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Abstract

Commonly used tests to assess evidence for the absence of autocorrelation
in a univariate time series or serial cross-correlation between time series rely on
procedures whose validity holds for i.i.d. data. When the series are not i.i.d., the
size of correlogram and cumulative Ljung-Box tests can be significantly distorted.
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hidden dependence and non-stationarities involving heteroskedasticity, thereby
uncoupling these tests from limiting assumptions that reduce their applicability
in empirical work. To enhance the Ljung-Box test for non-i.i.d. data a new
cumulative test is introduced. Asymptotic size of these tests is unaffected by
hidden dependence and heteroskedasticity in the series. Related extensions are
provided for testing cross-correlation at various lags in bivariate time series. Tests
for the i.i.d. property of a time series are also developed. An extensive Monte
Carlo study confirms good performance in both size and power for the new tests.
Applications to real data reveal that standard tests frequently produce spurious
evidence of serial correlation.
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1 Introduction

Temporal dependence is one of the primary characteristics of economic and financial

data that are measured sequentially over time. In studying such data, estimation of

and inference on the serial correlation ρk = corr(xt, xt−k) is a common first step in the

analysis of time series data {xt} or regression residuals. For a sample x1, ..., xn, esti-

mation of ρk by the sample serial correlation ρ̂k for various lags k = 1, 2, ... and testing

whether it is significant dates back to the early years of the twentieth century, primar-

ily to Yule (1926) who introduced the terminology serial correlation. Yule highlighted

the need to understand the degree of time persistence in the data prior to applying

correlation/regression analysis and characterized this phenomenon as the ‘time cor-

relation problem’ in his earlier Royal Society address (Yule, 1921). To aid analysis,

Yule introduced the sample serial correlation ρ̂k along with the standard confidence

band ±zα/2/
√
n for testing its significance, H0 : ρk = 0 under the simplifying assump-

tion that the data are identically and independently distributed (i.i.d.), bringing the

problem into the existing framework of the Pearson correlation coefficient.

Bartlett (1946) provided a major step forward in a more general analysis by de-

riving an asymptotic formula, now known as Bartlett’s formula, for cov(ρ̂j, ρ̂k) for a

stationary linear process {xt} driven by i.i.d. errors. The joint asymptotic distribution

of ρ̂ = (ρ̂1, ..., ρ̂m)′ was given by Anderson and Walker (1964) and was found to be

normal with variance-covariance matrix n−1W where the elements of W are given by

Bartlett’s formula. An important aspect of this formula is that the asymptotic variance

matrix depends only on the autocorrelations ρj themselves and not fourth moments,

as is the case for sample autocovariances.1 Hannan and Hyde (1972) relaxed the i.i.d.

assumption on the errors and showed that asymptotic normality remains valid under

some additional regularity assumptions on the noise.

Besides testing for significant serial correlation at one lag k, it is common to test

the cumulative hypothesis H0 : ρ1 = ... = ρm = 0 using the Portmanteau statistics of

Box and Pierce (1970) and Ljung and Box (1978). The Box-Pierce statistic is based

on the observation that the matrix W in the asymptotic distribution of ρ̂ reduces to

the identity matrix under the i.i.d. assumption2 on xt, while the Ljung-Box statistic

entails a slightly better performance in finite samples. They find, that for i.i.d and

normally distributed data, the cumulative statistics have a χ2
m limit distribution when

1The asymptotic variance of ρ̂h, for instance, is n−1
∑∞

j=1(ρh+j+ρh−j−2ρhρj)
2, a simple derivation

of which is given in Phillips and Solo (1992).
2In this case var(ρ̂h) = n−1

∑∞
j=1(ρh+j + ρh−j − 2ρhρj)

2 = n−1 as the only non-zero element in
the sum occurs when j = h.
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applied to raw data and a χ2
m−p−q limit distribution when used for residuals of fitted

ARMA(p, q) models. They indicated that the normality assumption is not essential for

these results.

Concern that these standard tests of H0 : ρk = 0 and H0 : ρ1 = ... = ρm = 0

are not suitable under heteroskedasticity or non-independence of uncorrelated noise

xt was highlighted by Granger and Andersen (1978) and by Taylor (1984). The first

paper warned against the use of standard tests in bilinear models and the second

raised concerns for testing in models where the {xt} are heteroskedastic. Taylor (1984)

provided a modified standard error for ρ̂k, resulting in a corrected confidence band and

a corrected t-statistic t̃k, given in (4) below, as well as a corrected cumulative statistic,

given in (11).

Since then, various authors have modified the statistic tk and/or its cumulative

portmanteau versions in similar ways to Taylor (1984) so that they are applicable for

testing uncorrelated non-i.i.d. noise in which the covariance matrix W is diagonal

but not the identity – among others, see Diebold (1986), Lo and MacKinlay (1989),

Robinson (1991), Francq and Zaköıan (2009), Kokoszka and Politis (2011).

However, the matrixW is not always diagonal. Settings with economic and financial

data in which a non-diagonal W is relevant for uncorrelated data xt appear in Cumbpy

and Huizinga (1992), Guo and Phillips (2001), Lobato, Nankervis and Savin (2002)

and Francq, Roy and Zaköıan (2005). These papers typically assume that {xt} is

stationary and has a martingale difference structure or is strongly mixing. Guo and

Phillips (2001) estimated the covariance matrix W by its empirical counterpart, while

the other papers used nonparametric procedures. Taking a different approach Romano

and Thombs (1996) and Horowitz, Lobato and Savin (2006) used bootstrap methods to

obtain suitable critical values for standard test procedures under the null assumption

that the uncorrelated data {xt} are strongly mixing.

Similar issues arise in testing cross correlation in bivariate time series {xt, yt}, where

interest and early attempts date back over a century, for instance to Hooker (1901).

Unsurprisingly, the original work on estimation and testing for zero cross-correlation

ρxy,k = corr(xt, yt−k) relied again on sample cross-correlations based on the theory of

the Pearson correlation coefficient. Later studies such as Haugh (1976) and Haugh and

Box (1977) examined testing for zero cross-correlation at an individual lag and using

cumulative versions of the statistics. For the same reason as in the univariate case,

tests for the absence of cross-correlation may be invalidated when the time series are

not i.i.d. Corrected versions of the statistics have been examined (e.g., Kyriazidou,

1998, that extend to the bivariate case the univariate results of Cumby and Huizinga,
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1992). However, the assumptions used are restrictive, imposing additional technical

conditions and excluding unconditional heteroskedasticity.

