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Abstract

Behavior at the individual level in panels or at the station level in spatial models is often

influenced by aspects of the system in aggregate. In particular, the nature of the interaction

between individual-specific explanatory variables and an individual dependent variable may

be affected by ‘global’ variables that are relevant in decision making and shared communally

by all individuals in the sample. To capture such behavioral features, we employ a functional

coefficient panel model in which certain communal covariates may jointly influence panel

interactions by means of their impact on the model coefficients. Two classes of estimation

procedures are proposed, one based on station averaged data the other on the full panel,

and their asymptotic properties are derived. Inference regarding the functional coefficient

is also considered. The finite sample performance of the proposed estimators and tests

are examined by simulation. An empirical spatial model illustration is provided in which

the climate sensitivity of temperature to atmospheric CO2 concentration is studied at both

station and global levels.
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1 Introduction

Decisions taken at the individual consumer or firm level are frequently affected by prevailing

macroeconomic influences such as interest rates, inflation, and indices of consumer or business

sentiment. Likewise in spatial modeling it is often appropriate to model behavior at individual

locations partly in terms of aggregate influences. In modeling climatic change, for instance,

average temperature in any given spatial location needs to account for prevailing aggregates

such as greenhouse gases concentrations in the atmosphere because of the way such gases are

well-mixed in Earth’s atmosphere as a whole.

One mechanism by which such individual or local dependencies on aggregates may be mod-

eled in practical work is to use a panel framework in which the coefficients are functionally

determined by the relevant aggregate or ‘communal’ variables. This type of model is closely

related to a fixed effects functional-coefficient panel data model of the following form

yit = αi + β(zit)
′xit + uit, i = 1, · · · , N ; t = 1, · · · , T ; (1.1)

where xit is a p-vector of regressors, zit is a q-vector of covariates that determine the (random)

coefficients β(zit) = (β1(zit), · · · , βp(zit))′, the αi are individual fixed effects, and the error uit

has zero mean and finite variance σ2u. In what follows, we will focus on the case where both xit

and zit are exogenous.1

Methods of econometric estimation and inference in model (1.1) are reviewed in Su and

Ullah (2011). Regarding estimation, the usual differencing method to eliminate fixed effects

can be extended to this functional coefficient model. But as indicated in Sun et al. (2009), this

approach leads to additive nonparametric components and therefore suffers from the problems of

estimating nonparametric additive models as well as the additional complexity of the presence of

common functional coefficients in the resulting additive nonparametric regression. Instead, Sun

et al. (2009) proposed a profile least squares approach in which the nonparametric component

β(·) is profiled out first. In later work Su and Ullah (2011) proposed an alternative profile

least squares method in which the fixed effects αi rather than β(·) are profiled out first. Both

approaches may be employed in the communal panel framework (1.2) that we consider in the

present paper. Rodriguez-Poo and Soberón (2015) presented an estimation procedure that

employs a within un-smoothed mean deviation transformation of (1.1). Recently, Feng et al.

(2017) considered varying-coefficient categorical panel data model where the zit are discrete

covariates.

1When the exogeneity condition E(uit|xit) = 0 fails and there are endogenous regressors, model (1.1) has been

examined by Cai and Li (2008) but without individual effects αi. These authors proposed a nonparametric GMM

estimation method. Models with endogenous covariates zit for which E(uit|zit) 6= 0 have not yet been analyzed

to our knowledge.
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Our interest in this paper lies in a communal version of the model (1.1). Instead of using

individual specific variates zit as the smoothing covariate for the regression coefficients, our

framework employs smoothing covariates zt that are common to all individuals in the panel. This

formulation allows for global influences in determining the impact of the individual regressors

and intercept. More specifically, we consider the following model

yit = αi + β0(zt) + x′itβ(zt) + uit = αi + x′∗,itβ∗(zt) + uit, (1.2)

where x′∗,it = (1 x′it) and β∗(z) = (β0(z), β(z)′)′ is a (p+ 1)-vector of coefficients. We allow the

individual specific effects αi to be correlated with zt and/or xit with an unknown correlation

structure, so that (1.2) is treated as a fixed effects model. For identification, we assume that∑N
i=1 αi = 0. We include the intercept β0(zt) explicitly. Then (1.2) includes the model studied

by Lee and Robinson (2015). Thus, when there is no explanatory variable xit, (1.2) reduces to

the nonparametric panel data model with fixed effects of Lee and Robinson (2015). For the case

without the intercept β0(zt), analysis can be carried out in a similar fashion and the results are

collected together in the Online Supplement to this paper (Phillips and Wang, 2019).

As indicated at the outset, a primary motivation underlying the specification of (1.2) lies

in the fact that zt may represent global variables that are shared as common influences by all

individuals in the panel or all locations in the spatial model. For example, zt could be some

world-wide variables in a panel cross-country study or nation-wide variables in panel cross-

state or regional analyses. Similarly, zt may include certain global variables that are relevant in

determining station-level outcomes in a spatial model, as in a model of Earth’s climate. The time-

varying coefficient panel data model studied by Li et al. (2011) reflects similar considerations in

which the parameters may evolve over time. But instead of using covariates such as zt to drive

this evolution, these authors assume that the coefficients are directly time-varying. In a similar

fashion the model employed in Robinson (2012) considers a nonparametric trending regression

where only an intercept function of time is included.

Our first contribution is to provide an analytic study of econometric estimation and inference

in the model (1.2). We consider two estimation approaches, explore their respective asymptotic

properties, and develop tests to assess constancy of the functional coefficients. One approach

uses a station averaged version of (1.2) and the other approach works directly with the full

panel structure. Differences in the asymptotic behaviors, including convergence rates, of these

approaches and their relation to the properties of an oracle estimator are examined. The limit

theory is used to construct tests of parametric linear specification against the semiparametric

functional coefficient model. In addition and in contrast to Li et al. (2011), we allow xit to

have non-zero mean, which leads to new complications of singularities in the asymptotic theory

that are resolved in the paper. Numerical work is conducted to examine the finite sample

properties of the estimation and test procedures. A real data analysis is provided to study the
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nature of Earth’s climate sensitivity to CO2 concentrations and the possibility of functional-

coefficient global-dependencies in that sensitivity. Strong evidence is found showing the impact

of downwelling radiation effects on temperature in addition to greenhouse gas effects. The

conclusions of our semiparametric analysis support the linear specifications used in recent climate

econometric research by Magnus et al. (2011), Storelvmo et al. (2016), and Phillips et al. (2019).

The remainder of the paper is organized as follows. Section 2 presents the two estimation

approaches and derives their asymptotic properties. Testing constancy of the functional coeffi-

cients is considered in Section 3. Simulations are conducted in Section 4 to examine the finite

sample performance of the two approaches and the test statistics. Section 5 is devoted to the

empirical analysis of temperature sensitivity to global CO2 concentrations. Section 6 concludes

the paper.

2 Estimation and asymptotic theory

This section is devoted to the estimation of model (1.2) and the development of asymptotic

theory for the proposed estimation procedures. Before presenting these procedures, we discuss

the effects of the within and differencing transformations commonly employed to deal with the

individual effects αi.

Taking a time series average of (1.2) gives

yiA = αi +
1

T

T∑
t=1

x′∗,itβ∗(zt) + uiA, i = 1, · · · , N, (2.1)

where yiA = T−1
∑T

t=1 yit, and uiA is defined analogously. The within transformation of (1.2)

then yields the system

yit − yiA = x′∗,itβ∗(zt)−
1

T

T∑
s=1

x′∗,isβ∗(zs) + uit − uiA

=

T∑
s=1

δtsx
′
∗,isβ∗(zs) + uit − uiA, i = 1, · · · , N, t = 1, · · · , T, (2.2)

where δts = 1− 1/T if s = t and −1/T otherwise. The right-hand side of (2.2) involves a linear

combination of x′∗,isβ∗(zs) of quantities measured at all time periods including time t. Marginal

integration methods can be used to estimate β∗(·), as in the estimation of nonparametric additive

model.

An alternative way to remove individual effects is to use first differences of (1.2) or to long-

difference by deducting the equation at time period 1. This approach again leads to a model

that contains a linear combination of x′∗,itβ∗(zt) at different times t.
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Both transformation methods therefore suffer from difficulties similar to those that arise in

the estimation of nonparametric additive models. A further difficulty is that if xit contains a

time-invariant term whose coefficient contains an additive constant term, then first order differ-

encing wipes out the additive constant. In consequence, the coefficient cannot be consistently

estimated, see Sun et al. (2009) for more discussion.

In view of these difficulties, we adopt a profile method to remove the unknown fixed effects.

Profile least squares estimation procedures for model (1.1) were proposed by Sun et al. (2009)

and Su and Ullah (2011). These methods can be applied in our model (1.2). We adopt the

approach of Su and Ullah (2011), which profiles out the fixed effects first. In what follows,

we consider two types of local constant nonparametric estimates. A station averaged profile

local constant (APLC) estimation method is considered in Section 2.1. Section 2.2 discusses the

profile local constant (PLC) approach.

2.1 Averaged profile local constant estimation

Averaging over i in (1.2) gives, using the setting ᾱ = 0 for identification,

yAt = β0(zt) + x′Atβ(zt) + uAt = x′∗,Atβ∗(zt) + uAt, t = 1, · · · , T, (2.3)

or in vector form

YA = X∗Aβ∗(zt) + UA, (2.4)

where X∗A is T×(p+1) obtained by stacking the 1×(p+1) vector x′∗,At. Using the local constant

approach to estimate β∗(z) yields

β̂∗,APLC(z) = [(X∗A)′KzX
∗
A]−1(X∗A)′KzYA, (2.5)

where Kz is a T ×T diagonal matrix with t-th central element KtH = K(H−1(zt− z)) and K(·)
is a multivariate kernel function.

To establish the asymptotic properties of β̂∗,APLC(z), we employ the following conditions.

Assumption 1. (a) The kernel function k(·) is a symmetric bounded probability function with

support [−1, 1],
∫
k(w)dw = 1, and

∫
wk(w)dw = 0. Denote

∫
w2k(w)dw = µ2,

∫
k2(w)dw =

ν0 and
∫
w2k2(w)dw = ν2;

(b) The product kernel K(v) =
∏q
j=1 k(vj), with v = (v1, · · · , vq)′,

∫
vv′K(v)dv = µ2Iq,

∫
K2(v)dv =

νq0 , and
∫
vv′K2(v)dv = ν2Iq.

Assumption 2. (a) {(xi, ui), i ≥ 1} is a sequence of independent and identically distributed

(i.i.d.) variates over i, where xi = (xit, t ≥ 1) and ui = (uit, t ≥ 1). Further, for each
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i ≥ 1, {(xit, zt, uit), t ≥ 1} is stationary and α-mixing with mixing coefficients αk satisfying

αk = O(k−τ ), where τ > λ+2
λ for some λ > 0, as in (b) and (c) below. Furthermore, uit is

independent of xit and zt for all i and t;

(b) Let Exit = η, E(xitx
′
it) = Vxx is positive definite. Denote Σxx = V ar(xit) = Vxx − ηη′.

Furthermore, E(||xit||2(2+λ)) < ∞, where || · || is Euclidean distance. In addition, the first

and second order conditional moments of xit given zt = z are independent of z;

(c) The error process {uit} satisfies Euit = 0, Eu2it = σ2u <∞, E|uit|2+λ <∞,
∑∞

j=0 |γu(j)| <∞
where γu(j) = E(u1tu1,t+j) and γ2u =

∑∞
j=−∞ γu(j) is the common long-run variance of uit;

(d) zt has probability density fz(z). fz(·) and β∗(·) have continuous derivatives up to the second

order.

Assumption 3. Define H = diag(h1, · · · , hq), ||H|| =
√∑q

j=1 h
2
j and |H| = h1 · · ·hq. As

T →∞, ||H|| → 0 and T |H| → ∞.

Remark 2.1. (i) The product kernel in Assumption 1 (b) is standard in multivariate smooth-

ing. The conditions on the kernel function k(·) in Assumption 1 (a) are commonly used for

convenience in proofs and can be relaxed. For example, the compact support condition can be

replaced by some restrictions on the tail behaviour of the kernel function.

(ii) Assumption 2 (a) assumes {(xit, uit), i ≥ 1} is iid across section but allows for temporal

dependence under mixing conditions to facilitate the asymptotic theory. Similar assumptions

are used by Li et al. (2011). The present paper does not extend the asymptotic analysis to

the case of nonstationary {(xit), i ≥ 1} and {(zt)}. Such an extension is relevant in many

applications, including the climate change application considered later in this paper, but will

require different conditions and proofs than those considered here. This is an important line of

research and will be considered by the authors in future work. Endogeneity has been ruled out

for simplicity as in Sun et al. (2009).

(iii) In contrast to Li et al. (2011) we allow xit to have a non-zero mean η in Assumption 2 (b).

