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We compare the revenue of the optimal third-degree price discrimination policy against a
uniform pricing policy. A uniform pricing policy offers the same price to all segments of the
market. Our main result establishes that for a broad class of third-degree price discrimination
problems with concave revenue functions and common support, a uniform price is guaranteed to
achieve one half of the optimal monopoly profits. This revenue bound obtains for any arbitrary
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1. Introduction

1.1. Motivation and Results

An important use of information about demand is to engage in price discrimination. A large
literature, starting with the classic work of Pigou (1920), examines what happens to prices,
quantities and various measures of welfare as the market is segmented. A seller is engaging in
third price-degree price discrimination if he uses information about consumer characteristics to
offer different prices to different segments of the market. As every segment is offered a different
price, there is scope for the producer to extract more surplus from the consumer. With the
increase in available information about consumer demand comes increasing flexibility in the
ensuing market segmentation.1

Our main contribution is to compare the revenue performance of third-degree price discrim-
ination against a uniform pricing policy. A uniform pricing policy offers the same price to all
segments of the market. Theorem 1 establishes that for a broad class of third-degree price
discrimination problems with concave revenue functions and common support, a uniform price
is guaranteed to achieve one half of the optimal monopoly profits. Theorem 1 establishes the
revenue bound for any arbitrary number of segments and prices that the seller would use in case
he would engage in third-degree price discrimination.

We investigate the limits of this result by weakening the assumptions of concavity and
common support. First, Proposition 4 shows the necessity of the common support assumption
by studying a setting with concave profit functions that have finite but different supports.
We can then display a sequence of segments under which the ratio of uniform price to third-
degree price discrimination goes to zero.2 Second, Proposition 5 notes that our result is not
true in general for the commonly studied case in mechanism design and approximate optimal
mechanisms of regular distributions. More specifically, we can weaken the concavity of the
revenue function to merely assume regular environments. In other words, we assume that the
revenue function is only concave in the space of quantities rather than of prices. Proposition
5 establishes that for some regular distributions uniform pricing can perform arbitrarily poorly
compared to optimal third-degree price discrimination.

1.2. Related Literature

Our work builds on the standard literature on third-degree price discrimination. Schmalensee
(1981) compares the output and welfare implications of a single price monopoly—the same price
is applied to all customer segments— and third-degree price discrimination—different prices are

1Pigou (1920) suggested a classification of different forms of price discrimination. First degree (or perfect) dis-
crimination is given when the monopolist charges each unit with a price that is equal to the consumer’s maximum
willingness to pay for that unit. Second degree price discrimination arises when the price depends on the quantity
(or quality) purchased. Third degree price discrimination occurs when different market segments are offered different
prices, e.g. due to temporal or geographical differentiation.

2In the related literature section we discuss the relation between this result and Malueg and Snyder (2006).
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applied to different customer segments. He argues that, in general, moving from single price
monopoly to third-degree price discrimination leads to a drop in welfare, unless output increases.
The work of Schmalensee (1981) continues classic studies on welfare, see e.g., Pigou (1920) and
Robinson (1969). In more recent work Aguirre, Cowan, and Vickers (2010) identify conditions
on the shape of demand function for price discrimination to increase welfare and output compare
to the non-discriminating price case.

Bergemann, Brooks, and Morris (2015) analyze the limits of price discrimination. They
show that the segmentation and pricing induced by the additional information can achieve every
combination of consumer and producer surplus such that: (i) consumer surplus is nonnegative,
(ii) producer surplus is at least as high as profits under the uniform monopoly price, and (iii)
total surplus does not exceed the surplus generated by the efficient trade. Building on this work
Cummings, Devanur, Huang, and Wang (2019) provide an approximate guarantees to segment
the market when an intermediary has only partial information of the buyer’s values.

In contrast, in this paper we analyze the profit implications of uniform pricing versus third-
degree price discrimination. We are particularly interested in understanding what are the ap-
proximation guarantees that a uniform price can deliver. Closest to our work is Malueg and
Snyder (2006) who examine the profit effects of third-price discrimination compared to uniform
pricing. They consider a setting similar to ours in which the monopolist experiences a total
cost function for serving different segments. They show that when the demand is continuous
and the total cost is supperadditive then the ratio of third degree price discrimination profit to
uniform price profit is bounded above by the number of segments with distinct prices that are
served under price discrimination. They provide an example under which this bound is tight.
In the worst case the bound for the ratio equals the total number of segments. In contrast,
in the present paper we identify a key and general condition which leads to a bound that is
not contingent on the number of segments in the market. Their Proposition 2 is similar to
our Proposition 4 in that their result also provides an example that attains the worst case
performance for distributions with different support (and linear demand).

Whereas we study the problem of third-degree price discrimination, Armstrong (1999) exam-
ines the problem of second-degree price discrimination. This author analyzes how well a simple
two-part tariff approximates the optimal tariff’s profit in a multi-product monopolist setting.
He shows that the performance ratio of the simpler tariff to the optimal one depends on the
coefficient of variation of the total surplus function and that it can be arbitrarily close to one
as the number of products sold by the monopolist increases.