Test statistics based on the correlogram either with the standard confidence band

±zα/2/
√
n suggested by Yule (1926) or that based on Bartlett’s (1946) formula or

the cumulative statistics of Box and Pierce (1970) and Ljung and Box (1978) are all

still in extensive use today and are present in most statistical packages. Despite the

literature addressing the complications of departures from i.i.d. noise, problems with

finite sample performance and complexity of implementation seem to have prevented

replacement of these methods with procedures that extend applicability to more general

settings. Similarly, cross-correlogram tests are usually implemented with standard

confidence bands and the cumulative Haugh-Box test for cross-correlation is rarely

reported in applications.

The goal of the present paper is to develop a formulation and method of implemen-

tation that will enable testing with both univariate and bivariate time series that is

robust to multiple forms of heteroskedastic and dependence departures from i.i.d noise.

Our approach is based on extending the original corrected test by Taylor (1984) for the

absence of correlation at an individual lag and a corresponding cumulative portman-

teau test, together with analogous testing procedures for the bivariate case. Taylor’s

test for correlation at a specific lag and our cumulative test are both easy to apply and

demonstrate good size control for a large class of uncorrelated data covering martingale

difference noise of unspecified form with time varying unconditional variance.

The rest of the paper is organized as follows. Section 2 outlines the model, intro-

duces the tests and presents limit theory for the case of univariate time series testing.

Section 3 develops corresponding tests for zero cross-correlation in the bivariate case,

a problem that has attracted much less attention in the literature in spite of its links

to Granger causality testing. Section 4 considers direct testing of the hypothesis that a

time series is i.i.d. Various tests of this hypothesis have been used in the literature and

often relate to testing the random walk hypothesis using variate differences. Standard

tests based on the squared time series have been proposed by McLeod and Li (1983)

and Campbell, Lo and MacKinlay (1997, Chapter 2) provide for a brief summary. We

suggest testing procedures (both cumulative and individual lag tests) that combine the

tests on correlation of the data in levels with absolutes or squared values. An exten-

sive Monte Carlo study was conducted and the results are presented in Section 5 with

recommended guidelines for practical implementation of the various tests. Section 6

reports an empirical application of test procedures to financial data. The paper is ac-

companied by an Online Supplement (Dalla et al., 2019) consisting of two documents.
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The first (I) contains proofs of all the results in the paper. The second (II) reports the

findings of the full Monte Carlo study.

2 Tests for zero correlation

While stationarity is commonly assumed, it is not necessary for testing absence of

correlation in a time series. Indeed, for a series {xt} of uncorrelated random variables

the condition that the autocorrelation function (ACF) ρk = corr(xt, xt−k) = 0 at lag

k = 1, 2, .... is well defined for all t with or without an assumption of stationarity. Its

empirical version, the sample autocorrelation ρ̂k at the lag k 6= 0, based on observed

data x1, ..., xn,

ρ̂k =

∑n
t=k+1(xt − x̄)(xt−k − x̄)∑n

t=1(xt − x̄)2
, x̄ =

1

n

n∑
t=1

xt (1)

remains a valid tool for testing for zero correlation at lag k. Such testing does not

require assumptions of independence or stationarity of {xt}, thereby enabling a more

general approach to testing for white noise uncorrelatedness in data.

There is, of course, a large literature on estimation of the autocorrelation function

ρk by ρ̂k for stationary times series {xt}. The asymptotic distribution of the sample

autocorrelations (ρ̂1, ..., ρ̂m)′ for a stationary linear process was given by Anderson and

Walker (1964) and Hannan and Hyde (1972) and has the form

√
n(ρ̂1 − ρ1, ..., ρ̂m − ρm)→D N (0,W ) (2)

where W is a matrix whose elements are given by Bartlett’s formula. If the {xt} are

i.i.d. random variables, the matrix W reverts to the identity matrix Im and (2) reduces

to the standard asymptotic result

√
n(ρ̂1, ..., ρ̂m)→D N (0, Im) (3)

used for testing H0 : ρk = 0 at lag k, just as in Yule (1926), with the confidence band

±zα/2/
√
n for zero correlation at significance level α. Methods based on this procedure

are still heavily used and came into prominence following the influential work of Box

and Jenkins (1970).

When {xt} is uncorrelated but not i.i.d. the standard method for testing zero serial

correlation based on the asymptotic distribution in (3) generally fails. This was first

noted by Granger and Andersen (1978) and Taylor (1984). Taylor (1984) suggested

5



correcting the standard error of ρ̂k, leading to the modified t-statistic

t̃k =

∑n
t=k+1 etk

(
∑n

t=k+1 e
2
tk)

1/2
, etk = (xt − x̄)(xt−k − x̄), (4)

so that in testing H0 the sample autocorrelation ρ̂k should be corrected for its variance

t̃k = ρ̂k ĉk →D N (0, 1), ĉk =
t̃k
ρ̂k
. (5)

This correction leads to a ±zα/2/ĉk confidence band for zero correlation at lag k.

Taylor showed that ĉ−2k is an unbiased estimate of the variance of ρ̂k when xt has

symmetric density but he did not prove the asymptotic normality given in (5). He also

suggested a corrected cumulative test, as given in (11) below.

The t-statistic t̃k takes the form of a self-normalizing sum. Our aim is to establish

asymptotic normality for t̃k as well as corresponding cumulative tests in a general

setting where the observed data sample x1, ..., xn is a series of uncorrelated random

variables that may be dependent and non-stationary. We seek an approach that does

not require verification of additional technical assumptions and allows the applied

researcher to be somewhat agnostic about the structure and generating mechanism of

the uncorrelated data xt.

In this paper we assume that xt satisfies

xt = µ+ htεt, (6)

where {εt} is a stationary ergodic martingale difference (m.d.) sequence with respect

to some σ-field Ft with E[εt|Ft−1] = 0, Eε4t < ∞, µ = Ext and ht is a sequence of

non-negative real numbers for which, as n→∞,

max
1≤t≤n

h4t = o(
n∑
t=1

h4t ),
n∑
t=2

(ht − ht−1)4 = o(
n∑
t=1

h4t ). (7)

Then, εt allows for conditional heteroskedasticity via E[ε2t |Ft−1] and ht introduces

unconditional heterogeneity over t. For any k 6= 0, we have

corr(xt, xt−k) = corr(εt, εt−k) for all t.

The statistics
√
n ρ̂k, t̃k and their cumulative versions have been examined by various

authors either for raw data or for residuals from some estimated model. In either case,
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it is common to assume that {xt} is as in (6) but stronger assumptions on (ht, εt) are

imposed. Most authors assume that ht = 1 and εt is an m.d. noise of a specific type.

A few authors allow ht to be deterministic and to vary with t, but require {εt} to be

i.i.d. so that the xt remain independent. An exception is Lo and MacKinlay (1989)

where ht is permitted to be time-varying and mixing conditions are imposed on {εt}
but with restrictive moment conditions that exclude, for example, GARCH data with

skewed innovations.

