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Abstract

A key part of decentralized consensus protocols is a procedure for random selection, which is

the source of the majority of miners cost and wasteful energy consumption in Bitcoin. We provide

a simple economic model for random selection mechanism and show that any PoW protocol with

natural desirable properties is outcome equivalent to the random selection mechanism used in

Bitcoin.
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1 Introduction

A key part of decentralized consensus protocols is a procedure for random selection. In Bitcoin

(Nakamoto, 2008), the ledger is periodically update by a randomly selected server in network. In

fact, the random selection is so central to the Bitcoin protocol that the servers that maintain Bitcoin

are called miners because a server who updates the ledger is said to have “mined a block” (a block

is a batch of transaction data).

One of Bitcoin’s central innovations is a method for verifiably selecting a random miner in a

decentralized manner. This entrails two central restrictions: (i) the system cannot rely on a trusted

randomization device, and (ii) any computer can join the network, implying that miner are not

identifiable. The random selection is achieved through the use of cryptography as follows: Each

miner assembles a block of transaction data, which includes a free-set field called nonce. The block

can be added to the ledger if applying a cryptographic hash function to the block yields a value

that is below a difficulty threshold. A miner that finds such a block is said to have mined a block.

Miners are rewarded financially when mining a block, and therefore compete to mine blocks.

Under the assumption that the cryptographic hash function is irreversible, each selection of a

nonce yields a mined block with a fixed probability. A miner’s probability of mining the next block

is proportional to the number of nonces attempted. Since each attempt requires calculation of the

hash function, the number of attempts is in turn proportional to the miner’s share of the total

computational power of the Bitcoin network. The difficulty threshold adjusts to keep the overall

average block mining rate constant. Bitcoin and similar systems are often called called Proof-of-

Work (PoW) protocols, as each miner increases his probability of being selected by executing costly

computations.

Bitcoin’s PoW protocol have been successful in establishing a reliable system, but there has

been much interest in replacing it. One reason is the high monetary and environmental cost of

wasteful computation. The work done by miners serves no purpose other than providing a random

selection. As the popularity and value of Bitcoin increased, more miners compete for the rewards.

Currently the total electricity used by miners exceeds that of some small countries, and the majority

of this consumption is spent on computing the hash in attempt to mine a block.

This note analyzes random selection as a game theoretic problem. This allows us to abstract

away from the particular protocol used in Bitcoin and consider general proof-of-work protocols.

We define three desirable properties of PoW protocols: anonymity, robustness to Sybil attacks

and robustness to merging. Anonymity states that the protocol discriminates between miners only

based on the computations they performed. Robustness to Sybil attacks ensures that it is never

beneficial for a miner to pretend to be a number of different miners. Robustness to merger states

that no group of miners can increase their joint probability of mining a block by joining forces and

becoming a single miner without performing more computations.

Our main result shows that any PoW protocol with these properties is outcome equivalent to
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the random selection used in Bitcoin. More precisely, each miner is selected with a probability

that is proportional to the number of computations she performed. This result is driven only by

game-theoretic constraints and not by constraints on computations underlying the protocol. Thus,

in order to improve upon the Bitcoin PoW mechanism it is necessary to use a different form of

decentralization that violates on of the properties we introduced.

The result has drastic implications for the design of decentralized cryptocurrencies and the

plethora of alternative blockchain protocols that propose different cryptographic methods to im-

prove on the PoW mechanism of Bitcoin.1 Such improvements cannot be obtained only from a

change in the cryptographic method while maintaining anonymity, robustness to Sybil attacks and

merging. In order for alternatives such as Proof-of-Stake to provide better performance these must

be able to identify miners (violate anonymity), or restrict the entry of unidentified miners (which

allows the protocol to violate robustness to Sybil attacks), or provide the miners with incentives to

merge and therefore limit the decentralization of the system.

This note is structured as follows: Section 2 defines a random selection mechanisms based

on investment levels (i.e. the number of computations performed by each miner) and provides a

characterization of all random selection mechanisms that are anonymous and robust to Sybil attakcs

and merging. Section 3 makes the connection between random selection based on computational

tasks and our definition of random selection mechanisms. We conclude in Section 4 and comment

on how Proof-of-Stake can allow other forms of random selection by violating our axioms.