Since the seminal work of Myerson (1981) there has been a great deal of interest in the
research community on simple or approximate mechanisms design. In general, characterizing
optimal selling mechanisms is a difficult task, see e.g., Daskalakis, Deckelbaum, and Tzamos
(2014) and Papadimitriou, Pierrakos, Psomas, and Rubinstein (2016). Hence, deriving simple-
practical mechanisms is of utmost importance.

Along these lines, Chawla, Hartline, and Kleinberg (2007) study the unit-demand pricing
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problem in which a seller with n units sells to a consumer who has a unit demand. In their main
result they find a pricing policy that delivers a 3-approximation with respect to the optimal
Myersonian revenue (this is true for non-regular distributions). In the regular i.i.d. case they
obtain a 2.17-approximation that prices every item the same. They also show that the Vickrey
auction with optimal reservation values is a 2-approximation to the optimal single-item auction.

Hartline and Roughgarden (2009) consider general single-parameter environments with n

bidders in which each agent has a valuation for receiving service and there is a system of
specifying feasible sets (e.g., in k-unit auctions the sets are those of size k). In these settings
they investigate how VCG with specific reserve prices approximates the seller’s optimal expected
revenue. They show that for independent valuations, downward-closed(matroid) environments
and under MHR (regularity), VCG with monopoly reserves yields a 2-approximation to optimal
mechanism (this is tight). For single-item with valuations drawn independently from regular
distributions they establish that V CG with an anonymous reserve price yields a 4-approximation
to the expected revenue of the optimal auction.

In the single item setting with n buyers Alaei, Hartline, Niazadeh, Pountourakis, and Yuan
(2018) provide several approximation guarantees by analyzing the performance of anonymous
pricing (posted price) against an ex-ante relaxation. They show that the ratio of ex-ante/posted price
is upper bounded by e (and this is tight) for independent (non-identically) distributed val-
ues from regular distributions. As a corollary they improve the 4-approximation in Hartline
and Roughgarden (2009) to an e-approximation. Their key insight is to show that triangular
instances—instances for which the revenue functions in the quantile space are triangle-shaped—
are the worst case in terms of guarantee performance. In the single item setting with in-
dependent and regular distributions Jin, Lu, Qi, Tang, and Xiao (2018) establishes a tight
2.62-approximation of anonymous pricing compared to the optimal Myerson auction. In the n
heterogeneous items, unit-demand buyer setting they provide the same approximation guarantee
for the ratio of optimal item pricing to uniform pricing. The main technique is to find a worst-
case scenario instance. Because the ratio is more complex than in Alaei, Hartline, Niazadeh,
Pountourakis, and Yuan (2018), the worst-case scenario instance is no longer triangular. The
present paper differs from the aforementioned works in that we consider the problem faced by
a monopolist selling to a single buyer whose valuation can come from one of many segments.
Nevertheless, in line with these works we aim to obtain performance guarantees when comparing
the best possible pricing for the monopolist—third-degree price discrimination—to the simple
pricing scheme—uniform pricing. In terms of techniques we resort to related triangular instances
as worst case performance settings as we discuss in the next paragraph.

Our work also shares some similarities with the approach taken by Dhangwatnotai, Rough-
garden, and Yan (2015), see also Hartline (2013), to study the prior-independent single sample
mechanism. In this mechanism bidders are allocated according to VCG mechanism with reserves
randomly computed from other bidders’ bids. A key insight of Dhangwatnotai, Roughgarden,
and Yan (2015) is a novel interpretation of the classic work by Bulow and Klemperer (1994),
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which establishes that the optimal reserve auction for n bidders is revenue dominated by a
second price auction without reserve with n + 1 bidders. Suppose that bidders draw i.i.d. val-
ues from the same distribution. Then, if n = 1 the optimal auction with reserve is a simple
posted price mechanism. When n = 2 each bidder’s contribution to the profit is the same and
the winner pays a random price. In turn, two times the profit from a random price is larger
than the profit from the optimal posted price. That is, in this case, random pricing achieves
half of the optimal profit. Dhangwatnotai, Roughgarden, and Yan (2015) expand this idea to
more complex settings and they formalize it by using an intuitive geometric approach similar to
the one we present in Section 3. In particular, under the assumption of regular distributions,
the profit function in the quantile space turns out to be concave. As a consequence the profit
function is bounded below by a triangle with height equal to the maximum profit. This implies
that the expected profit from uniformly selecting a quantile is bounded below by the area of
the triangle or, equivalently, by half the maximum profit. The proof of our result in Theorem
1 relies on a similar insight. However, we must assume that the profit functions are concave in
the price space, otherwise our half approximation result might not hold. Indeed, in Proposition
5 we show that for regular distribution simple pricing can obtain arbitrarily bad guarantees.

