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Abstract

We propose three new methods of inference for the threshold point in endogenous threshold regression

and two specification tests designed to assess the presence of endogeneity and threshold effects without

necessarily relying on instrumentation of the covariates. The first inferential method is a parametric

two-stage least squares method and is suitable when instruments are available. The second and third

methods are based on smoothing the objective function of the integrated difference kernel estimator

in different ways and these methods do not require instrumentation. All three methods are applicable

irrespective of endogeneity of the threshold variable. The two specification tests are constructed using a

score-type principle. The threshold effect test extends conventional parametric structural change tests to

the nonparametric case. A wild bootstrap procedure is suggested to deliver finite sample critical values

for both tests. Simulations show good finite sample performance of these procedures and the methods

provide flexibility in testing and inference for practitioners working with threshold models.

Keywords: Threshold regression, Endogeneity, Identification, Confidence interval, 2SLS, IDKE, Secifi-

cation testing, Bootstrap, U-statistic

JEL-Classification: C21, C24, C26,

∗We thank Yonghong An, Bruce Hansen, Zheng Fang, Chirok Han, Shengjie Hong, Yingyao Hu, Zhongxiao Jia, Hongyi Li,
Qi Li, Jaimie Lien, R.M. Nayga Jr., Robin Sickles, Xiaojun Song, Wenwu Wang, Chuancun Yin, ChuancJun Yu and seminar
participants at CMES2018, CUHK, ESAM2018, ESEM2018, HU-HUE-SMU Tripartite 2018, NASMES2018, QNU, TAMU,
TEC2018 and Tsinghua for helpful comments. Phillips and Yu acknowledge support from the GRF of Hong Kong Government
under Grant No. 17520716. Phillips acknowledges support from the NSF under Grant No. SES 18-50860 and a Kelly Fellowship
at the University of Auckland.
†Faculty of Business and Economics, The University of Hong Kong, Pokfulam Road, Hong Kong; corresponding author

email: pingyu@hku.hk.
‡Faculty of Business and Economics, The University of Hong Kong, Pokfulam Road, Hong Kong; email:

liaoq@connect.hku.hk.
§Cowles Foundation for Research in Economics, Yale University, POBox 208281, New Haven, CT, USA; email: pe-

ter.phillips@yale.edu



1 Introduction

In recognition of potential shifts in economic relationships, threshold models have become increasingly pop-

ular in recent econometric practice. Hansen (2011) provides an overview of the methods and their various

applications in economics and finance. One typical application of the threshold model in time series is to

illustrate asymmetric effects of shocks over the business cycle (e.g., Potter, 1995). Threshold models are

also useful in cross section applications. For example, Hansen (2000) applied a threshold model to show

that depending on the starting point, rich countries and poor countries have different growth patterns. All

this literature assumes exogenous regressors and an exogenous threshold variable. But in practical work

there is often uncertainty about exogeneity and threshold model applications have commonly encountered

endogeneity issues. For example, the empirical growth models used in Papageorgiou (2002) and Tan (2010)

both suffer from endogenous regressor problems, as argued in Frankel and Romer (1999) and Acemoglu et

al. (2001).

The standard model formulation for endogenous threshold regression is

y = x′β11 (q ≤ γ) + x′β21 (q > γ) + ε =: x′β + x′δ1 (q ≤ γ) + ε, (1)

with E[ε|x] 6= 0, where x = (1, x′, q)
′ ∈ Rd+1 =: Rd, and where d and d are the dimensions of the nonconstant

covariates (x′, q)′ and all covariates including the constant. The parameter of interest is θ =
(
β′1, β

′
2, γ
)′
or

equivalently, θ :=
(
β′, δ′, γ

)′
with β = β2, δ = β1 − β2 and γ ∈ Γ. This setup is similar to endogenous

linear regression except that the regression coeffi cients depend on whether the threshold variable q crosses

the threshold point γ.

The literature on estimation of this model includes the following three main contributions. First, Caner

and Hansen (2004) (CH hereafter) use a two-stage least squares (2SLS) method to estimate γ in the small-

threshold-effect framework of Hansen (2000), but assuming q is exogenous so that E[ε|x] = E[ε|x] holds.

Second, working in Hansen’s (2000) framework, Kourtellos, Stengos and Tan (2016) (KST hereafter) use a

control function approach to deal with the case where q is also endogenous.1 Their setup is parametric (see

Kourtellos et al. (2017) for a semiparametric extension) and the asymptotic theory is flawed. Specifically,

Yu, Liao and Phillips (2018) (YLP hereafter) show that the structural threshold regression (STR) estimator

of the threshold point in KST is not consistent unless the endogeneity level of the threshold variable is

low compared to the threshold effect. Third, Yu and Phillips (2018) (YP hereafter) use an integrated

difference kernel estimator (IDKE) to estimate γ in the fixed-threshold-effect framework of Chan (1993).

Their estimator can be applied irrespective of whether q is endogenous or whether instruments are available

(as required in the previous two methods). Even when there are no instruments available and the model

reduces to a nonparametric threshold regression, their estimator is still n-consistent, just as in the parametric

setup.2 The endogeneity problem is also considered in the related structural change literature, where the

threshold variable is a simple time index and is always exogenous; see YP for a detailed literature review.

In spite of the theoretical developments on the estimation of γ in endogenous threshold regression, infer-

1 If q is exogenous, then KST’s estimator is asymptotically equivalent to CH’s estimator.
2There are two other estimators of γ in nonparametric threshold regression with different motivations and objective functions

from the IDKE. The first estimator is the semiparametric M-estimator of Henderson et al. (2017). That estimator can be treated
as an extension of the partial linear estimator of Porter (2003) (see also Yu (2016)) in regression discontinuity designs to the
case with unknown discontinuity point and extra covariates (beyond q), but this estimator can be applied only to the case
with constant threshold effects; readers are referred to the supplementary materials of YP to see why the authors avoid using
a generalized version of this estimator. The second estimator is the least squares estimator of Chiou et al. (2018). Chiou et al.
(2018) can be treated as a nonparametric parallel of Bai and Perron (1998); for example, they allow for multiple regimes, use
sequential tests to determine the number of regimes, and q /∈ x (because q in structural change models is the time index which
is usually not a covariate in x); again, readers are referred to the supplementary materials of YP to see why the authors avoid
using this estimator.
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ence concerning the threshold parameter γ still presents practical diffi culties especially when q is endogenous.

First, the CH method should be applied only if q is exogenous. For as shown in Yu (2013a), the CH esti-

mator is generally inconsistent when q is endogenous. Second, as mentioned above, the KST approach is

not generically applicable. Third, the asymptotic distribution of the IDKE in YP is too complicated to be

readily applied in empirical work. This paper seeks to alleviate these practical diffi culties by proposing three

new methods of confidence interval (CI) construction for γ.3 All three methods can be applied regardless

of whether q is endogenous. To our knowledge, these methods are the only valid and applicable inferential

tools that are robust to endogeneity of q in the sense that the procedures need no modification when q is

endogenous. The first method is a parametric two stage least squares (2SLS) method and requires instru-

ments, while the second and third methods are based on smoothing the objective function of the IDKE

in different ways so that instruments are unnecessary. In discussing the first method of inference, we also

discuss the identification issue of γ using moment conditions. Of the two remaining methods, the second

method assumes fixed threshold effects and uses the data around the threshold point marginally, while the

third method assumes shrinking threshold effects and makes full use of data around the threshold point.

So the second and third methods are similar in spirit to the smoothed maximum score (SMS) estimator

of Horowitz (1992). On the other hand, the two methods differ from the SMS estimator in the sense that

they have slower convergence rates than the IDKE in YP while the SMS estimator improves the convergence

rate over the original maximum score estimator of Manski (1975, 1985). This feature of the methods is in

some sense similar to the smoothed least squares estimator (SLSE) of Seo and Linton (2007) which also has

a slower convergence rate than the usual least squares estimator (LSE) in, e.g., Yu and Fan (2019). Like

the original IDKE approach, both of these IDKE-smoothing methods are nonparametric and require kernel

and bandwidth selection. Practitioners can select an approach to inference from among these three methods

based on their suitability to the data and on data availability. For example, if instruments are available,

then the first method can be used; otherwise, the second and third methods may be preferable.

This paper also proposes two specification tests. The first tests for the existence of endogeneity, and the

second tests for the presence of threshold effects with and without instruments. Both tests are score-type

tests in the sense that they are constructed under the null, and their asymptotic properties are therefore easy

to develop. More importantly, these tests of structural shifts are easier to implement in practice than the

popular Wald test especially when instruments are unavailable. Because the Wald and score tests of structural

shifts when instruments are available are standard extensions of existing tests and are well understood in the

literature, these tests are relegated to an online supplement and the main text of the paper concentrates on

the test without instruments. Both specification tests discussed in the main text take a nonparametric form

and have an asymptotic normal (null) distribution. We suggest a wild bootstrap procedure to obtain critical

values for these tests. Practitioners are encouraged to give greater attention to the inference methods and

specification tests that are developed without instrumentation because good instruments are often hard to

find and justify in practical work.

The rest of this paper is organized as follows. Section 2 provides an overview of the three inference

methods and the two specification tests. Sections 3 to 5 analyze the three inference methods in turn and

derive the corresponding asymptotic theory for constructing CIs. Section 6 presents the limit theory of the

two specification tests and shows how to bootstrap the critical values. Section 7 includes some simulation

results and Section 8 concludes.4 Proofs of theorems with supporting propositions and lemmas are given

in Supplements A, B and C. Additional discussion on parametric tests for the presence of threshold effects

3We will not discuss inference on regular parameters such as β and δ because these cases fall within the standard literature;
see, e.g., CH, YP and YLP. The first inference method in this paper also covers β and δ.

4The dissertation of Qin Liao includes a serious empirical application using the techniques in this paper. To restrain the
length of the present paper, we decided to discuss this application in separate work.
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when instruments are available is given in Supplement D. These supplements are collected together for online

access in Yu et al. (2019).

A word on notation. The three inference methods in the paper are labeled Methods I, II and III. The

symbol ` is used to indicate the two regimes in (1) or the two specification tests, and is not always written

explicitly as ‘̀ = 1, 2′. For matrices, A > 0 means that A is positive definite, span (A) denotes the column

space of A, and Im is the m×m identity matrix. For a random sequence Zn, plimZn means the probability

limit of Zn as the sample size n → ∞. For any random vector x, x≤γ := x1 (q ≤ γ) and x>γ is similarly

defined. For any two random vectors x and y, x ⊥ y means x and y are independent. A parameter with a
subscript 0 is the true value of the parameter.

2 Overview of Inferential Methods and Specification Testing

This section briefly overviews the three inferential methods and the two specification tests, introduces nota-

tion useful in the subsequent development, and details assumptions employed in the asymptotic theory.

2.1 Methods of Inference for the Threshold Point

If we write the model (1) as y = G (x, q; θ) + ε, with E [ε|x, q] 6= 0, where G (x, q; θ) = x′β + x′δ1 (q ≤ γ) is

a nonlinear function of (x, q), then estimation of γ can be treated as in a nonlinear regression model with

endogeneity. As argued in Section 2.1.6 of Blundell and Powell (2003), the fitted-value method of 2SLS relies

heavily on linearity of the regression function, a feature that can explain why the 2SLS estimators in Yu

(2013a) are not consistent. To restore consistency of 2SLS, we need to maintain the linear structure of the

model. In other words, instead of projecting (x, q) on instruments z, we first project (x,x≤γ) for a fixed γ on

z to get the predictors x̂ and x̂≤γ ; then we can find β̂(γ) and δ̂(γ) by regressing y on x̂ and x̂≤γ ; finally, γ̂ is

obtained by minimizing
∑n
i=1(yi− x̂′iβ̂(γ)− x̂′≤γ,iδ̂(γ))2, from which we obtain β̂ = β̂(γ̂) and δ̂ = δ̂ (γ̂). It is

easy to see that this procedure is equivalent to the instrumental variable (IV) extremum estimation problem(
β̂, δ̂, γ̂

)
= arg min

β,δ,γ
(Y −Xβ −X≤γδ)′PZ(Y −Xβ −X≤γδ), (2)

where Y , X, X≤γ and Z are matrices stacking yi, x′i, x
′
≤γ,i and z respectively, and PZ is the projection matrix

onto the instrument space span (Z). This method, labeled as Method I, treats γ as a regular parameter and

is just nonlinear 2SLS, as in Amemiya (1974). We will also show that this 2SLS estimator may be viewed

as a version of the GMM estimator considered in Hall, Han and Boldea (2012) (HHB hereafter; see also

Andrews, 1993) but one that turns out to have more desirable asymptotic properties, including consistency,

in the endogenous threshold regression case.

To better understand the estimator γ̂, we consider the case where x = 1, β0 = 0 and δ0 = 1 are known, and

z = 1. For this simple case, y = 1 (q ≤ γ0)+ε, and the moment condition is E[zε] = E[ε] = E[y]−Fq(γ0) = 0,

where Fq(·) is the cdf of q. In other words, γ0 = F−1
q (E[y]) is the E[y]’th quantile of q, and γ̂ = F̂−1

q (y).

Following this intuition, we will show that: (i) γ̂ is
√
n-consistent, asymptotically normal, and the asymptotic

variance involves the density of q at γ0 (i.e., fq(γ0)) as in quantile regression; (ii) different from the usual

threshold regression estimators where γ̂ is asymptotically independent of
(
β̂, δ̂
)
, this new estimator γ̂ is

correlated with
(
β̂, δ̂
)
asymptotically. Given these two results, a valid CI for γ can be constructed jointly

with (β, δ) by means of the bootstrap, just as in quantile regression to avoid nonparametric estimation of

the density fq(γ0) in the asymptotic distribution.

Differing from CH estimation, this 2SLS estimator can be applied irrespective of whether q is endogenous.
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Yu (2013a) shows that when q is exogenous, the CH estimator is inconsistent if the first stage predictor is a

projection rather than a conditional mean. By contrast our 2SLS estimator requires only a linear projection

in the first stage, so it is more robust in this respect.

Moving away from instrument-based estimation, we next introduce instrument-free estimators in Methods

II and III by extending the IDKE of YP in different directions. Without instruments, the model reduces to

a nonparametric threshold regression that can be written in the form

y = m(x, q) + u = m−(x, q)1 (q ≤ γ) +m+(x, q)1 (q > γ) + u

= g(x, q) + ∆ (x, q) 1 (q ≤ γ) + u,

where u = ε − E[ε|x, q], m−(x, q) = x′β1 + E [ε|x, q], m+(x, q) = x′β2 + E [ε|x, q], g(x, q) = m+(x, q) when

q > γ and is the smooth extension of m+(x, q) when q ≤ γ, and ∆ (x, q) = m−(x, q)−m+(x, q). This setup

allows E[ε|x, q] to be kinked or discontinuous at γ. When E[ε|x, q] is smooth, then g(x, q) = x′β + E[ε|x, q]
and ∆ (x, q) = x′δ; otherwise, g(x, q) 6= x′β + E[ε|x, q] for q ≤ γ and ∆ (x, q) 6= x′δ. When E[ε|x, q] is
continuous ∆ (x, γ) = (1, x′, γ) δ.

To construct the IDKE of γ, we start by defining a generalized kernel function, following Müller (1991).

Definition: kh(·, ·) is called a univariate generalized kernel function of order p if kh(u, t) = 0 when u > t

or u < t− 1 and for all t ∈ [0, 1],

∫ t

t−1

ujkh(u, t)du =

{
1,

0,

if j = 0,

if 1 ≤ j ≤ p− 1.

A popular example of the generalized kernel function is obtained as follows. Define the space

Mp ([a, b]) =

{
g ∈ Lip ([a, b]) ,

∫ b

a

xjg(x)dx =

{
1,

0,

if j = 0,

if 1 ≤ j ≤ p− 1

}
,

where Lip([a, b]) denotes the space of Lipschitz continuous functions on [a, b]. Define k+(·, ·) and k−(·, ·) as
follows:

(i) The support of k−(x, r) is [−1, r]× [0, 1] and the support of k+(x, r) is [−r, 1]× [0, 1].

(ii) k−(·, r) ∈Mp ([−1, r]) and k+(·, r) ∈Mp ([−r, 1]) .

(iii) k+(x, r) = k−(−x, r).

(iv) k−(−1, r) = k+(1, r) = 0.

Condition (iv) implies that k−(·, r) is Lipschitz on (−∞, r] and k+(·, r) is Lipschitz on [−r,∞). This as-

sumption is important in deriving the asymptotic distribution of the IDKE of γ. Readers are referred to

Appendix A of Porter and Yu (2015) for related discussion in the DKE case.

To simplify the construction of kh(u, t), the following constraints are imposed on the support of x and

on the parameter space.

Assumption S: (y, x′, q)′ ∈ R×X ×Q ⊂ Rd, X = [0, 1]d−1, Q = [q, q], and γ ∈ Γ = [γ, γ] ⊂ Q, β ∈ B ⊂ Rd,
δ ∈ Ξ ⊂ Rd, where q can be −∞ and q can be ∞, and Γ, B and Ξ are compact.

We do not restrict δ0 to be fixed or to shrink to zero in all cases. Rather, δ0 is taken as fixed in Method II and

shrinks to zero in Method III. We assume x is continuously distributed, but note that continuous and discrete
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components may be accommodated, at least in a conceptually straightforward manner but at the expense of

additional notational complexity, by using the continuous covariate estimator within samples homogeneous

in the discrete covariates. Requiring the support of x to be [0, 1]d−1 is not restrictive as this support can be

achieved by use of a suitable monotone transformation such as the empirical percentile transformation. The

compactness assumption on X simplifies the proof and may be relaxed by imposing restrictions on the tail

of the distribution of x.

Define

k(·) = k+(·, 1) = k−(·, 1) ∈Mp ([−1, 1]) , kh(u) = k(u/h)/h,

k+(·) = k+(·, 0) ∈Mp ([0, 1]) , k+
h (u) = k+(u/h)/h,

k−(·) = k−(·, 0) ∈Mp ([−1, 0]) , k−h (u) = k−(u/h)/h,

and

kh(u, t) =


1
hk
(
u
h

)
,

1
hk+

(
u
h ,

t
h

)
,

1
hk−

(
u
h ,

1−t
h

)
,

if h ≤ t ≤ 1− h,
if 0 ≤ t ≤ h,
if 1− h ≤ t ≤ 1.

. (3)

Then kh(u, t) is a generalized kernel function of order p. We may construct a corresponding multivariate

generalized kernel function of order p by taking the product of univariate generalized kernel functions of

order p. We only require kh(u, t) to be a first order kernel function in Method II but may require it to be a

higher order kernel function in Method III.5 In particular, we use the following two conditions. For Method

II we use:

Assumption K: kh(u, t) takes the form of (3) with p = 1, k+(0) = k−(0) = 0, and k′+(0) > 0, k′−(0) < 0.

For Method III we use:

Assumption K′: kh(u, t) takes the form of (3) with p = s, and k+(0) = k−(0) > 0, where s is the

smoothness index of g(x, q) and will be defined in Assumption G ′ below.

Assumption K mimics Assumptions B2 and B3 of Delgado and Hidalgo (2000) (DH hereafter) and Assump-

tion K′ is Assumption K in YP with the additional requirement that p = s. Higher order kernels are required

in Assumption K′ only to achieve the optimal convergence rate of γ. In practice, p = 1 is suffi cient.

Given kh(u, t), the IDKE of γ is constructed as the extremum estimator which satisfies

γ̂ = arg max
γ

1

n

n∑
i=1

 1

n− 1

n∑
j=1,j 6=i

yjK
γ−
h,ij −

1

n− 1

n∑
j=1,j 6=i

yjK
γ+
h,ij

2

(4)

= : arg max
γ

1

n

n∑
i=1

∆̂2
i (γ) =: arg max

γ
Q̂n (γ) ,

where
Kγ−
h,ij =

∏d−1
l=1 kh(xlj − xli, xli) · k−h (qj − γ) =: Kx

h,ijk
−
h (qj − γ) ,

Kγ+
h,ij =

∏d−1
l=1 kh(xlj − xli, xli) · k+

h (qj − γ) =: Kx
h,ijk

+
h (qj − γ) ,

∆̂i (γ) = 1
n−1

∑n
j=1,j 6=i yjK

γ−
h,ij − 1

n−1

∑n
j=1,j 6=i yjK

γ+
h,ij .

(5)

5Note here that the usual symmetric kernel is a second order kernel, but the boundary kernel is only a first order kernel
because

∫
ukh(u, t) 6= 0,

5



For notational convenience, we here use the same bandwidth for each dimension of (x′, q)′, although there

may be some finite sample improvement from using different bandwidths in each dimension. As suggested

in Yu (2012, 2015b), we need only check the mid-points of the contiguous qi’s in the optimization process

of (4).6 In other words, the argmax operator is a mid-point operator. The summation in the parenthesis

of (4) excludes j = i, which is a standard strategy in converting a V-statistic to a U-statistic. Also, the

normalization factor
∑n
j=1,j 6=iK

γ±
h,ij does not appear in the construction of γ̂, thereby avoiding random

denominator issues in conditional mean estimation and simplifying the derivation of the limit distribution of

γ̂, a technique that dates back at least to Powell et al. (1989). This form of γ̂ has some practical advantages

especially when d is large. Since the conditional mean is estimated at the boundary point q = γ, the local

linear smoother (LLS) or local polynomial estimator (LPE) may be considered to ameliorate bias. However,

when d is large, there are not many data points in a h neighborhood of (x′i, γ)′. As a result, not only does

the LLS lose degrees of freedom (by estimating more parameters) but its denominator matrix can be close

to singular, which disrupts finite sample performance. Further, differing from regular parameter estimation

(such as conditional mean estimation), use of the LLS in this context does not affect the first-order asymptotic

distribution of γ̂.

CI construction based on the limit distribution of γ̂ under Assumption K′ and fixed threshold effects

(i.e., in the framework of YP) is challenging because the asymptotics involve a compound Poisson process,

making simulation awkward. Methods II and III use different smoothing schemes to achieve more convenient

asymptotic distributions. Method II assumes fixed threshold effects but uses data in the neighborhood of

γ0 only marginally. The resulting asymptotic theory is normal and the CI can be constructed by inverting

either the t or likelihood ratio (LR) statistic. Method III fully utilizes data in the neighborhood of γ0 but

assumes shrinking threshold effects. The limit distribution then involves a two-sided Brownian motion. As

suggested in Hansen (2000) we can invert the LR statistic (rather than the t-statistic) to improve finite-

sample performance. As expected, due to insuffi cient usage of data information in the neighborhood of γ0,

the convergence rates of the IDKE in both these methods are slower than the O (n) rate in YP. In Method

II we also require k′±(0) 6= 0, or else the convergence rate of the IDKE is even slower.

We next provide some intuition that helps to justify the extremum estimator γ̂. For this purpose we

impose the following Assumption F on the distribution of (x′, q)′ in Method II and Assumptions G and G′

on g(x, q) in Method III.

Assumption F: The density f(x, q) of (x′, q)′ is second order continuously differentiable and satisfies

0 < f ≤ f(x, q) ≤ f <∞ for (x′, q)′ ∈ X ×Γε, where Γε :=
(
γ − ε, γ + ε

)
for some ε > 0 and and (f, f) are

some fixed quantities.

Assumption G: g(x, q) is second order continuously differentiable on X × Γε.

Assumption G′: g(x, q) is s’th order continuously differentiable on X × Γε with s ≥ d.

Assumption F implies that fq(γ) is continuous, and 0 < f
q
≤ fq(γ) ≤ fq <∞ for γ ∈ Γε and fixed

(
f
q
, fq

)
,

and the conditional density fx|q(x|q) is bounded below and above for (x′, q)′ ∈ X × Γε; see Yu and Zhao

(2013) for relaxation of these conditions. The first part of Assumption F implies that there are no discrete

covariates in x. As mentioned earlier in the remarks following Assumption S, this assumption is made for

simplicity, just as in Robinson (1988), and is not critical to the methodology or the limit theory. The second

6Although in the fixed-threshold-effect framework with k±(0) > 0 the asymptotic distribution of γ̂ depends on whether the
left endpoint or the middle point of the maximizing interval is taken as the maximizer, the asymptotic distributions of the two
IDKEs in the present paper are both invariant to such choices of γ̂.
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part of Assumption F implies that γ0 is not on the boundary of Q. Under these two assumptions, we can
expect the objective function Q̂n (γ) to converge to

E
[
{E[y|x, q = γ−]f(x, γ)− E[y|x, q = γ+]f(x, γ)}2

]
=

∫
(E[y|x, q = γ−]− E[y|x, q = γ+])

2
f(x, γ)2f(x)dx.

Since f(x) and f(x, γ) are continuous in x and γ, there will be a jump in the limit only if γ = γ0 which

provides identifying information. In view of these properties, the threshold point can then be identified and

consistently estimated by maximizing Q̂n (γ) under an additional requirement on the differential

∆ (x, γ0) := E[y|x, q = γ0−]− E[y|x, q = γ0+], (6)

which enables identification of γ0.

Assumption I: ∆ (x, γ0) 6= 0 for x in some set of positive Lebesgue measure in X .

In Method I, ∆ (x, γ0) = (1, x′, γ0) δ0, so we can replace ∆ (x, γ0) by (1, x′, γ0) δ0 in Assumption I. For

comparison, we state the following Assumption I′.

Assumption I′: δ0 6= 0, where 6= here means that at least one element is unequal.

Note that Assumption I is stronger than Assumption I′ when ∆ (x, γ0) = (1, x′, γ0) δ0. For example,

δ0 =


(

1,0,− 1
γ0

)′
,

(0,0, 1)′,

if γ0 6= 0,

if γ0 = 0,

is nonzero but does not satisfy Assumption I. Assumption I implies that P ((1, x′, γ0) δ0 6= 0) > 0, which

excludes the continuous threshold regression (CTR) of Chan and Tsay (1998) (see also Hansen (2017)).

For comparison, we also review the DKE in DH here. Define the DKE

γ̃ = arg max
γ

[
1

n

∑n

j=1
yjK

γ−
h,j −

1

n

∑n

j=1
yjK

γ+
h,j

]2

= : arg max
γ

∆̂2
o (γ) =: arg max

γ
Q̃n (γ) ,

where

Kγ−
h,j =

∏d−1

l=1
kh(xlj − xol, xol) · k−h (qj − γ) , Kγ+

h,j =
∏d−1

l=1
kh(xlj − xol, xol) · k+

h (qj − γ) ,

and xo is some fixed point in the interior of X .7 As explained in YP, selection of xo is diffi cult from both

theoretical and practical perspectives. As distinct from the DKE, the IDKE procedure integrates the jump

information over all the xi, thereby removing the problem of choosing xo. Further, usage of all the data

ensures that the IDKE has greater identifying capability than the DKE in both Methods II and III.

7Strictly speaking, DH normalize the first term of ∆̂o (γ) by f̂γ−o := 1
n

∑n

j=1
Kγ−
h,j and the second term by f̂γ+

o :=

1
n

∑n

j=1
Kγ+
h,j . However, their estimator is asymptotically equivalent to arg max

γ
∆̂2
o (γ) /f(xo, γo)

2 and has the same asymptotic

distribution as γ̃.
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2.2 Overview of Two Specification Tests

The first specification test addresses potential endogeneity and the corresponding hypotheses H(1) are for-

mulated as follows

H
(1)
0 : E[ε|x, q] = 0,

H
(1)
1 : E[ε|x, q] 6= 0.

This exogeneity test can be conducted prior to model estimation. When instruments are available, the

Hausman test in Kapetanios (2010) can be applied. In the present paper we therefore consider only the case

without instruments and apply the techniques developed in Fan and Li (1996) and Zheng (1996) to test the

null H(1)
0 . In the second test, the hypotheses H(2) are

H
(2)
0 : β1 = β2 or δ = 0,

H
(2)
1 : β1 6= β2 or δ 6= 0.

If H(1)
0 is not rejected, i.e., there is no evidence of endogeneity, then H(2) involve a conventional paramet-

ric structural change test, such as that considered in Davies (1977, 1987), Andrews (1993), Andrews and

Ploberger (1994) and Hansen (1996), among others. If H(1)
0 is rejected, the ensuing situation is more com-

plex. When there are instruments, Wald-type test statistics such as the sup-statistic in Section 5 of Caner

and Hansen (2004) or score-type statistics such as those in Yu (2013b) can be used. Since the asymptotic

distributions of both these types of test statistics are not pivotal, the simulation method of Hansen (1996)

and De Jong (1996) can be applied to obtain critical values. Details concerning these tests are given in

Supplement D of the paper because techniques for these tests are nowadays standard.

When there are no instruments, the Wald-type statistic is hard to implement since its asymptotic dis-

tribution is hard to derive given that δ̂ can only be estimated at a nonparametric rate —see Section 3.3 of

Porter and Yu (2015) for discussion.8 However, the score-type test of Porter and Yu (2015) can be extended

to this case with some technical complications. Importantly, the hypotheses H(2) relate to whether m(x, q)

is continuous, so H(2)
0 encompasses more data generating processes (DGPs) than the null hypothesis in the

usual structural change literature where m(x, q) has a simple parametric form. In other words, the usual

parametric tests have power against alternatives in which m(x, q) does not take the form x′β + x′δ1 (q ≤ γ)

(see, e.g., Section 5.4 of Andrews (1993))9 , but our test has only trivial asymptotic power in such continuous

m(x, q) cases. A simple example may clarify the point. Suppose m(x, q) = α+ βq, in contrast to the speci-

fications employed for our tests, which are based on (1), or y = α+ δ1 (q ≤ γ) + ε. It is easy to see that the

usual tests have power against m(x, q), which is very smooth in this case. In summary, the usual tests have

power against both misspecification and certain types of structural change, whereas our test has non-trivial

power only against threshold structural change, which may be more relevant in practical work.10 But this

8Gao et al. (2008) discuss an average form of such a test in the time series context. But their test is not easy to extend to
the case with a nonparametric threshold boundary as in the present framework. See also Hidalgo (1995) for a nonparametric
conditional moment test for structural stability in a fully nonparametric environment, which focuses on global stability rather
than local stability as here.

9 In this framework and assuming m(x, q) = x′β(q), the structural change tests focus on whether β(q) = β. See, e.g., Chen
and Hong (2012), Kristensen (2012) and references therein for related tests in the time series context using nonparametric
techniques. Actually, we can test whether β(q) is continuous by extending the tests below, e.g., we can construct residuals

êi in I
(2)
n by estimating β(q) using estimation techniques from the varying coeffi cient model (VCM) literature - see Robinson

(1989, 1991), Cleveland et al. (1992) and Hastie and Tibshirani (1993) for early developments, and Fan and Zhang (2008) for
a summary of recent developments.
10 In the same way, there are also cases where the parametric test does not have power when there is a nonparametric threshold

effect; see Example 1 of Hidalgo (1995).
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advantage does not come for free: the usual tests have power against n−1/2 local alternatives, while our test

needs a larger (than n−1/2) local alternative to generate non-trivial power. Understandably so, because our

test is essentially nonparametric whereas the usual tests are parametric.

In the following discussion of the two specification tests, H0 indicates both H
(1)
0 and H

(2)
0 , and H1

indicates both H(1)
1 and H(2)

1 , 1Γ
q = 1 (q ∈ Γ), 1Γ

i = 1 (qi ∈ Γ), mi = m(xi, qi) = E[yi|xi, qi], fi = f(xi, qi),

Kh,ij = Kx
h,ij · kh(qj − qi), and Lb,ij = Lxb,ij · lb(qj − qi) with lb(·) similarly defined as kh(·). Denote the class

of probability measures under H(`)
0 as H(`)

0 and under H(`)
1 as H(`)

1 . Both H(`)
0 and H(`)

1 are characterized

by m(·), so we acknowledge the dependence of the distribution of y given (x′, q)′ upon m(x, q) by denoting

probabilities and respective expectations as Pm and Em. To unify notation, we define ui = yi−E[yi|xi, qi] =

yi −mi under both the null and alternative in these tests.

For the first test, we use the statistic

I(1)
n =

nhd/2

n (n− 1)

∑
i

∑
j 6=i

Kh,ij êiêj ,

and, for the second, we use

I(2)
n =

nhd/2

n (n− 1)

∑
i

∑
j 6=i

1Γ
i 1Γ
jKh,ij êiêj .

The exact forms of êi in these two tests are defined later. To motivate the statistics, let e = y−m(x), where

m(·) = arg inf
m̃(x,q)=x′β+x′δ1(q≤γ)

E
[
(y − m̃(x, q))

2
]

= arg inf
m̃(x,q)=x′β+x′δ1(q≤γ)

E
[
(m(x, q)− m̃(x, q))

2
] (7)

in the first test, and

m(·) = arg inf
m̃∈Cs(B,X×Q)

E
[
(y − m̃(x, q))

2
1Γ
q

]
= arg inf

m̃∈Cs(B,X×Q)
E
[
(m(x, q)− m̃(x, q))

2
1Γ
q

]
,

(8)

in the second test, where Cs (B,X ×Q) is the class of s times continuously differentiable functions on X ×Q
with all derivatives up to order s bounded by B. In other words, we use m̃(x, q) = x′β + x′δ1 (q ≤ γ) to

approximate m(x, q) in the first test and use m̃ ∈ Cs (B,X ×Q) to approximate m(x, q) in the second test.

Note that in the first test the model need not have a threshold effect. The reason is that the class of functions

{x′β + x′δ1 (q ≤ γ)} includes the linear function where δ = 0, the CTR of Chan and Tsay (1998) where

δ 6= 0 but δx = 0 and δα + δqγ = 0, and the usual threshold regression where δx 6= 0 or δα + δqγ 6= 0; see

Yu (2017) for more discussion on misspecified threshold regression. Here, δ is partitioned according to the

partition of x = (1, x′, q)′ as
(
δα, δ

′
x, δ
′
q

)′
.

Note further that e = u under H0, so e has the same meaning in both I
(1)
n and I(2)

n under H0. Ob-

serve that E[eE[e|x, q]f(x, q)] = E
[
E [e|x, q]2 f(x, q)

]
≥ 0 in the first test and E

[
eE [e|x, q] f(x, q)1Γ

q

]
=

E
[
E [e|x, q]2 f(x, q)1Γ

q

]
≥ 0 in the second test where the equalities hold if and only if H0 holds. So

we can construct the statistic based on the moment E[eE[e|x, q]f(x, q)] in the first test and the moment

E[eE [e|x, q] f(x, q)1Γ
q ] in the second test. Here, f(x, q) is added in to avoid the random denominator prob-

lem in kernel estimation, and 1Γ
q appears in the second test because threshold effects can occur only on

q ∈ Γ.

To construct a feasible test statistic, we need sample analogues of e and E[e|x, q]f(x, q). For the first

9



test, the sample counterpart of e is

êi = yi − ŷi = yi −
[
x′iβ̂ + x′iδ̂1 (qi ≤ γ̂)

]
, (9)

where
(
β̂
′
, δ̂
′
, γ̂
)′
is the LSE. For the second test, let

êi = yi − ŷi = (mi − m̂i) + (ui − ûi) , (10)

where

ŷi =
1

n− 1

∑
j 6=i

yjLb,ij

/
f̂i (11)

and f̂i is the corresponding kernel estimator of fi given by

f̂i =
1

n− 1

∑
j 6=i

Lb,ij ,

and m̂i and ûi are defined in the same way as ŷi in (11) with yj replaced by mj and uj , respectively. Under

H0, êi is a good estimate of ui, while under H1, êi includes a bias term which generates power. Now,

E[e|x, q]f(x, q) at (x′i, qi)
′ is estimated by 1

n−1

∑
j 6=i êjKh,ij in the first test and by 1

n−1

∑
j 6=i êjKh,ij1

Γ
j in

the second test. Hence, we may regard I(1)
n and I(2)

n as the sample analogues of E[eE[e|x, q]f(x, q)] and

E[eE[e|x, q]f(x, q)1Γ
q ]. The statistics are constructed under the null, mimicking the idea of score tests. For

example, the construction of I(2)
n does not involve H(2)

1 at all (see Figure 1 of Porter and Yu (2015) for an

intuitive illustration in a simple case without x), whereas the usual test statistics in the structural change

literature typically involve H(2)
1 in one way or another.

