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Abstract. This paper presents new results on the existence of pure-strategy
Bayesian equilibria in specified functional forms. These results broaden the
scope of methods developed by Reny (2011) well beyond monotone pure strate-
gies. Applications include natural models of first-price and all-pay auctions not
covered by previous existence results. To illustrate the scope of our results,
we provide an analysis of three auctions: (i) a first-price auction of objects
that are heterogeneous and imperfect substitutes; (ii) a first-price auction in
which bidders’ payoffs have a very general interdependence structure; and (iii)
an all-pay auction with non-monotone equilibrium.
Keywords: Bayesian games, monotone strategies, pure-strategy equilibrium,
auctions.

1. Introduction

Equilibrium behavior in general Bayesian games is not well understood. While
there is an extensive literature on equilibrium existence, that literature imposes sub-
stantive restrictions on the structure of the Bayesian game. In particular, previous
existence results require some version of the following assumptions:

(1) “weak quasi-supermodularity:” informally, the coordinates of a a player’s
own action vector need to be complementary; and

(2) “weak single-crossing:” informally, a player’s incremental returns of actions
are nondecreasing in her types.
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We show that pure-strategy equilibria exist under significantly more general con-
ditions, without impeding the analyst’s ability to describe the properties of the
equilibrium. The class of Bayesian games we cover includes games in which the
players’ action vectors are substitutes, and players’ incremental returns of actions
are not always increasing in their types. Despite the generality of these games,
pure-strategy equilibria are well-behaved, in strategies that belong to a particular
class of interest, such as the set of functions of bounded total variation, or functions
of mixed monotonicity.1

The approach we adopt in this paper is motivated by positive questions. The
goal is to develop a model that introduces new considerations to the analysis of
Bayesian games and provides useful (testable) predictions. In the context of auc-
tions in particular, we seek a convenient modeling tool for describing bidders’ be-
havior in environments where weak quasi-supermodularity and weak single-crossing
are too strong or unlikely to be true. Providing a more comprehensive theoretical
framework for interpreting data has important implications for empirical and exper-
imental research on auctions. In experimental work, it is usually the case that the
questions of interest cannot be answered empirically until an internally consistent
model of an auction game is specified. Thus our result extends the kind of eco-
nomic questions that can be investigated using traditional experimental methods.2
Further, structural econometric approaches to auctions have been mostly restricted
to a limited class of models, usually settings with one object in which the equilib-
rium bidding strategies are monotone. There are few extensions to environments
with multiple objects, with most of the empirical literature focusing on the case of
identical goods (multi-unit auctions).3 One of the main hurdles to progress beyond
these settings is the lack of development of the theory. Thus extending the class
of games for which we can characterize pure-strategy equilibria is a necessary step
towards new developments in the empirical analysis of data generated by auctions.
Finally, albeit beyond the scope of the present paper, a more general equilibrium
existence result is of interest from the point of view of normative economics. By
allowing for a richer strategic environment, our result can lead to policy questions
that have not been considered before, such as how to auction strictly substitute
goods.

To illustrate the scope of our main result, we study the equilibrium properties
of a series of first-price and all-pay auctions that had until now been beyond reach.
The applications to auctions we present here are parsimonious and intuitive. Their
simplicity is a consequence of the breadth and flexibility of our main result and
a reflection of how little we know about auctions outside the class of models sat-
isfying quasi-supermodularity and single-crossing. While these complementarity
assumptions are natural in some settings, there are many economic situations in
which these assumptions entail unreasonable restrictions. The three auctions we
describe illustrate ubiquitous economic environments in which the complementarity
assumptions fail for various natural reasons.

1Informally, functions of mixed monotonicity are those that are nondecreasing in some dimen-
sions of the player’s types and possibly nonincreasing in other dimensions.

2Kagel (1995) and Kagel and Levin (2015) are valuable surveys on the ongoing experimental
work on auctions.

3Athey and Haile (2007) provide an excellent survey of structural econometric approaches to
auctions.
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The first application is a first-price auction of multiple objects that are imper-
fect substitutes from the bidders’ perspective, which is not covered by any other
existence result. More specifically, there are two objects being auctioned simulta-
neously, and although players can place bids on both objects, they would prefer to
buy only one of them. In this case, the bidders’ valuations are strictly submodular,
thus failing to be (weakly) quasi-supermodular, as required by McAdams (2003).
In fact, there is no other result of existence of equilibrium that can be applied to
Bayesian games in which players have interdependent but strictly submodular pay-
off functions. Further, there is no order on the bidders’ actions for which the best
responses are closed with respect to the pointwise supremum of the bids, thus the
more general results of Reny (2011) also cannot be applied. Our main result shows
that this auction has an equilibrium in pure strategies. Moreover, this equilibrium
is not monotone.

The second application is an all-pay auction model in which bidders have one-
dimensional type and action spaces, interdependent valuations, and correlated types
in ways that may fail the monotone likelihood ratio property. Nevertheless, we are
able to show that, under a condition more general than the weak monotonicity
condition of Siegel (2014), this auction has an equilibrium in pure strategies that
are of bounded total variation. This application thus substantiates the assertion
that our main result extends the result in Athey (2001) to models that fail the
(weak) single-crossing property.

The third application is a first-price auction in which bidders’ types are mul-
tidimensional and their valuations are interdependent, although restricted to be
of polynomial form. Thus it shows that our main result extends the analysis of
McAdams (2003) and Reny (2011) when players have multidimensional type spaces,
by allowing for more general interdependence structures across the players’ payoffs.
Perhaps more importantly, since polynomial functions are dense in the set of mea-
surable functions, this auction demonstrates how our main result can be applied
to show existence of equilibrium in models that are very close to games in which
players have arbitrary, unrestricted payoff functions.

The remainder of the paper has the following structure. To illustrate the suit-
ability of our result to auctions, Section 2 describes a very simple example of a
first-price auction of heterogeneous objects that are imperfect substitutes from the
bidders’ perspective, for which we show existence of a Bayesian equilibrium in pure
strategies. The mathematical framework, which concerns absolute retracts and or-
dered spaces, is described in Section 3. The class of Bayesian games our result
covers is described formally in Section 4, where the main existence result is proved.
Section 5 studies additional auctions that illustrate the flexibility and scope of our
result. Section 6 discusses sufficient conditions on the primitives of the game; these
sufficient conditions, albeit stronger, require no preparation or mathematical pre-
liminaries. Section 7 explains how the main results in Athey (2001), McAdams
(2003), and Reny (2011) can be derived as a consequence of our result. The Ap-
pendix contains most proofs.