2. Model

We consider a monopolist selling to K different customer segments. Each segment k is in
proportion αk in the market where αk ≥ 0 for all k ∈ {1, . . . ,K} and

∑K
k=1 αk = 1. If the

monopolist offers price pk to segment k then the monopolist receives an associated profit of
Rk(pk), where the profit functions Rk(·) are defined in Θk ⊂ R+ and take values in R+. The
total profit the monopolist receives by pricing according to p = (p1, . . . , pK) the different types
is

Π(p) =
K∑
k=1

αkRk(pk).

The monopolist wishes to choose p to maximize Π(p).
The monopolist can choose prices in different manners. First, for each type k the monopolist

can set the price p?k where
p?k ∈ argmax

p∈Θk

Rk(p).

Let p? be the vector of prices {p?k}Kk=1, we refer to these prices as the per-segment optimal prices.
Note that p? correspond to the case of third-degree price discrimination. We use ΠM to denote
Π(p?). We sometimes denote ΠM (α,R) to make explicit the dependence of the monopolist
profit on the model parameters.

Another way of setting prices that is relevant to practice is to simply set the uniform price
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for all segments. In this case the monopolist must solve the problem

ΠU , max
p∈∪K

k=1Θk

K∑
k=1

αkRk(p).

We use pU to denote the optimal price in the above problem, which we refer to as the optimal
uniform price. With some abuse of notation we sometimes use ΠU (p) to denote Π(p) when all
the components of p are equal to p. Our main objective in this paper is to study how the best
third-degree price discrimination scheme compares to the best uniform price scheme. That is,
we are interested in analyzing the ratio

min
α,R

ΠU (α,R)
ΠM (α,R) , (P)

under different parameters environments.

3. Concave Profit Functions

In this section we assume that the profit functions, Rk(·), are concave. We will further assume
that the supports, Θk, are well behaved in the sense that Θk = Θ for all k where Θ is a closed
and bounded interval,[0, p], of R+. In later sections we analyze (P) under relaxed assumptions.
In what follows we provide a simple geometric argument to show that the current environment
the optimal value of problem (P) is bounded below by 1/2. The argument is similar to the
one presented in Dhangwatnotai, Roughgarden, and Yan (2015) and Hartline (2013), but they
assume regular distributions, and therefore concavity of the profit function, in quantile space.
Later we show that our 1/2 approximation result does not hold under regularity.

Let
rk , αkRk(p?k),

that is, rk corresponds to the maximum profit the seller can obtain from the fraction αk of
segment k customer. Note that ΠM equals

∑K
k=1 rk. Since for each segment k the profit

function is concave in Θ we can lower bound it by a triangular-shaped function that we denote
RLk (p) as depicted in Figure 1 (a).

More precisely, we define the lower bound functions

RLk (p) ,


rk

p?
k
· p if p ∈ [0, p?k]

rk

p−p?
k
· (p− p) if p ∈ [p?k, p].

Observe that
∑K
k=1R

L
k (p) is concave-piecewise linear function that achieves its maximum at

some {p?k}Kk=1. We use ΠL to denote its maximum value. Then, it is easy to see that ΠU ≥ ΠL
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p0

∑K
k=1 R

L
k (p)

pp?
1 p?

2 p?
3

ΠS

pS

ΠL

p?
1 p?

2 p?
3 p0

Rk(p)

p

(b)(a)

Figure 1: (a) The solid lines depict the concave profit function of each type, αkRk(p). The dashed
lines depict the lower bounds RLk (p) for each type. (b) The solid line shows the sum of the profit
functions over types,

∑K
k=1 αkRk(p). The dashed (thick) line shows the sum of the lower bound over

types,
∑K
k=1R

L
k (p).

because
∑K
k=1R

L
k (p) lower bounds

∑K
k=1 αkRk(p), see Figure 1 (b). Next we argue that

ΠL = max
p∈{p?

1 ,...,p
?
K
}

{
K∑
k=1

RLk (p)
}
≥ 1

2

K∑
k=1

rk = 1
2ΠM . (1)

See Theorem 1 below for a formal statement. Consider Figure 2 and note that ΠL · p is equal
to the area of the smallest rectangle that contains the graph of

∑K
k=1R

L
k (p). As a consequence,

ΠL · p is an upper bound for the area below the curve
∑K
k=1R

L
k (p), that is,

ΠL · p ≥
∫ p

0

K∑
k=1

RLk (p)dp =
K∑
k=1

∫ p

0
RLk (p)dp =

K∑
k=1

rk · p
2 ,

where in the last equality we have used that RLk (p) is triangle-shaped and, therefore, the area
below its curve equals rk · p/2. Dividing both sides in the expression above by p yields Eq. (1),
completing the proof. We next state this result as a formal theorem and then provide some

p0 pp?
1 p?