3 Inference Based on the 2SLS Estimator

In this section, we derive the asymptotic distribution of the 2SLS estimator of θ and discuss some identifia-

bility results for γ when estimation is based on moment conditions. First, note that the 2SLS estimator of

γ can be written in GMM form as

γ̂ = arg min
γ

Q̂n (γ) ,

where

Q̂n (γ) = min
β,δ

Q̂n (θ) := min
θ

ĝn (θ)
′
Ŵ ĝn (θ) (12)

with θ =
(
β′, δ′

)′
, Ŵ =

(
n−1Z ′Z

)−1
and

ĝn (θ) =
1

n

n∑
i=1

gi (θ) =
1

n

n∑
i=1

zi
(
yi − x′iβ − x′≤γ,iδ

)
.

To develop asymptotic properties of θ̂ we make the following assumption. First, throughout our analysis we

use the notation δn for the true value of δ when we allow δ to shrink to zero, as in Hansen (2000), and we

use δ0 to denote the true value of δ when δ is fixed to signify this difference.

Assumption IV: E [zε] = 0, dim (z) = l ≥ 2d+ 1, δn/ ‖δn‖ → c,

G =
(
E [zx′] ,E

[
zx′≤γ0

]
,E [zx′|q = γ0] cfq (γ0)

)
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is of full column rank, Gγ = E
[
z
(
x′,x′≤γ

)]
=:
(
G1, G2,γ

)
is of full column rank for any γ ∈ Γ, W :=

E [zz′] > 0, and Ω := E
[
zz′ε2

]
> 0. Also, there does not exist a vector a ∈ R2d such that Gγa = G2,γ0

c for

any γ 6= γ0.

When δ is fixed, the parameter c is just the normalized form of δ. When ‖δn‖ → 0, only the components

of c that correspond to the lowest shrink rate of δn are nonzero. Full column rankness of G excludes CTR

models where x′δn|q = γ0 is always zero so that the third part of G is a zero matrix.11 But this assumption

is nonetheless weaker than full column rankness of E [zx′|q = γ0]. This is because if E [zx′|q = γ0] has full

column rank, then 1 and q cannot be elements of x simultaneously; otherwise, the first and the last columns

of E [zx′|q = γ0] would be collinear.

All other conditions in Assumption IV are standard except the last condition. This condition is required

for the identification of γ0. Take the fixed-δ case as an example where c can be taken as δ0 and no normal-

ization on δ is required. Note that if E [zε] = 0, then E [zy] = Gγ0
θ0. If there exists an a := (a′1, a

′
2)
′ such

that Gγa = G2,γ0
δ0 for some γ 6= γ0, then under this γ, we can still let θ = (β0 + a1, a2) satisfy the moment

conditions, in which case the model is not identified by the moment conditions. This condition requires that

the l-dimensional vector G2,γ0
δ0 /∈

⋃
γ 6=γ0

span
(
G1, G2,γ

)
, where span

(
G1, G2,γ

)
is a 2d < l dimensional

space. There is an important case where this condition is violated. If q is independent of (z′,x′)
′ as in the

structural change model where q is the time index, then G2,γ0
= G1Fq (γ0) and a =

(
Fq (γ0) δ′0,0

′)′ satisfy
Gγa = G2,γ0

δ0. In the TR context, if q is independent of the rest of the system, then q should be included in

z, and cannot be independent of (z′,x′)
′. This condition also implies the usual assumption that z cannot be

independent of the endogenous variables (x′, q)
′.12 If this were the case, then G2,γ0

= E [z]E
[
x′≤γ0

]
would

span a one-dimensional space, which can obviously be spanned by G1 = E [z]E [x′] and G2,γ = E [z]E
[
x′≤γ

]
.

Theorem 1 Under Assumptions F, I, IV and S, θ̂ and especially γ̂ are consistent and have limit distribution
given by ( √

nI2d 0

0
√
n ‖δn‖

)(
θ̂ − θ0

γ̂ − γ0

)
d−→ N (0, V )

where V = (G′WG)−1G′WΩWG(G′WG)−1.

Note that we need only Assumption I′ to show the consistency of γ̂. But to derive the asymptotic distribution

we need Assumption I. Otherwise, G need not be of full column rank.13 Also, as predicted in Section 2.1,

fq (γ0) appears in V and γ̂ is not asymptotically independent of
(
β̂, δ̂
)
. Ŵ can be any positive definite

matrix besides
(
n−1Z ′Z

)−1
. We still use Ŵ to denote such a general weight matrix and use W to denote

its limit.

To provide some intuition on the asymptotic variance of γ̂, consider the simple example in Section 2.1

again. In this example, G = fq (γ0), Ω = V ar (ε) and W is irrelevant, so V = V ar (ε) /fq (γ0)
2. In fact, γ̂ =

F̂−1
q (y), so

√
n (γ̂ − γ0) =

√
n
[
F̂−1
q (y)− F−1

q (y)−
(
F̂−1
q (E [y])− F−1

q (E [y])
)]

+
√
n
(
F̂−1
q (E [y])− F−1

q (E [y])
)

+
√
n
(
F−1
q (y)− F−1

q (E [y])
)
. The first term is, roughly speaking,

√
n (
∑n
i=1 (ψi (y)− ψi (E [y]))) with ψi (τ) =

11Note that zero x′δn|q = γ0 does not imply E
[
zx′≤γ0

]
δn = 0 or E

[
zx′>γ0

]
δn = 0.

12 In the nonlinear scenario, uncorrelatedness in the linear scenario should be strengthened to independence. Also, all elements
of (x′, q)′ should be endogenous; otherwise, z should include the exogenous elements of (x′, q)′ and cannot be independent of
(x′, q)′.
13 In Remark 2 of Seo and Shin (2016) where their FD-GMM estimator, which is similar to our estimator, is used to estimate

the dynamic panel threshold regression, they claim that the asymptotic distribution of θ̂ is invariant to whether the model is
CTR. That statement is not correct as can be seen by noting that their Gγ (γ0) = 0 in CTR so that the asymptotic variance
matrix of θ̂ is undefined. The zeroness of Gγ (γ0) is due to some redundancy in the parameter θ when the model is CTR. If
we rewrite the CTR as y = x′β + (q − γ) δ1 (q ≤ γ) + ε, then the corresponding G under the moment conditions E [zε] = 0 is(
E [zx′] ,E

[
z≤γ0

(q − γ0)
]
,
(
E [z (q − γ0) |q = γ0] fq (γ0)− E

[
z≤γ0

])
δ0
)
, which is of full column rank.
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τ−1(qi≤F−1
q (τ))

fq(γ0) . By a stochastic equicontinuity argument this term is op (1), and so the asymptotic distribu-

tion of
√
n (γ̂ − γ0) is the same as that of

√
n
(
F̂−1
q (E [y])− F−1

q (E [y])
)

+
√
n
(
F−1
q (y)− F−1

q (E [y])
)
, where

the first term represents the randomness in F̂−1
q and the second term represents the randomness in y (recall

that γ̂ = F̂−1
q (y)). By the Bahadur representation,

√
n
(
F̂−1
q (E [y])− F−1

q (E [y])
)
≈ 1√

n

∑n
i=1

Fq(γ0)−1(qi≤γ0)
fq(γ0) ,

and by the Delta method,
√
n
(
F−1
q (y)− F−1

q (E [y])
)
≈ 1√

n

∑n
i=1

yi−E[y]
fq(γ0) = 1√

n

∑n
i=1

εi+1(qi≤γ0)−Fq(γ0)
fq(γ0) .

Hence, by the continuous mapping theorem (CMT),
√
n (γ̂ − γ0) ≈ 1√

n

∑n
i=1

(
Fq(γ0)−1(qi≤γ0)

fq(γ0) +
εi+1(qi≤γ0)−Fq(γ0)

fq(γ0)

)
=

εi
fq(γ0) , and the asymptotic variance is V = V ar (ε) /fq (γ0)

2. To consider the effect of δn on γ̂, suppose y =

δn1 (q ≤ γ0)+ε with δn known. Then, by a similar argument, we can show
√
n (γ̂ − γ0) ≈ 1√

n

∑n
i=1

εi
δnfq(γ0) ,

so that the asymptotic variance of γ̂ is O
(

1
nδ2
n

)
. When δn is smaller, the asymptotic variance of γ̂ is larger,

and when δn shrinks to zero the convergence rate of γ̂ is
√
n |δn|.

By choosing Ŵ = Ω̂−1 with Ω̂ = n−1
∑n
i=1 ziz

′
iε̂

2
i and ε̂i = yi − x′iβ̂ − x′≤γ,iδ̂, we get the asymptotically

effi cient estimator of θ0 and the following result holds.

Corollary 1 Under the same assumptions as in Theorem 1, if θ̂ is estimated using Q̂n (θ) with Ŵ = Ω̂−1,

then ( √
nI2d 0

0
√
n ‖δn‖

)(
θ̂ − θ0

γ̂ − γ0

)
d−→ N

(
0, (G′Ω−1G)−1

)
.

When the model is homoskedastic, i.e., E
[
ε2|z

]
= σ2, our 2SLS estimator is effi cient. For inference concerning

γ we suggest use of bootstrap methods such as in Hall and Horowitz (1996), Brown and Newey (2002) or Lee

(2014) to avoid estimating E [zx′|q = γ0] and fq (γ0) , for instance by numerical derivatives, as in Section 7.3

of Newey and McFadden (1994), or by some kernel or series method.

3.1 Comparison with the GMM of HHB and the 2SLS of CH

In the structural change context, HHB show that the GMM estimator based on the following criterion is

generally inconsistent:

γ̃ = arg min
γ

Q̃n (γ) ,

where

Q̃n (γ) = min
β1,β2

Q̃n (θ) := min
β1,β2

m̃n (θ)
′
W̃ m̃n (θ)

with

m̃n (θ) =
1

n

n∑
i=1

mi (θ) =
1

n

n∑
i=1

(
m1i (θ)

m2i (θ)

)
:=

1

n

n∑
i=1

zi

(
(yi − x′iβ1) 1(qi ≤ γ)

(yi − x′iβ2) 1(qi > γ)

)
.

As commented by HHB, inconsistency of γ̃ stems from the fact that the minimand is a quadratic form in

the sample moment, thereby taking the form of a square of sums. This "square of sums" structure provides

an opportunity for the effects of misspecification associated with the selection of the wrong threshold point

to be an offsetting balancing factor in the minimand, leading to inconsistency. In contrast, the objective

function of the 2SLS estimator in CH takes a "sum of squares" form, which generates a consistent estimator

of γ. Specifically, the objective function of the 2SLS of CH is

Ŝn (θ) =
1

n

n∑
i=1

(
yi − β′1

(
Π̂′zi

)
1(qi ≤ γ)− β′2

(
Π̂′zi

)
1(qi > γ)

)2

, (13)
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where Π̂′zi delivers a first-stage prediction of xi.14 Given the comments by HHB, it may seem surprising

that our GMM estimator is consistent even if the minimand is also a square of sums. The key point, however,

is not the distinction between the "square of sums" and "sum of squares" criteria in this case, but rather

the fact that the threshold variable q in the structural change model is a time index which is independent

of the other components of the system (so that offsetting is possible, resulting in inconsistency).

Before a formal discussion on these points, note first that our 2SLS estimator is a special GMM estimator

of HHB. Specifically, it is easy to check that when

W̃ =

(
Il

Il

)
Ŵ
(
Il Il

)
, (14)

Q̃n (θ) = Q̂n (θ). This W̃ is only positive semidefinite, not positive definite. In other words, our 2SLS

estimator does not fully explore the information in m̃n (θ). This is why we need l > 2d instruments, whereas

HHB’s GMM estimator needs only l > d instruments. This is also why our 2SLS estimator is not consistent

when q has properties like a time index (because the general GMM estimator is not consistent). The moment

conditions in m̃n (θ) explore the special structure of threshold regression - β1 and β2 are involved only in

one regime of the system, while the moment conditions in ĝn (θ) are designed for any nonlinear system

y = G (x, q; θ) + ε with E [ε|x, q] 6= 0. Essentially, the moment conditions m̃n (θ) explore the validity of the

moments E
[
zε≤γ0

]
= 0 and E

[
zε>γ0

]
= 0, whereas ĝn (θ) explores only E [zε] = E

[
zε≤γ0

]
+E

[
zε>γ0

]
= 0.

We can now formally state the consistency of γ̃ when q is not independent of (z′,x′, ε)
′. First, we impose

the following assumption. Because we concentrate on the identification issue below, we here assume that δ

is fixed for notational simplicity.

Assumption IV′: dim (z) = l ≥ d + 1, W̃
p−→ W > 0,15 and E

[
zx′≤γ

]
and E

[
zx′>γ

]
are of full column

rank for any γ ∈ Γ. (i) If q is exogenous (i.e., q is included in z, and E [ε|z] = 0), then there does not exist

a = (a′1, a
′
2)
′ ∈ R2d such that E

[
zx′>γ

]
a2 = E

[
zx′>γ0

]
δ0 for any γ < γ0 or E

[
zx′≤γ

]
a1 = E

[
zx′≤γ0

]
δ0

any γ > γ0. (ii) If q is endogenous and only E
[
zε≤γ0

]
= 0 and E

[
zε>γ0

]
= 0 hold, then there does not

exist a = (a′1, a
′
2)
′ ∈ R2d such that E

[
zx′≤γ

]
a1 = E [zε≤γ ] , E

[
zx′>γ0

]
δ0 + E

[
zx′>γ

]
a2 = E [zε>γ ] for any

γ < γ0 or E
[
zx′≤γ

]
a1 − E

[
zx′≤γ0

]
δ0 = E [zε≤γ ] and E

[
zx′>γ

]
a2 = E [zε>γ ] for any γ > γ0.

Theorem 2 Under Assumptions F, I′, IV′ and S, γ̃ is consistent.

HHB assume W̃ = diag
(
W̃1, W̃2

)
with W̃1

p−→ W1 > 0 and W̃2
p−→ W2 > 0, but we do not need such

a restriction to show the consistency of γ̃ or inconsistency of γ̃ in the HHB setup. Similar to γ̂, we only

require Assumption I′ rather than the stronger Assumption I to prove the consistency of γ̃. In contrast to

Assumption IV, we need different assumptions here for the identification of γ0 depending on whether q is

exogenous or not. In this sense, reducing m̃n (θ) to ĝn (θ) makes the treatment of identification more uniform

although there is some loss of information in doing so. When q is exogenous, Assumption IV′(i) requires

some extra variation in E [zx′|q = γ] when γ moves away from γ0. This condition implicitly precludes the

possibility that q is independent of (z′,x′)
′ because if this is the case, then E

[
zx′>γ

]
= E [zx′] (1− Fq (γ))

and E
[
zx′>γ0

]
= E [zx′] (1− Fq (γ0)), so a2 can be chosen as

1−Fq(γ0)
1−Fq(γ) δ0 and, similarly, a1 can be chosen as

Fq(γ0)
Fq(γ) δ0. When q is endogenous, we need also to take account of the variation in E [zε≤γ ] and E [zε>γ ] as γ

moves away from γ0. We provide more intuition on such identifying information in the following discussion.

14Following the general setup of this paper we do not assume a threshold effect in the first stage.
15To save notation, we still use W to denote the limit of W̃ . This should not introduce any confusion.
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The proof of the theorem also establishes the following results. First, if q is exogenous and also indepen-

dent of (z′,x′)
′, then γ0 cannot be identified by Q̃n (γ). This is essentially the case considered by HHB, and

we label it case (o). Second, in case (i), both groups of moment conditions in mi (θ) are required to identify

γ0; using only m1i (θ) or m2i (θ) is not enough. Third, in case (ii), either group of moment conditions in

mi (θ) can identify γ0.
16 For example, if there does not exist a1 ∈ Rd such that E

[
zx′≤γ

]
a1 = E [zε≤γ ]

for any γ < γ0 and E
[
zx′≤γ

]
a1 − E

[
zx′≤γ0

]
δ0 = E [zε≤γ ] for any γ > γ0, then γ0 can be identified by

only m1i (θ). In comparison with case (i), we can see that the identifying power in either group of moment

conditions in mi (θ) comes solely from the correlation between q and ε. In other words, endogeneity is helpful

in identifying γ0 by moment conditions.

It seems that the correlation of q with the rest of the system is critical for the identification of γ0. When q

is independent of (z′,x′, ε)
′, then even the combination of m1 and m2 cannot identify γ0; if q is independent

of ε but not (z′,x′)
′, then combination of m1 and m2 can (but m1 or m2 individually cannot) identify γ0;

if q is correlated with all of (z′,x′, ε)
′, then either m1 or m2 can identify γ0.

17 What is the intuition here?

We can understand these results by using Lemma 2.3 of Newey and McFadden (1994) which states that as

long as WE [mi (θ)] 6= 0 for θ 6= θ0, then θ0 is identified. In case (o), for any W , WE [mi (θ)] 6= 0 for θ 6= θ0

cannot hold. In case (i), when W > 0 or W =

(
Il

Il

)
W0

(
Il Il

)
for some W0 > 0, WE [mi (θ)] 6= 0 for

θ 6= θ0. In case (ii), when W > 0 or W =

(
Il

Il

)
W0

(
Il Il

)
for some W0 > 0 or W =

(
W1 0

0 0

)
with

W1 > 0 or W =

(
0 0

0 W2

)
with W2 > 0, WE [mi (θ)] 6= 0 for θ 6= θ0. To be specific, we identify γ0 from

the fact that

WE

[
z

(
(y − x′β1) 1(q ≤ γ)

(y − x′β2) 1(q > γ)

)]
= 0

only if γ = γ0 for any β1 and β2, or equivalently,

W

(
E
[
zx′≤γ

]
β1

E
[
zx′>γ

]
β2

)
6= WE

[
zy≤γ

zy>γ

]

when γ 6= γ0 for any β1 and β2. Note that

E

[
zy≤γ

zy>γ

]
= E

 z
(
x′≤γ0

β10 + x′>γ0
β20 + ε

)
1(q ≤ γ)

z
(
x′≤γ0

β10 + x′>γ0
β20 + ε

)
1(q > γ)

 ,
which is equal to (

E
[
zx′≤γ

]
β10 + E [zε≤γ ]

E
[
zx′γ<≤γ0

]
β10 + E

[
zx′>γ0

]
β20 + E [zε>γ ]

)
16Assume W̃ =diag

(
W̃1, W̃2

)
. Because there is no restriction on W̃1 and W̃2 to obtain the consistency of γ̃ in both case

(i) and case (ii), when W̃1

(
W̃2

)
is much larger than W̃2

(
W̃1

)
, we are essentially using only m1i (θ) (m2i (θ)) in Q̃n (θ). In

this sense, it is surprising to see that case (i) requires both m1i (θ) and m2i (θ), while case (ii) requires only m1i (θ) or m2i (θ).
Essentially, the limiting behaviors of Q̃n (γ) in these two cases are quite different; see the following discussion and example for
more intuition on this point. Importantly, note that either W̃1 = 0 or W̃2 = 0 violates W̃ > 0, so Assumption IV′ does not
hold and the identifiability of γ0 cannot follow from Theorem 2 in this case. The new results here are that in case (ii), W̃ > 0 is
not necessary for identification (actually, in case (i), W̃ > 0 is not necessary either, e.g., the W̃ in (14) is not positive definite).
17 In cases (o) and (i), we require only E[ε|z, q] = 0, and in case (ii), q can be independent of (z′,x′)′. Here, we use three

sequentially stronger assumptions to distinguish these three cases.
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when γ < γ0, and equal to (
E
[
zx′≤γ0

]
β10 + E

[
zx′γ0<≤γ

]
β20 + E [zε≤γ ]

E
[
zx′>γ

]
β20 + E [zε>γ ]

)

when γ > γ0. In case (o), E [zε≤γ ] = E [zε>γ ] = 0, E
[
zx′≤γ

]
= E [zx′]Fq (γ), E

[
zx′>γ

]
= E [zx′] (1− Fq (γ))

and E
[
zx′γ1<≤γ2

]
= E [zx′] (Fq (γ2)− Fq (γ1)), where γ1 < γ2. So we can choose β1 and β2 such that

β1 = β10 and (1− Fq (γ))β2 = (Fq (γ0)− Fq (γ))β10 + (1− Fq (γ0))β20 (15)

when γ < γ0 and

β2 = β20 and Fq (γ)β1 = Fq (γ0)β10 + (Fq (γ)− Fq (γ0))β20 (16)

when γ > γ0 to make the equalities hold.
18 In other words, plimQ̃n (γ) = 0 for any γ. In case (i),

E [zε≤γ ] = E [zε>γ ] = 0. So when γ < γ0, we can choose β1 = β10 to make E
[
zx′≤γ

]
β1 = E [zy≤γ ] but

cannot choose β2 such that E
[
zx′>γ

]
β2 = E [zy>γ ], and when γ > γ0, we can choose β2 = β20 to make

E
[
zx′>γ

]
β2 = E [zy>γ ] but cannot choose β1 such that E

[
zx′≤γ

]
β1 = E [zy≤γ ]. In other words, if we use

only m1, then plimQ̃n (γ) = 0 for γ ∈
[
γ, γ0

]
and if we use only m2, then plimQ̃n (γ) = 0 on [γ0, γ], while if

we use both m1 and m2, then plimQ̃n (γ) = 0 only if γ = γ0. In case (ii), E [zε≤γ ] 6= 0 and E [zε>γ ] 6= 0. So

even if we use only m1 or m2, the equalities can hold only at γ = γ0.

The above arguments also show a key difference between the identification sources of the HHB GMM

estimator and the CH 2SLS estimator. In CH,

plimŜn (θ) = E
[(
y − β′1 (Π′z) 1(q ≤ γ)− β′2 (Π′z) 1(q > γ)

)2]
,

which assumes that E [y|z, q] = β′1 (Π′z) 1(q ≤ γ)+β′2 (Π′z) 1(q > γ) and uses the conditional mean difference

of y below γ0 and above γ0 to identify γ0 (just as in standard least squares estimation where E [ε|x] = 0

and we can calibrate y against its conditional mean to identify the parameters in the conditional mean).

Since y = β′1 (Π′z+ u) 1(q ≤ γ) + β′2 (Π′z+ u) 1(q > γ) + ε, where the first stage regression is assumed to

be x = Π′z + u, we must assume E [u|z, q] = 0 and E [ε|z, q] = 0 and then the conditional mean of y is

β′1 (Π′z) 1(q ≤ γ) + β′2 (Π′z) 1(q > γ). To achieve such conditions, we must assume that q is exogenous so

that it can be included in z. Also, as argued in Yu (2013a), the first stage must be a regression rather than

a projection, i.e., E [u|z] = 0 rather than only E [zu′] = 0. In a nonlinear environment, such a requirement

does not seem too stringent. On the contrary, the identification of γ0 by HHB’s GMM is based on the

matching of covariances just as in the usual linear GMM estimation. If γ0 were known, we can identify

β1 by matching E
[
zy≤γ0

]
with E

[
zx′≤γ0

]
β1 and β2 by matching E

[
zy>γ0

]
with E

[
zx′>γ0

]
β2. It is the

nonlinear structure introduced by the unknown γ that necessitates the division of identification into three

different cases; in such a nonlinear system, endogeneity of q is helpful rather than harmful to identification

as in CH’s 2SLS. As far as inference is concerned, the bootstrap is questionable for CH’s 2SLS given the

negative findings in Yu (2014) where it is shown that bootstrap inference for γ is invalid when the objective

function takes the "sum of squares" form.

As for the requirement on the number of instruments, CH’s assumption that E [Π′zz′Π|q = γ0] =

Π′E [zz′|q = γ0] Π > 0 implies that l ≥ d instruments are needed. As mentioned in Assumptions IV and

IV′, l ≥ 2d + 1 instruments are required in our 2SLS approach because gi (θ) contains 2d + 1 unknown

parameters, and l ≥ d + 1 instruments are required in HHB’s GMM approach because each of m1i (θ) and

18Note that we can choose β1 and β2 freely, so the choice of β1 and β2 depends on γ here.
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m2i (θ) contains d + 1 unknown parameters. On the other hand, more instruments typically imply greater

identification power: CH’s 2SLS cannot handle the endogenous q case, whereas the other two estimators

can; and, as discussed before Assumption IV′, HHB’s GMM relies on the special structure of (1) whereas

our 2SLS approach can handle any nonlinear system y = G (x, q; θ) + ε with E [ε|x, q] 6= 0.

It is well known that more moment conditions generally imply higher asymptotic effi ciency. Why then is

our 2SLS the suggested approach rather than HHB’s GMM? The reason is that the derivative dE [mi (θ0)] /dθ′

does not exist as is normally required in usual GMM asymptotic derivations. Specifically,

∂E [mi (β0, δ0, γ)]

∂γ

∣∣∣∣
γ=γ0+

=

(
E [zε|q = γ0] fq (γ0)− E [zx′|q = γ0] δ0fq (γ0)

−E [zε|q = γ0] fq (γ0)

)
, (17)

whereas
∂E [mi (β0, δ0, γ)]

∂γ

∣∣∣∣
γ=γ0−

=

(
E [zε|q = γ0] fq (γ0)

−E [zε|q = γ0] fq (γ0)− E [zx′|q = γ0] δ0fq (γ0)

)
. (18)

Here, note that E [zε1(q ≤ γ0)] = 0 and E [zε1(q > γ0)] = 0 do not imply E [zε|q = γ0] = 0. Even if

E [zε|q = γ0] = 0 as in case (i), if E [zx′|q = γ0] is of full column rank, the derivative ∂E [mi (β0, δ0, γ0)] /∂γ

does not exist. This makes the asymptotic distribution of γ̃ a nonnormal mixture that depends on the

one-sided derivatives, rendering inference based on γ̃ diffi cult.19 On the contrary, in our 2SLS approach we

have

∂E [gi (β0, δ0, γ)]

∂γ

∣∣∣∣
γ=γ0+

= (Il, Il)
∂E [mi (β0, δ0, γ)]

∂γ

∣∣∣∣
γ=γ0+

= −E [zx′|q = γ0] δ0fq (γ0)

= (Il, Il)
∂E [mi (β0, δ0, γ)]

∂γ

∣∣∣∣
γ=γ0−

,

which makes bootstrap inference valid.

We close this subsection with a further comment on identification based on moment conditions. As

mentioned above, more moment conditions typically imply higher asymptotic effi ciency, but such results rely

in the first place on identification. With 2SLS, even if E [zε] = 0 is replaced by E [ε|z] = 0 which implies

more moment conditions, the identification results are unaltered. For example, when q is independent of

(z′,x′)
′, γ0 is not identified even by E [ε|z] = 0. Similar identification results apply to HHB’s GMM.

3.2 A Simple Illustration

We illustrate the identification results above based on the example in Section 2.1. In this example y =

1 (q ≤ γ0) + ε, where q ∼ U [0, 1], γ0 = 1/2, β0 = 0 and δ0 = 1 are known, x = 1, and V ar (ε) = 1.

First assume E [ε|q] = 0, so there is no endogeneity. Let z = 1, giving case (o) with E [ε|q, z] = 0 and

q ⊥ (z, x). The moment conditions used for identifying γ0 are

E

[(
(y − 1) 1(q ≤ γ)

y1(q > γ)

)]
= 0. (19)

Suppose W̃ = I2. Then

plimQ̃n (γ) = E [(y − 1) 1(q ≤ γ)]
2

+ E [y1(q > γ)]
2
.

19We will discuss the asymptotic properties of γ̃ and bootstrap inference based on γ̃ in a separate paper.
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After some algebra,

plimQ̃n (γ) =

[
−
(
γ − 1

2

)
+

]2

+

(
1

2
− γ
)2

+

=

(
1

2
− γ
)2

,

where for a ∈ R, a+ = max(a, 0), and 1
2 −γ = −

(
γ − 1

2

)
+

+
(

1
2 − γ

)
+
. Obviously, arg min

γ∈Γ
plimQ̃n (γ) = 1/2.

This seems to contradict the nonidentification result of HHB in case (o). In fact, this outcome is because

β0 and δ0 are known. In (15) and (16), β1 and β2 are fixed at β10 = 1 and β20 = 0. So when γ < γ0,

(1− Fq (γ))β20 = (Fq (γ0)− Fq (γ))β10 + (1− Fq (γ0))β20 or (Fq (γ0)− Fq (γ)) δ0 = 0 cannot hold as long

as δ0 6= 0 and fq (γ) > 0 on
[
γ, γ0

]
. Similarly, when γ > γ0, Fq (γ)β1 = Fq (γ0)β10 + (Fq (γ)− Fq (γ0))β20

or (Fq (γ)− Fq (γ0)) δ0 = 0 cannot hold as long as δ0 6= 0 and fq (γ) > 0 on [γ0, γ]. If they can be chosen

freely, then it is obvious that the system cannot be identified - there are two equations and three unknowns.

Next, let z = (1, q)
′ as in case (i), for which the moment conditions used for identifying γ0 are

E

[(
z (y − 1) 1(q ≤ γ)

zy1(q > γ)

)]
= 0.

Suppose W̃ =

(
W̃1 W̃12

W̃ ′12 W̃2

)
=

(
c1I2 W̃12

W̃ ′12 c2I2

)
, and then

plimQ̃n (γ) = c1

[
−
(
γ − 1

2

)
+

]2

+ c1

[
−
(

1

2
γ2 − 1

8

)
+

]2

+ c2

(
1

2
− γ
)2

+

+ c2

(
1

8
− 1

2
γ2

)2

+

+2

(
−
(
γ − 1

2

)
+

,−
(

1

2
γ2 − 1

8

)
+

)
W̃12

((
1

2
− γ
)

+

,

(
1

8
− 1

2
γ2

)
+

)′
.

If W̃12 = 0, c1 = 1 and c2 = 0, then we use onlym1 (γ) and Figure 1 shows that arg min
γ∈Γ

plimQ̃n (γ) = [0, 1/2].

If W̃12 = 0, c1 = 0 and c2 = 1, then we use only m2 (γ) and Figure 1 shows that arg min
γ∈Γ

plimQ̃n (γ) =

[1/2, 1].20 If c1 6= 0 and c2 6= 0, then we use both m1 (γ) and m2 (γ) and Figure 1 shows that when either

c1 = 1, c2 = 2 and W̃12 = 0 or c1 = 1, c2 = 1.5 and W̃12 =

(
0.5 0.5

0.5 0.5

)
, arg min

γ∈Γ
plimQ̃n (γ) = 1/2.21

Section 3.3 of Yu (2015b) considers the following joint distribution of (q, ε):

fq,ε (q, ε) =



φ(ε− 1/2),

φ(ε+ 1/2),

φ(ε− 1/2),

φ(ε+ 1/2),

0,

if 0 ≤ q < 1
4 ,

if 1
4 ≤ q ≤

1
2 ,

if 1
2 < q ≤ 3

4 ,

if 3
4 < q ≤ 1,

otherwise,

(20)

where φ(·) is the standard normal density. Obviously, E [ε|q] 6= 0, and E [ε1(q ≤ γ0)] = E [ε1(q > γ0)] = 0,

so this is case (ii). Suppose z = 1. Then the moment conditions used for identifying γ0 are (19). Suppose

20This implies that in case (o) (i.e., z = 1), using only one moment condition cannot identify γ0.
21 In this example, W̃12 does not play any role, i.e., plimQ̃n (γ) depends only on W̃1 and W̃2 because the last term of

plimQ̃n (γ) is zero.
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W̃ =

(
A C

C B

)
. Then

plimQ̃n (γ) = AE [(y − 1) 1(q ≤ γ)]
2

+BE [y1(q > γ)]
2

+ 2CE [(y − 1) 1(q ≤ γ)]E [y1(q > γ)] ,

and with some algebra this reduces to

plimQ̃n (γ) =


A
(
γ
2

)2
+B

(
1−3γ

2

)2
+ 2C

(
γ
2

) (
1−3γ

2

)
,

(A+B + 2C)
(

1
4 −

γ
2

)2
,

A
(
1− 3γ

2

)2
+B

(
γ−1

2

)2
+ 2C

(
1− 3γ

2

) (
γ−1

2

)
,

if 0 ≤ γ < 1
4 ,

if 1
4 ≤ γ ≤

3
4 ,

if 3
4 < γ ≤ 1,

Figure 2 shows that when A = 1, B = 2 and C = 0, arg min
γ∈Γ

plimQ̃n (γ) = 1/2. Actually, if only m1 is used

(i.e., A = 1, B = 0 and C = 0) or only m2 is used (i.e., A = 0, B = 1 and C = 0), arg min
γ∈Γ

plimQ̃n (γ) = 1/2,

where the parameter space Γ excludes the neighborhoods of 0 and 1. If C 6= 0, arg min
γ∈Γ

plimQ̃n (γ) = γ0 as

long as W̃ > 0. For instance, Figure 2 shows that when A = 1, B = 2 and C = 1, arg min
γ∈Γ

plimQ̃n (γ) = 1/2.

We now check the behavior of the 2SLS estimators of this paper and CH for these three cases: (o)

E [ε|q] = 0 and z = 1; (i) E [ε|q] = 0 and z = (1, q)
′; and (ii) E [ε|q] 6= 0 and z = 1. For 2SLS, the moment

conditions are E [y − 1(q ≤ γ)] = 0 in cases (o) and (ii) and E [z (y − 1(q ≤ γ))] = 0 in case (i). In case (o),

plimQ̂n (γ) =

(
1

2
− γ
)2

,

the same as plimQ̃n (γ). In case (i) with Ŵ = I2,

plimQ̂n (γ) =

(
1

2
− γ
)2

+

(
1

8
− 1

2
γ2

)2

,

where for comparison with plimQ̃n (γ), note that 1
8 −

1
2γ

2 = −
(

1
2γ

2 − 1
8

)
+

+
(

1
8 −

1
2γ

2
)

+
. In case (ii),

plimQ̂n (γ) =

(
1

2
− γ
)2

,

the same as in case (o). For CH’s 2SLS,

plimŜn (γ) = E
[
(y − 1(q ≤ γ))

2
]

in all three cases. In cases (o) and (i),

plimŜn (γ) = 1 + |γ − 1/2| ;

in case (ii),

plimŜn (γ) =


7
4 − 2γ,
5
4 ,

2γ − 1
4 ,

if 0 ≤ γ < 1
4 ,

if 1
4 ≤ γ ≤

3
4 ,

if 3
4 < γ ≤ 1.

Figure 3 shows plimQ̃n (γ) and plimŜn (γ) in these three cases. For our 2SLS estimator, arg min
γ∈Γ

plimQ̃n (γ) =

1/2 in all cases, giving the same identifying results as HHB’s GMM using both m1 and m2. For CH’s 2SLS,
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Figure 1: plimQ̃n (γ) when E [ε|q] = 0 and z = (1, q)
′

arg min
γ∈Γ

plimŜn (γ) = 1/2 in cases (o) and (i), whereas arg min
γ∈Γ

plimŜn (γ) = [1/4, 3/4] in case (ii), which is

unidentified.

We next check whether the expected moment conditions are differentiable. In case (i), for HHB’s GMM,

E [mi (β0, δ0, γ)] =


−
(
γ − 1

2

)
+

−
(

1
2γ

2 − 1
8

)
+(

1
2 − γ

)
+(

1
8 −

1
2γ

2
)

+



is not differentiable at γ0 = 1/2, whereas for our 2SLS E [gi (β0, δ0, γ)] =

(
1
2 − γ

1
8 −

1
2γ

2

)
, which is dif-

ferentiable at γ0 = 1/2. In case (ii), E [mi (β0, δ0, γ)] is differentiable at γ0. This is due to the special

design of the DGP in this simple example. Specifically, using the formulae in (17) and (18), it turns

out that ∂E[m1i(β0,δ0,γ)]
∂γ

∣∣∣
γ=γ0−

= −1/2 = ∂E[m1i(β0,δ0,γ)]
∂γ

∣∣∣
γ=γ0+

, and ∂E[m2i(β0,δ0,γ)]
∂γ

∣∣∣
γ=γ0−

= −1/2 =

∂E[m2i(β0,δ0,γ)]
∂γ

∣∣∣
γ=γ0+

. But, in general, E [mi (β0, δ0, γ)] is not differentiable at γ0 in case (ii). On the

other hand, for our 2SLS, E [gi (β0, δ0, γ)] = 1
2 − γ, which is always differentiable at γ0.