The following result establishes the asymptotic distribution of the t-statistic t̃k

given in (4).

Theorem 2.1. Suppose that x1, ..., xn is a sample from a sequence given in (6) and

the ht satisfy (7). Then for any fixed integer k 6= 0, as n→∞,

t̃k →D N (0, 1). (8)

Moreover, for m = 1, 2, ...,

(t̃1, ..., t̃m)→D N (0, R) (9)

where R = (rjk) is an m×m matrix with elements

rjk = corr(ε1ε1−j, ε1ε1−k), j, k = 1, ...,m.

Box and Pierce (1970) and Ljung and Box (1978) suggested the well-known cumu-

lative statistics

BPm = n
m∑
k=1

ρ̂ 2
k , LBm = (n+ 2)n

m∑
k=1

ρ̂ 2
k

n− k
(10)

for portmanteau testing of the joint null hypothesis H0 : ρ1 = ... = ρm = 0. These

tests are based on the property (3) of the sample ACF ρ̂k’s showing that under H0 the

tests are asymptotically χ2
m distributed.

When {xt} is uncorrelated but not i.i.d. and (3) fails these cumulative tests produce

size distortions in testing. In turn, Taylor (1984) suggested the corrected-for-variance

cumulative statistic
m∑
k=1

t̃ 2
k (11)

for testing H0 : ρ1 = ... = ρm = 0. This formulation corresponds to the diagonal

matrix R = I in (9) which holds only when the variables ωj = ε1ε1−j are uncorrelated.
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Setting t̃ = (t̃1, ..., t̃m)′, result (9) of Theorem 2.1 implies that

t̃ ′R−1 t̃→D χ2
m, t̃ ′ R̂−1 t̃→D χ2

m, (12)

for any consistent estimate R̂→p R of R. Recall that the matrix R is positive definite.

As discussed in the Introduction, various authors have examined statistics (4) and

(11). However, as noted by Guo and Phillips (2001) (see also Cumbpy and Huizinga

(1992), Lobato et al. (2002) and Francq et al. (2005)) who arrived at (12) under

different assumptions on the data generating process {xt}, there are sequences {xt}
that are uncorrelated but not independent for which the matrix R is not diagonal

and therefore the cumulative statistic (11) is invalid. Guo and Phillips (2001) use a

similar estimate R̂ of R to our estimate given in (13) below. Cumbpy and Huizinga

(1992) and Lobato et al. (2002) use kernel nonparametric methods and Francq et al.

(2005) introduce an autoregressive approximation method to estimate W and R. These

authors all assume stationarity of {xt}, thereby excluding unconditional heterogeneity.

We will estimate R by R̂ = (r̂jk) where r̂jk are sample cross-correlations of the

variables (etj, t = 1, ..., n) and (etk, t = 1, ..., n):

r̂jk =

∑n
t=max(j,k)+1 etjetk

(
∑n

t=max(j,k)+1 e
2
tj)

1/2(
∑n

t=max(j,k)+1 e
2
tk)

1/2
. (13)

To improve the finite sample performance of the cumulative test, we use the thresholded

version R̂∗ = (r̂ ∗jk) of R̂ where

r̂ ∗jk = r̂jkI(|τjk| > λ) with λ = 1.96 (14)

where τjk is a self-normalized t-type statistic

τjk =

∑n
t=max(j,k)+1 etjetk

(
∑n

t=max(j,k)+1 e
2
tje

2
tk)

1/2
. (15)

Notice that R̂∗ is the sample analogue of the variance-covariance matrix of t̃ for which

we threshold the off-diagonal elements by checking at the 5% significance level whether

they are significant. This is a simpler approach to that undertaken by Cumbpy and

Huizinga (1992), Lobato et al. (2002) or Francq et al. (2005).

The next theorem establishes the asymptotic properties for the cumulative tests

Qm = t̃ ′ R̂−1 t̃, Q̃m = t̃ ′ R̂∗−1 t̃ (16)
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for the joint hypothesis H0 : ρ1 = ... = ρm = 0. In the empirical applications and

Monte Carlo study described later in the paper we use the cumulative statistic Q̃m

with the suggested threshold setting λ = 1.96.

Theorem 2.2. Under the assumptions of Theorem 2.1, for any m = 1, 2, ... and with

any threshold λ > 0, as n→∞,

R̂→p R, R̂∗ →p R, (17)

Qm →D χ2
m, Q̃m →D χ2

m. (18)

The assumptions of Theorems 2.1 and 2.2 are minimal and less restrictive than

those used so far in the literature. They allow for both non-stationarity (uncondi-

tional heteroskedasticity) and dependent martingale difference type uncorrelated noise

including ARCH type conditional heteroskedasticity.

The test Qm without thresholding suffers some size distortion in finite samples for

moderate and large m. Simulations show that the thresholding in Q̃m successfully

corrects size distortions for a wide range of m values when R is sparse. If rjk = 0 and

τjk →D N (0, 1) then thresholding with λ = 1.96 corresponds to testing for rjk = 0

at a 5% significance level. However, for any λ > 0 thresholding does not affect the

consistency of the estimate R̂∗ of R.

As will be apparent in the next section, the assumptions of Theorems 3.1 and

3.2 in the bivariate case render the above methods of analysis valid for a univariate

series in a straightforward way. In particular, since any measurable function yt =

f(xt, xt−1, ..., xt−k) of a stationary ergodic process {xt} is also a stationary ergodic

process (e.g., Stout (1974, Cor. 3.5.2)), if E|yt| <∞ it follows that

E
∣∣n−1 n∑

t=1

yt − Ey1
∣∣→ 0, n→∞

and thus the conditions imply the results of Theorems 2.1 and 2.2. For more details of

the proof see the Online Supplement I.

3 Tests for zero cross-correlation

For bivariate time series {xt, yt} we observe data x1, ..., xn and y1, ..., yn and are in-

terested in testing possible cross-correlation between these time series at various lags.
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Denote by ρ̂xy,k the k-th sample cross-correlation estimate of the k-th cross-correlation

ρxy,k = corr(xt, yt−k) for k = ...,−1, 0, 1, ...

ρ̂xy,k =

∑n
t=k+1(xt − x̄)(yt−k − ȳ)

(
∑n

t=1(xt − x̄)2
∑n

t=1(yt − ȳ)2)1/2
, x̄ =

1

n

n∑
t=1

xt, ȳ =
1

n

n∑
t=1

yt.