2. Example: auction of imperfect substitutes

To motivate the results in the present paper, we first give an example of a first-
price auction of heterogeneous objects that are imperfect substitutes. With substi-
tute objects, the bidders’ valuations fail to be quasi-supermodular, as required by
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McAdams (2003). More importantly, there is no order on the bidders’ actions for
which the best responses are closed with respect to the pointwise supremum of the
bids, thus the more general results of Reny (2011) cannot be applied. Further, there
is no result in the more specialized literature on auctions that can be applied. The
literature on existence of equilibrium in multi-object auctions is not well-developed,
and most theoretical results are for multi-unit auctions, in which the objects are
identical. Few results apply to cases in which the objects are heterogeneous and
even less to cases in which the objects are strongly substitutes. Cantillon and Pe-
sendorfer (2006) study auctions for bus services in London. In their study, it may be
cheaper to operate some routes if a nearby route is currently being served, so there
may be complementarities between some contracts, but some bundles of contracts
may be substitutes. Their model is a sealed-bid discriminatory auction in which
bidders submit bids on bundles of objects. Baldwin and Klemperer (2019) ana-
lyze auctions in which bidders may have purely-complements or purely-substitute
preferences over indivisible goods, and show existence of a competitive equilibrium.
Their setting does not allow for the objects to be imperfect substitutes. Palfrey
(1983), Armstrong (2000), and Avery and Hendershott (2000) study auctions of
multiple, heterogeneous objects. But the bidders’ valuation function in their mod-
els is additively separable, which is covered by McAdams (2003) and Reny (2011).
In our example, the objects are strongly substitutes, which implies that the bidders’
valuation function is strictly subadditive. Our result shows that this auction has
an equilibrium in pure strategies that are not monotone.

There are two objects for sale, object A and object B, and N bidders. Each
bidder i receives a private signal ti = (tAi , t

B
i ) ∈ [0, 1]2. Bidder i’s signals are dis-

tributed independently of other bidders’ signals, according to the density function
fi : [0, 1]

2 → R+. After observing their signals, each bidder i submits a sealed bid
bi = (bAi , b

B
i ) from a finite set of bids B ⊆ R2

+. We assume that the set of bids B
contains the zero vector, that is, (0, 0) ∈ B.

If the realization of signals is t = (t1, . . . , tN ) and bidder i wins subset S ⊆ {A,B}
of objects, then bidder i’s payoff is given by

vi(S, ti) = max
k∈S

tki ,

with the convention that if S = ∅, then maxk∈S tki = 0.4 Under this formulation,
winning both objects gives the bidders no higher payoff than winning only the object
they consider most valuable. Therefore the objects may be seen as substitutes,
which implies that vi fails any of the usual supermodularity conditions required by
previous existence results. In particular, best responses are not closed with respect
to the supremum. Further, there is no order on actions that will make the best
responses either closed with respect to the supremum or the infimum, which means
that it is not possible to show existence of equilibrium using the result of Reny
(2011).

Given a vector b = (b1, . . . , bN ) of bids of all bidders, each object k is awarded to
the bidder with the highest bid bki , who pays her bid. If there is a tie at the highest
bid, then the object is awarded to one of the highest bidders with equal probability.
Let ρi(S, b) ∈ [0, 1] denote the probability that bidder i gets the subset S ⊆ {A,B}
of objects given profile of bids b. Given a vector b of bids, bidder i’s payoff is then

4There is nothing essential about this particular functional form. This example can be extended
to more general subadditive payoff functions, as well as a larger number of objects.
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given by

Vi(b; ti) =
∑

S⊆{A,B}

ρi(S, b)

[
vi(S, ti)−

∑
k∈S

bki

]
.

A strategy for bidder i is a measurable function βi : [0, 1]
2 → B. Given a profile

of strategies for all bidders β, bidder i’s ex ante payoff is given by

Ui(β) =

∫
[0,1]2N

Vi(β(t); ti)f1(t1) . . . fN (tN ) d t .

An application of Theorem 4.1 yields that this auction has a Bayesian-Nash
equilibrium in pure strategies. The equilibrium strategies (β1, β2) have the following
property: for every pair of types ti, t

′
i ∈ Ti, with i = 1, 2, if tAi ≥ t′Ai and tBi ≤ t′Bi ,

then βi(ti)
A ≥ βi(t

′
i)

A and βi(ti)
B ≤ βi(t

′
i)

B . That is, player i’s equilibrium bid for
object A increases (and her bid for object B decreases) as tAi increases (decreases)
and tBi decreases. In this model, bid shading happens for two reasons. First, it
happens for the usual reason in first-price auctions, due to the trade-off between
a lower chance of winning versus a higher payoff when winning. Second, players
shade their bids for the least valuable object even further, to reduce the probability
of winning (and paying) for both objects, when the second object gives them zero
marginal value. The proofs of all claims made in this section are in Appendix C.

3. Mathematical framework

We now review the basic mathematical frameworks that are combined to yield
the results in this paper: absolute retracts, lattice theory, and abstract simplicial
complexes.

3.1. Absolute retracts. Fix a metric space X. If Y is a metric space, a set Z ⊆ Y
is a retract of Y if there is a continuous function r : Y → Z with r(z) = z for all
z ∈ Z. Such function r is called a retraction. The space X is an absolute retract5

(AR) or an absolute neighborhood retract (ANR) if, whenever X is homeomorphic
to a closed subset Z of a metric space Y , Z is a retract of Y or a retract of a
neighborhood of itself, respectively. Since the “is a retract of” relation is transitive,
a consequence is that a retract of an AR (ANR) is an AR (ANR). An ANR is an AR
if and only if it is contractible (Borsuk, 1967, Theorem 9.1). A contractible set is a
set that can be reduced to one of its points by a continuous deformation. Formally,
a set X is said to be contractible if it is homotopic to one of its points x ∈ X, that
is, if there is a continuous map h : [0, 1]×X → X such that h(0, · ) : X → X is the
identity map and h(1, · ) : X → X is the constant map sending each point to x. In
this case, the mapping h is denoted a contraction.

The Eilenberg-Montgomery fixed point theorem (Eilenberg and Montgomery,
1946) asserts that if X is a nonempty compact AR, F : X ↠ X is a closed-graph
correspondence, and the values of F are “acyclic,” then F has a fixed point. For
the purposes of this paper, it suffices to know that a contractible set is acyclic, so
that F has a fixed point if its values are contractible. Kinoshita (1953) gives an
example of a compact contractible subset of R3 and a continuous function from

5The terms “metric absolute retract” and “absolute retract for metric spaces” are used in
mathematical literature that also considers spaces that satisfy the embedding condition for other
types of topological spaces.
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this space to itself that does not have a fixed point, so the assumption that X is a
compact AR cannot be weakened to “compact and contractible.”