3.3 Summary of Identification Results

Before summarizing the identification results for the existing estimators of γ0, we provide a further comment

on the distinction between "sum of squares" and "square of sums" criteria. Note that "sum of squares"

criteria need not have more identification power than "square of sums" criteria. When q is endogenous, the

example in Section 2.1 of Yu (2013a) shows that the 2SLS estimator of CH is not consistent, and the example

in the previous subsection shows that the limit objective function of CH’s 2SLS need not even have a unique

minimizer. On the contrary, either the 2SLS estimator of this paper or the GMM estimator of HHB can
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generate a consistent estimator of γ0.
22

(o): E [ε|z, q] = 0 and

q ⊥ (z′,x′)
′ 23

(i): E [ε|z, q] = 0 but

q 6⊥ (z′,x′)
′

(ii): E [ε|z, q] 6= 0 but

E
[
zε≤γ0

]
= E [zεq>γ0

] = 0

Consistency Literature Consistency Literature Consistency Literature

GMM of HHB No HHB Yes24 This Paper Yes25 This Paper

2SLS of This Paper No This Paper Yes This Paper Yes This Paper

2SLS of CH Yes HHB26 Yes CH No Yu (2013a)

STR of KST Yes HHB Yes CH No YLP

LSE of PY

and Yu (2015a)27
Yes

PY and

Yu (2015a)28
No Yu (2015a) No Yu (2015a)

IDKE of YP Yes YP Yes YP Yes YP

Table 1: Identification of γ0 by Various (Possibly Valid) Estimators in Different Scenarios

Table 1 summarizes the identification results for all possibly consistent estimators of γ0 in various scenar-

ios. The first four estimators require instruments and the last two do not. Among the last two, Perron and

Yamamoto (2015) (PY in Table 1) use the LSE to estimate γ in a structural change model even when there

is endogeneity. However, as shown in Yu (2015a), this strategy is valid only in the structural change context.

From Table 1, it seems that the IDKE of YP has the most extensive identification power even though the

method makes no use of instruments. Nevertheless, the IDKE cannot identify γ0 in CTR models,
29 while

HHB’s GMM estimator and our 2SLS estimator can identify γ0 even in such models (although inference

needs further investigation). Table 1 also lists KST’s STR estimator. As mentioned in the Introduction,

when q is exogenous, their estimator is equivalent to CH’s 2SLS estimator so it is consistent; but when q is

endogenous, their estimator is not generally consistent unless the endogeneity is relatively small compared

to the threshold effect. Taking Table 1 as a whole, we can see some interesting differences between structural

change models and TR models —specifically case (o) vs. cases (i) and (ii). It is, however, becoming folklore

in the literature that these two kinds of models are considered similar to each other (at least in terms of

their asymptotic properties).30 The present findings reveal that such folklore is misleading when there is

endogeneity.

22Of course, we can claim that CH’s 2SLS cannot be applied when q is endogenous; see YLP for modifications of CH’s 2SLS
to generate consistent estimators of γ0.
23 Here, we implicitly assume z and x do not include q.
24 Both m1 (θ) and m2 (θ) are required to prove consistency.
25 Either m1 (θ) or m2 (θ) is enough to prove consistency.
26 Yu (2015a) strengthens this result a little. Specifically, let z = (z′, q)′ and x = (x, q)′. If q ⊥ z and E [x|z, q] = g (z) + qλ,

i.e., q need not be independent of x, then projecting x only on z in the first stage would generate a consistent estimator of γ0.
27z is not necessary here.
28 Yu (2015a)’s result is a little stronger. Specifically, if q ⊥ x and E [ε|x, q] = g (x) + qλ, i.e., q need not be exogenous, then

the LSE is consistent.
29 In such models, the IDKE can be extended also to take into account slope differences at each γ ∈ Γ beyond level differences

to identify γ0.
30 In structural change models, case (i) corresponds to the circumstance that the moments E [(z′t,x

′
t)] are not equal for all

t, i.e., that there is some nonstationarity in the mean of E [(z′t,x
′
t)]; case (ii) corresponds to E [εt|zt] 6= 0 for all t but with

1
T0

∑T0
t=1 E [ztεt] = 1

T−T0

∑T−T0
t=1 E [ztεt] = 0, where T0 is the break point, i.e, zt is not a valid instrument for all t but is valid

when the information in each regime is integrated. These results echo the finding in YP that nonstationarity is often helpful in
establishing identification.
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4 Inference Based on the IDKE with k±(0) = 0

This section presents limit theory for the IDKE γ̂ in Method II where k±(0) = 0. To facilitate formulation

of the limit distribution of γ̂, we define the following quantities,

∆i = E[yi|xi, qi = γ0−]− E[yi|xi, qi = γ0+] =: m−(xi)−m+(xi),

∆f (xi) = ∆i · f (xi, γ0) ,

where ∆i = ∆ (xi, γ0) and ∆f (xi) is the limit of ∆̂i (γ0) with ∆̂i (γ) and ∆ (x, γ0) defined in (5) and (6)

respectively. To derive the asymptotic distribution of γ̂ we use the following assumptions on f(u|x, q), which
is allowed to be discontinuous at q = γ0.

Assumption U:
(a) f(u|x, q) is continuous in u for (x′, q)

′ ∈ X × Γ−ε and (x′, q)
′ ∈ X × Γ+

ε , where Γ−ε = (γ − ε, γ0] and

Γ+
ε = (γ0, γ + ε) for some ε > 0.

(b) f(u|x, q) is Lipschitz in (x′, q)
′ for (x′, q)

′ ∈ X × Γ−ε and (x′, q)
′ ∈ X × Γ+

ε .

(c) E[u4|x, q] is uniformly bounded on (x′, q)
′ ∈ X × Γε, where Γε = Γ−ε ∪ Γ+

ε .

Given Assumption U, we impose the following conditions on the bandwidth h.

Assumption H: h→ 0, and
√
nhd/ lnn→∞.

Observe that nhd =
√
n lnn

√
nhd

lnn → ∞ when
√
nhd/ lnn → ∞. The limit theory for γ̂ is given in the next

result.

Theorem 3 Under Assumptions F, G, H, I, K, S and U,√
n/h(γ̂ − γ0)

d−→ N(0,Σ)

where

Σ =
E[∆2

f (xi)f
2(xi)(σ

2
+(xi) + σ2

−(xi))|qi = γ0]ξ(1)

fq(γ0) (E[∆f (xi)∆if(xi)|qi = γ0])
2
k′+(0)2

with ξ(1) =
∫ 1

0
k′+(t)2dt and σ2

±(x) = E
[
u2|x, q = γ0±

]
.

This result shows that γ̂ converges to γ0 at the rate
√
n/h, a much faster rate than that of the DKE γ̃

of DH because γ̂ utilizes more data information in estimation. Specifically, the convergence rate of DKE is√
nhd−2 and the relative rate

√
nhd−2/

√
n/h =

√
hd−1 → 0. Based on Theorem 2 of DH, the asymptotic

variance of their estimator γ̃ is

Σo =
(σ2

+(xo) + σ2
−(xo))κ

2ξ(1)

f(xo, γ0)∆2
ok
′
+(0)2

, (21)

where κ2 =
∫
K (ux)

2
dux with K (ux) =

∏d−1
l=1 k(uxl), and ∆o = m−(xo) − m+(xo) which is equal to

(1, x′o, γ0) δ0 when E[ε|x, q] is continuous. This asymptotic variance is comparable to Σ, but critically relies

on the choice of xo. If ∆i = ∆ and σ2
±(x) = σ2, then Σ = O

(
σ2

fq(γ0)∆2k′+(0)2

)
. As expected, Σ is decreasing

in fq(γ0), |∆| and k′+(0) and increasing in σ2.

The convergence rate
√
n/h of γ̂ exceeds the usual parametric rate

√
n. To understand this increase

over the parametric rate, some heuristic analysis is helpful. For this purpose, we use the simple case where
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d = 1, so that q is the only covariate. The convergence rate is then determined by the balance between an

empirical process and a deterministic centering process. Recall that

γ̂ = arg max
γ∈Γ

Q̂n(γ) = arg max
γ∈Γ

{
Q̂n(γ)− Q̂n(γ0)

}
.

Because γ̂ maximizes Q̂n(γ)− Q̂n(γ0) on Γ and γ0 ∈ Γ, we have the decomposition

0 ≤ Q̂n(γ̂)− Q̂n(γ0) = [Q0(γ̂)−Q0(γ0)] +
[(
Q̂n(γ̂)−Q0(γ̂)

)
−
(
Q̂n(γ0)−Q0(γ0)

)]
,

where the first term on the extreme right side is the limit centering process and is less than zero because

γ0 = arg max
γ∈Γ

Q0(γ), whereas the second term is the modulus of continuity of the empirical process, which

exceeds zero. Hence, Q0(γ̂)−Q0(γ0) and

sup
|γ−γ0|≤δ

[(
Q̂n(γ̂)−Q0(γ̂)

)
−
(
Q̂n(γ0)−Q0(γ0)

)]
=:

φn (δ)√
n

must balance out so their sum is greater than zero.

In the h neighborhood of γ0, we can treat the model as a parametric one, so without loss of generality,

assume

yi = ∆1(qi ≤ γ0) + ui,

where qi = i/n, i = 1, · · · , n,31 ui ∼ N (0, 1) and ∆ > 0. Now, γ̂ tries to maximize ∆̂ (γ)− ∆̂ (γ0), where

∆̂ (γ) =
1

nh

nγ∑
i=n(γ−h)

k−

(
i− nγ
nh

)
yi −

1

nh

n(γ+h)∑
i=nγ+1

k+

(
i− nγ
nh

)
yi. (22)

For |γ − γ0| ≤ δ, and γ < γ0, we have

∆̂ (γ)− ∆̂ (γ0)

=

[
1
nh

nγ∑
i=n(γ−h)

k−
(
i−nγ
nh

)
yi − 1

nh

n(γ+h)∑
i=nγ+1

k+

(
i−nγ
nh

)
yi

]
−
[

1
nh

nγ0∑
i=n(γ0−h)

k−
(
i−nγ0
nh

)
yi − 1

nh

n(γ0+h)∑
i=nγ0+1

k+

(
i−nγ0
nh

)
yi

]

=

[
∆ + 1

nh

nγ∑
i=n(γ−h)

k−
(
i−nγ
nh

)
ui − ∆

nh

nγ0∑
i=nγ+1

k+

(
i−nγ
nh

)
− 1

nh

n(γ+h)∑
i=nγ+1

k+

(
i−nγ
nh

)
ui

]

−
[

∆ + 1
nh

nγ0∑
i=n(γ0−h)

k−
(
i−nγ0
nh

)
ui − 1

nh

n(γ0+h)∑
i=nγ0+1

k+

(
i−nγ0
nh

)
ui

]

≈ −∆

(
1
nh

nγ0∑
i=nγ+1

k+

(
i−nγ
nh

))
+ 1

nh

nγ∑
i=n(γ−h)

[
k−
(
i−nγ
nh

)
− k−

(
i−nγ0
nh

)]
ui + 1

nh

n(γ0+h)∑
i=nγ0+1

[
k+

(
i−nγ0
nh

)
− k+

(
i−nγ
nh

)]
ui

− 1
nh

nγ0∑
i=nγ+1

[
k+

(
i−nγ
nh

)
+ k−

(
i−nγ
nh

)]
ui

= −O
(

∆
∫ γ0−γ

h
0

k+(v)dv

)
+Op

(
k′−(0)

√
1
nh

∫ 0

−1

(
γ0−γ
h

)2

dv + k′+(0)

√
1
nh

∫ 1

0

(
γ−γ0
h

)2

dv

)

−Op

(√
1
nh

∫ γ0−γ
h

0

(
k+(v) + k−

(
γ0−γ
h
− v
))2

dv

)
.

If∆ is fixed, k+(0) = 0 and k′+(0) > 0, then
∫ γ0−γ

h

0
k+(v)dv = O

((
γ0−γ
h

)2
)
,
∫ 0

−1

(
γ0−γ
h

)2

dv =
∫ 1

0

(
γ−γ0

h

)2

dv =

31Locally, qi follows a uniform distribution on [γ0 − h, γ0 + h], so we assume it follows the discrete form of U [0, 1] here.
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Figure 4: Balancing Q0(γ)−Q0(γ0) and φn(δ)√
n
in Method II, YP and Method III

(
γ0−γ
h

)2

and
∫ γ0−γ

h

0

(
k+(v) + k−

(
γ0−γ
h − v

))2

dv = O

((
γ0−γ
h

)3
)
. As a result, Q0(γ)−Q0(γ0) = O

(
δ2/h2

)
and φn (δ) =

√
δ2/h3 since

(
γ0−γ
h

)3

= o

((
γ0−γ
h

)2
)
. Suppose γ̂ − γ0 = Op

(
r−1
n

)
; solving 1

r2
nh

2 ≈
√

1/r2
n√

nh3
,

we get rn =
√
n/h.

For comparison, consider the IDKE in YP and in Method III. In the former,
∫ γ0−γ

h

0
k+(v)dv = γ0−γ

h ,∫ 0

−1

(
γ0−γ
h

)2

dv =
∫ 1

0

(
γ−γ0

h

)2

dv =
(
γ0−γ
h

)2

, and
∫ γ0−γ

h

0

(
k+(v) + k−

(
γ0−γ
h − v

))2

dv = γ0−γ
h since k±(0) >

0. As a result, Q0(γ) − Q0(γ0) = O (δ/h) and φn (δ) =
√
δ/h2 since

(
γ0−γ
h

)2

= o
(
γ0−γ
h

)
. Solv-

ing 1
rnh
≈
√

1/rn√
nh2

, we get rn = n. In the latter (as will be detailed in the next section), ∆ → 0, so

Q0(γ)−Q0(γ0) = O (∆δ/h) and φn (δ) =
√
δ/h2. Solving ∆

rnh
≈
√

1/rn√
n/h2

, we get rn = n∆2.

Figure 4 illustrates these heuristics. For example, in Method II, because Q0(γ) − Q0(γ0) is quadratic

(in the neighborhood of γ0) as in the regular parameter case, we expect γ̂ to have an asymptotic normal

distribution. The extra h in the convergence rate
√
n/h arises because the variations in Q0(γ) − Q0(γ0)

and φn (δ) are both in the scale of h in this nonparametric setup. In YP, Q0(γ) − Q0(γ0) is a nonsmooth

function of γ (in the neighborhood of γ0) such that γ can be more easily identified than in Method II, so

the convergence rate n is faster than
√
n/h. In Method III, Q0(γ) − Q0(γ0) is still nonsmooth but the

nonsmoothness is less severe (the left and right derivatives of Q0(γ) −Q0(γ0) at γ0 are O (∆/h), less than

O (1/h) order in YP), so the convergence rate is slower than that in YP.32 In YP and Method III, the

convergence rates of γ̂ are actually the same as in the parametric cases.

For inference of γ based on inverting the t statistic, we need to estimate Σ in Theorem 3. A straightforward

32To understand the convergence rates of γ̂ in Methods I and II, we can compare these rates with those in Seo and Linton
(2007) where a parametric TR model is considered. In the SLSE of Seo and Linton (2007), 1(qi > γ) in the objective function of

the LSE is changed to K
(
qi−γ
h

)
with K (·) being a cdf, which results in a convergence rate of

√
n/h, which is exactly the same

as in Method II; when h is fixed, the convergence rate reduces to
√
n, the same as in Method I. On the other hand, although

the convergence rate of Method II and that of Seo and Linton are the same, the asymptotic distributions are still different.
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approach is to use the sample analog. Specifically, we can estimate Σ by

Σ̂ =
1
n

∑n
i=1 kh(qi − γ̂)∆̂2

i (γ̂)f̂2(xi)2û
2
i ξ(1)(

1
n

∑n
i=1 kh(qi − γ̂)∆̂2

i (γ̂)f̂−1(xi, γ̂)f̂(xi)
)2

k′+(0)2

,

where

∆̂2
i (γ) =

(
m̂−(xi, γ)f̂−(xi, γ)− m̂+(xi, γ)f̂+(xi, γ)

)
,

f̂(xi) =
1

n− 1

n∑
j=1,j 6=i

Kx
h,ij , f̂(xi, γ) =

1

n− 1

n∑
j=1,j 6=i

Kx
h,ijkh(qj − γ),

ûi (γ) = yi − m̂−(xi, γ)1(qi ≤ γ)− m̂+(xi, γ)1(qi > γ), ûi = ûi (γ̂)

with

m̂±(xi, γ) =
1

n−1

∑n
j=1,j 6=iK

x
h,ijk

±
h (qj − γ)yj

1
n−1

∑n
j=1,j 6=iK

x
h,ijk

±
h (qj − γ)

,

f̂±(xi, γ) =
1

n− 1

n∑
j=1,j 6=i

Kx
h,ijk

±
h (qj − γ).

The next result establishes that Σ̂ is consistent.

Theorem 4 Under the assumptions of Theorem 3, Σ̂
p−→ Σ.

Another method of inference is based on inverting the LR statistic. Although this method has been

proposed in the small-threshold-effect framework by Hansen (2000), it seems new in the current setting. Our

LR statistic can be used to test whether γ = γ0 and is defined as

LR(1)
n (γ) = nh

k′+(0)

ξ(1)

E[∆f (xi)∆if(xi)|qi = γ0]

E[∆2
f (xi)f2(xi)(σ2

+(xi) + σ2
−(xi))|qi = γ0]

(
Q̂n (γ̂)− Q̂n (γ)

)
.

Corollary 2 Under the assumptions of Theorem 3,

LR(1)
n (γ0)

d−→ χ2
1.

To construct a CI for γ based on LR(1)
n we need to estimate E[∆f (xi)∆if(xi)|qi=γ0]|

E[∆2
f (xi)f2(xi)(σ2

+(xi)+σ2
−(xi))|qi=γ0]

. The natural

estimator is
1
n

∑n
i=1 kh(qi−γ̂)∆̂2

i (γ̂)f̂−1(xi,γ̂)f̂(xi)
1
n

∑n
i=1 kh(qi−γ̂)∆̂2

i (γ̂)f̂2(xi)2û2
i

, which is consistent from Theorem 4. Hence, the (1− α)100%

LR-CI for γ is {
γ : L̂R

(1)

n (γ) ≤ cvα
}
,

where L̂R
(1)

n (γ) replaces E[∆f (xi)∆if(xi)|qi=γ0]|
E[∆2

f (xi)f2(xi)(σ2
+(xi)+σ2

−(xi))|qi=γ0]
in LR(1)

n (γ) by its estimate, and cvα is the (1−
α)100% quantile of χ2

1.

5 Inference Based on the IDKE with Shrinking Threshold Effects

In the previous section, the IDKE was adjusted by letting k±(0) = 0 to construct a CI for γ and the threshold

effect was taken as fixed. In this section, the IDKE is adjusted from a different perspective by allowing for
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the threshold effect to shrink to zero with the sample size but requiring that k±(0) > 0.

5.1 Optimal Rate of Convergence for γ

First, we discuss the interpretation of a shrinking threshold effect. As argued in Section 2.4 of YP, the local

shifter 1(q > γ) plays the role of an instrument. When q shifts from the left side of γ to its right side, the

shift in the mean of y shrinks to zero. This behavior can be interpreted as the manifestation of a weak IV

problem in the threshold regression context. A natural question that then arises is the identifiability of γ

as δ shrinks to zero. To put this question a different way, we can ask what is the minimum magnitude of δ

that ensures identification of γ. For this purpose, we cast the model in the following framework.

Suppose P is a family of probability models on some fixed measurable space (Ω,A). Let γ be a functional

defined on P. Given an estimator γ̂ of γ and a loss function L (γ̂, γ), the maximum expected loss over P ∈ P
is defined to be

R (γ̂,P) = sup
P∈P

EP [L (γ̂, γ(P ))] ,

where EP is the expectation operator under the probability measure P . A popular loss function (e.g., Stone
(1980)) is the 0-1 loss

L (γ̂, γ) = 1
{
|γ̂ − γ| > ε

2

}
for some fixed ε > 0, which will be used in this paper. Under this loss, R (γ̂,P) is the maximum probability

that γ̂ is not in the ε/2 neighborhood of γ. The goal is to find an achievable lower bound for the minimax

risk defined by

inf
γ̂
R (γ̂,P) = inf

γ̂
sup
P∈P

EP [L (γ̂, γ(P ))] . (23)

Only if δ is large enough, will the right side converge to zero. The best rate of convergence of R (γ̂,P) to

zero is then called the optimal rate of convergence or the minimax rate of convergence. Now P ∈ P in our
model is characterized by m±(x, q) and γ as follows:

P(s,B) =

{
Pm±,γ :

dPm±,γ

dµ
= f(x, q)ϕx,q (y −m−(x, q)1(q ≤ γ)−m+(x, q)1(q > γ)) ,

m−(x, q) ∈ Cs
(
B,X × Γ−ε

)
,m+(x, q) ∈ Cs

(
B,X × Γ+

ε

)
,

∫
uϕx,q(u)du = 0, γ ∈ Γ

}
,

where µ is Lebesgue measure on Rd, ϕx,q(u) is the conditional density of u given (x′, q)
′, and Cs (·, ·) is

defined in Section 2.2.

To formulate a precise statement of our next result, let

ρn =

√∫
X

(m−(x, γ)−m+(x, γ))
2
f(x|γ)dx,

where γ = γ(P ), and f(x|γ) can be replaced by any weight function w(x) with 0 < c ≤ w(x) ≤ C <∞ and∫
X w(x) = 1. If E[ε|x, q] is continuous, then ρn =

∣∣E [x|q = γ]
′
δn
∣∣ = O (‖δn‖), similar to the ‖δn‖ in Section

3.

Theorem 5 Suppose Assumptions F, S and U hold, and P ∈ P(s,B) with s ≥ 1. If n
s

2s+1 ρn →∞, then

lim
n→∞

inf
γ̂

sup
P∈P(s,B)

P
(
nρ2

n |γ̂ − γ(P )| > ε

2

)
≥ C,
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and if n
s

2s+1 ρn = O (1), then

lim
n→∞

inf
γ̂

sup
P∈P(s,B)

P
(
|γ̂ − γ(P )| > ε

2

)
≥ C,

for some positive constant C and small ε > 0.

We begin our discussion of this result by clarifying a key difference between the parametric and nonpara-

metric threshold models with shrinking threshold effects. In the former, as long as the jump size is n−α with

0 < α < 1/2 (i.e., larger than n−1/2), γ can be identified; in the latter, however, we require a jump size larger

than n−
s

2s+1 to identify γ. In other words, the minimum rate of convergence for γ in the nonparametric

model must be larger than n
1

2s+1 rather than any rate diverging to infinity as in the parametric model. In

the parametric model, s = ∞, so n− s
2s+1 = n−1/2 and n−

1
2s+1 = 0, i.e., the parametric result is a limiting

special case of Theorem 5 as s→∞. Such a difference between the parametric model and the nonparametric
model does not seem to have been explicitly recognized in the literature. For example, Müller and Song

(1997) show that the convergence rate of the DKE is nρ2
n when q is the only regressor by implicitly assuming

a trade off in rates under which ρn is taken to be larger than n
− s

2s+1 . In fact, when γ can be identified, the

optimal rate of convergence for γ is the same as in the parametric case. This rate is achieved by the IDKE,

as shown in the next section.

5.2 Asymptotics for γ̂

To facilitate finding an expression for the limit distribution of γ̂, we define the following quantities

Dn = E[∆f (xi)∆if(xi)|qi = γ0]/ρ2
n,

V1n = E[∆2
f (xi)f

2(xi)σ
2
−(xi)|qi = γ0]/ρ2

n,

V2n = E[∆2
f (xi)f

2(xi)σ
2
+(xi)|qi = γ0]/ρ2

n,

where ρn is evaluated at γ0. We also impose the following conditions on the bandwidth h.

Assumption H′: h→ 0,
√
nhd/ lnn→∞, ρn → 0, ρn/h

s →∞, nhρ2
n →∞.

If we employ the optimal bandwidth h = O
(
n−

1
2s+1

)
, then

√
nhd/ lnn = n

2(s−d)+1
2(2s+1) / lnn → ∞ under

Assumption G′ (s ≥ d). Also, ρn/hs →∞ and nhρ2
n →∞ hold when n

s
2s+1 ρn →∞. The limit distribution

of γ̂ is given in the following theorem.

Theorem 6 Under Assumptions F, G′, H′, I, K′, S and U, if Dn → D and V`n → V` as n→∞, then

nρ2
n(γ̂ − γ0)

d−→ ω · Λ (λ) ,

where ω = 1
fq(γ0)

V1

D2 , and

Λ (λ) = argmax
r

W1(−r)− |r|2 , if r ≤ 0,
√
λW2(r)− |r|2 , if r > 0,

with λ = V2/V1, and W`(r), ` = 1, 2, being two independent standard Wiener processes on [0,∞).

In some special cases, the asymptotic distribution of γ̂ can be simplified. For example, if σ2
−(xi) = σ2

10

and σ2
+(xi) = σ2

20, so that the model is locally homoskedastic within each regime, then λ = σ2
20/σ

2
10; if
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Figure 5: Comparison Between the PDFs of N (0, 1) and Λ (λ): λ = 0.5, 1, 2

σ2
−(xi) = σ2

+(xi) = σ2
0, so that the model is homoskedastic locally around γ0, then λ = 1. To compare with

the asymptotic distribution of γ̂ in Method II, note that by Slutsky’s theorem,

nρ2
n

fq(γ0)D2
n

V1n
(γ̂ − γ0)

d−→ Λ (λ)

in Method III, whereas √
nρ2

n

h

fq(γ0)D2
n

V1n (1 + λ)

k′+(0)2

ξ(1)

(γ̂ − γ0)
d−→ N (0, 1) (24)

in Method II, so we use a different normalization on (γ̂ − γ0) to achieve a nondegenerate limit distribution.

We can show that when ρn → 0, the result in (24) still holds and the CI based on LR
(1)
n (γ) remains

valid. The convergence rate of γ̂ in Method II is
√
nρ2

n/h. Since
√
nρ2

n/h/nρ
2
n =

√
1/ (nhρ2

n) → 0, the γ̂

estimator in Method II has a slower convergence rate. But its convergence rate is still faster than that of the

2SLS estimator in Section 3 because
√
nρ2

n/h/

√
n ‖δn‖2 = O

(√
1/h
)
→∞. Figure 5 shows the difference

between the N (0, 1) and Λ (λ) limit densities, where the analytic form of the density of Λ (λ) is reported in

Appendix B of Bai (1997), viz.,

p(x) =

 −
1
2Φ

(
−
√
|x|
2

)
+ 1

2

(
1 + 2

λ

)
exp

(
1
2

1
λ

(
1 + 1

λ

)
|x|
)

Φ

(
− (1+ 2

λ )
√
|x|

2

)
,

− 1
2λΦ

(
− 1

2

√
x
λ

)
+
(
1 + 1

2λ

)
exp

(
1+λ

2 x
)

Φ
(
−
(√

λ+ 1
2
√
λ

)√
x
)
,

if x < 0,

if x > 0,

with Φ (·) being the cdf of N (0, 1). Intuitively, when the heteroskedasticity measure λ > 1, it is more likely

that Λ (λ) achieves the maximum at r > 0. This intuition explains why the right tail of Λ (λ) is heavier than

the left tail. Interestingly, the effects of λ on the limit distributions of the two γ estimators are different: its

effect on the estimator γ̂ in Method II is to increase variance (but maintain symmetry), whereas its effect

on the estimator γ̂ in Method III is to introduce skewness.

For comparison, we state the limit distribution of the DKE in the following corollary. For this purpose,
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we adjust Assumption H′ as follows.

Assumption H′′: h → 0,
√
nhd/ lnn → ∞, ∆o → 0, ∆o/h

s → ∞, nhd∆2
o → ∞, where ∆o is defined in

(21) and is equal to (1, x′o, γ0) δn when E[ε|x, q] is continuous.

The optimal bandwidth h = O
(
n−

1
2s+d

)
satisfies Assumption H′′.

Corollary 3 Under Assumptions F, G′, H′′, I, K′, S and U,

nhd−1∆2
o(γ̃ − γ0)

d−→ ωo · Λ (λo, κ) ,

where ωo =
σ2
−(xo)

f(xo,γ0) , and

Λ (λo, κ) = argmax
r

W1(−r)− |r|2κ , if r ≤ 0,
√
λoW2(r)− |r|2κ , if r > 0,

with λo =
σ2

+(xo)

σ2
−(xo)

, κ2 being defined in (21), and standard Brownian motions W`(r), ` = 1, 2, as in Theorem

6.

The distribution of Λ (λo, κ) is derived in Proposition 1 of Stryhn (1996). Since it will not be used for

inference, it is omitted here. Compared with the convergence rate of γ̂ (viz., nρ2
n), the convergence rate of

γ̃ (viz., nhd−1∆2
o) is much slower especially when d is large. But it is still faster than the convergence rate

of the DKE in Method II because the ratio nhd−1∆2
o/
√
nhd−2∆2

o =
√
nhd∆2

o → ∞. To compare with the
limit distribution of γ̃ in Method II, note that by Slutsky’s theorem,

nhd−1∆2
o

f(xo, γ0)

σ2
−(xo)

(γ̃ − γ0)
d−→ Λ (λo, κ)

in Method III, whereas √
nhd−1∆2

o

h

f(xo, γ0)

σ2
−(xo) (1 + λo)

k′+(0)2

κ2ξ(1)

(γ̃ − γ0)
d−→ N (0, 1)

in Method II. The limit distributions of γ̃ in both methods involve only information local to xo. Similar

to λ in the limit distributions of γ̂, λo affects only the variance of γ̃ in Method II, but affects symmetry in

Method III. A new factor κ2 also appears in the limit distributions of γ̃; different from λo, the factor κ2

increases variance but does not affect symmetry in either case.

It is also interesting to notice that the limit distribution of γ̂ in Method III does not depend on the kernel

choice whereas the limit distribution of γ̃ in Method III does depend on the kernel choice on x (although

not on q). These results echo Theorem 1 and Corollary 1 of YP where ρn is fixed and k±(0) > 0. But

when k±(0) = 0, from Theorem 3, the asymptotic distribution of γ̂ depends on the kernel choice on q, and

from (21), the asymptotic distribution of γ̃ depends on the kernel choice on both x and q. In other words,

whether k±(0) = 0 or not does indeed affect the role of the kernel on q with respect to data usage (and hence

effi ciency) of the estimators.

We next discuss inference concerning the threshold parameter γ based on our IDKE approach. Although

we can construct a CI for γ by inverting the asymptotic distribution of γ̂ in Theorem 6, Hansen (2000) shows

that such CIs perform poorly due to the identification failure when ρn = 0. He suggests constructing CIs for
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γ by inverting the LR statistic instead, which in our case is defined as

LR(2)
n (γ) = nh

1

4k+(0)

Dn

V1n

(
Q̂n (γ̂)− Q̂n (γ)

)
.

To do so, we make use of the following result.

Corollary 4 Under the assumptions of Theorem 6,

LR(2)
n (γ0)

d−→M (λ) ,

where M (λ) follows the distribution P (M (λ) ≤ z) = (1− e−z)(1− e−z/λ) with λ defined in Theorem 6.

To construct CIs for γ, we need to estimate Dn/V1n and λ. By similar procedures to those of the last

section, we can show that

D̂n

V̂1n

=
1
n

∑n
i=1 kh(qi − γ̂)∆̂2

i (γ̂)f̂−1(xi, γ̂)f̂(xi)
1
n

∑n
i=1 k

−
h (qi − γ̂)∆̂2

i (γ̂)f̂2(xi)û2
i

,

λ̂ =
1
n

∑n
i=1 k

+
h (qi − γ̂)∆̂2

i (γ̂)f̂2(xi)û
2
i

1
n

∑n
i=1 k

−
h (qi − γ̂)∆̂2

i (γ̂)f̂2(xi)û2
i

are the required consistent estimators, where ∆̂i(γ̂), f̂(xi, γ̂), f̂(xi) and ûi are defined in the last section. If

σ2
−(xi) = σ2

10 and σ
2
+(xi) = σ2

20, then λ can be simply estimated by the ratio

λ̂ =
1
n

∑n
i=1 k

+
h (qi − γ̂)û2

i
1
n

∑n
i=1 k

−
h (qi − γ̂)û2

i

.

Given all these components, the (1− α) LR-CI for γ is{
γ : L̂R

(2)

n (γ) ≤ ĉvα
}
,

where L̂R
(2)

n (γ) replaces Dn/V1n in LR
(2)
n (γ) by its estimates, and ĉvα is the (1−α) quantile ofM obtained

by replacing λ by its estimate.

To compare the LR statistic LR(2)
n (γ) with LR(1)

n (γ) in the last section, note that LR(1)
n (γ) can be

expressed as

LR(1)
n (γ) = nh

k′+(0)

ξ(1)

Dn

V1n + V2n

(
Q̂n (γ̂)− Q̂n (γ)

)
.

If Q̂n (γ̂)− Q̂n (γ) are the same in these two LR statistics, then

LR
(1)
n (γ)

LR
(2)
n (γ)

= 4
k+(0)k′+(0)

ξ(1)

V1n

V1n + V2n
=: Rn. (25)

If the model is locally homoskedastic in each regime, then Rn = 4
σ2

10

σ2
10+σ2

20

k+(0)k′+(0)

ξ(1)
, which is further simplified

to 2
k+(0)k′+(0)

ξ(1)
when the model is locally homoskedastic in both regimes. However, Q̂n (γ̂) − Q̂n (γ) are not

the same in LR(1)
n (γ) and LR(2)

n (γ) because the employed kernels are different and the γ̂’s are different. To

compare the asymptotic distributions of these two LR statistics, we plot the asymptotic pdfs in Figure 6

and report their 95% critical values in Table 2.
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Figure 6: Comparison Between the PDFs of χ2
1 and M for λ = 0.5, 1, 2

Test Stat. LR
(1)
n LR

(2)
n (λ = 0.5) LR

(2)
n (λ = 1) LR

(2)
n (λ = 2)

95% crit 3.841 3.040 3.676 6.081

Table 2: 95% Critical Values of LR(1)
n and LR(2)

n for λ = 0.5, 1, 2

5.3 Comparison With the Parametric LSE

We close this section by comparing the IDKE with the LSE in the parametric case (see, e.g., Hansen (2000)).

