implies p̂µ(0|ω′) > p̂µ(0|ω′′). Hence, Proposition 1 implies that δω1 is globally stable.

C.7 Proof of Lemma 6

Fix any β̂. We begin with some preliminary observations about the agent’s expected value Vµ(γ) of
precision γ at current belief µ, as given by (33). Note that the posteriors µ(γ) and µ(γ) of µ under
signal realizations 1 and 0, respectively, assign probabilities

µn(γ) =
µn(β̂ + γωn)

β̂ + γµ · ω
, µ

n
(γ) =

µn(1− β̂ − γωn)

1− β̂ − γµ · ω
,

to each state ωn. The first and second derivatives with respect to γ satisfy

µ′n(γ) = µn
β̂(ωn − µ · ω)

(β̂ + γµ · ω)2
, µ′

n
(γ) = −µn

(1− β̂)(ωn − µ · ω)

(1− β̂ − γµ · ω)2
,

µ′′n(γ) = −2µnµ · ω
β̂(ωn − µ · ω)

(β̂ + γµ · ω)3
, µ′′

n
(γ) = −2µnµ · ω

(1− β̂)(ωn − µ · ω)

(1− β̂ − γµ · ω)3
.

Thus, the marginal value of γ at µ satisfies

V ′µ(γ) = µ · ω
(
v (µ(γ))− v

(
µ(γ)

))
+
(
β̂ + γµ · ω

)∑
n

∂nv(µ(γ))µ′n(γ)

+
(

1− β̂ − γµ · ω
)∑

n

∂nv(µ(γ))µ′
n
(γ),

5



where ∂nv(µ) denotes the partial derivative of v with respect to the nth coordinate. Since µ(0) =

µ(0) = µ and β̂µ′n(0) + (1− β̂)µ′
n
(0) = 0 for each n, this yields

V ′µ(0) = 0. (36)

The second derivative satisfies

V ′′µ (γ) = 2µ · ω
∑
n

(
∂nv(µ(γ))µ′n(γ)− ∂nv(µ(γ))µ′

n
(γ)
)

+(β̂ + γµ · ω)

(∑
n,m

∂2
n,mv(µ(γ))µ′n(γ)µ′m(γ) +

∑
n

∂nv(µ(γ))µ′′n(γ)

)

+(1− β̂ − γµ · ω)

(∑
n,m

∂2
n,mv(µ(γ))µ′

n
(γ)µ′

m
(γ) +

∑
n

∂nv(µ(γ))µ′′
n
(γ)

)
.

Evaluating this at γ = 0 yields

V ′′µ (0) =
1

β̂(1− β̂)

∑
n,m

∂2
n,mv(µ)µn(ωn − µ · ω)µm(ωm − µ · ω). (37)

To prove Lemma 6, consider any twice continuously differentiable C with C ′(0) = C ′′(0) = 0.
For any mixed µ, we have V ′µ(0) = 0 = C ′(0) by (36), but V ′′µ (0) > 0 = C ′′(0) by (37) and the fact
that the Hessian of v is positive definite. Thus, by Taylor approximation,

Vµ(γ)− C(γ) > Vµ(0)− C(0)

for all sufficiently small γ > 0. Hence, for all mixed µ, γβ̂(µ) > 0, as required.
For the “moreover” part of Lemma 6, it is clear that (12) is necessary for learning to be successful

at all states ω∗ when β̂ = β. To see that (12) is sufficient, fix any true state ω∗ and suppose that
β̂ = β. Then Pµ = P̂µ(·|ω∗) for all µ, and by (12), P̂µ(·|ω∗) 6= P̂µ(·|ω) for all ω 6= ω∗ and mixed µ.
Thus, by Corollary 2, δω∗ is globally stable at ω∗ in any state space Ω′ ⊆ Ω with ω∗ ∈ Ω′. Hence,
learning is successful at ω∗.

C.8 Proof of Lemma 7

Consider any true state ω∗ ∈ Ω. Since F = F̂ , we have Pµ(·) = P̂µ(·|ω∗) for all µ. Moreover, for any
mixed µ, the monotone likelihood ratio assumption on private signals ensures that µs(ω)

µs(ω′) is strictly
increasing in s for any states ω > ω′ in supp(µ), which implies that θ∗(µs) is strictly decreasing
in s. Thus, for all mixed µ, p̂µ(0|ω) =

´
F̂ (θ∗(µs))φ(s|ω) ds is strictly decreasing in ω, so that

P̂µ(·|ω) 6= P̂µ(·|ω∗) for all ω 6= ω∗. Hence, by Corollary 2, δω∗ is globally stable at ω∗ in every state
space Ω′ ⊆ Ω with ω∗ ∈ Ω′. This shows that learning is successful at ω∗.