In Athey (2001) and McAdams (2003) a large part of the analytic effort is de-
voted to showing that the set of monotone best responses to a profile of monotone
strategies is convex valued. However, Reny (2011) provides a simple construction
that shows that this set is contractible valued. In addition, passing to the more
general Eilenberg-Montgomery fixed point theorem allows many of the assumptions
of earlier results to be relaxed. The weakening of hypotheses does not complicate
the proof of contractibility, but instead there is the challenge of showing that the
set of (equivalence classes of) monotone pure strategy profiles is an AR. Since the
set of monotone strategy profiles is contractible, Reny could demonstrate this by
verifying the sufficient conditions for a space to be an ANR given by Theorem 3.4
of Dugundji (1965), which is derived from necessary and sufficient conditions given
earlier in that paper that in turn build on Dugundji (1952) and Dugundji (1957).

A central theme of this paper is that there is a variety of conditions that imply
that a space is an AR. Any of these is potentially the basis of an equilibrium ex-
istence result for some type of Bayesian game, and we will provide novel existence
results of this sort. In particular, it will be possible to verify other sufficient condi-
tions for a space to be an AR that are related to the order structure of the space
of monotonic strategy profiles, and are thus in a sense more natural. Perhaps more
importantly, they are flexible, allowing for existence under different hypotheses.

3.2. Simplicial complexes. An abstract simplicial complex is a pair ∆ = (X,X )
in which X is a set of vertices and X is a collection of finite subsets of X that
contains every subset of each of its elements. Elements of X are called simplexes.
The realization of ∆ is

|∆| =
{
π ∈ RX

+ :
∑
x∈X

πx = 1, and suppπ ∈ X
}
,

where suppπ = {x ∈ X : πx > 0}. For a simplex Y ∈ X , let |Y | = {π ∈
|∆| : suppπ ∈ Y }. Then |∆| =

∪
Y ∈X |Y |. We will always assume that {x} ∈ X

for every x ∈ X. We endow |∆| with the CW topology, which is the topology in
which each |Y | has its usual topology and a set is open whenever its intersection
with each |Y | is open.

Let Z be a topological space. A correspondence F : X \{∅} → Z is a contractible
carrier that sends simplexes of ∆ to subsets of Z if, for every nonempty Y ∈ X :

(a) F (Y ) is contractible, and
(b) if ∅ ̸= Y ′ ⊆ Y , then F (Y ′) ⊆ F (Y ).

Moreover, a continuous function f : |∆| → Z is carried by F if f(|Y |) ⊆ F (Y ) for
every Y ∈ X . The following result is from Walker (1981).

Lemma 3.1 (Walker’s carrier lemma). If F is a contractible carrier from ∆ to Z,
then there is a continuous function f : |∆| → Z carried by F , and any two such
functions are homotopic.

For the remainder of the paper, we reserve the notation ∆ for the abstract
simplicial complex in which X is the collection of all finite subsets of X.

3.3. Posets and semilattices. A partially ordered set (poset) is a set X endowed
with a binary relation ≤ that is reflexive (x ≤ x for every x), transitive, and
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antisymmetric (x ≤ y and y ≤ x implies x = y). Let

G≤ = { (x, y) ∈ X ×X : x ≤ y } .

If X is endowed with a σ-algebra Σ, the partial order ≤ is said to be measurable if
G≤ is an element of the product σ-algebra Σ⊗Σ. If X is endowed with a topology,
the partial order ≤ is said to be closed if G≤ is closed in the product topology of
X × X. If X is a subset of a real vector space, the partial order ≤ is said to be
convex if G≤ is convex. Since { (x, x) : x ∈ X } ⊆ G≤, if ≤ is convex, then X is
necessarily convex.

A partially ordered set X is a semilattice6 if any two elements x, y ∈ X have
a least upper bound x ∨ y. If this is the case, then the semilattice operation
is obviously associative, commutative, and idempotent. That is, x ∨ x = x for all
x ∈ X. Conversely, if ∨ is a binary operation on X that is associative, commutative,
and idempotent, then there is a partial order on X given by x ≤ y if and only if
x∨y = y that makes X a semilattice for which ∨ is the least upper bound operator.7
If the greatest lower bound of any two elements x, y ∈ X exists, then it is denoted
by x ∧ y.

A subset Y ⊆ X is a subsemilattice if x ∨ y ∈ Y for all x, y ∈ X. Evidently
the intersection of any collection of subsemilattices is a subsemilattice. A metric
semilattice is a semilattice endowed with a metric such that (x, y) 7→ x ∨ y is a
continuous function from X ×X to X. A metric semilattice is locally complete if,
for every x ∈ X and every neighborhood U of x, there is a neighborhood W such
that every nonempty W ′ ⊆ W has a least upper bound that is contained in U .

3.4. The hyperspace of a compact metric semilattice. If X is a compact
metric space, the hyperspace of X is the set S(X) of nonempty closed subsets of X
endowed with the topology that has as a subbasis the set of sets of the form

N(U, V ) = {C ∈ S(X) : C ⊆ U and C ∩ V ̸= ∅ }

where U, V ⊆ X are open. The space X is locally connected if it has a base
of connected open sets. Wojdysławski (1939) showed that if X is connected and
locally connected, then S(X) is an AR. (Kelley (1942) reproves this result, and
places it in a broader context.)

Now suppose X is a compact metric semilattice. It is easy to show that any
subset S ⊆ X has a least upper bound that we denote by ∨S. We say that X
has small subsemilattices if it has a neighborhood base of subsemilattices, which
is called an idempotent basis. It is easy to show that X is locally complete if and
only if it has small subsemilattices. Identifying each x ∈ X with {x} ∈ S(X),
we may regard X as a subset of S(X). McWaters (1969) showed that if X has
small subsemilattices, then the map C 7→ ∨C is continuous and consequently a
retraction. As McWaters points out, in conjunction with Wojdysławski’s result,
this result implies the following theorem.

Theorem 3.2. If X is connected, locally connected, and locally complete, then it
is an AR.

6This concept is often described as a join semilattice in contexts in which one also considers
meet semilattices, which are posets in which any pair of elements has greatest lower bound.

7Verification of the details underlying this assertion is straightforward.