From YP, the LSE γ̂LSE obtained by minimizing

min
β,δ

(Y −Xβ −X≤γδ)′ (Y −Xβ −X≤γδ) = Y ′Y − Y ′PγY (26)

is equivalent to estimation by maximizing(
δ̂
′
X ′
) [
X (X ′X)

−1
X ′>γX>γ (X ′X)

−1
X ′≤γX≤γ (X ′X)

−1
X ′
] (
Xδ̂
)
, (27)

where Pγ is the projection matrix onto span (X,X≤γ), δ̂ (γ) is the LSE of δ based on splitting according

to the threshold γ, and X and X≤γ are defined in (2) with a similar definition for X>γ . Here, Xδ̂ (γ) ={
x′iδ̂ (γ)

}n
i=1
, and x′iδ̂ (γ) is an estimator of the conditional mean differential ∆ (xi, γ). Since ∆̂i (γ) is

estimating ∆ (xi, γ) f(xi, γ), Xδ̂ (γ) is mimicking
{

∆̂i (γ) /f (xi, γ)
}n
i=1
. In the parametric case, f(xi, γ0)

and f(xi) do not appear in Dn, V1n and V2n, so ρ2
nD

2
n/V1n reduces to

E[∆2
i |qi=γ0]2

E[∆2
iu

2
i |qi=γ0−]

and λ reduces to
E[∆2

iu
2
i |qi=γ0+]

E[∆2
iu

2
i |qi=γ0−]

; if σ2
−(xi) = σ2

10 and σ2
+(xi) = σ2

20, then ρ2
nD

2
n/V1n further reduces to

E[∆2
i |qi=γ0]

σ2
10

and λ

further reduces to σ2
20

σ2
10
. A natural question is how to generate the same asymptotic distribution as in the

parametric case when E[ε|x, q] is continuous. By careful inspection of the derivations in the proofs we can
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show that, if the objective function of the IDKE changes to

1

n

n∑
i=1

f̂ (xi, γ)

f̂ (xi)

 1
n−1

∑n

j=1,j 6=i
yjK

γ−
h,ij

1
n−1

∑n

j=1,j 6=i
Kγ−
h,ij

−
1

n−1

∑n

j=1,j 6=i
yjK

γ+
h,ij

1
n−1

∑n

j=1,j 6=i
Kγ+
h,ij

2

,

then the asymptotic distribution of the IDKE is the same as that of the parametric LSE, where f̂ (xi, γ)

and f̂ (xi) are consistent estimators of f (xi, γ) and f (xi), respectively. Asymptotically, we impose a weight

fq|x(γ0|xi) on ∆2
i . This weight is intuitive in the sense that when there are more data points in the neighbor-

hood of q = γ0 at xi, we impose a larger weight on ∆2
i . In fact, we can also show that the IDKE using this

objective function has the same asymptotic distribution as the LSE even in the framework of YP.33 In other

words, the complex-looking weights in the square bracket of the objective function (27) are asymptotically

equivalent to
{
fq|x(γ0|xi)

}n
i=1

. Such an equivalence result is not at all obvious from the original least squares

objective function (26).

6 Two Specification Tests

In this section, we study limit theory of the two specification tests in Section 2.2. We first specify some

regularity conditions which are modifications of Assumptions F, G and U given earlier.

Assumption F′: f(x, q) ∈ C1 (B,X ×Q).

Assumption F′′: f(x, q) ∈ Cλ (B,X × Γε) with λ ≥ 1, and 0 < f ≤ f(x, q) ≤ f <∞ for (x′, q)′ ∈ X × Γε.

Assumption G′′: (i) g(x, q) ∈ Cs (B,X ×Q) with s ≥ 2; (ii) g(x, q) ∈ Cs (B,X × Γε) with s ≥ 2;

Assumption U′:
(a) f(u|x, q) is continuous in u for (x′, q)

′ ∈ X × Q− and (x′, q)
′ ∈ X × Q+, where Q− = [q, γ0] and

Q+ = (γ0, q].

(b) f(u|x, q) is Lipschitz in (x′, q)
′ for (x′, q)

′ ∈ X ×Q− and (x′, q)
′ ∈ X ×Q+.

(c) E[u4|x, q] is uniformly bounded on (x′, q)
′ ∈ X ×Q.

The following Assumptions B1 and B2 are made on the bandwidths used in the first and second tests.

Assumption B1: nhd →∞, h→ 0.

Assumption B2: nhd →∞, b→ 0, h/b→ 0, nhd/2b2η → 0, where η = min (λ+ 1, s).

Given d > 1, h/b → 0 implies hd/2/b → 0, so nhd → ∞ implies that nhd/2b → ∞, where nhd/2b is the
magnitude of I(2)

n under H(2)
1 . The quantity nhd/2b2η is the bias of I(2)

n under H(2)
0 , so the assumption

nhd/2b2η → 0 guarantees that I(2)
n is centered at the origin. Under H(1)

0 , the bias of I(1)
n is hd/2, so h → 0

ensures that I(1)
n is also centered at the origin. The condition h/b → 0 requires that h is smaller than b,

which helps to generate power under H(2)
1 and shrink the bias under H(2)

0 to zero. Intuitively, if h/b → 0,

then the term Kh,ij in I
(2)
n makes the product êiêj behave like a squared term, producing an effect that

generates power. In the first test, m(x, q) under H(1)
0 is parametric, so the corresponding bandwidth of b

is a constant so that h → 0 necessarily implies h/b → 0. In testing H(2)
0 versus H(2)

1 , our test statistic I(2)
n

33Using such an objective function, the asymptotic distribution of the IDKE with k±(0) = 0 in Section 4

would also change. For example, Σ would change to

(
E[∆2

iu
2
i |qi=γ

−
0 ]+E[∆2

iu
2
i |qi=γ

+
0 ]
)
ξ(1)

fq(γ0)(E[∆2
i |qi=γ0])2

k′+(0)2
, and LR

(1)
n (γ) changes to

nh
k′+(0)

ξ(1)

E[∆2
i |qi=γ0]

E[∆2
iu

2
i |qi=γ

−
0 ]+E[∆2

iu
2
i |qi=γ

+
0 ]

(
Q̂n (γ̂)− Q̂n (γ)

)
.
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still applies when E[ε|x, q] is not smooth at q = γ0. But in this case the null hypothesis is better modified

to the equivalence m−(x) = m+(x) for all x ∈ X and g in Assumption G′′ does not need to be smooth at

q = γ0. Also, we need to add the requirement nh
d/2b3 → 0 to Assumption B2, where nhd/2b3 is the bias of

I
(2)
n attributed to the cusp of m(x, q) at q = γ0.

In the second test, we impose the following assumption on the kernel lb (·, t).

Assumption L: lb(·, t) takes the form of (3) with order p = s+ λ− 1.

Thus, lb(·, t) may be a higher order kernel to reduce the bias in ŷi.

6.1 Limit Theory for the Two Tests

The following two theorems give the limit distribution of I(`)
n under the null H(`)

0 and local power under H(`)
1 .

Note that the main component of I(`)
n under H(`)

0 is a degenerate U-statistic, so the asymptotic distribution

is normal rather than a functional of a chi-square process, as in the usual structural change literature.

Theorem 7 Under Assumptions B1, F′, G′′(i), K, S, and U′, the following hold:

(i)
I(1)
n

d−→ N
(

0,Σ(1)
)

uniformly over H(1)
0 , where

Σ(1) = 2

∫
k2d(u)duE

[
f (x, q)σ4 (x, q)

]
, with σ2 (x, q) = E[u2|x, q],

which can be consistently estimated by

v(1)2
n =

2hd

n(n− 1)

∑
i

∑
j 6=i

K2
h,ij ê

2
i ê

2
j .

Hence, a test based on the studentized test statistic T (1)
n = I

(1)
n /v

(1)
n

t(1)
n = 1

(
T (1)
n > zα

)
,

has significance level α, where zα is the 1− α quantile of N(0, 1).34

(ii) If under H(1)
1 , m(x, q)−m(x, q) = n−1/2h−d/4∆n(x, q) such that

∫
∆n(x, q)2f(x, q)2dxdq → ∆, then

I(1)
n

d−→ N
(

∆,Σ(1)
)
and T (1)

n
d−→ N

(
∆/
√

Σ(1), 1
)
,

so that the test t(1)
n is consistent and Pm

(
T

(1)
n > zα

)
→ 1 for anym (·) such that

∫
(m(x, q)−m(x, q))

2
f(x, q)2dxdq 6=

0. Furthermore, the result continues to hold when zα is replaced by any nonstochastic constant

Cn = o
(
nhd/2

)
.

According to this result, I(1)
n has only trivial power if E

[
(m(x, q)−m(x, q))

2
f(x, q)

]
= 0. Consider the

following special example to illustrate. Suppose m(x, q) under H(1)
0 is x′β+x′δ1 (q ≤ γ), and the alternative

34The test is one-sided because I(1)
n is based on the L2-distance between m(·) and m(·).
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is m(x, q) = x′β + x′δ1 (q ≤ γ) + x′ξ + x′ζ1 (q ≤ γ), then obviously, E
[
(m(x, q)−m(x, q))

2
f(x, q)

]
= 0

under H(1)
1 and I(1)

n has no discriminatory power against such m(x, q). This point was observed for classical

specification testing without threshold effects —see, e.g., Bierens and Ploberger (1997, p. 1135). Possible

cases that do generate non-trivial power include models where (i) m(x, q) takes the same parametric form

but has a different threshold point from m(x, q), and (ii) m(x, q) takes a nonparametric form for which∫
(m(x, q)−m(x, q))

2
f(x, q)2dxdq > 0.

Theorem 8 Under Assumptions B2, F′′, G′′(ii), K, L, S, and U, the following hold:

(i)
I(2)
n

d−→ N
(

0,Σ(2)
)

uniformly over H(2)
0 , where

Σ(2) = 2

∫
k2d(u)duE

[
1Γ
q f (x, q)σ4 (x, q)

]
,

which can be consistently estimated by

v(2)2
n =

2hd

n(n− 1)

∑
i

∑
j 6=i

1Γ
i 1Γ
jK

2
h,ij ê

2
i ê

2
j .

As a result, the test based on the studentized test statistic T (2)
n = I

(2)
n /v

(2)
n

t(2)
n = 1

(
T (2)
n > zα

)
,

has significance level α, where zα is the 1− α quantile of N (0, 1).

(ii) If under H(2)
1 , m−(x)−m+(x) = n−1/2h−d/4b−1/2∆n(x) such that

∫
∆n(x)2f(x, γ0)2dx→ ∆, then

I(2)
n

d−→ N
(
ζ∆,Σ(2)

)
and T (2)

n
d−→ N

(
ζ∆/

√
Σ(2), 1

)
,

where ζ = 2
∫ 1

0

(∫ 1

v
l(u)du

)2

dv, and the test t(2)
n is consistent with Pm

(
T

(2)
n > zα

)
→ 1 for any m

such that
∫

(m−(x)−m+(x))
2
f(x, γ0)2dx 6= 0. The result continues to hold when zα is replaced by

any nonstochastic constant Cn = o
(
nhd/2b

)
.

These two theorems show that I(1)
n and I(2)

n have power against different deviations of m(x, q) from H0.

For I(1)
n , power is generated from global deviations ofm(x, q) from H0, just as in classical specification testing

(see, e.g., Theorem 3 of Zheng (1996) and Theorem 3.1 of Fan and Li (2000)). For I(2)
n , power is generated

only from local deviations in the neighborhood of q = γ0. In consequence, we need a larger deviation for

I
(2)
n than for I(1)

n to generate non-trivial power —specifically, n−1/2h−d/4b−1/2/n−1/2h−d/4 = b−1/2 →∞.

6.2 Bootstrapping Critical Values

As is evident from the proofs of Theorems 7 and 8, the convergence rates of T (1)
n and T (2)

n to the standard

normal is slow. The bias under H(1)
0 is hd/2 and under H(2)

0 is nhd/2b2η. Both these rates are low for some

standard choices of bandwidth. As argued in the literature of classical specification testing (see, e.g., Härdle

and Mammen (1993), Li and Wang (1998), Stute et al. (1998), Delgado and Manteiga (2001), and Gu et al.
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(2007)), an improved approximation of the finite-sample distribution of T (`)
n can be obtained using the wild

bootstrap (Wu, 1986; Liu, 1988). We therefore suggest that the following algorithm WB be used in both

tests, with êi and ŷi having different definitions in the two tests.

Algorithm WB:

Step 1: For i = 1, · · · , n, generate the two-point wild bootstrap residual u∗i = êi
(
1−
√

5
)
/2 with proba-

bility
(
1 +
√

5
)
/
(
2
√

5
)
, and u∗i = êi

(
1 +
√

5
)
/2 with probability

(√
5− 1

)
/
(
2
√

5
)
, then E∗ [u∗i ] = 0,

E∗
[
u∗2i
]

= ê2
i and E∗

[
u∗3i
]

= ê3
i , where E∗ [·] = E [·|Fn] and Fn = {(x′i, qi, yi)}

n
i=1.

Step 2: Generate the bootstrap resample {y∗i , xi, qi}
n
i=1 by

35

y∗i = ŷi + u∗i .

Then obtain the bootstrap residuals ê∗i = y∗i − ŷ∗i , where ŷ∗i is defined similarly to ŷi except that yi in
the construction of ŷi is replaced by y∗i .

Step 3: Use the bootstrap samples to compute the statistics

I(1)∗
n =

nhd/2

n (n− 1)

∑
i

∑
j 6=i

Kh,ij ê
∗
i ê
∗
j ,

I(2)∗
n =

nhd/2

n (n− 1)

∑
i

∑
j 6=i

1Γ
i 1Γ
jKh,ij ê

∗
i ê
∗
j ,

and the estimated asymptotic variances

v(1)∗2
n =

2hd

n(n− 1)

∑
i

∑
j 6=i

K2
h,ij ê

∗
i

2ê∗2j ,

v(2)∗2
n =

2hd

n(n− 1)

∑
i

∑
j 6=i

1Γ
i 1Γ
jK

2
h,ij ê

∗
i

2ê∗2j .

The studentized bootstrap statistics are T (`)∗
n = I

(`)∗
n /v

(`)∗
n . Here, the same b and h are used as in I(`)

n

and v(`)2
n in Theorems 7 and 8.36

Step 4: Repeat steps 1-3 B times, and use the empirical distribution of
{
T

(`)∗
n,k

}B
k=1

to approximate the

null distribution of T (`)
n . We reject H(`)

0 if T (`)
n > T

(`)∗
n(αB), where T

(`)∗
n(αB) is the upper α-percentile of{

T
(`)∗
n,k

}B
k=1

.

In Step 1, a popular way to simulate u∗i in the second test is based on êi’s centralized counterpart êi = êi− ê

rather than êi itself, where ê =
n∑
i=1

êi1
Γb
i

/
n∑
i=1

1Γb
i , Γb =

(
γ − b, γ + b

)
; see, e.g., Gijbels and Goderniaux

(2004) and Su and Xiao (2008). Such a formulation can lead to
n∑
i=1

êi1
Γb
i

/
n∑
i=1

1Γb
i = 0,37 which will not

35To construct I(2)∗
n , we need only the data with qi ∈

[
γ − b, γ + b

]
.

36 If we use a data-adaptive bandwidth such as cross-validation based on each bootstrap sample, then the algorithm is
extremely time-consuming. See Chapter 3 of Mammen (1992) for related discussions.
37 In the first test, 1

n

n∑
i=1

êi = 1
n

n∑
i=1

êi1(qi ≤ γ̂) + 1
n

n∑
i=1

êi1(qi > γ̂) = 0 since the covariates include a constant term.
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affect the asymptotic results but may affect the finite sample performance of Algorithm WB especially under

H
(2)
1 .

The bootstrap sample is generated by imposing the null hypothesis. Therefore, the bootstrap statistic

T
(`)∗
n will mimic the null distribution of T (`)

n even when the null hypothesis is false. When the null is false, êi
is not a consistent estimate of εi or ui. Nevertheless, the following theorem shows that the above bootstrap

procedure is valid. This is because our studentized test statistic T (`)
n is invariant to the variance of e. But

the wild bootstrap procedure is not valid if the test statistic I(`)
n is used instead of T (`)

n .38

Theorem 9 Under the assumptions of Theorem 7 and 8,

sup
z∈R

∣∣∣P (T (`)∗
n ≤ z|Fn

)
− Φ(z)

∣∣∣ = op (1) ,

where Φ(·) is the cdf of N (0, 1).

7 Simulations

We report simulations designed to assess the performance of our CIs and tests. We will concentrate on

procedures whose performance is unclear in the literature. For inference, we will check only the CIs that

invert the two LR statistics in Sections 4 and 5. It is unnecessary to compare the performance of the IDKE

and the DKE because YP have already shown that the former performs much better than the latter in

finite samples. Similarly, we do not check the performance of estimators and CIs based on our 2SLS or

effi cient GMM procedure because these are compared in YLP with other estimators and CIs that employ

instruments. Further, we do not report the performance of CIs based on inverting the t statistics because in

Method II its performance is similar to the LR-based CI and in Method III its performance is worse. For the

two specification tests, we investigate only the two nonparametric tests developed in the main text because

the performances of parametric tests developed in Supplement D are widely available in the literature.39

Another reason for focusing on these two CI constructions and two specification tests is that neither involves

instruments. As mentioned in the Introduction, good instruments are hard to find and justify in practice,

so these methods have appeal in applied work.

We use a similar DGP as in YP for the simulation designs. Specifically, y = δ11(q ≤ γ) + ε, i.e., the

threshold effect does not depend on x, where γ = 0 and Γ = [−0.1, 0.1], x and q are independent and each

is uniformly distributed over [−0.5, 0.5], and ε| (x, q) ∼ N(−δ2q
3, 0.12). In CI construction, we let δ1 = 0.1

and 0.2, indicating small and large threshold effects, respectively, and δ2 = 1, indicating severe endogeneity.

In testing endogeneity, we let δ1 = 0.2 and δ2 = 0, 0.2, 0.5 and 1, where δ2 = 0 corresponds to the null. In

testing threshold effects, δ1 = 0, 0.1, 0.2 and 0.5, and δ2 = 1, where δ1 = 0 corresponds to the null. For the

IDKE with k±(0) = 0,

k−(x, r) = −x(1 + x)1(−1 ≤ x ≤ r)
/(

1

6
− 1

2
r2 − 1

3
r3

)
, 0 ≤ r ≤ 1,

38The wild bootstrap for I(2)
n should be valid because the misspecification in the variance of e happens only in a b neighborhood

of γ0.
39Although the literature (e.g., Zheng, 1996; Li and Wang, 1998) provides simulation results when the approximation function

m̃(x, q) in (7) is smooth, there are no corresponding results when m̃(x, q) is discontinuous. Also, although Porter and Yu (2015)

investigate the finite sample performance of a similar structural change test as I(2)
n , no covariates x are included in that work.
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and for the IDKE with shrinking threshold effects,

k−(x, r) =
3

4
(1− x2)1(−1 ≤ x ≤ r)

/(
1

2
+

3

4
r − 1

4
r3

)
, 0 ≤ r ≤ 1, (28)

which degenerates to the Epanechnikov kernel when r = 1; k+(x, r) = k−(−x, r).40 In both tests, the kernel
in Kh,ij is specified in (28), and in the second test, ŷi is estimated by the local linear smoother which implies

a second-order boundary kernel in Lb,ij as required in Assumption L. Following DH, three bandwidths h

are used based on the formula Cn−1/2 with proportionality constants C = 2, 3 and 4; in the second test,

b = 1
2h

1/2 to guarantee h/b → 0 and nhd/2b2η → 0 with η = 2.41 The simulation study in Müller (1991)

shows that a bandwidth without boundary adjustment works well, and we therefore use the same bandwidth

for both interior and boundary points. N = 500 replications with sample size 500 and 1000 are used. In

Algorithm WB, B = 399 when n = 500 and B = 199 when n = 1000. For CI construction the confidence

level used is 95%, and for testing the level of significance is 5%.

7.1 Two LR-Based CIs

The coverage and average length of the two LR-based CIs are reported in Table 3. From Table 3, both

methods perform well in coverage. Reductions in bandwidth and expansion of sample size both marginally

improve coverage. On the other hand, different bandwidths and sample sizes have a big impact on CI lengths.

Specifically, under our DGP, the medium bandwidth seems to perform satisfactorily for CI length among

various scenarios and a larger sample size shrinks the length significantly. Another phenomenon deserving

of mention is that CI length decreases sharply when the jump size doubles in both methods. This outcome

is expected because larger threshold effects make the threshold point easier to identify. Comparing Method

II to Method III, the latter behaves a little better in coverage. This may stem from the fact that the latter

makes full use of the data information around γ0 (k±(0) > 0) while the former makes only marginal use of

such information (k±(0) = 0). This improvement comes at the cost that the CIs in Method III are generally

longer than those in Method II.

7.2 Two Nonparametric Specification Tests

The size and power of the two nonparametric specification tests are reported in Tables 4 and 5, respectively.

From these two tables, all tests have size close to the nominal 5% except in the second test with a large h

where the test is undersized. A large h implies a large bias in I(2)
n so the rejection probability is adversely

affected. The power of the endogeneity test is very good - even when δ2 = 1 and n = 500, the power is 100%.

The power of the second test is also very good - even when δ1 = 0.5 and n = 500, the power is close to

100%. As a benchmark, δ1 = 0.2 corresponds to two standard deviations of the error term u which follows

N
(
0, 0.12

)
.

40These kernel functions imply ξ(1) = 12 and k′+ (0) = 6 in Corollary 2 and k+(0) = 1.5 in Corollary 4. So Rn = 2
k+(0)k′+(0)

ξ(1)
=

1.5 in our DGP.
41Notice that the range of bandwidths chosen is quite large, since the ratio of the proportionality constants between the

first and the last is 2. In the estimation of γ, the bandwidth is smaller than the usual optimal bandwidth (which is of rate

n
− 1

2s+d = n−
1
6 ), just as suggested in Porter and Yu (2015). In the second test, N = n × (2 × 1

2
C1/2n−1/4)2 = Cn1/2 data

points are used to obtain ŷi. When C = 2 and n = 500, N ≈ 45. When C = 4 and n = 1000, N ≈ 126.
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k±(0) = 0

Coverage Length (×10−2)

n 500 1000 500 1000

δ1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2

C = 2 0.998 0.962 0.998 0.964 17.6 7.11 15.23 4.27

C = 3 0.994 0.958 1 0.964 16.12 6.85 11.49 3.71

C = 4 0.984 0.954 0.992 0.970 15.98 7.52 10.62 4.07

δn → 0

Coverage Length (×10−2)

n 500 1000 500 1000

δ1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2

C = 2 1 0.980 1 0.972 18.52 7.83 17.94 5.46

C = 3 1 0.986 1 0.984 17.23 5.11 14.59 2.47

C = 4 0.998 0.984 1 0.898 16.27 4.45 11.72 15.78

Table 3: Comparison of Inferential Methods: Coverage and average length

for nominal 95% confidence for γ with δ2 = 1 and bandwidth proportionality constant C.

n 500 1000

δ2 0 0.2 0.5 1 0 0.2 0.5 1

C = 2 5.2 8 52.8 100 5 11.8 78.2 100

C = 3 5.8 10.2 68.8 100 3.6 15.8 94 100

C = 4 5.2 10.8 78.8 100 3.8 21 97.2 100

Table 4: Size and Power of T (1)
n (%): Nominal significance level 5%, δ1 = 0.2

n 500 1000

δ1 0 0.1 0.2 0.5 0 0.1 0.2 0.5

C = 2 4.4 17.4 78.2 99.4 3 29 93 100

C = 3 4.0 22.2 78.4 100 2.8 46.2 98.6 100

C = 4 3.8 17.2 68.6 99.4 1.8 49.8 98.8 100

Table 5: Size and Power of T (2)
n (%): Nominal significance level 5%, δ2 = 1

8 Conclusion

All three methods of estimation presented here for threshold point regression remain valid and invariant to

endogeneity of the threshold variable. To the best of our knowledge these methods are the only ones in the

literature offering such robustness. The first method is a nonlinear 2SLS method and requires instruments,

while the other two methods are based on smoothing the objective function of the IDKE and do not require

any instrumentation in their implementation. These are important advantages in empirical work where valid

instruments are often scarce.

Our development and discussion of the 2SLS method clarifies some puzzles in the current literature about

the properties of threshold regression estimation. We draw attention in particular to the following matters

that are resolved in the paper: (i) why the usual GMM method cannot identify the threshold point in

structural change models; (ii) why two groups of moments are required to identify the threshold point when

the threshold variable is exogenous and correlated with the covariates and instruments, whereas only one
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group of moments is suffi cient when the threshold variable is endogenous; and (iii) why the bootstrap is valid

for our 2SLS method while it is generally invalid for the usual GMM approach.

In discussing the two IDKE-smoothing methods, we show that these IDKEs use different normalizations to

obtain operable asymptotic distributions under different assumptions and we explain why their convergence

rates are different. We further show how to construct confidence intervals by inverting the LR statistics

in both methods. Our three inferential methods provide considerable flexibility to practitioners. When

instruments are available, the 2SLS method of estimation can be used, coupled with use of the bootstrap for

inference. When instruments are absent, the other two methods can be used.

Two specification tests are suggested, one designed to check for the presence of endogeneity and the other

to check for threshold effects. Our results show that it is possible to test for threshold effects in the absence

of instrumentation even if endogeneity is present. An important implication of the test for endogeneity in

empirical work is that it helps to assess whether instruments are required to achieve consistent estimation

of the structural coeffi cients. Both tests are similar to score tests and have convenient asymptotic normal

distributions, although a wild bootstrap procedure is suggested to determine critical values for improved

finite sample performance.
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We first collect notation for future reference. The n × 1 vectors Y and ε stack the variables yi and εi,

the n × d matrices X, X≤γ and X>γ stack the vectors x′i, x
′
i1(qi ≤ γ) and x′i1(qi > γ), and the n × dz

matrices Z, Z≤γ and Z>γ are similarly defined. The symbol ≈ means asymptotic equivalence in the sense

that higher order terms are neglected, =d signifies equality in distribution, C means a positive constant that

may change at each occurrence, and  signifies weak convergence of the respective probability measures

over an associated compact metric space.

To aid intuition in the development of Methods II and III, we let ∆ (x, q) = x′δ throughout the proofs

for these two methods.

Supplement A: Proofs

Proof of Theorem 1. We first show the consistency of θ̂. If γ̂ is consistent, then a standard argument

can be applied to show that (
β̂, δ̂
)

=
(
β̂ (γ̂) , δ̂ (γ̂)

)
with (

β̂ (γ)

δ̂ (γ)

)
=
[(
X′≤γZ

)
Ŵ (Z ′X≤γ)

]−1 [(
X′≤γZ

)
Ŵ (Z ′Y )

]
is consistent, where X≤γ = (X,X≤γ). So we now concentrate on the consistency of γ̂. First note that the

concentrated objective function of (12) after plugging in
(
β̂ (γ) , δ̂ (γ)

)
is

Q̂n (γ) = ĝn (γ)
′
Ŵ ĝn (γ) .

Here,

ĝn (γ) = 1
nZ
′
(
Y −X≤γ

[(
1
nX
′
≤γZ

)
Ŵ
(

1
nZ
′X≤γ

)]−1 [(
1
nX
′
≤γZ

)
Ŵ
(

1
nZ
′Y
)])

=

{
Il −

(
1
nZ
′X≤γ

) [(
1
nX
′
≤γZ

)
Ŵ
(

1
nZ
′X≤γ

)]−1 (
1
nX
′
≤γZ

)
Ŵ

}(
1
nZ
′X≤γ0

θ0 + 1
nZ
′ε
)

=

{
Il −

(
1
nZ
′X≤γ

) [(
1
nX
′
≤γZ

)
Ŵ
(

1
nZ
′X≤γ

)]−1 (
1
nX
′
≤γZ

)
Ŵ

}(
1
nZ
′X≤γ0

δn + 1
nZ
′ε
)
,

and the second equality holds because the first d columns of Z ′X≤γ0
are the same as those of Z ′X≤γ .

We apply Theorem 2.1 of Newey and McFadden (1994) to prove the result. First, we can show

supγ∈Γ

∥∥∥ 1
‖δn‖ ĝn (γ)− g0 (γ)

∥∥∥ p−→ 0,

42Faculty of Business and Economics, The University of Hong Kong, Pokfulam Road, Hong Kong; corresponding author
email: pingyu@hku.hk.
43Faculty of Business and Economics, The University of Hong Kong, Pokfulam Road, Hong Kong; email:

liaoq@connect.hku.hk.
44Cowles Foundation for Research in Economics, Yale University, POBox 208281, New Haven, CT, USA; email: pe-

ter.phillips@yale.edu
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where

g0 (γ) =
(
I −Gγ

(
G′γWGγ

)−1
G′γW

)
G2,γ0

c.

To see why, note that by a Glivenko-Cantelli argument,

Il −
(

1
nZ
′X≤γ

) [(
1
nX
′
≤γZ

)
Ŵ
(

1
nZ
′X≤γ

)]−1 (
1
nX
′
≤γZ

)
Ŵ

p−→ Il −Gγ
(
G′γWGγ

)−1
G′γW

uniformly in γ. Also, 1
nZ
′X≤γ0

δn
‖δn‖

p−→ G2,γ0
c and 1

‖δn‖
1
nZ
′ε = Op

(
1√

n‖δn‖

)
= op (1), the result follows.

Second, by the CMT,

Q̂n (γ) / ‖δn‖2
p−→ c′G′2,γ0

(
Il −WGγ

(
G′γWGγ

)−1
G′γ

)
W
(
Il −Gγ

(
G′γWGγ

)−1
G′γW

)
G2,γ0

c

= c′G′2,γ0

(
W −WGγ

(
G′γWGγ

)−1
G′γW

)
G2,γ0

c

= c′R′2,γ0

(
I −Rγ

(
R′γRγ

)−1
R′γ

)
R2,γ0

c

=
∥∥R2,γ0

c
∥∥2 −

∥∥PRγ (R2,γ0
c
)∥∥2

=: Q0 (γ)

uniformly in γ, where Rγ = W 1/2Gγ and R2,γ = W 1/2G2,γ . Obviously, Q0 (γ0) = 0. Also, PRγ is a

projection on a 2d-dimensional space, while R2,γ0
c is a l(> 2d)-dimensional vector, so as long as Rγ0

c does

not fall in span (Rγ) when γ 6= γ0, Q0 (γ) > 0. This requirement is satisfied by virtue of Assumption IV.

We can now adjust Theorem 7.2 of Newey and McFadden (1994) to derive the asymptotic distribution

of θ̂. We only point out the difference in the proof. Replace G by Gnrn and θ − θ0 by r−1
n (θ − θ0),

where Gn = −
(
E [zx′] ,E

[
zx′≤γ0

]
,E [zx′|q = γ0] δnfq (γ0)

)
and rn =

(
I2d 0

0 1/ ‖δn‖

)
. Then H =

−rnG′nWGnrn → −G′WG and D̂ = −rnG′nŴ
√
nĝn (θ0)

d−→ N (0, G′WΩWG). What remains is to show

that for any hn → 0,

sup‖(θ−θ0)‖≤hn
√
n ‖ĝn (θ)− ĝn (θ0)− g0 (θ0)‖ p−→ 0.

This stochastic equicontinuity result is obvious because ĝn (θ) is generated by a VC subgraph class of func-

tions. We mention that this part of proof is similar to the ‘convergence rate and asymptotic normality’part

in the proof of Theorem 1 of Seo and Shin (2016). Their consistency proof is marred by a typo, which has a

material effect. Specifically, at the end of page 181, the probability limit should be I −A(γ) · · · rather than
I +A(γ) · · · . This is why they did not specify an identification assumption such as that in Assumption IV.

Proof of Theorem 2. First assume W̃ =diag
{
W̃1, W̃2

}
with W̃1

p−→W1 > 0 and W̃2
p−→W2 > 0. Then

Q̃n (θ) can be expressed as a sum of two quadratic forms:

Q̃n (θ) = Q̃1n (θ1) + Q̃2n (θ2) ,

where
Q̃1n (θ1) = m̃1n (θ1)

′
W̃1m̃1n (θ1) and Q̃1n (θ1) = m̃2n (θ2)

′
W̃2m̃2n (θ2) ,

m̃1n (θ1) = 1
n

∑n
i=1 zi (yi − x′iβ1) 1(qi ≤ γ),

m̃2n (θ2) = 1
n

∑n
i=1 zi (yi − x′iβ2) 1(qi > γ),
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with θ1 =
(
β′1, γ

)′
and θ2 =

(
β′2, γ

)′
. It is not hard to see that

(
β̃1 (γ)

β̃2 (γ)

)
=


[
X ′≤γZW̃1 (Z ′X≤γ)

]−1 [(
X ′≤γZ

)
W̃1 (Z ′Y≤γ)

]
[
X ′>γZW̃2 (Z ′X>γ)

]−1 [(
X ′>γZ

)
W̃2 (Z ′Y>γ)

]
 ,

so if γ̃ is consistent, then both β̃1 and β̃2 are consistent. So we concentrate on the consistency of γ̃.

By similar analysis to the proof of Theorem 1,

Q̃n (γ)
p−→ ‖r̃1,γ,θ0

‖2 −
∥∥∥PR̃1,γ

(r̃1,γ,θ0
)
∥∥∥2

+ ‖r̃2,γ,θ0
‖2 −

∥∥∥PR̃2,γ
(r̃2,γ,θ0

)
∥∥∥2

,

where r̃1,γ,θ0 = W
1/2
1 E [zy≤γ ], r̃2,γ,θ0 = W

1/2
2 E [zy>γ ], R̃1,γ = W

1/2
1 E

[
zx′≤γ

]
and R̃2,γ = W

1/2
2 E

[
zx′>γ

]
.

Note that(
E [zy≤γ ]

E [zy>γ ]

)
=

 E
[
zx′≤γ∧γ0

]
E
[
zx′γ0<≤γ

]
E
[
zx′γ<≤γ0

]
E
[
zx′>γ∨γ0

] ( β10

β20

)
+

(
E [zε≤γ ]

E [zε>γ ]

)

=

(
E
[
zx′≤γ

]
0

E
[
zx′γ<≤γ0

]
E
[
zx′>γ0

] )( β10

β20

)
+

(
E [zε≤γ ]

E [zε>γ ]

)
if γ ≤ γ0

=

(
E
[
zx′≤γ0

]
E
[
zx′γ0<≤γ

]
0 E

[
zx′>γ

] )(
β10

β20

)
+

(
E [zε≤γ ]

E [zε>γ ]

)
if γ > γ0.

We consider the following two cases.

(i) q is exogenous (i.e., q is included in z, and E [ε|z] = 0). In this case, E [zε≤γ ] = E [zε>γ ] = 0. First

suppose γ ≤ γ0. Then r̃1,γ,θ0 = W
1/2
1 E

[
zx′≤γ

]
β10 and r̃2,γ,θ0 = W

1/2
2

(
E
[
zx′γ<≤γ0

]
β10 + E

[
zx′>γ0

]
β20

)
.

The question is whether we can find a1 and a2 such that E
[
zx′≤γ

]
a1 = E

[
zx′≤γ

]
β10, and E

[
zx′>γ

]
a2 =

E
[
zx′γ<≤γ0

]
β10+E

[
zx′>γ0

]
β20 = E

[
zx′>γ

]
β10+E

[
zx′>γ0

]
(β20 − β10) or E

[
zx′>γ

]
(β10 − a2) = E

[
zx′>γ0

]
δ0.

We can let a1 = β10, but if l > (d + 1), such an a2 is impossible by Assumption IV′(i). Next sup-

pose γ > γ0. Then we try to select a1 and a2 such that E
[
zx′≤γ

]
a1 = E

[
zx′≤γ0

]
β10 + E

[
zx′γ0<≤γ

]
β20 =

E
[
zx′≤γ

]
β20+E

[
zx′≤γ0

]
(β10 − β20) or E

[
zx′≤γ

]
(a1 − β20) = E

[
zx′≤γ0

]
δ0 and E

[
zx′>γ

]
a2 = E

[
zx′>γ

]
β20.

We can let a2 = β20, but such an a2 is impossible by Assumption IV′(i).

(ii) q is endogenous and satisfies only E [zε1(q ≤ γ0)] = 0 and E [zε1(q > γ0)] = 0. Again, first

suppose γ ≤ γ0. Then we try to select a1 and a2 such that E
[
zx′≤γ

]
a1 = E

[
zx′≤γ

]
β10 + E [zε≤γ ]

and E
[
zx′>γ

]
a2 = E

[
zx′γ<≤γ0

]
β10 + E

[
zx′>γ0

]
β20 + E [zε>γ ] or E

[
zx′≤γ

]
(a1 − β10) = E [zε≤γ ] and

E
[
zx′>γ

]
(β10 − a2)+E [zε>γ ] = E

[
zx′>γ0

]
δ0. Such an a1 and a2 are impossible by Assumption IV′(ii). Next

suppose γ > γ0. Then we try to select a1 and a2 such that E
[
zx′≤γ

]
a1 = E

[
zx′≤γ0

]
β10 +E

[
zx′γ0<≤γ

]
β20 +

E [zε≤γ ] = E
[
zx′≤γ

]
β20 + E

[
zx′≤γ0

]
(β10 − β20) + E [zε≤γ ] and E

[
zx′>γ

]
a2 = E

[
zx′>γ

]
β20 + E [zε>γ ] or

E
[
zx′≤γ

]
(a1 − β20) = E

[
zx′≤γ0

]
δ0 + E [zε≤γ ] and E

[
zx′>γ

]
(a2 − β20) = E [zε>γ ]. Such an a1 and a2 are

impossible by Assumption IV′(ii).

