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Abstract

Multicointegration is traditionally defined as a particular long run rela-
tionship among variables in a parametric vector autoregressive model that
introduces links between these variables and partial sums of the equilibrium
errors. This paper departs from the parametric model, using a semipara-
metric formulation that reveals the explicit role that singularity of the long
run conditional covariance matrix plays in determining multicointegration.
The semiparametric framework has the advantage that short run dynam-
ics do not need to be modeled and estimation by standard techniques such
as fully modified least squares (FM-OLS) on the original I (1) system is
straightforward. The paper derives FM-OLS limit theory in the multi-
cointegrated setting, showing how faster rates of convergence are achieved
in the direction of singularity and that the limit distribution depends on
the distribution of the conditional one-sided long run covariance estimator
used in FM-OLS estimation. Wald tests of restrictions on the regression
coefficients have nonstandard limit theory which depends on nuisance pa-
rameters in general. The usual tests are shown to be conservative when the
restrictions are isolated to the directions of singularity and, under certain
conditions, are invariant to singularity otherwise. Simulations show that
approximations derived in the paper work well in finite samples. We illus-
trate our findings by analyzing fiscal sustainability of the US government
over the post-war period.
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1 Introduction

Many economic time series are non-stationary and contain stochastic trends,

which are naturally modeled using cointegration. For example, two I(1) vari-

ables yt and xt are cointegrated if for some A, u0t = yt − Axt is I(0). Granger

and Lee (1990) call multicointegration a situation when the cumulative error

U0t =
∑t

s=1 u0s is cointegrated with xt or yt. They analyze a case where

(yt, xt, u0t) are production, sales and inventory investment, A = 1 and U0t

is the level of inventories. Inventory stock U0t may then be cointegrated with

production via an adjustment mechanism that captures firm decision making

on inventory investment, as well as satisfying an identity arising from the ag-

gregation of the defining relationship yt = xt + u0t.

It is important to take into account the presence of multicointegration in a

cointegrated system: on one hand it can invalidate usual procedures of estima-

tion and testing in cointegrated systems by affecting asymptotic properties; and

on the other it may lead to advantages in improved forecasting performance.

Multicointegration has so far been defined only in a VAR framework and nat-

urally involves implicit restrictions on the model induced by the extra layer of

cointegration. Engsted and Johansen (1997), for example, show that if the pro-

cess is generated by a VAR model for I(k) variables, multicointegration may

occur if k = 2 but not if k = 1.

This paper studies cointegrated-multicointegrated models in a semipara-

metric framework with specific focus on the use of fully modified least squares

(FM-OLS) estimation. In related work, the authors (Phillips and Kheifets,

2019) explore the concept of multicointegration in a general I(1) triangular

cointegrated system with weakly dependent errors, showing how multicointe-

gration emerges naturally from singularity of the long run covariance matrix.

This formulation gives an explicit mechanism generating multicointegration in

a general way as a property of the system, as opposed to imposing multicoin-

tegration subsequently on a parametric system like a VAR. The present paper

contributes by developing asymptotic theory for FM-OLS estimation and test-

ing in cointegrating relationships that involve multicointegration. The analysis
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of triangular cointegrated systems under singularity that is developed is of some

independent interest.

To define multicointegration for weakly dependent data, we take the trian-

gular representation of a linear cointegrating relationship. In the cointegrating

regression model

yt = Axt + u0t

xt = xt−1 + uxt, t = 1, . . . , T,

A is a m0 × mx cointegrating coefficient matrix, xt is initialized at t = 0 by

x0 = Op(1), and the combined error vector ut = (u′0t, u
′
xt)
′ follows the linear

process

ut = D(L)ηt =
∞∑
j=0

Djηt−j , ηt ∼ iid(0, Im), with
∞∑
j=0

jν ||Dj || <∞,

for some ν > 2, finite fourth order cumulants of ηt, and where m = m0 + mx.

It is common in the literature to consider such time series with an additional

assumption |D(1)| 6= 0 (e.g. Phillips, 1995) that assures nonsingularity of the

long run variance matrix of ut, which we relax here.

Let Γu,u(h) = Eut+hu′t. The linear operator D(L), long run variance matrix

Ω =
∑∞

h=−∞ Γu,u(h) = D(1)D(1)′ =
∑∞

k=0

∑∞
j=0DjD

′
k of ut and one-sided

long run variance matrix ∆ =
∑∞

h=0 Γu,u(h) =
∑∞

k=0

∑k
j=0DjD

′
k of ut are

partitioned conformably with ut as

D(L) =

[
D00(L) D0x(L)

Dx0(L) Dxx(L)

]
,Ω =

[
Ω00 Ω0x

Ωx0 Ωxx

]
,∆ =

[
∆00 ∆0x

∆x0 ∆xx

]
,

where Ωxx > 0 is positive definite. The conditional long run covariance matrix,

defined as the Schur complement of the block Ωxx, Ω00.x = Ω00 − Ω0xΩ−1
xxΩx0,

is positive (semi-) definite if and only if Ω is positive (semi-) definite (by virtue

of the Guttman rank additivity formula). In this paper we consider a situation

when the long run variance matrix is singular, or, equivalently, when the con-

ditional long run covariance matrix is singular. It corresponds to a case where
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partial sums of yt and xt are cointegrated with an I(0) error in some unknown

direction, i.e. when there is a multicointegration in spirit of Granger and Lee

(1990), but is semiparametric in the sense that the short run dynamics is left

unspecified. We therefore introduce the following definition.

Definition 1. The process generated by a triangular cointegrating system is

called multicointegrated if its long run covariance is singular.

The advantage of our framework is that it provides the explicit relationship

from which the multicointegration arises. Thus, if we take partial sums of the

augmented regression form

yt = Axt + F (1− L)xt + u0.x,t,

where F = Ω0xΩ−1
xx is the long run regression coefficient of u0t on xt and u0.x,t =

u0t − Ω0xΩ−1
xxuxt, giving (using capitals with time index for partial sums)

Yt = AXt + Fxt + U0.x,t.

It becomes clear that in the direction of singularity of Ω00.x we have an exact

long run relationship that links Yt, Xt, and xt and this is known in terms of

the coefficients A, F and the singular direction of Ω00.x, which is estimable.

In earlier work on multicointegration, the hypothesis about multicointegration

is simply imposed a priori, as in the Granger and Lee (1990) paper. What

our approach does is to reveal the leading role that the singularity of the long

run conditional covariance matrix Ω00.x plays in determining multicointegration.

And this is a nonparametric formulation.

Engsted and Johansen (1997) show that multicointegration as defined in

Engle and Lee (1990) of a linear I(1) process (y′t, x
′
t)
′ = (1− L)−1C(L)ηt, where

the roots of |C(z)| = 0 satisfy |z| > 1 or z = 1, occurs when z = 1 is a root, so

that C(1) = ξε′ has reduced rank, and ξ′⊥Ċ(1)ε⊥ is singular, see also Johansen

(1992). This is exactly the case when Ω is singular, as shown below.