2 Random Selection Mechanisms

Denote by ∆n a random selection from the set of n agents ∆n =
{
z ∈ Rn

+ :
∑n

i=1 zi = 1
}
. We

furthermore denote by N = {1, . . . , n} the set of agents and by i a typical agent. We begin by

introducing the main object of interest in our study – the random selection mechanism:

Definition 1 (Random Selection Mechanism). A random selection mechanism p is described by

a family of functions pn : Rn
+ → ∆n indexed by n ∈ N such that the probability with which agent

i ∈ N is selected at the investment profile x = (x1, . . . , xn) equals

pni (x1, . . . , xn),

which is non-decreasing in xi.

In the context of Bitcoin, random selection is achieved by picking the agent who is first able to

produce a block with a sufficiently low hash value. The number of costly computations xi agent i

is willing to invest in mining this block is mapped to a probability of being the first to compute

1As of February 2019, Wikipedia lists more than 20 different PoW cryptocurrencies, see table in https://en.

wikipedia.org/wiki/Proof-of-work_system.
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such a hash and thus being selected. We will explain in Section 3 in greater detail how block

mining in Bitcoin and other proof of work based crypto-currencies are a special case of a random

selection mechanism. Conceptually, the abstraction to selection mechanisms is useful as it allows

us to analyze the implication of economic constraints on decentralized systems like Bitcoin without

the need to model the cryptographic and computational details.

The first constraint we impose is anonymity. It states that every agent is treated the same by the

mechanism, i.e. if two agents exchange their identities they are still treated the same. For example

in the Bitcoin protocol all miners are treated the same, i.e. they all face the same requirement to

be selected to mine the next block.

Axiom 1 (Anonymity). A selection mechanism is anonymous if it is invariant under permutations,

i.e. for every n and every permutation π : Rn
+ → Rn

+ it satisfies π(pn(x)) = pn(π(x)).

For notational simplicity we will state our other axioms for anonymous mechanisms.

Axiom 2 (Robustness to Sybil Attacks). An anonymous random selection mechanism is robust to

Sybil attacks if for every x ∈ Rn
+ and every y ∈ Rk

+ with
∑k

j=1 yj = x1

pn1
(
x1, . . . , xn

)
≥

k∑

j=1

pn+k−1
j

(
y1, . . . , yk, x2, x3, . . . , xn

)
.

Thus, robustness to Sybil attacks states that the selection probability of agent 1 in a situation

with n agents is weakly less than the sum of the selection probabilities of agent 1 and 2 in an n+ 1

agent situation where agent 1’s total investments are split between the first two agents. Intuitively,

this restriction ensures that no agent can pretend to be a group of different agents and increase his

winning probability without investing more.

Axiom 3 (Robust to Centralization). An anonymous random selection mechanism is robust to

centralization if for every x ∈ Rn
+ and every y ∈ Rk

+ with
∑k

j=1 yj = x1

pn1
(
x1, . . . , xn

)
≤

k∑

j=1

pn+k−1
j

(
y1, . . . , yk, x2, x3, . . . , xn

)
.

Robustness to centralization imposes the complementary requirement to robustness to Sybil at-

tacks. No group of agents can merge and increase their joint winning probability without investing

more. A mechanism which is not robust to centralization will, by definition, provide some agents

with incentives to merge as agents with larger investments have a relatively higher winning proba-

bility. This might lead such a selection mechanism to be, in the long-run, controlled by relatively

few agents which in some context (like cryptocurrencies) is non-desirable as it increases the risk of

attacks and manipulation.
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Proposition 1. A random selection mechanism p is anonymous, robust to Sybil attacks, and robust

to centralization if and only if

pni (x) =
xi∑n
j=1 xj

. (1)

Proof. We begin by showing the axioms imply the functional form (1) in the case where the invest-

ment of each agent is rational x ∈ Qn
+. Consider an arbitrary vector of investments x ∈ Qn

+ and

w.l.o.g assume that all investments are expressed with respect to a common denominator b ∈ N,

i.e. there exitst a ∈ Nn such that xi = ai/b. We begin by splitting the first agent into a1 agents

each of which makes an investment of 1/b. As a consequence of the robustness to Sybil attacks

and centralization it follows that the joint winning probability of the first a1 agents after this split

equals the original winning probability of the first agent

pn1 (x) =

a1∑

j=1

pn+a1−1
j

(
1

b
, . . . ,

1

b
,
a2
b
, . . . ,

an
b

)
.