Now consider the case where q is exogenous and is independent of (z′,x′)
′. Suppose γ ≤ γ0. We can

set a2 =
(1−Fq(γ0))(β20−β10)

1−Fq(γ) + β10 =
(1−Fq(γ0))β20+(Fq(γ0)−Fq(γ))β10

1−Fq(γ) , which is θ(2)
∗ (λ) in Proposition 1(ii) of

HHB where q ∼ U [0, 1]. Now suppose γ > γ0. We can set a1 =
Fq(γ)β10+(Fq(γ)−Fq(γ0))β20

Fq(γ) , which is θ(1)
∗ (λ)

in Proposition 1(ii) of HHB where q ∼ U [0, 1].
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If W̃ is a general positive definite matrix, then

Q̃n (γ)
p−→ ‖r̃γ,θ0

‖2 −
∥∥∥PR̃γ (r̃γ,θ0

)
∥∥∥2

,

where R̃γ = W 1/2G̃γ with G̃γ =

(
E
[
zx′≤γ

]
0

0 E
[
zx′>γ

] ), and r̃γ,θ0 = W 1/2

(
E [zy≤γ ]

E [zy>γ ]

)
. In case (i), if

there does not exist a1 and a2 such that

(
E
[
zx′≤γ

]
0

)
a1+

(
0

E
[
zx′>γ

] ) a2 =

(
E
[
zx′≤γ

]
0

E
[
zx′γ<≤γ0

]
E
[
zx′>γ0

] )( β10

β20

)
or E

[
zx′≤γ

]
a1 = E

[
zx′≤γ

]
β10 and E

[
zx′>γ

]
a2 = E

[
zx′γ<≤γ0

]
β10 + E

[
zx′>γ0

]
β20 for any γ < γ0, and(

E
[
zx′≤γ

]
0

)
a1+

(
0

E
[
zx′>γ

] ) a2 =

(
E
[
zx′≤γ0

]
E
[
zx′γ0<≤γ

]
0 E

[
zx′>γ

] )(
β10

β20

)
or E

[
zx′≤γ

]
a1 = E

[
zx′≤γ0

]
β10+

E
[
zx′γ0<≤γ

]
β20 and E

[
zx′>γ

]
a2 = E

[
zx′>γ

]
β20 for any γ > γ0, then γ0 is identified. These conditions are

exactly the same as in the diagonal W̃ case. Similarly, in case (ii), the same conditions as in the diagonal

W̃ case are required to identify γ0.

Proof of Theorem 3. Proposition 1 proves the consistency of γ̂, and Proposition 2 proves γ̂ − γ0 =

Op
(
(n/h)−1/2

)
, so we can apply the argmax continuous mapping theorem (see, e.g., Theorem 3.2.2 of

Van der Vaart and Wellner (1996)) to establish the asymptotic distribution of
√
n/h (γ̂ − γ0). From

Proposition 3, the finite-dimensional limit distributions of nh
(
Q̂n(γv0)− Q̂n(γ0)

)
are the same as those of

−v2E[∆f (xi)∆if(xi)|qi = γ0]fq(γ0)k′+(0)+2vU , where U ∼ N
(

0,E
[
∆2
f (xi)f

2(xi)(σ
2
+(xi) + σ2

−(xi))|qi = γ0

]
fq(γ0)ξ(1)

)
.

Combining this with the stochastic equicontinuity result in Lemma 6, we have

nh
(
Q̂n(γv0)− Q̂n(γ0)

)
 −v2E[∆f (xi)∆if(xi)|qi = γ0]fq(γ0)k′+(0) + 2Uv.

Thus, √
n/h (γ̂ − γ0)

d−→ v∗ = arg max
v

{
−v2E[∆f (xi)∆if(xi)|qi = γ0]fq(γ0)k′+(0) + 2Uv

}
= U

E[∆f (xi)∆if(xi)|qi=γ0]fq(γ0)k′+(0) ∼ N (0,Σ).

Proof of Theorem 4. We prove the theorem in two steps. First, we show that Σ̂ (γ0)
d−→ Σ, where Σ̂ (γ0)

is replacing γ̂ in Σ̂ by γ0. Second, we show that Σ̂− Σ̂ (γ0)
p−→ 0. The first result is shown in Proposition 4

and the second is shown in Proposition 5.

Proof of Corollary 2. From the proof of Theorem 3 and the CMT,

nh
E[∆f (xi)∆if(xi)|qi=γ0]k′+(0)

E[∆2
f (xi)f2(xi)(σ2

+(xi)+σ2
−(xi))|qi=γ0]ξ(1)

sup
v

{
Q̂n(γv0)− Q̂n(γ0)

}
d−→ E[∆f (xi)∆if(xi)|qi=γ0]k′+(0)

E[∆2
f (xi)f2(xi)(σ2

+(xi)+σ2
−(xi))|qi=γ0]ξ(1)

sup
v

{
−v2E[∆f (xi)∆if(xi)|qi = γ0]fq(γ0)k′+(0) + 2Uv

}
=

E[∆f (xi)∆if(xi)|qi=γ0]k′+(0)

E[∆2
f (xi)f2(xi)(σ2

+(xi)+σ2
−(xi))|qi=γ0]ξ(1)

U2

fq(γ0)E[∆f (xi)∆if(xi)|qi=γ0]|k′+(0)

= U2

E[∆2
f (xi)f2(xi)(σ2

+(xi)+σ2
−(xi))|qi=γ0]fq(γ0)ξ(1)

∼ χ2
1.

By the proof of Theorem 4 and Slutsky’s theorem, L̂Rn (γ0)
d−→ χ2

1.

Proof of Theorem 5. Assume the densities of (x′, q)′ and e are known. Since the minimax risk for a
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larger class of probability models is no smaller than that for a smaller class of probability models, the lower

bound for a particular distributional assumption also holds for a wider class of distributions. To simplify the

calculation, assume ei is iid N(0, 1) and (x′i, qi)
′ is iid uniform on X × [0, 1]. Such a specification also appears

in Fan (1993) where it is called the assumption of richness of joint densities. We will use the technique in

Sun (2005) to develop our results. This technique is also implicitly used in Stone (1980) and the essential

part of the technique can be cast in the language of Neyman-Pearson testing.

Let P,Q be probability measures defined on the same measurable space (Ω,A) with the affi nity between

the two measures defined as usual to be

π(P,Q) = inf (EP [φ] + EQ [1− φ]) ,

where the infimum is taken over the measurable function φ such that 0 ≤ φ ≤ 1. In other words, π(P,Q) is

the smallest sum of type I and type II errors of any test between P and Q. It is a natural measure of the

diffi culty of distinguishing P and Q. Suppose µ is a measure dominating both P and Q with corresponding

densities p and q. It follows from the Neyman-Pearson lemma that the infimum is achieved by setting

φ = 1(p ≤ q) and then

π(P,Q) =
∫

1(p ≤ q)pdµ+
∫

1(p > q)qdµ = 1− 1
2

∫
|p− q| dµ ≡ 1− 1

2 ‖P −Q‖1 ,

where ‖·‖1 is the L1 distance between two probability measures. Now consider a pair of probability models

P,Q ∈ P(s,B) such that |γ(P )− γ(Q)| ≥ ε.
For any estimator γ̂, we have

1 (‖γ̂ − γ(P )‖ > ε/2) + 1 (‖γ̂ − γ(Q)‖ > ε/2) ≥ 1.

Let

φ = 1(|γ̂−γ(P )|>ε/2)
1(|γ̂−γ(P )|>ε/2)+1(|γ̂−γ(Q)|>ε/2) .

Then 0 ≤ φ ≤ 1 and

sup
P∈P(s,B)

P (|γ̂ − γ(P )| > ε/2) ≥ 1
2 {P (|γ̂ − γ(P )| > ε/2) +Q (|γ̂ − γ(Q)| > ε/2)} ≥ 1

2EP [φ] + 1
2EQ [1− φ] .

Therefore
inf
γ̂

sup
P∈P(s,B)

P (|γ̂ − γ(P )| > ε/2) ≥ 1
2π(P,Q)

for any P and Q such that |γ(P )− γ(Q)| ≥ ε. So we need only search for the pair (P,Q) which minimize

π(P,Q) subject to the constraint |γ(P )− γ(Q)| ≥ ε. To obtain a lower bound with a sequence of independent
observations, let (Ω,A) be the product space and P(s,B) be the family of product probabilities on such

a space. Then for any pair of finite-product measures P =
∏n
i=1 Pi and Q =

∏n
i=1Qi, the minimax risk

satisfies
inf
γ̂

sup
P∈P(s,B)

P (|γ̂ − γ(P )| > ε/2) ≥ 1
2

(
1− 1

2 ‖
∏n
i=1 Pi −

∏n
i=1Qi‖1

)
provided that |γ(P )− γ(Q)| ≥ ε. From Pollard (1993), if dQi/dPi = 1 + ∆i(·), then

‖
∏n
i=1 Pi −

∏n
i=1Qi‖1 ≤ exp

(
n∑
i=1

ν2
i

)
− 1,

5



where ν2
i = EPi [∆2

i (·)] is finite. So

inf
γ̂

sup
P∈P(s,B)

P (|γ̂ − γ(P )| > ε/2) ≥ 1
2

(
3
2 − exp

(
n∑
i=1

ν2
i

))
(29)

provided that |γ(P )− γ(Q)| ≥ ε.
It remains to find probabilities P and Q that are diffi cult to distinguish by the data set {(x′i, qi, yi)}

n
i=1.

Under P , the data is generated according to

yi = gP (xi, qi) + ∆mP (xi, qi) 1(qi ≤ γP ) + ei,

where ∆mP (xi, qi) = δαP + x′iδxP + qiδqP , and under Q, gP , ∆mP and γP are changed to gQ, ∆mQ and

γQ, respectively. The point here is that only ∆mP instead of δP matters for our purpose. We now specify g,

∆m and γ for each model. First suppose n
s

2s+1 ρn →∞. For P , let gP = 0, ∆mP = 0, and γP = 0 without

loss of generality; for Q, let

gQ(x, q) = 0, ∆mQ (x, q) = ξρn, γQ =
(
ξnρ2

n

)−1
,

where ξ is a positive constant. Obviously, gQ(x, q) ∈ Cs (B,X × [0, 1]) for some B > 0, so it remains to

compute the L1 distance between the two measures. Let the density of Qi with respect to Pi be 1 + ∆i(·),
then

∆i(xi, qi, yi) =

{
φ(yi −∆mQ (xi, qi))/φ(yi)− 1,

0,

if qi ∈ [0, γQ],

otherwise

where φ(·) is the standard normal pdf. Therefore,

EPi
[
∆2
i

]
=
∫ γQ

0

∫ 1

0
· · ·
∫ 1

0

∫∞
−∞ [φ(y −∆mQ (x, q))/φ(y)− 1]

2
φ(y)f(x, q)dydxdq

=
∫ γQ

0

∫ 1

0
· · ·
∫ 1

0

∫∞
−∞ φ(y −∆mQ (x, q))2/φ(y)dydxdq − 2

∫ γQ
0

∫ 1

0
· · ·
∫ 1

0

∫∞
−∞ φ(y −∆mQ (x, q))dydxdq + γQ

=
∫ γQ

0

∫ 1

0
· · ·
∫ 1

0

∫∞
−∞ φ(y −∆mQ (x, q))2/φ(y)dydxdq − γQ.

Plugging in the standard normal pdf yields

EPi [∆2
i ] =

∫ γQ
0

∫ 1

0
· · ·
∫ 1

0

∫∞
−∞

1√
2π

exp
{
− 2(y−∆mQ(x,q))2

2 + y2

2

}
dydxdq − γQ

=
∫ γQ

0

∫ 1

0
· · ·
∫ 1

0
exp

{
∆mQ (x, q)

2
}
dxdq − γQ

=
∫ γQ

0
exp

(
ξ2ρ2

n

)
dq − γQ

= γQ
[
exp

(
ξ2ρ2

n

)
− 1
]

= γQξ
2ρ2
n(1 + o(1)) ≤ ξ

n ,

when n is large enough.

When ξ is small enough, say ξ ≤ log(5/4), we have

exp

(
n∑
i=1

ν2
i

)
≤ exp (ξ) < 5

4 .

It follows from (29) that

inf
γ̂

sup
P∈P(s,B)

P
(
|γ̂ − γ(P )| > ε

2

(
nρ2

n

)−1
)
≥ 1

2

(
3
2 −

5
4

)
= 1

8 ≥ C,
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on choosing C ≤ 1/8, where ε
2

(
nρ2

n

)−1
appears because |γ(P )− γ(Q)| =

(
ξnρ2

n

)−1 ≥ ε
(
nρ2

n

)−1
for a small

ε.

We next suppose n
s

2s+1 ρn = O (1). Let P and Q be the same as above except that in Q,

gQ(x, q) = −ξηsϕq
(
q−γQ
η

)
, ∆mQ (x, q) = ξηs, γQ = ξ,

where η = n−1/(2s+1), ϕq is an infinitely differentiable function in q satisfying (i) ϕq(v) = 0 for v ≥ 0, (ii)

ϕq (v) = 1, for v ≤ −1, and (iii) ϕq (v) ∈ (0, 1) for v ∈ (−1, 0). It is not hard to check that gQ(x, q) ∈
Cs (B,X × [0, 1]) for some B > 0. By similar steps above, we can show

EPi [∆2
i ] ≤

ξ2

2n

when n is large enough. By choosing ξ appropriately, we have

inf
γ̂

sup
P∈P(s,B)

P
(
|γ̂ − γ(P )| > ε

2

)
≥ C,

where we choose ε ≤ ξ.

Proof of Theorem 6. We apply Theorem 2.7 of Kim and Polland (1990) to derive the asymptotic

distribution of nρ2
n(γ̂ − γ0). Note that nρ2

n(γ̂ − γ0) = arg max
v

nh
(
Q̂n(γv0)− Q̂n(γ0)

)
=: arg max

v
{Cn(v)},

where γv0 = γ0 + v
nρ2
n
.

(i) Cn(v) C (v) ∈ Cmax (R), where

C (v) = Σ1/2W (v)− 2k+(0)fq(γ0)D |v| ,

W (v) := W1(−v)1(v ≤ 0) + W2(v)1(v > 0) is a two-sided Brownian motion, D = limn→∞Dn, and

Σ(v) = limn→∞Σn with Σn defined in Proposition 8. Cmax (R) is defined as the subset of continuous

functions x(·) ∈ Bloc (R) for which (i) x(t)→ −∞ as |t| → ∞ and (ii) x(t) achieves its maximum at a

unique point in R, and Bloc(R) is the space of all locally bounded real functions on R, endowed with
the uniform metric on compacta. The weak convergence can be proved by combining Proposition 8

and Lemma 12. We now check C (v) ∈ Cmax (R). It is not hard to check C(v) is continuous, has a

unique minimum (see Lemma 2.6 of Kim and Pollard (1990)), and lim
|v|→∞

C(v) = −∞ almost surely

(which is true since lim
|v|→∞

W` (v) / |v| = 0 almost surely).

(ii) nρ2
n(γ̂ − γ0) = Op(1). This is proved in Proposition 7.

So

nρ2
n(γ̂ − γ0)

d−→ arg maxv {C(v)} .

Making the change-of-variables v = V1

fq(γ0)D2 r, and noting the distributional equality W`(a
2r) =d aW`(r),

7



we can rewrite the asymptotic distribution as

arg maxv {C(v)}
= V1

fq(γ0)D2 arg maxr

{
C
(

V1

fq(γ0)D2 r
)}

= V1

fq(γ0)D2 arg maxr

 4k+(0)
√
fq(γ0)V1W1

(
− V1

fq(γ0)D2 r
)
− 2k+(0)fq(γ0)D

∣∣∣ V1

fq(γ0)D2 r
∣∣∣ ,

4k+(0)
√
fq(γ0)V2W2

(
V1

fq(γ0)D2 r
)
− 2k+(0)fq(γ0)D

∣∣∣ V1

fq(γ0)D2 r
∣∣∣ , if r ≤ 0,

if r > 0,

= V1

fq(γ0)D2 arg maxr

{
V1

DW1 (−r)− 1
2
V1

D |r| ,√
V1V2

D W2 (r)− 1
2
V1

D |r| ,
if r ≤ 0,

if r > 0,

= V1

fq(γ0)D2 arg maxr

{
W1 (−r)− 1

2 |r| ,√
V2

V1
W2 (r)− 1

2 |r| ,
if r ≤ 0,

if r > 0,
=: V1

fq(γ0)D2 Λ (λ) .

Proof of Corollary 3. We mimic the proof of Theorem 6. Note that nhd−1∆2
o(γ̃ − γ0) = arg max

v

nhd
(
Q̃n(γv0)− Q̃n(γ0)

)
=: arg max

v
{Con(v)}, where γv0 = γ0 + v

nhd−1∆2
o
.

(i) Con(v) Co (v) ∈ Cmax (R), where

Co (v) = Σo (v)
1/2

W (v)− 2k+(0)f(xo, γ0)2|v|.

The weak convergence can be proved by combining Proposition 11 and Lemma 17.

(ii) nhd−1∆2
o(γ̃ − γ0) = Op(1). This is proved in Proposition 10.

So
nhd−1∆2

o(γ̃ − γ0)
d−→ arg max

v
{Co (v)} .

Making the change-of-variables v =
σ2
−(xo)

f(xo,γ0)r, and noting the distributional equality W`(a
2r) = aW`(r), we

can rewrite the asymptotic distribution as

arg maxv {Co (v)}
=

σ2
−(xo)

f(xo,γ0) arg maxr

{
Co

(
σ2
−(xo)

f(xo,γ0)r
)}

=
σ2
−(xo)

f(xo,γ0) arg maxr

 4k+(0)κ
√
f(xo, γ0)3σ2

−(xo)W1

(
σ2
−(xo)

f(xo,γ0)r
)
− 2k+(0)f(xo, γ0)2

∣∣∣ σ2
−(xo)

f(xo,γ0)r
∣∣∣ ,

4k+(0)κ
√
f(xo, γ0)3σ2

+(xo)W2

(
σ2
−(xo)

f(xo,γ0)r
)
− 2k+(0)f(xo, γ0)2

∣∣∣ σ2
−(xo)

f(xo,γ0)r
∣∣∣ , if r ≤ 0,

if r > 0,

=
σ2
−(xo)

f(xo,γ0) arg maxr

{
f(xo, γ0)σ2

−(xo)W1 (−r)− 1
2κf(xo, γ0)σ2

−(xo) |r| ,
f(xo, γ0)σ+(xo)σ−(xo)W2 (r)− 1

2κf(xo, γ0)σ2
−(xo) |r| ,

if r ≤ 0,

if r > 0,

=
σ2
−(xo)

f(xo,γ0) arg maxr

{
W1 (−r)− 1

2κ |r| ,
σ+(xo)
σ−(xo)W2 (r)− 1

2κ |r| ,
if r ≤ 0,

if r > 0,
=:

σ2
−(xo)

f(xo,γ0)Λ (λo, κ) .

Proof of Corollary 4. From the proof of Theorem 6 and the CMT, we have

nh
(
Q̂n(γv0)− Q̂n(γ0)

)
d−→ sup

v
{C(v)} ,
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where

supv {C(v)} = sup
r

 4k+(0)
√
fq(γ0)V1W1

(
− V1

fq(γ0)D2 r
)
− 2k+(0)fq(γ0)D

∣∣∣ V1

fq(γ0)D2 r
∣∣∣ ,

4k+(0)
√
fq(γ0)V2W2

(
V1

fq(γ0)D2 r
)
− 2k+(0)fq(γ0)D

∣∣∣ V1

fq(γ0)D2 r
∣∣∣ , if r ≤ 0,

if r > 0,

= 4k+(0)sup
r

{
V1

DW1 (−r)− 1
2
V1

D |r| ,√
V1V2

D W2 (r)− 1
2
V1

D |r| ,
if r ≤ 0,

if r > 0,

= 4k+(0)V1

D sup
r

{
W1 (−r)− 1

2 |r| ,√
λW2 (r)− 1

2 |r| ,
if r ≤ 0,

if r > 0.

So supv {C(v)} = 4k+(0)V1

D max {M1,M2} =: 4k+(0)V1

DM , where M1 = supr≤0

{
W1 (−r)− 1

2 |r|
}
, M2 =

supr≥0

{√
λW2 (r)− 1

2 |r|
}
, and M1 and M2 are independent. From Bhattacharya and Brockwell (1976),

M1 follows the standard exponential function, and M2 follows an exponential distribution with mean λ. It

follows that

P (M ≤ x) = P (M1 ≤ x,M2 ≤ x) = P (M1 ≤ x)P (M2 ≤ x) = (1− e−x)(1− e−x/λ).

By Slutsky’s theorem, the required result follows.

Proof of Theorem 7. Because

êi = yi − x′iβ̂ − x′iδ̂1 (qi ≤ γ̂)

= ui +
[
mi − x′iβ̂ − x′iδ̂1 (qi ≤ γ̂)

]
≡ ui +Di,

we decompose I(1)
n as

I
(1)
n = nhd/2

n(n−1)

∑
i

∑
j 6=i

[DiDj + uiuj + 2uiDj ]Kh,ij

≡ I(1)
1n + I

(1)
2n + I

(1)
3n .

We complete the proof by examining I(1)
1n , I

(1)
2n , I

(1)
3n , and showing that v

(1)2
n = Σ(1) +op (1) under H(1)

0 and the

local alternative and v(1)2
n = Op(1) underH(1)

1 . Throughout this proof, zi = (x′i, qi, ui)
′ and Ei [·] = E [·|xi, qi].

It is shown in Proposition 12 that I(1)
1n = Op(h

d/2) under H(1)
0 and converges to ∆ under the local

alternative. It can also be shown that I(1)
3n = Op(h

d/2) under H(1)
0 and is dominated by I1n under the

alternative, see, e.g., Zheng (1996). Proposition 14 shows that I(1)
2n

d−→ N
(
0,Σ(1)

)
, and Proposition 15

shows the results related to v(1)2
n . The proof is then complete.

Proof of Theorem 8. First, decompose I(2)
n by using (10):

I
(2)
n

= nhd/2

n(n−1)

∑
i

∑
j 6=i

1Γ
i 1Γ
j {(mi − m̂i) (mj − m̂j) + uiuj + ûiûj + 2ui (mj − m̂j)− 2ûi (mj − m̂j)− 2uiûj}Kh,ij

≡ I(2)
1n + I

(2)
2n + I

(2)
3n + 2I

(2)
4n − 2I

(2)
5n − 2I

(2)
6n .

We complete the proof by examining I(2)
1n , · · · , I

(2)
6n , and showing that v

(2)2
n = Σ(2) + op (1) under both H(2)

0

and H(2)
1 . Throughout this proof, zi = (x′i, qi, ui)

′ and Ei [·] = E [·|xi, qi]. We show that I(2)
2n contributes to

the asymptotic distribution under the null, and I(2)
1n contributes to the power under the local alternative. All

other terms will not contribute to the asymptotic distribution under either the null or the alternative; that

proof just extends Propositions 3, 4, 5 and 6 in Appendix B of Porter and Yu (2011), so it is omitted here.
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The remaining part of the proof concentrates on I(2)
1n and I(2)

2n , and we only briefly mention the results for

the other terms since these are obtained in a similar fashion.

First, I(2)
2n , I

(2)
3n and I(2)

6n are invariant under H(2)
0 and H(2)

1 . It can be shown that I(2)
3n and I(2)

6n are both

op(1). Proposition 14 shows that I(2)
2n

d−→ N
(
0,Σ(2)

)
.

Under H(2)
0 , Proposition 13 shows that I(2)

1n = oPm (1), and it can also be shown that I4n and I5n are

both oPm (1) uniformly in m(·) ∈ H0.

Under H(2)
1 , it can be shown that I(2)

4n and I(2)
5n are dominated by I(2)

1n , and Proposition 13 shows that

I
(2)
1n = Op

(
nhd/2b

)
under H(2)

1 . The local power can be easily obtained from the proof of Proposition 13.

Finally, Proposition 16 shows that v(2)2
n = Σ(2) + op(1) under both H

(2)
0 and H

(2)
1 . So the proof is

complete.

Proof of Theorem 9. This proof is similar but more tedious than the proofs of Theorem 7 and 8. Note

that Φ (z) is a continuous function. By Pólya’s theorem, it suffi ces to show that for any fixed value of z ∈ R,∣∣∣P (T (`)∗
n ≤ z|Fn

)
− Φ(z)

∣∣∣ = op (1).

For the first test, let

D∗i = x′iβ̂ + x′iδ̂1 (qi ≤ γ̂)− x′iβ̂
∗
− x′iδ̂

∗
1 (qi ≤ γ̂∗) ,

where
(
β̂
∗
, δ̂
∗
, γ̂∗
)
is the least squares estimator using the data {y∗i , xi, qi}

n
i=1. Then

I
(1)∗
n = nhd/2

n(n−1)

∑
i

∑
j 6=i

[
D∗iD

∗
j + u∗i u

∗
j + 2u∗iD

∗
j

]
Kh,ij

≡ I(1)∗
1n + I

(1)∗
2n + I

(1)∗
3n .

The theorem is proved if we can show that I(1)∗
in |Fn = op (1) for i = 1 and 3 and I(1)∗

2n /v
(1)∗
n |Fn → N (0, 1)

in probability. The first part can be proved as in the proof of Theorem 7, and, for the second part, see the

discussion below.

For the second test, denote m∗i = ŷi and define m̂∗i and û
∗
i by

m̂∗i = 1
n−1

∑
j 6=im

∗
jLb,ij

/
f̂i,

and

û∗i = 1
n−1

∑
j 6=i u

∗
jLb,ij

/
f̂i.

Then using ê∗i = y∗i − ŷ∗i = m∗i + u∗i − (m̂∗i + û∗i ), we get

I
(2)∗
n

= nhd/2

n(n−1)

∑
i

∑
j 6=i

1Γ
i 1Γ
j

{
(m∗i − m̂∗i )

(
m∗j − m̂∗j

)
+ u∗i u

∗
j + û∗i û

∗
j + 2u∗i

(
m∗j − m̂∗j

)
− 2û∗i

(
m∗j − m̂∗j

)
− 2u∗i û

∗
j

}
Kh,ij

≡ I(2)∗
1n + I

(2)∗
2n + I

(2)∗
3n + 2I

(2)∗
4n − 2I

(2)∗
5n − 2I

(2)∗
6n .

The theorem is proved if we can show that I(2)∗
in |Fn = op (1) for i = 1, 3, 4, 5, 6 and I(2)∗

2n /v
(2)∗
n |Fn → N (0, 1)

in probability. The first part is similar to that of Theorem 8 under H(2)
0 . However, note that m∗(·)|Fn as

defined above satisfies H(2)
0 even if m(·) is from H

(2)
1 ; see Gu et al. (2007) for a similar analysis in testing

omitted variables. But there is some differences in showing the second part.
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First, because u∗i |Fn are mean zero and mutually independent and have variance ê2
i ,

nhd/2

n(n−1)

∑
i

∑
j 6=i

1Γ
i 1Γ
j u
∗
i u
∗
jKh,ij = 2nh1/2

n(n−1)

∑
i

∑
j>i

1Γ
i 1Γ
j u
∗
i u
∗
jKh,ij ≡

∑
i

∑
j>i

U∗n,ij

is a second order degenerate U -statistic with conditional variance

2hd

n(n−1)

∑
i

∑
j 6=i

1Γ
i 1Γ
j ê

2
i ê

2
jK

2
h,ij = v2

n.

Because U∗n,ij depends on i and j, we use the central limit theorem of de Jong (1987) for generalized quadratic

forms rather than Hall (1984) to find the asymptotic distribution of I(2)∗
2n . From his Proposition 3.2, we know

I
(2)∗
2n /v

(2)
n |Fn → N (0, 1) in probability as long as

G∗I =
∑
i

∑
j>i

E∗
[
U∗4n,ij

]
= op

(
v

(2)4
n

)
,

G∗II =
∑
i

∑
j>i

∑
l>j>i

E∗
[
U∗2n,ijU

∗2
n,il + U∗2n,jiU

∗2
n,jl + U∗2n,liU

∗2
n,lj

]
= op

(
v

(2)4
n

)
,

G∗IV =
∑
i

∑
j>i

∑
k>j>i

∑
l>k>j>i

E∗
[
U∗n,ijU

∗
n,ikU

∗
n,ljU

∗
n,lk + U∗n,ijU

∗
n,ilU

∗
n,kjU

∗
n,kl + U∗n,ikU

∗
n,ilU

∗
n,jkU

∗
n,jl

]
= op

(
v

(2)4
n

)
.

It is straightforward to show that

G∗I = Op

((
n2hd

)−1
)
, G∗II = Op(n

−1), G∗IV = Op(h
d),

see, e.g., the proof of Theorem 2 of Hsiao et al. (2007), so the result follows by v(2)4
n = Op(1). Next, it is

easy to check that E∗
[
v

(2)∗2
n

]
= v

(2)2
n + op(1), and V ar∗

(
v

(2)∗2
n

)
= op(1). Thus I(2)∗

2n /v
(2)∗
n |Fn → N (0, 1) in

probability. The analysis for I(1)∗
2n is similar.

Supplement B: Propositions

Proposition 1 γ̂ − γ0 = Op(h).

Proof. We apply Lemma 4 of Porter and Yu (2015) to prove the result. By Lemma B.1 of Newey (1994),
we have

supγ∈Γ

∣∣∣Q̂n (γ)−Qn (γ)
∣∣∣ = Op

(√
lnn/nhd

)
p−→ 0 ,

where

Qn (γ) =
∫ [ ∫ 0

−1

∫
Kx (ux,x) k− (uq)m (x+ uxh, γ + uqh) f (x+ uxh, γ + uqh) duxduq

−
∫ 1

0

∫
Kx (ux,x) k+ (uq)m (x+ uxh, γ + uqh) f (x+ uxh, γ + uqh) duxduq

]2

f (x) dx .

Let Nn = [γ0 − h, γ0 + h] and γn = arg maxγ∈ΓQn (γ); then it is easy to show that supγ∈Γ\Nn Qn (γ) =

O
(
h2
)
. But for γ ∈ Nn, the result is different. Specifically, let γ = γ0 + ah, a ∈ (0, 1) . Then

Qn (γ) =
∫ 

∫ 0

−1

∫
Kx (ux,x) k− (uq) g (x+ uxh, γ + uqh) f (x+ uxh, γ + uqh) duxduq∫ −a

−1

∫
Kx (ux,x) k− (uq) (1, x′ + hu′x, γ + uqh) δ0f (x+ uxh, γ + uqh) duxduq

−
∫ 1

0

∫
Kx (ux,x) k+ (uq) g (x+ uxh, γ + uqh) f (x+ uxh, γ + uqh) duxduq


2

f (x) dx .

The differences of the first and the third terms in brackets are still O
(
h2
)
, so the second term will dominate.
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With Assumption I, we have
∫
x

[∫
Kx (ux,x) (1, x, γ0)

′
δ0f (x, γ0) dux

]2
f (x) dx > C. Under Assumption K,

if a ∈ (0, 1), then
∫ −a
−1

k− (uq) duq ≤ 1 and
∫ −a
−1

k− (uq) duq is a nonincreasing function of a for a ∈ (0, 1).

As a result, Qn (γ) is a nonincreasing function of a for a ∈ (0, 1) up to O
(
h2
)
. Similarly, Qn (γ) is a

nondecreasing function of a for a ∈ (−1, 0) up to O
(
h2
)
. So Qn (γ) is maximized at some γn ∈ Nn such

that Qn (γn) > supγ∈Γ\Nn |Qn (γ)|+ C/2 for n large enough. The result of interest then follows.

Proposition 2 γ̂ − γ0 = Op

(
(n/h)

−1/2
)
.

Proof. We apply the standard shelling method to obtain the result. Specifically, for each n, the parameter
space is partitioned into the ‘shells’Sl,n =

{
γ : 2l−1 ≤ (n/h)

1/2 |γ − γ0| ≤ 2l
}
with l ranging over the inte-

gers. If (n/h)
1/2 |γ̂ − γ0| is larger than 2L for a given integer L, then γ̂ is in one of the shells Sl,n with l ≥ L.

In that case the supremum of the map γ → Q̂n (γ)− Q̂n (γ0) over this shell is nonnegative by the property

of γ̂. Note that

P
(

(n/h)
1/2 |γ̂ − γ0| > 2L

)
≤ P

(
sup

2L<(n/h)1/2|γ̂−γ0|<(n/h)1/2h

(
1
n

∑n
i=1 ∆̂2

i (γ)− 1
n

∑n
i=1 ∆̂2

i (γ0)
)
≥ 0

)
+ P (|γ̂ − γ0| ≥ h)

≤
∑ 1

2 log2(nh)

l=L P

(
sup
Sl,n

1
n

∑n
i=1 ∆̂2

i (γ) ≥ 1
n

∑n
i=1 ∆̂2

i (γ0)

)
+ P (|γ̂ − γ0| ≥ h)

≤
∑ 1

2 log2(nh)

l=L P

(
sup
Sl,n

1
n

∑n
i=1 ∆̂2

i (γ) 1 (∆i > 0) ≥ 1
n

∑n
i=1 ∆̂2

i (γ0) 1 (∆i > 0)

)

+
∑ 1

2 log2(nh)

l=L P

(
sup
Sl,n

1
n

∑n
i=1 ∆̂2

i (γ) 1 (∆i < 0) ≥ 1
n

∑n
i=1 ∆̂2

i (γ0) 1 (∆i < 0)

)
+ P (|γ̂ − γ0| ≥ h)

=: T1 + T2 + T3.

As T3 converges to zero by Proposition 1 and T2 is similar to T1, we only use T1 to illustrate the derivations

in the following discussion. Since

T1 ≤
∑ 1

2 log2(nh)

l=L P

(
sup
Sl,n

1
n

∑n
i=1

(
∆̂i (γ)− ∆̂i (γ0)

)
1 (∆i > 0) > 0

)

+
∑ 1

2 log2(nh)

l=L P

(
sup
Sl,n

1
n

∑n
i=1

(
∆̂i (γ) + ∆̂i (γ0)

)
1 (∆i > 0) < 0

)
,

we focus on the first term because the second term is easier to analyze given that ∆i > 0. To simplify

notations, 1 (∆i > 0) is neglected in the remaining proof. Notice that

1
n

∑n
i=1

(
∆̂i (γ)− ∆̂i (γ0)

)
= 1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i

(
yjK

γ−
h,ij − yjK

γ+
h,ij

)
− 1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i

(
yjK

γ0−
h,ij − yjK

γ0+
h,ij

)
= 1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i

(
mjK

γ−
h,ij −mjK

γ+
h,ij

)
− 1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i

(
mjK

γ0−
h,ij −mjK

γ0+
h,ij

)
+ 1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i

(
ujK

γ−
h,ij − ujK

γ+
h,ij

)
− 1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i

(
ujK

γ0−
h,ij − ujK

γ0+
h,ij

)
=: D1 +D2,

where mj = gj +
(
1, x′j , qj

)
δ01 (qj ≤ γ0) with gj = g (xj , qj). Suppose γ0 < γ < γ0 +h, then for some C > 0,

12



we have

D1 = 1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i gj

(
Kγ−
h,ij −K

γ0−
h,ij

)
− 1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i gj

(
Kγ+
h,ij −K

γ0+
h,ij

)
+ 1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i

(
1, x

′

j , qj

)
δ0

(
Kγ−
h,ij −K

γ0−
h,ij

)
1 (qj ≤ γ0)

≤ −C
(
γ−γ0

h

)2

with probability approaching 1 by calculating the mean and variance of D1 in its U-projection, where

the difference of the first two terms contribute only Op

(
|γ − γ0|

2
)
, and the third term contributes to

−C
(
γ−γ0

h

)2

because for each i, Kγ−
h,ij covers Op (n (γ − γ0)) terms less than Kγ0−

h,ij given that γ > γ0 and

k± (0) = 0. In consequence, for η ≤ h,

P

(
sup

|γ−γ0|<η

1
n

∑n
i=1

(
∆̂i (γ)− ∆̂i (γ0)

)
> 0

)
≤ P

(
sup

|γ−γ0|<η
D2 > C

(
γ−γ0

h

)2
)
.