Proposition 1. A linear process (y′t, x
′
t)
′ is multicointegrated, i.e Ω is singular,

if and only if it satisfies the multicointegration condition of Engsted and Jo-
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hansen (1997). The rank of the multicointegrating relation equals m− rank(Ω).

Data matrices are denoted by upper case letters without indexes, e.g., Y ′ =

[y1, . . . , yT ]. The OLS estimator Â = Y ′X (X ′X)−1 is consistent at the rate

at least O(T ). The FM-OLS estimator (Phillips and Hansen 1990) has the

form Â+ =
(
Ŷ +′X − T ∆̂+

0x

)
(X ′X)−1 and employs corrections for endogeneity

in the regressor xt, leading to the transformed dependent variable ŷ+
t = yt −

Ω̂0xΩ̂−1
xx (xt−xt−1) and a bias correction term involving ∆̂+

0x = ∆̂0x−Ω̂0xΩ̂−1
xx ∆̂xx,

which is constructed using consistent nonparametric estimators of submatrices

of the long run and one sided long run quantities Ω and ∆. Compared with

OLS, the FM-OLS estimator removes asymptotic bias and increases efficiency

by correcting both the long run serial correlation in ut and endogeneity in xt

caused by the long run correlation between u0t and uxt. The properties of

FM-OLS in general regressions as well as VARs are studied in Phillips (1995).

Here we allow for the possibility of a singular conditional long run variance

matrix Ω00.x. When Ω00.x is singular, i.e. when modified yt is cointegrated and

in some direction the errors in the cointegrating equation are I(−1), the limit

distribution of the FM-OLS estimator is degenerate and may have unsatisfactory

properties in testing.

The paper makes the following contributions. First, we derive the rates of

convergence and the limiting distribution of the FM-OLS estimator in case of a

null conditional long run variance matrix. The rate of convergence of FM-OLS

is faster than the usual O(T ) rate for cointegration and the rate depends on

the bandwidth used in estimating the long run quantities that are employed in

making corrections for endogeneity and serial correlation in the FM-OLS for-

mula. The resulting limit distribution of FM-OLS is no longer mixed normal

and depends on nuisance parameters. Similar properties hold in the direction of

singularity in the case of a singular long run variance matrix. Second, under cer-

tain conditions, the limit distribution of Wald statistics for testing restrictions

on the cointegrating space and cointegrating parameters is χ2 and is invariant

to the presence of singularity. Third, we show that when those restrictions fail,

the Wald test is conservative. Using Monte Carlo simulations, we show that the

empirical level of the test can be far below the nominal 1%, 5% and 10% levels
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in singular and near singular cases.

As an application we analyse fiscal sustainability of the US government

over the period 1947-2019 by testing the null hypothesis that the cointegraton

relationship between government revenue and expenditure is (1,−1). Multi-

cointegration between government revenue and expenditure naturally arises if

bounds are imposed on deviations of debt from revenue. We reject the null

hypothesis and as our theoretical results show, this conclusion is not affected

by the presence of multicointegration. This is important for practical purposes,

as a separate treatment of the multicointegration case is not necessary (c.f.,

Quintos, 1995, and Berenguer-Rico and Carrion-i-Silvestre, 2011).

The paper is organized as follows. In Section 2 we derive the rates of conver-

gence of elements of Â+ and establish its limit distribution. After some prelim-

inary observations we begin our discussion with the null case where Ω00.x = 0,

then move on to a case of a general singular matrix. We then discuss the im-

plications of singularity for hypothesis testing in Section 3. The finite sample

properties of the FM-OLS and Wald test statistics are explored in Section 4.

The application to government fiscal sustainability is considered in Section 5.

Section 6 concludes. Proofs are given in the Appendix.

2 Fully Modified OLS

Let (B′0, B
′
x)′ ≡ B ≡ BM(Ω) be the first m0 and the last mx subvectors of the

Brownian motion. Let

L0.Ω =
[
Im0 −Ω0xΩ−1

xx

]
, LΩ =

[
Im0 −Ω0xΩ−1

xx

0 Imx

]
.

Let B0.x = L0.ΩB. Then[
B0.x

Bx

]
= LΩ

[
B0

Bx

]
= BM(LΩΩL′Ω) = BM

([
Ω00.x 0

0 Ωxx

])
,
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so B0.x ≡ BM (Ω00.x) and is orthogonal to Bx. Note that Ω00.x is the long run

variance of u0.x,t = L0.Ωut = D0.x(L)ηt, where D0.x(L) = L0.ΩD(L). It is well

known that

T−1/2

[T ·]∑
t=1

ut →d B(·) ≡ BM(Ω)

and the OLS estimator is O(T ) consistent and the limit distribution depends

on the nuisance parameters Ω and ∆:

T
(
Â−A

)
→d

(∫ 1

0
dB0B

′
x + ∆0x

)(∫ 1

0
BxB

′
x

)−1

=

(∫ 1

0
dB0.xB

′
x

)(∫ 1

0
BxB

′
x

)−1

+Ω0xΩ−1
xx

(∫ 1

0
dBxB

′
x

)(∫ 1

0
BxB

′
x

)−1

+ ∆0x

(∫ 1

0
BxB

′
x

)−1

.

The last two terms are the endogeneity and serial correlation biases, which

FM-OLS seeks to remove.

Suppose Ω and ∆ are estimated as

Ω̂ =

T−1∑
j=−T+1

w(j/K)Γ̂û,û(j) and ∆̂ =

T−1∑
j=0

w(j/K)Γ̂û,û(j),

where w(·) is a kernel function, K is a bandwidth parameter (see e.g. Priestley

(1981) and Hannan (1970)), and the sample covariances are

Γ̂û,û(j) = T−1
T−1∑

1≤t,t+j≤T
ût+j û

′
t, ût = (û′0t, u

′
xt)
′,

where û0t = yt − Âxt.

Similar to Phillips (1995), we consider the following kernels and bandwidth

rates.

Assumption K (Kernel Condition) For given k ∈ (0, 1), the bandwidth param-

eter K has the rate K ∼ cTT k as T →∞, where cT is slowly varying at infinity,

i.e. cxT /cT → 1 for x > 0 and T → ∞. The kernel function w(·) : R → [−1, 1]
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is a twice continuously differentiable even function with:

(a) w(0) = 1, w′(0) = 0, w′′(0) 6= 0

(b) w(x) = 0, |x| ≥ 1, with lim|x|→1w(x)/(1− |x|)2 = const.

For example, Parzen and Tukey-Hanning kernels satisfy Assumption K. The

Bartlett-Priestley or quadratic spectral kernels do not satisfy Assumption K; in

order to use them, one can extend our results for kernels satisfying Assumption

K(a) and

(b’) w(x) = O(x−2), as |x| → 1.

Under Assumption K, with 0 < k < 1, and for any consistent estimator Â,

Γ̂→p Γ, Ω̂→p Ω, ∆̂→p ∆.

Proposition 2. Under Assumption K with 0 < k < 1,

T
(
Â+ −A

)
→d

(∫ 1

0
dB0.xB

′
x

)(∫ 1

0
BxB

′
x

)−1

.