2 p?
3

ΠL

∑K
k=1R

L
k (p)

r1

r2
r3

Figure 2: Proof of Theorem 1: the area below
∑K
k=1Rk,L(p) equals the sum of the areas below Rk,L(p)

for all k.
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comments about it.

Theorem 1 (Uniform price is a half approximation).
Suppose that the profit functions Rk(p) are concave and defined in the same bounded interval
Θ ⊂ R+ for all k ∈ {1, . . . ,K}. Then ΠU is at least half as large as ΠM . In particular,

ΠU = max
p∈Θ

{
K∑
k=1

αkRk(p)
}
≥ max
p∈{p?

1 ,...,p
?
K
}

{
K∑
k=1

αkRk(p)
}
≥ 1

2ΠM .

Theorem 1 provides a fundamental guarantee of uniform pricing compare to optimal third-
degree price discrimination. In particular, the monopolist can simple use a judiciously chosen
price across all customer segments to ensure half of the best possible profit from perfectly
discriminating across the different segments in the market. The theorem also suggests two simple
and appealing ways of selecting the price. First, the monopolist can optimize against the mixture
of customer segments to derive the optimal uniform price. This is advantageous for situations
in which the monopolist possess aggregate market information and perfectly discriminating
segments is not an available option. When the monopolist has more granular market information,
for example the monopolist knows the prices {p?k}Kk=1, then it is not necessary for the monopolist
to optimize over the full range of prices but he can simply choose one of the K prices at hand.

As shown by the next example the profit guarantee in Theorem 1 is tight.

Example 1.
Consider for example a case with two segments in the same proportion and triangle-shaped profit
functions. Further assume that that p?1 is close to zero, say ε > 0, and p?2 is close to p; and that
for both profit functions the maximum profit is the same and equal to one. Then ΠM equals to
1
2 · 1 + 1

2 · 1 = 1 whereas the optimal uniform price is any price between p?1 and p?2, therefore, ΠU

equals 1
2R1(ε) + 1

2R2(ε) ≈ 1
2 + 0.

The result in Theorem 1 is intimately related to the problem of ex-post individually rational
screening in which the seller must optimally design a menu of contracts that incentivize buyers
of different type to self select, see e.g. Krähmer and Strausz (2015) and Bergemann, Castro,
and Weintraub (2018). The optimal static pricing in the screening setting is the same as our
optimal uniform pricing. However, the optimal screening pricing is different to our optimal third-
degree discrimination pricing because screening imposes incentive constraints that translate into
information rents the monopolist must give up; in the screening problem buyers have private
information about their types. In turn the optimal screening profit is upper bounded by ΠM

but is an upper bound to ΠU . This leads us to the following corollary of Theorem 1.

Corollary 1 (Half approximation in sequential screening).
Suppose that the assumptions of Theorem 1 hold. Then in the ex-post individually rational
screening setting of Krähmer and Strausz (2015) and Bergemann, Castro, and Weintraub (2018),
the optimal static contract delivers a 1/2-approximation for seller’s profits.
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As discussed in Section 1.2 our result and approach shares some similarities to that in Dhang-
watnotai, Roughgarden, and Yan (2015). For the case of one buyer—and regular distributions—
they show that the expected profit of randomly selecting a price achieves half of the optimal
profit. Their approach uses the fact that the profit function in the quantile space for regular
distributions is concave and then a uniform randomization over quantities. We can proceed in
a similar fashion to show that the expected profit of uniformly choosing prices achieves half the
profit of third-degree price discrimination. Indeed, suppose we set a price p at random such that
p ∼ U [0, p]. Then for the expected profit we have,

E[ΠU (p)] =
∫ p

0

K∑
k=1

αkRk(p) · 1
p
dp ≥ 1

p
·
∫ p

0

K∑
k=1

RLk (p) dp = 1
p
·
K∑
k=1

rk · p
2 = 1

2ΠM . (2)

We summarize this discussion in the following proposition.

Proposition 1 (Uniformly at random pricing).
Suppose that the profit functions Rk(p) are concave and defined in the same bounded interval
Θ ⊂ R+ for all k ∈ {1, . . . ,K}. Then for p ∼ U [0, p] we have that Ep[ΠU (p)] is at least half as
large as ΠM .

The difference of Theorem 1 with Eq. (2) stems from the fact that in the former we choose a
unique price, pU , whereas in the latter we randomize over Θ. In Section 4 we further elaborate
on the differences with Dhangwatnotai, Roughgarden, and Yan (2015).

A natural question that emerges from Theorem 1 is about what uniform price to use.
According to the theorem, in order to achieve the approximation guarantee, it is enough to
choose the price p?k? that solves max

k
ΠU (p?k). However, if we consider the next best price,

p2nd ∈ argmaxk 6=k? ΠU (p?k), is it possible to achieve a good approximation guarantee? The next
proposition answers this question.

Proposition 2 (Second best price).
The second best price among the per-segment-optimal prices, p2nd, can deliver an arbitrarily low
profit guarantee. More precisely, for any ε > 0 there exists (α,R) such that ΠU (p2nd)/ΠM =
O(ε).