The asymptotic theory for such sample cross-correlations was given in Hannan

(1970). Haugh and Box (1977) developed a test for cross-correlation under the as-

sumption of independent series {xt} and {yt}. But there is little literature on testing

cross-correlation using the sample statistic ρ̂xy,k when the series are not independent

or when they are heteroskedastic. Although in regression analysis the issue of het-

eroskedasticity has been addressed, graphs of the sample cross-correlations typically

display confidence bands based on ±zα/2/
√
n, corresponding to the t-statistic

txy,k =
√
nρ̂xy,k (19)

for testing H0 : ρxy,k = 0 under independence conditions. Further, bivariate analogues

of cumulative standard statistics are rarely analyzed and often involve additional tests

for the significance of the univariate autocorrelations of {xt} and {yt}, as in Tsay

(2010) for example. In what follows, we examine the Haugh (1976) and Haugh and

Box (1977) test for cross-correlation

HBxy,m = n2

m∑
k=0

ρ̂ 2
xy,k

n− k
(20)

for testing H0 : ρxy,0 = ρxy,1 = ... = ρxy,m = 0 which assumes independence of the time

series {xt} and {yt}.

Similar arguments to those of the univariate case in Section 2 show that standard

normal and χ2
m approximations for the statistics in (19) and (20) are not always valid for

bivariate times series {xt, yt} which are not uncorrelated and stationary, independent

noises. To provide a more general framework, we assume in this paper that {xt, yt}
satisfy

xt = µx + htεt, yt = µy + gtηt, (21)

where {εt}, {ηt} are stationary sequences, Eεt = Eηt = 0, Eε4t < ∞, Eη4t < ∞
and ht, gt are real numbers that satisfy conditions made explicit in Assumption A and

Theorem 3.1 below.

Notice that ρxy,k = corr(xt, yt−k) = corr(εt, ηt−k). However, when ρxy,k = 0, the

10



standard normal approximation for txy,k may not hold because of the presence of het-

eroskedasticity in {xt} and {yt} or dependence between the two uncorrelated series.

For that reason, in order to develop a robust test of H0 : ρxy,k = 0, k ≥ 0, we define

the following corrected t-statistic

t̃xy,k =

∑n
t=k+1 exy,tk

(
∑n

t=k+1 e
2
xy,tk)

1/2
, exy,tk = (xt − x̄)(yt−k − ȳ). (22)

Our objective is to establish the asymptotic normality

t̃xy,k →D N (0, 1) (23)

for k ≥ 0 such that corr(εt, ηt−k) = 0.

As we see below, (23) requires the first series {xt} to be an uncorrelated noise or,

more specifically, an m.d. sequence. In what follows, we first allow the uncorrelated

series {xt} and {yt} to be mutually dependent, and subsequently examine the case

where they are mutually independent. Test consistency is considered last.

Clearly, for (23) to hold, we need additional assumptions on {εt, ηt}. The conditions

below are formulated in terms of the product series ωtk := εtηt−k, k ≥ 0.

Assumption A. For j, k ≥ 0, {ωtk}, {ωtjωtk} are stationary sequences, Eω2
tk < ∞,

and

E|
(
n−1

n∑
t=1

ωtjωtk
)
− E[ω1jω1k]| → 0, n→∞. (24)

The weights ht, gt satisfy the following conditions: setting qn :=
∑n

t=1 h
2
tg

2
t ,

(
n∑
t=1

h4t )
1/2(

n∑
t=2

(gt − gt−1)4)1/2 = o(qn), max
t=1,...,n

h4t = o(qn), (25)

(
n∑
t=1

g4t )
1/2(

n∑
t=2

(ht − ht−1)4)1/2 = o(qn), max
t=1,...,n

g4t = o(qn).

I: The case of mutually dependent series {xt} and {yt}.

First, we assume that xt and the lagged variables yt−k are uncorrelated but not

mutually independent. For example, suppose that {εt} is an m.d. sequence with

respect to some σ-field Ft, and ηt−k is Ft−1 measurable. Then εtηt−k is also an m.d.

sequence so that E[εtηt−k|Ft−1] = 0, and thus corr(xt, yt−k) = 0.

Bivariate series xt and yt−k can be uncorrelated at some lags, say k = i, ...,m where
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0 ≤ i ≤ m, and correlated at other lags, say k = 0. The next theorem establishes the

multivariate limit distribution of the vector (t̃xy,i, ..., t̃xy,m) when corr(xt, yt−k) = 0 for

k = i, ...,m. Subsequently, we use this vector to test the hypothesis corr(xt, yt−k) = 0,

k = i, ...,m. To show asymptotic normality for the statistic t̃xy,k based on the centered

variables xt − x̄ and yt − ȳ we make the following assumption.

Assumption B. The autocovariance functions cov(εt, εt−k) = γε,k, cov(ηt, ηt−k) = γη,k

of the stationary sequences {εt} and {ηt} satisfy the following covariance summability

conditions ∑
k |γε,k| <∞,

∑
k |γη,k| <∞. (26)

These conditions are clearly satisfied by white noise/m.d. sequences {εt} or {ηt}.

Theorem 3.1. Suppose that {xt, yt} in (21) satisfy Assumptions A, B and (25).

If {εtηt−k}, k = i, ...,m (0 ≤ i ≤ m) are m.d. sequences with respect to the same σ-field

Ft, with E[εtηt−k|Ft−1] = 0, then, as n→∞,

(t̃xy,i, ..., t̃xy,m)→D N (0, Rxy) (27)

where Rxy = (rxy,jk, j, k = i, ...,m) is a matrix with elements

rxy,jk = corr(ε1η1−j, ε1η1−k).

In particular, t̃xy,k →D N (0, 1) for k = i, ...,m.

Observe that the matrix Rxy is positive definite and the convergence (27) implies

t̃′xyR
−1
xy t̃xy →D χ2

m−i+1 where t̃xy = (t̃xy,i, ..., t̃xy,m)′. (28)

For testing the cumulative hypothesis H0 : ρxy,i = ... = ρxy,m = 0, we suggest the

following standardized statistics

Qxy,m = t̃ ′xy R̂
−1
xy t̃xy, Q̃xy,m = t̃ ′ R̂∗−1xy t̃, (29)

where R̂xy = (r̂xy,jk) and R̂∗xy are consistent estimates of the matrix Rxy. We define

r̂xy,jk =

∑n
t=max(j,k)+1 exy,tjexy,tk

(
∑n

t=max(j,k)+1 e
2
xy,tj)

1/2(
∑n

t=max(j,k)+1 exy,tk)
1/2
, j, k = i, ...,m. (30)

12



To improve the finite sample performance of the cumulative test, we suggest the thresh-

olded version R̂∗xy = (r̂ ∗xy,jk) of R̂xy where

r̂ ∗xy,jk = r̂xy,jkI(|τxy,jk| > λ) with λ = 1.96 (31)

and τxy,jk is a t-statistic constructed as

τxy,jk =

∑n
t=max(j,k)+1 exy,tjexy,tk

(
∑n

t=max(j,k)+1 e
2
xy,tje

2
xy,tk)

1/2
. (32)

Just as in the univariate case, R̂∗xy is the sample analogue of the variance-covariance

matrix of t̃xy where we threshold its off-diagonal elements by checking at the 5% level

whether they are significant. In applications we set λ = 1.96, but in theory other

threshold values λ > 0 can be used.