BAYESIAN EQUILIBRIUM WITHOUT COMPLEMENTARITIES 8

In the Bayesian game considered in Reny (2011), type and action spaces are as-
sumed to be semilattices, and strategy spaces are thus ordered by the induced point-
wise ordering. As a result, the subset of monotone strategies is a sub-semilattice,
therefore contractible to its least upper bound. In the following section, we extend
this result to more general partially ordered subsets of strategies, including subsets
that are not necessarily given the induced pointwise ordering or that may not have
a least upper bound.

3.5. A new class of retracts. We can now describe a new class of absolute re-
tracts, generated by combining the order structure of posets and abstract simplicial
complexes. Let X be a metric space and a poset. (We do not assume that the order
is closed.) A (finite) chain in X is a (finite) completely ordered subset of X. When
X is a partially ordered space, we consider the order complex Γ = (X,XΓ) of X.
The order complex Γ is the abstract simplicial complex for which the set of vertices
is X itself and the collection of simplexes XΓ is the collection of finite chains of X.
If Γ = (X,XΓ) is the order complex of X and ∆ = (X,X ) is the abstract simplicial
complex in which the simplexes are all finite subsets of X, then XΓ ⊆ X , and we
regard the geometric realization |Γ| as a subspace of |∆|. If Y is a finite subset of
X, then Y ∈ X and we denote by |Y Γ| the realization of Y on the order complex
Γ, that is, |Y Γ| = |Y | ∩ |Γ|.

The following definition describes a novel mathematical concept.8 We say that a
sequence of subsets of X converges to x ∈ X if the sequence is eventually contained
in each neighborhood of x.

Definition 3.3. A hulling of X is a collection H of subsets of X such that:
(a) H is closed under intersection;
(b) every finite subset of X is contained in some element of H;
(c) for each nonempty Y ∈ H, the realization |Y Γ| is contractible.

When Y is a finite subset of X, the H-hull of Y , denoted by H(Y ), is the intersection
of all Y ′ ∈ H containing Y . The hulling H is small if, for any sequence of finite
sets Yn converging to a point x, the sequence H(Yn) also converges to x.

Note that if X has an upper bound, then |Γ| is contractible. Therefore, if X is
a semilattice and H is the collection of all finite sub-semilattices of X, then H is a
hulling. Figure 1 shows examples of other kinds of sets that can compose a hulling.
Figure 2 is an example of a set Y for which |H(Y )Γ| is not contractible, and thus
cannot belong to a hulling.

Definition 3.4. A monotone realization is a continuous function h : |Γ| → X.
A monotone realization h is said to be local whenever, for every sequence Yn of
nonempty finite chains converging to x ∈ X, the sequence h(|Yn|) also converges to
x.

Together, the notions of hulling and monotone realization describe what we call
order-convexity.

Definition 3.5. A partially ordered set (X,≤) is order-convex if there is a small
hulling H and a local monotone realization h for X such that

(a) for every finite subset Y ⊆ X, we have H(Y ) ⊆ X; and
(b) for every finite chain Y in X, we have h(|H(Y )Γ|) ⊆ X.

8It is a generalization of the notion of a zellij in McLennan, Monteiro, and Tourky (2011).
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(a) Standard sub-semilattice hull
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(c) A non-sub-semilattice hull
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(d) A non-sub-semilattice hull

Figure 1. Examples of sets H(Y ) ∈ H
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H(Y )
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c d

b

|H(Y )Γ|

Figure 2. Example of a set that cannot compose a hulling

Remark 3.6. Section B in the Appendix proposes easy-to-check conditions for a
hulling to be small and a monotone realization to be local.

The following lemma establishes that every order-convex, separable, metric space
is an absolute retract. Lemma 3.7 is the main tool used to prove the results.

Lemma 3.7. If (X,≤) is partially ordered space that is separable, metric, closed,
and order-convex, then X is an absolute retract.

The proof of Lemma 3.7 can be found in the Appendix A.

4. Class of Bayesian games

We consider the class of Bayesian games described by the following tuple
G = ((T, T ), π, A, u) .

The space (T, T ) = ⊗i(Ti, Ti) is a product of N measurable spaces of types. The
probability measure π ∈ ∆(T ) is the common prior ; we let πi be the marginal
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of π on Ti. The space (A,A) = ⊗i(Ai,Ai) is a product of N measurable spaces
of actions; we assume that each Ai is a compact subset of some Banach space
Li and is endowed with a σ-algebra Ai that includes the Borel sets. Finally, the
tuple u = (u1, . . . , uN ) is a profile of bounded jointly measurable payoff functions
ui : T ×A → R.9

A (pure) strategy for player i is a function from Ti to Ai that is πi-a.e. equal to
a measurable function. Let Si be the set of player i’s strategies, and let S =

∏
i Si

be the set of strategy profiles. We regard the space of strategies Si as a subspace of
L1(Ti, πi), the space of Bochner-integrable functions (equivalence classes) from Ti

to Li, with the L1-norm topology. For each s ∈ S and each i, player i’s expected
payoff is

Ui(s) =

∫
T

ui(t, s(t)) dπ(t).

A strategy si ∈ Si is a best response to s−i ∈ S−i if Ui(si, s−i) ≥ Ui(s
′
i, s−i) for all

s′i ∈ Si. A strategy profile s ∈ S is an equilibrium if, for each i, si is a best response
to s−i.

Let Bi : S−i → Si denote the best response correspondence of player i:
Bi(s−i) = {si ∈ Si : si ∈ arg max

si∈Si

Ui(si, s−i)} .

Let B : S → S be the cartesian product of the Bi: B(s) = B1(s−1)×· · ·×BN (s−N ).
We make the following assumption on the common prior.

Assumption A.1. For every player i, the common prior π is absolutely continuous
with respect to the product of its marginals.

We also make the following assumption on the players’ payoffs.

Assumption A.2. For every player i, the function ui : T × A → R is continuous
in a and measurable in t.

Under Assumptions A.1 and A.2, the best response correspondence B is non-
empty and has closed graph (by Aliprantis and Border, 2006, Theorem 18.19). We
are ready to state our main result.

Theorem 4.1. Suppose that Assumptions A.1–A.2 are satisfied. If, for every
player i, there is a compact, order-convex subset of strategies Ki ⊆ Si such that
Bi(s−i) ∩Ki is a nonempty, order-convex set for every s−i ∈ K−i, then the game
G has an equilibrium in K.

Proof. By Lemma 3.7, every compact, order-convex subset of strategies is an abso-
lute retract. Consider the subcorrespondence of best responses B : K ↠ K, given
by

B(s) = B(s) ∩K .