Proof. Consider K ≥ 2, p = 1, α1 = · · · = αK = 1/K and let n ≥ 1. Define the profit functions
by

R1(p) ,


n

1/n · p if p ∈ [0, 1/n]
n

1−1/n · (1− p) if p ∈ [1/n, 1],
and Rk(p) ,


εk

(1−εk) · p if p ∈ [0, 1− εk]

1− p if p ∈ [1− εk, 1],

where εk ∈ (0, ε) for all k ∈ {2, . . . ,K} are fixed. Note that the price of type 1 is the optimal
uniform price when n is large, that is, pU = 1/n. Therefore, the second best price, p2nd, must
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equal 1− εk̂ for some k̂ ≥ 2. Then,

ΠU (p2nd) = 1
K

R1(1− εk̂) +
∑
k≥2

Rk(1− εk̂)

 ≤ 1
K

 n

1− 1/nεk̂ +
∑
k≥2

max{εk̂,
εk

1− εk
· (1− εk̂)}


Whereas the profit of the perfect discrimination is

ΠM = 1
K
R1(1/n) + 1

K

∑
k≥2

R2(1− εk) = 1
K
n+ 1

K
ε = 1

K

n+
∑
k≥2

εk

 ≥ n

K
.

Then,
ΠU (p2nd)

ΠM
≤

n
1−1/nε+

∑
k≥2 max{εk̂,

εk

1−εk
· (1− εk̂)}

n
→ ε as n→∞.

Proposition 2 establishes that by using the second best price among the per-segment-optimal
prices the monopolist profit can be arbitrarily small. In the proof we construct concave profit
functions such that the profit from the first type is arbitrarily large at p?1 but the profit from
any other type k ≥ 2 at p?k is arbitrarily low. In turn, pU coincides with p?1 and p2nd is among
segments k ≥ 2. As a consequence the monopolist profit from using p2nd across segments is
arbitrarily small compared to the profit from perfect price discrimination.

4. Profit Performance in General Environments

In this section we examine deviations from the environment studied is Section 3. In particular,
we aim to understand how (P) behaves when we relax the assumptions in Theorem 1. We
first look into the assumption of finite support and consider profit functions with different
supports. Then, we study non-concave environments. In the latter, we are specially interested
in common well-behaved environments such as regular and MHR (monotone hazard rate) value
distributions.

4.1. All Concave with Unbounded Support

In Theorem 1 we considered concave profit functions supported on some common finite interval
Θ. In the next proposition we relax the finite support assumption while keeping a common
support and concave profit functions across customer segments.

Proposition 3 (No gap with unbounded support).
Suppose that the profit functions for all segments are concave with common and unbounded
support Θ = [0,∞] then ΠU = ΠM .

Proof. Without loss of generality assume that p?1 ≤ · · · ≤ p?K . Note that the concavity of
the profit functions together with the unbounded support assumption obliges each Rk(p) to be
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increasing up to p?k and then constant and equal to Rk(p?k) for any price p larger than p?k for all
k ≥ 1. In turn, by setting pU equal to p?K the profit ΠU becomes

∑K
k=1 αkRk(p?k) = ΠM .

The proposition establishes that in the concave case with unbounded and common support
there is no gap between no price discrimination and full price discrimination. The intuition
behind Proposition 3 is simple. Concavity together with the unbounded support assumption
imply that the marginal profit for each segment must equal zero for sufficiently large prices.
As a consequence, setting an equal and sufficiently large price for every segment achieves the
optimal third-degree price discrimination outcomes.

4.2. Necessity of Common Support

Here we consider concave profit functions supported on some finite interval Θk for each segment
k ≥ 1. In contrast to the previous sections we will not assume that Θk = Θ for all segments.

Proposition 4 (Necessity of common support).
If we allow for different supports among segments then the optimal uniform price can deliver an
arbitrarily small profit guarantee as the number of segments increases.

Proof. We construct concave profit functions with finite support but such that Θk 6= Θj for all
k 6= j. Let the profit functions be defined by

Rk(p) =

p if p ∈ [0, vk]
vk

εk
(vk + εk − p) if p ∈ [vk, vk + εk]

with
vk = 1

(K − k + 1) , αk = 1
K
, εk ∈ (0, vk+1 − vk), ∀k ∈ {1, . . . ,K}.

The perfect price discrimination profit is

ΠM =
K∑
k=1

αkvk = 1
K

K∑
k=1

1
K − k + 1 = 1

K

K∑
k=1

1
k
.

The optimal uniform price must be achieved at one of the vk, hence

ΠU = 1
K

max
k=1,...,K

{ K∑
j=k

vk

}
= 1
K

max
k=1,...,K

{ 1
K − k + 1 · (K − k + 1)

}
= 1
K
.