The limit theory of these statistics for testing cross-correlation at individual and

cumulative lags are given in the following result.

Theorem 3.2. Under the assumptions of Theorem 3.1, for any λ > 0, as n→∞,

r̂xy,jk →p rxy,jk, r̂ ∗xy,jk →p rxy,jk, (33)

t̃′xyR̂
−1
xy t̃xy →D χ2

m−i+1, t̃′xyR̂
∗−1
xy t̃xy →D χ2

m−i+1. (34)

Simulations show that for large m, the cumulative test based on Qxy,m suffers some

size distortion whereas the test Q̃xy,m based on the thresholded estimate R̂∗xy with

parameter λ = 1.96 in most cases corrects adequately for size.

Different from the univariate case, Assumption A is employed to avoid assuming

ergodicity of the stationary sequence {ε2tηt−jηt−k}, which implies (24), see Stout (1974,

Corollary 3.5.2). In general, ergodicity of the separate sequences {εt} and {ηt} does

not necessarily imply ergodicity of {ε2tηt−jηt−k} and thus (24). Property (24) alone is

sufficient for the proofs to hold.

Theorem 3.1 assumes {εtηt−k} to be an m.d. sequence. This is a weak assumption

and allows for various types of dependence between the sequences {εt} and {ηt}. For

example, if {εt} is an m.d. sequence with E[εt|Ft−1] = 0 and ηt = g(εt, εt−1, ...) is a

measurable function of εs, s ≤ t, then {εtηt−k} is an m.d. sequence with respect to Ft
for k ≥ 1, so that

E[εtηt−k|Ft−1] = ηt−kE[εt|Ft−1] = 0.

Simulations show that both the modified tests t̃xy,k and Q̃xy,m for zero cross-
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correlation (at individual and cumulative lags) manifest good size control when {xt}
and {yt} are series of uncorrelated variables with time varying variances, and when

they are mutually uncorrelated but not necessarily independent. The standard tests

txy,k and HBxy,m require the series {xt} and {yt} to be mutually independent sta-

tionary uncorrelated noises. The test t̃xy,k at individual lags also achieves good size

control when the lagged series is correlated, whereas the standard test txy,k requires

independence of {xt} and {yt} for good performance.

II: The case of mutually independent series {xt} and {yt}.

If {xt} and {yt} are mutually independent, then corr(xt, yt−k) = 0 and corr(yt, xt−k) =

0 for k ≥ 0. Properties (27) and (34) of the test statistic t̃xy,k for an individual lag

and the corresponding cumulative test statistic are preserved if one of the series {xt}
or {yt} is an uncorrelated m.d. sequence.

Theorem 3.3. Assume that {xt, yt} in (21) satisfy Assumptions A, B and (25). Sup-

pose {εt} is an m.d. sequence and the time series {xt} and {yt} are mutually indepen-

dent. Then, for any m ≥ 0, as n→∞,

t̃xy = (t̃xy,0, ..., t̃xy,m)′ →D N (0, Ry), t̃yx = (t̃yx,0, ..., t̃yx,m)′ →D N (0, Ry),(35)

where Ry = (ry,jk) and ry,jk = corr(yj, yk) = corr(ηj, ηk), j, k = 0, ...,m. In particular,

t̃xy,k →D N (0, 1) for any lag k = ...− 1, 0, 1, .., and

t̃′xyR̂
−1
xy t̃xy →D χ2

m+1, t̃′xyR̂
∗−1
xy t̃xy →D χ2

m+1 (36)

t̃′yxR̂
−1
xy t̃yx →D χ2

m+1, t̃′yxR̂
∗−1
xy t̃xy →D χ2

m+1 (37)

where R̂xy and R̂∗xy are defined as above in (30) and (31) with i = 0.

Consistent estimates R̂xy and R̂∗xy of Ry require the first variable {xt} to be an

uncorrelated m.d. sequence. Notice that R̂yx →p I.

Finally, if the time series {xt} and {yt} are mutually independent but neither {xt}
nor {yt} is a white noise, the standard normal approximation for t̃xy,k does not generally

hold. In such cases, even if

t̃xy,k →D N (0, σ2
xy)

the variance σ2
xy =

∑∞
j=−∞ corr(ε0, εj)corr(η0, ηj) is not unity, as shown in the following

result.
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Proposition 3.1. Assume that {xt, yt} in (21) satisfy Assumptions A, B and (25).

Suppose that sequences {xt} and {yt} are mutually independent. Then, for any k ≥ 0,

t̃xy,k = snk + op(1), n→∞, (38)

where Esnk = 0, var(snk)→ σ2
xy =

∑∞
j=−∞ corr(ε0, εj)corr(η0, ηj). For the definition of

snk see (23) in the proof in Online Supplement I.

III: Test consistency.

To conclude this section we show that the test for correlation at lag k based on t̃xy,k,

is consistent when corr(xt, yt−k) 6= 0. To do so, we make some further assumptions on

the components ωtk = εtηt−k and (ht, gt).

Assumption C. {ωtk} is a stationary sequence whose covariances statisfy the summa-

bility condition

∞∑
j=−∞

|cov(ω1k, ωjk)| <∞, (39)

and (ht, gt) are such that

n∑
t=k+1

|ht(gt − gt−k)| = o(
n∑
t=1

htgt), q−1/2n

n∑
t=1

htgt →∞, (40)

where qn =
∑n

t=1 h
2
tg

2
t , as defined earlier.

Condition (39) is a standard weak dependence condition on the covariances of the

sequence {ωtk}, and condition (40) is satisfied by many weight sequences (ht, gt) that

induce unconditional heterogeneity in the series over time, such as linear time trends.

Theorem 3.4. Let {xt, yt} be as in (21) and Assumptions A, B, C and (25) hold.