As defined, B has closed-graph, and compact, order-convex values. Therefore, it
satisfies the hypotheses of Eilenberg-Montgomery fixed point theorem. Hence it
has a fixed point in K, which is a Bayesian equilibrium of the game G. □

9We use standard notation for the indexing of player profiles: for a N -tuple (Xi)
N
i=1 of sets

we let X =
∏

i Xi, and for each player i we let X−i =
∏

j ̸=i Xj . Vectors in X are called profiles.
A profile x ∈ X is also written as (xi, x−i) where xi is the i-th coordinate of x and x−i is the
projection of x into X−i. We also use standard notation for probability: if (X,Σ) is a measurable
space, then ∆(X) is the set of probability measures on X.
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Remark 4.2. Theorem 4.1 not only helps proving existence of equilibrium results,
but it also provides additional, useful information regarding how the equilibrium
found looks like. In fact, this is the main motivation for the analysis in Athey
(2001), McAdams (2003), and Reny (2011).

Notice that this result does not require the players’ type and action spaces to
be partially ordered. Nor it requires the partial order on Ki to be induced by the
pointwise order. In fact, it allows for partial orders that may depend on the whole
strategy, as a function from types to actions. Further, Theorem 4.1 does not require
the marginals of the probability measure π to be atomless. It is, however, easier to
get order-convex best responses when the priors are atomless, as all three auctions
analyzed in Section 5 show.

5. Additional applications to auctions

We present two additional applications of the main result to auctions. Most
of the auction literature relies on existence of monotone equilibrium.10 Although
it is not difficult to write auctions in which monotonicity fails, as the examples
in Jackson (2009), Reny and Zamir (2004), and McAdams (2007) show, it remains
unclear whether or not non-monotonicities in the best-response correspondence pose
a serious threat to the existence of equilibrium. The auctions in this section shed
some light on this issue.

The following auctions illustrate different directions in which Theorem 4.1 ex-
tends the benchmark results of Athey (2001), McAdams (2003), and Reny (2011).
The first one concerns an all-pay auction that encompasses and generalizes some
standard existence results for such settings, including Athey (2001). The main
advance here is in allowing for interdependent valuations and information struc-
tures that may fail the weak single-crossing property, yielding equilibria that are
not necessarily monotone in players’ types. This all-pay auction shows that, even
when restricted to the class of games with unidimensional type and action spaces,
Theorem 4.1 extends the analysis of pure-strategy equilibria to a broader range
of models. The second application involves a first-price auction in which bidders’
types are multidimensional and bidders’ valuations can be arbitrarily interdepen-
dent. The purpose of the second application is to highlight that, within the class
of auctions with multidimensional types, Theorem 4.1 allows for an analysis of a
much richer class of bidders’ preferences, in comparison to the existence results
in McAdams (2003) and Reny (2011). In both applications, there is no order on
the bidder’s types that allows for standard arguments to be used to show exis-
tence of monotone equilibrium. The proofs of all claims made in this section are in
Appendix C.

Before describing the auctions, we make a closing remark with regards to mod-
elling choices. In all of the applications in this paper, bidders submit bids at
predetermined discrete levels, that is, there exists a minimal increment by which
the bid may be raised. Although the auction literature deals almost entirely with
continuous bids, in practice bidders are not able to choose their bid from a contin-
uum. At best, the smallest currency unit imposes such restriction on feasible bids;
at worst, the auctioneer may restrict the set of acceptable bids even further. We

10We refer to Kaplan and Zamir (2015), Klemperer (1999), and de Castro and Karney (2012)
for excellent surveys.
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thus consider this a natural assumption, which yields a model that is both parsi-
monious and realistic. However, it is possible to extend the analysis in this section
to permit a continuum bids under additional assumptions.

5.1. All-pay auction. Consider an all-pay auction with incomplete information.
After observing the realization of their signals, bidders submit their bids, and pay
their bids regardless of whether or not they win the object. This kind of model
has been used to investigate rent-seeking and lobbying activities, competitions for a
monopoly position, competitions for multiple prizes, political contests, promotions
in labor markets, trade wars, and R&D races with irreversible investments.

There is a single object for sale and I bidders. Each bidder i observes the
realization of a private signal ti ∈ [τ , τ ] = Ti. Signals of all bidders T = (T1, . . . , TI)
are drawn from some joint distribution with density f : [τ , τ ]I → R+. The value
of the object being auctioned to bidder i is given by the measurable mapping
vi : [τ , τ ]

I → R. We make the following assumption on the primitives of the model,
which is a generalization of the weak monotonicity condition of Siegel (2014).

Assumption B.1. For each bidder i, there is a finite partition of the set of signals
Ti = ∪nIn

i into subintervals In
i such that for every t−i the restriction of the weighted

valuation vi(ti, t−i)f(t−i | ti) to each subinterval In
i is monotone11 in ti.

Remark 5.1. Essentially, Assumption B.1 puts an upper bound on the number of
times bidder i’s weighted valuation changes direction, it allows for very general in-
terdependence and correlation structures. In particular, it allows for the weighted
valuations to be nondecreasing on some subintervals and nonincreasing on others,
and does not impose any restrictions across the subintervals {In

i }n. The indepen-
dent private value auction corresponds to the special case in which vi(ti, t−i) = ti
and f(t−i | ti) does not depend on ti.

Most of the literature on all-pay auctions concentrates on the case in which the
players’ weighted valuation functions are nondecreasing, yielding monotone equi-
libria. Assumption B.1 is a natural generalization of that single-crossing condition.

Given signal ti, bidder i places a bid b, chosen from a finite set of bids B ⊆ R.
The allocation of prizes is determined by the profile of bids. In particular, we
assume that there is a function α : {1, . . . , I} × BI → [0, 1], such that α(b) is a
probability measure over bidders. The interpretation is that αi(b) is the probability
that bidder i gets the object, given profile of bids b. We only assume that the
allocation mapping bi 7→ αi(b) is nondecreasing, that is, a higher bid will increase
the probability that bidder i gets the object.

A strategy for bidder i is a measurable function βi : Ti → B. Given a profile of
strategies of other bidders β−i, bidder i’s interim payoff is given by

Vi(b | ti, β−i) =

∫
[τ,τ ]I−1

αi(b, β−i(t−i))vi(t)f(t−i | ti) dt−i − b .

Given a profile of strategies for all bidders β, bidder i’s ex ante payoff is then
given by

Ui(β) =

∫
[τ,τ ]

Vi(βi(ti) | ti, β−i)f(ti) dti .

11By monotone, we mean either nonincreasing or nondecreasing.
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Theorem 4.1 implies that this auction has a Bayesian-Nash equilibrium in which
each bidder i uses a strategy that is monotone in ti when restricted to each subin-
terval In.