Next,

D2

= 1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i uj

(
Kγ−
h,ij −K

γ0−
h,ij

)
1 (qj ≤ γ0) + 1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i uj

(
K
γ0+
h,ij −K

γ+
h,ij

)
1 (qj > γ)

+ 1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i uj

(
Kγ−
h,ij +K

γ0+
h,ij

)
1 (γ0 < qj ≤ γ)

=: P1 + P2 + P3,

(30)

and we can apply Lemma 8.4 of Newey and Mcfadden (1994) to bound D2. Since the first two terms are

similar, we just check the first term and the last term. For the first term, set

mn (zi, zj) = uj

(
Kγ−
h,ij −K

γ0−
h,ij

)
1 (qj ≤ γ0) ,

where zi = (ui, x
′
i, qi)

′, and mn (zi, zj) = 0 for any i = j. So we have

n−2
∑n
i=1

∑n
j=1mn (zi, zj) = P1 ,

E [mn (zi, zj)] = 0, Ei [mn (zi, zj)] = 0, E [|mn (z1, z1)|] /n = 0 ,

and

E
[
‖mn (z1, z2)‖2

]
= E

[
E

[(
uj
hd
Kx

(
xj−xi
h , xi

) [
k−
(
qj−γ
h

)
− k−

(
qj−γ0

h

)]
1 (qj ≤ γ0)

)2

|xi
]]

= E
[
E

[
u2
j

h2dK
x
(
xj−xi
h , xi

)2 [
k−
(
qj−γ
h

)
− k−

(
qj−γ0

h

)]2
1 (qj ≤ γ0) |xi

]]
= E

[
1
h2d

∫ γ0

−∞
∫
x

∫
u
u2
jK

x
(
xj−xi
h , xi

)2 [
k−
(
qj−γ
h

)
− k−

(
qj−γ0

h

)]2
f (uj |xj , qj) f (xj , qj) dujdxjdqj

]
= E

[
1
hd

∫ 0

−1

∫
ux
σ2 (xi + uxh, γ0 + uqh)Kx (ux, xi)

2
[
k−
(
uq + γ0−γ

h

)
− k− (uq)

]2
f (xi + uxh, γ0 + uqh) duxduq

]
≤ C

hd

(
γ0−γ
h

)2

under Assumption I and the fact that
∣∣k′− (·)

∣∣ <∞ and Kx (·) <∞ over their supports, where Ei [·] = E [·|zi],
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σ2(xj , qj) = E
[
u2
j |xj , qj

]
. Hence, by Proposition 1,

(
E
[
‖mn (z1, z2)‖2

])1/2
/
n ≤ C

∣∣∣γ0−γ
h

∣∣∣ 1
nhd/2

= Op (1)Op
(

1
nhd/2

)
= op (1)

under Assumption H. As a result,

P1 = 1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i uj

(
Kγ−
h,ij −K

γ0−
h,ij

)
1 (qj ≤ γ0) = n−1

∑n
j=1 E [mn (zi, zj) |zj ] + op (1) ,

where
Ej [mn (zi, zj)]

=
uj
hd

1 (qj ≤ γ0)
[
k−
(
qj−γ
h

)
− k−

(
qj−γ0

h

)] ∫
x
Kx

(
xj−xi
h , xi

)
f (xi) dxi

=
uj
h 1 (qj ≤ γ0)

[
k−
(
qj−γ
h

)
− k−

(
qj−γ0

h

)] ∫
x
Kx (ux, xi) f (xi − uxh) dux

≤ C uj
h 1 (qj ≤ γ0)

[
k−
(
qj−γ
h

)
− k−

(
qj−γ0

h

)]
f (xi) .

Hence,

V ar (P1) = V ar
(
n−1

∑n
j=1 Ej [mn (zi, zj)] + op (1)

)
≤ n−1

∫ γ0

−∞
∫
x

∫
u
C
u2
j

h2

[
k−
(
qj−γ
h

)
− k−

(
qj−γ0

h

)]2
f (xj)

2
f (uj |xj , qj) f (xj , qj) dujdxjdqj

≤ C 1
nh

∫ 0

−1

∫
x
σ2 (xj , γ0 + uqh)

[
k−
(
uq + γ0−γ

h

)
− k− (uq)

]2
f (xj , γ0 + uqh) f (xj)

2
dxjduq

≤ C 1
nh

(
γ0−γ
h

)2

.

Similarly for P3, we can set

P3 = 1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i uj

(
Kγ−
h,ij +K

γ0+
h,ij

)
1 (γ0 < qj ≤ γ) = n−2

∑n
i=1

∑n
j=1mn (zi, zj)

with

E [mn (zi, zj)] = 0, Ei [mn (zi, zj)] = 0, E [‖mn (z1, z1)‖] /n = 0 ,

and

E
[
‖mn (z1, z2)‖2

]
= E

[
E

[(
uj
hd
Kx

(
xj−xi
h , xi

) [
k−
(
qj−γ
h

)
− k+

(
qj−γ0

h

)]
1 (γ0 < qj ≤ γ)

)2

|xi
]]

= E
[

1
hd

∫ γ−γ0
h

0

∫
ux
σ2 (xi + uxh, γ0 + uqh)Kx (ux, xi)

2
[
k−
(
uq + γ0−γ

h

)
− k+ (uq)

]2
f (xi + uxh, γ0 + uqh) duxduq

]
≤ C

hd

∣∣∣γ0−γ
h

∣∣∣3 .
By Proposition 1, we have(

E
[
‖mn (z1, z2)‖2

])1/2
/
n ≤ C

∣∣∣γ0−γ
h

∣∣∣3/2 1
nhd/2

= Op (1)Op
(

1
nhd/2

)
= op (1)

under Assumption H. As a result,

P3 = 1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i uj

(
Kγ−
h,ij −K

γ0−
h,ij

)
1 (qj ≤ γ0) = n−1

∑n
j=1 Ej [mn (zi, zj)] + op (1)
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with
Ej [mn (zi, zj)]

=
uj
hd

[
k−
(
qj−γ
h

)
− k+

(
qj−γ0

h

)]
1 (γ0 < qj ≤ γ)

∫
x
Kx

(
xj−xi
h , xi

)
f (xi) dxi

=
uj
hd

[
k−
(
qj−γ
h

)
− k+

(
qj−γ0

h

)]
1 (γ0 < qj ≤ γ)

∫
x
Kx (ux, xi) f (xi − uxh) dux

≤ C uj
hd

[
k−
(
qj−γ
h

)
− k+

(
qj−γ0

h

)]
1 (γ0 < qj ≤ γ) f (xi) .

Hence,

V ar (P3) ≈ V ar
(
n−1

∑n
j=1 Ej [mn (zi, zj)]

)
≤ C 1

nh

∫ γ−γ0
h

0

∫
x
σ2 (xj , γ0 + uqh)

[
k−
(
uq + γ0−γ

h

)
− k+ (uq)

]2
f (xj , γ0 + uqh) f (xj)

2
dxjduq

≤ C 1
nh

∣∣∣γ0−γ
h

∣∣∣3 .
Since, conditional on xi, the three summations on the right hand side of (30) are independent, we obtain

V ar (D2) = V ar (P1) + V ar (P2) + V ar (P3)

≤ C 1
nh

[(
γ0−γ
h

)2

+
∣∣∣γ0−γ

h

∣∣∣3] ≤ C (γ−γ0)2

nh3

uniformly for |γ − γ0| < η. In consequence,

P

(
sup

|γ−γ0|<η

1
n

∑n
i=1

(
∆̂i (γ)− ∆̂i (γ0)

)
> 0

)

≤ CE

( sup
|γ−γ0|<η

D2

)2
/[

C
(
γ−γ0

h

)2
]2

≤ C (γ−γ0)2

nh3

/
(γ−γ0)4

h4 = Ch
n(γ−γ0)2

by Markov’s inequality. So

∑ 1
2 log2(nh)

l=L P

(
sup
Sl,n

1
n

∑n
i=1

(
∆̂i (γ)− ∆̂i (γ0)

)
1 (∆i > 0) > 0

)
≤
∑
l≥L

Ch

n
(

2l/
√
n/h

)2 = C
∑
l≥L

1
4l
→ 0

as L→∞. The proof is completed.

Proposition 3 For v on any compact set,

E
[
nh
(
Q̂n (γv0)− Q̂n(γ0)

)]
= −v2E [∆f (xi) ∆if(xi)|qi = γ0] fq(γ0)k′+(0) + o(1),

Cov
(
nh
(
Q̂n (γv1

0 )− Q̂n (γ0)
)
, nh

(
Q̂n (γv2

0 )− Q̂n (γ0)
))

= 4E
[
∆2
f (xi)f

2 (xi) (σ2
+(xi) + σ2

−(xi))|qi = γ0

]
fq(γ0)v1v2ξ(1) + o(v1v2),

and

1√
V ar(nh(Q̂n(γv0)−Q̂n(γ0)))

(
nh
(
Q̂n (γv0)− Q̂n(γ0)

)
− E

[
nh
(
Q̂n (γv0)− Q̂n(γ0)

)])
d−→ N (0, 1) ,

where γv0 = γ0 + v√
n/h
.
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Proof. Note that

Q̂n (γv0)− Q̂n(γ0) = 1
n

∑n
i=1

(
∆̂i (γv0)

2 − ∆̂i (γ0)
2
)

= 1
n

∑n
i=1

(
∆̂i (γv0) + ∆̂i (γ0)

)(
∆̂i (γv0)− ∆̂i (γ0)

)
.

By Lemma B.1 of Newey(1994), we can show that
∣∣∣∆̂i (γv0)−∆f (xi)

∣∣∣ p−→ 0 uniformly in i and v, where

∆f (xi) := (1, x′i, γ0) δ0f(xi, γ0) = Op(1). So
∣∣∣∆̂i (γv0) + ∆̂i (γ0)− 2∆f (xi)

∣∣∣ p−→ 0 uniformly in i and v . Next

we focus on the other term. For simplicity, let v > 0. Now,

∆̂i (γv0)− ∆̂i (γ0)

=
(

1
n−1

∑n
j=1,j 6=i yjK

γv0−
h,ij − 1

n−1

∑n
j=1,j 6=i yjK

γv0+
h,ij

)
−
(

1
n−1

∑n
j=1,j 6=i yjK

γ0−
h,ij − 1

n−1

∑n
j=1,j 6=i yjK

γ0+
h,ij

)
=
(

1
n−1

∑n
j=1,j 6=i yjK

γv0−
h,ij − 1

n−1

∑n
j=1,j 6=i yjK

γ0−
h,ij

)
−
(

1
n−1

∑n
j=1,j 6=i yjK

γv0+
h,ij − 1

n−1

∑n
j=1,j 6=i yjK

γ0+
h,ij

)
=: 1

n−1

∑n
j=1,j 6=i (T1ij + T2ij + T3ij + T4ij + T5ij + T6ij) ,

where
T1ij = g (xj,qj)

(
K
γv0−
h,ij −K

γ0−
h,ij

)
,

T2ij = −g (xj,qj)
(
K
γv0+
h,ij −K

γ0+
h,ij

)
,

T3ij = uj

(
K
γv0−
h,ij −K

γ0−
h,ij

)
,

T4ij = uj

(
K
γv0+
h,ij −K

γ0+
h,ij

)
,

T5ij = −
(
1, x′j , qj

)
δ0K

γ0−
h,ij 1 (γ0 − h ≤ qj ≤ γ0) ,

T6ij = −
(
1, x′j , qj

)
δ0K

γv0−
h,ij 1 (γv0 − h ≤ qj ≤ γ0) .

By Lemma 1, we have
1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi) (T1ij + T2ij) ≈ 0,

by Lemma 2, we have

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi) (T3ij + T4ij)

≈ 2
nh

∑n
i=1 ∆f (xi) f (xi)ui

[(
k−
(
qi−γv0
h

)
− k−

(
qi−γ0

h

))
−
(
k+
(
qi−γv0
h

)
− k+

(
qi−γ0

h

))]
,

and by Lemma 3, we have

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi) (T5ij + T6ij)

≈ 2
nh

∑n
i=1 ∆f (xi) f (xi) (1, x′i, qi) δ0

[
k−
(
qi−γv0
h

)
1 (γv0 − h ≤ qj ≤ γ0)− k−

(
qi−γ0

h

)
1 (γ0 − h ≤ qi ≤ γ0)

]
.

Combining results we have

nh
(
Q̂n (γv0)− Q̂n(γ0)

)
= 2

∑n
i=1 ∆f (xi) f (xi)ui

[(
k−
(
qi−γv0
h

)
− k−

(
qi−γ0

h

))
−
(
k+
(
qi−γv0
h

)
− k+

(
qi−γ0

h

))]
+ 2

∑n
i=1 ∆f (xi) f (xi) (1, x′i, qi) δ0

[
k−
(
qi−γv0
h

)
1 (γv0 − h ≤ qj ≤ γ0)− k−

(
qi−γ0

h

)
1 (γ0 − h ≤ qi ≤ γ0)

]
+ op (1)

=: S1 + S2 + op (1) .
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Hence,

E
[
nh
(
Q̂n (γv0)− Q̂n(γ0)

)]
≈ E [S2 (v)]

= 2n
∫
xi

∫ γ0

γv0−h
∆f (xi) f (xi)

(
1, x′j , qj

)
δ0k
−
(
qi−γv0
h

)
f (xi, qi) dqidxi

− 2n
∫
xi

∫ γ0

γ0−h
∆f (xi) f (xi)

(
1, x′j , qj

)
δ0k
−
(
qi−γ0

h

)
f (xi, qi) dqidxi

= 2n
∫
xi

∫ 0
v√
nh
−1

∆f (xi) f (xi) (1, x′i, γ0 + uqh) δ0k
−
(
uq − v√

nh

)
f (xi, γ0 + uqh) duqdxi

− 2n
∫
xi

∫ 0

−1
∆f (xi) f (xi) (1, x′i, γ0 + uqh) δ0k

− (uq) f (xi, γ0 + uqh) duqdxi

≈ −v2fq (γ0)E [∆f (xi) ∆if (xi) |qi = γ0] k′+ (0) ,

where the first equality comes from the zero conditional mean property of the error term, and the last one

applies |k′−(0)| = k′+(0). By Lemma 4 and Lemma 5, as well as the exogeneity property of error term ui, we

have

Cov
(
nh
(
Q̂n(γv1

0 )− Q̂n(γ0)
)
, nh

(
Q̂n(γv2

0 )− Q̂n(γ0)
))

= Cov (S1 (v1) , S1 (v2)) + Cov (S2 (v1) , S2 (v2)) + Cov (S1 (v1) , S2 (v2)) + Cov (S1 (v2) , S2 (v1))

≈ 4E
[
∆2
f (xi) f

2 (xi)
(
σ2

+ (xi) + σ2
− (xi)

)
|qi = γ0

]
fq (γ0) v1v2ξ(1).

Roughly speaking, S2(v) contributes to the mean process of nh
(
Q̂n (γv0)− Q̂n (γ0)

)
, and S1(v) contributes

to the variance process.

To show the weak convergence, we apply the Lyapunov CLT by checking the Lyapunov condition. Specif-

ically, we show that

∑n
i=1 E

[
∆4
f (xi) f (xi)

4
u4
i

[(
k−
(
qi−γv0
h

)
− k−

(
qi−γ0

h

))
−
(
k+
(
qi−γv0
h

)
− k+

(
qi−γ0

h

))]4]
= Op

(
nh

(nh)2

)
= op (1)

as n→∞.

Proposition 4 Σ̂ (γ0)
d−→ Σ.

Proof. By standard arguments, we have

1
n

∑n
i=1 kh(qi−γ0)∆2

f (xi)f
2(xi)u

2
i

1
n

∑n
i=1 kh(qi−γ0)

− E
[
∆2
f (xi)f

2(xi)(σ
2
+(xi) + σ2

−(xi))|qi = γ0

]
p−→ 0

and
1
n

∑n
i=1 kh(qi−γ0)∆f (xi)∆if(xi)

1
n

∑n
i=1 kh(qi−γ0)

− E [∆f (xi)∆if(xi)|qi = γ0]
p−→ 0.

So all we need to show is

1
n

∑n
i=1 kh(qi − γ̂)∆̂2

i (γ0)f̂2(xi)ûi (γ0)
2 − 1

n

∑n
i=1 kh(qi − γ0)∆2

f (xi)f
2(xi)u

2
i

p−→ 0

and
1
n

∑n
i=1 kh(qi − γ0)∆̂2

i (γ0)f̂−1(xi, γ0)f̂(xi)− 1
n

∑n
i=1 kh(qi − γ0)∆f (xi)∆if(xi)

p−→ 0,

which are implied by

f̂(xi, γ0)− f(xi, γ0)
p−→ 0, ∆̂i(γ0)−∆f (xi)

p−→ 0, f̂(xi)− f(xi)
p−→ 0 and ûi (γ0)− ui

p−→ 0

17



uniformly in xi ∈ X .
In the following, we take ûi (γ0) − ui

p−→ 0 for illustration since others are easier to show. By Lemma

B.3 of Newey (1994),

supxi

∣∣∣ 1
n−1

∑n
j=1,j 6=iKh (xj − xi) k±h (qj − γ0) yj − E

[
yj |xi, γ±0

]
f(xi, γ0)

∣∣∣ = Op

(√
lnn/nhd + h

)
= op (1) ,

which implies

supxi |m̂± (xi, γ0)−m± (xi, γ0)| p−→ 0.

As a result,

supxi,|qi−γ0|≤h |ûi (γ0)− ui|
= supxi,|qi−γ0|≤h |yi − m̂− (xi, γ0) 1 (qi ≤ γ0)− m̂+ (xi, γ0) 1 (qi > γ0)− ui|
= supxi,|qi−γ0|≤h |[m− (xi, qi)− m̂− (xi, γ0)] 1 (qi ≤ γ0) + [m+ (xi, qi)− m̂+ (xi, γ0)] 1 (qi > γ0)|
≤ supxi |m± (xi, γ0)− m̂± (xi, γ0)|+ supxi,|qi−γ0|≤h |m± (xi, qi)−m± (xi, γ0)|
p−→ 0.

Proposition 5 Σ̂− Σ̂ (γ0)
p−→ 0.

Proof. To derive the result, we need to show

1
n

∑n
i=1 kh(qi − γ̂)∆̂2

i (γ̂)f̂2(xi)û
2
i − 1

n

∑n
i=1 kh(qi − γ0)∆̂2

i (γ0)f̂2(xi)ûi (γ0)
2 p−→ 0

and

1
n

∑n
i=1 kh(qi − γ̂)∆̂2

i (γ̂)f̂−1(xi, γ̂)f̂(xi)− 1
n

∑n
i=1 kh(qi − γ0)∆̂2

i (γ0)f̂−1(xi, γ0)f̂(xi)
p−→ 0.

Take the first result for illustration since the second is simpler. First, we show that

1
n

∑n
i=1 kh(qi − γ0)∆̂2

i (γ̂)f̂2(xi)û
2
i − 1

n

∑n
i=1 kh(qi − γ0)∆̂2

i (γ0)f̂2(xi)ûi (γ0)
2 p−→ 0. (31)

Since
supxi

∣∣∣f̂ (xi, γ̂)− f̂ (xi, γ0)
∣∣∣

=
∣∣∣ 1
n−1

∑n
j=1,j 6=iKh (xj − xi) kh (qj − γ̂)− 1

n−1

∑n
j=1,j 6=iKh (xj − xi) kh (qj − γ0)

∣∣∣
=
∣∣∣ 1

(n−1)h

∑n
j=1,j 6=iKh (xj − xi)

(
k
(
qj−γ̂
h

)
− k

(
qj−γ0

h

))∣∣∣
= O

(
v√
nh

)
= op (1) ,

(32)

and, by a similar argument as that in (32),

supxi

∣∣∣m̂± (xi, γ̂) f̂± (xi, γ̂)− m̂± (xi, γ0) f̂± (xi, γ0)
∣∣∣ = op (1) ,

we have

supxi

∣∣∣∆̂i (γ̂)− ∆̂i (γ0)
∣∣∣

≤ supxi

∣∣∣m̂− (xi, γ̂) f̂− (xi, γ̂)− m̂− (xi, γ0) f̂− (xi, γ0)
∣∣∣+ supxi

∣∣∣m̂+ (xi, γ̂) f̂+ (xi, γ̂)− m̂+ (xi, γ0) f̂+ (xi, γ0)
∣∣∣

p−→ 0.

(33)
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With the results in (32), (33) and 1 (γ0 < qi ≤ γ̂) = Op

(
1√
n/h

)
= op(1), we have

supxi |ûi − ûi (γ0)|
= supxi |m̂− (xi, γ̂) 1 (qi ≤ γ̂)− m̂− (xi, γ0) 1 (qi ≤ γ0) + m̂+ (xi, γ̂) 1 (qi > γ̂)− m̂+ (xi, γ0) 1 (qi > γ0)|
≤ supxi |m̂− (xi, γ̂)− m̂− (xi, γ0)| 1 (qi ≤ γ̂) + supxi |m̂− (xi, γ0)| 1 (γ0 < qi ≤ γ̂)

+ supxi |m̂+ (xi, γ̂)− m̂+ (xi, γ0)| 1 (qi > γ̂) + supxi |m̂+ (xi, γ0)| 1 (γ̂ < qi ≤ γ0)
p−→ 0.

(34)

Combining (32)-(34), (31) is obtained.

Secondly, we show∣∣∣ 1
n

∑n
i=1 kh(qi − γ̂)∆̂2

i (γ̂)f̂2(xi)û
2
i − 1

n

∑n
i=1 kh(qi − γ0)∆̂2

i (γ̂)f̂2(xi)û
2
i

∣∣∣
=
∣∣∣ 1
n

∑n
i=1 (kh(qi − γ̂)− kh(qi − γ0)) ∆̂2

i (γ̂)f̂2(xi)û
2
i

∣∣∣+ op(1)

= Op

(
1√
nh

1
nh

∑n
i=1 1 (|qi − γ0| ≤ h) ∆̂2

i (γ̂)f̂2(xi)û
2
i

)
+ op(1).

Hence the required result is derived.

Proposition 6 γ̂ − γ0 = Op(h).

Proof. The proof mimics that of Proposition 1. By replacing Assumption K, G and H with K′, G′ and H′,
we now have

supγ∈Γ

∣∣∣ρ−2
n Q̂n (γ)−Qn (γ)

∣∣∣ = Op

(√
lnn/nhd

)
p−→ 0,

where Qn (γ) contains only the middle term in Proposition 1, and the first and third terms disappear because

their difference is O
(
h2s/ρ2

n

)
= o (1). Now, for γ ∈ Γ\Nn, supγ∈Γ\Nn Qn (γ) = o (1). For γ ∈ Nn, Qn (γ) is

a nondecreasing (nonincreasing) function of a for a ∈ (−1, 0) (a ∈ (0, 1)) up to o (1) and supγ∈Nn |Qn (γ)| =
O (1). So Qn (γ) is maximized at some γn ∈ Nn such that Qn (γn) > supγ∈Γ\Nn |Qn (γ)| + C/2 for n large

enough. The result of interest is then derived.

Proposition 7 γ̂ − γ0 = Op
(
(nρ2

n)−1
)
.

Proof. This proof mimics that of Proposition 2 with the term
√
n/h replaced by nρ2

n; Suppose γ0 < γ <

γ0 + h, now we have

D1 = 1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i gj

(
Kγ−
h,ij −K

γ0−
h,ij

)
− 1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i gj

(
Kγ+
h,ij −K

γ0+
h,ij

)
+ 1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i

(
1, x′j , qj

)
δn

(
Kγ−
h,ij −K

γ0−
h,ij

)
1 (qj ≤ γ0)

≤ −Cρn
∣∣∣γ−γ0

h

∣∣∣
for some C > 0 with probability approaching 1 by calculating the mean and variance of D1 in its U-projection,

where the difference of the first two terms contribute only Op (|γ − γ0|hs), the third term contributes to

−Cρn
∣∣∣γ−γ0

h

∣∣∣. Since ρn/hs →∞, for η ≤ h,
P
(

sup|γ−γ0|<η
1
n

∑n
i=1

(
∆̂i (γ)− ∆̂i (γ0)

)
> 0
)
≤ P

(
sup|γ−γ0|<ηD2 > Cρn

∣∣∣γ−γ0

h

∣∣∣) .
With a different kernel function in Assumption K′ and the same formula of D2, we now have

V ar (P1) ≤ C 1
nh

(
γ0−γ
h

)2

, V ar (P2) ≤ C 1
nh

(
γ0−γ
h

)2

and V ar (P3) ≤ C 1
nh

∣∣∣γ0−γ
h

∣∣∣ .
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As a result,
V ar (D2) = V ar (P1) + V ar (P2) + V ar (P3)

≤ C 1
nh

[(
γ0−γ
h

)2

+
∣∣∣γ0−γ

h

∣∣∣] ≤ C
nh

∣∣∣γ0−γ
h

∣∣∣
uniformly for |γ − γ0| < η. In consequence,

P
(

sup|γ−γ0|<η
1
n

∑n
i=1

(
∆̂i (γ)− ∆̂i (γ0)

)
> 0
)
≤ CE

[(
sup|γ−γ0|<ηD2

)2
]/[

ρn

∣∣∣γ0−γ
h

∣∣∣]2
≤ C

nh

∣∣∣γ0−γ
h

∣∣∣/ ρ2
n

(
γ0−γ
h

)2

= C
nρ2
n|γ−γ0|

by Markov’s inequality. So

∑log2(nhρ2
n)

l=L P
(

supSl,n
1
n

∑n
i=1

(
∆̂i (γ)− ∆̂i (γ0)

)
1 (∆i > 0) > 0

)
≤
∑
l≥L

C
nρ2
n·2l/nρ2

n
= C

∑
l≥L

1
2l
→ 0

as L→∞, and the proof is completed.

Proposition 8 On any compact set of v,

E
[
nh
(
Q̂n (γv0)− Q̂n(γ0)

)]
= −2k+(0)fq(γ0)Dn |v|+ o(v),

Cov
(
nh
(
Q̂n (γv1

0 )− Q̂n (γ0)
)
, nh

(
Q̂n (γv2

0 )− Q̂n (γ0)
))

=

{
Σnv2 + o (v2) ,

0,

if v1 ≥ v2 ≥ 0 or v1 ≤ v2 ≤ 0 ,

otherwise,

and

Σn =

{
16k2

+ (0) fq (γ0)Vn1,

16k2
+ (0) fq (γ0)Vn2,

if v ≤ 0,

if v > 0,

and the finite-dimensional limit distributions of nh
(
Q̂n (γv0)− Q̂n(γ0)

)
are the same as those of C (v), where

γv0 = γ0 + v
nρ2
n
, and C (v) is defined in the proof of Theorem 6.

Proof. We mimic the proof of Proposition 3. Now,
∣∣∣∆̂i (γv0)−∆f (xi)

∣∣∣ p−→ 0 uniformly in i and v, where

∆f (xi) := (1, x′i, γ0)δnf(xi, γ0) = Op(ρn). Decompose ∆̂i (γv0) − ∆̂i (γ0) into the same six terms as in the

proof of Proposition 3 only with δ0 replaced by δn. By Lemma 7, we have

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi) (T1ij + T2ij) ≈ 0,

by Lemma 8, we have

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi) (T3ij + T4ij)

≈ 2
nh

∑n
i=1 ∆f (xi) f (xi)ui

[(
k−
(
qi−γv0
h

)
− k−

(
qi−γ0

h

))
−
(
k+
(
qi−γv0
h

)
− k+

(
qi−γ0

h

))]
=: S2(v)/nh
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and by Lemma 9, we have

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi) (T5ij + T6ij)

≈ 2
nh

∑n
i=1 ∆f (xi) f (xi)

(
1, x′j , qj

)
δn

[
k−
(
qi−γv0
h

)
1 (γv0 − h ≤ qj ≤ γ0)− k−

(
qi−γ0

h

)
1 (γ0 − h ≤ qj ≤ γ0)

]
=: S1(v)/nh.

As a result,

E
[
nh
(
Q̂n(γv0)− Q̂n(γ0)

)]
≈ E [S2 (v)] ≈ 2k+ (0) fq (γ0)E

[
∆2
i f (xi, qi) f (xi) |qi = γ0

]
v/ρ2

n.

Combining these results and the fact that k−(0) = k+(0), we obtain the first equation in the proposition.

By Lemma 10 and Lemma 11, we have

Cov
(
nh
(
Q̂n(γv1

0 )− Q̂n(γ0)
)
, nh

(
Q̂n(γv2

0 )− Q̂n(γ0)
))

= Cov (S1 (v1) , S1 (v2)) + Cov (S2 (v1) , S2 (v2)) + Cov (S1 (v1) , S2 (v2)) + Cov (S1 (v2) , S2 (v1))

≈ Σnv2.

Just as in Method II, S2(v) contributes to the mean process of nh
(
Q̂n(γv1

0 )− Q̂n(γ0)
)
, and S1(v) contributes

to the variance process.

To show fidi convergence, we apply the Cramér-Wold device, combined with the Lyapunov CLT. Specif-

ically, we check the Lyapunov condition that

∑n
i=1 E

[
∆4
f (xi) f

4 (xi)u
4
i

[(
k−
(
qi−γv0
h

)
− k−

(
qi−γ0

h

))
−
(
k+
(
qi−γv0
h

)
− k+

(
qi−γ0

h

))]4]
= Op

(
nhρ4

n

nhρ2
n

)
= op (1)

as n→∞. Then the proposition is proved.

Proposition 9 γ̃ − γ0 = Op (h) .

Proof. The proof is similar to that of Proposition 6. But now

Qn (γ) =

[ ∫ 0

−1

∫
Kx (ux,xo) k− (uq)m (xo + uxh, γ + uqh) f (xo + uxh, γ + uqh) duxduq

−
∫ 1

0

∫
Kx (ux,xo) k+ (uq)m (xo + uxh, γ + uqh) f (xo + uxh, γ + uqh) duxduq

]2

,

and we require ∆o/h
s →∞ to make the proof go through.

Proposition 10 γ̃ − γ0 = Op
(
(nhd−1∆2

o)
−1
)
.

Proof. The proof is the same as that of Proposition 7. We only pay attention to the role that ∆o → 0 plays

to make the proof go through.

Proposition 11 On any compact set of v,

E
[
nhd

(
Q̃n (γv0)− Q̃n(γ0)

)]
= −2k+(0)f (xo, γ0)

2 |v|+ o(v),
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Cov
(
nhd

(
Q̃n (γv1

0 )− Q̃n (γ0)
)
, nhd

(
Q̃n (γv2

0 )− Q̃n (γ0)
))

=

{
Σo (v2) v2 + o (v2) ,

0,

if v1 ≥ v2 ≥ 0 or v1 ≤ v2 ≤ 0 ,

otherwise,

and the finite-dimensional limit distributions of nhd
(
Q̃n (γv0)− Q̃n(γ0)

)
are the same as those of Co (v),

where γv0 = γ0 + v
nhd−1∆2

o
,

Σo (v) =

{
16k2

+ (0)σ2
− (xo) f (xo, γ0)

3
κ2,

16k2
+ (0)σ2

+ (xo) f (xo, γ0)
3
κ2,

if v ≤ 0,

if v > 0,

and Co (v) is defined in the proof of Corollary 3.

Proof. Mimic the proof of Proposition 8. Now,

Q̃n (γv0)− Q̃n (γ0) = ∆̂o (γv0)
2 − ∆̂o (γ0)

2
=
(

∆̂o (γv0) + ∆̂o (γ0)
)(

∆̂o (γv0)− ∆̂o (γ0)
)
.

By Lemma B.1 of Newey (1994), we can show that
∣∣∣∆̂o (γv0)−∆f (xo)

∣∣∣ p−→ 0 uniformly in i and v, where

∆f (xo) := (1, x′o, γ0)δ0f(xo, γ0) = Op(∆o), so
∣∣∣∆̂o (γv0) + ∆̂o (γ0)− 2∆f (xo)

∣∣∣ p−→ 0 uniformly in i and v.

We then only need to focus on the other term. For simplicity, let v > 0. Now,

∆̂o (γv0)− ∆̂o (γ0) =: 1
n

∑n
j=1 (T1j + T2j + T3j + T4j + T5j + T6j) ,

where {Tkj}6k=1 are defined similarly as in Proposition 8, only with K
γ−
h,ij and K

γ+
h,ij replaced by K

γ−
h,j and

Kγ+
h,j , respectively. By Lemma 13, we have

1
n

∑n
j=1 2∆f (xo) (T1j + T2j) ≈ 0,

and by Lemma 14, we have

1
n

∑n
j=1 2∆f (xo) (T5j + T6j) ≈ −2k+ (0) v

nhd
f (xo, γ0)

2
.

So

nhd
(
Q̃n (γv0)− Q̃n(γ0)

)
= hd

∑n
j=1 2∆f (xo) (T1j + T2j) + hd

∑n
j=1 2∆f (xo) (T3j + T4j) + hd

∑n
j=1 2∆f (xo) (T5j + T6j)

= op (1) + S1 (v) + S2 (v) .

Hence, with the zero mean assumption of the error term, we have

E
[
nhd

(
Q̃n (γv0)− Q̃n(γ0)

)]
= E [S2 (v)] = −2k+ (0) f (xo, γ0)

2
v + op (v) .

By Lemmas 13, 15 and 16, and the exogeneity property of the error terms, we have

Cov
(
nhd

(
Q̃n(γv1

0 )− Q̃n(γ0)
)
, nhd

(
Q̃n(γv2

0 )− Q̃n(γ0)
))

= Cov (S1(v1), S1(v2)) + Cov (S2(v1), S2(v2)) + Cov (S1(v1), S2(v2)) + Cov (S1(v2), S2(v1))

≈ Σonv2.

To show the weak convergence, we apply the Lyapunov CLT by checking the Lyapunov condition. Specifically,
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we show that

∑n
j=1 E

[
h4d∆4

f (xo)u
4
i

[(
K
γv0−
h,j −K

γ0−
h,j

)
−
(
K
γv0+
h,j −K

γ0+
h,j

)]4]
= Op

(
nh3d∆4

o

nhd∆2
o

)
= op (1) .

Proposition 12 I
(1)
1n is op (1) under H(1)

0 , and is Op
(
nhd/2

)
under H(1)

1 .

Proof. Note that

I1n = nhd/2

n(n−1)

∑
i

∑
j 6=iDiDjKh,ij

= nhd/2

n(n−1)

∑
i

∑
j 6=i

[
mi − x′iβ̂ − x′iδ̂1 (qi ≤ γ̂)

] [
mj − x′j β̂ − x′j δ̂1 (qj ≤ γ̂)

]
Kh,ij .

Under H(1)
0 , mi = x′iβ0 + x′iδ01 (qi ≤ γ0), so that

mi − x′iβ̂ − x′iδ̂1 (qi ≤ γ̂)

= x′i

(
β0 − β̂

)
+ x′i

(
δ0 − δ̂

)
1 (qi ≤ γ̂ ∧ γ0)

+ x′iδ01 (γ̂ < qi ≤ γ0)− x′iδ̂1 (γ0 < qi ≤ γ̂) .

As a result, I1n has ten terms with a typical term of the form

T1 =
(
β̂ − β0

)′ [
nhd/2

n(n−1)

∑
i

∑
j 6=iKh,ijxix

′
j

] (
β̂ − β0

)
or

T2 = δ′0

[
nhd/2

n(n−1)

∑
i

∑
j 6=iKh,ijxix

′
j1 (γ̂ < qi ≤ γ0) 1 (γ̂ < qj ≤ γ0)

]
δ0.