Hence,
ΠU

ΠM
=

1
K

1
K

∑K
k=1

1
k

= 1∑K
k=1

1
k

≈ 1
log(K) → 0 as K ↑ ∞.
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Figure 3: Example for construction of concave profit functions with different support as in the proof
of Proposition 4 for K = 5. In (a) we illustrate the profit functions for each segment where the value
and optimal per-segment price decay as 1/k. In (b) we show

∑K
k=1 αkRk(p), it is maximized at any of

the per-segment optimal prices and is bounded above by 1/K.

Proposition 4 shows the necessity of the common support assumption. In the proof we
construct concave profit functions that have finite support but the end points of the supports
are increasing, see Figure 4 (a). In the construction all segments are given the same weight
and the profit functions are triangle shaped. All of them start at zero, go up along the 45
degree line, peak at 1/k and then go down sharply such that the upper end of the support of
type k is strictly between 1

k and 1
k−1 (solid lines in Figure 4 (a)). In turn, ΠM (normalized

by the per-segment proportions) grows logarithmically with K. Since the end of the supports
are strictly increasing and non-overlapping, the uniform price profit at the per-segment optimal
prices, ΠU (1/k), is constant and equal to 1 (normalized by the per-segment proportions), see
Figure 4 (b). For example consider p?3 = 1/3, at this price R1(1/3) = R2(1/3) = 0 and
R3(1/3) = R4(1/3) = R5(1/3) = 1/3 hence 5 · ΠU = 0 + 0 + 3 · 1

3 . As a consequence the ratio
in (P) goes to zero as the number of segments increases. Note that this only works because
the profit functions do not have common support. The non-common support allows for the
possibility of having profit functions such that at the per-segment optimal prices some of them
equal zero. In turn, in terms of ΠU , at each p?k there is some profit loss compared to the same-
support case and that profit loss is large enough to be outperformed by ΠM . We note that a
similar version of this result was stated in Malueg and Snyder (2006). Their proof is inductive
whereas our proof in constructive and provides an intuitive characterization of the necessity of
common support.
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4.3. Non-Concave Environments

One of the most important families of distributions in the mechanism design literature corre-
spond to regular distributions. These are distributions such that the virtual value function is
non-decreasing. Formally, for any distribution with cdf F , pdf f and virtual value function
defined by

φ(p) , p− (1− F (p))
f(p) ,

we say that F is regular if and only if φ(p) is non-decreasing. As pointed out in Section 1.2,
for these distributions several approximation guarantees have been obtained in diverse settings.
One of the main insights used in the literature is that the profit function associated to this
family of distribution is concave in the quantile space. Indeed, let R(p) = p · (1 − F (p)) and
consider the change of variables q = 1 − F (p). Define the profit function in the quantile space
as R̂(q) = q · F−1(1− q) then

d

dq
R̂(q) = F−1(1− q)− q

f(F−1(1− q)) = φ(F−1(1− q)),

since φ(·) is non-decreasing we can conclude that R̂(q) is concave. The concavity of R̂(q) allows
arguments similar to the ones leveraged in Theorem 1. For example, Dhangwatnotai, Rough-
garden, and Yan (2015) leverage this property to show that with one bidder the expected profit
from random pricing(uniformly selecting a quantile) is half the profit of the optimal monopoly
price. In turn, it becomes appealing if a similar approach would work in our framework. In
particular, in the regular distribution setting is it possible to work in the quantile space, lever-
age the concavity of the profit functions and then show that a good approximation guarantee
obtains?

We will assume that for each segment k ≥ 1 the profit function comes from a cdf Fk with
pdf fk, that is, Rk(p) = p · (1− Fk(p)). In order to switch to the quantile space, for any p ∈ Θ,
we would need to define

qk = 1− Fk(p) and R̂k(q) = q · F−1
k (q).

The optimal uniform price profit, ΠU , is given by

ΠU = max
0≤q≤1

K∑
k=1

αk · R̂k(qk)

s.t F−1
k (1− qk) = F−1

j (1− qj), ∀k, j.

Note that in this formulation we have gained that the objective function is the summation
of concave functions. However, we have introduced additional constraints compared to the
original formulation of ΠU in Section 2. These constraints stems from the fact that under
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uniform pricing each segment receives the uniform price p, and since qk = 1 − Fk(p) we must
have that F−1(1 − qk) = F−1(1 − qj) for all segments k, j ≥ 1. At this point, the natural
approach would be to lower bound each R̂k by a triangle shaped function—similar to Figure
1 (a) but in the quantile space—then solve the resulting optimization problem and, hopefully,
obtain a good approximation guarantee. Unfortunately, for common regular distributions the
former approach fails as established by the following proposition.

Proposition 5 (Failure of regular distributions).
There exist regular distributions for which the optimal uniform price delivers an arbitrarily small
profit guarantee as the number of segments increases.