Suppose that for some k ≥ 0, corr(xt, yt−k) 6= 0. Then, as n→∞,

t̃xy,k =
(
∑n

t=1 htgt)

(
∑n

t=1 h
2
tg

2
t )

1/2

cov(ε1, η1−k)

E[ε2tη
2
1−k]

(1 + op(1)). (41)

Consistency of the tests follow directly from (41) in view of (40).
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4 Tests for the i.i.d. property

In this section we examine a simple test for the i.i.d. property of a time series {xt} based

on a sample x1, ..., xn. Campbell et al. (1997, Chapter 2) provide a brief exposition of

this approach for use in financial econometrics. We assume that

xt = µ+ εt (42)

where {εt} is a sequence of i.i.d. random variables with Eεt = 0, Eε2t < ∞. Denote

ρx,k = corr(xt, xt−k) and define

ρ|x|,k = corr
(
|xt − µ|, |xt−k − µ|

)
, ρx2,k = corr

(
(xt − µ)2, (xt−k − µ)2

)
.

Clearly, if {xt} is i.i.d., then ρx,k = ρ|x|,k = ρx2,k = 0 for k 6= 0. With this approach, the

problem of testing the i.i.d. property of the time series {xt} is reduced to testing for

the absence of correlation in {xt} and {|xt−Ext|} , or alternatively in {xt} and {(xt−
Ext)

2}. Other tests involving nonparametric density estimation (e.g., Gretton and

Györfi, 2010) are available but are considerably more complex in their implementation.

The present approach has the benefit of simplicity and makes use of the test machinery

developed earlier.

Our test statistics combine the levels of the data {xt} and either absolute {|xt− x̄|}
or squared {(xt − x̄)2} deviations from the sample mean x̄. We denote by ρ̂x,k, ρ̂|x|,k

and ρ̂x2,k the sample correlation (1) computed using the data xt, |xt− x̄| and (xt− x̄)2,

respectively. Define

τx,k =
n

(n− k)1/2
ρ̂x,k, τ|x|,k =

n

(n− k)1/2
ρ̂|x|,k, τx2,k =

n

(n− k)1/2
ρ̂x2,k.

Denote rε,|ε| = corr(ε1, |ε1|), rε,ε2 = corr(ε1, ε
2
1), and set

Vx,|x| =

(
1 r2ε,|ε|
r2ε,|ε| 1

)
, Vx,x2 =

(
1 r2ε,|ε|
r1ε,|ε| 1

)
.

The next theorem establishes the joint distribution for the statistics (τx,k, τ|x|,k) and

(τx,k, τx2,k).

Theorem 4.1. Let x1, ..., xn be a sample from an i.i.d. sequence (42). If τx2,k is
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employed, assume in addition that Eε41 <∞. Then for m ≥ 1,

(τx,1, τ|x|,1, ..., τx,m, τ|x|,m)→D N (0, Vx,|x|,2m), (43)

(τx,1, τx2,1, ..., τx,m, τx2,m)→D N (0, Vx,x2,2m) (44)

where Vx,|x|,2m = diag(Vx,|x|, ..., Vx,|x|) and Vx,x2,2m = diag(Vx,x2 , ..., Vx,x2) are 2m × 2m

block-diagonal matrices. In particular, for k ≥ 1,

(τx,k, τ|x|,k)→D N (0, Vx,|x|), (τx,k, τx2,k)→D N (0, Vx,x2). (45)

Observe that Vx,|x|,2m = I, Vx,x2,2m = I are identity matrices if the {εt} have a sym-

metric distribution, since then rε,|ε| = rε,ε2 = 0. In general, the non-diagonal elements

r2ε,|ε| and r2ε,ε2 in the matrices Vx,|x|,2m and Vx,x2,2m are likely to be small. Hence, the

standard normal limit N (0, I) may be a good approximation in (43) and (44) in finite

samples. This suggests the following approximation

m∑
k=1

(τ 2x,k + τ 2|x|,k) ∼ χ2
2m,

m∑
k=1

(τ 2x,k + τ 2x2,k) ∼ χ2
2m (46)

which is easy to use in applied work. Good performance of the latter statistics is

confirmed by simulations in the Monte Carlo study.

To verify the i.i.d. property of {xt}, we test at individual lags and cumulatively for the

absence of correlation in levels {xt} and absolute values {|xt −Ext|} via the following

null hypotheses

H0: ρx,k = 0, ρ|x|,k = 0 at individual lag k ≥ 1,

H0: ρx,k = 0, ρ|x|,k = 0 for k = 1, ...,m for m ≥ 1 (cumulative)

using respectively the statistics

Jx,|x|,k =
n2

n− k
(ρ̂ 2
x,k + ρ̂ 2

|x|,k), Cx,|x|,m =
m∑
k=1

Jx,|x|,k. (47)

Alternatively, we may test for the absence of correlation in levels {xt} and squares

{(xt − Ext)2} via the hypotheses

H0: ρx,k = 0, ρx2,k = 0 at individual lag k ≥ 1,

H0: ρx,k = 0, ρx2,k = 0 for k = 1, ...,m (cumulative)
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using respectively the statistics

Jx,x2,k =
n2

n− k
(ρ̂ 2
x,k + ρ̂ 2

x2,k), Cx,x2,m =
m∑
k=1

Jx,x2,k. (48)

If an i.i.d. time series {xt} has a symmetric distribution, then Theorem 4.1 shows

that, as n→∞,

Jx,|x|,k, Jx,x2,k →D χ2
2, Cx,|x|,m, Cx,x2,m →D χ2

2m. (49)

Simulations confirm that the χ2
2m distribution provides a good approximation also for

i.i.d. time series xt with non-symmetric distributions. Simulations also show that these

tests have good power in the presence of dependence, conditional heteroskedasticity or

non-stationarity when Ext or Var(xt) varies with time.

Related to these results, we recall that some standard tests are already in the

literature as mentioned in the Introduction. Notably, convergence for the cumulative

test statistic ∑m
k=1

n2

n−k ρ̂
2
x2,k →D χ2

m.

based on squares x2t of an i.i.d. sequence was established by McLeod and Li (1983).

The present tests involve both levels and absolute values or both levels and squares.

5 Monte Carlo experiments

This section presents Monte Carlo findings on the finite sample performance of the

standard and corrected tests for zero correlation given in Sections 2 and 3 and the

tests for the i.i.d. property given in Section 4. We use a variety of models for {xt} and

{xt, yt}, sample sizes n = 100, 300 and the experiments each involve 5, 000 replications.

We evaluate the rejection frequency (in %) of the test statistics at significance level

α = 5% using the asymptotic critical values and power is not size corrected. The

standard test tk and the corrected t̃k are based on 1.96/
√
n and 1.96ρ̂k/t̃k critical

values, respectively. Figures 1-5 report rejection frequencies (size and power) for a

subset of models for n = 300 and k,m = 0, 1, 2, ..., 30 lags. The full findings for

n = 300 are given in the Online Supplement II of this paper to which readers are

referred for complete details.