This extension has important consequences and is relevant in practical work. In the asymptotic

distributions presented below, we will see the role that a non-zero mean η plays. Denoting xit =

x0it+η, where Ex0it = 0, model (1.2) can be rewritten as yit = αi+β0(zt)+η
′β(zt)+(x0it)

′β(zt)+uit,

where β0(zt) + η′β(zt) ≡ β∗0(zt) is a composite intercept. As shown later in Remark 2.6, the

estimator of the composite intercept has a faster convergence rate than that of other linear

combinations of β∗(z). From this perspective, Theorem 2.1 of Li et al. (2011) is nested as a

special case of Theorem 2.2 below. Assumption 2 (b) also requires that the first two conditional

moments of xit given zt = z are equivalent to unconditional moments, which obviously holds

under independence of xit and zt. This requirement is not crucial to our findings and can be

relaxed at the cost of more complex notation.
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(iv) Assumption 2 (c) provides standard moment and weak dependence conditions on the equation

error uit.

(v) Assumptions 2 (d) and 3 are standard regularity conditions on smoothness of the functional

coefficients, the density of zt, and the bandwidth requirements used in kernel estimation.

The following result provides asymptotic theory for the estimator β̂∗,APLC(z) in various

settings depending on whether N is fixed or N →∞ as T →∞ and whether η = 0 or η 6= 0.

Theorem 2.1. Under Assumptions 1-3, as T →∞, we have:

(a) if N is fixed (η may be zero or nonzero),√
NT |H|(β̂∗,APLC(z)− β∗(z)− B(z))⇒ N(0, νq0σ

2
uf
−1
z (z)V̄ −1xx ), (2.6)

where

V̄xx =

(
1 η′

η 1
NΣxx + ηη′

)
; (2.7)

(b) if N →∞ simultaneously with T and η = 0,

DN (β̂∗,APLC(z)− β∗(z)− B(z))⇒ N(0, νq0σ
2
uf
−1
z (z)(V ∗xx)−1), (2.8)

where

DN =

(√
NT |H| 0

0
√
T |H|Ip

)
, V ∗xx =

(
1 0

0 Vxx

)
;

(c) if N →∞ simultaneously with T and η 6= 0,

√
T |H|(β̂∗,APLC(z)− β∗(z)− B(z))⇒ N

(
0, νq0σ

2
uf
−1
z (z)

(
η′Σ−1xx η −η′Σ−1xx
−Σ−1xx η Σ−1xx

))
, (2.9)

which is a degenerate normal and where

B(z) = f−1z (z)µ2

q∑
s=1

h2s

[
∂fz(z)

∂zs

∂β∗(z)

∂zs
+

1

2

∂2β∗(z)

∂2zs
fz(z)

]
. (2.10)

Remark 2.2. When N is fixed, it is apparent from the definition of V̄xx in (2.7) that the mean η

cannot be too large compared to the variance Σxx. Otherwise the matrix V̄xx is close to singular.

In such cases, the average profile estimator can be very inefficient.
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Remark 2.3. From the definition of DN and when η = 0 and N goes to infinity, the convergence

rate of β̂0,APLC(z) is
√
NT |H|, whereas the convergence rate of β̂APLC(z) is

√
T |H|. When

h1 = h2 = · · · = hq = h, the optimal bandwidth order is then given by h = O((NT )−1/(q+4))

for β̂0,APLC(z) and h = O(T−1/(q+4)) for β̂APLC(z). Accordingly, a two step procedure may be

considered as the mean squared error (MSE) of β0(z) and β(z) cannot be minimized simulta-

neously. The idea is similar to that discussed in Cai et al. (2009). But we do not pursue this

direction further in the present paper. For the purposes of simulation we use the bandwidth decay

rate h = O(T−1/(q+4)) when implementing the APLC estimators in later comparisons with our

alternate approach.

Remark 2.4. The singularity of the limiting distribution of
√
T |H|(β̂∗,APLC(z)−β∗(z)) in The-

orem 2.1 (c) arises from the singularity of V̄xx as N →∞ and η 6= 0. Note that V̄xx is the prob-

ability limit of the sample moment matrix 1
T |H|

∑
t x∗,AtKtHx

′
∗,At. As N → ∞, x∗,At

p−→ (1, η′)′

for all t. Thus, there is insufficient signal in x∗,At asymptotically as N → ∞ to ensure a pos-

itive definite limiting sample moment matrix. However, when η = 0, the standardized quantity√
NxAt converges to a normally distributed random variable, which provides sufficient varia-

tion for the sample moment matrix N
T |H|

∑
t xAtKtHx

′
At to be non-singular and the standardized

sample moment matrix 1
T |H|PN

∑
t x∗,AtKtHx

′
∗,AtPN , where PN = diag(1,

√
NIp), converges to

a non-singular matrix. Consequently, the convergence rate of the coefficient of xAt is necessarily

slower than that of the intercept coefficient by order
√
N . These results match the limit theory

given in Theorem 2.1 (b).

Remark 2.5. Following Lee and Robinson (2015), we can consider the construction of an im-

proved APLC estimator. The current estimator assumes the identifying condition
∑N

i=1 αi = 0,

which is arbitrary in terms of weighting the fixed effects. In general, we could require that

ω′α = 0, for some N × 1 weight vector ω, and consider choosing an optimal ω. In our cur-

rent design, we assume {uit} is iid across i, stationary across t and independent with {zt}. It

is not hard to verify that the optimal ω in this setting is simply 1
N 1N×1, which leads to the

same identifying condition
∑N

i=1 αi = 0 used here and, hence, the same estimator. But in the

heteroskedastic situation, for example where E(uitujt|zt = z) is a function of z, other choices

may be optimal. This research direction is not pursued in the present work because we consider

another approach based on profiling with the full panel in the following section.

To develop a complete asymptotic theory in the degenerate case (Theorem 2.1 (c)), we first

transform coordinates in the regression (2.4) as follows

YA = (X∗ACη)(C
−1
η β∗(zt)) + UA ≡ (X∗ACη)θ∗(zt) + UA, (2.11)

where Cη =

(
1 −η′

η Ip

)
and θ∗(zt) = C−1η β∗(zt) is the transformed coefficient vector. Assuming
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η is known, we can estimate θ∗(z) using standard local level nonparametric estimation in (2.11)

and denote the resulting estimator θ̂∗,APLC(z). This is entirely analogous to the estimation of

β∗(z) based on (2.4), and the asymptotics follow easily. In Theorem 2.2 below we present the

asymptotic distribution of θ̂∗,APLC(z). In general, of course, η is unknown, in which case it may

be estimated using the sample mean η̂ = 1
NT

∑N
i=1

∑T
t=1 xit. Since η̂ = η + Op(1/(NT )1/2) the

results of the following theorem continue to hold.

Theorem 2.2. Under Assumptions 1-3, as T →∞ and N →∞ simultaneously, we have

DN (θ̂∗,APLC(z)− θ∗(z)− B∗(z))⇒ N(0, νq0σ
2
uf
−1
z (z)(V̄xx,η)

−1), (2.12)

where

B∗(z) = f−1z (z)µ2

q∑
s=1

h2s

[
∂fz(z)

∂zs

∂θ∗(z)

∂zs
+

1

2

∂2θ∗(z)

∂2zs
fz(z)

]
, (2.13)

V̄xx,η =

(
(1 + η′η)2 0

0 Σxx

)
. (2.14)

Equivalently,

DNC
−1
η (β̂∗,APLC(z)− β∗(z)− B(z))⇒ N(0, νq0σ

2
uf
−1
z (z)(V̄xx,η)

−1). (2.15)

Remark 2.6. Given the definition of DN , (2.15) implies that one linear combination of β̂∗,APLC(z)

is
√
NT |H|-consistent while others are

√
T |H|-consistent. More specifically, since C−1η =

1
1+η′η

(
1 η′

η (1 + η′η)Ip − ηη′

)
≡ 1

1+η′η

(
c′η
C∗η

)
, where c′η = (1 η′), it follows that the linear combi-

nation c′ηβ̂∗,APLC(z) is
√
NT |H|-consistent, whereas the other linear combinations C∗η β̂∗,APLC(z)

are
√
T |H|-consistent. Note that c′ηβ̂∗,APLC(z) is precisely the estimator of the composite inter-

cept β0(z) + η′β(z) defined in Remark 2.1 (iii). This finding explains Theorem 2.1 of Li et al.

(2011). Under the assumption that η = 0, the composite intercept is just the usual intercept

β0(z). This explains why the estimator β̂0,APLC(z) of β0(z) has a faster convergence rate, as

found in Theorem 2.1 (b). See also Remark 2.3.

2.2 Profile local constant estimation

As shown in Theorem 2.1 the estimator of the slope function β(z) converges at rate
√
T |H|.

We now propose another estimation procedure that returns a
√
NT |H|-consistent estimator of

β(z).
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In model (1.2), if the αi, i = 1, · · · , N were known, we could apply standard local level

estimation of β∗(z) giving the oracle estimator

β̂oracle∗,PLC(z) = [X ′∗K(z)X∗]
−1X ′∗K(z)(Y −D∗α∗), (2.16)

where Y = (y11, · · · , y1T , · · · , yN1, · · · , yNT )′, D∗ = (−1N−1, IN−1)
′ ⊗ 1T is NT × (N − 1),

α∗ = (α2, · · · , αN )′, X ′∗ is NT×(p+1) by stacking the 1×(p+1) vector x′∗,it, and K(z) = IN⊗Kz

is an NT ×NT diagonal matrix.

Let w∗(z) = [X ′∗K(z)X∗]
−1X ′∗K(z) be the (p + 1) × NT coefficient matrix in the oracle

estimator (2.16), which may then be written as β̂oracle∗,PLC(z) = w∗(z)(Y − D∗α∗). Using this

estimator in the model (1.2), gives the adjusted equation

yit = αi + x′∗,itw∗(zt)(Y −D∗α∗) + v∗,it, (2.17)

where v∗,it = yit − αi − x′∗,itw∗(zt)(Y −D∗α∗). To solve for α from (2.17), we first rewrite the

equation as

yit = αi + x′∗,itw∗(zt)(Y −D∗α∗) + v∗,it

= αi +

p+1∑
d=1

xit,d−1e
′
∗,dw∗(zt)(Y −D∗α∗) + v∗,it

= αi +

p+1∑
d=1

xit,d−1w∗,d(zt)(Y −D∗α∗) + v∗,it, (2.18)

where xit,0 ≡ 1, e∗,d is a (p + 1) × 1 vector with 1 in the d-th entry and 0 elsewhere, and

w∗,d(zt) = e′∗,dw∗(zt) is 1×NT . Arranging (2.18) in vector form gives the system

Y −D∗α∗ =

p+1∑
d=1

xd−1 � [1N ⊗ w∗,d(Z)(Y −D∗α∗)] + V ∗

=

[
p+1∑
d=1

(xd−1 ⊗ 1′n)� (1N ⊗ w∗,d(Z))

]
(Y −D∗α∗) + V ∗

≡ Q∗1(Y −D∗α∗) + V ∗,

where xd = (x11,d, · · · , x1T,d, · · · , xN1,d, · · · , xNT,d)′, w∗,d(Z) = (w∗,d(z1)
′, · · · , w∗,d(zT )′)′ is T ×

NT , � denotes the Hadamard product, and Q∗1 is defined by the matrix in square parentheses

in the final equation. Consequently, we have

(INT −Q∗1)Y = (INT −Q∗1)D∗α∗ + V ∗. (2.19)

Let M∗1 = INT −Q∗1 and M∗2 = M∗1D
∗. Then least squares regression on (2.19) gives

α̂∗PLC = [(M∗2 )′M∗2 ]−1(M∗2 )′M∗1Y, (2.20)
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with the affix “PLC” standing for Profile Local Constant. Plugging the estimator α̂∗PLC into

the expression for β̂oracle∗,PLC(z), we get the PLC estimator of the coefficient function β∗(z)

β̂∗,PLC(z) = [X ′∗K(z)X∗]
−1X ′∗K(z)(Y −D∗α̂∗PLC). (2.21)

The following result gives the asymptotic distributions of the oracle and PLC estimators.

Theorem 2.3. Under Assumptions 1-3, as T →∞, we have:

(a) for the oracle estimator β̂oracle∗,PLC(z) (with N either fixed or passing to infinity ),√
NT |H|(β̂oracle∗,PLC(z)− β∗(z)− B(z))⇒ N(0, f−1z (z)σ2uν

q
0 Ṽ
−1
xx ), (2.22)

where B(z) is defined in (2.10), and

Ṽxx =

(
1 η′

η Vxx

)
;

(b) for finite N , the estimator α̂∗PLC has limit theory

√
T (α̂∗PLC − α∗)⇒ N(0, γ2u[IN−1 −

1

N
1(N−1)×1 ⊗ 11×(N−1)]),

where γ2u is the long-run variance of {uit} defined in Assumption 2 (c);

(c) with N either fixed or passing to infinity, the feasible estimator β̂∗,PLC(z) is asymptotically

equivalent to the oracle estimator β̂oracle∗,PLC(z).