Proof. We construct regular distributions {Fk}Kk=1 such that ΠU/ΠM → 0 as K ↑ ∞. Define

Fk(p) = 1− e−(K−k+1)p, ∀p ≥ 0, and αk = 1/K ∀k ∈ {1, . . . ,K}.

Thus we consider exponential distributions with increasing means, given by 1/(K − k + 1), as
k increases. Note that this distributions are regular

p− (1− Fk(p))
fk(p) = p− e−(K−k+1)p

(K − k + 1)e−(K−k+1)p = p− 1
K − k + 1 .

For all k ≥ 1 the profit functions are

Rk(p) = p · (1− Fk(p)) = p · e−(K−k+1)p,

whereas the per-segment optimal prices are

p?k = 1
K − k + 1 , and Rk(p?k) = e−1

K − k + 1 .

Then the full price discrimination profit is

ΠM =
K∑
k=1

αkRk(p?k) =
K∑
k=1

1
K

e−1

K − k + 1 = e−1

K

K∑
k=1

1
K − k + 1 ≈

e−1

K
· log(K).

The uniform price profit for some price p is

K∑
k=1

αkRk(p) = 1
K

K∑
k=1

p · e−(K−k+1)p = p

K

K∑
k=1

e−kp = p

K
· 1− e−Kp

ep − 1 ≤ 1− e−Kp

K
≤ 1
K
,

where the second to last inequality holds because we always have that p+ 1 ≤ ep. With this we
can conclude that

ΠU

ΠM
=

max
p≥0

{∑K
k=1 αkRk(p)

}
ΠM

≤
1
K

e−1

K · log(K)
= 1
e−1 · log(K) → 0, K ↑ ∞.
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Proposition 5 establishes that for some regular distributions uniform pricing can perform
arbitrarily poorly compared to optimal third-degree price discrimination. Moreover, in the
proof we use exponential distributions and, therefore, the result is also true for MHR (monotone
hazard rate) distribution. The intuition behind this result is similar to that of Proposition 4.
We consider exponential distributions such that at the optimal uniform price most of the per-
segment profits will be low and, therefore, they will not contribute much to ΠU , see Figure 4.
Since for exponentials the associated profit functions decay quickly after they peak, they behave
very similar to the case of non-common support in which the upper end of the support are
increasing. Indeed, in the proof of Proposition 5 we obtain a similar profit guarantee as in the
proof of Proposition 4, namely, O(1/ log(K)).

p0

Rk(p)

0.36

0.18

0.12
0.09
0.07

.5 p0

∑K
k=1 αkRk(p)

0.14

.47

(a) (b)

Figure 4: Example for construction of profit functions from regular distributions in Proposition 4 with
K = 5. In (a) we illustrate the profit functions for each segment where the per-segment optimal profit
is e−1/k and the per-segment optimal price 1/k. In (b) we show

∑K
k=1 αkRk(p) with maximum value

0.14 (bounded above by 1/K).

To conclude this section we consider the case of triangular instances on quantile space. These
are instances for which the profit functions in the quantile space are triangle-shaped. They are
widely used in the literature of approximate mechanism design as a bridge to provide good profit
guarantees. However, in our setting they can perform arbitrarily poorly.

Proposition 6 (Triangle instances).
For triangle instances defined by

Fk(p) =

1 if v ≥ vk
p·(1−qk)

p·(1−qk)+vk·qk
if v < vk.

There exists a choice of {αk}Kk=1 ∈ (0, 1), {vk}Kk=1 ∈ R+ and {qk}Kk=1 ∈ (0, 1) such that
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ΠU/ΠM → 0 as the number of segments increases.

Proof. Let us start by considering triangular instances, the profit functions are

Rk(p) = p · F̄k(p) =

0 if v ≥ vk
p·vk·qk

p·(1−qk)+vk·qk
if v < vk.

Note that Rk(p) is increasing and concave up to vk and then is constant and equal to zero for
p ≥ vk. For each curve the optimal price is vk (minus small ε > 0), thus

ΠM =
K∑
k=1

αk · vk · qk (3)

For the static contract the optimal price must be achieved at one of the v1, . . . , vK . Therefore,

ΠU = max
i∈{1,...,K}

{ K∑
k=i

αk ·
vi · vk · qk

vi · (1− qk) + vk · qk

}

Next we will establish that ΠU/ΠM → 0 as K →∞. Consider the instance

vk = 1
(K − k + 1) , qk = 0.5, and αk = 1

K
, ∀k ∈ {1, . . . ,K}.

Hence,

K∑
k=i

αk ·
vi · vk · qk

vi · (1− qk) + vk · qk
= 1
K

K∑
k=i

1
(K−i+1) ·

1
(K−k+1)

1
(K−i+1) + 1

(K−k+1)
= 1
K

K∑
k=i

1
2(K + 1)− (k + i) .

It is possible to show that the last term above is decreasing in i and, therefore,

ΠU = 1
K

K∑
k=1

1
2K + 1− k = 1

K

K∑
k=1

1
K + k

≈ 1
K

∫ K

1

1
K + x

dx = 1
K

log
( 2K
K + 1

)
.

