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Abstract

We provide a general framework for investigating partial identification of structural dynamic discrete

choice models and their counterfactuals, along with uniformly valid inference procedures. In doing

so, we derive sharp bounds for the model parameters, counterfactual behavior, and low-dimensional

outcomes of interest, such as the average welfare effects of hypothetical policy interventions. We char-

acterize the properties of the sets analytically and show that when the target outcome of interest

is a scalar, its identified set is an interval whose endpoints can be calculated by solving well-behaved

constrained optimization problems via standard algorithms. We obtain a uniformly valid inference pro-

cedure by an appropriate application of subsampling. To illustrate the performance and computational

feasibility of the method, we consider both a Monte Carlo study of firm entry/exit, and an empirical

model of export decisions applied to plant-level data from Colombian manufacturing industries. In

these applications, we demonstrate how the identified sets shrink as we incorporate alternative model

restrictions, providing intuition regarding the source and strength of identification.
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1 Introduction

Structural models have been used to answer a wide range of counterfactual questions in various fields

of economics, including industrial organization, labor, public finance, and trade. For problems involving

dynamic tradeoffs, the class of structural dynamic discrete choice (DDC) models has arguably been the

most commonly used in applied work; see Aguirregabiria and Mira (2010), Keane, Todd, and Wolpin

(2011), and Low and Meghir (2017) for surveys of the literature. In such models, forward-looking agents

choose among discrete actions in order to maximize their expected discounted stream of payoffs given

a finite state space. In the canonical setting proposed by Rust (1987), the flow payoffs are allowed to

depend freely on the current action and state, and are additively separable to an unobservable i.i.d. shock

whose distribution is (typically) assumed known by the researcher. This class of models can be estimated

using data on individual choices and state variables (Rust, 1987; Hotz and Miller, 1993; Aguirregabiria

and Mira, 2002).

Despite being widely used by practitioners, Rust (1994) and Magnac and Thesmar (2002) have shown

that, in this class of models, a continuum of payoff functions can rationalize observed choice behavior.

That is a fundamental identification problem as different flow payoffs that are equally compatible with

the data can generate different behavioral responses in a counterfactual environment. While applied

researchers have typically addressed this problem by imposing restrictions that select among observation-

ally equivalent models, economic theory does not always offer guidance as to the correct assumptions

necessary to identify the true model. Given that such difficulties can threaten the credibility of structural

estimation, a recent literature has started to investigate this problem, and has shown that only a narrow

class of counterfactual experiments results in counterfactual behavior that is point identified (i.e., invari-

ant to identifying restrictions imposed on the model); see Aguirregabiria and Suzuki (2014), Norets and

Tang (2014), and Kalouptsidi, Scott, and Souza-Rodrigues (2019). Still, these important recent results

leave open a critical question: How much can be learned about counterfactual outcomes of interest under

minimal economic assumptions for a large (and empirically relevant) class of counterfactual experiments?

The main contribution of our paper is the development of a new framework to address this question.

The framework is tractable and involves minimal economic assumptions that may not suffice to point-

identify the model parameters, giving rise to partial identification analysis. We show how to characterize

and compute sharp bounds – that is, bounds that exhaust all implications of the model and data –

for counterfactual outcomes of interest, along with a uniformly valid inference procedure. We focus on

bounds for low-dimensional counterfactual objects that are relevant to researchers’ main conclusions and

are amenable to economic interpretation, such as the change in average welfare. These objects depend on

agents’ counterfactual behavior; i.e., the conditional choice probability (CCP) function under the coun-

terfactual environment. Our general procedure is valid for broad classes of counterfactual experiments,

model restrictions, and outcomes of interest, as we explain below.
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To fix ideas, consider the firm entry/exit problem – our running example. In this application, a firm

facing uncertainty about demand shocks and input prices decides in every period whether to enter (exit) a

market subject to entry costs (scrap values), with the goal of maximizing its expected discounted stream

of payoffs consisting of variable profits minus fixed costs. Typically, to estimate this model, researchers

assume the payoff of staying out of the market (the ‘outside option’) is zero, and also impose that scrap

values and/or fixed costs do not depend on state variables and are equal to zero. These assumptions

are often referred to as “normalization” assumptions, and they suffice to select among observationally

equivalent parameter values. Assuming scrap values or fixed costs are invariant over states however may

be a strong restriction for some industries; perhaps more importantly, setting them to have the exact same

value as the payoff of the outside option is difficult to justify: economic theory does not provide guidance

as to how to set these values, and cost or scrap value data are extremely rare. Further, these assumptions

are not always innocuous for important counterfactual questions, as shown in previous research (Aguirre-

gabiria and Suzuki, 2014; Norets and Tang, 2014; Kalouptsidi, Scott, and Souza-Rodrigues, 2019). Given

such limitations, we avoid these assumptions and focus directly on the identified set of counterfactual

objects (e.g., the welfare impact of a hypothetical entry subsidy) under much milder restrictions (such as

that entry costs/scrap values are positive, or that entry is eventually profitable). In the application, we

show how the identified sets shrink as we add alternative model restrictions, providing intuition regarding

the source and strength of identification.

We start the analysis of dynamic discrete choice models more generally by showing that the sharp

identified set for the payoff vector is a convex polyhedron whose dimension depends on the size of the state

space and the number of model restrictions that the researcher is willing to impose. Then, we show that

for a broad class of counterfactuals involving almost any change in the primitives, the sharp identified

set for the counterfactual CCP is a connected manifold with a dimension that can be determined from

the data.1 The set is therefore either empty (which occurs when the model is rejected by the data), or

a singleton (implying point-identification), or a continuum. The dimension of the set can be calculated

by checking the rank of a specific matrix, which depends on the data, the model restrictions, and the

counterfactual transformation, all of which are known by the econometrician. This dimension is typically

much smaller than the dimension of the conditional probability simplex, which implies that the identified

set is informative. Specific combinations of model restrictions and counterfactual experiments can reduce

the dimension of the identified set further, leading to point identification in some cases. To the best of

our knowledge, while partial identification and estimation of model parameters in DDC models have been

considered previously (see, e.g., Bajari, Benkard, and Levin, 2007; Norets and Tang, 2014; Berry and

Compiani, 2019), these are the first analytical results characterizing the identified set of counterfactual

behavior.

Given the identified sets for the high-dimensional payoff vector and counterfactual CCPs, we then turn

1We consider any change in the primitives except for nonlinear transformations in payoffs (uncommon in practice).
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to the low-dimensional outcomes of interest. Here, we show that the sharp identified set is also connected

and, under additional mild conditions, compact. This is convenient as in practice it is sufficient to trace

the boundary of the set. In addition, when the outcome of interest is a scalar, the identified set becomes

a compact interval, in which case it suffices to calculate the lower and upper endpoints. The endpoints

can be computed by solving well-behaved constrained minimization and maximization problems. The

optimizations can be implemented using standard software (e.g., Knitro), and remain feasible even in high-

dimensional cases involving large state spaces or a large number of model parameters. In our experience,

standard solvers perform best when the researcher provides the gradient of the objective function; for

cases in which computing the gradient is costly, we develop and propose an alternative (stochastic) search

procedure (discussed in detail in the Online Appendix). Overall, an attractive feature of this approach is

that the researcher can flexibly adjust (i) the set of model restrictions, (ii) the counterfactual experiment,

and (iii) the target outcome of interest, all without having to derive additional analytical identification

results for each alternative specification.

Our approach leads naturally to an inference procedure for empirical work. We develop an asymptoti-

cally uniformly valid inference approach based on subsampling, and construct confidence sets for the true

value of the low-dimensional outcome – rather than for the identified set – based on test inversion. We

elaborate on our inferential procedure later in the paper, but note here that many existing approaches

developed for moment inequalities and other set identified models are not easily amendable to our set-

valued counterfactual analysis; see Remark 4 in Section 5 for details. Taken together, these are the first

positive results on set-identification and uniformly valid inference procedures for counterfactual outcomes

of interest in structural dynamic models. These are the core contributions of our paper.

Finally, we provide evidence that our inference procedure performs well in finite samples based on a

Monte Carlo study of firm entry/exit. We then illustrate the policy usefulness of our approach by revisiting

the seminal contribution by Das, Roberts, and Tybout (2007) on exporting decisions and subsidies. Based

on their plant-level panel data from Colombian manufacturing industries, we explore the identifying power

of different model restrictions, discuss the assumptions under which alternative counterfactual subsidies

promote large impacts on export revenues per unit cost of subsidy, and generate the same rank of policies

as in Das, Roberts, and Tybout (2007) under weaker conditions.

Related Literature. A large body of work studies the identification and estimation of dynamic discrete

choice models. Rust (1994) showed that DDC models are not identified nonparametrically, and Magnac

and Thesmar (2002) characterized the degree of underidentification. Important advances that followed

include (but are not limited to) Heckman and Navarro (2007), Pesendorfer and Schmidt-Dengler (2008),

Blevins (2014), Bajari, Chu, Nekipelov, and Park (2016), and Abbring and Daljord (2019). In terms of

estimation, Rust (1987) introduced the nested fixed point maximum likelihood estimator in his seminal

contribution, and Hotz and Miller (1993) pioneered a computationally convenient two-step estimator
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that was then further analyzed by a host of important studies (Hotz, Miller, Sanders, and Smith, 1994;

Aguirregabiria and Mira, 2002, 2007; Bajari, Benkard, and Levin, 2007; Pakes, Ostrovsky, and Berry,

2007; Pesendorfer and Schmidt-Dengler, 2008).2 We build on these literatures on point-identification

and estimation, and extend them to partial identification of model parameters and, more importantly,

counterfactuals.

Several important papers have considered partial identification and estimation of structural parame-

ters, namely Bajari, Benkard, and Levin (2007), Norets and Tang (2014), Dickstein and Morales (2018),

Morales, Sheu, and Zahler (2019), and Berry and Compiani (2019).3 With the exception of Norets and

Tang (2014) (discussed further below), these papers consider classes of models that differ from, and do not

necessarily nest, ours. A common issue in this literature concerns the fact that existing inference methods

for partially identified models are computationally costly – if not infeasible – when the parameter space

is not small (they require repeated inversion of hypothesis testing over the parameter space); thus, prior

empirical work has only estimated the most parsimonious specifications. Substantial computational costs

may also limit the set of counterfactuals implemented, given that simulations for each parameter value

in the identified set are required. In contrast, our approach focuses inference directly on low-dimensional

final objects of interest – which are typically nonlinear functions of CCPs and model primitives – thus

allowing for a large number of model parameters and richer empirical applications. As such, our approach

complements, and can be combined with, the previous contributions.

A small but growing literature investigates the identification of counterfactuals in DDC models. The

main contributions in this area are by Aguirregabiria (2010), Aguirregabiria and Suzuki (2014), Norets and

Tang (2014), Arcidiacono and Miller (2018), and Kalouptsidi, Scott, and Souza-Rodrigues (2017, 2019).4

We rely heavily on Kalouptsidi, Scott, and Souza-Rodrigues (2019) (henceforth ‘KSS’), which provides the

necessary and sufficient conditions for point identification of a broad class of counterfactuals encountered in

applied work. The closest paper to ours is by Norets and Tang (2014), who consider binary choice models,

relax the assumption that the distribution of the idiosyncratic shocks is known by the econometrician, and

obtain partial identification results for structural parameters and for (high-dimensional) counterfactual

choice probabilities. They focus on two types of counterfactuals – pre-specified additive changes in payoffs

and changes to state transitions – and propose a Bayesian approach to inference, based on Markov Chain

2Important early contributions include Miller (1984), Wolpin (1984), and Pakes (1986).
3Bajari, Benkard, and Levin (2007) two-step estimator is the first to allow for partially-identified model parameters.

Dickstein and Morales (2018) and Morales, Sheu, and Zahler (2019) pioneered the use of Euler-equation-like estimators
for DDC models using moment inequalities, requiring minimal distributional assumptions on the error term. Berry and
Compiani (2019) allow for serially correlated unobserved states and propose the use of lagged state variables as instrumental
variables for (econometrically) endogenous states, for models with both continuous and discrete actions, and obtain partial
identification of structural parameters in a discrete choice setting.

4Aguirregabiria and Suzuki (2014), Norets and Tang (2014), and Arcidiacono and Miller (2018) have established the
identification of two important categories of counterfactuals in different classes of DDC models: counterfactual behavior
is identified when flow payoffs change additively by pre-specified amounts; counterfactual behavior is generally not iden-
tified when the state transition process changes. Kalouptsidi, Scott, and Souza-Rodrigues (2017) discuss identification of
counterfactual best-reply functions and equilibria in dynamic games.
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Monte Carlo (MCMC) methods. Compared to Norets and Tang (2014), we assume that the distribution

of the unobservables is known, which is common in practice and allows us to characterize the properties of

the identified sets analytically, but we consider a broader class of counterfactual experiments. Moreover,

our approach for inference is based on subsampling and is guaranteed to be uniformly valid asymptotically,

in contrast to Bayesian inference, which is known to be only pointwise valid asymptotically (see, e.g., the

discussion in Canay and Shaikh, 2017). Further, differently from Norets and Tang (2014), we focus on

confidence sets for low-dimensional outcomes of interest, which are often what researchers are mostly

interested in. Developing inference procedures for such objects is not trivial as they involve nonlinear

functions of model parameters and counterfactual choice probabilities.

Our inference approach builds on the formulation developed in Kitamura and Stoye (2018), where the

implications of economic models are expressed in terms of the minimum value of a quadratic form. The

associated quadratic form-based algorithm offers computational advantages, and it also provides a useful

framework for asymptotic analysis, especially when asymptotic uniform validity is an important issue.

Our model restriction has non-regular features in terms of smoothness, and is thus connected to a large

literature initiated by Chernoff’s (1954) study of non-regular statistical models, namely, the asymptotic

behavior of the minimum distance of a random object to a fixed manifold with possible kinks. In contrast

to this literature, we consider the minimum distance to a kinked (i.e., non-regular) and random (estimated)

and possibly nonconvex set. We avoid standard convexity conditions, even locally, on such objects because

they are typically incompatible with our model restrictions.5 We establish that an appropriate application

of subsampling to the quadratic-form-based distance measure yields an asymptotically valid algorithm for

inference.6

Finally, a recent and increasingly influential line of research emphasizes that (partial) identification

of potential effects of policy interventions does not necessarily require identification of all the model

parameters. Major contributions outside the class of structural dynamic models include Ichimura and

Taber (2000, 2002) and Mogstad, Santos, and Torgovitsky (2018) for selection models; Manski (2007)

for static choice models under counterfactual choice sets; Blundell, Browning, and Crawford (2008),

Blundell, Kristensen, and Matzkin (2014), Kitamura and Stoye (2019), and Adams (2020) for bounds

on counterfactual demand distributions and welfare analysis; Adao, Costinot, and Donaldson (2017)

for international trade models; and Bejara (2018) for macroeconomic models. All these approaches,

including ours, are consistent with Marschak’s (1953) advocacy of solving well-posed economic problems

with minimal assumptions. See Heckman (2000, 2010) for excellent discussions of Marschak’s approach

to identification in structural models.

5Note that Kitamura and Stoye (2018) deal with the case where a random vector is projected on a non-smooth but fixed
object with some desirable geometric features. They then show that a bootstrap procedure combined with what they call
the tightening technique leads to a computationally efficient algorithm with asymptotic uniform validity.

6Asymptotic validity of subsampling in nonregular models with more conventional settings, such as standard moment
inequality models, have been shown in the literature: see Romano and Shaikh (2008) and Romano and Shaikh (2012).
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The rest of the paper is organized as follows: Section 2 sets out the dynamic discrete choice framework;

Section 3 presents the partial identification results for the model parameters, then illustrates the identified

set under alternative restrictions in the context of a firm entry/exit problem; Section 4 contains our main

results regarding the set-identification of counterfactuals; Section 5 establishes uniformly valid confidence

sets for target parameters; Section 6 presents the empirical application involving export supply and

subsidies; and Section 7 concludes.7

2 Dynamic Model

In the model, time is discrete and the time horizon is infinite. Every period t, agent i observes the state sit

and chooses an action ait from the finite set A = {0, ..., A} to maximize the expected discounted payoff,

E

 ∞∑
τ=0

βτπ (ait+τ , sit+τ ) | ait, sit
 ,

where π (·) is the per period payoff function, and β ∈ [0, 1) is the discount factor. The agent’s state

sit follows a controlled Markov process. We follow the literature and assume that sit is split into two

components, sit = (xit, εit), where xit is observed by the econometrician and εit is not. We assume

xit ∈ X = {1, ..., X}, X < ∞; while εit = (ε0it, ..., εAit) is i.i.d. across agents and time, and has joint

distribution G that is absolutely continuous with respect to the Lebesgue measure and has full support

on RA+1.8

The transition distribution function for (xit, εit) factors as

F
(
xit+1, εit+1|ait, xit, εit

)
= F

(
xit+1|ait, xit

)
G (εit+1) ,

and the payoff function is additively separable in the unobservables,

π (a, xit, εit) = πa (xit) + εait,

where πa(x) is a bounded function. Let V (xit, εit) be the expected discounted stream of payoffs under

7The Supplemental Material and the Online Appendix complement the main paper. The Supplemental Material contains
(a) all proofs of the propositions and theorems presented in the main text; (b) detailed information about our running example
(the firm entry/exit problem); (c) our Monte Carlo study; and (d) our replication of Das, Roberts, and Tybout (2007). The
Online Appendix presents (e) several useful examples of commonly employed restrictions in applied work (using our notation);
(f) the computational algorithm for inference based on subsampling; (g) how to calculate the gradient of the object of interest
when it involves long-run average effects; and (h) our proposed stochastic search approach to calculate the lower and upper
bounds of the identified set of relevant outcomes, without analytic gradients. The Online Appendix is available on the
authors’ webpages.