Remark 2.7. (Asymptotic equivalence) Theorem 2.3 (c) shows that the feasible estimator

β̂∗,PLC(z) is asymptotically equivalent to the oracle estimator β̂oracle∗,PLC(z) irrespective of the T/N

ratio, provided T → ∞ and T |H| → ∞. Thus, the result holds for N fixed as well as N → ∞
at a faster or slower rate than T . The key that leads to this equivalence lies in the special

structure of the asymptotic variance of α̂∗PLC given in Theorem 2.3 (b). First, for each j =

2, · · · , N , we have
√
T (α̂j,PLC − αj) ⇒ N(0, γ2u(1 − 1/N)). Then α̂j,PLC − αj = Op(1/

√
T )

for each j. Note that 11×(N−1)
√
T (α̂∗PLC − α∗) is asymptotically normal with covariance matrix

γ2u11×(N−1)[IN−1− 1
N 1(N−1)×1⊗11×(N−1)]1(N−1)×1 ≡ γ2uN−1N . It follows that

∑N
j=2(α̂j,PLC−αj)

is also of order Op(1/
√
T ), even as N goes to infinity. So the total estimation error introduced

by the individual effects remains well controlled and the feasible estimator is asymptotically

equivalent to the oracle estimator.

Remark 2.8. (Optimal bandwidth order) Suppose h1 = h2 = · · · = hq = h. Based on

the limit theory given in (2.22), the optimal bandwidth order is h = O((NT )−1/(4+q)). This

rate may seem counter-intuitive given that the smoothing in the nonparametric estimate relates

11



only to {zt} whereas the optimal order suggests a smaller bandwidth should be used when N

increases while T is fixed. This result is explained by the fact that we are actually using the

series {zt} repeatedly in estimation. For each i, we treat zit ≡ zt. From this point of view, the

effective sample size is
√
NT |H|. Then it may seem reasonable to let the bandwidth decrease

as N increases. However, we need to be more careful when N is large and T is moderate. The

optimal rate O((NT )−1/(q+4)) may lead to a very small bandwidth. In such cases, increasing

the cross section sample size N does not increase the density of the fixed T sample observations

{zt} in the sample space. In consequence, nonparametric estimation of β∗(z) is more vulnerable

to a weak signal and denominator singularity, viz., that there is no observation point zt within

the given bandwidth region for very small h. In practice, we can impose some restrictions on

bandwidth to ensure that at least one or two points are available in the selected bandwidth range.

Or we can simply use a kernel with unbounded support such as the Gaussian kernel to avoid this

problem.

Remark 2.9. (N/T ratio) We emphasize that the limit theory obtained here requires T →∞
and T |H| → ∞. These asymptotics do not apply when T is fixed and N goes to infinity2. The

failure is evident from the form of the kernel density estimator 1
NT |H|

∑
i

∑
tK(H−1(zt − z)).

When T is fixed, there are insufficient time series observations to estimate the density of zt at an

arbitrary point z in the support. For the kernel density estimate to converge to the true density,

we need the time series sample size T and its effective sample size T |H| to pass to infinity (i.e.,

T →∞ and T |H| → ∞) in which case the estimate converges to fz(z). To fix ideas, assume that

h1 = · · · = hq = h and the optimal bandwidth order h = O((NT )−1/(q+4)) is used. To ensure

T |H| = Thq → ∞, we need T 4/N q → ∞. When zt is univariate, this reduces to N/T 4 → 0,

which is unlikely to be demanding in practical work unless T is very small or N is extremely

large.

Remark 2.10. (Density estimation) Suppose zt is univariate. To estimate the density

fz(z), we recommend using the sample average 1
Th

∑
tK(h−1(zt− z)) with bandwidth order h =

O(T−1/5). There is no need to repeat the series {zt} N times and use 1
N

∑
i

1
Th

∑
tK(h−1(zt−z))

with h = O((NT )−1/5). Repetition brings no more information in this case.

Remark 2.11. (Asymptotically equivalent estimation of the composite intercept) For

the intercept coefficient β0(z), we have two estimators: β̂0,APLC(z) with asymptotics given in

(2.6) and β̂0,PLC(z) with asymptotics given in (2.22). Note that the (1,1) entry of V̄ −1xx is 1 +

Nη′Σ−1xx η, and the (1,1) entry of Ṽ −1xx is 1+η′Σ−1xx η. Thus these two estimators are asymptotically

equivalent when N = 1 or η = 0. This equivalence is verified in simulations. We find that when

η = 0, the APLC estimator has averaged MSE (AMSE) very close to the PLC estimator. When

2This case is currently under investigation by the authors.
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N is relatively large, the discrepancy grows larger because of the bandwidth problem. See the first

comment in Section 4.1 for more discussion.

More generally, the PLC estimator and the APLC estimator of the composite intercept

β0(z) + η′β(z) are always asymptotically equivalent. This equivalence is demonstrated in the

following way. From (2.15), the APLC estimator of the composite intercept has asymptotic

variance 1
NT |H|ν

q
0σ

2
uf
−1
z (z). From (2.22), the (1,1) entry of (1 η′)Ṽ −1xx (1 η′)′ is 1. So the asymp-

totic variance of the PLC estimator of the composite intercept is also 1
NT |H|ν

q
0σ

2
uf
−1
z (z). So

although there are two estimators for the composite intercept β0(z) + η′β(z), these estimators

are asymptotically equivalent.

We also note that Lee and Robinson (2015) only provided one type of estimator for the

nonparametric regression function in their model and this estimator corresponds to our APLC

estimator. A PLC-type estimator is also possible. But the two estimators are asymptotically

equivalent. The equivalence can be seen from the fact that the nonparametric conditional mean

function of Lee and Robinson (2015) corresponds to our intercept function β0(z) as there are

no explanatory variables xit and we have demonstrated that the APLC and PLC estimators are

asymptotically equivalent in this scenario.

3 Testing constancy of the functional coefficients

In practical work it is often useful to test specific parametric forms of functional coefficients.

Particularly important in this respect is inference regarding constancy of the regression coeffi-

cients. In the context of model (1.2) the relevant hypothesis concerning the functional coefficient

β∗(z) is whether this vector of coefficient functions can be treated as a constant vector. Tests of

such hypotheses can be constructed by examining the discrepancy between the nonparametric

estimate of β∗(z) and parametric estimate of β∗(z). In the present case it is advantageous to

use the PLC estimator because of its faster convergence rate. In what follows, we therefore use

β̂∗,PLC(z) as given in (2.21) to construct the test statistic.

3.1 Test statistic and limit distribution under the null

Under the null that H0 : β∗(z) = β∗ = const. a.s., the model (1.2) can be estimated by least

squares, giving the estimate β̂∗,OLS . A constancy test may then be constructed based on the

difference between the nonparametric estimate β̂∗,PLC(z) and the null-restricted estimate β̂∗,OLS

13



at a fixed number m of distinct points {z∗s}ms=1
3, namely

Im =
m∑
s=1

[β̂∗,PLC(z∗s )− β̂∗,OLS ]′[β̂∗,PLC(z∗s )− β̂∗,OLS ]. (3.1)

By standard results in linear panel models with fixed effects and stationary data, we know that

β̂∗,OLS is
√
TN -consistent, which is faster than the Op(

√
TN |H|) convergence rate of β̂∗,PLC(z).

Then under the null hypothesis and based on Theorem 2.3 (a) and (c) we have√
TN |H|(β̂∗,PLC(z)− β̂∗,OLS)⇒ N(0,Ω(z)), (3.2)

where Ω(z) ≡ f−1z (z)σ2uν
q
0 Ṽ
−1
xx .

Further, for any m distinct points {z∗s}ms=1 and with undersmoothing4 in the construction of

the nonparametric estimates β̂∗,PLC(z∗i ), we have

√
NT |H|


β̂∗,PLC(z∗1)− β∗(z∗1)

...

β̂∗,PLC(z∗m)− β∗(z∗m)

⇒ N

0,


Ω(z∗1) · · · 0

... 0

0 · · · Ω(z∗m)


 . (3.3)

To show this result, we need only verify that the limit covariance matrix is block diagonal,

which can be done by showing that |H|−1EK(H−1(zt − z∗1))K(H−1(zt − z∗2)) = o(1). For ease

of exposition and with no loss of generality assume zt is univariate. Then

h−1EK(
zt − z∗1
h

)K(
zt − z∗2
h

) = h−1
∫
K(

zt − z∗1
h

)K(
zt − z∗2
h

)fz(zt)dzt

=

∫
K(u1)K(u1 +

z∗1 − z∗2
h

)fz(z
∗
1 + hu1)du1

=

∫
K(u1)K(u1 +

z∗1 − z∗2
h

)du1fz(z
∗
1) + smaller order

→ 0 as h→ 0,

since K(u)→ 0 as u→∞. This justifies (3.3).

To obtain a suitable pivotal limit theory for the test statistic we normalize the quantity Im

as follows

I∗m = NT |H|
m∑
s=1

[β̂∗,PLC(z∗s )− β̂∗,OLS ]′Ω̂−1(z∗s )[β̂∗,PLC(z∗s )− β̂∗,OLS ], (3.4)

3In practice, the percentiles of {zt}Tt=1 may be used to select these distinct points. For example, in the

illustrative simulation in Section 4, we consider m ∈ {3, 9, 20} and use the {i/(m + 1)}mi=1 percentiles of {zt} as

the m distinct points.
4Undersmoothing requires

√
NT |H|||H||2 → 0 as NT → ∞.

14



where Ω̂(z) is a consistent estimate of Ω(z). It is easy to see that I∗m ⇒ χ2
(p+1)m under the null,

where χ2
k denotes the χ2 distribution with k degree of freedom. The multivariate case follows

directly.

Theorem 3.1. Under Assumptions 1-3 and under the null H0 without undersmoothing as T →
∞, we have I∗m ⇒ χ2

(p+1)m.

Alternatively, when m is large we can construct a test statistic that is asymptotically stan-

dard normal under the null. Denote δ(z) =
√
NT |H|Ω̂−1/2(z)(β̂∗,PLC(z) − β̂∗,OLS) and then

δ(z) ⇒ N(0, Ip+1), so that δ(z)′δ(z) ⇒ χ2
p+1. Consider the quantity I(m) = m−1I∗m =

m−1
∑m

s=1 δ(z
∗
s )′δ(z∗s ), where the {z∗s}ms=1 are m distinct points in the support of zt. Since

δ(z∗s )′δ(z∗s ) and δ(z∗t )′δ(z∗t ) are asymptotically independent for s 6= t, we can apply a CLT to

I(m), giving as m→∞,

√
m(I(m)− E(δ(zt)

′δ(zt)))⇒ N(0,Γ(δ(zt)
′δ(zt))), (3.5)

where Γ(vt) denotes the long run variance of the series {vt}. Since δ(z)′δ(z) ⇒ χ2
p+1, we have

E(δ(z)′δ(z))→ p+ 1 as NT →∞. Due to the asymptotic independence of the coordinates, we

have Γ(δ(z)′δ(z))→ V ar(δ(z)′δ(z)) = 2(p+ 1) as NT →∞. Then

J =

√
m

2(p+ 1)
[m−1I∗m − (p+ 1)]⇒ N(0, 1), (3.6)

as NT → ∞ and m → ∞. The above asymptotic theory uses sequential asymptotics where

NT → ∞ and |H| → 0 followed by m → ∞. It is likely that the result also holds under joint

asymptotics with some conditions, possibly controlling the expansion rate of m relative to T ,

but this is not investigated here.

3.2 Local asymptotic power

We consider the local alternative HL
1 : β∗(z) = β∗ + ρng∗(z), where n ≡ NT , ρn is a sequence

of constants that goes to 0 as n → ∞, and g∗(z) = (g0(z), g(z)′)′ is a (p + 1) × 1 bounded

real vector function that satisfies the continuity condition in Assumption 2 (d). This kind of

local alternative is commonly used in the study of nonparametric and semiparametric inference

involving stationary and nonstationary data; see, for example, Gao et al. (2009a), Gao et al.

(2009b), Wang and Phillips (2012), Chen et al. (2015).

The theorem below presents the limit properties of the test statistic I∗m under the local

alternative HL
1 .

Theorem 3.2. Under Assumptions 1-3 and undersmoothing with
√
NT |H|||H||2 → 0, and the

local alternative HL
1 , we have the following limit behavior for fixed m as T →∞,
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1. if
√
n|H|ρn → 0, I∗m ⇒ χ2

(p+1)m;

2. if
√
n|H|ρn = O(1), I∗m has non-central χ2

(p+1)m distribution;

3. if
√
n|H|ρn →∞, I∗m = Op(n|H|ρ2n)→∞.

Remark 3.1. Theorem 3.2 shows that the performance of the test I∗m depends on the rate at

which the sequence ρn in the localizing function ρng∗(z) in the alternative hypothesis converges

to zero. For sequences ρn = O( 1√
n|H|

), test based on I∗m has non-trivial local asymptotic power

and when ρn diminishes at a rate slower than O( 1√
n|H|

), the test is consistent, nesting the fixed

alternative case where ρn = ρ, some fixed constant.