For the nonsingular case this result appears in Corollary 4.3 in Phillips

(1995). The proof reveals that singularity does not alter the above convergence

but makes the limiting distribution degenerate. If Ω00.x has full rank, the rate

of convergence of the FM-OLS estimator is determined by the rates of weak

convergence of the sample covariances and the rate of nonparametric estimation

of Ω and ∆ does not play any role. We will show that in case Ω00.x is singular,

the rate of convergence of the FM-OLS estimator along the null direction of

Ω00.x will increase by δKT , where δKT = min(K2, T 1/2).

For example, in case Ω00.x = 0, T
(
Â+ −A

)
→p 0, and the precise rate of

convergence of the FM-OLS depends on the bandwidth parameter expansion

rate k in the kernel estimation in Assumption K, and the first order term in

the nonparametric approximation of long run covariances may show up in the

limit. If Ω00.x = 0, then D0.x(1) = 0 and the Beveridge-Nelson decomposition
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of u0.x,t reduces to its transient component so that u0.x,t = ∆η̃t is I(−1). The

next proposition establishes convergence properties of FM-OLS for such time

series. It is particularly useful for the case of single one-dimensional cointegra-

tion relationship, m0 = 1 (see e.g. Phillips and Loretan, 1991), because singular

long run variance implies that the conditional long run variance is zero. It also

makes explicit the effect of singularity on the convergence rates and serve as a

basis for our general result. Singularity also alters the rate of convergence of

Ω̂00.x, which is used in the construction of the Wald test statistics. Therefore

we also derive the rate of convergence for this quantity.

Proposition 3. Suppose Ω00.x = 0. Under Assumption K with 0 < k < 1,

δKTT
(
Â+ −A

)
= Op(1),

K2Ω̂00.x = Op(1).

As the proof reveals, the limit distribution of the above quantities depends

on nuisance parameters and on the implementation of the nonparametric esti-

mation of long run covariance matrices. For kernel estimators, the limit depends

on the covariance structure of the errors, on the bandwidth growth rate, and

on the second derivative of the kernel function. As an illustration, consider a

case when the bandwidth K grows slower than T 1/4, which includes the optimal

bandwidth T 1/5 for long run variance estimation. Under these conditions, we

have the following limit theory.

Proposition 4. Suppose Ω00.x = 0 and D0.x(L) = (1−L)D̃0.x(L), with D̃0.x(1) 6=
0. Under Assumption K with k < 1/4

K2T
(
Â+ −A

)
→d w

′′(0)

( ∞∑
h=0

(h+ 1/2) Γη̃,ux(h)

+
∞∑

h=−∞
(h+ 1/2) Γη̃,ux(h)Ω−1

xx

∫ 1

0
dBxB

′
x

)(∫ 1

0
BxB

′
x

)−1

,

K2Ω̂00.x →p −w′′(0)
∞∑

h=−∞
Γη̃,η̃(h).
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Unlike the result in the nonsingular case (Phillips, 1995; Phillips and Hansen,

1990), the limit distribution of FM-OLS depends on the covariance structure of

the errors ux and u0.x,t and on the second derivative of the kernel function.

Consider a general case of singular Ω00.x, of rank r < m0. Thus, Ω has

rank r + mx. To isolate nondegenerate directions decompose Ω00.x = RR′,

where R is an m0 × r matrix of rank r. Then R′R has full rank, R′u0.x,t has

full rank long run variance matrix and Proposition 2 applies in this direction.

In the orthogonal direction R⊥, Proposition 3 applies and elements R′⊥A are

estimated at a faster rate.

Alternatively, by the eigenvalue decomposition (singular value decomposi-

tion for symmetric matrices), there is a set of orthonormal eigenvectors of Ω00.x,

qi stacked in an orthogonal matrix Q and real eigenvalues λi in decreasing order

on diagonal matrix Λ, such that Ω00.x = QΛQ′ =
∑r

i=1 λqiq
′
i. In this notation,

QΛ1/2 = (R, 0) and R⊥ spans the space of eigenvectors corresponding to zero

eigenvalues.

We now state our first main result.

Theorem 1. Suppose Ω00.x = RR′, where R is (m0, r) matrix with rank(R) =

r < m0. Then under Assumption K

T
(
Â+ −A

)
→d

(∫ 1

0
dB0.xB

′
x

)(∫ 1

0
BxB

′
x

)−1

,

which is degenerate mixed normal. But the limit distribution is not degenerate

in the direction R as

TR′
(
Â+ −A

)
→d

(∫ 1

0
dBf.xB

′
x

)(∫ 1

0
BxB

′
x

)−1

,

where Bf.x ≡ BM (Ωff.x) and Ωff.x = R′RR′R is a full rank r×r matrix which

is the conditional long run variance of R′U0.x. In the direction R⊥ orthogonal

to R the convergence of Â+ is at the faster rate O(δKTT ) and

δKTTR
′
⊥

(
Â+ −A

)
= Op(1).
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It is apparent that the FM-OLS estimator of the singular triangular system

has these properties: (i) it is consistent; (ii) the limit distribution is singular

in the original coordinates; and (iii) rates of convergence are O(T ) in nonde-

generate directions and O(δKTT ) in degenerate directions. In the degenerate

direction the limit distribution is the one shown in Proposition 4. Singularity of

the limit distribution means that care is needed when undertaking hypothesis

testing and these matters are considered in the next section. The situation is

in some ways analogous to that of causality testing in cointegrated VAR regres-

sions, as analyzed in Toda and Phillips (1993), and cointegrating regressions

with cointegrated regressors, as analyzed in Phillips (1995). In the present case,

it is necessary to analyze the directions of singularity of the long run covariance

structure and the behavior of the estimates in these directions.

3 Testing

We consider the following hypothesis for some φ ∈ C1, functions of dimension

q for which the first derivative exists and is continuous,

H0 : φ(vec(A)) = 0.

Suppose Ω00.x = RR′, where R is (m0, r) matrix with rank(R) = r < m0. So

R′R is full rank (r, r) matrix. Then under Assumption K

T
(
Â+ −A

)
→d

(∫ 1

0
dB0.xB

′
x

)(∫ 1

0
BxB

′
x

)−1

≡MN

(
0,Ω00.x ⊗

(∫ 1

0
BxB

′
x

)−1
)
.

The limiting distribution is mixed normal (MN ) and the standard inference

methods can be applied. In this case the Wald statistic is written in vectorized

form as

W = φ
(
â+
)′ {

Φ
(
â+
) (

Ω̂00.x ⊗
(
X ′X

)−1
)

Φ
(
â+
)′}−1

φ
(
â+
)
,
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where â+ = vec
(
Â+
)

, Φ(a) = ∂φ(a)/∂a′ and a = vec (A) is row vectorization.

Suppose that the following rank condition holds

rank

{
Φ (vec(A))

(
Ω00.x ⊗

(∫ 1

0
BxB

′
x

)−1
)

Φ (vec(A))′
}

= q. (1)

Under Assumption K, W →d χ
2
q . So, under the rank condition (1), the limit

distribution of the Wald statistics is invariant to the presence of singularity.