8Our results cover static discrete choice models, and can be extended to dynamic models with continuous states, nonsta-
tionarity, and that are finite-horizon. Such extensions are however beyond the scope of the paper.
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optimal behavior by the agent. By Bellman’s principle of optimality,

V (xit, εit) = max
a∈A

{
πa (xit) + εait + β E

[
V (xit+1, εit+1) |a, xit

]}
.

Following the literature, we define the ex ante value function, V (xit) ≡
∫
V (xit, εit) dG (εit), and the

conditional value function:

va (xit) ≡ πa (xit) + β E
[
V (xit+1) |a, xit

]
.

The ex ante value function takes the expectation of the value function with respect to εit. The conditional

value function is the sum of the agent’s current payoff, net of the idiosyncratic shocks εit, and the expected

lifetime payoff given a choice of action a this period and optimal choices from next period onwards.

The conditional choice probability (CCP) function is given by

pa (xit) =

∫
1
{
va (xit) + εait ≥ vj (xit) + εjit, for all j ∈ A

}
dG (εit) ,

where 1 {·} is the indicator function. We define the (A+ 1)× 1 vector of conditional choice probabilities

p (x) = (p0 (x) , ..., pA (x))′, and the corresponding (A+ 1)X × 1 vector p = (p′ (1) , ..., p′ (X))′, where ′

denotes transpose.

It is useful to note that for any (a, x) there exists a real-valued function ψa (.) derived only from G

such that

V (x) = va (x) + ψa
(
p (x)

)
. (1)

Equation (1) states that the ex ante value function V equals the value obtained by choosing a today and

optimally thereafter, va, plus a correction term, ψa, because choosing action a today is not necessarily

optimal. When εit follows the type I extreme value distribution, ψa(p (x)) = κ− ln pa (x), where κ is the

Euler constant.9

As we make extensive use of matrix notation below, we define the vectors πa, va, V, ψa ∈ RX , which

stack πa (x), va (x), V (x), and ψa(p (x)), for all x ∈ X . We often use the notation ψa(p) to emphasize the

dependence of ψa on the choice probabilities p. We also define Fa as the transition matrix with (m,n)

element equal to Pr
(
xit+1 = xn|xit = xm, a

)
. The payoff vector π ∈ R(A+1)X stacks πa for all a ∈ A, and,

similarly, F stacks (a vectorized version) of Fa for all a ∈ A.

9Equation (1) is shown in Arcidiacono and Miller (2011, Lemma 1). It makes use of the Hotz-Miller inversion (Hotz
and Miller, 1993), which, in turn, establishes that the difference of conditional value functions is a known function of the
CCPs: va (x) − vj (x) = φaj

(
p (x)

)
, where φaj (.) is again derived only from G. When εit follows the type I extreme value

distribution, φaj(p (x)) = log pa (x) − log pj (x). Chiong, Galichon, and Shum (2016) propose a novel approach that can
calculate ψa and φaj for a broad set of distributions G (see also Dearing, 2019).
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3 Model Restrictions and Identification

In this section, we characterize the identified set of the model parameters, allowing for additional model

restrictions that the researcher may be willing to impose, and we illustrate the sets in the context of a

firm entry/exit problem.

The primitives of the model are (A,X , β,G, F, π), which generate the endogenous objects {pa, va, V :

a ∈ A}. Typically, the researcher has access to a panel data on agents’ actions and states, {ait, xit :

i = 1, ..., N ; t = 1, ..., T}. Under some standard regularity conditions, the researcher can identify and

estimate the agents’ choice probabilities pa (x), as well as the transition distribution function F , directly

from the data. We therefore take p and F as known for the identification arguments. We also follow

the literature and assume the econometrician knows the discount factor β and the distribution of the

idiosyncratic shocks G (we discuss these assumptions in Remark 3 below). The main objective here is to

identify the payoff function π.

The model is identified if there is a unique payoff that can be inferred from the observed choice

probabilities and state transitions. Intuitively, π has (A+1)X parameters, and there are only AX observed

CCPs; thus there are X free payoff parameters and X restrictions will need to be imposed to point-identify

π (Rust, 1994; Magnac and Thesmar, 2002). We follow KSS to represent the underidentification problem

as follows: for all a 6= J , where J ∈ A is some reference action, πa can be represented as an affine

transformation of πJ :10

πa = MaπJ + ba (p) , (2)

where

Ma = (I − βFa) (I − βFJ)−1 , (3)

ba (p) = MaψJ (p)− ψa (p) , (4)

and I is a (comformable) identity matrix. In the logit model, ba (p) = ln pa −Ma ln pJ , where ln pa is the

X × 1 vector with elements ln pa(x). To simplify notation, we omit the dependence of both Ma and ba(p)

on the transition probabilities F .

We rely heavily on equation (2). Given the data at hand, one can compute both the X×X matrix Ma

and the X × 1 vector ba directly for each action a 6= J . The payoffs πa, a 6= J , are not identified because

the free parameter πJ is unknown. Equation (2) therefore explicitly lays out how we might estimate

10To see why, fix the vector πJ ∈ RX . Then,

πa = va − βFaV = V − ψa − βFaV = (I − βFa)V − ψa,

where for a = J , we have V = (I − βFJ)−1 (πJ + ψJ). After substituting for V , we obtain the result. As an aside, note
that (I − βFJ) is invertible because FJ is a stochastic matrix and hence the largest eigenvalue is equal or smaller than one.
The eigenvalues of (I − βFJ) are given by 1 − βγ, where γ are the eigenvalues of FJ . Because β < 1 and γ ≤ 1, we have
1− βγ > 0.
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the payoff function if we are willing to fix the payoffs of one action at all states a priori (e.g. πJ = 0).

However, this is not the only way to obtain identification: we simply need to add X extra restrictions.

Other common possibilities involve reducing the number of payoff function parameters to be estimated

using parametric assumptions and/or exclusions restrictions.

It will be useful to represent (2) for all actions a 6= J at once using two different compact notations.

First,

π−J = M−JπJ + b−J , (5)

where π−J stacks πa for all a 6= J , and the matrix M−J and vector b−J are defined similarly.11 Further,

define M = [I,−M−J ], and arrange π in the following way: π = [π′−J , π
′
J ]′. Then (5) becomes

Mπ = b−J . (6)

Note that identification of π fails because M is rank-deficient; indeed, M is an AX × (A + 1)X matrix,

and so rank(M) = AX < (A+ 1)X. In short, equation (6) summarizes all assumptions imposed by the

basic dynamic framework: any π ∈ R(A+1)X satisfying (6) is compatible with the data.12

Remark 1. (Static Models) Equation (2) also holds in static models. When agents are myopic (β = 0)

or when choices do not affect the transition of states (Fa = FJ , for all a 6= J), the matrix Ma becomes

the identity matrix, implying that the difference in payoffs πa − πJ is identified: it equals ψJ(p)− ψa(p);

in the logit model, that differencce equals the log odds ratio of the choice probabilities. All results we

present in this paper naturally cover the class of static discrete choice models.

3.1 Model Restrictions

We consider two types of model restrictions. The first is a set of d ≤ X linearly independent equalities,

Reqπ = req, (7)

with Req ∈ Rd×(A+1)X , or in block-form, Req = [Req−J , R
eq
J ], where Req−J defines how π−J enters into

the constraints and, similarly, ReqJ for πJ . This formulation is general enough to incorporate several

assumptions used in practice. Examples include exclusion restrictions (setting some elements of π equal

to each other), prespecifying some πJ (set ReqJ = I, Req−J = 0 and req accordingly), and parametric

assumptions such as πa(x) = za(x)γ, where za is some known function of actions and states, and γ ∈

Γ ⊂ RL is a parameter vector in the parameter space Γ, with dimension L usually much smaller than

11The vectors π−J and b−J have dimension AX × 1, while M−J is an AX ×X matrix.
12This model imposes a scale normalization. In general, the payoff function is given by π(a, xit, εit) = πa(xit) + σεait,

where σ > 0 is a scale parameter. This means equation (6) is given by M (π/σ) = b−J . As usual in discrete choice models,
when we set σ = 1 (as we do here), the scale of the payoff is measured relative to the standard deviation of one of the
components of εit.
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(A+ 1)X.13

The second set of restrictions are m linear inequalities:

Riqπ ≤ riq, (8)

with Riq ∈ Rm×(A+1)X , or in block-form, Riq = [Riq−J , R
iq
J ]. The inequalities (8) can incorporate shape

restrictions, such as monotonicity, concavity, and supermodularity. In Online Appendix E, we explicitly

lay out how several examples of assumptions used in applied work can be expressed as (7) or (8).

We assume the restrictions (7) and (8) are not redundant. Equations (6), (7), and (8) summarize

therefore all model restrictions.

3.2 Model Identification

The identified set for the payoff function is characterized by all payoffs satisfying all model restrictions.

Our first proposition follows (all proofs are in the Supplemental Material).

Proposition 1. The sharp identified set for the payoff function π is

ΠI =
{
π ∈ R(A+1)X : Mπ = b−J , R

eqπ = req, Riqπ ≤ riq
}
. (9)

The identified set ΠI is a convex polyhedron of dimension X − d, where 0 ≤ d ≤ X.

The identified set is sharp by construction.14 It is a convex polyhedron because it is the intersection

of finitely many closed halfspaces. Note that ΠI can be characterized in practice by linear programming

or convex programming methods. In the absence of inequalities (8), the identified set becomes a linear

manifold with dimension X−d; and it collapses to a singleton (i.e., π is point-identified) when the matrix[
M′, Req′

]′
is full rank (Magnac and Thesmar, 2002; Pesendorfer and Schmidt-Dengler, 2008).15

Before proceeding, remarks regarding unobserved heterogeneity, and the assumption of known β and

G are in order.

Remark 2. (Unobserved Heterogeneity.) In the presence of unobserved heterogeneity, equations (6)–(8)

hold for each unobserved type. This implies that, after type-specific choice probabilities and transition

functions of finitely many unobserved types are identified (e.g., following the strategies proposed by

13To see this, note that π = zγ, where z is a known matrix of dimension (A+ 1)X × L, γ is a column vector L× 1, and
we assume (A+ 1)X > L. Decompose the long (A+ 1)X vector π into an upper part πu and a lower part πl, and define zu
and zl similarly. Then, πu = zuγ and πl = zlγ. Suppose the decomposition is such that zu has full column rank. Then, from
the first equality we obtain: γ =

(
z′uzu

)−1
z′uπu. Substitution in the second equality gives πl = zl

(
z′uzu

)−1
z′uπu. Therefore,[

zl
(
z′uzu

)−1
z′u , −I

]
π = 0.

14A sharp identified set is the smallest set of parameter values that can generate the data.
15If we impose a linear-in-parameters restriction on flow payoffs, π = zγ, we can write the identified set for γ in a similar

way: ΓI = { γ ∈ Γ : (Mz) γ = b−J , (Reqz)γ = req, (Riqz)γ ≤ riq }.
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Kasahara and Shimotsu (2009) or Hu and Shum (2012)), identified sets given by (9) hold, and can be

calculated, for each type.

Remark 3. (Unknown β and G.) Although we assume a known discount factor, it is straightforward

to extend our analysis by either making use of the contributions by Magnac and Thesmar (2002) and

Abbring and Daljord (2019) to identify β, or by indexing ΠI by β and taking the identified set for π as

the union of the sets ΠI(β)’s for all admissible discount factors. Similarly, Blevins (2014), Chen (2017),

and Buchholz, Shum, and Xu (2019) consider identification of G under different model assumptions. One

can combine their assumptions to identify G and ΠI simultaneously, or take the union of the sets ΠI(G)

for admissible distributions G as the identified set ΠI ; see also Christensen and Connault (2019). Note

however that the union of such sets (either ΠI(β) or ΠI(G)) is not necessarily a convex polyhedron.

3.3 Example: Firm Entry/Exit Model

Next, we illustrate the payoff identified set in the context of a simple firm entry/exit problem. Suppose

a firm i decides whether to enter the market (a = 1) or stay out (a = 0), so that A = {0, 1}. Decompose

the state space into xit = (kit, wit), where kit ∈ K = {0, 1} is the lagged decision ait−1, and wit ∈ W =

{1, ...,W} are exogenous shocks determining profits. Assume for convenience (unless otherwise stated)

that wit can take two values, low and high: W = {wl, wh}, with wl < wh. The size of the state space is

therefore X = KW = 4, where K and W are the number of values that k and w can take. Transition

probabilities decompose as F (kit+1, wit+1|ait, kit, wit) = F (kit+1|ait, kit)F (wit+1|wit).

Let πa(k) denote the W × 1 vector of payoffs the firm obtains when it chooses action a given k and

w, so that πa = [π′a (0) , π′a (1)]′. We impose the following structure on π:

π0 =

 π0

s

 , π1 =

 vp− fc− ec

vp− fc

 . (10)

The payoff the firm obtains when it was out of the market in the previous period and stays out in the

current period is the vector π0 (0) = π0 (the value of the outside option); and the payoff when the firm

was active and decides to exit is given by the vector of scrap values, π0 (1) = s. Note that both the

outside option and the scrap values can vary with the exogenous state w. The vectors vp, fc, and ec are

the variable profits, the fixed costs, and the entry costs, respectively (all of which can vary with w as

well). The vector π1 (0) = vp− fc− ec measures the profits the firm gets when it enters the market, and

π1 (1) = vp− fc are the profits when it stays.

In this example, both π0 and π1 are 4×1 vectors (and so π has 2X = 8 elements). To point-identify π

we need X = 4 restrictions. Typically, researchers identify an entry model by setting π0 = 0 and further

setting either s = 0 or assuming vp− fc is known (e.g., by assuming variable profits vp can be recovered

“offline,” using price and quantity data, and setting fc = 0). When π0 = s = 0, then π0 = 0, and point
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identification of π follows directly from (2); it is essentially a restriction on a reference action. When

instead π0 = 0 and vp− fc is known, we identify the remaining elements of π by combining (2) and (7).

Assuming the outside option equals the scrap value or the fixed costs (and all are equal to zero) may

be difficult to justify in practice, as cost or scrap value data are extremely rare (Kalouptsidi, 2014). When

the researcher is not willing to impose such restrictions, π is not point-identified. Yet, the payoff function

can be set-identified under weaker conditions. Consider, for instance, the following set of assumptions:

1. π0 = 0, fc ≥ 0, ec ≥ 0, and vp is known.

2. π1(1, wh) ≥ π1(1, wl), and vp− fc ≤ ec ≤ E[vp−fc]
1−β , where the expectation is taken over the ergodic

distribution of the state variables.

3. s does not depend on w.

Restriction 1 assumes that the outside option is zero (as usual); fixed costs and entry costs are both

positive; and variable profits are known (estimated “offline”). This set of restrictions imposes d = W = 2

equality and m = 4 inequality constraints. From Proposition 1, the identified set ΠI is a two-dimensional

set (X − d = 2) in the eight-dimensional space.

Restriction 2 imposes m = 5 inequality constraints: profits are increasing in w when the firm is in

the market (a monotonicity assumption); entry costs are greater than variable profits minus fixed costs

(implying that entry is always costly in the first period of entry); and ec is smaller than the expected

present value of future profits when the firm stays forever in the market (meaning that it eventually pays

off to enter).

Restriction 3 assumes an exclusion restriction: scrap values are state-invariant. This corresponds to

d = W − 1 = 1 equality restriction. Note that, by combining Restrictions 1 and 3, we obtain d = 3 linear

equalities, which makes the identified set ΠI one dimensional. In the Supplemental Material (Section B),

we provide explicit characterizations for this example.

Figure 1 presents ΠI for a particular parameter configuration.16 The larger polyhedron corresponds to

ΠI under Restriction 1. The identified set is informative despite the fact that the assumptions imposed are

not overly restrictive. To gain intuition regarding the shape of ΠI , consider the set corresponding to scrap

values (panel (b)). In this model, equation (6) alone implies that the difference between scrap values and

entry costs is point-identified (see Supplemental Material, Section B). As a consequence, the inequality

ec ≥ 0 implies a lower bound on scrap values (for each state w), eliminating from ΠI all values for s

below the thresholds indicated in the figure. Similarly, equation (6) implies that the difference between s

and the present value of fixed costs is point-identified. In this second case, though, the inequality fc ≥ 0

16We assume scrap values, entry and fixed costs do not depend on w and take the following values: s = 4.5, ec = 5, and
fc = 0.5. We also impose vp(wl) = 2 and vp(wh) = 4, so that π0 = (0, 0, 4.5, 4.5)′ and π1 = (−3.5,−1.5, 1.5, 3.5)′. The
discount factor is β = 0.9, the transition process for w is Pr(wt+1 = wl|wt = wl) = Pr(wt+1 = wh|wt = wh) = 0.75, and
the idiosyncratic shocks εit follow a type 1 extreme value distribution (the scale parameter is set at σ = 1). Under these

assumptions, E[vp−fc]
1−β = 25.
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(a) Payoff when Stay Out, π0(0) (b) Payoff when Exit, π0(1)

(c) Payoff when Enter, π1(0) (d) Payoff when Stay In, π1(1)

Figure 1: Firm Entry/Exit Model: Payoff Identified Set ΠI under Restrictions 1, 2, and 3. The larger polyhedron
(including the dark blue areas) correspond to ΠI under Restriction 1. The light blue areas correspond to ΠI under
Restrictions 1 and 2. The identified set ΠI under Restrictions 1–3 is represented by the blue lines within the light
blue polyhedron. The true π is represented by the black dots.

entails an upper bound on scrap values, eliminating from the identified set all values for s above the

diagonal lines shown in the figure. The diagonal lines reflect the fact that equation (6) relates s and the

present value of fc, so that fc ≥ 0 leads to restrictions on scrap values across states.