Given that β̂ − β0 = Op(n
−1/2), δ̂ − δ0 = Op(n

−1/2), and γ̂ − γ0 = Op(n
−1), it is easy to show that T1 =

Op(h
d/2) and T2 = Op(h

d/2) since 1
n(n−1)

∑
i

∑
j 6=i

Kh,ijxix
′
j = Op(1) and 1

n(n−1)

∑
i

∑
j 6=i

Kh,ijxix
′
j1 (γ̂ < qi ≤ γ0) 1 (γ̂ < qj ≤ γ0) =

Op
(
n−1

)
.

We now analyze I1n under H
(1)
1 . There are three cases. Let(

β′o, δ
′
o, γo

)′
= arg infβ,δ,γ E

[
(y − x′β − x′δ1 (q ≤ γ))

2
]
.

If δo = 0, then m(x, q) = x′βo and the model degenerates to the case analyzed in Zheng (1996). If

δxo = 0 and δαo + γoδqo = 0, then m(x, q) takes the CTR form of Chan and Tsay (1998). It follows

that β̂ − βo = Op(n
−1/2), δ̂ − δo = Op(n

−1/2), and γ̂ − γo = Op(n
−1/2). If δxo 6= 0 or δαo + γoδqo 6= 0,

then β̂ − βo = Op(n
−1/2), δ̂ − δo = Op(n

−1/2), and γ̂ − γo = Op(n
−1). See Yu (2017) for these results. We

concentrate on the last case. Now,

I1n = nhd/2

n(n−1)

∑
i

∑
j 6=i (mi −mi) (mj −mj)Kh,ij(1 + op(1)),

where mi = x′iβo + x′iδo1 (qi ≤ γo), so we need only calculate E [(mi −mi) (mj −mj)Kh,ij ], which is equal

to ∫
(mi −mi) (mj −mj)Kh,ijfifjdxidqidxjdqj

≈
∫

(mi −mi)
2
Kx(ux, xi)k(uq)f

2
i dxidqiduxduq

=
∫

(mi −mi)
2
f2
i dxidqi,

The result follows.
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Proposition 13 I
(2)
1n is oPm (1) uniformly in m under H(2)

0 , and is Op
(
nhd/2b

)
under H(2)

1 .

Proof. Given that f̂−1
i = f−1

i + op(1) and fi is bounded uniformly over (xi, qi) ∈ X × Γ,

I1n

= nhd/2

n(n−1)

∑
i

∑
j 6=i 1Γ

i 1Γ
j (mi − m̂i) f̂i (mj − m̂j) f̂jKh,ij

(
f̂−1
i f̂−1

j

)
≈ nhd/2

n(n−1)3

∑
i

∑
j 6=i
∑
l 6=i
∑
k 6=j 1Γ

i (mi −ml)Lb,il1
Γ
j (mj −mk)Lb,jkKh,ijf

−1
i f−1

j

= Op

(
nhd/2

n(n−1)3

∑
i

∑
j 6=i
∑
l 6=i
∑
k 6=j 1Γ

i (mi −ml)Lb,il1
Γ
j (mj −mk)Lb,jkKh,ij

)
,

(35)

Mimicking the proof of Proposition A.1 of Fan and Li (1996), we can show that under H(2)
0 , I1n =

Op
(
nhd/2b2η

)
= op(1). The only new result we need to employ is that |E1 [(m2 −m1)Lb,21]| = Op (bη),

which is accomplished in Lemma 18.

We now analyze I1n under H
(2)
1 . It can be shown that the case where i, j, l, k are all different from each

other dominates in the formula of the second equality of (35), so

I1n ≈ Op
(
nhd/2E

[
1Γ

1 (m1 −m2)Lb,121Γ
3 (m3 −m4)Lb,34Kh,13f

−1
1 f−1

3

])
.

Because h/b→ 0, we can treat (x1, q1) = (x3, q3). Specifically,

E
[
1Γ

1 (m1 −m2)Lb,121Γ
3 (m3 −m4)Lb,34Kh,13f

−1
1 f−1

3

]
= E

[
1Γ

1 (m1 −m2)Lb,12f
−1
1

∫
1 (q1 + uqh ∈ Γ) (m((x1, q1) + uh)−m4)

1
bd
Lx
(
x4−x1−uxh

b , x1 + uxh
)
l
(
q4−q1−uqh

b

)
Kx (ux, x1) k (uq) du

]
≈ E

[
1Γ

1 (m1 −m2)Lb,12 (m1 −m4)Lb,14f
−1
1

]
= E

{
1Γ

1f
−1
1 {E1 [(m1 −m2)Lb,12]}2

}
=
∫ γ
γ

∫ [∫
(m(x1, q1)−m(x2 q2)) 1

bd
Lx
(
x2−x1

b , x1

)
l
(
q2−q1
b

)
f(x2, q2)dx2dq2

]2
dx1dq1

≈ O
(
b2η
)

+
∫ γ0+b

γ0−b
∫ [∫

(m(x1, q1)−m(x1 + uxb, q1 + uqb))L
x (ux, x1) l (uq) f(x1 + uxb, q1 + uqb)du

]2
dx1dq1

≈ O
(
b2η
)

+
∫ γ0+b

γ0−b
∫ [ ∫ 1

γ0−q1
b

(m(x1, q1)−m(x1, q1 + uqb)) l (uq) du

+
∫ γ0−q1

b

−1
(m(x1, q1)−m(x1, q1 + uqb)) l (uq) duq

]2

f(x1, γ0)2dx1dq1

where u = (ux, uq). Under H
(2)
1 ,

∫ γ0+b

γ0−b
∫ [ ∫ 1

γ0−q1
b

(m(x1, q1)−m(x1, q1 + uqb)) l (uq) du

+
∫ γ0−q1

b

−1
(m(x1, q1)−m(x1, q1 + uqb)) l (uq) duq

]2

f(x1, γ0)2dx1dq1

≈
∫ γ0+b

γ0

∫ [
−
∫ 1
γ0−q1
b

m′+(x1)uqbl(uq)duq +
∫ γ0−q1

b

−1
(m+(x1)−m−(x1) + Cuqb) l(uq)duq

]2

f(x1, γ0)2dx1dq1

+
∫ γ0

γ0−b
∫ [∫ 1

γ0−q1
b

(m−(x1)−m+(x1) + Cuqb) l(uq)duq −
∫ γ0−q1

b

−1
m′−(x1)uqbl(uq)duq

]2

f(x1, γ0)2dx1dq1

≈ b
∫ 1

0

∫ [∫ −v
−1

(m+(x1)−m−(x1)) l(uq)duq

]2
dx1dv

+ b
∫ 1

0

∫ [∫ 1

v
(m+(x1)−m−(x1)) l(uq)duq

]2
f(x1, γ0)2dx1dv

= 2b
∫

(m+(x1)−m−(x1))
2
f(x1, γ0)2dx

∫ 1

0

(∫ 1

v
l(uq)duq

)2

dv,

where m′±(x) = lim
γ→γ0±

∂m(x, γ)/∂γ, and m±(x) = lim
γ→γ0±

m(x, γ). The result follows.
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Proposition 14 I
(1)
2n

d−→ N
(
0,Σ(1)

)
and I(2)

2n
d−→ N

(
0,Σ(2)

)
.

Proof. We only prove the second result since the first is proved in a similar way.

I
(2)
2n = nhd/2

n(n−1)

∑
i

∑
j 6=i 1Γ

i 1Γ
j uiujKh,ij

≡ nhd/2

n(n−1)

∑
i

∑
j 6=iHn(zi, zj) ≡ nhd/2Un,

where Un is a second order degenerate U-statistic with kernel function Hn. We can apply theorem 1 of Hall

(1984) to find its asymptotic distribution. Two conditions need to be checked: (i) E[H2
n(z1, z2)] <∞; (ii)

E[G2
n(z1,z2)]+n−1E[H4

n(z1,z2)]

E2[H2
n(z1,z2)] → 0 as n→∞,

where Gn(z1, z2) = E[Hn(z3, z1)Hn(z3, z2)|z1, z2]. Because these checks follow in a similar way to lemma

3.3a of Zheng (1996) they are omitted here to save space. In conclusion

nUn

/√
2E[H2

n(z1, z2)]
d−→ N(0, 1).

It is easy to check that

E
[
H2
n(z1, z2)

]
= E

[
1Γ

1 1Γ
2K

2
h,12E[u2

1|x1, q1]E[u2
2|x2, q2]

]
=
∫ γ
γ

∫ ∫ γ
γ

∫
1
h2dK

x
(
x2−x1

h , x1

)2
k2
(
q2−q1
h

)
σ2(x1, q1)σ2(x2, q2)f(x1, q1)f(x2, q2)dx2dq2dx1dq1

=
∫ γ
γ

∫ ∫ γ−q
h

γ−q
h

∫
1
hd
Kx (ux, x)

2
k2(uq)σ

2(x, q)σ2(x+ uxh, q + uqh)f(x, q)f(x+ uxh, q + uqh)dudxdq

≈ 1
hd

∫ γ
γ

∫ [∫
Kx (ux, x)

2
k2(uq)du

]
σ4(x, q)f2(x, q)dxdq + o

(
1
hd

)
≈ 1

hd

[∫
k2d(u)du

] ∫ γ
γ

∫
σ4(x, q)f2(x, q)dxdq = 1

hd
Σ(2)

2 ,

so the result follows.

Proposition 15 v
(1)2
n = Σ(1) + op (1) under H(1)

0 and the local alternative and v(1)2
n = Op(1) under H(1)

1 .

Proof. It can be shown that

hd

n(n−1)

∑
i

∑
j 6=iK

2
h,ij ê

2
i ê

2
j

= hd

n(n−1)

∑
i

∑
j 6=iK

2
h,ij (ui +mi −mi)

2
(uj +mj −mj)

2
+ op(1)

= hdE
[
K2
h,ij (ui +mi −mi)

2
(uj +mj −mj)

2
]

+ op(1)

= hdE
[
K2
h,ijEi

[
(ui +mi −mi)

2
]
Ej
[
(uj +mj −mj)

2
]]

+ op(1)

=
∫ ∫ [∫

Kx (ux, xi)
2
k2(uq)du

] (
σ2
i + (mi −mi)

2
)2

f2
i dxidqi + op(1)

=
∫
k2d(u)duE

[
f (x, q)

(
σ2(x, q) + (m−m)

2
)2
]

+ op(1),

where σ2
i = σ2(xi, qi). Under H(1)

0 , m − m = 0. Under the local alternative, E
[
f (x, q) (m−m)

4
]

=

O
(
n−2h−d

)
= o(1), and under H(1)

1 , E
[
f (x, q) (m−m)

4
]

= O(1).

Proposition 16 v
(2)2
n = Σ(2) + op (1) under both H(2)

0 and H(2)
1 .
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Proof. By steps similar to the last proposition, we have

hd

n(n−1)

∑
i

∑
j 6=i 1Γ

i 1Γ
jK

2
h,ij ê

2
i ê

2
j =

∫
k2d(u)duE

[
1Γ
i f (xi, qi)

(
σ2(xi, qi) + (mi −mi)

2
)2
]

+ op(1),

where mi is redefined as Ei [m̂i]. Note that E
[
1Γ
i f (xi, qi) (mi −mi)

4
]
is at most O(b) since mi − mi

contributes only for q ∈ [γ − b, γ + b].

Supplement C: Lemmas

Lemma 1 1
n(n−1)

∑n
i

∑n
j=1,j 6=i 2∆f (xi) (T1ij + T2ij) ≈ 0.

Proof. For 2∆f (xi)T1ij , we have

E [2∆f (xi)T1ij |zi]
=
∫ +∞
−∞

∫
xj

2∆f (xi) g (xj , qj)
1
hd
Kx

(
xj−xi
h , xi

)(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))
f (xj , qj) dxjdqj

= 2∆f (xi)
∫ 0

−1

∫
ux
g (xi + uxh, γ

v
0 + uqh)Kx (ux, xi) k

− (uq) f (xi + uxh, γ
v
0 + uqh) duxduq

− 2∆f (xi)
∫ 0

−1

∫
ux
g (xi + uxh, γ0 + uqh)Kx (ux, xi) k

− (uq) f (xi + uxh, γ0 + uqh) duxduq

= 2∆f (xi)
∫ 0

−1

∫
ux

[g (xi, γ
v
0 + uqh) + g1 (xi, γ

v
0 + uqh)uxh+ o (uxh)]Kx (ux, xi) k

− (uq) duxduq

− 2∆f (xi)
∫ 0

−1

∫
ux

[g (xi, γ0 + uqh) + g1 (xi, γ0 + uqh)uxh+ o (uxh)]Kx (ux, xi) k
− (uq) duxduq

= 2∆f (xi)
∫ 0

−1
[g (xi, γ

v
0 + uqh)− g (xi, γ0 + uqh)] k− (uq) duq

= 2∆f (xi) g2 (xi, γ0) v√
n/h

+O
(
v2

n/h

)
,

where g(xj , qj) = g(xj , qj)f(xj , qj), g1(xj , qj) =
∂g(xj ,qj)
∂xj

and g2(xj , qj) =
∂g(xj ,qj)
∂qj

. Since

E [2∆f (xi)T1ij |zj ]
=
∫
xi

2∆f (xi) g (xj , qj)
1
hd
Kx

(
xj−xi
h , xi

)(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))
f (xi) dxi

= 2
hg (xj , qj)

(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

)) ∫
ux

∆f (xj + uxh)Kx (ux, xj − uxh) f (xj − uxh) dux

= 2
hg (xj , qj)

(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))
∆f (xj) f (xj)

and

E
[
4∆2

f (xi)T
2
1ij

]
=
∫
xi

∫
qj

∫
xj

4
h2d∆2

f (xi) g (xj , qj)
2
Kx

(
xj−xi
h , xi

)2 (
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))2

f (xj , qj) dxjdqjf (xi) dxi

=
∫
xi

∫
uq

∫
ux


4
hd

∆2
f (xi) g (xi + uxh, γ0 + uqh)

2
Kx (ux, xi)

2

·
(
k−
(
uq +

γ0−γv0
h

)
− k− (uq)

)2

f (xi + uxh, γ0 + uqh)

 duxduqf (xi) dxi

= O
(

1
hd

v√
nh

)
,

we have

1
n

∑n
i=1 E [2∆f (xi)T1ij |zi] = 2∆f (xi) g2 (xi, γ0) v√

n/h
+O

(
v2

n/h

)
,

1
n

∑n
i=1 E [2∆f (xi)T1ij |zj ] = 2

hg (xj , qj)
(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))
∆f (xj) f (xj) ,

1
nE
[
4∆2

f (xi)T
2
1ij

]1/2
= 1

nO
(

1
hd/2

1
(nh)1/4

)
= o (1) .
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By Lemma 8.4 of Newey and Mcfadden(1994), we have

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i E[2∆f (xi)T1ij ] ≈ 2∆f (xi) g2 (xi, γ0) v√

n/h
,

where the extra terms 1
n

∑n
i=1 E[2∆f (xi)T1ij |zj ]−E[2∆f (xi)T1ij ] and 1

n

∑n
i=1 E[2∆f (xi)T1ij |zj ]−E[2∆f (xi)T1ij ]

are op(1). Similarly for 2∆f (xi)T2ij , we have

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i E[2∆f (xi)T2ij ] ≈ −2∆f (xi) g2 (xi, γ0) v√

n/h
.

Hence,
1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i E [2∆f (xi) (T1ij + T2ij)] ≈ 0

and

V ar
(

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i E [2∆f (xi) (T1ij + T2ij)]

)
≤ V ar

(
1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i E [2∆f (xi)T1ij ]

)
+ V ar

(
1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i E [2∆f (xi)T2ij ]

)
= o (1) .

So the result of interest is derived.

Lemma 2

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi) (T3ij + T4ij)

≈ 2
nh

∑n
i=1 ∆f (xi) f (xi)ui

[(
k−
(
qi−γv0
h

)
− k−

(
qi−γ0

h

))
−
(
k+
(
qi−γv0
h

)
− k+

(
qi−γ0

h

))]
.

Proof. Since
E [2∆f (xi)T3ij |zi] = 0,

E [2∆f (xi)T3ij |zj ]
= 2

hd
uj

(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

)) ∫
xi

∆f (xi)K
x
(
xj−xi
h , xi

)
f (xi) dxi

= 2
huj

(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

)) ∫
xi

∆f (xj − uxhj)Kx (ux, xj − uxh) f (xj +−uxh) dxi

≈ 2
huj

(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))
∆f (xj) f (xj)

and

E
[
4∆2

f (xi)T
2
3ij

]
=
∫
xi

∫
qj

∫
xj

4
h2d∆2

f (xi)σ
2 (xj , qj)K

x
(
xj−xi
h , xi

)2 (
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))2

f (xj , qj) dxjdqjf (xi) dxi

=
∫
xi

∫
uq

∫
ux


4
hd

∆2
f (xi)σ

2 (xi + uxh, γ0 + uqh)Kx (ux, xi)
2

·
(
k−
(
uq − v√

nh

)
− k− (uq)

)2

f (xi + uxh, γ0 + uqh)

 duxduqf (xi) dxi

= O
(

1
hd

v√
nh

)
,

we have

1
n

∑n
i=1 E [2∆f (xi)T3ij ] ≈ 2

nh

∑n
i=1 uj

(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))
∆f (xj) f (xj) ,

1
nE
[
4∆2

f (xi)T
2
3ij

]1/2
= 1

nO
(

1
hd/2

1
(nh)1/4

)
= o (1) .

27



By Lemma 8.4 of Newey and Mcfadden(1994), we have

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi)T3ij ≈ 2

nh

∑n
i=1 ∆f (xi) f (xi)ui

(
k−
(
qi−γv0
h

)
− k−

(
qi−γ0

h

))
.

A similar result can be derived for 1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi)T4ij and the result of interest is then

obtained.

Lemma 3

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi) (T5ij + T6ij)

≈ 2
nh

∑n
i=1 ∆f (xi) f (xi) (1, x′i, qi) δ0

[(
k−
(
qi−γv0
h

)
1(γv0 − h ≤ qi ≤ γ0)− k−

(
qi−γ0

h

)
1(γ0 − h ≤ qi ≤ γ0)

)]
.

Proof. Taking T5 to illustrate, we have

E [2∆f (xi)T5ij |zj ]
= − 2

hd

∫
xi

∆f (xi)
(
1, x′j , qj

)
δ0K

x
(
xj−xi
h , xi

)
k−
(
qj−γ0

h

)
1 (γ0 − h ≤ qj ≤ γ0) f (xi) dxi

= − 2
h

(
1, x′j , qj

)
δ0k
−
(
qj−γ0

h

)
1 (γ0 − h ≤ qj ≤ γ0)

∫
ux

∆f (xj − uxh)Kx (ux, xj − uxh) f (xj − uxh) dux

≈ − 2
h

(
1, x′j , qj

)
δ0k
−
(
qj−γ0

h

)
1 (γ0 − h ≤ qj ≤ γ0) ∆f (xj) f (xj) ,

E [2∆f (xi)T5ij |zi]
= − 2

hd

∫
qi

∫
xi

∆f (xi)
(
1, x′j , qj

)
δ0K

x
(
xj−xi
h , xi

)
k−
(
qj−γ0

h

)
1 (γ0 − h ≤ qj ≤ γ0) f (xj , qj) dxidqj

= −2∆f (xi)
∫ 0

−1

∫
ux

(1, x′i + u′xh, γ0 + uqh) δ0K
x (ux, xi) k

− (uq) f (xi + uxh, γ0 + uqh) dux

≈ −2∆f (xi) (1, x′i, γ0) δ0f (xi, γ0) ≈ −2∆f (xi)
2

and

E
[
4∆2

f (xi)T
2
5ij

]
=
∫
xi

∫
qj

∫
xj

4
h2d∆2

f (xi)
[(

1, x′j , qj
)
δ0

]2
Kx

(
xj−xi
h , xi

)2 (
k−
(
qj−γ0

h

))2

f (xj , qj) dxjdqjf (xi) dxi

=
∫
xi

∫ 0

−1

∫
ux

{
4
hd

∆2
f (xi) [(1, x′i + u′xh, γ0 + uqh) δ0]

2

·Kx (ux, xi)
2

(k− (uq))
2
f (xi + uxh, γ0 + uqh)

}
duxduqf (xi) dxi

= O
(

1
hd

)
.

Hence,

1
n

∑n
i=1 E [2∆f (xi)T5ij |zi] ≈ −2∆f (xi)

2
,

1
n

∑n
i=1 E [2∆f (xi)T5ij |zj ] ≈ − 2

h

(
1, x′j , qj

)
δ0k
−
(
qj−γ0

h

)
1 (γ0 − h ≤ qj ≤ γ0) ∆f (xj) f (xj) ,

1
nE
[
4∆2

f (xi)T
2
5ij

]1/2
= 1

nO
(

1
hd/2

)
= o (1) .

A similar result can be derived for 1
n

∑n
i=1 E [2∆f (xi)T6ij |zi] . Then by Lemma 8.4 of Newey and Mcfad-

den(1994), we have

1
n

∑n
i=1 E [2∆f (xi) (T5ij + T5ij)]

≈ 2
nh

∑n
i=1

(
1, x′j , qj

)
δ0

[
k−
(
qj−γv0
h

)
1 (γv0 − h ≤ qj ≤ γ0)− k−

(
qj−γ0

h

)
1 (γ0 − h ≤ qj ≤ γ0)

]
∆f (xj) f (xj) ,

where the extra terms 1
n

∑n
i=1 E[2∆f (xi)T5ij |zi]−E[2∆f (xi)T5ij ] and 1

n

∑n
i=1 E[2∆f (xi)T6ij |zi]−E[2∆f (xi)T6ij ]

are op(1).
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Lemma 4 Cov (S1(v1), S1(v2)) ≈ 4E
[
∆2
f (xi)f

2(xi)(σ
2
+(xi) + σ2

−(xi))|qi = γ0

]
fq(γ0)v1v2ξ(1).

Proof. Without loss of generality, assume v1 ≥ v2 ≥ 0. Then

4nCov
(

∆f (xi) f (xi)ui

(
k+
(
qi−γv10

h

)
− k+

(
qi−γ0

h

))
,∆f (xi) f (xi)ui

(
k+
(
qi−γv20

h

)
− k+

(
qi−γ0

h

)))
= 4nE

[
∆2
f (xi) f (xi)

2
u2
i

(
k+
(
qi−γv10

h

)
− k+

(
qi−γ0

h

))(
k+
(
qi−γv20

h

)
− k+

(
qi−γ0

h

))]
f (ui|xi, qi) f (xi, qi) duidqidxi

= 4n
∫
xi

∫ γv20

γ0

∫
ui

∆2
f (xi) f (xi)

2
u2
i

(
k+
(
qi−γ0

h

))2

f (ui|xi, qi) f (xi, qi) duidqidxi

− 4n
∫
xi

∫ γv10

γ
v2
0

∫
ui

∆2
f (xi) f (xi)

2
u2
i k

+
(
qi−γ0

h

)(
k+
(
qi−γv20

h

)
− k+

(
qi−γ0

h

))
f (ui|xi, qi) f (xi, qi) duidqidxi

+ 4n
∫
xi

∫ γ0+h

γ
v1
0

∫
ui

 ∆2
f (xi) f (xi)

2
u2
i

(
k+
(
qi−γv10

h

)
− k+

(
qi−γ0

h

))
·
(
k+
(
qi−γv20

h

)
− k+

(
qi−γ0

h

))
f (ui|xi, qi) f (xi, qi)

 duidqidxi (∗)

+ 4n
∫
xi

∫ γv20 +h

γ0+h

∫
ui

∆2
f (xi) f (xi)

2
u2
i k

+
(
qi−γv10

h

)
k+
(
qi−γv20

h

)
f (ui|xi, qi) f (xi, qi) duidqidxi

≈ 4E
[
∆2
f (xi) f (xi)

2
σ2

+ (xi) |qi = γ0

]
fq (γ0) v1v2ξ(1),

where σ2
+(xi) = E[u2

i |xi, qi = γ0+] and ξ(1) =
∫ 1

0
k′+(t)2dt. For a more detailed proof, we refer to that of

Lemma C.4 of DH. Similarly,

4nCov
(

∆f (xi) f (xi)ui

(
k−
(
qi−γv10

h

)
− k−

(
qi−γ0

h

))
,∆f (xi) f (xi)ui

(
k−
(
qi−γv20

h

)
− k−

(
qi−γ0

h

)))
≈ 4E

[
∆2
f (xi) f (xi)

2
σ2
− (xi) |qi = γ0

]
fq (γ0) v1v2ξ(1)

and

4nCov
(

∆f (xi) f (xi)ui

(
k±
(
qi−γv10

h

)
− k±

(
qi−γ0

h

))
,∆f (xi) f (xi)ui

(
k∓
(
qi−γv20

h

)
− k∓

(
qi−γ0

h

)))
≈ 4E

[
∆2
f (xi) f (xi)

2
σ2
− (xi) |qi = γ0

]
fq (γ0) v1v2ξ(1)

v√
nh

= op (1) ,

where σ2
−(xi) = E[u2

i |xi, qi = γ0−]. So the result of interest is obtained by summing up terms.

Lemma 5 Cov (S2(v1), S2(v2)) = o (v1v2) , Cov (S1(v1), S2(v2)) = o (v1v2) and Cov (S2(v1), S1(v2)) = o (v1v2) .

Proof. From Lemma 3, by tedious calculation, we can obtain

V ar (S2 (v2)) = o (v2) .

Hence,
Cov (S2(v1), S2(v2)) ≤

√
V ar (S2(v1))V ar (S2(v2)) = o (v1v2) ,

Cov (S1(v1), S2(v2)) ≤
√
V ar (S1(v1))V ar (S2(v2)) = o (v1v2) ,

Cov (S2(v1), S1(v2)) ≤
√
V ar (S2(v1))V ar (S1(v2)) = o (v1v2) .

Lemma 6 For any φ1, φ2 > 0, there exists η > 0 such that

P
{

sup|v1−v2|<η

∣∣∣n̂h(Q̂n (γv1
0 )− Q̂n (γ0)

)
− n̂h

(
Q̂n (γv2

0 )− Q̂n (γ0)
)∣∣∣ > φ1

}
< φ2,

where

n̂h
(
Q̂n (γv0)− Q̂n (γ0)

)
= nh

(
Q̂n (γv0)− Q̂n (γ0)

)
− E

[
nh
(
Q̂n (γv0)− Q̂n (γ0)

)]
.
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Proof. From Proposition 3, we have

limn→∞ E
[
n̂h
(
Q̂n (γv1

0 )− Q̂n (γ0)
)
− n̂h

(
Q̂n (γv2

0 )− Q̂n (γ0)
)]2

= limn→∞ E
[
n̂h
(
Q̂n (γv1

0 )− Q̂n (γ0)
)]2

+ limn→∞ E
[
n̂h
(
Q̂n (γv2

0 )− Q̂n (γ0)
)]2

− 2 limn→∞ E
[
n̂h
(
Q̂n (γv1

0 )− Q̂n (γ0)
)] [

n̂h
(
Q̂n (γv2

0 )− Q̂n (γ0)
)]

= 4
(
v2

1 + v2
2 − 2v1v2

)
E
[
∆2
f (xi)f

2(xi)(σ
2
+(xi) + σ2

−(xi))|qi = γ0

]
fq(γ0)ξ(1) + o

(
|v1 − v2|2

)
≤ C |v1 − v2|2 .

By Markov’s inequality, the result follows.

Lemma 7 1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi) (T1ij + T2ij) ≈ 0.

Proof. The proof is similar to that of Lemma 1. For 2∆f (xi)T1ij , we now have

E [2∆f (xi)T1ij |Xi]

=
∫ +∞
−∞

∫
xj

2∆f (xi) g (xj , qj)
1
hd
Kx

(
xj−xi
h , xi

)(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))
f (xj , qj) dxjdqj

= 2∆f (xi)
∫ 0

−1

∫
ux
g (xi + uxh, γ

v
0 + uqh)Kx (ux, xi) k

− (uq) f (xi + uxh, γ
v
0 + uqh) duxduq

− 2∆f (xi)
∫ 0

−1

∫
ux
g (xi + uxh, γ0 + uqh)Kx (ux, xi) k

− (uq) f (xi + uxh, γ0 + uqh) duxduq

= 2∆f (xi)
∫ 0

−1

∫
ux

[
g (xi, γ

v
0 + uqh) + g

(1)
1 (xi, γ

v
0 + uqh)uxh

1

+ · · ·+ g
(s)
1 (xi, γ

v
0 + uqh)uxh

s + o (usxh
s)

]
Kx (ux, xi) k

− (uq) duxduq

− 2∆f (xi)
∫ 0

−1

∫
ux

[
g (xi, γ0 + uqh) + g

(1)
1 (xi, γ0 + uqh)uxh

1

+ · · ·+ g
(s)
1 (xi, γ0 + uqh)uxh

s + o (usxh
s)

]
Kx (ux, xi) k

− (uq) duxduq

≈ 2∆f (xi)
∫ 0

−1

 (g (xi, γ
v
0 + uqh)− g (xi, γ0 + uqh)) + h1

(
g

(1)
1 (xi, γ

v
0 + uqh)− g(1)

1 (xi, γ0 + uqh)
)

+ · · ·+ hs
(
g

(s)
1 (xi, γ

v
0 + uqh)− g(s)

1 (xi, γ0 + uqh)
)  k− (uq) duq

≈ 2∆f (xi)
v
nρ2
n

[
g2 (xi, γ0) + · · ·+ hsg

(s)
2 (xi, γ0)

]
,

where g(xj , qj) = g(xj , qj)f(xj , qj), g
(n)
1 (xj , qj) =

∂ng(xj ,qj)
(∂xj)

n and g(n)
2 (xj , qj) =

∂g
(n)
1 (xj ,qj)
∂qj

. Since

E [2∆f (xi)T1ij |Xj ]

=
∫
xj

2∆f (xi) g (xj , qj)
1
hd
Kx

(
xj−xi
h , xi

)(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))
f (xi) dxi

= 2
hg (xj , qj)

(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

)) ∫
ux

∆f (xj + uxh)Kx (ux, xj − uxh) f (xj − uxh) dux

= 2
hg (xj , qj)

(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))
∆f (xj) f (xj)

and

E
[
4∆2

f (xi)T
2
1ij

]
=
∫
xi

∫
qj

∫
xj

4
h2d∆2

f (xi) g (xj , qj)
2
Kx

(
xj−xi
h , xi

)2 (
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))2

f (xj , qj) dxjdqjf (xi) dxi

=
∫
xi

∫
uq

∫
ux


4
hd

∆2
f (xi) g (xi + uxh, γ0 + uqh)

2
Kx (ux, xi)

2

·
(
k−
(
uq +

γ0−γv0
h

)
− k− (uq)

)2

f (xi + uxh, γ0 + uqh)

 duxduqf (xi) dxi

= O
(
ρ2
n

hd
v

nhρ2
n

)
=
(

1
nhd+1

)
,
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we have

1
n

∑n
i=1 E [2∆f (xi)T1ij |Xi] ≈ 2∆f (xi)

v
nρ2
n

[
g2 (xi, γ0) + · · ·+ hsg

(s)
2 (xi, γ0)

]
,

1
n

∑n
i=1 E [2∆f (xi)T1ij |Xj ] = 2

hg (xj , qj)
(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))
∆f (xj) f (xj) ,

1
nE
[
4∆2

f (xi)T
2
1ij

]1/2
= 1

nO
(

1√
nhd+1

)
= o (1) .

By Lemma 8.4 of Newey and Mcfadden(1994), we have

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi)T1ij ≈ 2∆f (xi)

v
nρ2
n

[
g2 (xi, γ0) + · · ·+ hsg

(s)
2 (xi, γ0)

]
,

where the extra terms 1
n

∑n
i=1 E[2∆f (xi)T1ij |Xj ]−E[2∆f (xi)T1ij ] and 1

n

∑n
i=1 E[2∆f (xi)T1ij |Xj ]−E[2∆f (xi)T1ij ]

are op(1). Similarly for 2∆f (xi)T2ij , we have

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi)T2ij ≈ −2∆f (xi)

v
nρ2
n

[
g2 (xi, γ0) + · · ·+ hsg

(s)
2 (xi, γ0)

]
.

Hence,
1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi) (T1ij + T2ij) ≈ 0

and the result of interest is derived.

Lemma 8

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi) (T3ij + T4ij)

≈ 2
nh

∑n
i=1 ∆f (xi) f (xi)ui

[(
k−
(
qi−γv0
h

)
− k−

(
qi−γ0

h

))
−
(
k+
(
qi−γv0
h

)
− k+

(
qi−γ0

h

))]
.

Proof. The proof is the same as that of Lemma 2.

Lemma 9

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i 2∆f (xi) (T5ij + T6ij)

≈ 2
nh

∑n
i=1 ∆f (xi) f (xi) (1, x′i, qi) δn

[(
k−
(
qi−γv0
h

)
1(γv0 − h ≤ qi ≤ γ0)− k−

(
qi−γ0

h

)
1(γ0 − h ≤ qi ≤ γ0)

)]
.

Proof. The proof is the same as that of Lemma 3.

Lemma 10 Cov (S1(v1), S1(v2)) ≈ Σnv2.

Proof. Without loss of generality, assume v1 ≥ v2 ≥ 0. Then

4nCov
(

∆f (xi) f (xi)ui

(
k+
(
qi−γv10

h

)
− k+

(
qi−γ0

h

))
,∆f (xi) f (xi)ui

(
k+
(
qi−γv20

h

)
− k+

(
qi−γ0

h

)))
= 4nE

[
∆2
f (xi) f (xi)

2
u2
i

(
k+
(
qi−γv10

h

)
− k+

(
qi−γ0

h

))(
k+
(
qi−γv20

h

)
− k+

(
qi−γ0

h

))]
f (ui|xi, qi) f (xi, qi) duidqidxi

= 4n
∫
xi

∫ γv20

γ0

∫
ui

∆2
f (xi) f (xi)

2
u2
i

(
k+
(
qi−γ0

h

))2

f (ui|xi, qi) f (xi, qi) duidqidxi (∗)

− 4n
∫
xi

∫ γv10

γ
v2
0

∫
ui

∆2
f (xi) f (xi)

2
u2
i k

+
(
qi−γ0

h

)(
k+
(
qi−γv20

h

)
− k+

(
qi−γ0

h

))
f (ui|xi, qi) f (xi, qi) duidqidxi

+ 4n
∫
xi

∫ γ0+h

γ
v1
0

∫
ui

 ∆2
f (xi) f (xi)

2
u2
i

(
k+
(
qi−γv10

h

)
− k+

(
qi−γ0

h

))
·
(
k+
(
qi−γv20

h

)
− k+

(
qi−γ0

h

))
f (ui|xi, qi) f (xi, qi)

 duidqidxi

+ 4n
∫
xi

∫ γv20 +h

γ0+h

∫
ui

∆2
f (xi) f (xi)

2
u2
i k

+
(
qi−γv10

h

)
k+
(
qi−γv20

h

)
f (ui|xi, qi) f (xi, qi) duidqidxi

≈ 4k+ (0)
2 E
[
∆2
f (xi) f (xi)

2
σ2

+ (xi) |qi = γ0

]
fq (γ0) /ρ2

nv2,
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where σ2
+(xi) = E[u2

i |xi, qi = γ0+]. Similarly,

4nCov
[
∆f (xi) f (xi)ui

(
k−
(
qi−γv10

h

)
− k−

(
qi−γ0

h

))
,∆f (xi) f (xi)ui

(
k−
(
qi−γv20

h

)
− k−

(
qi−γ0

h

))]
≈ 4k+ (0)

2 E
[
∆2
f (xi) f (xi)

2
σ2

+ (xi) |qi = γ0

]
fq (γ0) /ρ2

nv2,

and

4nCov
[
∆f (xi) f (xi)ui

(
k±
(
qi−γv10

h

)
− k±

(
qi−γ0

h

))
,∆f (xi) f (xi)ui

(
k∓
(
qi−γv20

h

)
− k∓

(
qi−γ0

h

))]
≈ 4k+ (0)

2 E
[
∆2
f (xi) f (xi)

2
σ2

+ (xi) |qi = γ0

]
fq (γ0) /ρ2

nv2.