3.1 Violation of the rank condition

We consider the following linear hypothesis

H0 : Qvec(A) = R0, Q ∼ q ×m0mx, rankQ = q.

Suppose Q = R1 ⊗R2, with ranks q1 and q2 respectively, so that

H0 : R1AR2 = R3, vec R3 = R0.

Then

Q

(
Ω00.x ⊗

(∫ 1

0
BxB

′
x

)−1
)
Q′ = R1Ω00.xR

′
1 ⊗R′2

∫ 1

0
BxB

′
xR2.

If the rank of R1Ω00.xR
′
1 = R1RR

′R′1 is q̃1 < q1, then the rank condition does

not hold as q̃1q2 < q1q2 = q. This is the case when some of the restrictions

isolate directions where FM-OLS is hyperconsistent. The distribution of the

Wald test statistics is then nonstandard and depends on nuisance parameters.

In general, non-mixed normality in the direction of faster convergence produces

a non chi-squared limit in the Wald statistic as the faster convergence of the

estimator is balanced in the Wald statistic weighting. A similar phenomenon

arises in Toda and Phillips (1993), who describe situations where Wald tests of

Granger causality do not follow asymptotically chi-squared distributions. For

another example, see Phillips (2016), where singularity in the signal matrix

gives nonstandard inference.
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For an illustration of the consequences of singularity in the present case,

consider testing H0 : A = A0. Then Q = Im0mx , R0 = vec(A0), R1 = Im0 , R2 =

Imx , R3 = A0 and their ranks are q = m0mx, q1 = m0 and q2 = mx. The Wald

test statistic then simplifies to

WI = vec
(
Â+ −A0

)′ (
Ω̂00.x ⊗

(
X ′X

)−1
)−1

vec
(
Â+ −A0

)
= tr

{(
X ′X

) (
Â+ −A0

)′
Ω̂−1

00.x

(
Â+ −A0

)}
.

Note the notational change to WI to emphasize that the following analysis only

considers special restriction structures as above. The rank of Ω00.x ⊗
∫ 1

0 BxB
′
x

is equal to the rank of the conditional long run variance multiplied by mx, i.e.

the null hypothesis restrictions isolate “all directions” and the rank condition

is satisfied if and only if the conditional long run variance is nonsingular. If

the conditional long run variance is nonsingular, the rank condition holds and

WI → χ2
q .

In the special case where Ω00.x = 0 and Assumption K holds with 0 < k <

1/2 under the null hypothesis we have

WI = K2δ−2
KT tr

{(
T−2X ′X

)
δKTT

(
Â+ −A0

)′ (
K2Ω̂00.x

)−1
δKTT

(
Â+ −A0

)}
= Op

(
K2δ−2

KT

)
→p 0,

because of the rates established in Proposition 3 and because Op
(
K2δ−2

KT

)
=

op(1) for k < 1/2.

In the more general case we have the following result.

Theorem 2. If the conditional long run variance has reduced rank r < m0 and

Assumption K holds with 0 < k < 1/2, then under the null WI →d χ
2
rmx.

The proof of the above result reveals that the distribution of the Wald test

statistic involves the sum of two major components. The first component is the

limit in nonsingular directions, which is χ2
rmx , and the second is the limit in the

direction where the conditional long run variance is zero, which is nonstandard,

depends on nuisance parameters and decays at the speed K2δ−2
KT . Therefore,
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for k < 1/2 the limit of W has thinner tails than the distribution of χ2
m0mx and

the test is conservative.

4 Finite sample performance

In the following analysis, we run N = 10000 simulations for sample sizes

T ∈ {50, 100, 1000, 10000}. We use R version 3.4.4 and package cointReg

version 0.2.0 for FM-OLS estimation. The long run variances are estimated

using Parzen kernel

w(x) =


1− 6x2 + 6|x|3, −1/2 ≤ x ≤ 1/2,

2(1− |x|)3, 1/2 ≤ |x| ≤ 1,

0, 1 ≤ |x|.

We have shown that if the rank condition holds, the Wald test is invariant

to singularity. If the rank condition fails, the Wald test controls size but is

conservative. Using Monte Carlo simulations we study how accurate is the size

of the Wald test under singularity and near singularity in finite samples.

We consider the following data generating process (DGP)

yt = Axt + u0t

xt = xt−1 + uxt, t = 1, . . . , T,

where the cointegrating coefficient A = 2, and the combined error vector ut =

(u′0t, u
′
xt)
′ follows the linear process

ut = ηt +D1ηt−1, with ηt ∼ iidN(0, Im).

We take m = 2 and for parameter choices p ∈ {0.0, 0.1, . . . , 1.0} define

D1 =

[
−p 0

0 0

]
, then Ω =

[
(1− p)2 0

0 1

]
,

and Ω0.xx = (1− p)2. Our theory generalizes results on estimation and testing

14



of cointegrating systems for the case p = 1, in which the long run variance

is singular and the conditional long run variance is zero. By considering the

diagonal D1, which makes u0t and u0xt independent, we can study the effect of

singularity in the long run variance separately from the effect of the long run

dependence. When p = 0, the long run variance is I2 and the conditional long

run variance is 1, which corresponds to the standard, nonsingular case. We

consider estimation of A and testing hypothesis H0 : A = 2.
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Figure 1: The density of the bias for the sample size T = 100 and parameters
p ∈ {1.0, 0.5, 0.0}

In Figures 1 and 2 the densities of the centred estimator Â+−2 are shown for

sample sizes T = 100 and T = 1000. We compare the densities in the singular
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Figure 2: The density of the bias for the sample size T = 1000 and parameters
p ∈ {1.0, 0.5, 0.0}

case (p = 1) with two nonsingular cases (p = 0 and p = 0.5). In both figures

the bias in the singular case is much smaller than the bias in the nonsingular

cases, with a more pronounced effect for T = 1000. Our asymptotic results

show higher convergence rates of FM-OLS under singularity, and this effect can

be seen already for T = 100.

In Figure 3 the densities of the Wald test statistic W for H0 : A = 2

are shown for sample size T = 100. We compare the densities in the singular

case (p = 1) with two nonsingular cases (p = 0 and p = 0.5). In nonsingular

cases the test statistics is asymptotically χ2
1, which density is also plotted. This
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Figure 3: The density of the Wald test statistics for the sample size T = 100
and parameters p ∈ {1.0, 0.5, 0.0} together with the χ2

1 density

approximation is quite accurate for T = 100. The density of the test statistic

in the singular case has thinner tail, so that the Wald test is conservative.

Further simulation results are in Tables 1 and 2. In the standard case, the

bias is 0.003 for T = 50 which becomes zero up to the 4th digit for larger

samples. The precision of the estimator, measured by the standard deviation of

the estimates, increases at rate T . The coverage rates for the test H0 : A = 2

using the Wald test statistics and χ2
1 approximation are far above the nominal

levels in small samples and become close to the nominal at T = 1000. In the

singular case, there is no bias even for size T = 50 and the precision increases
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Table 1: The average bias, standard deviation, and the rejection rates for the
nominal 0.01, 0.05, and 0.10 levels of the Wald statistics across 10000 simula-
tions.