We also have that

ΠM =
K∑
k=1

αk · vk · qk = 1
2K

K∑
k=1

1
(K − k + 1) = 1

2K

K∑
k=1

1
k
≈ 1

2K log(K).

Thus,

ΠU

ΠM
≈

1
K log

(
2K
K+1

)
1

2K log(K)
= 2

log
(

2K
K+1

)
log(K) → 0 (≈ 2 · log(2)/ log(K)).
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5. Worst Case Performance

In this brief section our objective is to investigate the worst case performance of uniform pricing.
For this purpose suppose there are K segments and without loss of generality let us assume that

0 ≤ α1R1(p?1) ≤ α2R2(p?2) ≤ · · · ≤ αKRK(p?K). (4)

Using this condition we can verify that the ratio ΠU/ΠM is always bounded below by 1/K.
Indeed, note that ΠU ≥ ΠU (p?K) and

ΠU (p?K) =
K∑
k=1

αkRk(p?K) ≥ αKRK(p?K) =

K times︷ ︸︸ ︷
αKRK(p?K) + · · ·+ αKRK(p?K)

K
≥ 1
K

K∑
k=1

αkRk(p?k),

where in the last inequality above we use Eq. (4). This proves that the worst case performance
of uniform pricing with respect to third-degree price discrimination is potentially 1/K. In what
follows we argue that this lower bound performance can indeed be achieved. 3

Let us consider atomic valuations, that is, every segment k has a unique possible value
denoted by pk. Under perfect price discrimination the monopolist can charge the price pk to
the buyer and extract full surplus:

∑K
k=1 αkpk. Under uniform pricing the monopolist charges

a fixed price p across all segments and collects profit only from those segments whose price, pk,
is larger that p:

∑K
k=1 αkp1pk≥p. In turn, the optimization problem we would like to solve to

asses the performance of uniform pricing becomes

min
αk,pk


max
p≥0

∑K
k=1 αkp1pk≥p∑K
k=1 αkpk

, s.t
K∑
k=1

αk = 1, αk ≥ 0 ∀k

 .

Observe that in the above problem, without loss of generality, we can assume that the prices
pk are ordered. This allows us to simplify the numerator in the objective above. Note that the
maximum in the numerator must be achieved at some price pj for j ∈ {1, . . . ,K} and for any
pj we have

K∑
k=1

αkpj1pk≥pj = pj

K∑
k=j

αk.

In turn this enables us to reformulate the problem as

min
αk


max

j∈{1,...,K}
pj
∑K
k=j αk∑K

k=1 αkpk
, s.t p1 ≤ · · · ≤ pK ,

K∑
k=1

αk = 1, αk ≥ 0 ∀k

 . (5)

Next we exhibit values of pk and αk such that the ratio in the problem above is arbitrarily close
3Proposition 2 in Malueg and Snyder (2006) provides an inductive argument with linear demand functions. Here

we provide a constructive argument with atomic distributions.
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to the lower bound 1/K. Let ε > 0 be small, define the prices

pk = ε

K

(
1 + ε

ε

)k
, k ∈ {1, . . . ,K − 1}, and pK = 1

K

(
1 + ε

ε

)K−1
,

and let the per-segment proportions be

αk = 1
K

1
pk
, k ∈ {1, . . . ,K}.

Next we verify that the above prices and proportions are feasible. Indeed, it easy to verify that
pk is increasing in k while for the per-segment proportions we have that αk > 0 and

K∑
k=1

αk =
K−1∑
k=1

1
ε

(
ε

1 + ε

)k
+
(

ε

1 + ε

)K−1
= 1.

Now let us look at the objective in problem (5). Given our choice of prices and proportions we
have that αkpk = 1/K and, therefore, the denominator in Eq. (5) equals one. For the numerator
consider j ∈ {1, . . . ,K − 1} then

pj

K∑
k=j

αk = ε

K

(
1 + ε

ε

)jK−1∑
k=j

1
ε

(
ε

1 + ε

)k
+
(

ε

1 + ε

)K−1


= ε

K

(
1 + ε

ε

)j (
ε

1 + ε

)j−1

= 1 + ε

K
,

and pKαK = 1/K. Therefore the objective in Eq. (5) evaluated in our current choice of prices
and proportions equals

max
j∈{1,...,K}

pj
K∑
k=j

αk

 = max
{

1
K
,

1 + ε

K

}
= 1 + ε

K
. (6)

In conclusion, we have exhibited an instance for which the performance of the optimal uniform
price is as close as one may desire to the worst performance guarantee, 1/K. We summarize
this discussion in the following proposition.

Proposition 7 (Worst performance achieved).
There exists an atomic instance and ε0 > 0 such that

min
αk,θk

ΠU

ΠM
≤ 1 + ε

K
, ∀ε ∈ (0, ε0).
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