Restrictions 1 and 2 together lead to substantial identifying power: ΠI now corresponds to the smaller

polyhedron (in light blue), which is substantially smaller in size than the larger polyhedron. Assuming

that entry is costly in the first period of entry, vp − fc ≤ ec, is the main restriction responsible for the

reduction in the identified set. This assumption results in another lower bound on s (see panel (b)), but

differently from ec ≥ 0, it involves restrictions on fc and so imposes restrictions on s across states; the

other assumptions in Restriction 2 are not as informative in this example; see the Supplemental Material.

Interestingly, the payoff function with scrap values that are equal to zero does not belong to ΠI under

these two sets of restrictions. As mentioned previously, setting scrap values to zero is a common way to
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point-identify π, but, given that s = 0 is at odds with Restrictions 1 and 2, such assumption would be

rejected by the data.

Finally, Restriction 3 (exclusion restriction on scrap values) also has substantial identifying power as

it reduces the dimension of the identified set to one. In the figures, the identified set under Restrictions

1–3 is represented by the blue lines within the light blue polyhedron.

4 Counterfactuals and Outcomes of Interest

The applied literature has implemented several types of counterfactuals that may change one or several

of the model’s primitives (A,X , β, F,G, π). For instance, a counterfactual may change the action and

state spaces (e.g. Gilleskie (1998) restricts access to medical care; Crawford and Shum (2005) do not

allow patients to switch medications; Keane and Wolpin (2010) eliminate a welfare program; Keane

and Merlo (2010) eliminate job options for politicians; Rosenzweig and Wolpin (1993) add an insurance

option for farmers). Some counterfactuals may transform the state transitions (e.g. Collard-Wexler (2013)

explores the impact of demand volatility in the ready-mix concrete industry; Hendel and Nevo (2006)

study consumers’ long-run responsiveness to prices using supermarket scanner data; Kalouptsidi (2014)

explores the impact of time to build on industry fluctuations). Other counterfactuals change payoffs

through subsidies or taxes (e.g. Keane and Wolpin (1997) consider hypothetical college tuition subsidies;

Schiraldi (2011) and Wei and Li (2014), automobile scrap subsidies; Duflo, Hanna, and Ryan (2012),

bonus incentives for teachers; Das, Roberts, and Tybout (2007), export subsidies; Lin (2015) and Varela

(2018), entry subsidies). Changes in payoffs may also involve a change in the agent’s “type” (e.g. Keane

and Wolpin (2010) replace the primitives of minorities by those of white women; Eckstein and Lifshitz

(2011) substitute the preference/costs parameters of one cohort by those of another; Ryan (2012) replaces

firm entry costs post an environmental policy by those before; Dunne, Klimek, Roberts, and Xu (2013)

substitute entry costs in some areas by those in others). Finally, a counterfactual may also change the

discount factor (e.g., Conlon (2012) studies the evolution of the LCD TV industry when consumers become

myopic).

A counterfactual is defined by the tuple {Ã, X̃ , β̃, G̃, hs, h}. The sets Ã = {0, ..., Ã} and X̃ = {1, ..., X̃}

denote the new set of actions and states respectively. The new discount factor is β̃, and the new distri-

bution of the idiosyncratic shocks is G̃. The function hs : RA×X2 → RÃ×X̃2
transforms the transition

probability F into F̃ . Finally, the function h : RAX → RÃX̃ transforms the payoff function π into the

counterfactual payoff π̃, so that π̃ = h (π). Here, we restrict transformations on payoffs to affine changes

π̃ = Hπ + g, where the matrix H and the vector g are specified by the econometrician. I.e., the payoff

π̃a(x) at an action-state pair (a, x) is obtained as the sum of a scalar ga(x) and a linear combination of
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all baseline payoffs. It is helpful to write this in a block-matrix equivalent form:

π̃ =


H00 H01 · · · H0A

...
...

. . .
...

H
Ã0
H
Ã1
· · · H

ÃA



π0

...

πA

+


g0

...

g
Ã

 , (11)

where the submatrices Haj have dimension X̃ ×X for each pair a ∈ Ã and j ∈ A. Note that when the

counterfactual does not change the set of actions and states (i.e. Ã = A and X̃ = X ), H is a square

matrix.

The counterfactual {Ã, X̃ , β̃, G̃, hs, h} generates a new set of model primitives (Ã, X̃ , β̃, G̃, F̃ , π̃). The

new set of primitives in turn leads to a new optimal behavior, denoted by p̃ (the counterfactual CCP),

and a new lifetime utility, denoted by Ṽ (the counterfactual welfare).

As the state space X can be large in practice (making both p̃ and Ṽ high-dimensional vectors), re-

searchers are often interested in low-dimensional objects, such as the average effects of policy interventions.

For instance, in the firm entry/exit application, one may be interested in predicting the average effects of

an entry subsidy on: (i) how often the firm stays in the market; (ii) prices; (iii) consumer surplus; (iv) the

value of the firm; and/or (v) total government expenditures, among others. Denote the low-dimensional

counterfactual outcome of interest by θ ∈ Θ ⊂ Rn, where Θ is the parameter space for θ, and n is much

smaller than the size of the state space X (i.e., n� X). Then, we have

θ = f (p̃, π; p, F ) , (12)

where f implicitly incorporates other quantities that may be necessary to calculate θ, such as Ã or F̃ .

For instance, take an outcome variable of interest Ya (x) (e.g., consumer surplus, or the probability of

entry), with a corresponding counterfactual given by Ỹa (x). The average treatment effect of the policy

intervention on Y is

θ = E[Ỹa (x)]− E[Ya (x)], (13)

where E[Ỹa (x)] integrates over the distribution of actions and states in the counterfactual scenario, while

E[Ya (x)] integrates over the factual distribution. One may consider the long-run distribution, or may

condition on an initial state and estimate short-run effects. (See the Supplemental Material for details.)

4.1 Identification of Counterfactual Behavior

We now investigate the identified set for the counterfactual CCP p̃. To do so, we leverage the counterfac-

tual counterpart to (2) for any action a ∈ Ã, with a 6= J . I.e.,

π̃a = M̃a π̃J + b̃a (p̃) , (14)
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where

M̃a = (I − β̃F̃a) (I − β̃F̃J)−1,

b̃a (p̃) = M̃a ψ̃J (p̃)− ψ̃a (p̃) ,

the functions ψ̃J and ψ̃a depend on the new distribution G̃, and, without loss of generality, the reference

action J belongs to both A and Ã. As before, we omit the dependence of both M̃a and b̃a on the transition

probabilities F̃ to simplify notation.

By stacking equation (14) for all actions and rearranging it (as done previously for the baseline case),

we obtain M̃ π̃ = b̃−J , where M̃ = [I,−M̃−J ], I is an identity matrix, and M̃−J and b̃−J stack M̃a and

b̃a, for all a 6= J , respectively. Next, using the fact that π̃ = Hπ + g, we get

(M̃H)π = b̃−J (p̃)− M̃g. (15)

Equation (15) characterizes counterfactual behavior, relating p̃ and model parameters directly, with

no continuation values involved.17 Importantly, the function b̃−J is continuously differentiable with an

everywhere invertible Jacobian (see Lemma 1 in KSS). The next proposition follows:

Proposition 2. The sharp identified set for the counterfactual CCP p̃ is

P̃I =



p̃ ∈ P̃ : ∃π ∈ R(A+1)X such that

Mπ = b−J(p),

Reqπ = req, Riqπ ≤ riq,

(M̃H)π = b̃−J (p̃)− M̃g


, (16)

where P̃ is the simplex of conditional choice probabilities.

In words, a vector p̃ lying in the conditional probability simplex P̃ belongs to the identified set P̃I if

there exists a payoff π that is compatible with the data (i.e., Mπ = b−J), satisfies the additional model

restrictions (i.e., Reqπ = req and Riqπ ≤ riq), and can generate p̃ in the counterfactual scenario (i.e.,

(M̃H)π = b̃−J (p̃)− M̃g).18

Next, we derive the analytical properties of the identified set P̃I . To that end, we represent the matrix

17The CCP vector generated by the model primitives is the unique vector that satisfies (6): since the Bellman is a
contraction mapping, V is unique; from the definition of the conditional value function, we conclude that so are va and thus
so is p (see the argument presented in footnote 10, which leads to equation (6)). The same reasoning applies to p̃ in (15).

18Counterfactuals involving nonlinear transformations on π change the identified set P̃I defined in (16) by replacing

equation (15) by M̃h(π) = b̃−J (p̃). We ignore such counterfactuals because they are uncommon in empirical work (such
counterfactuals are considered in KSS); however, extensions to nonlinear transformations are straightforward.
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H in the following way:19

H = [H−J ,HJ ] =

H1,−J H1J

H2,−J H2J

 .
Proposition 3. The identified set P̃I has the following properties:

(i) It is empty if and only if ΠI is empty.

(ii) It is a connected manifold with boundary, and dimension in the interior given by the rank of the

matrix C(I − PQ), where

C = H1,−JM−J − M̃−JH2,−JM−J +H1J − M̃−JH2J , (17)

and PQ = Qeq′
(
QeqQeq′

)−1
Qeq, with

Qeq = Req−JM−J +ReqJ , (18)

and Req = [Req−J , R
eq
J ]. Furthermore, rank(C(I − PQ)) ≤ X − d.

(iii) It is compact when ΠI is bounded.

(iv) In the absence of equality restrictions (7), the dimension of P̃I is given by the rank of C.20

Intuitively, equation (15) implicitly defines p̃ as a continuously differentiable function of π. The sharp

identified set P̃I is therefore the image of ΠI under this function. It is clear that P̃I is empty whenever

ΠI is empty (i.e., whenever the model is rejected in the data); P̃I is connected because ΠI is convex;

and P̃I is compact when ΠI is bounded (recall that ΠI is closed). An implication of the connectedness

of the identified set is that a non-empty P̃I is either a singleton (in which case p̃ is point-identified) or a

continuum.

Proposition 3 also states that P̃I is a manifold whose dimension is given by the rank of the matrix

C(I−PQ), which is smaller than or equal to X−d. The fact that P̃I cannot have dimension greater than

X − d is intuitive: since P̃I is the image set of a function defined on a (X − d)–dimensional polyhedron,

p̃ is specified by at most X − d degrees of freedom rather than by X̃Ã: once X − d elements are specified,

the remaining are found from (15). So, whenever X − d < X̃Ã, the dimension of the identified set P̃I

is strictly smaller than the dimension of the conditional probability simplex P̃, which implies that the

(Lebesgue) measure of P̃I on P̃ is zero. In other words, the identified set P̃I is informative.

The rank of C(I − PQ) can be strictly smaller than X − d. The exact value depends on (i) the

counterfactual transformation (which affects the matrix C, through the elements of H and M̃−J , defined

by the econometrician), (ii) the model restrictions (which affect PQ, through Qeq, which in turn depends

19Note that π̃ = Hπ + g = H−Jπ−J +HJπJ + g. The matrix H−J has dimension (Ã+ 1)X̃ ×AX, with the submatrices

H1,−J (with dimension ÃX̃ × AX) and H2,−J (with dimension X̃ × AX). Similarly, HJ is an (Ã + 1)X̃ ×X matrix with

the submatrices H1J (with dimension ÃX̃ ×X) and H2J (with dimension X̃ ×X).
20The matrix C has dimension ÃX̃ ×X, while Qeq is a d×X matrix, and both PQ and (I − PQ) are X ×X matrices.
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on the linear restrictions Req), and (iii) the data (particularly, on state transitions F , which are part of

the matrix M−J – see equation (3) – and possibly part of M̃−J through F̃ = hs(F )). The interaction

of these factors can reduce the dimension of the identified set further beyond X − d. Of note, once the

econometrician establishes the counterfactual of interest and the model restrictions, the rank of C(I−PQ)

can be verified directly from the data.

When rank(C(I−PQ)) = 0, the identified set P̃I collapses into a singleton – i.e., p̃ is point-identified.

This means that all points π ∈ ΠI map onto the same counterfactual CCP. Putting differently, even

though the model restrictions do not suffice to point identify the model parameters, they may suffice to

identify counterfactual behavior.

4.2 Identification of Counterfactual Outcomes of Interest

We now investigate the identified set of low-dimensional outcomes of interest θ ∈ Θ ⊂ Rn.

Proposition 4. The sharp identified set for θ is

ΘI =



θ ∈ Θ : ∃ (p̃, π) ∈ P̃× R(A+1)X such that

θ = f (p̃, π; p, F ) , Mπ = b−J(p),

Reqπ = req, Riqπ ≤ riq,

(M̃H)π = b̃−J (p̃)− M̃g


. (19)

When f is a continuous function of (p̃, π), ΘI is a connected set. In addition, if θ is a scalar, then ΘI

is an interval. Finally, when ΠI is bounded, ΘI is compact.

Proposition 4 states that a vector θ belongs to ΘI if and only if there exists a payoff π that is compatible

with the data (i.e., Mπ = b−J), satisfies the model restrictions (i.e., Reqπ = req and Riqπ ≤ riq), can

generate p̃ in the counterfactual scenario (i.e., (M̃H)π = b̃−J (p̃)−M̃g), and the corresponding pair (p̃, π)

can generate θ (i.e., θ = f (p̃, π; p, F )).

When f is continuous, ΘI is connected because it is the image set of a (composite) continuous function

defined on the convex polyhedron ΠI . If the model restrictions make ΠI bounded, ΘI becomes a compact

and connected set, which is convenient as it suffices to trace the boundary of ΘI to characterize this set

in practice. In addition, when θ is a scalar, ΘI reduces to a compact interval, which is even simpler to

characterize: in that case we just need to compute the lower and upper endpoints of the interval ΘI .

The upper bound of this interval can be calculated by solving the following constrained maximization

problem

θU ≡ max
(p̃,π)∈P̃×R(A+1)X

f (p̃, π; p, F ) (20)
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subject to

Mπ = b−J(p),

Req π = req, (21)

Riq π ≤ riq,

(M̃H)π = b̃−J (p̃)− M̃g.

The lower bound of the identified set θL is defined similarly (but replacing max by min). For ease of

exposition, we focus on the maximization problem hereafter.

The problem (20)–(21) is a nonlinear maximization problem with linear constraints on π and smooth

nonlinear constraints on p̃. When f is differentiable, the optimization can be solved using standard

software (e.g., Knitro).

In our experience, standard algorithms are highly efficient in solving (20)–(21) in empirically-relevant

high-dimensional problems when the researcher provides the gradient of f . In some cases, however, the

gradient of f may be nontrivial to compute; for instance this is the case when the target parameter θ

involves counterfactual average effects based on the ergodic distributions of the states, as in equation (13).

For such cases, we show in Online Appendix G how to calculate the gradient of f analytically to help the

numerical search. In other cases, when numerical gradients are costly to evaluate, standard solvers can

be slow to converge. We thus develop a stochastic algorithm that exploits the structure of the problem

(20)–(21) and combines the strengths of alternative stochastic search procedures. We discuss and describe

our proposed algorithm in Online Appendix H.

4.3 Example: Firm Entry/Exit Model (Continued)

To illustrate the shape and size of the identified sets P̃I and ΘI , we now return to the firm example. Let

the baseline CCP be p = (p′1(0), p′1(1))′, where p1(k) is the W × 1 vector with the probabilities of being

active (a = 1) given k and w. Assuming the exogenous shocks can take only two values, low and high,

and taking the same parameter values used in the construction of Figure 1, the baseline CCP is given by

the vector p = (0.714, 0.951, 0.804, 0.970)′: the probability of entry in the low state is p1(0, wl) = 0.714,

while the probability of entry in high state is p1(0, wh) = 0.951. We observe a higher probability of entry

in the high state because higher values of w lead to greater profits and because w follows a persistent

Markov process. Similarly, the probability of staying in the market in the low state is p1(1, wl) = 0.804,

while the probability of staying in the high state is p1(1, wh) = 0.970.

The counterfactual experiment we consider in this example is a subsidy that decreases entry cost by

20%. Formally, π̃ = Hπ + g, with g = 0, and H block-diagonal with the diagonal blocks H00 and H11
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given by

H00 = I, and H11 =

τI (1− τ)I

0 I

 ,
where τ = 0.8. This implies

π̃0 = H00π0 = π0, and π̃1 = H11π1 =

 vp− fc− τ × ec

vp− fc

 .
The counterfactual CCP is p̃ = (0.768, 0.960, 0.668, 0.934)′. As expected, the subsidy increases the

probability of entry compared to the baseline in both low and high states w. The subsidy also decreases

the probability of staying in the market, as it becomes cheaper to re-enter in the future.