Similar results hold for the test statistic J . In particular, if
√
n|H|ρn → 0, we have J ⇒

N(0, 1) as (n,m)→∞. If
√
n|H|ρn = O(1), we have J = Op(

√
m). And if

√
n|H|ρn →∞, we

have J = Op(n|H|ρ2n/
√
m).

We outline below the essentials of the argument in the proof of Theorem 3.2. First we show

under the local alternative HL
1 , the property of the OLS estimator β̂∗,OLS depends on ρn

5. More

specifically, we have

β̂∗,OLS − β∗ − B∗ = Op(1/
√
n), (3.7)

under the local alternative HL
1 , and the bias B∗ = Op(ρn).

Write β̂∗,PLC(z) − β̂∗,OLS = β̂∗,PLC(z) − β∗(z) + β∗ − β̂∗,OLS + ρng∗(z), and note that the

nonparametric estimate β̂∗,PLC(z) is always
√
NT |H|-consistent under the alternative with g∗(z)

bounded. Then, using undersmoothing to remove the bias of β̂∗,PLC(z), we have

β̂∗,PLC(z)− β̂∗,OLS − B∗ = Op(1/
√
n|H|), (3.8)

where the bias on the left side has order B∗ = Op(ρn). Therefore,√
n|H|(β̂∗,PLC(z)− β̂∗,OLS) = Op(

√
n|H|ρn) +Op(1), (3.9)

where the first term Op(
√
n|H|ρn) in this expression arises from bias. The representation (3.9)

reveals the asymptotic local power properties of the test.

1. If
√
n|H|ρn → 0, (3.9) is dominated by the Op(1) term. Then the limit theory (3.2) contin-

ues to hold. Consequently, I∗m remains asymptotically χ2
(p+1)m under the local alternative

HL
1 and the test has asymptotic power equal to size for such alternatives.

5More generally, and especially in nonlinear nonstationary settings, the convergence rate of β̂∗,OLS can depend

on both ρn and the properties of g∗(z), as discussed in Wang and Phillips (2012). Here we only discuss dependence

on ρn.
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2. If
√
n|H|ρn = O(1), then we have

√
n|H|(β̂∗,PLC(z)− β̂∗,OLS) = Op(1), but there is a bias

term that is of order Op(1). Then
√
n|H|(β̂∗,PLC(z)− β̂∗,OLS) has a non-central limiting

normal distribution and I∗m is asymptotically non-central χ2
(p+1)m. In this case, the test

has non-trivial local asymptotic power.

3. If
√
n|H|ρn → ∞, then

√
n|H|(β̂∗,PLC(z) − β̂∗,OLS) → ∞ and I∗m → ∞. The I∗m test is

consistent in this case.

4 Simulation

This Section reports simulation results on the finite sample performance of the estimation pro-

cedures and tests considered in the previous two sections. First, in Section 4.1, we examine the

finite sample performance of the two estimators proposed in Section 2. The tests proposed in

Section 3 are investigated in Section 4.2.

4.1 Estimation Accuracy

We use the following data generating mechanism

yit = αi + β0(zt) + xitβ1(zt) + uit,

xit = η + x0it, x0it = ρ1x
0
it−1 + ξit,

αi = c0x
0
iA + vi, i = 1, · · · , N − 1, αN = −

N−1∑
i=1

αi,

where (uit, ξit, vi) is i.i.d. N(0, diag(1, 1+η2, 1)), zt is i.i.d. U(−1, 1). The functional coefficients

are β0(z) = 1 + z, β1(z) = 1 + z2. The parameter c0 controls the correlation between αi

and x0iA = T−1
∑T

t=1 x
0
it. We use c0 = 1 and ρ1 = 0.5. The bandwidth is determined by

h = σ̂z(NT )−1/5 for the PLC estimators and h = σ̂zT
−1/5 for the APLC estimators, where σ̂z

is the sample standard deviation of {zt}Tt=1. We use a Gaussian kernel to avoid the singularity

problem discussed in Remark 2.8.

The process {x0it} has zero mean and thus Exit = η. To avoid the near singularity of the

matrix V̄xx defined in (2.7) which arises for large η (c.f., Remark 2.2 ), we let the variance of ξit

be 1 + η2. We use the values η ∈ {0, 1, 5} under different combinations of (N,T ). To evaluate

estimation accuracy, we report the Averaged MSE, defined as

AMSE(β(z)) =
1

B

B∑
l=1

[
1

T

T∑
t=1

(β̂(l)(zt)− β(zt))
2

]
, (4.1)
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where β̂(l)(z) denotes the estimate in the `-th replication. We use B = 400 and report the

criteria in Table 1 for β0(z) and in Table 2 for β1(z).

Our main findings are as follows:

(1) From Table 1, we see that for N = 5 and η = 0 the APLC and PLC estimators have very

close AMSEs. The correspondence is due to the fact that under this scenario the estimates

are asymptotically equivalent, as noted in Remark 2.11. When N = 50 and η = 0, the

discrepancies are mainly due to the large difference in their respective bandwidths (viz.,

h = O(T−1/5) for the APLC estimator and h = O((NT )−1/5) for the PLC estimator). As

noted in Remark 2.3, we are not using the optimal bandwidth order for the APLC estimator

β̂0,APLC(z). But when η 6= 0, the PLC estimate is more efficient that the APLC estimate,

as expected because the APLC estimator converges at the slower rate
√
T |H| indicated in

Theorem 2.1 (a), whereas the PLC estimator still converges at the rate
√
NT |H|.

(2) From Table 2, it is evident that the PLC estimates always outperform the APLC estimates

irrespective of whether η = 0 or η 6= 0. This outcome is well expected as the APLC estimator

of β1(z) is
√
T |H|-consistent and the PLC estimator is

√
NT |H|-consistent, consistent with

the findings presented in Theorem 2.1 (a) and Theorem 2.3 (a).

(3) The feasible PLC estimator performs almost as well as the oracle estimator in both Tables

1 and 2, especially when T is large. These results corroborate the asymptotic equivalence

given in Theorem 2.3 (c).

(4) The AMSEs of the β0(z) estimates reported in Table 1 increase as η increases, whereas the

AMSEs of the β1(z) estimates in Table 2 decrease as η increases. This is also explained by

the asymptotic theory. For the APLC estimates, from Theorem 2.1 (a) it is easy to verify

that the (1,1) entry of V̄ −1xx is an increasing function of η and the (2,2) entry is a decreasing

function of η (note that Σxx = 4(1+η2)/3 according to our simulation design). For the PLC

estimates, from Theorem 2.3 (a) it is apparent that the (1,1) entry of Ṽ −1xx is an increasing

function of η and the (2,2) entry is a decreasing function of η.

(5) Finally, as T increases, all the AMSEs decrease as expected. For the estimates that have√
NT |H| convergence rates (viz., the PLC estimates and the APLC estimate of β0(z) when

η = 0), the AMSEs also decrease as N increases. But for the
√
T |H|-consistent estimates

(the APLC estimate of β0(z) with η 6= 0 and the APLC estimate of β1(z)), the AMSEs

increase as N increases6. The heuristic explanation is that there is information loss from

cross section averaging in the first step of APLC estimation, see (2.3). When N increases,

6 Li et al. (2011) found a similar phenomenon for their
√
Th-consistent estimator, although their reported

AMSEs appear not to be monotonically increasing as N increases.
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the average xAt = N−1
∑N

i=1 xit converges to its mean η at which limit there is insufficient

signal variation (information) to jointly identify β0(z) and β(z). Correspondingly, as N

rises for any given T the estimation accuracy of the APLC procedure naturally deteriorates.

An exception occurs for the APLC estimator of β0(z) which has a
√
NT |H| convergence

rate when η = 0 because there is no intercept contamination from x′Atβ(zt) as there is when

η 6= 0. The phenomenon is also related to the failure of the asymptotic theory when N →∞
with T fixed, as discussed earlier in Remark 2.9.

4.2 Test performance

We next consider the finite sample performance of the test statistics defined in (3.4) and (3.6).

The DGP is the same as in Section 4.1 except that the functional coefficients are given as

β0(z) = 1 + ρnz, β1(z) = 1 + ρnz
2, (4.2)

where ρn satisfies
√
nhρn →∞ with n ≡ NT such that I∗m and J are both consistent tests (see

Theorem 3.2 and the following remarks). More specifically, we set ρn = O((nh)−1/4) = τn−3/16

since we adopt h = O(n−1/4) to achieve undersmoothing of the PLC estimator. Without loss of

generality, we set η = 1. We let m ∈ {3, 9, 20} to examine the impact of the number of distinct

points used in the test statistics and the {j/(m+ 1)}mj=1 percentiles of {zt} are used for the m

points. We let N ∈ {5, 20} and T ∈ {20, 50, 100}.
We first examine size performance of the tests I∗m and J . We set τ = 0. The rejection rates

with 5% nominal size are collected in Table 3 with 200 replications. Evidently, the two tests

share very similar performance. When N = 5, they are undersized if m is small. As m increases,

size also increases, especially for small T . When m=20, the tests are slighted oversized when T

is small. When N = 20, they are undersized for small m. For m=20, size is close to the nominal

size. Overall, test size appears sensitive to m for small sample sizes and more sensitive in the

case of I∗m than J .

To achieve better size control we adopt a bootstrap procedure. Within each replication, 200

bootstrap samples are used to generate critical values. Since J is a monotone transformation of

I∗m, the bootstrap rejection rates are the same for these two tests. The two tests are therefore

not distinguished in the bootstrap setting. The results are collected in Table 4. Evidently, size

of the bootstrap tests are close to nominal size for most parameter constellations and there is no

clear dependence on m. We therefore recommend using the bootstrap procedure to help ensure

size control in these tests in practical work.

To assess test power we let the localizing coefficient τ (recall that ρn = τn−3/16) in departures

from the null in (4.2) vary from 0.2 to 2 with a step-length of 0.2. The rejection rates of the

test implemented using the bootstrap procedure with 5% nominal size are plotted in Figure 1
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Figure 1: Rejection rates of the bootstrap procedure with 5% nominal size

for (a) N = 5 and (b) N = 20. We show the results with m = 9 here as the test based on the

bootstrap procedure shows little sensitivity to m.

In Figure 1 the rejection rates show test size when τ = 0 and the results are close to the

nominal size (5%), as seen in Table 4. When the localizing coefficient τ increases, the rejection

rates are flat for small departures from the null but subsequently rise rapidly with τ . The power

curves also rise uniformly as T increases. Comparison of the results for N = 5 and N = 20

reveals that increasing N also improves power. These findings corroborate the results in Section

3.2 that the test is consistent for departures from the null of the form (4.2) with
√
nhρn →∞.

5 Empirical application to climate sensitivity analysis

As an application of our methods we consider the problem of estimating Earth’s climate sensi-

tivity to a given increase in atmospheric CO2 concentration. As described in Storelvmo et al.

(2018), this is an issue on which there is much ongoing research, primarily with the use of

large scale global climate models. In these global climate modeling exercises analysis relies on

computer simulation data generated from immensely detailed models of Earth’s climate using

an ensemble of initializations of the variables that help to assess model sensitivity. An alter-

native approach that instead relies on observational data is to use econometric methods to fit

much simpler dynamic panel models from which parameter estimates may be obtained to assess

the impact on climate of rising atmospheric CO2 concentrations. The methodology has been

developed in recent work by Magnus et al. (2011), Storelvmo et al. (2016) and Phillips et al.

(2019). An advantage of the approach is that observationally based confidence intervals may

be constructed for the key parameters that are involved in measuring climate change dynamics

and the long term impact of rising CO2 concentrations.
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Our application uses three observational data sets: temperature (Tit), surface level solar

radiation (Rit) and CO2 equivalent greenhouse gas concentrations (CO2,t). The temperature

and surface radiation data record time series at multiple surface stations and thereby conform

to usual panel data with individual station and time series observations, whereas the CO2 data

varies only over the temporal dimension. Since a primary goal of empirical research with this data

is to measure the recent historical impact of aggregate CO2 on Earth’s climatic temperature, the

panel model framework necessarily involves the use of time and station level series in conjunction

with possible communal variables that affect climate in aggregate. Such communal variables in

the present case are aggregate CO2 levels and aggregate solar radiation levels measured at the

Earth’s surface.

It is convenient in this application to use the same data as in Phillips et al. (2019), which is

recorded over the 42-year period from 1964 to 2005 over 1484 land-based observation stations.