T p bias sd(bias) 0.01 0.05 0.10
1 50 0.0 -0.0003 0.0507 0.086 0.165 0.229
2 100 0.0 0.0000 0.0247 0.047 0.107 0.164
3 1000 0.0 -0.0000 0.0024 0.013 0.059 0.109
4 10000 0.0 -0.0000 0.0002 0.012 0.054 0.098
5 50 0.1 -0.0003 0.0459 0.096 0.178 0.248
6 100 0.1 0.0000 0.0223 0.054 0.120 0.184
7 1000 0.1 -0.0000 0.0022 0.020 0.072 0.129
8 10000 0.1 -0.0000 0.0002 0.018 0.066 0.118
9 50 0.2 -0.0003 0.0412 0.102 0.186 0.258

10 100 0.2 0.0000 0.0199 0.060 0.134 0.199
11 1000 0.2 -0.0000 0.0019 0.027 0.086 0.149
12 10000 0.2 -0.0000 0.0002 0.023 0.078 0.137
13 50 0.3 -0.0002 0.0366 0.103 0.190 0.263
14 100 0.3 0.0000 0.0175 0.063 0.141 0.208
15 1000 0.3 -0.0000 0.0017 0.032 0.096 0.162
16 10000 0.3 -0.0000 0.0002 0.028 0.088 0.150
17 50 0.4 -0.0002 0.0322 0.096 0.181 0.255
18 100 0.4 0.0000 0.0152 0.061 0.141 0.206
19 1000 0.4 -0.0000 0.0014 0.032 0.096 0.163
20 10000 0.4 -0.0000 0.0001 0.028 0.089 0.152
21 50 0.5 -0.0002 0.0279 0.079 0.160 0.230
22 100 0.5 0.0000 0.0129 0.050 0.121 0.188
23 1000 0.5 -0.0000 0.0012 0.026 0.085 0.148
24 10000 0.5 -0.0000 0.0001 0.024 0.078 0.138
25 50 0.6 -0.0001 0.0239 0.055 0.126 0.189
26 100 0.6 0.0000 0.0106 0.031 0.087 0.150
27 1000 0.6 -0.0000 0.0010 0.013 0.055 0.108
28 10000 0.6 -0.0000 0.0001 0.012 0.053 0.098

at a faster rate. The rejection rates, however, are zero even at the 10% level,

showing that the test is conservative. Also, note that in the intermediate cases

the test is slightly over-sized. For example, for p = 0.4 at the 5% level the

test rejects 18.1% times for T = 50 and 8.9% times for T = 10000. More

data is required because of autocorrelation in the errors. It is interesting to see

that for p = 0.7 at the 5% level, the rejection rates are 4.6% at T = 100 and

1.8% at T = 10000. Here we observe the effect of the two opposite forces on

the rejections rates. On the one hand, the test tends to over-reject at small

samples; on the other, the test is conservative in near singular case.
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Table 2: The average bias, standard deviation, and the rejection rates for the
nominal 0.01, 0.05, and 0.10 levels of the Wald statistics across 10000 simula-
tions.

T p bias sd(bias) 0.01 0.05 0.10
29 50 0.7 -0.0001 0.0204 0.029 0.080 0.132
30 100 0.7 0.0000 0.0085 0.013 0.046 0.087
31 1000 0.7 -0.0000 0.0007 0.003 0.019 0.049
32 10000 0.7 -0.0000 0.0001 0.002 0.018 0.046
33 50 0.8 -0.0001 0.0177 0.011 0.039 0.073
34 100 0.8 0.0000 0.0067 0.003 0.014 0.032
35 1000 0.8 -0.0000 0.0005 0.000 0.001 0.006
36 10000 0.8 -0.0000 0.0000 0.000 0.000 0.005
37 50 0.9 -0.0000 0.0161 0.005 0.018 0.036
38 100 0.9 0.0000 0.0053 0.001 0.003 0.008
39 1000 0.9 -0.0000 0.0003 0.000 0.000 0.000
40 10000 0.9 -0.0000 0.0000 0.000 0.000 0.000
41 50 1.0 -0.0000 0.0160 0.003 0.013 0.026
42 100 1.0 0.0000 0.0049 0.000 0.001 0.004
43 1000 1.0 -0.0000 0.0001 0.000 0.000 0.000
44 10000 1.0 -0.0000 0.0000 0.000 0.000 0.000

5 Evaluating Fiscal Sustainability

Soaring government debt in many countries call for better understanding of

fiscal sustainability from both economic and econometric perspective. Econo-

metric analysis of sustainability has a long tradition. To get some insight into

sustainability from time series data, Hamilton and Flavin (1986) suggested to

test stationarity of the discounted debt. Haikko and Rush (1991), Huag (1991),

Trehan and Walsh (1991), Quintos (1995) were among the first to test cointe-

gration between revenues and expenditures. Quintos (1995) calls sustainability

“strong” if the revenues and expenditures cointegrate with coefficient (1,−1)

and tests the later using FM-OLS based t-statistics. Next we make two remarks

regarding the above approach. For a recent discussion of other approaches to

evaluate fiscal sustainability, see a chapter in the Handbook of Macroeconomics

by D’Erasmo, Mendoza and Zhang (2016).

First, the cointegration between revenues and expenditures is only a suf-

ficient condition for an intertemporal budget constraint (IBC) and that there

are many other data generating processes consistent with IBC. It means that
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rejecting cointegration does not imply that IBC does not hold. Following Bohn

(2007), consider

Bt = Bt−1 +Gt −Rt = G0
t −Rt + (1 + rt)Bt−1, Budget Identity (BI),

where Bt is government debt, Rt is government revenue, rt is the interest

rate, which is assumed to be stationary with mean r > 0, Gt is government

expenditure, G0
t is government expenditure excluding interests on debt, and

Gat = G0
t + (rt− r)Bt−1 is adjusted expenditure. These variables can be defined

in nominal or real terms, possibly deflated by GDP or population. For exam-

ple, Quintos (1995) constructed real variables by deflating nominal variables by

GNP price deflator and by population. BI implies

Bt =
1

1 + r
EtG0

t + (1 + rt)Bt−1, Difference Equation (DE),

which together with

Bt = lim
j→∞

1

(1 + r)j
EtBt+j = 0, (m.s.), TransversalityCondition (TC),

where the limit is in the mean square sense, implies

Bt =

∞∑
j=1

1

(1 + r)j
Et(Rt+j −Gat+j), Intertemporal Budget Constraint (IBC).

IBC holds when the debt matches the expected present discounted value of the

future surplus, a desirable requirement for sustainability. Bohn (2007) shows

that if Bt ∼ I(m) for some finite m ≥ 0, then Bt satisfies TC and IBC holds.

Therefore, Quintos (1995) strong sustainability, defined as Bt ∼ I(1), while

intuitively appealing, is one of many possibilities of data generating processes

satisfying IBC.