5.2. First-price auction with interdependent values. Consider a sealed-bid
first-price auction in which bidders’ types are multidimensional and possibly inter-
dependent. This kind of model has been used to study, for example, procurement
auctions, in which bidders are suppliers who try to underbid each other to sell an
object or provide a service to a potential buyer. Government contracts are usually
awarded by procurement auctions, and firms often use this auction format when
buying inputs or subcontracting work.

There is a single object for sale and N bidders. Each bidder i’s type is a
vector ti = (ti1, . . . , tiK) ∈ [τ , τ ]K . Bidders’ types are independently drawn.
Let fi : [τ , τ ]

K → R+ denote the density distribution of bidder i’s types. The
value of the object being auctioned to bidder i is given by the measurable map
vi : [τ , τ ]

KN → R+.
We assume that the map vi is the sum of polynomial functions in each bidders’

vector of types. More precisely, bidder i’s valuation function can be written as

vi(t) =

N∑
j=1

∑
m∈Mj

αmt
dm
1

j1 · · · td
m
K

jK ,

where Mj is a finite index set for each j = 1, . . . , N and, for each m ∈ Mj , the
number αm is the coefficient of the m-th term and dmk are nonnegative integers.

The interpretation is that each dimension k of bidder i’s type represents an
inherent characteristic of the object, and bidders observe a noisy and independent
informative signal regarding these characteristics. Each of these characteristics may
or may not be intrinsically desirable. Thus, while we do not rule out symmetric
bidders, we do allow for heterogeneous preferences in the sense that different bidders
feel differently about each characteristic. In particular, for each dimension k, it may
be the case that some bidders prefer higher levels of k, whereas other bidders may
prefer lower or even intermediate levels.

Bidder i observes the realization of her private type ti, that gives information
about the characteristics of the object. Upon observing ti, bidder i submits a bid
bi from a finite set of bids B ⊆ R. Given a vector b = (b1, . . . , bN ) of bids of all
bidders, the object is awarded to the highest bidder, who pays her bid. If there is
a tie at the highest bid, then the object is awarded to one of the highest bidders
with equal probability. Let ρi(b) ∈ [0, 1] denote the probability that bidder i gets
the object given profile of bids b. Given a vector b of bids, bidder i’s payoff is given
by

ui(b; t) = ρi(b)[vi(t)− bi] .

In this context, a strategy for bidder i is a measurable function βi : [τ , τ ]
K → B.

Given a profile of strategies for all bidders β, bidder i’s ex ante payoff is given by

Ui(β) =

∫
[τ,τ ]NK

ui(β(t); t)f1(t1) . . . fN (tN ) d t .

Theorem 4.1 implies that this auction has a Bayesian-Nash equilibrium in which
each bidder i uses a strategy that is (locally) nondecreasing in tik whenever ∂vi

∂tik
(t) ≥

0, and (locally) nonincreasing whenever ∂vi

∂tik
(t) ≤ 0.



BAYESIAN EQUILIBRIUM WITHOUT COMPLEMENTARITIES 14

6. Sufficient conditions on primitives

For readers interested in applications, it may be easier to verify sufficient, but
less general, conditions that lead to the existence of Bayesian equilibria. Here we
provide two sets of such conditions. The first set, formally stated in Theorem 6.1,
is written in terms of payoff differences. The second set of conditions, stated in
Corollary 6.3, imposes restrictions on differentiable payoffs.

Throughout this section, we make the following assumptions:
(1) Each player i’s type space Ti = [τ i, τ i]

Mi × [τ i, τ i]
M ′

i is a nondegenerate
Euclidean cube, with the coordinate-wise partial order.

(2) Each player i’s types are distributed according to the probability density
fi over Ti, not necessarily everywhere positive, but independently of other
players’ types.

(3) Each player i’s set of actions Ai = [αi, αi]
Ni × [αi, αi]

N ′
i is an Euclidean

cube, endowed with the coordinate-wise partial order.
(4) Each player i’s payoff function ui : A × T → R is bounded, measurable in

t, and continuous in a.
The following theorem establishes that it suffices to check whether the first dif-

ferences of payoffs are increasing in specific directions of the players’ action and
type spaces.

Theorem 6.1. Suppose that the payoff function ui : A × T → R of every player i
satisfies the following two conditions:

(a) Take any given a−i ∈ A−i and t ∈ T . If a, a′ ∈ Ai, then

ui(a, a−i; t)− ui((aNi
∧ a′Ni

, aN ′
i
∨ a′N ′

i
), a−i; t) ≥ 0

⇒ ui((aNi ∨ a′Ni
, aN ′

i
∧ a′N ′

i
), a−i; t)− ui(a

′, a−i; t) ≥ 0 .

(b) Take any given a−i ∈ A−i and t−i ∈ T−i. Suppose ai, a
′
i ∈ Ai are such that

aik ≥ a′ik for k ∈ Ni and aik ≤ a′ik for k ∈ N ′
i ; and ti, t

′
i ∈ Ti are such that

tiℓ ≥ t′iℓ for ℓ ∈ Mi and tiℓ ≤ t′iℓ for ℓ ∈ M ′
i , then

ui(ai, a−i; t
′
i, t−i)− ui(a

′
i, a−i; t

′
i, t−i) ≥ 0

⇒ ui(ai, a−i; ti, t−i)− ui(a
′
i, a−i; ti, t−i) ≥ 0 .

Then there exists a Bayesian equilibrium in which each player i plays a pure strategy
si such that the projection ti 7→ sik(ti), with k ∈ Ni (k ∈ N ′

i), is nondecreasing
(nonincreasing) in tiℓ for ℓ ∈ Mi and nonincreasing (nondecreasing) in tiℓ for
ℓ ∈ M ′

i .

Remark 6.2. In Theorem 6.1, if N ′
i = ∅ and M ′

i = ∅, then condition (a) reduces
to the usual quasi-supermodularity of McAdams (2003) and condition (b) reduces
to the single-crossing property of McAdams (2003). Then the theorem implies
existence of a monotone Bayesian equilibrium.

We can now state a corollary of Theorem 6.1 for the case when the players’
payoffs are twice continuously differentiable.

Corollary 6.3. Suppose that for each player i, the payoff function ui : A× T → R
is twice continuously differentiable and satisfies the following two conditions:
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(a) For every a ∈ A and t ∈ T ,
∂2ui(a; t)

∂aik∂aik′
≥ 0 if either k, k′ ∈ Ni or k, k′ ∈ N ′

i ; and

∂2ui(a; t)

∂aik∂aik′
≤ 0 if k ∈ Ni and k′ ∈ N ′

i .