Using this data enables comparisons of various nonlinear functional coefficient specifications

with the linear specifications employed in Phillips et al. (2019). For example, we are able to

assess whether the impact of CO2 as a communal variable works nonlinearly through the model

coefficients or simply linearly as a common time effect regressor. For more information about

the data, see Phillips et al. (2019) and Storelvmo et al. (2016) and the references therein.7

Figure 2 plots the aggregated time series data8. An obvious feature of these aggregate data

series are their nonstationarity. Trend characteristics of varying types are evident in the global

temperature, radiation, and CO2 series, with greater year-to-year volatility in temperature and

radiation than in CO2. These series were modeled in Phillips et al. (2019) by allowing for

stochastic and deterministic linear trends as well as cointegrating linkages among the three

aggregate series. As might be expected, much greater variation occurs in the disaggregated

station level data. Linear cointegrating regression analysis was used in Phillips et al. (2019)

in studying the aggregate series and an asymptotic theory for the estimated coefficients was

obtained, including asymptotics for a composite parameter that measures climate sensitivity to

CO2.

In Magnus et al. (2011) and Storelvmo et al. (2016) disaggregated station-level data were

employed, standard dynamic panel within group and GMM methods were used in estimation,

and no attention was paid to possible nonstationarity in the data. The present application

proceeds along similar lines, utilizing the nonparametric panel regression modeling methodology

developed here, allowing for the presence of functional regression coefficients that depend on

communal aggregate variables. The goal of the application is to assess the impact at the station

7For a general discussion of Earth’s climate sensitivity to greenhouse gases and for references to recent work

in this field of climate science, readers are also referred to Storelvmo et al. (2018).
8Minor differences between the CO2 graphic in Figure 2 and that shown in Phillips et al. (2019) arise because

more decimal places are used here than in Phillips et al. (2019)
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Figure 2: Time series plot of Station-averaged temperature (T t,
◦Celsius; blue solid), downward

surface radiation (R̄t, Watts per m2; red dashed) and logarithms of CO2 (Pg: metric gigatons;

black dotted) ranging from 1964 to 2005

level of the global influences on Earth’s temperature of CO2 and downwelling solar radiation and

to determine whether linear specifications of the type used in earlier research is justified. The

implementation of this paper’s methodology that follows therefore does not specifically address

nonstationarity in the aggregate data, so that the tests and confidence intervals obtained in

our empirics are not strictly supported by the theory of the present paper. Nonetheless, we

expect that the present findings will be indicative9 and development of supporting limit theory

for nonstationary data extensions of the present paper’s methodology is planned by the authors

for future work.

We first investigate the relation among these three variables using the aggregated time series

data plotted in Figure 2. To explore the sensitivity of temperature to CO2, earlier work in

the literature has used linear regression of temperature on CO2 via linear modeling or linear

cointegration modeling, as in Phillips et al. (2019). To allow for a possibly nonlinear coefficient

impact of CO2 on temperature, where aggregate levels of downwelling radiation may potentially

9There is good reason to expect that the stationary process kernel regression asymptotics used here retain

some validity in nonstationary cases. Indeed, Wang and Phillips (2009a,b) showed that stationary kernel asymp-

totics, including confidence intervals, remain valid in certain nonstationary nonparametric cases such as regression

functions of integrated or near integrated time series.
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Figure 3: Estimated functional coefficients of model (5.1)

affect the impact of CO2, we use the functional coefficient regression formulation

T t = β0(R̄t) + β1(R̄t) ln(CO2,t) + et, (5.1)

where T t and R̄t denote the cross-station average of Tit and Rit, respectively. The estimated

functional coefficients and the corresponding 95% confidence bands10 are plotted in Figure 3.

The fitted functional coefficient estimates show that the intercept function β0(R̄t) exhibits an

upward trend with radiation, suggesting that the level impact on temperature rises with solar

radiation, as expected. On the other hand, the slope coefficient function β1(R̄t) exhibits a

downward trend, suggesting lower correlation between temperature and CO2 when radiation is

higher. This outcome may be partly explained by the fact that downwelling solar radiation rises

when atmospheric conditions are clearer with less pollutants (like sulfur dioxide) and in such

cases the greenhouse gas effects of rising CO2 on temperature may be attenuated because of

greater infrared radiation into space and aerosol/cloud interactions (Wild, 2012).

To see whether the linear relation assumption between temperature and CO2 is supported

by the data, we consider the following partial linear model

T t = β0(R̄t) + β1 ln(CO2,t) + vt. (5.2)

The estimated curve of β0(R̄t) is plotted in Figure 4 with 95% confidence bands, and the estimate

10The confidence bands plotted in Figure 3 may be inaccurate. In model (5.1), R̄t is I(1) and ln(CO2,t) has

a linear drift as well as a stochastic trend. To the best of our knowledge, asymptotic theory for nonparametric

regression within a functional coefficient environment with nonstationary communal covariate, as in the present

model, is unavailable in the literature. The current confidence bands are computed based on the asymptotics

obtained by Xiao (2009), which studies functional-coefficient cointegration in which the coefficients are functions

of a stationary covariate.
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Figure 4: Estimated functional coefficient β0(R̄t) of model (5.2)

of β1 is 4.20 with the 95% confidence interval [3.47, 4.92]11. The estimated curve β0(R̄t) in Figure

4 shows a clear upward trend, revealing strong positive effects from radiation to temperature.

To test the constancy of β1(R̄t) in model (5.1), or equivalently, the linear relation assumption

between temperature and CO2, we employ a likelihood ratio test to test the null model of (5.2)

against the alternative model of (5.1). The test gives a p-value of 0.52, suggesting acceptance of

a linear relation between temperature and CO2 that embodies the positive impact of radiation

on temperature through the functional dependence on radiation of the intercept.

To further investigate the nature of the impact of radiation on temperature, we consider

testing the constancy of β0(R̄t) in model (5.2). A likelihood ratio test gives a p-value of 0.019,

suggesting rejection of the commonly used simple linear model T t = β0 +β1 ln(CO2,t) + εt. This

result strongly demonstrates the significant role of radiation on temperature. Moreover, from

the estimated curve shown in Figure 4 for the intercept function, it seems that radiation has a

near linear impact on temperature. We therefore proceed to test whether β0(R̄t) in model (5.2)

can be accepted as a linear function of R̄t. That is, we test a linear model of the following form

T t = α0 + α1R̄t + β1 ln(CO2,t) + εt, (5.3)

against the partial linear model in (5.2). Using a likelihood ratio test gives a p-value of 0.75,

suggesting that the linear model specification in (5.3) is an adequate one to describe the de-

pendence of temperature on radiation and CO2. The linear model in (5.3) is exactly the global

linear (cointegrating) relation among the variables that was used in Phillips et al. (2019).

11The confidence bands in Figure 4 and the confidence interval for β1 may be inaccurate because the asymptotic

theory for the model (5.2) with nonstationary data characteristics is presently unavailable in literature. According

to the tests in Phillips et al. (2019), R̄t has a stochastic trend and ln(CO2,t) has a stochastic trend with drift. The

stated calculations are currently based on the asymptotic theory of a model of the same form as (5.2), assuming

that R̄t is stationary. However, as discussed in fn. 9, there is good reason to believe that this asymptotic theory

may have validity in a wider context that allows for integrated or near integrated communal variates.
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Figure 5: Histogram of the estimates of β1,i based on model (5.2) for each station i

We also estimate the partial linear model in (5.2) using the individual time series data for

each station to explore possible heterogeneity in the coefficient β1 across stations. In particular,

we estimate the partially linear regression equation Tit = β0,i(Rit) + β1,i ln(CO2,t) + vit for each

station i. Figure 5 shows the histogram of the estimates of β1,i obtained for all 1484 stations. It

is evident that the estimates center on a slope coefficient around 4 but with substantial variation

over stations, indicating that the impact of CO2 on temperature varies considerably over land

station locations. These findings on idiosyncratic variation in the magnitudes of β1 suggest that

stations might usefully be divided into subgroups of homogeneous coefficients, thereby capturing

between-group heterogeneity in the global impact of CO2 on temperature. Such grouping might

be accomplished using modern econometric methods such as classification Lasso techniques (Su

et al., 2016).

Next we consider full panel specifications, starting with the model

Tit = αi + β0(Rit) + β1 ln(CO2,t) + eit. (5.4)

The ln(CO2,t) coefficient estimate is 3.68 for β1, with a 95% confidence interval [3.63, 3.72],

which accords closely with the histogram results of Figure 5. The estimated intercept function

β0(Rit) and estimated fixed effects αi are plotted in Figure 6. The estimated function β0(Rit)

shows a strong rising influence of radiation on temperature, as would be expected. Moreover, the

fitted curve is indicative of a linear relation with a strong linear correlation with temperature.

This finding supports the linear panel model specification used in earlier work (Storelvmo et al.,

2016; Phillips et al., 2019). The fixed effects displayed in the right panel of Figure 6 also indicate

that stations may be usefully subdivided into smaller more homogeneous groups.

In view of the strong evidence of linearity shown in Figure 6 (a), we consider the following

linear panel data model as a specialization of (5.4)

Tit = αi + β0Rit + β1 ln(CO2,t) + uit. (5.5)
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Figure 6: Estimated functional coefficient β0(Rit) and the fixed effects αi of model (5.4)

Within Group estimation is used to estimate (5.5) giving β̂0 = 0.0103 with 95% confidence

interval [0.0098, 0.0108], and β̂1 = 3.7042 with 95% confidence interval [3.6585, 3.7499]. The

fixed effects are similar to those given in Figure 6 (b) and thus are omitted. We use the

likelihood ratio test to test the linear model (5.5) against the alternative partial linear model in

(5.4). The p-value is 0 in this test and so the simple linear panel model (5.5) is rejected. The

main reason for the statistical rejection is the extremely sharp confidence bounds that are shown

in Figure 6 (a), which exclude the strict linear relationship (5.5).12 These sharp bounds arise

from the very large number of total observations, NT = 62, 328, that are used in estimating the

nonparametric function β0(Rit) in (5.4).

For compliance with the specifications used in this paper, we also consider the following

functional coefficient model

Tit = αi + β0(ln(CO2,t)) +Ritβ1(ln(CO2,t)) + vit. (5.6)

This model is consistent with the form of (1.2), except that the data here do not meet the

requirements of stationarity13 in Assumption 2. Despite these inconsistencies with the assumed

regularity conditions, we can still estimate (5.6) with the proposed methods. The estimated

curves obtained by using the APLC method14 are shown in Figure 7. From the shape of the

β1(ln(CO2,t)) curve shown in panel (b), it is apparent that when atmospheric concentrations

of CO2 are high, radiation Rit has a significant positive effect on temperature, whereas the

12Use of parsimonious parametric forms such as inclusion of a quadratic term in Rit to (5.5) still leads to a

rejection in favor of the partial linear model with a likelihood ratio p-value again of 0.
13As indicated earlier, the ln(CO2,t) data have a stochastic trend with drift, whereas we assume zt to be

stationary; and radiation Rit has a stochastic trend, whereas we assume xit to be stationary.
14The PLC estimation procedure is extremely computer intensive and time-consuming in this case with a very

large NT value, so we only report the APLC results here.
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Figure 7: Estimated coefficient curves of model (5.6)

impact is less significant when CO2 levels are lower. The patterns shown by the fitted intercept

function β0(ln(CO2,t)) in panel (a) appear complementary in form to those of β1(ln(CO2,t)).

These results accord with the aggregate time series behavior shown in Figure 2. In particular,

high levels of CO2 occur later in the sample time period because of the strong trend in ln(CO2,t)

and during that period radiation appears to comove upwards with temperature, whereas lower

levels of CO2 occur early in the sample time period when radiation levels show little correlation

with temperature. These aggregate movements are mirrored in the station level data, leading

to the estimated coefficient curves shown in Figure 7. The fitted individual effects are similar

to those shown in Figure 6 (b) and are therefore omitted.

These empirical findings show that functional coefficient regression models can be helpful

in guiding and justifying parametric specifications where communal covariates are relevant.

Both at the aggregate and panel regression levels the functional coefficient estimates reveal

that the linear panel regression specifications used in past applied climate econometric research

(Magnus et al., 2011; Storelvmo et al., 2016; Phillips et al., 2019) in studying the impact of

CO2 and downwelling solar radiation on temperature receive support from testing these linear

specifications against much more complex nonparametric mechanisms where nonlinear effects of

CO2 and radiation on temperature are permitted.

6 Conclusions

Panel modeling of individual behavior and spatial modeling of physical phenomena often need to

account for the possible impact of macroeconomic and global influences on individual slope and

intercept coefficients. These effects can be captured in panel models by means of functional-

coefficients in which the coefficients depend on observable communal covariates via smooth
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functions.

The analysis of such functional-coefficient panel models in the present paper reveals impor-

tant differences in convergence rates and asymptotic properties between two general classes of

estimators, one (APLC) relying on convenient cross-section averaged data and the other (PLC)

based on the full panel sample. The differences especially highlight the effects of information loss

from cross-section averaging on the performance of the APLC estimator that relies on averaged

data. When the cross section sample size N → ∞ and the mean of the explanatory regressors

is non-zero, it is apparent that there is insufficient signal variation in the regressors to jointly

identify the intercept and slope functions. When (N,T ) → ∞ this indeterminacy is mitigated

and consistency holds but some linear combinations converge faster than others, depending on

the direction determined by the mean function. Use of the full panel data in estimation avoids

these difficulties and the corresponding PLC estimator has
√
NT |H| convergence rate and ora-

cle efficient properties, thereby making this method of estimation the recommended procedure

for practical work. The PLC estimators may also be used to construct tests for constancy of

the functional coefficients. The asymptotic findings on the estimators are corroborated in finite

sample performance in the simulations and, with the use of a bootstrap procedure, the constancy

tests are shown to have good finite sample size and power performance.