6



C.9 Proof of Lemma 8

Let Φ(·|ω) denote the cumulative distribution function of private signals conditional on ω. Since δsω =

δω for each ω and s, the bounded convergence theorem implies that limµ→δω
´
F̂ (θ∗(µs))dΦ(s|ω′) =

F̂ (θ∗ω) for each ω, ω′, as claimed.

C.10 Proof of Proposition 4

We will invoke the following lemma:

Lemma 18. Fix any true state ω∗ ∈ Ω, q ∈ (0, 1), and n ∈ {1, . . . , N}. If F (θ∗n) > F̂ (θ∗n), then
there exists a neighborhood Bn 3 δωn such that ω` �qµ ωk for all `, k with ` < k and all mixed
µ ∈ Bn. If F (θ∗n) < F̂ (θ∗n), then there exists a neighborhood Bn 3 δωn such that ωk �qµ ω` for all `,
k with ` < k and all mixed µ ∈ Bn.

Proof. Suppose F (θ∗n) > F̂ (θ∗n); the argument when F (θ∗n) < F̂ (θ∗n) is analogous. By Lemma 8,
there exists a neighborhoodBn 3 δωn such that for all µ ∈ Bn and ω′, we have |pµ(0)−F (θ∗n)|, |p̂µ(0|ω′)−
F̂ (θ∗n)| < F (θ∗n)−F̂ (θ∗n)

2 . Hence, pµ(0) > p̂µ(0|ω′) for all µ ∈ Bn and ω′. Consider any `, k with ` < k.
By the monotone likelihood ratio assumption on private signals, p̂µ(0|ωk) < p̂µ(0|ω`) for all mixed µ.
Thus, for any mixed µ ∈ Bn, pµ(0) > p̂µ(0|ω`) > p̂µ(0|ωk). By the same argument as in Example 1
(see footnote 18), this implies that for all q ∈ (0, 1) and mixed µ ∈ Bn, ω` �qµ ωk, as claimed.

We now prove Proposition 4. Fix any q ∈ (0, 1). For the first part, note that if F (θ∗N ) < F̂ (θ∗N ),
then Lemma 18 yields some neighborhood B 3 δωN such that ωN �qµ ωk for all k 6= N and mixed
µ ∈ B, while if F (θ∗N ) > F̂ (θ∗N ), then Lemma 18 yields a neighborhood B 3 δωN such that ω1 �qµ ωN
for all mixed µ ∈ B. Thus, by Theorem 1, δωN is locally stable in the former case and unstable
in the latter. Finally, if F (θ∗n) < F̂ (θ∗n) for each n, then Lemma 18 implies that for each n, there
is a neighborhood Bn 3 δωn such that ωk �qµ ω` for all ` > k and mixed µ ∈ Bn. Moreover,
p̂µ(1|ω) is strictly increasing in ω by the monotone likelihood ratio assumption on private signals
and the monotonicity of utilities. Hence, up to reversing indices of states, Proposition 1 implies δωN
is globally stable. The arguments for the second part are analogous.

Finally, for the third part, note that if F (θ∗n) 6= F̂ (θ∗n), then Lemma 18 implies that for some
neighborhood Bn 3 δωn , we either have ω1 �qµ ωn for all mixed µ ∈ Bn or ωN �qµ ωn for all mixed
µ ∈ Bn. In either case, δωn is unstable by Theorem 1, as claimed.

D Additional results

D.1 A derivative condition for Theorem 1

Under slow learning, we provide a way to verify the conditions in Theorem 1 by only considering
the derivatives of the difference in KL-prediction accuracy at the belief δω. Let ∆(Ω) − ∆(Ω) :=
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{ν1 − ν2 : ν1, ν2 ∈ ∆(Ω) ⊆ R|Ω|}. Denote by ∇mg(µ) the directional derivative of g : ∆(Ω)→ R at
µ in the direction of m ∈ ∆(Ω)−∆(Ω) whenever this is well-defined.

Corollary 3. Assume slow learning holds. Suppose that, at µ = δω, pµ(z) and p̂µ(z|ω′)
p̂µ(z|ω) admit

ν-integrable directional derivatives for each ω′ 6= ω and ν-almost all z.

1. If at µ = δω, we have ∇δω′′−δω
´

log
p̂µ(z|ω′)
p̂µ(z|ω) dPµ(z) < 0 for every ω′, ω′′ 6= ω, then condition

(6) in Theorem 1 holds, so δω is locally stable.

2. If at µ = δω, we have ∇δω′′−δω
´

log
p̂µ(z|ω′)
p̂µ(z|ω) dPµ(z) > 0 for some ω′ and every ω′′ 6= ω, then

condition (7) in Theorem 1 holds, so δω is unstable.