If v1 ≤ v2 ≤ 0, the result is similar except that the term σ2
+(xi) is replaced by σ2

−(xi).

If v1v2 < 0, then the four terms are all o(v2).

Lemma 11 Cov (S2(v1), S2(v2)) = o (v2) , Cov (S1(v1), S2(v2)) = o (v2) and Cov (S2(v1), S1(v2)) = o (v2) .

Proof. The proof idea is the same as that in Lemma 5.

Lemma 12 For any φ1, φ2 > 0, there exists η > 0 such that

P
{

sup|v1−v2|<η

∣∣∣n̂h(Q̂n (γv1
0 )− Q̂n (γ0)

)
− n̂h

(
Q̂n (γv2

0 )− Q̂n (γ0)
)∣∣∣ > φ1

}
< φ2,

where

n̂h
(
Q̂n (γv0)− Q̂n (γ0)

)
= nh

(
Q̂n (γv0)− Q̂n (γ0)

)
− E

[
nh
(
Q̂n (γv0)− Q̂n (γ0)

)]
.

Proof. Without loss of generality, assume v1 ≥ v2 ≥ 0. From Proposition 8, we have

limn→∞ E
[
n̂h
(
Q̂n (γv1

0 )− Q̂n (γ0)
)
− n̂h

(
Q̂n (γv2

0 )− Q̂n (γ0)
)]2

= limn→∞ E
[
n̂h
(
Q̂n (γv1

0 )− Q̂n (γ0)
)]2

+ limn→∞ E
[
n̂h
(
Q̂n (γv2

0 )− Q̂n (γ0)
)]2

− 2 limn→∞ E
[
n̂h
(
Q̂n (γv1

0 )− Q̂n (γ0)
)] [

n̂h
(
Q̂n (γv2

0 )− Q̂n (γ0)
)]

= 16k2 (0) (v1 + v2 − 2v2)V1fq(γ0)

≤ C |v1 − v2| .

By Markov’s inequality, the result follows.

Lemma 13 1
n

∑n
j=1 2∆f (xo) (T1j + T2j) ≈ 0.

Proof. First,

E [2∆f (xo)T1j ]

=
∫ +∞
−∞

∫
xj

2∆f (xo) g (xj , qj)
1
hd
Kx

(
xj−xo
h , xo

)(
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))
f (xj , qj) dxjdqj

= 2∆f (xo)
∫ 0

−1

∫
ux
g (xo + uxh, γ

v
0 + uqh)Kx (ux, xo) k

− (uq) f (xo + uxh, γ
v
0 + uqh) duxduq

− 2∆f (xo)
∫ 0

−1

∫
ux
g (xo + uxh, γ0 + uqh)Kx (ux, xo) k

− (uq) f (xo + uxh, γ0 + uqh) duxduq

= 2∆f (xo)
∫ 0

−1

∫
ux

[
g (xo, γ

v
0 + uqh) + · · ·+ g

(s)
1 (xo, γ

v
0 + uqh)uxh+ o (uxh)

]
Kx (ux, xo) k

− (uq) duxduq

− 2∆f (xo)
∫ 0

−1

∫
ux

[
g (xo, γ0 + uqh) · · ·+ g

(s)
1 (xo, γ0 + uqh)uxh+ o (uxh)

]
Kx (ux, xo) k

− (uq) duxduq

≈ 2∆f (xo)
∫ 0

−1

[(
g (xo, γ

v
0) + · · ·+ g

(s)
1 (xo, γ

v
0)hs

)
−
(
g (xo, γ0) + · · ·+ g

(s)
1 (xo, γ0)hs

)]
k− (uq) duq

≈ 2∆f (xo)
(
g2 (xo, γ0) + · · ·+ g

(s)
12 (xo, γ0)hs

)
v

nhd−1∆2
o
,
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where g(xj , qj) = g(xj , qj)f(xj , qj), g
(s)
1 (xj , qj) =

∂g(xj ,qj)
(∂xj)

s , g2(xj , qj) =
∂g(xj ,qj)
∂qj

and g(s)
12 (xj , qj) =

∂g
(s)
1 (xj ,qj)
∂qj

.

Similarly, we have

E [2∆f (xo)T2j ] ≈ −2∆f (xo)
(
g2 (xo, γ0) + · · ·+ g

(s)
12 (xo, γ0)hs

)
v

nhd−1∆2
o
.

Hence,

E
[

1
n

∑n
j=1 2∆f (xo)∆f (xo) (T1j + T2j)

]
≈ 0.

Next,

1
nE
[
4∆2

f (xo)T
2
1j

]
= 1

n

∫
qj

∫
xj

4
h2d∆2

f (xo) g (xj , qj)
2
Kx

(
xj−xo
h , xo

)2 (
k−
(
qj−γv0
h

)
− k−

(
qj−γ0

h

))2

f (xj , qj) dxjdqj

= 1
n

∫
uq

∫
ux


4
hd

∆2
f (xo) g (xo + uxh, γ0 + uqh)

2
Kx (ux, xo)

2

·
(
k−
(
uq +

γ0−γv0
h

)
− k− (uq)

)2

f (xo + uxh, γ0 + uqh)

 duxduq

= O
(

∆2
o

nhd
v2

nh2∆2
o

)
= o(1),

so

V ar
[

1
n

∑n
j=1 2∆f (xo)T1j

]
= 1

nV ar [2∆f (xo)T1j ] = 1
nE
[
4∆2

f (xo)T
2
1j

]
− 1

nE [2∆f (xo)T1j ]
2

= o(1).

With similar results derived for 1
n

∑n
j=1 2∆f (xo)T2j and

1
nE
[
4∆f (xo)

2T1jT2j

]
= 1

n

∫
uq

∫
ux


4
hd

∆2
f (xo) g (x0 + uxh, γ0 + uqh)

2
(
k−
(
uq − v

nhd∆2
o

)
− k− (uq)

)
·
(
k+
(
uq − v

nhd∆2
o

)
− k+ (uq)

)
Kx (ux, xo)

2
f (x0 + uxh, γ0 + uqh)

 duxduq

= O
(

∆2
o

nhd
v

nhd∆2
o

)
,

we have
1
nCov [2∆f (xo)T1j , 2∆f (xo)T2j ] = O

(
1
nhd

v
nhd

)
−O

(
1
nhd

v
nh2

)
= o(1).

As a result,

V ar
[

1
n

∑n
j=1 2∆f (xo)(T1j + T2j)

]
= o(1).

By Markov’s inequality, the result of interest is obtained.

Lemma 14 1
n

∑n
j=1 2∆f (xo) (T5j + T6j) ≈ −2k−(0) v

nhd
f(xo, γ0)2.

Proof. Since

E[2∆f (xo)T5j ]

= −
∫
qj

∫
xj

2
hd

∆f (xo)(1, x
′
j , qj)δnK

x
(
xj−xo
h , xo

)
k−
(
qj−γ0

h

)
1(γ0 − h ≤ qj ≤ γ0)f(xj , qj)dxjdqj

= −2∆f (xo)
∫ 0

−1

∫
ux

(1, x′o + u′xh, γ0 + uqh)δnK
x(ux, xo)k

−(uq)f(xo + uxh, γ0 + uqh)duxduq

= −2∆f (xo)(1, x
′
o, γ0)δnf (xo, γ0) (1 +O (h)) ≈ −2∆2

f (xo)
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and, similarly,

E[2∆f (xo)T6j ]

=
∫
qj

∫
xj

2
hd

∆f (xo)(1, x
′
o, qj)δnK

x
(
xj−xo
h , xo

)
k−
(
qj−γv0
h

)
1(γv0 − h ≤ qj ≤ γ0)f(xj , qj)dxjdqj

= 2∆f (xo)
∫ 0

−1+ v

nhd∆2
o

∫
ux

(1, x′o + u′xh, γ0 + uqh)δnK
x(ux, xo)k

−
(
uq − v

nhd∆2
o

)
f(xo + uxh, γ0 + uqh)duxduq

= 2∆f (xo)(1, x
′
o, γ0)δnf (xo, γ0)

(
1− k+(0) v

nhd∆2
o

+O (h)
)
≈ 2∆2

f (xo)(1− k−(0) v
nhd∆2

o
),

the result of interest follows.

Lemma 15 Cov (S1(v1), S1(v2)) ≈ Σov2.

Proof. Without loss of generality, assume v1 ≥ v2 ≥ 0. Then

4nh2dCov
(

∆f (xo)uj

(
K
γ
v1
0 +

h,j −Kγ0+
h,j

)
,∆f (xi)ui

(
K
γ
v2
0 +

h,j −Kγ0+
h,j

))
= 4nhdE

[
∆2
f (xo)u

2
jK

x
(
xj−xo
h , xo

)2 (
k+
(
qj−γv10

h

)
− k+

(
qj−γ0

h

))(
k+
(
qj−γv20

h

)
− k+

(
qj−γ0

h

))]
= 4nhd

∫
xj

∫ γv20

γ0

∫
ui

∆2
f (xo)u

2
jK

x
(
xj−xo
h , xo

)2 (
k+
(
qj−γ0

h

))2

f (uj |xj , qj) f (xj , qj) dujdqjdxj (∗)

− 4nhd
∫
xi

∫ γv10

γ
v2
0

∫
ui

∆2
f (xo)u

2
jK

x
(
xj−xo
h , xo

)2

k+
(
qj−γ0

h

)(
k+
(
qj−γv20

h

)
− k+

(
qj−γ0

h

))
f (uj |xj , qj) f (xj , qj) dujdqjdxj

+ 4nhd
∫
xi

∫ γ0+h

γ
v1
0

∫
ui

 ∆2
f (xo)u

2
jK

x
(
xj−xo
h , xo

)2 (
k+
(
qj−γv10

h

)
− k+

(
qj−γ0

h

))
·
(
k+
(
qj−γv20

h

)
− k+

(
qj−γ0

h

))
f (uj |xj , qj) f (xj , qj)

 dujdqjdxj

+ 4nhd
∫
xi

∫ γv20 +h

γ0+h

∫
ui

∆2
f (xo)u

2
jK

x
(
xj−xo
h , xo

)2

k+
(
qj−γv10

h

)
k+
(
qj−γv20

h

)
f (uj |xj , qj) f (xj , qj) dujdqjdxj

≈ 4k+ (0)
2
σ2

+ (xo) fq (xo, γ0)
3
κ2v2

and

4nh2dCov
(

∆f (xo)uj

(
K
γ
v1
0 −

h,j −Kγ0−
h,j

)
,∆f (xo)uj

(
K
γ
v2
0 −

h,j −Kγ0−
h,j

))
≈4k2

−(0)σ2
+(xo)f(xo, γ0)3κ2v2,

and

− 4nh2dCov
(

∆f (xo)ej

(
K
γ
v1
0 ±

h,j −Kγ0±
h,j

)
,∆f (xo)ej

(
K
γ
v2
0 ∓

h,j −Kγ0∓
h,j

))
≈4k+(0)k−(0)σ2

+(xo)f(xo, γ0)3κ2v2,

where σ2
±(xo) = E[e2

j |xj = xo, qj = γ±0 ], κ2 =
∫
K(ux)2dux.

If v1 ≤ v2 ≤ 0, the result is similar except that the term σ2
+(xo) is replaced by σ2

−(xo).

If v1v2 < 0, then the four terms are all o(v2).

Lemma 16 Cov (S2(v1), S2(v2)) = o (v2) , Cov (S1(v1), S2(v2)) = o (v2) and Cov (S2(v1), S1(v2)) = o (v2).

Proof. The proof idea is the same as that in Lemma 11.

Lemma 17 For any φ1, φ2 > 0, there exists η > 0 such that

P
{

sup|v1−v2|<η

∣∣∣n̂hd (Q̃n (γv1
0 )− Q̃n (γ0)

)
− n̂hd

(
Q̃n (γv2

0 )− Q̃n (γ0)
)∣∣∣ > φ1

}
< φ2,
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where

n̂hd
(
Q̃n (γv0)− Q̃n (γ0)

)
= nhd

(
Q̃n (γv0)− Q̃n (γ0)

)
− E

[
nhd

(
Q̃n (γv0)− Q̃n (γ0)

)]
.

Proof. Without loss of generality, assume v1 ≥ v2 ≥ 0. From Proposition 11, we have

limn→∞ E
[
n̂hd

(
Q̃n (γv1

0 )− Q̃n (γ0)
)
− n̂hd

(
Q̃n (γv2

0 )− Q̃n (γ0)
)]2

= limn→∞ E
[
n̂hd

(
Q̃n (γv1

0 )− Q̃n (γ0)
)]2

+ limn→∞ E
[
n̂hd

(
Q̃n (γv2

0 )− Q̃n (γ0)
)]2

− 2 limn→∞ E
[
n̂hd

(
Q̃n (γv1

0 )− Q̃n (γ0)
)] [

n̂hd
(
Q̃n (γv2

0 )− Q̃n (γ0)
)]

= 16k2 (0) f (xo, γ0)
3
κ2σ2

+ (xo) (v1 + v2 − 2v2)

≤ C |v1 − v2| .

By Markov’s inequality, the result follows.

Lemma 18 |E1 [(m2 −m1)Lb,21]| = Op (bη).

Proof. We have

|E [(m(x2, q2)−m(x1, q1))Lb,21|x1, q1]|
=
∣∣∫ (m(x2, q2)−m(x1, q1)) f(x2, q2) 1

bd
Lx
(
x2−x1

b , x1

)
l
(
q2−q1
b

)
dx2dq2

∣∣
=

∣∣∣∣∣∣∣
∫ 

(Qm ((x2, q2) , (x1, q1)) +Rm ((x2, q2) , (x1, q1)))

· (f(x1, q1) +Qf ((x2, q2) , (x1, q1)) +Rf ((x2, q2) , (x1, q1)))

· 1
bd
Lx
(
x2−x1

b , x1

)
l
(
q2−q1
b

)
 dx2dq2

∣∣∣∣∣∣∣ ,
whereQm ((x2, q2) , (x1, q1)) is the (s− 1)th-order Taylor expansion ofm(x2, q2) atm(x1, q1), Rm ((x2, q2) , (x1, q1))

is the remainder term, Qf ((x2, q2) , (x1, q1)) is (λ− 1)th-order Taylor expansion of f(x2, q2) at f(x1, q1), and

Rf ((x2, q2) , (x1, q1)) is the remainder term. From Assumption L,

∫
Qm ((x2, q2) , (x1, q1)) (f(x1, q1) +Qf ((x2, q2) , (x1, q1))) 1

bd
Lx
(
x2−x1

b , x1

)
l
(
q2−q1
b

)
dx2dq = 0,

so |E [(m(x2, q2)−m(x1, q1))Lb,21|x1]| is bounded by∣∣∫ Rm ((x2, q2) , (x1, q1)) f(x1, q1) 1
bd
Lx
(
x2−x1

b , x1

)
l
(
q2−q1
b

)
dx2dq2

∣∣
+
∣∣∫ (m(x2, q2)−m(x1, q1))Rf ((x2, q2) , (x1, q1)) 1

bd
Lx
(
x2−x1

b , x1

)
l
(
q2−q1
b

)
dx2dq2

∣∣
≤ Cbs + Cbλ+1 ≤ Cbη,

where η = min (λ+ 1, s).

Supplement D: Parametric Tests for Threshold Effects when In-
struments are present

This supplement discusses the asymptotic distribution of the Wald-type and score-type test statistics under

the null and local alternatives when instruments are available. We also provide implementation details for

the use of Hansen’s (1996) simulation method in the current context.
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For γ ∈ Γ, define

Ω1 (γ) = E
[
ziz
′
iε

2
i 1(qi ≤ γ)

]
,Ω2 (γ) = E

[
ziz
′
iε

2
i 1(qi > γ)

]
,

Q1 (γ) = E [zix
′
i1(qi ≤ γ)] , Q2 (γ) = E [zix

′
i1(qi > γ)] ,

V1 (γ) =
[
Q1 (γ)

′
Ω1 (γ)

−1
Q1 (γ)

]−1

, V2 (γ) =
[
Q2 (γ)

′
Ω2 (γ)

−1
Q2 (γ)

]−1

,

Ω = E
[
ziz
′
iε

2
i

]
, Q = E [zix

′
i] , V =

[
Q′Ω−1Q

]−1
.

S1 (γ) is a mean-zero Gaussian process with covariance kernel E
[
S1 (γ1)S1 (γ2)

′]
= Ω1 (γ1 ∧ γ2), S =

lim
γ→∞

S1 (γ), and S2 (γ) = S − S1 (γ). S(γ) is a mean zero Gaussian process with covariance kernel

H(γ1, γ2) = E
[(
zi1(qi ≤ γ1)−Q1 (γ1)V Q′Ω−1zi

) (
zi1(qi ≤ γ2)−Q1 (γ2)V Q′Ω−1zi

)′
ε2
i

]
.

Given the threshold point γ, the 2SLS estimators for β1 and β2 are

β̃1 (γ) =
(
Q̂1 (γ)

′ ( 1
nZ
′
≤γZ≤γ

)−1
Q̂1 (γ)

)−1 (
Q̂1 (γ)

′ ( 1
nZ
′
≤γZ≤γ

)−1 1
nZ
′
≤γY

)
,

β̃2 (γ) =
(
Q̂2 (γ)

′ ( 1
nZ
′
>γZ>γ

)−1
Q̂2 (γ)

)−1 (
Q̂2 (γ)

′ ( 1
nZ
′
>γZ>γ

)−1 1
nZ
′
>γY

)
,

where Q̂1 (γ) = n−1
∑n

i=1
zix
′
i1(qi ≤ γ) and Q̂2 (γ) = n−1

∑n

i=1
zix
′
i1(qi > γ). The residual from this

equation is

ε̃i (γ) = yi − x′iβ̃1 (γ) 1(qi ≤ γ)− x′iβ̃2 (γ) 1(qi > γ).

The GMM estimators for β1 and β2 are

β̂1 (γ) =
(
Q̂1 (γ)

′
Ω̃−1

1 (γ) Q̂1 (γ)
)−1 (

Q̂1 (γ)
′
Ω̃−1

1 (γ) 1
nZ
′
≤γY

)
,

β̂2 (γ) =
(
Q̂2 (γ)

′
Ω̃−1

2 (γ) Q̂2 (γ)
)−1 (

Q̂2 (γ)
′
Ω̃−1

2 (γ) 1
nZ
′
>γY

)
,

where the weight matrices

Ω̃1 (γ) = 1
n

∑n
i=1 ziz

′
iε̃

2
i (γ) 1(qi ≤ γ), Ω̃2 (γ) = 1

n

∑n
i=1 ziz

′
iε̃

2
i (γ) 1(qi > γ).

The estimated covariance matrices for the GMM estimators are

V̂1 (γ) =
(
Q̂1 (γ)

′
Ω̃−1

1 (γ) Q̂1 (γ)
)−1

, V̂2 (γ) =
(
Q̂2 (γ)

′
Ω̃−1

2 (γ) Q̂2 (γ)
)−1

.

When H0 holds, δ = 0, and then the 2SLS estimator for β is

β̃ =
(
Q̂′
(

1
nZ
′Z
)−1

Q̂
)−1 (

Q̂′
(

1
nZ
′Z
)−1 1

nZ
′Y
)
,

where Q̂ = n−1
∑n

i=1
zix
′
i. Note here that the underlying assumption in this specification testing context

is E [ε|z] = 0, so that the 2SLS estimator can be applied. Correspondingly, the GMM estimator for β is

β̂ =
(
Q̂′Ω̃−1Q̂

)−1 (
Q̂′Ω̃−1 1

nZ
′Y
)
,

and the residual is

ε̂i = yi − x′iβ̂,
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where the weight matrix is

Ω̃ = 1
n

∑n
i=1 ziz

′
iε̃

2
i

with ε̃i = yi − x′iβ̃. The estimated covariance matrix for the GMM estimator is

V̂ =
(
Q̂′Ω̃−1Q̂

)−1

.

Wald-type Tests

Define

Wn(γ) =
(
V̂1 (γ) + V̂2 (γ)

)−1/2√
n
(
β̂1 (γ)− β̂2 (γ)

)
, γ ∈ Γ.

The Wald-type test statistic is a functional of Wn(·). Two test statistics are the most popular. The first is
the Kolmogorov-Smirnov sup-type statistic

Kω
n = supγ∈Γ ‖Wn(γ)‖ ,

and the second is the Cramér—von Mises average-type statistic

Cωn =
∫

Γ
‖Wn(γ)‖w(γ)dγ,

where w(γ) in Cωn is a known positive weight function with
∫

Γ
w(γ)dγ = 1. For example, w(τ) = 1/ |Γ| with

|Γ| being the length of Γ. But if we have some information on the locations where threshold effects are most

likely to occur, we can impose larger weights on the neighborhoods of such locations. The choice of the norm

‖·‖ is also an issue. The Euclidean norm ‖·‖2 is obviously natural, e.g., CH use (the square of) this norm.
Yu (2013b) suggests using the `1 norm in testing quantile threshold effects, and Bai (1996) suggests using

the `∞ norm in structural change tests.

The following theorem states the asymptotic distribution of a general continuous functional g(·) of Wn(·)
under the local alternative δn = n−1/2c. The corresponding test statistic is denoted as gωn .

Theorem 10 If δn = n−1/2c, E
[
‖x‖4

]
<∞, E[q4] <∞, E[ε4] and E

[
‖z‖4

]
<∞, then

gωn
d−→ gωc = g(W c),

where

W c(γ) = (V1 (γ) + V2 (γ))
−1/2

[
V1 (γ)Q1 (γ)

′
Ω1 (γ)

−1
Q1 (γ ∧ γ0)− V2 (γ)Q2 (γ)

′
Ω2 (γ)

−1
Q2 (γ ∨ γ0)

]
c

+ (V1 (γ) + V2 (γ))
−1/2

[
V1 (γ)Q1 (γ)

′
Ω1 (γ)

−1
S1 (γ)− V2 (γ)Q2 (γ)

′
Ω2 (γ)

−1
S2 (γ)

]
.

Proof. Under the local alternative δn = n−1/2c, Y = X≤γ0
(β + δn) + X>γ0

β + ε = Xβ + X≤γ0
δn + ε, so

that

β̃1 (γ) =
(
X ′≤γZ≤γ

(
Z ′≤γZ≤γ

)−1
Z ′≤γX≤γ

)−1 (
X ′≤γZ≤γ

(
Z ′≤γZ≤γ

)−1
Z ′≤γY

)
= β +Op(1)

1

n

∑n

i=1
zi [x′iδn1 (qi ≤ γ0 ∧ γ) + εi1 (qi ≤ γ)]

= β + op(1) uniformly in γ ∈ Γ.
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Similarly, β̃2 (γ) is uniformly consistent for β. As a result,

ε̃i (γ) = yi − x′iβ̃1 (γ) 1(qi ≤ γ)− x′iβ̃2 (γ) 1(qi > γ)

= x′iβ + x′iδn1(qi ≤ γ0) + εi − x′i (β + op(1))

= εi + op (‖xi‖) uniformly in γ ∈ Γ,

so that

Ω̃1 (γ) =
1

n

n∑
i=1

ziz
′
iε̃

2
i (γ) 1(qi ≤ γ)

=
1

n

n∑
i=1

ziz
′
i (εi + op (‖xi‖))2

1(qi ≤ γ)
p−→ Ω1 (γ)

uniformly in γ ∈ Γ by a standard argument. Similarly, Ω̃2 (γ)
p−→ Ω2 (γ) uniformly in γ ∈ Γ. Now,

√
n
(
β̂1 (γ)− β

)
=
[
Q̂1 (γ)

′
Ω̃1 (γ)

−1
Q̂1 (γ)

]−1
[
Q̂1 (γ)

′
Ω̃1 (γ)

−1 1√
n
Z ′≤γ

(
X≤γ0

δn + ε
)]
,

where Q̂1 (γ)
p−→ Q1 (γ), 1√

n
Z ′≤γX≤γ0

δn
p−→ Q1 (γ ∧ γ0) c uniformly in γ ∈ Γ, and 1√

n
Z ′≤γε S1(γ). Hence

√
n
(
β̂1 (γ)− β

)
 V1 (γ)Q1 (γ)

′
Ω1 (γ)

−1
[Q1 (γ ∧ γ0) c+ S1 (γ)] .

Similarly, √
n
(
β̂2 (γ)− β

)
 V2 (γ)Q2 (γ) Ω2 (γ)

−1
[Q2 (γ ∨ γ0) c+ S2 (γ)] .

From the arguments above and by the CMT, V̂1 (γ)
p−→ V1 (γ) and V̂2 (γ)

p−→ V2 (γ) uniformly in γ ∈ Γ.

Finally, Wn(γ)  W c(γ) as specified in the theorem, where the second part of W c(γ) is the process in

Theorem 4 of CH.

Score-type Tests

The score-type tests are based on

Tn (γ) =

[
n−1

n∑
i=1

(
zi1(qi ≤ γ)− Q̂1 (γ) V̂ Q̂′Ω̃−1zi

)(
zi1(qi ≤ γ)− Q̂1 (γ) V̂ Q̂′Ω̃−1zi

)′
ε̂2
i

]−1/2

·n−1/2

n∑
i=1

[
zi1(qi ≤ γ)− Q̂1 (γ) V̂ Q̂′Ω̃−1zi

]
ε̂i, γ ∈ Γ.

Note here that although Q̂1 (γ) V̂ Q̂′Ω̃−1n−1/2
∑n
i=1 ziε̂i = op(1), zi1(qi ≤ γ) is recentered by Q̂1 (γ) V̂ Q̂′Ω̃−1zi.

This is because the effect of β̂ will not disappear asymptotically so the asymptotic distribution of n−1/2
∑n
i=1 zi1(qi ≤

γ)ε̂i differs from n−1/2
∑n
i=1 zi1(qi ≤ γ)εi under H0. Recentering is to offset the effect of β̂. Since only β̂ is

used in the construction of Tn (·), this type of tests is constructed under H0 and only one GMM estimator

needs to be constructed. This significantly lightens the computation burden. Given Tn(·), we can similarly
construct the Kolmogorov-Smirnov sup-type statistic Ks

n and the Cramér—von Mises average-type statistic

Csn.

The following theorem states the asymptotic distribution of a general continuous functional g(·) of Tn(·)
under the local alternative δn = n−1/2c. The corresponding test statistic is denoted as gsn.
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Theorem 11 If δn = n−1/2c, E
[
‖x‖4

]
<∞, E

[
q4
]
<∞, E

[
ε4
]
and E

[
‖z‖4

]
<∞, then

gsn
d−→ gsc = g(T c),

where

T c(γ) = H(γ, γ)−1/2
{
S(γ) +

[
Q1 (γ ∧ γ0)−Q1 (γ)V Q′Ω−1Q1 (γ0)

]
c
}
.

Proof. As in the last theorem, we can show β̂
p−→ β, Ω̃

p−→ Ω , and V̂
p−→ V under the local alternative.

n−1/2
∑n
i=1 zi1(qi ≤ γ)ε̂i

= n−1/2
∑n
i=1 zi1(qi ≤ γ)

(
yi − x′iβ̂

)
= n−1/2

∑n
i=1 zi1(qi ≤ γ) (yi − x′iβ)− n−1

∑n
i=1 zix

′
i1(qi ≤ γ)

√
n
(
β̂ − β

)
= n−1/2

∑n
i=1 zi1(qi ≤ γ) (x′iδn1(qi ≤ γ0) + εi)− Q̂1 (γ)

√
n
(
β̂ − β

)
,

where n−1/2
∑n
i=1 zi1(qi ≤ γ)x′iδn1(qi ≤ γ0)

p−→ Q1 (γ ∧ γ0) c, Q̂1 (γ)
p−→ Q1 (γ) uniformly in γ ∈ Γ, and

n−1/2
∑n
i=1 zi1(qi ≤ γ)εi  S1 (γ). Next,

n−1/2
∑n

i=1
Q̂1 (γ) V̂ Q̂′Ω̃−1ziε̂i

= Q̂1 (γ)
(
Q̂′Ω̃−1Q̂

)−1

Q̂′Ω̃−1n−1/2
∑n

i=1
zi

(
−x′i(β̂ − β) + x′iδn1(qi ≤ γ0) + εi

)
= −Q̂1 (γ)

√
n
(
β̂ − β

)
+ Q̂1 (γ) V̂ Q̂′Ω̃−1

(
n−1

∑n

i=1
zix
′
i1(qi ≤ γ0)

)
c

+Q̂1 (γ) V̂ Q̂′Ω̃−1
(
n−1/2

∑n

i=1
ziεi

)
,

where the second term in the last equality converges in probability to Q1 (γ)V Q′Ω−1Q1 (γ0) c uniformly in

γ ∈ Γ, and n−1/2
∑n

i=1
ziεi

d−→ N (0,Ω). In summary,

n−1/2
n∑
i=1

[
zi1(qi ≤ γ)− Q̂1 (γ) V̂ Q̂′Ω̃−1zi

]
ε̂i

= n−1/2
n∑
i=1

[
zi1(qi ≤ γ)− Q̂1 (γ) V̂ Q̂′Ω̃−1zi

]
εi

+
[
Q1 (γ ∧ γ0)−Q1 (γ)V Q′Ω−1Q1 (γ0)

]
c+ op(1)

 S(γ) +
[
Q1 (γ ∧ γ0)−Q1 (γ)V Q′Ω−1Q1 (γ0)

]
c,

and it is not hard to show n−1
∑n

i=1

(
zi1(qi ≤ γ)− Q̂1 (γ) V̂ Q̂′Ω̃−1zi

)(
zi1(qi ≤ γ)− Q̂1 (γ) V̂ Q̂′Ω̃−1zi

)′
ε̂2
i

p−→
H(γ, γ) uniformly in γ ∈ Γ, so the results of the theorem follow.

H(γ1, γ2) = E
[(
zi1(qi ≤ γ1)−Q1 (γ1)V Q′Ω−1zi

) (
zi1(qi ≤ γ2)−Q1 (γ2)V Q′Ω−1zi

)′
ε2
i

]
.

To understand S(γ) in T c(γ), consider a simple case where x = (1, x′)′, q follows a uniform distribution

on [0, 1] and is independent of (z′, x′, ε)
′. In this case,

H(γ1, γ2) = (γ1 ∧ γ2) Ω− γ1γ2QV Q
′.

39



If dz = d, i.e., the model is just-identified, then

H(γ1, γ2) = E
[(
zi1(qi ≤ γ1)−Q1 (γ1)Q−1zi

) (
zi1(qi ≤ γ2)−Q1 (γ2)Q−1zi

)′
ε2
i

]
= Ω1 (γ1 ∧ γ2)−Q1 (γ1)Q−1Ω1 (γ2)− Ω1 (γ1)Q′−1Q1 (γ2)

′
+Q1 (γ1)Q−1ΩQ′−1Q1 (γ2)

′
,

and we can let, for γ ∈ Γ,

Tn (γ) =

[
n−1

n∑
i=1

(
zi1(qi ≤ γ)− Q̂1 (γ) Q̂−1zi

)(
zi1(qi ≤ γ)− Q̂1 (γ) Q̂−1zi

)′
ε̂2
i

]−1/2

·n−1/2

n∑
i=1

[
zi1(qi ≤ γ)− Q̂1 (γ) Q̂−1zi

]
ε̂i, γ ∈ Γ.

(36)

Combining these two cases, H(γ1, γ2) reduces to (γ1 ∧ γ2 − γ1γ2) Ω, where dz = d. In other words,

Ω−1/2S(γ) is a standard d-dimensional Brownian Bridge. Now, the local power is generated by [Q1 (γ ∧ γ0)−
Q1 (γ)V Q′Ω−1Q1 (γ0)]c = (γ ∧ γ0 − γγ0)Qc. Of course, the construction of Tn (γ) can be greatly simplified

in this simple case, e.g., let

Tn (γ) = Ω̃−1/2 · n−1/2
n∑
i=1

[zi1(qi ≤ γ)− γzi] ε̂i,

which converges to the standard d-dimensional Brownian Bridge. In linear regression, we need only replace

zi in all formula of (36) by xi.

Simulating Critical Values

The asymptotic distributions in the above two theorems are nonpivotal, but the simulation method in Hansen

(1996) can be extended to the present case. More specifically, let {ξ∗i }
n
i=1 be i.i.d. N(0, 1) random variables,

and set

W ∗n(γ) =
(
V̂1 (γ) + V̂2 (γ)

)−1/2√
n
(
β̂
∗
1 (γ)− β̂

∗
2 (γ)

)
, γ ∈ Γ,

and, for γ ∈ Γ,

T ∗n (γ) =

[
n−1

n∑
i=1

(
zi1(qi ≤ γ)− Q̂1 (γ) V̂ Q̂′Ω̃−1zi

)(
zi1(qi ≤ γ)− Q̂1 (γ) V̂ Q̂′Ω̃−1zi

)′
ε̂2
i

]−1/2

·n−1/2

n∑
i=1

[
zi1(qi ≤ γ)− Q̂1 (γ) V̂ Q̂′Ω̃−1zi

]
ε̂iξ
∗
i , γ ∈ Γ,

(37)

where β̂
∗
1 (γ) and β̂

∗
2 (γ) are similarly defined as β̂1 (γ) and β̂2 (γ) with the only difference being that yi is

replaced by ε̃i (γ) ξ∗i ; more specifically,

β̂
∗
1 (γ) =

(
Q̂1 (γ)

′
Ω̃−1

1 (γ) Q̂1 (γ)
)−1

(
Q̂1 (γ)

′
Ω̃−1

1 (γ)
1

n

n∑
i=1

zi1(qi ≤ γ)ε̃i (γ) ξ∗i

)
,

β̂
∗
2 (γ) =

(
Q̂2 (γ)

′
Ω̃−1

2 (γ) Q̂2 (γ)
)−1

(
Q̂2 (γ)

′
Ω̃−1

2 (γ)
1

n

n∑
i=1

zi1(qi > γ)ε̃i (γ) ξ∗i

)
.

Our test rejects H0 if gωn (g
s
n) is greater than the (1 − α)th conditional quantile of g(W ∗n(γ)) (g(T ∗n(γ))).

Equivalently, the p-value transformation can be employed. Take the score test as an example. Define

p∗n = 1 − F ∗n(gsn), and pn = 1 − F0 (gsn), where F ∗n is the conditional distribution of g(T ∗n(γ)) given the
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original data, and F0 is the asymptotic distribution of g(Tn(γ)) under the null. Our test rejects H0 if

p∗n ≤ α. By stochastic equicontinuity of the Tn(γ) process, we can replace Γ by finite grids with the distance

between adjacent grid points going to zero as n → ∞. A natural choice of the grids for Γ is the qi’s in Γ.

Also, the conditional distribution can be approximated by standard simulation techniques. More specifically,

the following procedure is used.

Step 1: generate
{
ξ∗ij
}n
i=1

be i.i.d. N(0, 1) random variables.

Step 2: set T j∗n (γl) as in (37), where {γl}
L
l=1 is a grid approximation of Γ. Note here that the same

{
ξ∗ij
}n
i=1

are used for all γl, l = 1, · · · , L.
Step 3: set gj∗n = g

(
T j∗n
)
.

Step 4: repeat Step 1-3 J times to generate
{
gj∗n
}J
j=1
.

Step 5: if pJ∗n = J−1
∑J
j=1 1

(
gj∗n ≥ gsn

)
≤ α, we reject H0; otherwise, accept H0.

It can be shown that p∗n = pn+op(1) under both the null and local alternative. Hence p∗n
d−→ pc = 1−F0 (gsc)

under the local alternative, and p∗n
d−→ U , the uniform distribution on [0, 1], under the null. The proof is

similar to that of Yu (2013b, 2016) and so it is omitted here.
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