There are many directions in which the current work may be extended. As already indicated,

performance in functional coefficient estimation can be affected by the use of very large cross

section samples in relation to time series observations. The effects can be exacerbated in the

communal covariate case as consistent function estimation is reliant on T →∞ so that inconsis-

tencies arise in fixed T cases, where the inconsistencies depend on the time series trajectory of

the realized sample and the nature of the kernel function. Function-coefficient models with non-

stationary, trending variables are also of great importance in empirical work, as the empirical

application to climate data illustrates. The nonstationary covariate case is particularly rele-

vant in some applications (e.g., the trending CO2 series was used in the empirical illustration)

and leads to the challenges presented by nonlinear nonstationary kernel regression (Wang and

Phillips, 2009a,b). The authors plan to address these and other issues such as the presence of

endogenous covariates in subsequent work.
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Appendix

We start with some notation. We use ‘smaller order’ to represent terms that are of smaller

asymptotic order than the terms stated explicitly. C is a constant that may take different values

at different places. For a column vector ξ, we use |ξ| = (ξ′ξ)1/2 for the L2 norm. For a diagonal

matrix A = diag(a1, · · · , ap), we use |A| = a1 · · · ap. The notation V ecDiag(B) means take the

diagonal elements of the square matrix B and stack them as a column vector. According to the

context, we use := and =: to signify definitional equality.

A Proof of Theorem 2.1

Since (2.3) is a conventional time series functional-coefficient model of stationary data, most of

the proof follows standard lines and we only outline the essentials. Important distinctions occur

when Exit = η 6= 0 in part (c).

First, the d-th element of β∗(zt), βd−1(zt), d = 1, · · · , p+1, admits the following second order

Taylor expansion at a given point z = (z1, · · · , zq)′

βd−1(zt) = βd−1(z) + (zt − z)′β(1)d−1(z) +
1

2
(zt − z)′β(2)d−1(z)(zt − z) + op(|zt − z|2)

= βd−1(z) + [H−1(zt − z)]′Hβ(1)d−1(z) +
1

2
[H−1(zt − z)]′Hβ(2)d−1(z)H[H−1(zt − z)] + op(|zt − z|2)

=: βd−1(z) + β̇d−1(z, zt) +
1

2
β̈d−1(z, zt) + op(|zt − z|2),

where H = diag(h1, · · · , hq) and |zt − z|2 =
∑q

j=1(zt,j − zj)2. The definitions of β̇d−1(z, zt) and

β̈d−1(z, zt) follow from the context and they are scalars. Then the (p+ 1)× 1 vector β∗(zt) can

be written as follows

β∗(zt) =


β0(zt)

β1(zt)
...

βp(zt)

 = β∗(z) + β̇∗(z, zt) +
1

2
β̈∗(z, zt) + op(|zt − z|2)1(p+1)×1, (A.1)

where β̇∗(z, zt) is a (p+ 1)× 1 vector with d-th element β̇d−1(z, zt), β̈∗(z, zt) is (p+ 1)× 1 with

d-th element β̈d−1(z, zt). 1p×1 denotes a p × 1 vector of ones. Using the Taylor expansion of

β∗(zt) given in (A.1) in (2.3) we have

yAt = x′∗,Atβ∗(z) + x′∗,Atβ̇∗(z, zt) +
1

2
x′∗,Atβ̈∗(z, zt) + uAt + smaller order, (A.2)

or in vector form,

YA = X∗Aβ∗(z) + UA + V ecDiag(X∗Aβ̇∗(z)) +
1

2
V ecDiag(X∗Aβ̈∗(z)) + smaller order, (A.3)
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where X∗A is T × (p+ 1) by stacking x′∗,At, β̇∗(z) is (p+ 1)× T with the t-th column being the

(p+ 1)× 1 vector β̇∗(z, zt), and β̈∗(z) is analogously defined. Then we have

β̂∗,APLC(z)− β∗(z) =[(X∗A)′KzX
∗
A]−1(X∗A)′KzYA − β∗(z)

=[(X∗A)′KzX
∗
A]−1(X∗A)′Kz (X∗Aβ∗(z) + UA

+V ecDiag(X∗Aβ̇∗(z)) + V ecDiag(X∗Aβ̈∗(z))/2 + smaller order
)
− β∗(z)

=[(X∗A)′KzX
∗
A]−1(X∗A)′KzUA + [(X∗A)′KzX

∗
A]−1(X∗A)′KzV ecDiag(X∗Aβ̇∗(z))

+ 1/2[(X∗A)′KzX
∗
A]−1(X∗A)′KzV ecDiag(X∗Aβ̈∗(z)) + smaller order.

(A.4)

From expression (A.4), it follows that the bias term is B̄∗1 + B̄∗2 , where

B̄∗1 = [(X∗A)′KzX
∗
A]−1(X∗A)′KzV ecDiag(X∗Aβ̇∗(z)),

B̄∗2 =
1

2
[(X∗A)′KzX

∗
A]−1(X∗A)′KzV ecDiag(X∗Aβ̈∗(z)).

Combining Lemma D.1 and D.3, we can see under all three situations (N is fixed, N goes to

infinity and Exit = 0 or N goes to infinity and Exit 6= 0), we have

B̄∗1
p−→ µ2f

−1
z (z)

q∑
j=1

h2j
∂β∗(z)

∂zj

∂fz(z)

∂zj
, (A.5)

B̄∗2
p−→ 1

2
µ2

q∑
j=1

h2j
∂2β∗(z)

∂2zj
. (A.6)

Therefore, the asymptotic bias is

B(z) = µ2f
−1
z (z)

q∑
j=1

h2j

[
∂β∗(z)

∂zj

∂fz(z)

∂zj
+

1

2

∂2β∗(z)

∂2zj
fz(z)

]
.

From (A.4), the term that determines the limit distribution is

V̄ ∗ = [(X∗A)′KzX
∗
A]−1(X∗A)′KzUA.

Combining Lemma D.1 and D.2, we have when N is fixed,√
T |H|V̄ ∗ ⇒ N(0, νq0N

−1σ2uf
−1
z (z)V̄ −1xx ). (A.7)

When N →∞ and Exit = 0,(√
NT |H| 0

0
√
T |H|Ip

)
V̄ ∗ =

(
1 0

0
√
NIp

)−1√
NT |H|V̄ ∗ ⇒ N(0, νq0σ

2
uf
−1
z (z)(V ∗xx)−1).

(A.8)
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When N →∞ and Exit 6= 0, we have√
T |H|V̄ ∗ ⇒ N

(
0, νq0σ

2
uf
−1
z (z)

(
η′Σ−1xx η −η′Σ−1xx
−Σ−1xx η Σ−1xx

))
,

which is a degenerate distribution.

Combining (A.5)-(A.8), we see that when N is fixed,√
T |H|(β̂∗,APLC(z)− β∗(z)− B(z))⇒ N(0, νq0N

−1σ2uf
−1
z (z)V̄ −1xx ),

and when N →∞ and Exit = 0,

DN (β̂∗,APLC(z)− β∗(z)− B(z))⇒ N(0, νq0σ
2
uf
−1
z (z)(V ∗xx)−1),

where

DN =

(√
NT |H| 0

0
√
T |H|Ip

)
.

When N →∞ as T →∞ and Exit = η 6= 0, we have√
T |H|(β̂∗,APLC(z)− β∗(z)− B(z))⇒ N

(
0, νq0σ

2
uf
−1
z (z)

(
η′Σ−1xx η −η′Σ−1xx
−Σ−1xx η Σ−1xx

))
,

which is degenerate normal. �

B Proof of Theorem 2.3

(a) We first consider the oracle estimator β̂oracle∗,PLC . The Taylor expansion given in (A.1) continues

to hold. Using this expansion in model (1.2) we have

yit = αi + x′∗,it

[
β∗(z) + β̇∗(z, zt) +

1

2
β̈∗(z, zt)

]
+ uit + smaller order, (B.1)

or in vector form

Y = D∗α∗ +X∗β∗(z) + V ecDiag(X∗[1
′
N ⊗ β̇∗(z)]) +

1

2
V ecDiag(X∗[1

′
N ⊗ β̈∗(z)]) + U + smaller order,

where X∗ is NT × (p+ 1) by stacking the 1× (p+ 1) vector x′∗,it = [1, x′it]. β̈∗(z) is (p+ 1)× T
with the t-th column being β̈∗(z, zt). β̇∗(z) is analogously defined. Then we have

β̂oracle∗,PLC(z) =[X ′∗K(z)X∗]
−1X ′∗K(z)(Y −D∗α∗)

=[X ′∗K(z)X∗]
−1X ′∗K(z)

[
X∗β∗(z) + V ecDiag(X∗[1

′
N ⊗ β̇∗(z)])

+
1

2
V ecDiag(X∗[1

′
N ⊗ β̈∗(z)]) + U + smaller order

]
=β∗(z) + [X ′∗K(z)X∗]

−1X ′∗K(z)U + [X ′∗K(z)X∗]
−1X ′∗K(z)V ecDiag(X∗[1

′
N ⊗ β̇∗(z)])

+ [X ′∗K(z)X∗]
−1X ′∗K(z)

1

2
diag[X∗(11×N ⊗ β̈∗(z))] + smaller order.
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In view of Lemma D.4 and D.5, we have

1√
NT |H|

[X ′∗K(z)X∗]
−1X ′∗K(z)U ⇒ N(0, f−1z (z)σ2uν

q
0 Ṽ
−1
xx ).

In view of Lemma D.4 and D.6, we have

[X ′∗K(z)X∗]
−1X ′∗K(z)V ecDiag(X∗[1

′
N ⊗ β̇∗(z)])

p−→ µ2f
−1
z (z)

q∑
s=1

h2s
∂β∗(z)

∂zs

∂fz(z)

∂zs
,

[X ′∗K(z)X∗]
−1X ′∗K(z)V ecDiag(X∗[1

′
N ⊗ β̈∗(z)])

p−→ µ2

q∑
s=1

h2s
∂2β∗(z)

∂2zs
.

Thus the asymptotic bias is

B(z) = µ2f
−1
z (z)

q∑
s=1

h2s

[
∂β∗(z)

∂zs

∂fz(z)

∂zs
+

1

2
fz(z)

∂2β∗(z)

∂2zs

]
.

Finally, we have √
NT |H|(β̂oracle∗,PLC − β∗(z)− B(z))⇒ N(0, f−1z (z)σ2uν

q
0 Ṽ
−1
xx ).

(b) Next consider the estimator α̂∗PLC defined in (2.20). Based on (2.19) we have

α̂∗PLC − α∗ = [(M∗2 )′M∗2 ]−1(M∗2 )′V ∗,

where V ∗ = V ecDiag(X∗{1′N⊗[β∗(Z)−β̂oracle∗,PLC(Z)]})+U , with v∗,it = x′∗,it[β∗(zt)−β̂oracle∗,PLC(zt)]+

uit. β∗(Z) is (p + 1) × T with t-th column β∗(zt) and β̂oracle∗,PLC(Z) is similarly defined. Then we

have

α̂∗PLC − α∗ = [(M∗2 )′M∗2 ]−1(M∗2 )′V ecDiag(X∗{1′N ⊗ [β∗(Z)− β̂oracle∗,PLC(Z)]}) + [(M∗2 )′M∗2 ]−1(M∗2 )′U

=: [(M∗2 )′M∗2 ]−1(M∗2 )′W + [(M∗2 )′M∗2 ]−1(M∗2 )′U, (B.2)

where W = V ecDiag(X∗{1′N ⊗ [β∗(Z) − β̂oracle∗,PLC(Z)]}). Below we analyze the two terms in

(B.2). We will show the first term has smaller order than the second term and the asymptotic

distribution of α̂∗PLC − α∗ is therefore determined by the second term.
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Note that M∗2 = (INT −Q∗1)D∗. First consider Q∗1. We have

Q∗1 =

p+1∑
d=1

(xd−1 ⊗ 1′n)� (1N ⊗ w∗,d(Z))

=



∑
d x11,d−1wd(z1)

...∑
d x1T,d−1wd(zT )

...∑
d xN1,d−1wd(z1)

...∑
d xNT,d−1wd(zT )


=



x′∗,11w∗(z1)
...

x′∗,1Tw∗(zT )
...

x′∗,N1w∗(z1)
...

x′∗,NTw∗(zT )


,

where w∗(zt) = [X ′∗K(zt)X∗]
−1X ′∗K(zt) is (p+ 1)× n, with n ≡ NT . Then each row x′∗,itw∗(zt)

is 1× n. For the matrix Q∗1D
∗, the typical row at the (j − 1)-th column is

x′∗,it[X
′
∗K(zt)X∗]

−1
T∑
s=1

[−x∗,1sK(H−1(zs − zt)) + x∗,jsK(H−1(zs − zt))],

for j = 2, · · · , N . We already have 1
NT |H|X

′
∗K(z)X∗

p−→ fz(z)Ṽxx. Note that

1

T |H|

T∑
s=1

[
−x∗,1sK(H−1(zs − zt)) + x∗,jsK(H−1(zs − zt))

] p−→ fz(zt)

[
−

(
1

η1

)
+

(
1

ηj

)]
.