(a) Probability of Entry, p̃1(0, w) (b) Probability of Stay, p̃1(1, w)

(c) Zoom: Probability of Entry, p̃1(0, w) (d) Zoom: Probability of Stay, p̃1(1, w)

Figure 2: Identified Set for Counterfactual CCPs, P̃I , under Restrictions 1, 2, and 3. The larger sets (including

the dark blue areas) correspond to P̃I under Restriction 1. The light blue areas correspond to P̃I under Restrictions

1 and 2. The identified set P̃I under Restrictions 1–3 is represented by the blue lines within the light blue areas.
The baseline and counterfactual CCPs, p and p̃, are represented by the black empty circle and the black full dot,
respectively. The bottom panels present the “zoomed-in” versions of the top panels.
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We now characterize the identified set P̃I under Restrictions 1–3. Figure 2 presents the results.

Similar to our representation of ΠI in Figure 1, the larger sets (including the dark blue areas) correspond

to P̃I under Restriction 1. The identified set is highly informative: it is a two-dimensional set in a four-

dimensional space (recall from Proposition 3 that P̃I is at most at the same dimension as ΠI), excluding

most points in P̃ from being possible counterfactual CCPs. Yet, because the baseline CCP p is almost

at the boundary of P̃I , it is difficult to rule out in practice the possibility that the entry subsidy has no

impact on firm’s behavior. Adding Restriction 2 reduces the size of P̃I substantially (corresponding to the

light blue areas in the figure). This is a direct consequence of the smaller set ΠI obtained after imposing

Restriction 2 in addition to Restriction 1 (see Figure 1). The baseline CCP does not belong to P̃I once

we add Restriction 2; in fact, the location of p and P̃I allows us to conclude that the probability of entry

increases in the counterfactual and that the probability of staying decreases. In other words, the sign of

the treatment effect is identified. The exclusion restriction on scrap values (Restriction 3) has substantial

identification power, making P̃I one-dimensional (because ΠI becomes one-dimensional as well) – see the

blue lines in the figure. Note that all identified sets are connected, as expected (Proposition 3), but not

necessarily convex.

We now turn to some low-dimensional outcomes θ, in particular, the long-run average impact of the

entry subsidy on (i) the probability of staying in the market (labelled θP ), (ii) consumer surplus (θCS),

and (iii) the value of the firm (θV ). Table 1 presents the identified sets for each of these outcomes under

Restrictions 1–3.21

Perhaps surprisingly, the entry subsidy decreases the long-run average probability of the firm staying

in the market, by approximately 6.4 percentage points. That is because, while the subsidy induces more

entry, it also induces more exit. In the current case, increasing both firm’s entry and exit rates results

in less time spent in the market in the long run. This in turn reduces the long-run average consumer

surplus, and raises the average long-run value of the firm.

As expected, the identified sets are all compact intervals (see Proposition 4), and they all contain the

true θ. Under Restriction 1, the upper bound of the identified set for θP is a negative number that is

very close to zero, leading to the conclusion that the long-run average probability of being active does

not increase in the counterfactual. The lower bound implies that the probability of staying active can

be reduced by at most 12 percentage points. Similarly, the researcher can conclude that the long-run

average consumer surplus does not go up (and decreases by at most $0.17), while the long-run average

21Assuming a (residual) linear inverse demand Pit = wit− ηQit, where Pit is the price and Qit is the quantity demanded,
and assuming a constant marginal cost mc, the variable profit is given by vp = (wit −mc)2/4η. The consumer surplus is
CS = 0 when the firm is inactive (a = 0), and CS = (wit −mc)2/8η when it is active (a = 1). Note that consumer surplus
is the same in the baseline and counterfactual scenarios; the average CS changes in the counterfactual because the firm
changes its entry behavior when it receives an entry subsidy. The value of the firm in the baseline is given by the vector
V = (I − βFJ)−1 (πJ + ψJ(p)

)
, where we take J = 0 (see footnote 10), and a similar expression holds for the counterfactual

value: Ṽ = (I − β̃F̃J)−1(π̃J + ψ̃J(p̃)). The average firm value (across states) changes in the counterfactual both because
the steady state distribution changes, and because the value of the firm is affected by the subsidy in all states. See the
Supplemental Material, Section B, for explicit formulas for θ = (θP , θCS , θV ).
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Table 1: Sharp Identified Sets for the Long-run Impact of the Entry Subsidy on Outcomes of Interest, ΘI

Outcome of Interest Target parameter Sharp Identified Sets

True Restriction 1 Restrictions 1–2 Restrictions 1–3

Change in Prob. of Being Active -0.0638 [-0.1235, -0.0001] [-0.1235, -0.0419] [-0.1235, -0.0421]

True Restriction 1 Restrictions 1–2 Restrictions 1–3

Change in Consumer Surplus -0.0875 [-0.1735, -0.0002] [-0.1735, -0.0571] [-0.1735, -0.0573]

True Restriction 1 Restrictions 1–2 Restrictions 1–3

Change in the Value of the Firm 0.9513 [0.0014, 1.8229] [0.6375, 1.8229] [0.6388, 1.8229]

Notes: This table shows the true and the sharp identified sets for the long-run average effect of the 20% entry subsidy on three
outcomes of interest in the firm entry/exit problem: the probability of staying active, the consumer surplus, and the value of the firm.
The averages are taken with respect to the state variables, using the steady-state distribution. The value of the model parameters and
Restrictions 1, 2, and 3 are all specified in Section 3. See the Supplemental Material, Section B, for details.

value of the firm does not go down (and increases at most by $1.8) in response to the subsidy. These are

informative identified sets despite the fact that Restriction 1 is mild.

Adding Restriction 2 makes all identified sets more informative. The upper bound on θP is now

lower, implying that the average probability of being active is now reduced by a number between 4 and

12 percentage points, which clearly identifies the sign of the impact. The endpoints of the intervals for

θP and θV change similarly. Adding Restriction 3 does not narrow the intervals much further, despite

the fact that this restriction has substantial identifying power related to the model parameters π and

counterfactual behavior p̃. That is because, while Restriction 3 reduces the dimension of ΠI and P̃I , it

does not eliminate the extreme points of these sets that, in turn, generate the endpoints of ΘI . In the

Supplemental Material (Section B) we present the three-dimensional identified set ΘI .

5 Estimation and Inference

We now present a uniformly valid inference procedure for the main outcomes of interest θ ∈ Θ ⊂ Rn.

More precisely, we are interested in constructing confidence sets (CS’s) for the true value of θ (rather

than for the identified set ΘI). Our approach is similar in spirit to the Hotz and Miller (1993) two-step

estimator: we estimate choice probabilities p and transitions of state variables F in the first step, and

then we perform inference on θ in the second step.

We assume the econometrician has access to a panel data on agents’ actions and states: {ait, xit :

i = 1, ..., N ; t = 1, ..., T}. We consider asymptotics for the large N and fixed T case, as is typical in

microeconometric applications of single-agent models, and assume i.i.d. sampling in the cross-section

dimension.22 Given that actions and states are finite, we consider frequency estimators for both p and F .

22If the data is ergodic and an appropriate mixing condition is satisfied then our procedure remains valid when T → ∞
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(When states are continuous, one can use kernel estimators for p and F ; we leave extensions to continuous

states for future research.) Specifically, for all a ∈ A, and all x, x′ ∈ X ,

p̂aN (x) =

∑
it 1 {xit = x, ait = a}∑

it 1 {xit = x}
, (22)

F̂aN (x′, x) =

∑
it 1
{
xit+1 = x′, xit = x, ait = a

}∑
it 1 {xit = x, ait = a}

, (23)

and the vectors of sample frequencies are denoted by p̂N and F̂N .23 We collect the terms p̂N and F̂N into

the L–vector p̂N = [p̂1N , ..., p̂LN ]′. Similarly, we collect p and F into p = [p1, ..., pL]′ := E[e], where e is a

vector of observed indicators. Recall that each matrix Ma, a ∈ A, is a function of F , which is a subvector

of p, therefore we define Ma(p), a ∈ A, as the value of Ma evaluated at p and also define M(p) accordingly.

We use the same notation for b−J(p), as well as for M̃(p), b̃−J(p̃, p), and f(p̃, π; p) when appropriate.24

We construct a confidence set by inverting a test. The test is based on a test statistic ĴN (θ0) for

testing the null H0 : θ = θ0. The nominal level 1− α confidence set for θ is

CS = {θ ∈ Θ : NĴN (θ) ≤ ĉ1−α}, (24)

where ĉ1−α is a data-dependent critical value (discussed below).

To test the null H0 : θ = θ0, we reformulate the problem in the following way. For a fixed value θ = θ0,

we take the equality constraints on π:

Reqπ = req, (M̃(p)H)π = b̃−J (p̃, p)− M̃(p)g, and θ0 = f(p̃, π; p), for some p̃,

and collect them into

R(θ0, π, p̃; p) = 0.

This leads to the criterion function

J(θ0) := min
(p̃,π)∈P̃×R(A+1)X :Riqπ≤riq ,

R(θ0,π,p̃; p)=0

[b−J(p)−M(p)π]′Ω [b−J(p)−M(p)π] (25)

where Ω is a (user-chosen) positive definite weighting matrix. If θ0 belongs to ΘI then all restrictions are

and N is fixed.
23In certain cases some elements of the transition matrix F are degenerate when the corresponding states are known to

evolve deterministically; see equation (B1) in the Supplemental Material. We do not estimate these elements, and thus the
expressions in (23) are applied only to the rest of the elements of F that need to be estimated.

24Note that M̃ may also depend on baseline transitions F (and so may have to be estimated in the data). That is because

M̃ = [I,−M̃−J ], where M̃−J stacks M̃a for all a 6= J , with M̃a = (I − βF̃a)(I − βF̃J)−1, and F̃ = hs(F ). The same applies

to b̃−J , which also depends on F̃ .
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satisfied and J(θ0) = 0, otherwise J(θ0) > 0. The identified set ΘI can therefore be represented as

ΘI = {θ ∈ Θ : J(θ) = 0}, (26)

which implies that the null H0 : θ = θ0 is equivalent to H ′0 : J(θ0) = 0.

The empirical counterpart of J(θ0) is given by

ĴN (θ0) := min
(p̃,π)∈P̃×R(A+1)X :Riqπ≤riq ,

R(θ0,π,p̃; p̂N )=0

[b−J(p̂N )− M̂Nπ]′ Ω̂N [b−J(p̂N )− M̂Nπ], (27)

where M̂N = M(p̂N ) and Ω̂N is a consistent estimator for Ω. For the rest of this paper we consider a

general specification of Ω so that it can be a (known) continuous function of p. Denoting the function by

Ω(·), we let Ω̂N = Ω(p̂N ) in (27).

While a naive bootstrap for ĴN (θ0) fails to deliver critical values that are asymptotically uniformly

valid (see, e.g. Kitamura and Stoye, 2018), subsampling works under weak conditions, as we shall show

shortly. Let hN be the subsample size, with hN →∞ as N →∞. A subsample version of ĴN (θ0) is

Ĵ∗hN (θ0) := min
(p̃,π)∈P̃×R(A+1)X :Riqπ≤riq ,

R
(
θ0,π,p̃; p̂∗hN

)
=0

[̂b∗−J − M̂∗
hN
π]′Ω̂∗hN [̂b∗−J − M̂∗

hN
π], (28)

where p̂∗hN is a subsample estimator of p, M̂∗
hN

= M(p̂∗hN ), Ω̂∗hN = Ω(p̂∗hN ) and

b̂∗−J = b−J(p̂∗hN )− b−J(p̂N ) + b̂−J(p̂N ),

with b̂−J(p̂N ) being the value of M̂Nπ solving the minimization problem (27). Note that with this

definition of b̂∗−J we implement subsampling with centering.

The testing procedure is simple: We use the empirical distribution of hN Ĵ
∗
hN

(θ0) to obtain the critical

value ĉ1−α. When the value of the test statistic is smaller than the critical value, NĴN (θ0) ≤ ĉ1−α, we do

not reject the null H ′0 : J(θ0) = 0, otherwise we reject it. The 1− α confidence set will be the collection

of θ0’s for which the tests do not reject the null.

Remark 4. A comment on some approaches that are alternative to ours as outlined above is in order.

First, if we treat (π, p̃) as a parameter (while θ0 is fixed), then our system becomes one of set identified

moment equalities (composed of equations (6), (12), and (15)), with (inequality) constraints on the

parameter space for (π, p̃) (i.e., restrictions (7) and (8)). It is then possible to test the validity of these

equalities at each value of (π, p̃). This controls size, but would be extremely conservative; obviously

the same can be done to standard moment inequality models but it is not implemented in practice for

this reason. Moreover, implementing such a procedure in our context is practically impossible, as the
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parameter space for (π, p̃) is too big. Second, we can fix p̃, but not π, and rewrite the system into a

moment inequality form by eliminating π (i.e. solving for other variables). As noted in Kitamura and

Stoye (2018), this amounts to transforming, in the language of discrete geometry, a V-representation of a

polytope to an H-representation, and it is generally known to be expensive to compute, and impractical

even for a moderately sized system. Third, one may try to eliminate both π and p̃ from the system to

get some form of moment inequalities; but this is even harder to implement, especially because of the

nonlinear constraints that involve p̃, and so it is not a practically feasible option either. For example, a

recent paper by Kaido, Molinari, and Stoye (2019) is, like ours, concerned with a low dimensional object,

though it is not directly applicable as their algorithm requires a moment inequality representation.

Before we state formal assumptions and the asymptotic validity result, it is useful to introduce some

notation. First, define the manifold

S(p, θ) := {M(p)π, π ∈ R(A+1)X : R(θ, π, p̃; p) = 0, and Riqπ ≤ riq hold for some p̃ ∈ P̃}.

Note that the minimization problem (25) projects b−J(p) on S(p, θ) under the weighted norm ‖x‖Ω = x′Ωx,

for x ∈ RAX . The corresponding value of the objective function J(θ) in (25) is the squared length of the

projection residual vector. Clearly, θ ∈ ΘI if and only if the residual vector is zero.

Next, for some positive constants c1 and c2, define the set

Pθ0 :=


p : p` ∈ (0, 1), E

[∣∣∣∣ e`√
p`(1−p`)

∣∣∣∣2+c1
]
< c2, 1 ≤ ` ≤ L,

∃(p̃, π) ∈ P̃× R(A+1)X such that M(p)π = b−J(p),

Riqπ ≤ riq, R(θ0, π, p̃; p) = 0,det(Ω(p)) ≥ c1


.

This represents the set of permissible data generating processes when the counterfactual value of interest

is fixed at θ0. Note that the first restriction in the definition Pθ0 is a standard condition imposed to

guarantee the Lindeberg condition. The second is the main model restriction. The third and the fourth

collect additional constraints on the payoff vector π; the equalities in the fourth restriction include the

constraints that arise as we fix the value of the counterfactual θ0. The final restriction guarantees that

the random manifold S(p̂N , θ0) is asymptotically well-behaved.

We impose a weak condition on f and hs:

Condition 1. f and hs are C1 functions.

It is useful to impose a mild requirement on S(p, θ) in terms of its local geometric property. To this

end, we introduce the notion of tangent cone:

Definition 1. For a (possibly non-convex) set A ⊂ Rd, the tangent cone of A at x ∈ A, henceforth
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denoted by TA(x), is given by

TA(x) := lim sup
τ↓0

τ−1(A	 x),

where 	 denotes the usual Minkowski difference.

See, e.g., Section 6A of Rockafellar and Wets (2009) for a discussion on the role of a tangent cone and

other related concepts.

Condition 2. For every (p, θ0) such that p ∈ Pθ0 and θ0 ∈ ΘI , the tangent cone TS(p,θ0)(x) of S(p, θ0) is

convex at each x ∈ RAX ∈ S(p, θ0).

Then the next theorem follows:

Theorem 1. Choose hN such that hN →∞ and hN/N → 0 as N →∞. Then under Conditions 1 and

2,

lim inf
N→∞

inf
p∈Pθ0

Pr{NĴN (θ0) ≤ ĉ1−α} = 1− α, for every θ0 ∈ ΘI ,

where ĉ1−α is the 1−α quantile of hN Ĵ
∗
hN

(θ0), with 0 ≤ α ≤ 1
2 . The asymptotically uniformly valid 1−α

confidence set for θ is the collection of θ0’s such that the test does not reject the null H ′0 : J(θ0) = 0.

Our test statistic (27) is the squared minimum distance between the random vector b−J(p̂N ) and

the random manifold S(p̂N , θ0). It is therefore crucial to take sampling uncertainty in both objects into

account. Also, note that Condition 2 does not require that the set S(p̂N , θ0) is convex, even locally. That

is, the set does not have to be convex even in a small neighborhood of the true population value b−J ,

so that there may not exist any positive constant ε such that the intersection of the ε-neighborhood and

S(p̂N , θ0) (or S(pN , θ0)) is convex. We avoid such standard convexity conditions as they are typically

incompatible with our model restrictions, in particular the general equality restrictions R(θ0, π, p̃; p) = 0.

The above result establishes the asymptotic validity of our procedure, addressing these issues.

Next, we discuss briefly some practical issues when implementing the subsampling procedure. We

present further details in Online Appendix F.