Second, there are economic considerations that restrict the DGP, besides

IBC. For example, fiscal sustainability may involve bounds or restrictions on

the deficit ∆Bt that can be formulated as ∆Bt ∼ I(0) which corresponds to

strong sustainability by Quintos (1995), Gt − Rt ∼ I(0), if Gt, Rt ∼ I(1). Fur-
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thermore, there could be bounds on deviations of debt from revenue, that can

be formulated as cointegration between Bt and Rt. In that case Gt and Rt

are multicointegrated and the conditions for the asymptotic result in Phillips

and Hansen (1990) employed in Quintos (1995) are not met. To allow for multi-

cointegration, Berenguer-Rico and Carrion-i-Silvestre (2011) model the revenue-

expenditure relationship in an I(2) system, as suggested by Haldrup (1994) and

Engsted et al (1997). The results of the present paper show the following: (i)

multicointegration can be allowed in the I(1) system considered in Equation

(6) in Quintos (1995); (ii) multicointegration invalidates the normal approxi-

mation of the test statistics t+ used in Section 3.1.2 in Quintos (1995); and (iii)

multicointegration does not alter the conclusion that the null hypothesis of coin-

tegration between Gt and Rt with coefficient (1,−1) is rejected. We illustrate

these points with the updated dataset.

The data are provided by the US Bureau of Economic Analysis and retrieved

from FRED, Federal Reserve Bank of St. Louis on November 17, 2019. We con-

sider two series: xt = Government Current Expenditures (GEXPND), inclusive

of interest payments, and yt = Government Current Receipts (GRECPT). Both

series are in billions of dollars, seasonally adjusted annual rate, at quarterly fre-

quency from 1947:Q1 to 2019:Q1, T = 291 observations.

The series are plotted in Figure 4. We see that the series start to diverge

in the mid 1990s and even more so after year 2000. We estimate the equation

yt = Axt + u0t and test the null hypothesis of strong sustainability, viz., H0 :

A = 1. FM-OLS estimation of the full sample gives Â+ = 0.83 with standard

error 0.01 and t-statistic (0.83 − 1)/0.01 = −17, rejecting the null hypothesis.

The result is similar if we include the constant and for bandwidth T 1/5 in place

of 3T 1/5.

The divergence of the series in mid 1990s in Figure 4 may signify a struc-

tural break in the relationship. In fact, several studies (e.g. Berenguer-Rico

and Carrion-i-Silvestre, 2011) found a break in the 4th quarter of 1996, which

could be attributed to the 1997 Clinton tax cut. The study of the properties of

the FM-OLS under multicointegration in the presence of the structural breaks

we leave for future research. But we do estimate the model for the period from
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Figure 4: The US Government expenditures and receipts, billions of dollars,
seasonally adjusted annual rate, quarterly frequency.

1947:Q1 to 1996:Q4 (T = 200) and obtain that Â+ = 0.87 with standard error

0.005 and t-statistic (0.87 − 1)/0.005 = −26, so the cointegrating coefficient

is closer to but still statistically different from (1,−1). We also estimate the

cointegration relationship between real revenue and expenditure constructed

using the GDP deflator. We take the same data series as in Berenguer-Rico

and Carrion-i-Silvestre (2011) (available at the Journal of Applied Economet-

rics Data Archive, http://qed.econ.queensu.ca/jae/2011-v26.2/), but instead of

looking at I(2) systems (which means working with
∑t

j=0Rj ,
∑t

j=0Gj and Gt)

we again run FM-OLS Rt on Gt and obtain Â+ = 0.92 with standard error 0.01
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and t-statistic (0.92− 1)/0.01 = −8, rejecting the null hypothesis that revenue

and expenditure are cointegrated with coefficient (1,−1).

6 Conclusion

In a semiparametric triangular representation of I(1) cointegrated time series

multicointegration results in a singular long run error variance matrix. Likewise

multicointegration arises when a certain linear combination of the regressor in-

novations removes the low frequency component in the equation error spectrum.

This leads to the long run conditional variance matrix being singular or having

a root that is local to zero. The consequence is a higher rate of convergence and

non pivotal limit theory in certain directions. We show that the Wald test is

invariant to singularity under certain rank conditions. When those conditions

fail, the test is conservative. Simulation experiments show that in such situ-

ations the test rejection rates are far below the nominal levels under the null

hypothesis in singular and near singular cases. We illustrate our results by ana-

lyzing the fiscal sustainability of the US government, testing the hypothesis that

government revenue and expenditure are cointegrated with coefficient (1,−1),

where multicointegration naturally arises if bounds are imposed on deviations

of debt from revenue.

The results obtained in this paper motivate the development of new robust

approaches to estimating cointegrating relationships that allow for the possible

presence of multicointegration, which are pivotal in the presence of singularity.

This is an area of current research by the authors.
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A Appendix: Proofs

Proof of Proposition 1. We can write (y′t, x
′
t)
′ = (1− L)−1C(L)ηt, where the

roots of |C(z)| = 0 satisfy |z| > 1 or z = 1. Multicointegration of such linear

I(1) process occurs (see Johansen 1992, Engsted and Johansen, 1997) when

z = 1 is a root, so that C(1) = ξε′ is reduced rank, and ξ′⊥Ċ(1)ε⊥ is singular.

Write C(L) as

C(L) =

[
Im0 − L A

0 Imx

]
D(L),

and its derivative

Ċ(L) =

[
−Im0 0

0 0

]
D(L) +

[
Im0 − L A

0 Imx

]
Ḋ(L).

We can take ξ′ = [A, Imx ], ξ′⊥ = [Imx ,−A] and ε′ = [D′21(1), D22(1)]. Then

ξ′⊥Ċ(1)ε⊥ = −[D11(1), D12(1)]

[
D21(1)

D22(1)

]
⊥

which is singular if and only if D(1) and equivalently Ω is singular. Indeed, sup-

pose that D22(1) is nonsingular (if not, change the coordinates). Then we can

take ε′⊥ = [I,−D′21(1)D−1
22 (1)], such that ξ′⊥Ċ(1)ε⊥ = −D11(1)+D12(1)D−1

22 (1)D21(1)

is (minus) Shur complement of block D22(1) and its rank by Guttman rank ad-

ditivity formula is equal to rank(D(1))− rank(D22(1)).

Proof of Proposition 2. Let Ω0x.x = Ω0x−Ω0xΩ−1
xxΩxx, Ω̂0x.x = Ω̂0x−Ω0xΩ−1

xx Ω̂xx,

∆0x.x = ∆0x − Ω0xΩ−1
xx∆xx, and ∆̂0x.x = ∆̂0x − Ω0xΩ−1

xx ∆̂xx. Then

Ŷ +′X =
(
Y ′ − Ω̂0xΩ̂−1

xxU
′
x

)
X = AX ′X + U ′0X − Ω̂0xΩ̂−1

xxU
′
xX

= AX ′X + U ′0.xX −
(

Ω̂0xΩ̂−1
xx − Ω0xΩ−1

xx

)
U ′xX

and

∆̂+
0x = ∆̂0x − Ω̂0xΩ̂−1

xx ∆̂xx = ∆̂0x.x −
(

Ω̂0xΩ̂−1
xx − Ω0xΩ−1

xx

)
∆̂xx
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and

Ω̂0xΩ̂−1
xx − Ω0xΩ−1

xx = Ω̂0x.xΩ̂−1
xx .