Figures 1 and 2 report size and power of the tests for zero correlation based on the

statistics t̃k, tk, Q̃m and LBm. Figure 1 shows that the standard statistic tk =
√
nρ̂k
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and the cumulative LBm statistic have distorted size when the data are non-i.i.d., see

e.g. models (b)-(d). The accumulation of the size distortion in the LBm test is evident

as the rejection frequency increases with every additional lag. On the other hand, the

corrected statistics t̃k and Q̃m achieve the nominal size of α = 5% for all models in

Figure 1. For the i.i.d. data in model (a) the standard and corrected methods give

similar results as expected. Figure 2 displays test power. The results show some loss

in power for the corrected test statistics compared to the standard tests. All tests

show spurious power when the data xt is uncorrelated but has time varying mean, see

models (c)-(d).

Figures 3 and 4 report test results for zero cross-correlation for bivariate time

series {xt} and {yt} based on the statistics t̃xy,k, txy,k, Q̃m and HBm. When series of

independent variables {xt} and {yt} are heteroskedastic but jointly independent, as in

Figure 3 model (a), the corrected statistics produce correct size whereas the standard

tests are all oversized. When the time series {xt} and {yt} are uncorrelated but not

mutually independent, as in model (b), the corrected statistics give correct size whereas

the standard ones over-reject. When {xt} and {yt} are mutually independent, but one

of the two has either autocorrelation or time varying mean, as in models (c) and (d),

then both the standard and corrected tests at individual lag give the correct size, but

the cumulative tests tend to become oversized. The latter outcome was unexpected,

as the theory of Section 3 for model (c) would suggest the cumulative tests would be

well-sized. It seems that R̂∗xy,m does not estimate well the non-sparse autocorrelation

matrix Ry of yt for this moderate sample size, especially for bigger lags m. When the

time series are cross-correlated, as in Figure 4 models (a)-(b), we observe similar power

across the standard and corrected statistics, with some loss in power at bigger lags for

the corrected cumulative statistic. In Figure 4 models (c)-(d), the time series {xt} and

{yt} are jointly independent but we observe spurious power, when both of them have

autocorrelation, like in (c) and as suggested by theory, or when both of them have time

varying mean, as in (d).

Figure 5 reports the test results for the i.i.d. property using the statistics Jx,|x|,k, Jx,x2,k

and Cx,|x|,m, Cx,x2,m. The size of the test at individual lags and the size of the cumu-

lative test are satisfactory in model (a), and we observe good power in discriminating

the non-i.i.d. models (b)-(d). In particular, the statistics based on the absolute values

have overall similar or better power properties than those based on the squares.

Some general conclusions from the simulation study are as follows. First, we find

that in testing for correlation or for the i.i.d. property, a maximum lag of n/10 is a

good choice for moderate sample sizes of n = 100, 300. This conclusion is based on
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the Monte Carlo size properties of our tests for the models considered in the Online

Supplement II. Second, we note that one needs to test for a constant mean prior to

applying the univariate (both standard and corrected) tests for absence of correlation.

Third, for bivariate tests it is useful to check for constant mean as well as for serial

correlation in each time series prior to applying the tests. Fourth, the findings indicate

that our tests for the i.i.d. property based on the χ2
2m approximation perform well

unless the distributions are extremely skewed.

20



Figure 1: Size. Rejection frequency (in %) at α = 5% of corrected t̃k and standard

tk tests (left) and corrected Q̃m and standard LBm cumulative tests (right) at lags
k,m = 1, 2, ..., 30. εt ∼ iid N (0, 1).
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(a) xt = εt
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(b) xt = (1 + I(t/n > 0.5))εt
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(c) xt = rt, rt = σtεt, σ
2
t = 1 + 0.2r2t−1 + 0.7σ2
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(d) xt = εtεt−1
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Figure 2: Power. Rejection frequency (in %) at α = 5% of corrected t̃k and standard

tk tests (left) and corrected Q̃m and standard LBm cumulative tests (right) at lags
k,m = 1, 2, ..., 30. εt ∼ iid N (0, 1).
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(a) xt = 0.2xt−1 + εt
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(b) xt = r2t , rt = σtεt, σ
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t = 1 + 0.2r2t−1 + 0.7σ2
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(c) xt = I(t/n > 0.5) + εt
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(d) xt = (htεt)
2, ht = 1 + I(t/n > 0.5)
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Figure 3: Size. Rejection frequency (in %) at α = 5% of corrected t̃xy,k and standard

txy,k tests (left) and corrected Q̃xy,m and standard HBxy,m cumulative tests (right) at
lags k,m = 0, 1, ..., 30. εt, ηt ∼ iid N (0, 1), {εt}, {ηt} independent.
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(a) xt = htεt, yt = htηt, ht = 1 + I(t/n > 0.5)
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(b) xt = εt, yt = r2t , rt = σtεt, σ
2
t = 1 + 0.2r2t−1
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(c) xt = εt, yt = 0.7yt−1 + ηt
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(d) xt = mt + εt, yt = htηt, mt = I(t/n > 0.5), ht = 1 + I(t/n > 0.5)
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Figure 4: Power. Rejection frequency (in %) at α = 5% of corrected t̃xy,k and standard

txy,k tests (left) and corrected Q̃xy,m and standard HBxy,m cumulative tests (right) at
lags k,m = 0, 1, ..., 30. εt, ηt ∼ iid N (0, 1), {εt}, {ηt} independent.
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(a) xt = σx,tεt, yt = σy,tεt, σ
2
x,t = 1 + 0.2x2t−1, σ2

y,t = 1 + 0.2y2t−1 + 0.7σ2
y,t−1
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(b) xt = htεt, yt = xt + xt−1 + xt−2 + htηt, ht = 1 + I(t/n > 0.5)
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(c) xt = 0.7xt−1 + εt, yt = 0.7yt−1 + ηt
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(d) xt = mt + εt, yt = mt + ηt, mt = I(t/n > 0.5)
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Figure 5: Size and power. Rejection frequency (in %) at α = 5% of Jx,|x|,k and Jx,x2,k
tests (left) and Cx,|x|,m and Cx,x2,m cumulative tests (right) at lags k,m = 1, 2, ..., 30.
εt ∼ iid N (0, 1).
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(c) xt = I(t/n > 0.5) + εt
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6 Empirical application

We report an application of these methods to financial market data covering the period

2008-18. Both the standard and corrected tests for absence of correlation are used. We

analyze univariate time series of daily returns {xt} of the FTSE100 index and the

bivariate series {xt, yt} of the daily returns of the FTSE100 index and gold price.3

Graphical inspection of the data suggests that the means of both the FTSE100 and

gold returns are likely constant.