Since η1 = · · · = ηN = η, we have Q∗1D
∗ p−→ 0. then M∗2

p−→ D∗. Further, by direct calculation

T−1(D∗)′D∗ = IN−1 + 1(N−1)×1 ⊗ 11×(N−1). Then we have T−1(M∗2 )′M∗2
p−→ IN−1 + 1(N−1)×1 ⊗

11×(N−1), and (M∗2 )′U = (D∗ + op(1))′U . Note that the (j − 1)-th row of (D∗)′U is −
∑

t u1t +∑
t ujt, for j = 2, · · · , N . Since we assume uit is iid across i, the asymptotic variance of

1√
T

(D∗)′U is γ2u[IN−1 + 1(N−1)×1 ⊗ 11×(N−1)]. Therefore, for the second term in (B.2), we have

√
T [(M∗2 )′M∗2 ]−1(M∗2 )′U ⇒ N(0, γ2u[IN−1 + 1(N−1)×1 ⊗ 11×(N−1)]

−1). (B.3)

Next consider the first term in (B.2). Note that the typical row of W is x′∗,it[β∗(zt) −
β̂oracle∗,PLC(zt)], so that the (j − 1)-th row of (M∗2 )′W is

∑
t[x
′
∗,jt − x′∗,1t][β∗(zt) − β̂oracle∗,PLC(zt)], for

j = 2, · · · , N . Now [x′∗,jt − x′∗,1t] has zero mean, T−1/2
∑

t[x
′
∗,jt − x′∗,1t] = Op(1) by central limit

theory, and by a uniform convergence extension15 of the limit theory of the oracle estimator

supt≤T |β∗(zt)− β̂oracle∗,PLC(zt)| = op(1). It follows that T−1/2(M∗2 )′W = op(1). Thus the first term

in (B.2) is of order op(1/
√
T ), which is smaller than that of the second term.

15Under suitable conditions on smoothness, bounded densities, and mixing decay rate, uniform convergence

may be established using the results of Hansen (2008) for kernel regression with weakly dependent data.
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Finally, in view of (B.3), we have
√
T (α̂∗PLC − α∗)⇒ N(0, γ2u[IN−1 + 1(N−1)×1 ⊗ 11×(N−1)]

−1)

= N(0, γ2u[IN−1 −
1

N
1(N−1)×1 ⊗ 11×(N−1)]). (B.4)

(c) Now consider the feasible estimator β̂∗,PLC(z). We have

β̂∗,PLC(z)− β∗(z) = [X ′∗K(z)X∗]
−1X ′∗K(z)(Y −D∗α̂∗PLC)− β∗(z)

= [X ′∗K(z)X∗]
−1X ′∗K(z)(Y −D∗α∗)− β∗(z) + [X ′∗K(z)X∗]

−1X ′∗K(z)D∗(α∗ − α̂∗PLC)

= β̂oracle∗,PLC(z)− β∗(z) + [X ′∗K(z)X∗]
−1X ′∗K(z)D∗(α∗ − α̂∗PLC). (B.5)

For the second term in (B.5), we already have 1
NT |H|X

′
∗K(z)X∗

p−→ fz(z)Ṽxx. Consider the term

X ′∗K(z)D∗(α∗ − α̂∗PLC). We have

1

NT |H|
X ′∗K(z)D∗(α∗ − α̂∗PLC) =

(
0

1
N

∑N
j=2[

1
T |H|

∑
t(xjt − x1t)Kt](αj − α̂j,PLC)

)
. (B.6)

From standard kernel asymptotics we know that 1
T |H|

∑
t(xjt − x1t)Kt

p−→ fz(z)E(xjt − x1t) = 0,

and 1√
T |H|

∑
t(xjt − x1t)Kt ⇒ N(0, νq0fz(z)E(xjt − x1t)(xjt − x1t)′) = N(0, 2νq0fz(z)Σxx). Thus

1

T |H|
∑
t

(xjt − x1t)Kt = Op(1/
√
T |H|) for all j = 2, · · · , N. (B.7)

Further, the term 1
T |H|

∑
t(xjt − x1t)Kt may be taken out of the summation over j in (B.6)

after rescaling by appealing to a law of interated logarithm for kernel regression estimates and

triangular arrays, so that

lim sup
T→∞

±

√
2

T |H|
log2(T |H|)

1

T |H|
∑
t

(xjt − x1t)Kt ≤ C a.s., (B.8)

where log2(·) = log log(·), and C is a constant that is independent of j by virtue of stationarity

over j and bounded density fz(z). Stute (1982), Hardle (1984) and Hall (1991) proved related

LIL results for kernel estimators based on iid data. More recent research by Huang et al. (2014)

established an LIL result of the form (B.8) for recursive kernel regression estimates with weakly

dependent sequences. We believe similar results can be expected to hold for standard kernel

regression estimates for weakly dependent sequences but have not been able to find a reference

to such a result in the literature.16

16Hall (1991) and Hardle (1984) used a strong approximation for empirical processes of iid sequences to prove

an LIL for kernel density and kernel regression estimates. Recent work by Berkes et al. (2009) and Dedecker

et al. (2013) provides extensions of such strong approximations to stationary sequences under mixing conditions.

It seems that an LIL for kernel regression estimates with dependent data should be obtainable along similar lines

under suitable dependence and bandwidth conditions, although an explicit result does not appear to be available

presently in the literature.
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From (B.4), we have

11×(N−1)
√
T (α̂∗PLC − α∗)⇒ N(0, γ2u11×(N−1)[IN−1 −

1

N
1(N−1)×1 ⊗ 11×(N−1)]1(N−1)×1)

= N(0, γ2u(N − 1)/N).

Therefore,
√
T
∑N

j=2(α̂j,PLC − αj)⇒ N(0, γ2u
N−1
N ). Then

1

N

N∑
j=2

(αj − α̂j,PLC) = Op(1/N
√
T ). (B.9)

Combining (B.7) and (B.9), we know the second entry of (B.6) is of order Op(1/NT
√
|H|).

Thus the second term of (B.5) is of order Op(1/NT
√
|H|), which is smaller than that of the

first term as NT →∞. Therefore, the feasible estimator β̂∗,PLC(z) is asymptotically equivalent

to the oracle estimator β̂oracle∗,PLC(z) as NT →∞. �

C Proof of Theorem 3.2

For convenience, we first outline the estimation procedure under the null H0. Let β∗ = (β0, β
′)′.

Under H0, model (1.2) becomes

yit = αi + β0 + x′itβ + uit, i = 1, · · · , N, t = 1, · · · , T. (C.1)

Taking averages over t, we get

yiA = αi + β0 + x′iAβ + uiA, i = 1, · · · , N. (C.2)

Subtracting (C.2) from (C.1) gives

yit − yiA = (x′it − x′iA)β + uit − uiA, i = 1, · · · , N, t = 1, · · · , T. (C.3)

Then we have

β̂OLS =

∑
i,t

(xit − xiA)(xit − xiA)′

−1 ∑
i,t

(xit − xiA)(yit − yiA)

 . (C.4)

Plugging β̂OLS into (C.1), we get (noting that
∑

i αi = 0 due to the identification condition)

β̂0,OLS =
1

NT

∑
i,t

(yit − x′itβ̂OLS). (C.5)

Next consider the properties of β̂∗,OLS = (β̂0,OLS , β̂
′
OLS)′ under the alternative HL

1 . Under

HL
1 , we have

yit = αi + β0 + ρng0(zt) + x′it[β + ρng(zt)] + uit. (C.6)
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Averaging (C.6) over t gives

yiA = αi + β0 + ρnT
−1
∑
t

g0(zt) + x′iAβ + ρnT
−1
∑
t

x′itg(zt) + uiA. (C.7)

Subtracting (C.7) from (C.6), we have

yit− yiA = ρn[g0(zt)−T−1
∑
t

g0(zt)] + (xit−xiA)′β+ ρn[x′itg(zt)−T−1
∑
t

x′itg(zt)] +uit−uiA.

(C.8)

Then, under the alternative HL
1 the OLS estimator in (C.4) is

β̂OLS − β =

∑
i,t

(xit − xiA)(xit − xiA)′

−1 ∑
i,t

(xit − xiA)(yit − yiA)

− β
= ρn

∑
i,t

(xit − xiA)(xit − xiA)′

−1 ∑
i,t

(xit − xiA)(g0(zt)− T−1
∑
t

g0(zt))


+ρn

∑
i,t

(xit − xiA)(xit − xiA)′

−1 ∑
i,t

(xit − xiA)(x′itg(zt)− T−1
∑
t

x′itg(zt))


+

∑
i,t

(xit − xiA)(xit − xiA)′

−1 ∑
i,t

(xit − xiA)(uit − uiA)

 . (C.9)

Since E[(xit − xiA)|zs] = 0 due to Assumption 2 (b), E(xit − xiA)(g0(zt) − T−1
∑

t g0(zt)) = 0.

Then by central limit theory as n→∞, n−1/2
∑

i,t(xit − xiA)(g0(zt)− T−1
∑

t g0(zt)) = Op(1).

Thus the first term in the RHS of (C.9) is of order Op(ρn/
√
n). For the second term in the RHS

of (C.9), in view of Assumption 2 (b), we have

E[(xit − xiA)(x′itg(zt)− T−1
∑
s

x′isg(zs))]

=E[(xit − xiA)x′it]Eg(zt)− E

[
(xit − xiA)T−1

∑
s

x′is

]
Eg(zs)

=E

[
(xit − xiA)(xit − T−1

∑
s

xis)
′

]
Eg(zt) 6= 0 (C.10)

since Eg(zt) 6= 0. Therefore, this term is of order Op(ρn). Analysis for the third term is standard

and it has zero mean and is of order Op(1/
√
NT ). Combining these results, we have

β̂OLS − β − B = Op(1/
√
n) (C.11)

under the local alternative HL
1 , where the bias term B = Op(ρn).
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Now consider the OLS estimator β̂0,OLS given in (C.5). We have

β̂0,OLS − β0 =
1

NT

∑
i,t

(yit − x′itβ̂OLS)− β0

=ρn
1

T

∑
t

g0(zt) +
1

n

∑
i,t

x′it[β − β̂OLS ] + ρn
1

n

∑
i,t

x′itg(zt) +
1

n

∑
it

uit. (C.12)

The first term on the RHS of (C.12) is of order Op(ρn) because Eg0(zt) 6= 0. The second term

is of the same order as β̂OLS − β, which is Op(ρn + 1/
√
n). The third term is of order Op(ρn)

because E[x′itg(zt)] 6= 0. The last term is of order Op(1/
√
n). So we have

β̂0,OLS − β0 − B0 = Op(1/
√
n) (C.13)

under the local alternative HL
1 , and the bias B0 = Op(ρn). Combining (C.11) and (C.13), we

have

β̂∗,OLS − β∗ − B∗ = Op(1/
√
n), (C.14)

under the local alternative HL
1 , and the bias B∗ = Op(ρn).

Since

β̂∗,PLC(z)− β̂∗,OLS = β̂∗,PLC(z)− β∗(z) + β∗(z)− β̂∗,OLS
= β̂∗,PLC(z)− β∗(z) + β∗ − β̂∗,OLS + ρng∗(z), (C.15)

and since the nonparametric estimator β̂∗,PLC(z) is always
√
NT |H|-consistent under the alter-

native and g∗(z) is bounded, we have (with undersmoothing to remove the bias of β̂∗,PLC(z))

β̂∗,PLC(z)− β̂∗,OLS − B∗ = Op(1/
√
n|H|), (C.16)

where the bias B∗ = Op(ρn). Therefore,√
n|H|(β̂∗,PLC(z)− β̂∗,OLS) = Op(

√
n|H|ρn) +Op(1), (C.17)

where the first term Op(
√
n|H|ρn) comes from the bias.

If
√
n|H|ρn → 0, then in this case (3.2) continues to hold. Thus we still have I∗m ⇒ χ2

(p+1)m

and J ⇒ N(0, 1) under the local alternative HL
1 . This means the tests have asymptotic power

equals to size for such alternatives.