(b) For every a ∈ A and t ∈ T ,
∂2ui(a; t)

∂aik∂tiℓ
≥ 0 if k ∈ Ni and ℓ ∈ Mi; or k ∈ N ′

i and ℓ ∈ M ′
i ;

∂2ui(a; t)

∂aik∂tiℓ
≤ 0 if k ∈ N ′

i and ℓ ∈ Mi; or k ∈ Ni and ℓ ∈ M ′
i .

Then there exists a Bayesian equilibrium in which each player i plays a pure strategy
si such that the projection ti 7→ sik(ti), with k ∈ Ni (k ∈ N ′

i), is nondecreasing
(nonincreasing) in tiℓ for ℓ ∈ Mi and nonincreasing (nondecreasing) in tiℓ for
ℓ ∈ M ′

i .

All proofs for this section can be found in Appendix D.

7. Literature

There is an extensive literature concerned with existence of equilibrium for
Bayesian games, with Milgrom and Weber (1985) being a groundbreaking con-
tribution. Often one is interested in equilibria in which the agents’ strategies have
some prescribed structure. Within many economic frameworks, it is natural to
look in particular for equilibria in which each agent follows a pure strategy that
is an increasing function of her type. Milgrom and Shannon (1994) were the first
to develop a general theory and method for this kind of analysis. Athey (2001),
McAdams (2003), and Reny (2011) provide increasingly general existence results of
this sort. Remarkably, Reny (2011) introduces far-reaching new techniques apply-
ing the fixed point theorem of Eilenberg and Montgomery (1946, Theorem 5). This
is done by showing that with atomless type spaces the set of monotone functions
is an absolute retract and when the values of the best response correspondence are
non-empty sub-semilattices of monotone functions, they too are absolute retracts.
This paper extends this line of research, providing a theory that encompasses Reny’s
results while generalizing the relevant methods.12 In this section, we show how the
main result in Reny (2011), which generalizes Athey (2001) and McAdams (2003),
can be derived from Theorem 4.1. As a reminder, we state Reny’s main result in a
concise form.

Theorem 7.1 (Theorem 4.1 of Reny (2011)). Suppose that the following assump-
tions hold.

(1) For each player i,
(a) πi is atomless;
(b) Ti is endowed with a measurable partial order for which there is a

countable set T 0
i ⊆ Ti such that for every E ∈ Ti with πi(E) > 0 there

are ti, t
′
i ∈ E with [ti, t

′
i] ∩ T 0

i ̸= ∅;
(c) Ai is compact metric space, and a semilattice with closed partial order;

12Recent developments, specifically emphasizing existence of equilibrium in auctions, include
Mensch (2019), Prokopovych and Yannelis (2019), and Woodward (2019).
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(d) either:
(i) Ai is a convex subset of a locally convex topological vector space

and the partial order on Ai is convex, or
(ii) Ai is a locally complete metric semilattice;

(e) ui(t, · ) is continuous for every t ∈ T .
(2) Each player’s set of nondecreasing pure best responses is nonempty and

closed with respect to the supremum operation whenever the other players
use nondecreasing pure strategies.

Then the Bayesian game has an equilibrium in nondecreasing pure strategies.

First, we show that, under the assumptions listed, the set of nondecreasing
strategies is order-convex. Fix a player i. Being a compact, metric space, the
set of actions Ai can be isometrically embedded in a Banach space Li. The set
of nondecreasing strategies Mi for player i is thus a subset of Bochner-integrable
functions from Ti to Li, under the L1-norm topology. Partially order Mi according
to the (almost everywhere) pointwise order, as follows

fi ≥ gi ⇐⇒ fi(ti) ≥ gi(ti) πi − a.e .
Under this partial order, the set of nondecreasing strategies Mi is a metric semi-
lattice. Further, by Reny (2011, Lemmas A.10 and A.11), the set Mi is L1-norm
compact. The next lemma establishes that Mi is also locally complete.

Lemma 7.2. Under the assumptions of Theorem 7.1–(1), the set of nondecreasing
strategies Mi for every player i is locally complete.

Proof. Case (1.d.i): We show that, under assumption (1.c), if Ai is a convex subset
of a locally convex topological vector space with a convex partial order, then Ai is
a locally complete metric semilattice. Thus case (1.d.i) reduces to (1.d.ii). Given
Reny (2011, Lemma A.18), it suffices to show that if an is a sequence of actions
converging to a, then bm = ∨n≥man also converges to a as m goes to infinity.
Suppose bm does not converge to a. Because Ai is compact, taking a subsequence
if necessary, we may assume that bm converges to b ̸= a. Since am ≤ bm for every
m and ≤ is a closed order, it follows that a ≤ b. And since a ̸= b, it follows that
a < b. Because Ai is a convex subset of a metric, locally convex topological vector
space, with a closed order, there exist two disjoint, convex neighborhoods U of a
and V of b such that a′ < b′ for every a ∈ U and b ∈ V . Pick α ∈ (0, 1) such that
αa+ (1− α)b ∈ V . Since ≤ is closed, it follows that αa+ (1− α)b < b, and notice
that there is a convex neighborhood W of b such that αa+ (1− α)b < b′ for every
b′ ∈ W . Let M be an integer such that an ∈ U for every n ≥ M and bm ∈ W for
every m ≥ M . Therefore, αa+ (1− α)b is an upper bound on the set

∪
n≥M{an}.

However, αa+ (1− α)b < bM , which contradicts bM = ∨n≥Man.
Case (1.d.ii): Given Reny (2011, Lemma A.18), it suffices to show that if fn

is a sequence of nondecreasing strategies converging in the L1-norm to f , then
∨n≥mfn also converges to f as m goes to infinity. So let fn be such sequence. From
Reny (2011, Lemma A.12), it follows that fn converges πi-almost everywhere to
f . Given that Ai is locally complete and using Reny (2011, Lemma A.18) again,
it follows that ∨n≥mfn(ti) converges to f(ti) for πi-almost every ti as m goes to
infinity, which implies L1-norm convergence. □

Given Lemmas B.1, B.2, and B.3, if the set of nondecreasing strategies Mi has
monotonically contractible order intervals, then it is order-convex.
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Lemma 7.3. Under the assumptions of Theorem 7.1–(1), the set of nondecreasing
strategies Mi for every player i is order-convex.