Practical Implementation. To simplify, we focus the discussion on the scalar case, θ ∈ R. We suggest

implementing the subsampling procedure in the following way. First, calculate the lower and upper bounds

of the interval ΘI = [θL, θU ] by solving the maximization (and minimization) problem (20)–(21) in the

full sample; denote them by θ̂
L

and θ̂
U

. Clearly, ĴN (θ0) = 0 for all θ0 ∈ [θ̂
L
, θ̂
U

], so the null hypothesis

H ′0 : J(θ0) = 0 will not be rejected for any point in that interval. We therefore start the grid-search at

points slightly below θ̂
L

and slightly above θ̂
U

. Consider the points above θ̂
U

: we start with the point,

say, θ0 = θ̂
U

+ 0.01, and test the null H ′0 : J(θ0) = 0, as described above. If we fail to reject the null, we

then move to the next point, say, θ0 = θ̂
U

+ 0.02 and test the null for that new point. We keep doing so

until we reject the null for the first time; we stop the grid-search when we first reject the null because all
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points to the right will be rejected by the data as well; we adopt a similar procedure for the lower end θ̂
L

.

Changing θ0 sequentially and incrementally also has the advantage of providing good initial guesses in

a series of optimizations: because (27) is a smooth and well-behaved problem, the solution to the latest

minimization can be used as an initial value for the next minimization, reducing the total computational

costs; the same applies in the critical value calculations.25 If we reject the null for the first time at the

points θl and θu, then the asymptotically uniformly valid 1−α confidence set for the true θ is the interval

[θl, θu].

6 Empirical Application

In this section, we illustrate our approach in the context of a dynamic model of export behavior. To that

end, we consider the setup of Das, Roberts, and Tybout (2007), henceforth ‘DRT’, who use plant-level

panel data from Colombian manufacturing industries to investigate the impact of export subsidies. As the

authors point out, industrial exporters are highly prized in developing countries for generating gains from

trade, sustaining production and employment during domestic recessions, and facilitating the absorption

of foreign technologies. As a consequence, exporters often receive governmental support. Yet, seemingly

similar subsidies may generate different export responses in different industries and time periods, making

it difficult for policy makers to know which type of support is optimal. To shed light on these issues,

DRT develop a structural dynamic model of firm export decisions and simulate the impact of various

subsidies on gains in export revenues per peso of subsidy. Here, we adopt their specification and explore

the identifying power of alternative model restrictions.

Data. We consider the knitting mills industry. The dataset is composed of 64 knit fabric producers

observed annually during the period 1981–1991; the sample has 704 plant-year observations. Like DRT,

we focus on firms that operated continuously in the domestic market, given that they were responsible

for most of the exports over this period. The share of exporting firms increased from 12 percent in 1981

to 18 percent by the end of the sample period, possibly a result of the 33% depreciation of Colombia’s

real exchange rate. This industry also depicts significant turnover: the average probability of re-entry

into export markets is 61%. On average, export revenues of exporting firms are approximately 1.4 times

the domestic revenues.

Model. DRT assume that export markets are monopolistically competitive; this leads to a specification

similar to the firm entry/exit model presented in Sections 3 and 4. In particular, every period t a firm

25In addition to the (limited) grid-search and the sequence of optimizations, we can exploit the relation between the
optimization problems (20)–(21) and (27) (as well as (28)) to improve the performance of the subsampling further: in our

experience it is easier to solve relaxed versions of (20)–(21) to obtain good approximations for ĴN (θ0) than solving (27)
directly. Furthermore, subsampling is amenable to parallelization, which speeds up the procedure. See Online Appendix F
for details.
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i chooses whether to export or not, ait ∈ A = {0, 1}. The state variables are (i) the lagged decisions

(kit = ait−1), (ii) exchange rates (et), and (iii) demand/supply shocks in export markets (νit). The

exogenous shocks wit = (et, νit) follow (discretized) independent normal-AR(1) processes. The payoff

function is given by equation (10) in Section 3. To point identify the model, DRT restrict to zero the

payoffs of not exporting (i.e., both the outside value and the scrap value are set to zero). They also impose

state-invariant entry and fixed costs, making their model overidentified. We relax these assumptions and

instead explore the identifying power of Restrictions 1, 2, and 3 presented in the entry/exit model. In

principle, scrap values may differ from zero because they may involve idleness costs (given that exiting is

often temporary) or depreciation costs. Similarly, fixed costs and entry costs may depend on the aggregate

states, as they involve finding trading partners, setting up distribution networks, maintaining labor and

capital abroad, etc. For ease of exposition, we leave the model details to the Supplemental Material.26

Counterfactuals and Outcomes of Interest. DRT focus on three counterfactual policies: (i) direct

subsidies linked to plants’ export revenues, such as a tax rebate that is proportional to foreign sales; (ii)

subsidies to the costs of entering into exporting, such as grants for information or technology acquisition

for export development; and (iii) payments designed to cover the annual fixed costs of operating in the

export market. We follow DRT and consider a 2% export revenue subsidy, a 25% entry cost subsidy, and

a 28% fixed cost subsidy.

The main outcome of interest is a benefit–cost ratio based on the average annual gain in total export

revenues divided by the average government subsidy expenditures (both averaged over states in the long-

run). We denote the ratios for the revenue, fixed costs, and entry costs subsidies by θR, θF , and θE ,

respectively, and take θ = (θR, θF , θE) – see the Supplemental Material (Section D) for explicit formulas

for θ.

Evaluating ex-ante the impact of different model restrictions on θ is not trivial. Note first that

while export revenues are observed in the data, the long-run average change in revenues depends on

firms’ decisions to export given the type of subsidy. This means that all numerators in θ depend on

the counterfactual CCPs. Next, note that all denominators in θ equal the long-run average government

expenditures, which depend on the fraction of firms exporting in the counterfactual steady-state; i.e.,

they all depend on p̃ as well. In addition, θF and θE depend on the unknown parameters, fc and ec,

respectively, since the government expenditures are direct functions of these costs. In the case of the

entry cost subsidy, a further complication is that the (subsidized) entry cost is paid only when firms

enter, implying that p̃ affects the direct payments in each state (in addition to affecting the steady-state

distribution). In short, θ depends on both p̃ and π highly nonlinearly.

In terms of identification, the benefit-cost ratio of the revenues subsidy θR is point-identified. That

26The payoff when not exporting (the outside option) may also be different from zero since it includes domestic profits.
However, following DRT, we do not explore this possibility given the limitations in the data.
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is both because the averages in the numerator and denominator depend on observed revenues (i.e., the

integrands are observable), and because p̃ is identified (since it involves known changes to known quantities,

i.e., the identified variable profits; see KSS), implying that the counterfactual steady-state distribution is

also point-identified. The other two target objects, θF and θE , are partially identified both because (i) the

counterfactual behavior p̃ is not point-identified (as the entry subsidy in our toy example in Section 4),

and (ii) the denominators in the benefit–cost ratios depend directly on model parameters that are partially

identified (i.e., on fc and ec, respectively). In sum, both θF and θE involve ratios of set-identified objects.

Results. We implement our two-step procedure as explained in Sections 4 and 5, and in Online Appendix

F.27 Table 2 presents the benefit–cost ratios under Restrictions 1–3. The revenue subsidy generates

an estimated benefit–cost ratio θR of approximately 15 pesos of revenue per unit cost. Its impact is

statistically significant and economically large, and it is fairly consistent with the estimates in DRT.

Because θR is point identified, it does not depend on any additional model restriction (other than the

basic framework (6)).

We now discuss θF and θE , which are partially identified. Restriction 1 (i.e., fc ≥ 0 and ec ≥ 0) is

not sufficiently informative here: the fixed cost subsidies ratio θF is between 8 and 30, and the entry cost

subsidies ratio θE ranges from 4 to 24. These sets are wide because there are still many model parameter

values that can rationalize observed behavior. The identified sets overlap and we cannot conclude which

policy generates the greatest impact on exports.

Adding Restriction 2 increases the identification power substantially: the ratio for the fixed cost

subsidies is now between 11 and 13. This identified set is highly informative and its upper bound is

smaller than θR, suggesting that the revenue subsidy is more potent than the fixed cost subsidy. Still,

there is substantial uncertainty regarding the benefit–cost ratio for the entry cost subsidy: its identified

set is now between 7.8 and 17, containing both the estimated θR and the identified set of θF . Incorporating

exclusion restrictions on scrap values (Restriction 3) narrows the identified set for θE substantially: the

benefit-cost ratio now ranges from 8.9 to 9.4, which is highly informative.28

There is a clear ranking of the policies under Restrictions 1–3: revenue subsidies generate the highest

export revenues per unit cost, followed by fixed cost subsidies, and then by the entry cost subsidies. That

27The transition process for exchange rates is taken from a long-time series as in DRT. Given the small sample size, we
discretize the support of each exogenous state, et and νit, in three bins. We estimate CCPs using frequency estimators.
To compute confidence intervals, we implement 1000 replications of a standard i.i.d. subsampling, resampling 20 firms over
the sample time period, so that the size of each subsample is hN = 200 ≈ 8 ×

√
NT . To minimize the quadratic distances

in (27) and (28), we take a diagonal weighting matrix Ω with diagonal elements given by the square-root of the ergodic
distribution of the state variable – thus, deviations on more visited states are considered more relevant and receive greater
weights. Given that θR is known (ex ante) to be point identified, we use the plug-in estimator proposed by Kalouptsidi, Lima,
and Souza-Rodrigues (2019) to estimate it, and 1000 standard i.i.d. bootstrap replications at the firm level to construct the
confidence intervals for θR. To make our results comparable to DRT, we have also estimated the model parameters under
their restrictions and obtained very similar results as theirs. See details in Section D of the Supplemental Material.

28Of note, the reduction is driven mostly by assuming scrap values do not depend on demand/costs shocks νit. This
(limited) exclusion restriction may be reasonable when scrap values include idleness and depreciation costs incurred abroad,
which may depend on exchange rates, but not on, say, demand shocks.
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Table 2: Export Revenue/Cost Ratio for Different Subsidies under Alternative Model Restrictions

Restriction 1 Restrictions 1–2 Restrictions 1–3

Revenue Subsidies

Estimated Identified Set 15.13 15.13 15.13
90% Confidence Interval (11.15, 18.90) (11.15, 18.90) (11.15, 18.90)

Fixed Costs Subsidies

Estimated Identified Set [8.41, 30.82] [11.10, 13.34] [11.92, 12.60]
90% Confidence Interval (7.47, 34.98) (9.65, 14.46) (9.92, 13.87)

Entry Costs Subsidies

Estimated Identified Set [4.40, 24.04] [7.85, 17.28] [8.88, 9.36]
90% Confidence Interval (3.52, 34.36) (7.03, 23.49) (7.34, 14.33)

Notes: This table shows the sharp identified sets for the average gains in total export revenues divided by the
average government subsidy expenditures, both averaged over states in the long-run. The top panel shows the
gains of a 2% export revenue subsidy; the middle panel, the gains of a 28% fixed cost subsidy; and the bottom
panel, the gains of a 25% entry cost subsidy. The (nonsingleton) identified sets are in brackets. The data set is
composed of 704 plant-year observations in the Colombian knitting mills industry. The 90% confidence intervals
are in parenthesis and were calculated based on 1000 bootstrap replications for the revenue subsidies, and 1000
subsample replications for both fixed and entry costs subsidies (with subsample sizes of 200). Restrictions 1, 2,
and 3 are all specified in the main text (Section 3). See Online Appendix D for details.

is exactly the ranking obtained by DRT. The result is intuitive: revenue subsidies affect both volume and

entry margins, while fixed costs and entry costs influence only the entry and exit decisions. In addition,

fixed cost subsidies do not encourage exit behavior of forward-looking firms, while entry cost subsidies

do. Still, notwithstanding these intuitive effects, the ranking seems to hinge on the assumption that scrap

values do not depend on state variables.

Of note, the uniformly valid confidence intervals indicate substantial sampling uncertainty, which is

not surprising given the size of the data set.

7 Conclusion

In this paper, we study partial identification of model parameters and counterfactual objects in dynamic

discrete choice models. We derive analytical properties of the identified sets under alternative model re-

strictions. We propose computational procedures for estimation and develop an asymptotically uniformly

valid inference approach based on subsampling. A Monte Carlo study of firm entry/exit shows the good

finite-sample performance of our procedure. Finally, we demonstrate the empirical implications of our

results in the study of Das, Roberts, and Tybout (2007) on exporting decisions and subsidies. We leave

extensions to identification of optimal policy interventions and to dynamic games for future research.
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Supplement to “Partial Identification and

Inference for Dynamic Models and Counterfactuals”

Myrto Kalouptsidi, Yuichi Kitamura, Lucas Lima, and Eduardo Souza-Rodrigues∗

February, 2020

This supplemental material consists of the following sections: Section A presents all proofs of the propo-

sitions and theorems presented in the main paper. Section B provides detailed information about the

firm entry/exit problem – our running example. Section C shows our Monte Carlo study. And Section D

discusses our replication of Das, Roberts, and Tybout (2007).

A Proofs

A.1 Proof of Proposition 1

The identified set (9) is sharp by construction because equations (6), (7), and (8) contain all model

restrictions. Further, ΠI is a convex polyhedron given that it is the intersection of finitely many closed

halfspaces. In the absence of inequalities (8), ΠI is a linear manifold with dimension that equals X − d.

This implies that the dimension of ΠI under all restrictions also is X − d.

A.2 Proof of Proposition 2

The identified set P̃I defined in (16) is sharp by construction because equations (6), (7), and (8) contain

all model restrictions, and equation (15) fully characterizes p̃ as an (implicit) function of π (see the

arguments in footnotes 10 and 17 in the main text, and the proof of Proposition 3).

A.3 Proof of Proposition 3

Clearly, P̃I is empty whenever ΠI is empty. Assume hereafter that ΠI is non-empty. Recall that the

identified set is characterized by the equations (6), (7), (8), and (15). By combining (6) and (7), we get

(Req−JM−J +ReqJ )πJ = req −Req−Jb−J (p) ,

∗Affiliations: Myrto Kalouptsidi, Harvard University, CEPR and NBER; Yuichi Kitamura, Yale University and Cowles
Foundation for Research in Economics; Lucas Lima, Harvard University; Eduardo Souza-Rodrigues, University of Toronto.
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which is of the form:

QeqπJ = qeq, (A1)

where Qeq = Req−JM−J +ReqJ is a d×X matrix (defined in equation (18)), and qeq = req −Req−Jb−J (p) ∈

Rd. Equation (A1) incorporates all equality restrictions on π, and expresses them in terms of the “free

parameter” πJ ∈ RX .

The set of solutions to the system (A1) can be represented by

πJ = Qeq′
(
QeqQeq′

)−1
qeq + (I − PQ)z, (A2)

where PQ = Qeq′
(
QeqQeq′

)−1
Qeq, and the vector z ∈ RX parameterizes the set of solutions. Represent

the elements of this set by πJ(z). Note that in the absence of the equality restrictions (7), we can just

take πJ = z.1

Similarly, combine (6) and (8), to get

(Riq−JM−J +RiqJ )πJ ≤ riq −Riq−Jb−J (p) ,

which is of the form:

QiqπJ ≤ qiq,

where Qiq = Riq−JM−J + RiqJ is an m×X matrix, and qiq = riq − Riq−Jb−J (p) ∈ Rm. Substituting πJ in

the inequality above by πJ(z) defined in (A2) and rearranging, we get the m inequalities defined in terms

of z ∈ RX :

Qiq(I − PQ)z ≤ qiq −QiqQeq′
(
QeqQeq′

)−1
qeq. (A3)

Define the set

Z =
{
z ∈ RX : Qiq(I − PQ)z ≤ qiq −QiqQeq′

(
QeqQeq′

)−1
qeq
}
. (A4)

Clearly, Z is a convex polyhedron. By construction, any vector π = [π′−J , π
′
J ]′ such that π−J =

M−JπJ(z) + b−J , with πJ(z) defined by (A2) for some z ∈ Z satisfies (6), (7), and (8). I.e., for any

given z ∈ Z, we can find one π satisfying all model restrictions.

Next, combine (6) and (15) to obtain

[I,−M̃−J ]︸ ︷︷ ︸
=M̃

H1,−J H1J

H2,−J H2J


︸ ︷︷ ︸

=H

 M−JπJ + b−J(p)

πJ


︸ ︷︷ ︸

=π

= b̃−J (p̃)− M̃g,

1If the restrictions (7) suffice to point-identify the model, then Qeq is invertible, πJ = (Qeq)−1qeq, and the remaining πa,
for a 6= J , can be recovered from (2). In this case, we can also take πJ = z.
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or,

CπJ +
(
H1,−J −M−JH2,−J

)
b−J(p) = b̃−J (p̃)− g−J + M̃−JgJ , (A5)

where C is the ÃX̃ ×X matrix defined in equation (17).

Noting that p̃ has to satisfy X̃ restrictions as it is a collection of conditional probability vectors, let

p̃∗ denote a ÃX̃-vector of independent elements of p̃, and denote the set of independent elements by P̃∗.

Substitute (A2) into (A5), and define the function F : RX × int(P̃∗)→ RÃX̃ given by

F
(
z, p̃∗

)
= −CπJ(z) + b̃−J

(
p̃∗
)
−
(
H1,−J −M−JH2,−J

)
b−J(p)− g−J + M̃−JgJ ,

or, more explicitly,

F
(
z, p̃∗

)
= −C(I − PQ)z + b̃−J

(
p̃∗
)

−
(
H1,−J −M−JH2,−J

)
b−J(p)

−g−J + M̃−JgJ − CQeq′
(
QeqQeq′

)−1
qeq,

where int(P̃∗) is the interior of the conditional probability simplex P̃∗. Clearly, the model and counter-

factual restrictions impose F (z, p̃∗) = 0, for all z ∈ Z.