The results of the univariate analyses are shown in Figures 6 and 7. Panel (a) of

Figure 6 contains the correlogram ρ̂k for lags k = 1, 2, ..., 10 along with 95% and 99%

confidence bands (CBs) for insignificant correlation, the standard CBs are based on

±zα/2/
√
n and the corrected on ±zα/2(ρ̂k/t̃k) at significance levels α = 5%, 1%. Panel

(b) reports the values of the standard LBm and corrected Q̃m cumulative statistics

for lags k = 1, 2, ..., 30 along with their asymptotic critical values at significance levels

α = 5%, 1%. The CBs of the standard test for correlation at individual lags show

evidence of serial correlation at lags k = 2, 5 at the 1% and at lags k = 3, 4 at the 5%.

The latter is magnified in the LBm cumulative test. However, in agreement with the

corrected CBs, the evidence of serial correlation is insignificant at all individual lags at

the 5% level. As such, the cumulative hypothesis of no correlation is not to be rejected

by the cumulative test Q̃m. To test for the i.i.d. property of xt, we evaluated the

statistics Jx,|x|,k, Jx,x2,k, Cx,|x|,m and Cx,x2,m, which are shown in Figure 7. Evidently,

this hypothesis is strongly rejected. We therefore conclude that the daily returns of

the FTSE100 index during 2008-18 are uncorrelated, but strong evidence affirms that

the series is not i.i.d.

The results of bivariate testing are shown in Figure 8. Just as the FTSE100 returns

were found to be uncorrelated, similar analysis (not reported here) confirms uncorre-

latedness of the gold returns. Panels (a) and (c) contain the cross-correlograms ρ̂xy,k

and ρ̂yx,k for lags k = 0, 1, ..., 10 along with the standard 95% and 99% confidence

bands, based on ±zα/2/
√
n and the corrected ones based on ±zα/2(ρ̂xy,k/t̃xy,k) and

±zα/2(ρ̂yx,k/t̃yx,k) at significance levels α = 5%, 1%. In Panels (b) and (d), we report

the standard HBxy,m, HByx,m and corrected Q̃xy,m, Q̃yx,m cumulative statistics for lags

k = 0, 1, ..., 30 and their asymptotic critical values at the α = 5%, 1%. Standard in-

ference suggests evidence of significant contemporaneous cross-correlation ρxy,0 at 1%,

3The data are sourced from YahooFinance for the FTSE100 index and from the Federal Reserve
Bank of St.Louis for the London Bullion Market Association (LBMA) gold price. Both prices are in
British pounds. The FTSE100 index is measured at the market closing at 4:30 GMT. The gold price
is at 3:00 GMT. Returns are calculated as first differences of log-prices.
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as well as cross-correlation ρxy,k for lags k = 2, 8 at 1% and ρyx,k for leads k = 5 at

1% and for k = 8, 9 at 5% between FTSE100 and gold returns xt and yt. The cumu-

lative hypothesis of zero cross-correlation is rejected at 1% for all m by standard tests

HBxy,m, HByx,m. However, the corrected CBs do not produce as much evidence of

significant cross-correlation. We do find evidence from the corrected tests of contem-

poraneous cross-correlation ρxy,0 for k = 0 at 5%, as well as cross-correlation ρxy,k for

lags k = 2 at 5% and k = 8 at 1% and ρyx,k for lead k = 5 at the 5% between FTSE100

and gold returns xt and yt. Subsequently, using modified test statistics the cumulative

hypothesis of zero cross correlation is rejected when m = 0 at the 5%. Furthermore,

when the FTSE100 return xt is leading the hypothesis of zero cross-correlation is re-

jected at 5% for some m and when it is lagging the hypothesis of zero cross-correlation

is not rejected at 5% for all m. Overall, these results indicate evidence that the daily

returns of the FTSE100 index and gold during 2008-18 have contemporaneous cross-

correlation at k = 0 but not at different leads and lags for k ≥ 1.

Figure 6: FTSE100 daily returns, 2008-2018. Correlogram
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Figure 7: FTSE100 daily returns, 2008-2018. I.i.d. test
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Figure 8: FTSE100 (x) and gold (y) daily returns, 2008-2018. Correlogram
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(b) Standard HBxy,m and correct Q̃xy,m cumu-
lative tests at lags m = 0, 1, ..., 30.
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7 Conclusions

The procedures developed in this paper belong to a class of econometric tests that

robustify existing procedures to take account of realistic features of economic and

financial data. Tests for zero autocorrelation and zero cross-correlation are among the

fundamental starting points in analyzing time series and they are methods that have

remained in common use since influential work by Box and Jenkins (1970) and others.

The validity of standard procedures of testing is fragile to latent dependencies and non-

stationarities that are well-known to be present in much economic and financial data.

The methods and limit theory in the present paper correct for such fragilities and in

doing so complement and generalize earlier work to accommodate such dependencies.

The Monte Carlo experiments corroborate the validity of the proposed methods and

provide guidelines for practitioners in implementing the new procedures. The empirical

application to financial return data demonstrates the utility of these methods in taking

account of latent dependencies and thereby avoiding potentially spurious inferences

about autocorrelation and cross-correlations in such data. In subsequent work, we

plan to adapt the test procedures developed in this paper to models that involve an

evolving mean function and a stochastic heterogeneity factor ht.

References

Anderson, T.W. and Walker, A.M. (1964) On the asymptotic distribution of the auto-

correlations of a sample from a linear stochastic process. The Annals of Mathematical

Statistics 35, 1296-1303.

Bartlett, M.S. (1946) On the theoretical specification and sampling properties of au-

tocorrelated time-series. Supplement to the Journal of the Royal Statistical Society 9,

27-41.

Box, G.E.P. and Jenkins, G.M. (1970) Time Series Analysis: Forecasting and Control.

San Francisco: Holden-Day.

Box, G.E.P. and Pierce, D.A. (1970) Distribution of residual autocorrelations in autore-

gressive-integrated moving average time series models. Journal of the American Sta-

tistical Association 65, 1509-1526.

Campbell, J.Y., Lo, A.W. and MacKinlay, A.C. (1997) The econometrics of financial

markets. Princeton University Press, New Jersey.

Cumbpy, R.E. and Huizinga, J. (1992) Testing the autocorrelation structure of distur-

29



bances in ordinary least squares and instrumental variables regressions. Econometrica

60, 185-196.

Dalla, V., Giraitis, L. and Koul, K.L. (2014) Studentizing weighted sums of linear

processes. Journal of Time Series Analysis 35, 151-172.

Diebold, F.X. (1986) Testing for serial correlation in the presence of ARCH. Proceed-

ings of the American Statistical Association, Business and Economic Statistics Section,

323-328.
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