So,

T
(
Â+ −A

)
=
(
T−1

(
Ŷ +′X − T ∆̂+

0x −A
)) (

T−2X ′X
)−1

=
(
T−1U ′0.xX − ∆̂0x.x

) (
T−2X ′X

)−1

− Ω̂0x.xΩ̂−1
xx

(
T−1U ′xX − ∆̂xx

) (
T−2X ′X

)−1
. (2)

From the weak convergence theory for sample covariances developed in Phillips

and Durlauf (1986), Phillips (1989)

T−2X ′X →d

∫ 1

0
BxB

′
x, (3)

T−1U ′xX →d

∫ 1

0
dBxB

′
x + ∆xx, (4)

T−1U ′0X →d

∫ 1

0
dB0B

′
x + ∆0x. (5)

Therefore,

T−1U ′0.xX →d

∫ 1

0
dB0.xB

′
x + ∆0x.x. (6)

By construction, u0.x,t has zero long run covariance with the errors uxt that

drive nonstationary component xt, removing endogeneity of xt in the long run.

Therefore, for any consistent estimator of Ω and ∆, in particular, under As-

sumption K with 0 < k < 1,

Ω̂0x.x →p 0m0,mx (7)

and

T
(
Â+ −A

)
→d

(∫ 1

0
dB0.xB

′
x

)(∫ 1

0
BxB

′
x

)−1

.
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Proof of Proposition 3. Below we show that

T−1U ′0.xX − ∆̂0x.x = T−1η̃Tx
′
T +K−2w′′(0)

∞∑
h=0

(h+ 1/2) Γη̃,ux(h)

+Op

(
(KT )−1/2

)
+ op

(
K−2

)
, (8)

Ω̂0x.x = −K−2w′′(0)
∞∑

h=−∞
(h+ 1/2) Γη̃,ux(h)

+Op

(
(KT )−1/2

)
+ op

(
K−2

)
. (9)

which together with (3) and (4), expansion (2) and the fact that T−1η̃Tx
′
T =

Op(T
−1/2) gives T

(
Â+ −A

)
= Op

(
δ−1
KT

)
. Also,

Ω̂00.x = −K−2w′′(0)
∞∑

h=−∞
Γη̃,η̃(h) +Op

(
(KT )−1/2

)
+ op

(
K−2

)
, (10)

so K2Ω̂00.x = Op(1). In our development, we borrow some ideas from the proofs

of Lemma 8.1 (a), (b), and (g) in Phillips (1995), although that lemma does

not strictly apply to our case. In particular, note that the I(−1) errors appear

in Lemma 8.1 in Phillips (1995) from a different source: if the vector xt is

cointegrated, but the cointegrating relationship is unknown, FM-OLS uses the

first differences of the whole vector xt producing linear combination of the first

differences of stationary errors which are I(−1). In our case it is assumed that

Ωxx is positive definite, i.e. that xt are full rank nonstationary I(1) and ∆xt are

full rank stationary I(0).

We now show (8). Note that

T−1U ′0.xX − ∆̂0x.x = T−1η̃Tx
′
T − T−1η̃′−1Ux − ∆̂0x.x (11)
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and that T−1η̃Tx
′
T = Op(T

−1/2), T−1η̃′−1Ux = w(0)Γ̂η̃,ux(−1), while

∆̂0x.x + T−1η̃′−1Ux (12)

=

K−1∑
j=0

[w(j/K)− w((j + 1)/K)]Γ̂η̃,ux(j) + w((K − 1)/K)Γ̂η̃,ux(K − 1).

(13)

The first term in (13) isK∗∑
j=0

+

K−2∑
j=K∗+1

 [w(j/K)− w((j + 1)/K)]Γ̂η̃,ux(j), (14)

for some K∗ = Kb, with 0 < b < 1. Applying the second order Taylor expansion

of function w(·) at arguments (j + 1)/K around j/K,

w((j + 1)/K)− w((j)/K) = K−1w′(j/K) + 1/2 K−2w′′(j/K)[1 + o(1)], (15)

and for j ≤ K∗ we can apply the Taylor expansion of function w′(·) at arguments

j/K around 0, where w′(0) = 0

w′(j/K) = w′′(0)(j/K)[1 + o(1)]. (16)

Then

w((j + 1)/K)− w(j/K) = K−2w′′(0)(j + 1/2)[1 + o(1)]. (17)

Because of expansion (15), the mean of the first term in (14) multiplied by K2

is

K2
K∗∑
j=0

[w(j/K)− w((j + 1)/K)]Γη̃,ux(j)→ −w′′(0)
∞∑
j=0

(j + 1/2)Γη̃,ux(j) (18)

and its variance is O(1/KT ). Because of expansion (17), the second term in
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(14) is

K−1
K−2∑

j=K∗+1

w′(j/K)Γ̂η̃,ux(j)[1 +O(1/K)], (19)

with mean

K−1
K−2∑

j=K∗+1

w′(j/K)(1− j/T )Γη̃,ux(j)[1 +O(1/K)]. (20)

The modulus of

K−1
K−2∑

j=K∗+1

w′(j/K)(1− j/T )Γη̃,ux(j) (21)

is dominated by

sup
x
|w′(x)|K−1

K−2∑
j=K∗+1

‖Γη̃,ux(j)‖ (22)

= const K−1
∑
j>K∗

∞∑
s=0

‖Ds‖‖D̃s+j‖ (23)

= const K−1K∗
−ν ∑

j>K∗

∞∑
s=0

(s+ j)ν‖Ds‖‖Ds+j‖ (24)

= const K−1K−νb
∞∑
s=0

‖Ds‖
∞∑
r=0

rν‖Dr‖ = O(K−1−νb) = o(K−2), (25)

for 1/ν < b < 1.

We now bound the second term in (13). By Assumption K (b), w((K −
1)/K) = O(K−2) when K →∞. Since η̃t =

∑∞
s=0 u0.x,t−s,

Γη̃,ux(K − 1) =
∞∑
s=0

Γu0.x,ux(K − 1− s) =
∞∑

s=−∞
Γu0.x,ux(s) + o(1) = o(1), K →∞.

(26)
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Also Var(Γ̂η̃,ux(K − 1)) = O(T−1), therefore Γ̂η̃,ux(K − 1) = op(1) and

w((K − 1)/K)Γ̂η̃,ux(K − 1) = op(K
−2). (27)

Expansion (8) is established.