The Jacobian of F is given by ∇F =
[
∂F
∂z ,

∂F
∂p̃∗

]
, with

∂F

∂z
= −C(I − PQ),

∂F

∂p̃∗
=

∂b̃−J
∂p̃∗

.

Because
∂b̃−J
∂p̃∗ is everywhere invertible (see KSS), the implicit function theorem applies. Specifically, for a

point (z0, p̃∗0) ∈ RX × int(P̃∗) satisfying F
(
z0, p̃∗0

)
= 0, there exist open sets U ⊆ RX and W ⊆ int(P̃∗)

such that z0 ∈ U and p̃∗0 ∈ W , and there exists a continuously differentiable function ϕ : U → W

satisfying p̃∗0 = ϕ(z0) and that

F
(
z, ϕ (z)

)
= 0,

for all z ∈ U . Furthermore,

∂ϕ (z)

∂z
= −

[
∂F

∂p̃∗

]−1 ∂F

∂z
=

[
∂b̃−J
∂p̃∗

]−1

C(I − PQ).

The rank of the matrix ∂ϕ(z)
∂z equals the rank of C(I − PQ) because

∂b̃−J
∂p̃∗ is invertible everywhere.

Let rank(C(I − PQ)) = k. By the Rank Theorem, the image set of ϕ is a differentiable k-dimensional

manifold in int(P̃∗) (see Theorem 3.5.1 in Krantz and Parks, 2003). Clearly, by restricting z to the convex

3



polyhedron Z, the image set of ϕ becomes a k-dimensional manifold with boundary. In the absence of

the model restrictions (7), we have πJ = z and so the image set of ϕ becomes a manifold with dimension

that equals the rank of C.

We can construct a global function ϕ̄ defined on the entire domain Z based on the local function ϕ

defined above. To do so, we need to show that the constructed ϕ̄ is not a set-function on Z. I.e., if for any

pair of points (z0, p̃∗0) and (z0, p̃∗1) with z0 ∈ Z and p̃∗0, p̃∗1 ∈ int(P̃∗), if ϕ̄(z0) = p̃∗0 and ϕ̄(z0) = p̃∗1,

then we must have p̃∗0 = p̃∗1. Suppose by contradiction that there there exist implicit functions ϕ0 and

ϕ1 defined locally on the neighborhood of the points (z0, p̃∗0) and (z0, p̃∗1) such that p̃∗0 = ϕ0
(
z0
)

and

p̃∗1 = ϕ1
(
z0
)
, with p̃∗0 6= p̃∗1. Next, recall that for any point z0 ∈ Z, there exists only one vector of

payoffs π(z0) = [π′−J(z0), π′J(z0)]′ satisfying all model restrictions: This vector is given by the elements

π−J(z0) = M−JπJ(z0) + b−J , and πJ(z0) defined by (A2). This leads to the counterfactual payoff π̃(z0),

which is given by the affine function π̃(z0) = Hπ(z0) + g. Finally, the counterfactual payoff π̃(z0) can

generate just one conditional choice probability function in the counterfactual scenario (by the uniqueness

of the solution of the Bellman equation). We therefore must have p̃∗0 = p̃∗1 (as well as ϕ0 = ϕ1 = ϕ).

The global function ϕ̄ equals the local implicit functions everywhere.2

We conclude that the identified set P̃I is the image set of the global function ϕ̄, defined on the domain

Z. Consequently, P̃I is a manifold with boundary and with dimension in the interior given by the rank

of C(I −PQ). Further, P̃I is connected because ϕ̄ is a continuous function defined on the convex domain

Z. In addition, when ΠI is bounded, so is the closed set Z, which implies that ϕ̄(Z) is compact. Finally,

we have rank(C(I − PQ)) ≤ X − d because rank(C) ≤ min{ÃX̃,X} and rank(I − PQ) = X − d (given

that PQ is symmetric and idempotent).

A.4 Proof of Proposition 4

The identified set ΘI defined in (19) is sharp by construction. We can construct payoff vectors satisfying

all model restrictions, denoted by π(z), and obtain the counterfactual CCP from the function p̃∗ = ϕ̄(z),

where ϕ̄ is continuously differentiable, z ∈ Z, and Z is defined in (A4), as explained in the proof of

Proposition 3. We have therefore

θ = f(p̃, π) = f(ϕ̄(z), π(z)) = f̄(z),

where we omit (p, F ) from the notation for simplicity. When the function f is continuous, so is the

function f̄ because ϕ̄(z) and π(z) are both continuous. Clearly, ΘI equals the image set of the function

f̄ defined on the domain Z. The image set is connected because Z is convex, and it becomes compact

when Z is compact (which happens when ΠI is bounded, see the proof of Proposition 3). Furthermore,

2While different z′s can generate the same p̃∗ (because the function ϕ is not one-to-one, which is at the heart of the
identification problem of dynamic discrete choice models), a single z cannot generate more than one p̃∗.
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when θ is a scalar, the connected set ΘI becomes an interval.

A.5 Proof of Theorem 1

Consider a sequence {pN ∈ Pθ0 , N ∈ N}. Recall that p and F are determined by p. Let (pN , FN ) :=

(p(pN ), F (pN )). In what follows we prove the claim of the theorem for a fixed value θ0 ∈ ΘI , and in

the course of it we use symbols such as SN , ŜN , Π̄N , (V̄N , VN , v), (W̄N ,WN , w), B, µN ,
(
φ
ψ

)
and Σ (and

their appropriate subsample counterparts with an asterisk symbol * in superscript) while omitting their

dependence on θ0 to ease the notational burden in the proof.

Let SN := S(pN , θ0) and ŜN := S(p̂N , θ0). Then writing ‖x‖2Ω := x′Ωx for x ∈ RAX ,

NĴN (θ0) = min
x∈ŜN

N‖b−J(p̂N )− x‖2
Ω̂N

= min
x∈ŜN

‖
√
N [b−J(p̂N )− b−J(pN )]−

√
N [x− b−J(pN )]‖2

Ω̂N
(A6)

= min
ξ∈
√
N(ŜN	b−J (pN ))

‖
√
N [b−J(p̂N )− b−J(pN )]− ξ ‖2

Ω̂N
,

where 	 denotes the usual Minkowski difference, and for c ∈ R++ and a set A ∈ Rd, we let cA denote the

set A dilated by the factor c, that is, {cx : x ∈ A}.

To show the theorem it suffices to consider sequences pN , N ∈ N such that

(i) infx∈bdy(SN ) ‖b−J(pN )− x‖Ω = O(1/
√
N), where bdy(SN ) is the boundary of SN , and

(ii) Each sequence {pN , N = 1, 2, ...} converges.

Suppose pN , N ∈ N satisfies (i) and (ii). The restrictions imposed on Pθ0 guarantee that along the

sequence pN it holds that
√
N [b−J(p̂N )− b−J(pN )]

d→ φ,

where φ is a zero mean Gaussian vector. In what follows we also use the following notation: for finite

sets V,W ⊆ Rd we let conv(V ) and cone(W ) denote the convex hull of V and the cone spanned by W ,

respectively; then the Minkowski sum conv(V ) ⊕ cone(W ) is a polyhedron. We approximate the last

term in equation (A6) following Chernoff (1954). Under Conditions 1 and 2 we have:

NĴN (θ0)
d
= min

ξ∈Π̄N
‖φ− ξ‖2Ω + op(1), (A7)

where Π̄N = conv(V̄N ) ⊕ cone(W̄N ) is a random polyhedron, with V̄N = VN + v, VN ∈ RAX×m,

W̄N = WN + w, WN ∈ RAX×n, and v and w are RAX×m-valued and RAX×n-valued zero-mean Gaussian

random matrices, respectively, for some m,n ∈ N. Note that the estimation uncertainty in ŜN makes the

polyhedron Π̄N that appears in the asymptotic approximation (A7) random. Also define a (deterministic)

sequence of polyhedra ΠN = conv(VN ) ⊕ cone(WN ). By the representation theorem for polyhedra (see,
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for example, Theorem 1.2 in Ziegler (2012)) we can write

ΠN = {ξ : Bξ ≤ µN} for some B ∈ R`×AX ,

where µN ≥ 0 for all N and µN = O(1).

Recalling that each transition matrix Fa, a ∈ A depends on pN (as so does F ), write

det(Ma(pN )) = det
(

(1− βFa(pN ))(1− βFJ(pN ))−1
)

=
det(I − βFa(pN ))

det(I − βFJ(pN ))
.

Let {λia(pN )} and {λiJ(pN )} be the eigenvalues of Fa(pN ) and FJ(pN ), then

det(Ma(pN )) =
det(β−1I − Fa(pN ))

det(β−1I − FJ(pN ))

=

∏X
i=1(β−1 − λia(pN ))∏X
i=1(β−1 − λiJ(pN ))

> c for every a ∈ A and every N ∈ N (A8)

holds for some c > 0 that does not depend on N as β is fixed in the unit interval (0, 1) and {λia(pN )} and

{λiJ(pN )} are inside the unit circle for every N .

Note that the approximation (A7) holds for any sequence {V ′N ,W ′N}N∈N such that V ′N = VN + o(1)

and W ′N = WN + o(1), and with Condition 1 and (A8) we can choose {VN ,WN}N∈N such that the matrix

B above does not depend on N . Then we have an alternative representation for the random polyhedron

Π̄N as well: for some positive definite matrix Σ it holds that

Π̄N = {ξ : Bξ ≤ µN + ψ},

where the vector
(
φ
ψ

)
∼ N(0,Σ). In sum, we have

NĴN (θ0)
d
= min

ξ:Bξ≤µN+ψ
‖φ− ξ‖2Ω + op(1). (A9)

Next we turn to the subsample statistic Ĵ∗hN (θ0). To show the uniform validity of subsampling we can

instead analyze the asymptotic behavior of the statistic ĴhN , the Ĵ-statistic calculated from a random

sample of size hN , drawn according to pN (Romano and Shaikh, 2012). That is, we now study the

limiting behavior of the CDF GhN (x, pN ), N = 1, 2, ..., where G`(x, p) := Prp{`Ĵ`(θ0) ≤ x} for ` ∈ N.

Then proceeding as before, along the sequence pN we have

hN ĴhN (θ0)
d
= min

ξ∈Π̄∗hN ,N

‖φ∗ − ξ‖2Ω + op(1) (A10)
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where Π̄∗hN ,N = conv(V̄ ∗hN ,N ) ⊕ cone(W̄ ∗hN ,N ), with V̄ ∗hN ,N = V ∗hN ,N + v∗, V ∗hN ,N ∈ RAX×m, W̄ ∗hN ,N =

W ∗hN ,N +w∗, W ∗hN ,N ∈ RAX×m, and φ∗, v∗ and w∗ are zero-mean Gaussian random elements taking values

in RAX , RAX×m and RAX×n with (φ∗, v∗, w∗)
d
= (φ, v, w). Define Π∗hN ,N = conv(V ∗hN ,N ) ⊕ cone(W ∗hN ,N )

and observe that it has a half-space based representation Π∗hN ,N = {ξ : Bξ ≤
√

hN
N µN}. We now have

Π̄∗N =

{
ξ : Bξ ≤

√
hN
N
µN + ψ∗

}
.

Recall that µN = O(1), and moreover, we have
(
φ∗

ψ∗

)
∼ N(0,Σ). Therefore

hN ĴhN (θ0)
d→ min
ξ:Bξ≤ψ

‖φ− ξ‖2Ω. (A11)

In sum, for every sequence pN , N ∈ N satisfying conditions (i) and (ii) above, by (A9) and (A11) and

noting µN ≥ 0 for every N , we have

lim sup
N→∞

sup
x

(GhN (x, pN )−GN (x, pN )) ≤ 0.

We can now invoke Theorem 2.1 in Romano and Shaikh (2012) to conclude.

B Firm Dynamic Entry/Exit Model

We now provide explicit formulas for the main equations and outcomes of interest presented in the paper

in the context of the firm entry/exit model. By revisiting the numerical example shown in the main text

we focus on the role that each individual model restriction plays in shaping the payoff identified set ΠI .

In the example, the transition matrix of the state variables x = (k,w) becomes Fa = F ka ⊗ Fw, where

F ka is the 2× 2 transition matrix for k, with (l, j) elements Pr[kit+1 = j|ait = l, kit] that equal one when

j = l, and equal zero otherwise; and ⊗ is the Kronecker product. Specifically,

F0 =

1 0

1 0

⊗ Fw =

Fw 0

Fw 0

 , F1 =

0 1

0 1

⊗ Fw =

0 Fw

0 Fw

 . (B1)

The payoff vectors are the same as in (10) in the main paper and are rewritten below for convenience,

π0 =

 π0

s

 , π1 =

 vp− fc− ec

vp− fc

 .
The vector of CCPs is composed of pa (k,w). To simplify notation, we let pa (k) be a vector of

dimension W (i.e., we fix k and run over w) so that p =
(
p′0 (0) , p′1 (0) , p′0 (1) , p′1 (1)

)′
.

Consider the main equality constraint resulting from the DDC framework and take J = 0 (i.e., equation
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(2) presented in the main text)

π1 = M1π0 + b1(p). (B2)

This equation indicates that X = KW = 2W parameters need to be specified for point-identification.

Thus, if π0 is known, then π1 is recovered. Indeed, let us first compute M1, defined in (3). Here, we have

M1 =

I −βFw

0 I − βFw

I − βFw 0

−βFw I

−1

,

where the inverse in the above expression is easily verified to be (I − βFw)−1 0

(I − βFw)−1 βFw I


and therefore,

M1 =

I + βFw −βFw

βFw I − βFw

 .
Next, note that in the logit model, b1 (p) = M1ψ0(p)− ψ1(p) becomes (see equation (4)):

b1 (p) =

ln p1 (0)

ln p1 (1)

−
I + βFw −βFw

βFw I − βFw

ln p0 (0)

ln p0 (1)

 ,
given that ψa(p(x)) = κ− ln pa(x), where κ is the Euler constant. Thus equation (B2) becomes vp− fc− ec

vp− fc

 =

I + βFw −βFw

βFw I − βFw

 π̄0

s

+ b1 (p) . (B3)

Note now that if π0 is known, namely both the scrap vector s and π̄0 are given, they suffice to identify

π1, but they do not suffice to separate the 3W parameters, vp, fc, and ec. Suppose in addition that vp is

known. Then, we rewrite π1 separating the unknowns ec and fc:

π1 =

 −I2 −I2

0 −I2

 ec

fc

+

 vp

vp

 ,
where I2 is the 2× 2 identity matrix.

We want to find an explicit relation between ec, fc, and s. First, we invert the equation above to

obtain the unknowns ec and fc: ec

fc

 =

 −I2 I2

0 −I2

π1 −

 −I2 I2

0 −I2

 vp

vp

 =

 −I2 I2

0 −I2

π1 +

 0

vp

 (B4)
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We next replace π1 from our main equation to obtain

 ec

fc

 =

 −I2 I2

0 −I2



I + βFw −βFw

βFw I − βFw

 π̄0

s

+ b1 (p)

+

 0

vp


or  ec

fc

 =

 s− π̄0

−βFwπ̄0 − (I − βFw)s

+

 bl (p)− bu (p)

−bl (p) + vp

 , (B5)

where the vectors bu (p) and bl (p) constitute the upper and lower parts of b1 (p), that is b1 (p) =

[b′u (p) , b′l (p)]
′.

In particular, if π̄0 = 0 the above becomes,

ec = s+ bl(p)− bu(p),

fc =− (I − βFw) s− bl(p) + vp.

Clearly, given any one of the three parameters ec, fc, s, the remaining two are uniquely determined.

These equations have an interesting interpretation. In the case of logit shocks, and assuming that

π̄0 = 0, the first equation above becomes:

s− ec = ln
p1 (0)

p0 (0)
− ln

p1 (1)

p0 (1)
.

The difference between the scrap values and the entry cost is identified; the difference is given by the

contrast between the odds of the probability of entry (p1 (0) /p0 (0)) and the odds of the probability of

staying in the market (p1 (1) /p0 (1)). Intuitively, in the data, the larger the probability of entry relative to

the probability of staying, the smaller the entry cost relative to the scrap value. (A similar interpretation

relating scrap values and fixed costs holds for the second equation above.)

Model Restrictions. We now turn to the model restrictions. For ease of exposition, we focus on the

restrictions presented in the main paper:

1. π0 = 0, fc ≥ 0, ec ≥ 0, and vp is known.

2. vp− fc ≤ ec ≤ E[vp−fc]
1−β , and π1(1, wh) ≥ π1(1, wl).

3. s does not depend on w.

Restriction 1. Under equation (B5), ec ≥ 0 and fc ≥ 0 translate respectively to:

s ≥ bu (p)− bl (p) , (B6)
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(I − βFw) s ≤ vp− bl (p) . (B7)

Visualizing the set of inequalities (B6) is clear: the positive orthant is shifted to the point bu (p)− bl (p).

The hyperplanes under (B7) intersect at a unique point because (I − βFw) is invertible. Suppose

W = 2, then equation (B7) is written as the following two equations:

(1− βf1) s1 − β (1− f1) s2 ≤ vp1 − bl1 (p)

−β (1− f2) s1 + (1− βf2) s2 ≤ vp2 − bl2 (p)

where

Fw =

 f1 1− f1

1− f2 f2

 ,
s = [s1, s2]′, and similarly for the vectors vp and bl(p). Both lines in the inequalities above have positive

slope and are thus increasing.