In the next step we merge the last n−1 agents into a single agent. Again by the robustness to Sybil

attacks and centralization the winning probability of the last agent in the new situation equals the

joint winning probability of the last n− 1 agents in the old situation. As the winning probabilities

sum up to 1 the joint winning probability of the first a1− 1 agents remains unaffected and we have

that

pn1 (x) =

a1∑

j=1

pa1+1
j

(
1

b
, . . . ,

1

b
,

∑n
i=2 ai
b

)
.

In the next step we split the a + 1 agent into
∑n

i=2 ai agents each investing 1
b . Again, by the

robustness to Sybil attacks and centralization this implies that

pn1 (x) =

a1∑

j=1

p
|a|
j

(
1

b
, . . . ,

1

b

)
,

where |a| = ∑n
i=1 ai. It follows from anonymity that each of the agents wins with equal probability

of 1/|a|, and thus

pn1 (x) =
a1
|a| =

a1/b

|a|/b =
x1∑n
j=1 xj

.

To extend this result from Qn
+ to Rn

+ we first show that the result extends to vectors where the

first coordinate is chosen from R+ instead of Q+. Consider an arbitrary x−1 ∈ Qn−1
+ and x1 ∈ R+.

Choose two sequences wr, vr ∈ Q+ such that wr converges to x1 from above and vr converges to

x1 from below when r →∞. By monotonicity we have that

vr

vr +
∑n

j=2 xj
≤ pn1 (x1, x−1) ≤

wr

wr +
∑n

j=2 xj
.
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As the lower bound and the upper bound converge to the same limit it follows that pn1 (x) = x1
|x|

for all x with x1 ∈ R+ and x−1 ∈ Qn−1
+ . By anonymity p22(x) = x2

|x| for all x with x−2 ∈ Qn−1
+ and

x2 ∈ R+. Thus, for x−2 ∈ Qn−1
+ and x2 ∈ R+ we have that

pn1 (x) = 1− pn2 (x)−
∑

k=3n

pnk(x) = 1− x2
|x| −

n∑

k=3

x2
|x| =

x1
|x| .

Applying the above argument with an upper and lower bound again yields that for all x with

(x1, x2) ∈ R2
+ and (x3, . . . , xn) ∈ Qn−2

+ we have that pn1 (x) = x1
|x| . Applying the same argument

sequentially for each agent k ≥ 3 yields that pn1 (x) = x1
|x| for all x ∈ Rn

+. By permuting the role

of agent 1 and agent i and anonymity we have that pni (x) = xi∑n
j=1 xj

for all i ∈ {1, .., n} and all

x ∈ Rn
+.

We are left to verify that the functional form (1) satisfies our assumptions. Clearly (1) is

monotonic and anonymous. Furthermore, we have that for every y ∈ Rk
+ with |y| = x1

k∑

j=1

pn+k−1
j

(
y1, . . . , yk, x2, x3, . . . , xn

)
=

k∑

j=1

yj
|y|+∑n

i=2 xi
=

x1∑n
i=1 xi

= pn1 (x) ,

which shows that the functional form (1) is robust to Sybil attacks and centralization and completes

the proof.

Equation 1 states that the probability with which an agent is selected is proportional to the

share of computations she performed. For example, it describes the probability that a miner is

selected to mine the next block in Bitcoin: Miners attempt to mine the next Bitcoin block once

the previous block was published (we abstract from some technical details and assume blocks are

transmitted instantaneously to all miners) by attempting different values of a nonce and computing

their hashes. Under common cryptographic assumptions, no miner can do better than guess a

random nonce and each nonce entails the same probability of being selected (to mine the next

block). Thus, the probability with which an agent is selected in the Bitcoin protocol equals the

number of hashes she computed relative to the total number of hashes computed before the next

block is mined.