If
√
n|H|ρn = O(1), then

√
n|H|(β̂∗,PLC(z) − β̂∗,OLS) = Op(1), but with Op(1) bias. Thus√

n|H|(β̂∗,PLC(z) − β̂∗,OLS) is asymptotically non-central normal. Hence the test statistic I∗m
has a non-central limiting χ2

(p+1)m distribution. Also, we no longer have E(δ(zt)
′δ(zt))→ p+ 1

as n→∞. It then follows that m−1I∗m − (p+ 1) = Op(1) and J = Op(
√
m) in this case. Thus,

the test I∗m has non-trivial local asymptotic power.
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If
√
n|H|ρn → ∞, then

√
n|H|(β̂∗,PLC(z) − β̂∗,OLS) = Op(

√
n|H|ρn) → ∞. It follows that

I∗m = Op(n|H|ρ2n) → ∞ and J = Op(n|H|ρ2n/
√
m). So the tests are asymptotically powerful in

this case. This case nests the fixed alternative as a special case where ρn = ρ, a fixed constant.

�

D Useful lemmas

Lemma D.1. Let PN = diag(1,
√
NIp). Under Assumptions 1-3, as T → ∞, we have the

following:

1. if N is fixed,

1

T |H|
(X∗A)′KzX

∗
A

p−→ fz(z)V̄xx,

where

V̄xx =

(
1 η′

η 1
NΣxx + ηη′

)
;

2. if N →∞ and Exit = 0,

1

T |H|
PN (X∗A)′KzX

∗
APN

p−→ fz(z)V
∗
xx

where

V ∗xx =

(
1 0

0 Vxx

)
;

3. if N →∞ and Exit 6= 0,

1

T |H|
(X∗A)′KzX

∗
A

p−→ fz(z)Vη

where

Vη =

(
1 η′

η ηη′

)
.

Proof Note that

(X∗A)′KzX
∗
A =

( ∑
tKtH

∑
tKtHx

′
At∑

tKtHxAt
∑

tKtHxAtx
′
At

)
.
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Denote x̃t = xAt. When N is small but T goes to infinity, we have

1

T |H|
(X∗A)′KzX

∗
A

p−→ fz(z)

(
1 E(x̃′t)

E(x̃t) E(x̃tx̃
′
t)

)
≡ fz(z)V̄xx.

Further, note that E(x̃t) = η, V ar(xit) = Σxx = Vxx − ηη′, and

E(x̃tx̃
′
t) =

1

N2

∑
i

∑
j

Exitx′jt =
1

N2
(
∑
i

Exitx′it +
∑
i 6=j

Exitx′jt) =
1

N
Vxx + (1− 1

N
)ηη′.

Then we have

V̄xx =

(
1 η′

η 1
N Vxx + (1− 1

N )ηη′

)
=

(
1 η′

η 1
NΣxx + ηη′

)
,

which is close to singular if η is large and the variance of xit is small.

However, if Exit = 0, then xAt = Op(1/
√
N) = op(1) as N → ∞. If we still divide

(X∗A)′KzX
∗
A by T |H|, we have

1

T |H|
(X∗A)′KzX

∗
A

p−→ fz(z)

(
1 0

0 0

)
,

which is again non-invertible. However, since
√
NxAt ⇒ N(0, Vxx), we have

1

T |H|
PN (X∗A)′KzX

∗
APN

p−→ fz(z)

(
1 0

0 Vxx

)
≡ fz(z)V ∗xx,

where PN = diag(1,
√
NIp).

If Exit = η 6= 0, then xAt
p−→ η, as N →∞. This gives

1

T |H|
(X∗A)′KzX

∗
A

p−→ fz(z)

(
1 η′

η ηη′

)
≡ fz(z)Vη,

which is non-invertible. �

Lemma D.2. Under Assumptions 1-3, as T →∞, we have

1. if N is fixed,

1√
T |H|

(X∗A)′KzUA ⇒ N(0, fz(z)σ
2
uN
−1νq0 V̄xx);

2. if N →∞ as T →∞ and Exit = 0,√
N

T |H|
PN (X∗A)′KzUA ⇒ N(0, fz(z)σ

2
uν

q
0V
∗
xx);
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3. if N →∞ as T →∞ and Exit 6= 0,

1√
T |H|

(X∗A)′KzUA ⇒ N(0, fz(z)σ
2
uν

q
0Vη).

Proof Note first that

(X∗A)′KzUA =

( ∑
tKtHuAt∑

tKtHxAtuAt

)
. (D.1)

has zero mean. When N is small, denote ũt = uAt and σ2ũ = V ar(ũt) = σ2u/N . Then for the

first element in (D.1), we have

V ar(
1√
T |H|

∑
t

KtHuAt) =
1

T |H|
∑
t

E[K2
tHu

2
At] +

1

T |H|
∑
t6=s

E[KtHuAtKsHuAs]→ fz(z)ν
q
0σ

2
ũ,

because

1

T |H|
∑
t6=s

E[KtHuAtKsHuAs] =
2

T |H|

T−1∑
`=1

(T − `)E[K1H ũ1K1+`,H ũ1+`]

=
C

|H|

T−1∑
`=1

(1− `/T )γũ(`)|H|2 + smaller order

≤C|H|N−1
T−1∑
`=1

|γu(`)| = o(1). (D.2)

For the second element in (D.1), we have

V ar(
1√
T |H|

∑
t

KtHxAtuAt) =
1

T |H|
∑
t

E[K2
tHxAtx

′
Atu

2
At] +

1

T |H|
∑
t6=s

E[KtHuAtxAtx
′
AsKsHuAs]

→ fz(z)ν
q
0σ

2
ũE[x̃tx̃

′
t],

because

1

T |H|
∑
t6=s

E[KtHuAtxAtx
′
AsKsHuAs] =

2

T |H|

T−1∑
`=1

(T − `)E[K1H ũ1x̃1K1+`,H ũ1+`x̃
′
1+`]

≤C|H|
T−1∑
`=1

α̃
1−2/δ
` = O(|H|) = o(1), (D.3)

where the α̃` are the α-mixing coefficients of the process ũt and x̃t, which satisfy Assumption 2

(a).
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Similarly, we can show that the covariance of the two elements in (D.1) satisfies

Cov(
1√
T |H|

∑
t

KtHuAt,
1√
T |H|

∑
t

KtHxAtuAt)→ fz(z)ν
q
0σ

2
ũE[x̃t].

Therefore, by the CLT for the α-mixing process {(x̃1, ũ1), · · · , (x̃T , ũT )}, we have

1√
T |H|

(X∗A)′KzUA ⇒ N(0, fz(z)ν
q
0σ

2
ũV̄xx).

Results for N goes to infinity and η 6= 0 can be obtained by letting N → ∞. The analysis

is the same and is omitted.

When N goes to infinity and Exit = 0, for the first element in (D.1), we have

V ar(

√
N

T |H|
∑
t

KtHuAt) =
N

T |H|
∑
t

E[K2
tHu

2
At] +

N

T |H|
∑
t6=s

E[KtHuAtKsHuAs]→ fz(z)ν
q
0σ

2
u,

by similar arguments to those of (D.2). For the second element in (D.1), we have

V ar(

√
N2

T |H|
∑
t

KtHxAtuAt) =
N2

T |H|
∑
t

E[K2
tHxAtx

′
Atu

2
At] +

N2

T |H|
∑
t6=s

E[KtHuAtxAtx
′
AsKsHuAs]

→ fz(z)ν
q
0σ

2
uVxx,

by an argument similar to (D.3). We can further show that the covariance of the two elements

in (D.1) satisfies

Cov(

√
N

T |H|
∑
t

KtHuAt,

√
N2

T |H|
∑
t

KtHxAtuAt)→ 0.

Therefore, when N goes to infinity and Exit = 0, we have√
N

T |H|
PN (X∗A)′KzUA ⇒ N(0, fz(z)ν

q
0σ

2
uV
∗
xx).

�

Lemma D.3. Under Assumptions 1-3, as T →∞, we have

1. if N is fixed,

1

T |H|
(X∗A)′Kzdiag(X∗Aβ̈∗(z))

p−→ fz(z)µ2V̄xx

q∑
j=1

h2j
∂2β∗(z)

∂2zj
;
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2. if N →∞ and Exit = 0,

1

T |H|
PN (X∗A)′Kzdiag(X∗APN β̈∗(z))

p−→ fz(z)µ2V
∗
xx

q∑
j=1

h2j
∂2β∗(z)

∂2zj
;

3. if N →∞ and Exit 6= 0,

1

T |H|
(X∗A)′Kzdiag(X∗Aβ̈∗(z))

p−→ fz(z)µ2Vη

q∑
j=1

h2j
∂2β∗(z)

∂2zj
.

Proof The proofs are routine and are omitted. �

Lemma D.4. Under Assumptions 1-3, as T →∞, we have

1

NT |H|
X ′∗K(z)X∗

p−→ fz(z)Ṽxx, (D.4)

where

Ṽxx =

(
1 η′

η Vxx

)
.

Proof Note that

1

NT |H|
X ′∗K(z)X∗ =

1

NT |H|
∑
i

∑
t

(
KtH x′itKtH

xitKtH xitKtHx
′
it

)
.

The stated convergence follows from standard kernel limit theory for stationary data. �

Lemma D.5. Under Assumptions 1-3, as T →∞, we have

1√
NT |H|

X ′∗K(z)U ⇒ N
(

0, fz(z)σ
2
uν

q
0 Ṽxx

)
. (D.5)

Proof Note that

1√
NT |H|

X ′∗K(z)U =
1√

NT |H|

∑
i

∑
t

(
KtHuit

x′itKtHuit

)
.

The required weak convergence follows by standard methods for stationary data. �.

Lemma D.6. Under Assumptions 1-3, as T →∞, we have

1

NT |H|
X ′∗K(z)diag[X∗(11×N ⊗ β̇∗(z))]

p−→ µ2Ṽxx

q∑
s=1

h2s
∂β∗(z)

∂zs

∂fz(z)

∂zs
,

1

NT |H|
X ′∗K(z)diag[X∗(11×N ⊗ β̈∗(z))]

p−→ fz(z)µ2Ṽxx

q∑
s=1

h2s
∂2β∗(z)

∂2zs
.

Proof The proofs are straightforward and the computations are omitted. �.
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Table 1: AMSE(β0(z))

β̂APLC,0(z) β̂oracle0 (z) β̂PLC,0(z)

N = 5 T = 20 η = 0 0.0431 0.0371 0.0373

1 0.1593 0.0524 0.0531

5 1.1456 0.0954 0.0969

T = 50 η = 0 0.0181 0.0165 0.0165

1 0.0519 0.0237 0.0238

5 0.2881 0.0402 0.0405

T = 100 η = 0 0.0106 0.0098 0.0098

1 0.0276 0.0132 0.0132

5 0.1264 0.0222 0.0224

N = 50 T = 20 η = 0 0.0163 0.0064 0.0064

1 0.4648 0.0077 0.0078

5 9.1880 0.0112 0.0114

T = 50 η = 0 0.0080 0.0031 0.0031

1 0.1077 0.0040 0.0041

5 2.0186 0.0055 0.0056

T = 100 η = 0 0.0049 0.0017 0.0017

1 0.0450 0.0023 0.0023

5 0.8907 0.0031 0.0031

Table 2: AMSE(β1(z))

β̂APLC,1(z) β̂oracle1 (z) β̂PLC,1(z)

N = 5 T = 20 η = 0 0.2038 0.0355 0.0375

1 0.1397 0.0252 0.0263

5 0.0699 0.0121 0.0123

T = 50 η = 0 0.0715 0.0169 0.0171

1 0.0503 0.0125 0.0127

5 0.0284 0.0073 0.0074

T = 100 η = 0 0.0384 0.0103 0.0104

1 0.0279 0.0076 0.0076

5 0.0164 0.0051 0.0051

N = 50 T = 20 η = 0 0.4886 0.0066 0.0068

1 0.4571 0.0048 0.0049

5 0.3846 0.0032 0.0032

T = 50 η = 0 0.1347 0.0035 0.0036

1 0.1140 0.0029 0.0029

5 0.0961 0.0021 0.0021

T = 100 η = 0 0.0613 0.0022 0.0022

1 0.0499 0.0018 0.0018

5 0.0465 0.0014 0.0014
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Table 3: Size of the two tests (in percentage, with nominal size=5%)

N = 5 N = 20

I∗m J I∗m J

m = 3 T = 20 5.00 5.50 2.00 3.50

T = 50 2.50 3.00 2.00 2.50

T = 100 2.00 2.50 3.50 5.50

m = 9 T = 20 6.50 8.00 2.50 3.00

T = 50 2.00 3.50 2.50 2.50

T = 100 1.50 2.50 1.50 2.00

m = 20 T = 20 12.50 12.50 5.50 6.50

T = 50 10.50 11.00 6.50 6.50

T = 100 3.50 5.00 4.00 4.50

Table 4: Size of the bootstrapped test (in percentage, nominal size=5%)

N = 5 N = 20

m = 3 T = 20 6.00 7.50

T = 50 6.50 3.50

T = 100 3.00 6.0

m = 9 T = 20 5.00 5.50

T = 50 4.50 4.00

T = 100 4.00 4.00

m = 20 T = 20 6.00 5.50

T = 50 7.50 5.50

T = 100 3.00 4.00
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