Figure B1 presents the set of values that s can take for the parameter configuration used in the

numerical example presented in Section 3 of the main paper. In the left panel, we present the set implied

by ec ≥ 0; on the right panel, the set implied by fc ≥ 0. In both panels, the horizontal axis represents

scrap values when the shock is low, wl, and the vertical axis, scrap values when the shock is high, wh.

(For ease of exposition, we limit the values in the figures to be between -100 and 100.) The true s is

represented by the black dots. Clearly, the larger polygon presented in panel (b) of Figure 1 in the main

text combines all restrictions presented separately in Figure B1.

(a) Restriction: ec ≥ 0 (b) Restriction: fc ≥ 0

Figure B1: Payoff Identified Set ΠI : Scrap Values under Alternative Restrictions
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Remark B1. In summary, given the reference action J = 0, the polytope

ΠI
J =

{
πJ ∈ RX : (Req−JM−J +ReqJ )πJ = req −Req−Jb−J , (Riq−JM−J +RiqJ )πJ ≤ riq −Riq−Jb−J

}
is given by the W−dimensional polyhedral set

{
(0, s) ∈ R2W : such that s satisfies equations (B6) and (B7)

}
.

Restriction 2. We first express the three sets of inequalities of Restriction 2 in terms of the payoffs π0

and π1. Condition vp− fc ≤ ec becomes

π1(0) ≤ 0. (B8)

Next, we focus on ec ≤ E [vp− fc] / (1− β). Let q denote the stationary distribution of Fw, i.e. q′Fw = q′.

Then, the inequality becomes

ec ≤ 1

1− β
1q′ (vp− fc) ,

where 1 is a W × 1 vector of ones. From the definition of π1 we have that ec = π1(1) − π1(0) and

vp− fc = π1(1). Therefore, we get:

π1(1)− π1(0) ≤ 1

1− β
1q′π1(1)

or [
−I2, I2

1

1− β
1q′
]
π1 ≤ 0. (B9)

Finally, monotonicity in π1(1) means

[0 0 1 -1]π1 ≤ 0. (B10)

Now we stack (B8), (B9) and (B10), so that:

Riq−J π−J = Riq1 π1 =


I2 0

−I2 I2 − 1
1−β1q′

0 [1 -1]

π1 ≤ 0, (B11)

and RiqJ = Riq0 = 0 and riq = 0. Moreover, multiplying Riq1 , from (B11), with M1 gives,

Riq1 M1 =


I + βFw −βFw

−
(
I2 + β

1−β1q′
)

I2 − 1q′

β [1 -1]Fw [1 -1] (I − βFw)

 .
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The scrap values are confined by the inequalities (Riq1 M1 +Riq0 )π0 ≤ riq −Riq1 b1 (see Remark B1 above),

which implies

−βFws ≤ −bu(p)(
I2 − 1q′

)
s ≤ bu(p)− bl(p) +

1

1− β
1q′bl(p)

[1 -1] (I − βFw) s ≤ bl2(p)− bl1(p),

or in more detail,

−βf1s1 − β (1− f1) s2 ≤ bu1(p)

−β (1− f2) s1 − βf2s2 ≤ bu2(p)

(1− q1) (s1 − s2) ≤ bu1(p)− bl1(p) +
1

β

(
q1bl1(p) + (1− q1) bl2(p)

)
−q1 (s1 − s2) ≤ bu2(p)− bl2(p) +

1

β

(
q1bl1(p) + (1− q1) bl2(p)

)
(
1− β (f1 + f2 − 1)

)
(s1 − s2) ≤ bl1(p) + bl2(p),

where q = [q1, 1− q1]′.

The first two inequalities correspond to the restriction vp − fc ≤ ec. They imply lower bounds on

scrap values. Note that these first two lines have negative slope and hence are decreasing. They have

a unique intersection if detFw 6= 0 or f2 6= 1 − f1.3 The next two inequalities correspond to condition

ec ≤ E [vp− fc] / (1− β). They define a box constraining the difference s1− s2. And the monotonicity in

π1(1) assumption implies the fifth inequality above. That line has positive slope and so any point above

that line satisfies the restriction.

Like Figure B1 above, Figure B2 shows the values of s for the parameter configuration presented in

Section 3 of the main paper but under Restriction 2. Panel (a) shows the set under condition vp−fc ≤ ec

(with the two downward slope lines); panel (b) presents the set under ec ≤ E [vp− fc] / (1− β) (with

s1 − s2 constrained in a box); and panel (c) shows the set under the monotonicity condition. Their

intersection result in the light blue polygon presented in panel (b) of Figure 1 in the main text.

Restriction 3. If s1 = s2 = s, there is a single free parameter. This clearly results in a single line,

presented in panel (d) of Figure B2. Combining Restrictions 1–3 result in the blue line inside the light

blue polyhedron in panel (b) of Figure 1.

3If detFw = 0 then the two constraints collapse to the single constraint:

−βf1s1 − β (1− f1) s2 ≤ min
{
bu1(p), bu2(p)

}
.
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(a) Restriction: vp− fc ≤ ec (b) Restriction: ec ≤ E[vp−fc]
1−β

(c) Restriction: π1(1, wh) ≥ π1(1, wl) (d) Restriction: s does not depend on w

Figure B2: Payoff Identified Set ΠI : Scrap Values under Alternative Model Restrictions

Counterfactuals. In the firm example, we consider a counterfactual experiment that decreases entry

cost by 20%, and holds everything else the same as in the baseline. This means we take g = 0 and H

block-diagonal with diagonal blocks given by H00 = I and

H11 =

τI2 (1− τ) I2

0 I2

 .
Combining equations (5) and (15), we obtain

b̃1 (p̃) = CπJ + (H11 −M1H21) b1 (p)− g1 + M̃1g0,
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where C is defined in equation (17), and g = [g′0, g
′
1]′. Since g = 0 and H21 = 0, the above becomes:

b̃1 (p̃) = CπJ +H11b1 (p) . (B12)

We next calculate C:

C = H11M1 −M1H00 =

τI2 (1− τ) I2

0 I2

I2 + βFw −βFw

βFw I2 − βFw

−
I2 + βFw −βFw

βFw I2 − βFw


=

(τ − 1) I2 (1− τ) I2

0 0

 .
Clearly, rank(C) = 2. We thus conclude that even in the absence of any restrictions (e.g. π0 (0) = π0 = 0),

the counterfactual CCPs live in a 2-dimensional manifold. (See Proposition 3.)

To see whether the restriction π0(0) = 0 reduces the dimension of the identified set for the counter-

factual CCPs, we need to verify the rank of C(I − PQ), where PQ = Qeq
′
(QeqQeq

′
)Qeq (Proposition 3).

Note that this restriction means that Qeq = [I2 0] (see equation (18) in the main text defining the matrix

Qeq). But QeqQeq
′

= [I2 0]

 I2

0

 = I2. Thus PQ =

 I2

0

 [I2 0] =

I2 0

0 0

 and I − PQ =

0 0

0 I2

. It

follows that

C
(
I − PQ

)
=

0 (1− τ) I2

0 0

 ,
and rank(C(I−PQ)) = 2. The added restriction does not alter the dimension of the counterfactual CCP,

although it makes equation (2) (or (B5)) simpler.

Counterfactual Outcomes of Interest. In our example, we consider the long-run average impact of

the entry subsidy τ on (i) the probability of staying in the market (labelled θP ), (ii) the consumer surplus

(θCS), and (iii) the value of the firm (θV ).

Probability of Being Active. The long-run average effect on the probability of being active is given by

θP = E[p̃1 (x)]− E[p1 (x)],

where the expectations are taken with respect to the ergodic distributions of the state variables x in the

counterfactual and baseline scenarios. Specifically,

θP =
∑
x∈X̃

p̃1 (x) f̃∗ (x)−
∑
x∈X

p1 (x) f∗ (x) ,
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where f̃∗ (x) is the ergodic distribution of the (endogenous) Markovian process

F̃ (x′|x) =
∑
a∈Ã

F̃ (x′|x, a) p̃a (x) ,

and a similar expression holds for the baseline ergodic distribution f∗(x).

When x = (k,w) ∈ K ×W, and k is the lagged action, the expression for θP simplifies. First, note

that the probability of choosing action a at time period t conditioned on the exogenous states w is given

by

Pr(ait = a|wit) =
∑
k∈K

Pr(ait = a|kit = k,wit) Pr(kit = k|wit),

which implies

Pr(ait = a|wit) =
∑
k∈K

pa(k,wit) Pr(ait−1 = k|wit).

Define pa(w) ≡ Pr(ait = a|w). The steady state condition implies that the vector [p0(w), ..., pA(w)]′

satisfies the fixed-point:4
p0 (w)

...

pA (w)

 =


p0 (0, w) · · · p0 (A,w)

...
. . .

...

pA (0, w) · · · pA (A,w)



p0 (w)

...

pA (w)

 . (B13)

Let f̃∗W and f∗W be the steady-state distributions of the exogenous variables in the counterfactual and

baseline scenarios, respectively. Then

θP = E[p̃1 (k,w)]− E[p1 (k,w)] =
∑
k,w

p̃1 (k,w) f̃∗(k|w)f̃∗W (w)−
∑
k,w

p1 (k,w) f∗(k|w)f∗W (w) .

The inner sum in the first term equals p̃1 (w) due to (B13). A similar remark holds for the inner sum

of the second term which becomes p1 (w). Thus

θP =
∑
w∈W̃

p̃1 (w) f̃∗W (w)−
∑
w∈W

p1 (w) f∗W (w) .

Consumer Surplus. The long-run average change on the consumer surplus is:

θCS =
∑

a∈Ã,x∈X̃

C̃S (a, x) p̃a(x)f̃∗ (x)−
∑

a∈A,x∈X
CS (a, x) pa(x)f∗ (x) .

In the special case in which x = (k,w), and k is the lagged action and w are exogenous shocks, we

4For instance, in the binary choice model, we have Pr(a = 1|w) = p1(0, w)(1 − Pr(a = 1|w)) + p1(1, w) Pr(a = 1|w),
which implies Pr(a = 1|w) = p1(0, w)/[1− p1(1, w) + p1(0, w)].
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compute the consumer surplus for each action and state, CS(a, k, w), by assuming a (residual) linear

inverse demand P = w − ηQ, where P is the price and Q is the quantity demanded, and assuming a

constant marginal cost mc. These imply that CS(a, k, w) = 0 when the firm is inactive (a = 0), and

CS(a, k, w) = (w −mc)2/8η when it is active (a = 1). So,

θCS = E[C̃S(a, k, w)× 1{a = 1}]− E[CS(a, k, w)× 1{a = 1}]

=
∑
w∈W̃

CS (w) p̃1(w)f̃∗W (w)−
∑
w∈W

CS(w)p1(w)f∗W (w) .

Note that the consumer surplus function is the same in the baseline and counterfactual scenarios (and

so is the distribution of the exogenous states, f̃∗W = f∗W ). The average CS changes in the counterfactual

because the firm changes its entry behavior when it receives an entry subsidy.

Value of the Firm. The value of the firm in the baseline is given by the X × 1 vector

V = (I − βFJ)−1 (πJ + ψJ(p)
)
,

where we take J = 0 (see footnote 10 in the main text). A similar expression holds for the counterfactual

value: Ṽ = (I − β̃F̃J)−1(π̃J + ψ̃J(p̃)). The long-run average change in the value of the firm is given by

θV =
∑
x∈X̃

Ṽ (x) f̃∗ (x)−
∑
x∈X

V (x) f∗ (x) .

As before, let f̃∗ and f∗ denote the vector of steady-state distributions, then

θV = f̃∗′ × (I − β̃F̃J)−1(π̃J + ψ̃J(p̃))

−f∗′ × (I − βFJ)−1 (πJ + ψJ(p)
)
.

The average firm value (across states) changes in the counterfactual both because the steady state distri-

bution changes, and because the value of the firm is affected by the subsidy in all states.

Figure B3 presents the identified set for θ based on the parameter configuration of the firm entry/exit

model in Section 3. As before, the larger set (including the dark blue area) depicts ΘI under Restriction

1, while the smaller set (in light blue) shows the identified set under Restrictions 1–2, and the blue line

shows ΘI under Restrictions 1–3. The true θ is represented by the black dot.
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Figure B3: Identified Set ΘI under Restrictions 1–3

C A Monte Carlo Study

In this section, we present a Monte Carlo study to illustrate the finite-sample performance of our inference

procedure. We start with the setup, and then we show the results.

C.1 Setup

We extend the firm entry/exit problem presented in Sections 3 and 4 of the main text, allowing now for a

larger state space. Specifically, we assume the presence of three exogenous states, wt = (w1t, w2t, w3t), re-

flecting demand and supply shocks. The exogenous states are independent to each other, and each follows

a discrete-AR(1) process with W support points (obtained by discretizing latent normally-distributed

AR(1) processes). The (residual) inverse demand function is linear, Pt = w̄ + w1t + w2t − ηQt, where

Pt is the price of the product, Qt is the quantity demanded, w̄ is the intercept, w1t and w2t are demand

shocks, and η is the slope. We assume constant marginal costs mct (i.e., mct does not depend on Qt),

and let the supply shocks w3t affect marginal costs. To simplify, we just take mct = w3t. Variable profits

are then vpt = (w̄ + w1t + w2t −mct)2/4η. The idiosyncratic shocks ε follow the type 1 extreme value

distribution. The model parameters are presented in Table C1.

The counterfactual we consider is the same as in the example in Section 4: a subsidy that reduces

entry costs by 20%. The target parameter θ is the long-run average probability of staying in the market

given the subsidy, where the long-run average is based on the ergodic distribution of the state variables;

the specific formula for θ is provided in Section B (but note that here we do not take the difference

between the counterfactual and the baseline average probabilities).

In order to analyze the sensitivity of the target parameter θ to alternative model restrictions, we follow
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Table C1: Parameters of the Monte Carlo Data Generating Process

Demand Function: w̄ 6.8 w1t ∼ Normal AR(1): ρ01 0
η 4 ρ11 0.75

σ2
1 0.02

Payoff Parameters: s 4.5 w2t ∼ Normal AR(1): ρ02 0
ec 5 ρ12 0.75
fc 0.5 σ2

2 0.025

Scale parameter: σ 1 w3t ∼ Normal AR(1): ρ03 0
ρ13 0.75

Discount Factor: β 0.9 σ2
3 0.03

the example again and impose the three sets of restrictions:

1. π0 = 0, fc ≥ 0, ec ≥ 0, and vp is known.

2. π1(1, wh) ≥ π1(1, wl), and vp− fc ≤ ec ≤ E[vp−fc]
1−β , where the expectation is taken over the ergodic

distribution of the state variables.

3. s does not depend on w.5

We generate 1000 Monte Carlo replications for each of the following sample sizes: the small sample,

with N = 100 firms on separated (independent) markets and T = 5 time periods, and the large sample,

with N = 1000 firms and T = 15 time periods. For the first sample period, the value of the state variables

are drawn from their steady-state distributions. Given that each exogenous state variable wjt can take

W values, the dimension of the state space is X = 2 ×W 3. We consider three sizes for the state space:

X = 16, 54 and 250, which correspond to W = 2, 3 and 5. The choices of the state space were dictated

by the sample size, not by computational constraints, given that the method makes use of a frequency,

or a nonparametric estimator for the CCP in the first stage. (As discussed in Online Appendix H, it is

feasible to solve the optimization problem (20)–(21) for state spaces that are larger in size.)

In each sample, we estimate the lower and upper bounds for the target parameter, θL and θU , by

solving the minimization and maximization problems (20)–(21). We estimate CCPs using frequency

estimators, and we use the true transition matrix F , both in calculating test statistics and critical values.

(The results do not change significantly when we estimate transition probabilities as well.) We solve the

problem (20)–(21) using the Knitro MATLAB function. We provide initial values for π by solving the

5When we impose Restriction 3, we replace the inequalities defined in Restriction 1 by their average versions. This does
not affect the identified set, but it improves the finite-sample behavior of the estimators when the sample size is small and
the state space is large.
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following quadratic programming problem (with the GUROBI solver, using its MATLAB interface):

min
π∈R(A+1)X :

Reqπ=req ,Riqπ≤riq

[b−J(p̂N )− M̂N π]′ Ω̂N [b−J(p̂N )− M̂N π].

We specify Ω̂N to be a diagonal matrix with diagonal terms given by the square-root of the ergodic

distribution of the exogenous state variables, implied by the transition process Fw. We opt for this

weighting matrix so that deviations on more visited states receive greater weights and are, therefore,

considered more relevant. This is the weighting matrix we use to compute ĴN (θ0).

We approximate the value of ĴN (θ0) for any fixed θ0 in practice by solving a relaxed version of the

optimization problem (20)–(21). We do so because when f is costly to evaluate (as it is in the present

case), it is difficult to solve directly the minimization problem (27) (and (28)), as it requires searching over

(p̃, π) to minimize JN (θ0) when the constraint θ0 = f(p̃, π; p, F ) must be satisfied exactly for a fixed θ0.

Putting differently, finding particular values for (p̃, π) that satisfy θ0 = f(p̃, π; p, F ) can be computationally

costly, while solving relaxed versions of the well-behaved problem (20)–(21) is substantially simpler. To

be specific, we solve the problem (F3)–(F4) for several values of ε, as explained in Online Appendix F.6

We calculate 90% confidence sets for θ using the procedure described in Section 5 of the main text

and in Online Appendix F. For each sample, we generate 1000 replicated samples with size that is

approximately hN ≈ 8 ×
√
NT . Specifically, we implement a standard i.i.d. subsampling, resampling

firms over the full time period: For the small sample we draw 36 firms randomly, and for the large

sample, we draw 65 firms. The computations were run on the FASRC Cannon cluster supported by the

FAS Division of Science Research Computing Group at Harvard University.