The proof of Proposition 1 shows that the monotonicity of the selection mechanism is not

necessary if one restricts attention to the case where investments are rational numbers. In any

practical application where quantities invested can be finitely encoded the restriction to rational

number is vacuously satisfied and thus the monotonicity assumption plays no role.
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3 Mining in the Bitcoin and other Proof of Work Protocols

This section establishes the link between random selection mechanisms (analyzed in Section 2) and

cryptographic protocols for randomly selecting an agent based upon the computations performed by

each agent, i.e. proof of work (PoW) based protocols. To ease the exposition we sometimes follow

the language commonly used in the context of Bitcoin and refer to agents as “miners”, and being

selected as “mining a block”. Throughout we focus on the economic incentives — cost and benefits

— of mining a block intentionally abstracting away from many computational and cryptographic

details.

Consider a situation where n agents (miners), indexed by i ∈ N , compete to be selected to mine

the next block. Each agent assigns a value of 1 to being selected to mine the next block.2 Denote

by S the set of strategies available to each miner. A strategy si ∈ S describes a complete contingent

plan of what the miner will do until the next block is mined. For example, which computations

miner i will perform and which hardware she will use to perform them and so on. We denote by

γi c(si) ≥ 0

the expected cost miner i incurs when using the strategy si. The cost could be energy cost associated

with the computations performed according to si, but also the cost of renting computational power

from a cloud service such as Amazon AWS. Through the parameter γi > 0 we explicitly allow

the miners to have different costs to account for the fact that they might have access to different

hardware and might face different energy prices.

Consider a family of functions φn : Sn → ∆n such that for each n ∈ N and each vector of

strategies s ∈ Sn the probability with which miner i is selected equals

φni (s1, . . . , sn) .

We assume that there exists a recommended strategy σ : R+ → S that recommends for each budget

of computations x an agent is willing to perform on the next block a strategy that is strictly optimal

independent of the strategies used by other agents, i.e. for all xi ∈ R+, i ∈ N, s−i ∈ Sn−1 and si ∈ S
such that c(si) ≤ xi

φ(σ(x), s−i) > φ(si, s−i) .

Definition 2 (Proof of Work Protocol). We call a tuple (S, c, f, σ) a Proof of Work protocol.

A few properties of the PoW protocol are important for maintaining a reliable decentralized

system. To prevent dependency on other systems, the PoW selection should not rely on an external

source of identity verification. To maintain decentralization, the PoW should allow any potential

2This is without loss of generality as we can rescale the agents cost and benefits by dividing through the value
this agent assigns to mining a block.
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miner to be able to enter and participate in the random selection. In particular, new miners should

be free to join, and small miners or new miners should not be at a disadvantage. These motivate

the following axioms, which are the counterparts of the axioms of Section 2.

As stated above, in a decentralized PoW protocol miners are anonymous and there is no registry

of miners identities. The selection function φ can distinguish between players only through the

results of their computation, which are fully determined by their strategies. Therefore, φ depends

only on the strategies chosen by players and not their identities:

Axiom 4 (Anonymity). A PoW protocol is anonymous if φ is invariant under permutations, i.e.

for every n and every permutation π : Rn
+ → Rn

+ it satisfies π(φn(x)) = φn(π(x)) .

The lack of identifiable identities also implies that the selection mechanism cannot know whether

multiple players are controlled by a single entity. Allowing any potential participant to join without

authentication allows existing players to participate under many different identities, and potentially

engage in Sybil attacks. We therefore ask that the PoW protocol is robust to Sybil attacks:

Axiom 5 (Robustness to Sybil Attacks). An anonymous PoW protocol is robust to Sybil attacks

if for every s ∈ Sn and every s̃ ∈ Sk with
∑k

j=1 c(s̃j) = c(s1)

φn1
(
s1, . . . , sn

)
≥

k∑

j=1

φn+k−1
j

(
s̃1, . . . , s̃k, s2, s3, . . . , sn

)
.

The security of the blockchain can be jeopardized when a single miner controls a large fraction

of the computational power in the network. Nakamoto (2008) argues that the Bitcoin is secure as

long as no miners holds more than half of the mining power in the network (a miner with more than

half of the total mining power can reverse transactions). We therefore ask that the PoW protocol

does not create incentives for miner consolidation.

Axiom 6 (Robust to Centralization). An anonymous PoW protocol is robust to centralization if

for every s ∈ Sn and every s̃ ∈ Sk with
∑k

j=1 c(s̃j) = c(s1)

φn1
(
s1, . . . , sn

)
≤

k∑

j=1

φn+k−1
j

(
s̃1, . . . , s̃k, s2, s3, . . . , sn

)
.