We now show (9). Note that

Ω̂0x.x =
K−1∑

j=−K+1

w(j/K)Γ̂∆η̃,ux(j) (28)

=

K−1∑
j=−K+1

[w(j/K)− w((j + 1)/K)]Γ̂η̃,ux(j) (29)

+ w((K − 1)/K)Γ̂η̃,ux(K − 1)− w((−K + 1)/K)Γ̂η̃,ux(−K). (30)

The first term in (30) is K∗∑
j=−K∗

+
∑

|j|>K∗,|j|<K

 [w(j/K)− w((j + 1)/K)]Γ̂η̃,ux(j), (31)

for some K∗ = Kb, with 0 < b < 1. Because of the expansion of w(·) in (15),

the mean of the first term in (31) multiplied by K2 is

K2
K∗∑

j=−K∗
[w(j/K)− w((j + 1)/K)]Γη̃,ux(j)→ −w′′(0)

∞∑
j=−∞

(j + 1/2)Γη̃,ux(j)

(32)

and its variance is O(1/KT ). The second term in (30) and the second term in

(31) are bounded as above. The third term in (30) is also bounded as above

because

Γη̃,ux(−K) =
∞∑
s=0

Γu0.x,ux(−K − s) =
∞∑
s=K

Γu0.x,ux(−s) = o(1), K →∞. (33)
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We now show (10). Note that

Ω̂00.x =

K−1∑
j=−K+1

w(j/K)Γ̂∆η̃,∆η̃(j) (34)

=
K−1∑

j=−K+1

[w(j/K)− w((j + 1)/K)]Γ̂η̃,∆η̃(j) (35)

+ w((K − 1)/K)Γ̂η̃,∆η̃(K − 1)− w((−K + 1)/K)Γ̂η̃,∆η̃(−K). (36)

The first term in (36) is K∗∑
j=−K∗

+
∑

|j|>K∗,|j|<K

 [w(j/K)− w((j + 1)/K)]Γ̂η̃,∆η̃(j), (37)

for some K∗ = Kb, with 0 < b < 1. Because of the expansion of w(·) in (15),

the mean of the first term in (37) multiplied by K2 is

K2
K∗∑

j=−K∗
[w(j/K)− w((j + 1)/K)]Γη̃,∆η̃(j)→ −w′′(0)

∞∑
j=−∞

(j + 1/2)Γη̃,∆η̃(j)

(38)

= −w′′(0)

∞∑
j=−∞

jΓη̃,∆η̃(j) (39)

= −w′′(0)

∞∑
j=−∞

jΓη̃,η̃(j) + w′′(0)

∞∑
j=−∞

jΓη̃,η̃(j + 1) (40)

= −w′′(0)
∞∑

j=−∞
Γη̃,η̃(j) = −w′′(0)Ωη̃,η̃. (41)

The second and the third terms in (36) and the second term in (37) are bounded

as above.
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Proof of Proposition 4. For k < 1/4, (8) and (9) becomes

T−1U ′0.xX − ∆̂0x.x = K−2w′′(0)
∞∑
h=0

(h+ 1/2) Γη̃,ux(h) + op
(
K−2

)
,

Ω̂0x.x = −K−2w′′(0)
∞∑

h=−∞
(h+ 1/2) Γη̃,ux(h) + op

(
K−2

)
,

which together with (3) and (4) and expansion (2) gives the distribution of

K2T
(
Â+ −A

)
. Also Equation (10) becomes

Ω̂00.x = −K−2w′′(0)
∞∑

h=−∞
Γη̃,η̃(h) + op

(
K−2

)
,

from which the distribution of K2Ω̂00.x follows.

Proof of Theorem 1. We have that
Bf.x

0

Bx

 = LR

[
B0.x

Bx

]
= BM(LRLΩΩL′ΩL

′
R) = BM




Ωff.x 0 0

0 0 0

0 0 Ωxx


 ,

where

LR =


R′ 0

R′⊥ 0

0 Imx

 .
The matrix (R,R⊥) rotates u0.x,t to (u′f.x,t, u

′
s.x,t)

′, where uf.x,t = R′u0.x,t is I(0)

and us.x,t = R′⊥u0.x,t is I(−1). Therefore LRLΩ keeps nonstationary regressors

xt = xt−1 + uxt and transforms the original coointegration relationship yt =

Axt + u0t to a system of two equations with orthogonal long run errors: (i)

an equation with I(0) errors which have nonsingular long run variance matrix

Ωff.x, R′y+
t = R′Axt + uf.x,t , for which Proposition 2 applies; and (ii) an

equation with I(−1) errors R′⊥y
+
t = R′⊥Axt + us.x,t, for which Proposition 3

applies.
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Proof of Theorem 2. Using coordinate rotation, we write the Wald statistic as a

sum of several components, corresponding to the nondegenerate and degenerate

directions and their cross products. Recall the partitioned matrix inversion

formula [
A11 A12

A21 A22

]−1

=

[
A−1

11.2 −A−1
11 A12A

−1
22.1

−A−1
22.1A21A

−1
11 A−1

22.1

]
,

where the Shur complement is defined as Aii.j =
(
Aii −AijA−1

jj Aji

)
. We apply

the above formula to the variance-covariance matrix in Wald test statistics

(
(R,R⊥)′ Ω̂00.x (R,R⊥)

)−1
=

[
RΩ̂00.xR RΩ̂00.xR⊥

R⊥Ω̂00.xR R⊥Ω̂00.xR⊥

]−1

=

[
(RΩ̂00.xR)−1 + op(1) Op(1)

Op(1) Op(K
2)

]
,

where we take into account that

1. RΩ̂00.xR = Op(1), because R isolates nondegenerate direction,

2. RΩ̂00.xR⊥ = Op(K
−2), can be obtained similar to (9) in the proof of

Proposition 3,

3. R⊥Ω̂00.xR⊥ = Op(K
−2), can be obtained similar to (10) in the proof of

Proposition 3.

32



Then

WI = tr{
(
T−2X ′X

) (
Â+ −A0

)′
(TR, TR⊥)

(
(R,R⊥)′ Ω̂00.x (R,R⊥)

)−1

(TR, TR⊥)′
(
Â+ −A0

)
}

= tr{
(
T−2X ′X

) (
Â+ −A0

)′
TR

(
R′Ω̂00.xR

)−1
TR′

(
Â+ −A0

)
}

+K2δ−2
KT tr{

(
T−2X ′X

)
δKTT

(
Â+ −A0

)′
R⊥Op(1)δKTTR

′
⊥

(
Â+ −A0

)
}

+ δ−1
KT tr{

(
T−2X ′X

)
δKTT

(
Â+ −A0

)′
R⊥Op(1)TR′

(
Â+ −A0

)
}

+ δ−1
KT tr{

(
T−2X ′X

)
T
(
Â+ −A0

)′
ROp(1)δKTTR

′
⊥

(
Â+ −A0

)
}

= χ2
rmx +Op

(
K2δ−2

KT

)
+Op

(
δ−1
KT

)
,

using that TR′
(
Â+ −A0

)
= Op(1) and δKTTR

′
⊥

(
Â+ −A0

)
= Op(1) from

Theorem 1. For k < 1/2, we have Op
(
K2δ−2

KT

)
= op(1), and therefore WI →d

χ2
rmx .
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