To interpret, note that by slow learning, KL(Pµ, P̂µ(·|ω))−KL(Pµ, P̂µ(·|ω′)) =
´

log
p̂µ(z|ω′)
p̂µ(z|ω) dPµ(z) =

0 at µ = δω. The first condition ensures that for all µ close enough to δω, KL(Pµ, P̂µ(·|ω)) −
KL(Pµ, P̂µ(·|ω′)) < 0, i.e., ω �KL

µ ω′, and that this difference has a first-order magnitude as µ ≈ δω.

Proof. We only prove the first part; the second part is analogous. Fix any ω′ 6= ω. Since Ω is finite,
it suffices to find a neighborhood B 3 δω and q > 0 such that ω �qµ ω′ for all µ ∈ B \ {δω}.

For each µ and q > 0, define

γ(µ) :=

ˆ
log

p̂µ(z|ω′)
p̂µ(z|ω)

pµ(z) dν(z), γq(µ) :=

ˆ (
p̂µ(z|ω′)
p̂µ(z|ω)

)q
− 1

q
pµ(z) dν(z).

We first show that limq→0∇mγq(µ) = ∇mγ(µ) for all directions m. Denote `(z|µ) :=
p̂µ(z|ω′)
p̂µ(z|ω) . Then

∇mγq(µ) =

ˆ (
∇mpµ(z)

(`(z|µ))q − 1

q
+ pµ(z)(`(z|µ))q−1∇m`(z|µ)

)
dν(z).

As q → 0, this converges to

∇mγ(µ) =

ˆ (
∇mpµ(z) log `(z|µ) + pµ(z)(`(z|µ))−1∇m`(z|µ)

)
dν(z).

By assumption,
max

µ∈∆(Ω\{ω})
∇µ−δωγ(δω) = max

ω′′ 6=ω
∇δω′′−δωγ(δω) < 0.

Thus, by the above convergence, there exists q > 0 such that

max
µ∈∆(Ω\{ω})

∇µ−δωγq(δω) = max
ω′′ 6=ω

∇δω′′−δωγ
q(δω) < 0.

This implies that there exists a neighborhood B 3 δω such that for all µ ∈ B \ {δω},

γq(µ) < γq(δω) = 0,

where the equality holds by slow learning. Thus, ω �qµ ω′ for all µ ∈ B \ {δω}, as desired.
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D.2 Details for Remark 2

The following example shows that one cannot replace q-dominance with KL-dominance in the local
stability condition in Theorem 1. That is, condition (8) in Remark 2 does not ensure that δω is
locally stable:

Example 4. Let Ω = {ω, ω′} and Z = {z, z}. Set

pµ(z) =

f(log µ(ω)
µ(ω′)) for all mixed µ

1/2 otherwise,

p̂µ(z|ω) =
e

e+ 1
, p̂µ(z|ω′) =

1

e+ 1
for all µ,

where f : R→ (0, 1) is any continuous function such that f(x) =
√
x−
√
x−1√

x+1−
√
x−1

for all x ≥ 1, f(x) > 1
2

for all x < 1, and limx→−∞ f(x) = 1/2. Note that limx→+∞ f(x) = 1/2, whence belief continuity
holds. For each mixed µ, observe that

∑
z

pµ(z) log
p̂µ(z|ω)

p̂µ(z|ω′)
= f(log

µ(ω)

µ(ω′)
) log e+

(
1− f(log

µ(ω)

µ(ω′)
)

)
log

1

e
= 2f

(
log

µ(ω)

µ(ω′)

)
− 1 > 0,

so ω �KL
µ ω′. Thus, condition (8) is satisfied.

However, δω is unstable. To see this, fix any initial belief µ0 and let `t :=

√
log

µmin{t,τ}(ω)

µmin{t,τ}(ω′)

where τ := inf{t : log µt(ω)
µt(ω′)

< 1}. Then (`t) is a nonnegative martingale. This is because

E[`t+1|(µs)s≤t] =

`t if log
µt′ (ω)
µt′ (ω

′) < 1 for some t′ ≤ t

f(log µt(ω)
µt(ω′)

)
√

log µt(ω)
µt(ω′)

+ 1 + (1− f(log µt(ω)
µt(ω′)

))
√

log µt(ω)
µt(ω′)

− 1 =
√

log µt(ω)
µt(ω′)

otherwise.

Thus, by Doob’s convergence theorem, there is an L∞ random variable `∞ such that `t → `∞ a.s.
Since, by construction,

∣∣∣log µt+1(ω)
µt+1(ω′) − log µt(ω)

µt(ω′)

∣∣∣ = 1 for all t along all paths of signal realizations,
there is probability zero that µt converges to a mixed belief. Thus, τ < ∞ a.s. Hence, there a.s.
exists some t such that log µt(ω)

µt(ω′)
< 1. This implies that δω is unstable.

Finally, observe that, even though ω ∼KL
δω

ω′, this example does not feature slow learning. N
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