The above axioms describe properties of the PoW protocol. Next, we describe how miners will

behave in such a protocol. An equilibrium of the game played between n miners is a strategy profile

s ∈ Sn such that no miner i can benefit from deviating to another strategy s′i ∈ S

φni (si, s−i)− γi c(si) ≥ φni (s′i, s−i)− γi c(s′i) .

Our main theorem below shows that, maybe surprisingly, our previous axioms are enough to
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uniquely pin down the winning probability of each miner only as a function of the number of

computations each miner performed:

Theorem 1. Consider a PoW protocol that is anonymous, robust to Sybil attacks and centralization

then in any equilibrium s = (s1, . . . , sn) miner i mines the next block with probability

c(si)∑n
j=1 c(sj)

.

Proof. Fix an anonymous PoW protocol (S, c, f, σ) that is robust to Sybil attacks and centralization.

For every n define pn : Rn
+ → ∆n by pn(x) = φ(σ(x1), . . . , σ(x2)). Because a larger xi allows σ(xi)

to select among more strategies, p(x) is non-decreasing in xi and thus p is a selection mechanism

according to Definition 1. This mechanism, it is anonymous as φ is invariant. Furthermore, as the

PoW protocol is robust to Sybil attacks we have that for every x ∈ Rn
+ and every y ∈ Rk

+ with∑k
j=1 yj = x1

pn1 (x) = φn1 (σ(x1), . . . , σn(xn)) ≥
k∑

j=1

φn+k−1
j

(
σ(y1), . . . , σ(yk), σ(x2), σ(x3), . . . , σ(xn)

)

=
k∑

j=1

pn+k−1
j

(
y1, . . . , yk, x2, x3, . . . , xn

)
.

Thus, the selection mechanism p is robust to Sybil attacks. The same argument establishes that p

is robust to centralization. Thus, by Proposition 1 we have that

φni (σ(x1), . . . , σ(xn)) = pni (x) =
xi∑n
j=1 xj

. (2)

Now, consider an equilibrium s ∈ Sn, by the strict optimality of σ it follows that si = σ(c(si)).

Plugging into (2) yields that c(si)∑n
j=1 c(sj)

and completes the proof.

This result carries a few implications. First, our results characterize the random selection

mechanism regardless of the computational tasks and the miners strategy space. This implies that

a different form of competition between miners cannot arise from a different specification of the

computational tasks (for example using a different hash function). Other PoW protocols yield

the same economic competition and computational expenditure. For example, the exactly same

selection mechanism arises in a PoW protocol where the system has access to synchronized clocks

and selects the miner that produces the lowest hash within a prespecified time frame (e.g. every 10

minutes). Our model intentionally abstracted away from many practical frictions that restrict real-

world PoW protocols, such as the lack of access to a synchronized clock, potentially asynchronous

ledgers among the miners, etc. As we derived our impossibility theorem without imposing any

such friction it follows that relaxing any of these practical restrictions through system design or
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cryptographic improvements of the protocol will not lead to a protocol that improves upon Bitcoin

in terms of energy spent on mining.

Second, while it is not surprising that miners will spend more resources in attempt to increases

their chances, the theorem gives a specific function form for the competition between miners. The

winning probability of a miner depends only on his his investment and the aggregate investment.

These determine the equilibrium investment level and the wasteful expenditure on mining. Thus,

reducing this wasteful expenditure in any PoW protocol requires violating one of our axioms.

4 Conclusion

We hope that our results will be helpful in clarifying the trade-offs between PoW systems and

alternative designs. Proof-of-Stake systems violate our anonymity axiom, while maintaining a

weaker version of anonymity. Our anonymity axiom is strong, it requires that all miners are

treated equally regardless of their history within the system. Proof-of-Stake make use of the miner

history within the system (and potentially disadvantages new entrants without a history), violating

our assumptions and thus enabling different random selection mechanisms.

We think that analyzing the set of selection mechanisms that are achievable under weaker

anonymity and robustness requirements is an important question for future research which could

help guide the design of future crypto-currencies. We hope that the formalism we introduced in

this paper will be helpful in this endeavour.
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