C.2 Monte Carlo Results

We now discuss the results of the Monte Carlo simulations. In the baseline scenario, the long-run average

probability that the firm stays in the market is 90.5%, while the long-run average probability of being

active reduces to 83.3% in the counterfactual scenario (so that θ = 0.833). The impact of the entry

subsidy is to reduce the long-run average by 7.2 percentage points. Similar to the example presented

in the main paper, the entry subsidy increases the exit rate of forward-looking firms, which translates

into firms staying less often in the market in the steady state. This result is invariant to the alternative

discretizations of the state space, since the discretizations are performed on the same underlying AR(1)

processes.

Table C2 presents the Monte Carlo results. The top, middle, and bottom panels show the results for

the alternative state spaces: small (X = 16), medium-sized (X = 54), and large (X = 250), respectively.

In each panel, the top subpanel presents the results for the small sample (N = 100, T = 5), and the bottom

6We let ε range from 0 to 1 in an equally spaced grid with 50 points.
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subpanel, for the large sample (N = 1000, T = 15). In each subpanel, we show for each alternative set

of Restrictions 1–3, (i) the populational (true) identified set, (ii) the average estimates of the lower and

upper bounds, θL and θU , (iii) the average bias of the estimated bounds, (iv) the average endpoints and

the average length of the 90% confidence sets, (v) the coverage probability of the confidence sets, and (vi)

the average time taken to estimate θL and θU (in seconds), and the average time taken to compute the

confidence intervals (in minutes).

The identified sets under the alternative Restrictions 1–3 are all compact intervals containing the

true θ (Proposition 4), and vary slightly with the size of the state space. Restriction 1 alone is highly

informative: the counterfactual long-run average probability of being active is between 75% and 90.5%.

It does however include the baseline probability (at the upper end of the interval). Adding Restriction 2

reduces the upper bound to 87.8%, which suffices to identify the sign of the impact of the subsidy. And

adding Restriction 3 pushes the upper bound further down to 86.8%.

In all cases, the estimated lower and upper bounds of the identified sets appear to be consistent,

with smaller biases in larger samples. The coverage probabilities of the confidence sets converge to the

nominal level 90%, as expected (Theorem 1). And the confidence sets’ average lengths are wider (though

not substantially) than the length of the true identified sets, for all sample sizes and state spaces. E.g.,

in the small state space case and large sample, the average length of the confidence set is 0.1782 under

Restriction 1, while the length of the (true) identified set is just 0.1536; and in the large state space and

small sample, the average length of the confidence set under the same restriction is 0.25.

Naturally, the finite sample performance of our inference procedure depends on both the state space

and the sample size. In the larger state space cases, we obtain slightly greater average biases for the

point estimates. These are expected: larger state spaces imply less (effective) degrees of freedom, as the

number of model parameters increases with the state space. (Recall that π is an (A+ 1)X vector.)

In terms of the computer time required to solve the minimization and maximization problems (20)–

(21), it takes approximately 0.03 seconds to solve both optimization problems under Restrictions 1 and

1–2, and that time is reduced to just 0.01 seconds under Restrictions 1–3, in the small state space case.

Subsampling is computationally intensive but feasible: for the same state space, the average time required

to run it varies from two minutes under Restriction 1 to one minute under Restrictions 1–3.

As expected, it takes longer to solve (20)–(21) when the state space is larger. E.g., under Restriction

1, it takes approximately 0.3 seconds on average in the medium-sized state space case (X = 54), and

approximately 6 seconds on average in the large state space case (X = 250). It also takes longer to run

the subsampling procedure: between 7 and 28 minutes on average in the medium-sized state space, and

between 150 and 580 minutes on average in the large state space, depending on the sample size and the

restrictions imposed. It is important to stress, however, that the average computer time here is based on

a sequential implementation of subsampling, which does not take advantage of parallelization.
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Table C2: Monte Carlo Results

Target Parameter: θ = Long-run Average Probability of Being Active

Small State Space: X = 16

T = 5, N = 100 Restrictions 1 Restrictions 1–2 Restrictions 1–3

True Identified Set [0.7500, 0.9036] [0.7500, 0.8763] [0.7500, 0.8662]
Average Estimated Bounds [0.7583, 0.9036] [0.7579, 0.8727] [0.7580, 0.8651]
Average Bias [0.0083, 0.0000] [0.0079, -0.0036] [0.0080, -0.0011]
Confidence Sets: Average Endpoints [0.6729, 0.9214] [0.6734, 0.8951] [0.6757, 0.8870]
Confidence Sets: Average Length 0.2485 0.2217 0.2113
Coverage Probability (90% nominal) 0.9060 0.9010 0.9050
Time Estimation (sec) 0.04 0.05 0.01
Time Inference (min) 2 2 1

T = 15, N = 1000 Restrictions 1 Restrictions 1–2 Restrictions 1–3

True Identified Set [0.7500, 0.9036] [0.7500, 0.8763] [0.7500, 0.8662]
Average Estimated Bounds [0.7507, 0.9036] [0.7507, 0.8761] [0.7507, 0.8661]
Average Bias [0.0007, -0.0000] [0.0007, -0.0002] [0.0007, -0.0001]
Confidence Sets: Average Endpoints [0.7296, 0.9079] [0.7296, 0.8806] [0.7297, 0.8713]
Confidence Sets: Average Length 0.1782 0.1510 0.1417
Coverage Probability (90% nominal) 0.9090 0.9010 0.9040
Time Estimation (sec) 0.04 0.04 0.01
Time Inference (min) 2 2 0.7

Medium-sized State Space: X = 54

T = 5, N = 100 Restriction 1 Restrictions 1–2 Restrictions 1–3

True Identified Set [0.7503, 0.9057] [0.7503, 0.8784] [0.7503, 0.8682]
Average Estimated Bounds [0.7591, 0.9036] [0.7581, 0.8710] [0.7586, 0.8641]
Average Bias [0.0089, -0.0021] [0.0078, -0.0074] [0.0083, -0.0041]
Confidence Sets: Average Endpoints [0.6656, 0.9235] [0.6589, 0.9042] [0.6628, 0.8932]
Confidence Sets: Average Length 0.2579 0.2453 0.2304
Coverage Probability (90% nominal) 0.8940 0.9050 0.8910
Time Estimation (sec) 0.34 0.41 0.03
Time Inference (min) 28 22 12

T = 15, N = 1000 Restriction 1 Restrictions 1–2 Restrictions 1–3

True Identified Set [0.7503, 0.9057] [0.7503, 0.8784] [0.7503, 0.8682]
Average Estimated Bounds [0.7509, 0.9056] [0.7509, 0.8782] [0.7509, 0.8680]
Average Bias [0.0006, -0.0001] [0.0006, -0.0002] [0.0006, -0.0002]
Confidence Sets: Average Endpoints [0.7292, 0.9101] [0.7290, 0.8831] [0.7290, 0.8748]
Confidence Sets: Average Length 0.1809 0.1541 0.1459
Coverage Probability (90% nominal) 0.9020 0.9070 0.8990
Time Estimation (sec) 0.30 0.27 0.03
Time Inference (min) 24 17 7

Large State Space: X = 250

T = 5, N = 100 Restriction 1 Restrictions 1–2 Restrictions 1–3

True Identified Set [0.7504, 0.9060] [0.7504, 0.8787] [0.7503, 0.8685]
Average Estimated Bounds [0.7612, 0.9027] [0.7605, 0.8701] [0.7593, 0.8638]
Average Bias [0.0108, -0.0033] [0.0102, -0.0086] [0.0090, -0.0047]
Confidence Sets: Average Endpoints [0.6678, 0.9253] [0.6602, 0.9096] [0.6621, 0.8979]
Confidence Sets: Average Length 0.2575 0.2494 0.2358
Coverage Probability (90% nominal) 0.8960 0.9090 0.9080
Time Estimation (sec) 7 8 0.7
Time Inference (min) 578 477 252

T = 15, N = 1000 Restrictions 1 Restrictions 1–2 Restrictions 1–3

True Identified Set [0.7504, 0.9060] [0.7504, 0.8787] [0.7503, 0.8685]
Average Estimated Bounds [0.7532, 0.9064] [0.7532, 0.8790] [0.7510, 0.8685]
Average Bias [0.0028, 0.0004] [0.0028, 0.0003] [0.0007, 0.0000]
onfidence Sets: Average Endpoints [0.7321, 0.9106] [0.7287, 0.8845] [0.7288, 0.8757]
Confidence Sets: Average Length 0.1786 0.1558 0.1469
Coverage Probability (90% nominal) 0.9070 0.9000 0.9020
Time Estimation (sec) 6 6 0.6
Time Inference (min) 505 457 150

Note: T = number of periods, N = number of markets, X = number of states.
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D Replication of Das, Roberts, and Tybout (2007)

We now present briefly our replication of Das, Roberts, and Tybout (2007), as well as the details of our

counterfactual exercise.

Parameter Estimates. As explained in the main text, every period t a firm i chooses whether to export or

not, ait ∈ A = {0, 1}, after observing the state variables kit (the lagged decision), et (the exchange rate),

νit (the demand/supply shocks in export markets), and the logit shocks εit. Both states kit and et are

observed by the econometrician, while νit can be recovered from data on export revenues, as explained

below.

The payoff function is given by equation (10) in Section 3. DRT specify the (log of) variable profits

as

ln vpit = ψ0 + ψ1 zi + ψ2 et + νit,

where zi is a dummy variable indicating whether the firm is large or not (based on domestic sales in year

0). They also assume the profit shocks νit equal the sum of two independent AR(1) processes (so that

νit follows an ARMA(2,1) process). We instead assume νit is AR(1); the results are not sensitive to this

simplification.

We estimate the parameters of vp “offline.” Following DRT, we impose monopolistic competition in

export markets; it yields a simple expression for vp in terms of export revenues: vpit = η−1
i Rfit, where

ηi > 1 is a firm-specific foreign demand elasticity, and Rfit are export revenues.7 This relationship is useful

because Rfit is observed in the data while vpit is not. That implies the regression equation

lnRfit = ln ηi + ψ0 + ψ1 zi + ψ2 et + νit, (D1)

which can be used for estimation. Although ψ2 can be estimated directly by differencing the fixed-effects

out in (D1), we still need to estimate the demand elasticities ηi to recover the state variable νit. To deal

with the incidental parameters {ηi}Ni=1, DRT assume monopolistic competition in domestic markets and

impose that the ratio of foreign demand elasticities to domestic demand elasticities is constant for all

producers and equals (1 + υ). Then, by exploiting the markup equation in both domestic and foreign

markets, they obtain

1− Cit
Rit

= η−1
i

(
1 + υ

Rdit
Rit

)
+ ξit, (D2)

where Cit and Rit are total costs and total revenues (from both domestic and foreign markets), Rdit are

domestic revenues, and ξit is an error term that accommodates noise in this relationship. Based on data on

costs and revenues, we estimate {ηi}Ni=1 and υ applying a Nonlinear Least Squares estimator to equation

7The standard markup equation implied by profit maximization under monopolistic competition is Rfit(1 − η
−1
i ) = Cfit,

where Cfit is the variable cost of exporting.
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(D2). Then, given all estimated ηi’s, we regress lnRfit − ln ηi on zi and et to estimate ψ0, ψ1, and ψ2 in

equation (D1) using Ordinary Least Squares. The parameters of the νit process are estimated using the

Maximum Likelihood estimator applied to the residuals of that regression. Following DRT, we assume

the exchange rate et follows an AR(1) process and take the values estimated by Ocampo and Villar (1995)

based on a longer time-series, 1968–1992. After the parameters of the profit function, vp, and of the state

transitions, νit and et, are estimated we move to the estimation of the dynamic parameters (namely, s,

ec, and fc).

To estimate the dynamic parameters, we discretize the state space and estimate CCPs using frequency

estimators. Given the small sample size, we discretize the support of each exogenous state in three bins,

and ignore firms’ types (zi). Because νit is observed only when the firm is exporting, we assume that

every time a firm decides to start exporting, it draws a value from νit’s ergodic distribution. (This implies

that when the firm is not exporting, the only exogenous state is et.) Like DRT, we set the discount factor

to 0.9. Finally, we estimate the dynamic parameters, as well as the scale parameter σ, by searching the

values that best fit the dynamic equation (6), Mπ = σb−J (i.e, we use a Minimum Distance estimator).

Here, we impose DRT’s identification assumptions: scrap values are equal to zero, and fixed and entry

costs do not depend on states.

Table D1: Model Parameter Estimates

Profit Function Parameters (1) (2) Dynamic Parameters (1)

ψ0 (intercept) -10.89 -9.03 ec (entry cost) 127.45
(-20.46, -1.30) (-19.09, 1.03) (37.88, 239.34)

ψ1 (large domestic size) 1.45 -
(0.76, 2.15) -

ψ2 (exchange rate coefficient) 3.79 3.61 fc (fixed cost) 7.08
(1.76, 5.81) (1.48, 5.76) (2.03, 10.83)

λAR (AR root) 0.797 0.823
(0.785, 0.807) (0.818, 0.834)

σAR (AR unconditional std) 1.12 1.12 σ (scale parameter) 26.28
(1.10, 1.14) (1.10, 1.15) (7.94, 48.07)

Table D1 presents our results, with 90% confidence intervals in parentheses. Although our point

estimates are not identical to DRT’s estimates (as expected, given the small adjustments that we made),

they all lie in the range estimated by them (see column 4 of their Table 1, on page 851).8

Inference on Counterfactuals. We implement our inference procedure for θ = (θR, θF , θE) in the following

way: In the first step, we estimate (i) the state transitions, (ii) the variable profits as specified by DRT

8DRT do not implement a two-step approach as we do here. Instead, they estimate all model parameters simultaneously
by maximizing the likelihood function using a Bayesian MCMC estimator. Another difference is that they assume normally
distributed idiosyncratic shocks εit, while we assume a logit model. To make the scale parameters comparable, we need to
multiply our estimated σ by π√

6
. This is approximately 33.7, which is close to their estimates.

23



(but omitting zi), and (iii) the conditional choice probabilities – all of them as explained above. In the

second step, we estimate the identified sets for each element of θ under alternative model restrictions

by solving the optimization problems (20)–(21). (To make our results comparable to DRT, we fix the

scale parameter σ at the estimated value presented in Table D1.) We then calculate the corresponding

confidence intervals as explained in Sections 4 and 5 of the main text and in Online Appendix F. We

implement 1000 replications of a standard i.i.d. subsampling, resampling 20 firms over the sample time

period, so that the size of each subsample is hN = 200 ≈ 8 ×
√
NT . To calculate the test statistic used

in the subsampling, ĴN (θ0), we minimize the quadratic distances in (27) and (28), as explained in Online

Appendix F, and we take a diagonal weighting matrix Ω with diagonal terms given by the square-root of

the ergodic distribution of the state variable – in this way, deviations on more visited states are considered

more relevant and receive greater weights. Given that the benefit-cost ratio of the revenues subsidy θR is

known (ex ante) to be point identified, we use the plug-in estimator proposed by Kalouptsidi, Lima, and

Souza-Rodrigues (2019) to estimate it, and 1000 standard i.i.d. bootstrap replications at the firm level

to construct the confidence intervals for θR.

The exact formula for each element of θ follows. Let f̃∗ and f∗ be vectors with the ergodic distributions

of the state variables in the counterfactual and in the baseline scenarios, respectively, arranged first by

kit and then by et and νit. (We abuse notation and use the same f̃∗ for different counterfactuals.) The

first counterfactual is a 2% revenue subsidy; the benefit-cost ratio is given by

θR =
(f̃∗ − f∗)′ ×Rf

f̃∗′ × 0.02×Rf
,

where Rf is the vector of export revenues ranging over the states xit = (kit, et, νit); i.e.,

Rf =

 0

Rf

 ,
where the zero vector at the top indicates that the firm is not exporting in the steady-state, k = 0, and

Rf are the export revenues ranging over et and νit when k = 1, according to equation (D1). (To simplify,

we set ηi at its estimated median.)

The second counterfactual is a fixed cost subsidy of 28% (which approximately matches the 2 million

pesos that DRT consider under their full set of restrictions). The benefit-cost ratio is now

θR =
(f̃∗ − f∗)′ ×Rf

f̃∗′ × 0.28×

 0

fc

 ,

where, as in the revenue subsidy, the vector in the denominator has a zero at the top indicating that firms
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are not exporting in the steady-state when k = 0.

Finally, the third counterfactual is an entry cost subsidy of 25%. The benefit-cost ratio here is

θR =
(f̃∗ − f∗)′ ×Rf

f̃∗′ × 0.25×

ec ◦ p̃1

0

 ,

where ◦ is the Hadamard (i.e., element-wise) multiplication, and p̃1 is the counterfactual entry probability

vector. Note that the multiplication ec ◦ p̃1 in the denominator reflects the fact that subsidies are paid

only when the firm enters (which happens with probability p̃1).

When solving the optimization problems (20)–(21) for each element of θ = (θR, θF , θE), we provide

the numerical algorithm the gradients of θ based on the derivations presented in the Online Appendix G.
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