Proof. From Reny (2011, Lemmas A.3 and A.15), it follows that if [fi, f
′
i ] is an

order interval in Mi, then h : [0, 1]× [fi, f
′
i ] → [fi, f

′
i ] given by

h(α, gi) =

{
gi(ti) if Φi(ti) ≤ α ;

f ′
i(ti) otherwise .

is a monotone contraction. Thus, Mi is order-convex. □

Notice that each player i’s best reply is closed with respect to the supremum, by
assumption, and closed with respect to the monotone contraction, by construction.
Thus, given Lemmas 7.2 and 7.3, the existence of an equilibrium in nondecreasing
pure strategies follows from Theorem 4.1.

Appendix A. Proofs for Section 3

A.1. Proof of Lemma 3.7.

Proof. If X is separable, metric space, then it can be isometrically embedded as a
subset of a Banach space Y . It suffices to construct a retraction r : X → Y .

For each y ∈ Y \X, let φ(y) = inf{∥y−x∥Y : x ∈ X}. Define the correspondence
F : Y \X ↠ X by

F (y) = {x ∈ X : ∥y − x∥Y < 2φ(y)} .

Because φ(y) > 0 for every y ∈ Y \X, it follows that F (y) is nonempty. Moreover,
F has open lower sections. Thus, if X∗ is a countable dense subset of X, then
{F−1(x) : x ∈ X∗} is a countable open cover of Y \ X. Let U be a locally finite
refinement, and let {πU : U ∈ U} be a partition of unity subordinated to it. For
each U ∈ U , there is at least one x ∈ X∗ such that U ⊆ F−1(x); let xU denote
such x. For every y ∈ Y \X, we identify the collection π(y) = {πU (y) : U ∋ y} with
the corresponding point in the simplex |{xU : U ∋ y}|. By Walker’s carrier lemma,
there exists a continuous function f : |∆| → |Γ|, such that for every finite subset
Y ′ ⊆ Y , f(|Y ′|) ⊆ |H(Y ′)Γ|. Define the function r : Y \X → X by

r(y) = h(f(π(y)) .

Extend the function r to X by setting r(x) = x for every x ∈ X.
Since r|Y \X and r|X are continuous by construction, it suffices to check that,

for every sequence (yn) ⊆ Y \X converging to some x ∈ X, the sequence (r(yn))
converges to r(x) = x. But, for every n, if x′ ∈ suppπ(yn), then d(yn, x

′) <
2φ(yn). As n goes to infinity, φ(yn) converges to zero. Because the hulling is small,
that implies that H(suppπ(yn)) converges to x. Further, because the monotone
realization is local, h(f(π(yn))) converges to x. □

Appendix B. Locally complete semilattices

We now investigate the relationship between these structures and locally com-
plete metric semilattices.

Lemma B.1. If X is a locally complete, metric semilattice and H is the family of
all finite subsemilattices, then H is a small hulling.
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Proof. Let Yn be a sequence of finite sets converging to x ∈ X, and let U be a
neighborhood of x. Since X is locally complete, there is a neighborhood W of x
such that every nonempty Y ⊆ W has a least upper bound in U . Suppose that
Yn ⊆ W , as is the case for large n. Then { y1 ∨ · · · ∨ yk : y1, . . . , yk ∈ Yn } is
a subsemilattice that is contained in any subsemilattice that contains Yn, so it is
H(Yn), and each of its elements is contained in U . Thus H(Yn) ⊆ U for large n. □

The notion of a order-convexity is a straightforward generalization of the path-
connected metric-lattices extensively studied in Anderson (1959), McWaters (1969),
Lawson (1969), Lawson and Williams (1970), and Gierz et al. (1980). It arises quite
naturally. An order interval in X is a set defined by

[x, x′] = { y ∈ X : x ≤ y ≤ x′ } ,
for some x ≤ x′. We say that the order interval [x, x′] is monotonically contractible
if there is a contraction ℓ : [0, 1]× [x, x′] → [x, x′] such that if α ≤ α′, then ℓ(α, y) ≤
ℓ(α′, y) for every y ∈ [x, x′]. The next lemma shows that every metric semilattice
with monotonically contractible order intervals has a monotone realization.

Lemma B.2. If X is metric semilattice with monotonically contractible order in-
tervals, then there exists a continuous function h : |Γ| → X such that h(|Y |) ⊆
[∧Y,∨Y ] for every finite chain Y ⊆ X.

Proof. Notice that for any finite set Y the hull H(Y ) is the set {∨Z : Z ⊆ S, Z ̸= ∅}.
We will use the following fact: any continuous function from the boundary of a cell
to a contractible space can be continuously extended across the entire cell. We will
construct the monotone realization h by induction on the skeletons of Γ. Recall that
the n-skeleton Γ(n) is the subcomplex consisting of the simplexes of Γ of dimension
n or less. For every vertex x in Γ(0), let h(x) = x. For each simplex Y in Γ(1), choose
a monotone path ℓ : [0, 1] → [∧Y,∨Y ], and let h(π) = ℓ(π(∧Y )) for every π ∈ |Y |.
Notice that h(δ∧Y ) = ∧Y and h(δ∨Y ) = ∨Y . Therefore, h is well-defined and
continuous on |Γ(1)|. Further, h(|Y |) ⊆ [∧Y,∨Y ] for every 1-simplex Y in Γ(1). The
inductive hypothesis is that h : |Γ(n)| → X is continuous and h(|Y |) ⊆ [∧Y,∨Y ] for
every n-simplex Y in Γ(n). Now, suppose Z is an (n+1)-simplex. For every proper
face Y of Z, h(|Y |) ⊆ [∧Y,∨Y ] ⊆ [∧Z,∨Z]. Therefore, h(|BdZ|) ⊆ [∧Z,∨Z].
Since Z is a cell and [∧Z,∨Z] is contractible, h can be continuously extended over
|Z| in such a way that h(|Z|) ⊆ [∧Z,∨Z]. Since the map h : |Γ| → X is continuous
if and only if it is continuous on each simplex, it follows that h is a monotone
realization. □

If additionally X is locally complete, then the monotone realization constructed
in the proof of Lemma B.2 is local.

Lemma B.3. Suppose X is a locally complete, metric semilattice with a monotone
realization h : |Γ| → X. If h(|Y |) ⊆ [∧Y,∨Y ] for every finite chain Y ⊆ X, then h
is local.

Proof. Let Yn ⊆ X be a sequence of nonempty finite chains converging to x ∈ X,
and let Y n = ∧Yn and Y n = ∨Yn. For every n take any xn ∈ [Y n, Y n]. Birkhoff’s
identity implies that for every n

⌊Y n − Y n⌋ = ⌊Y n ∨ xn − Y n ∨ xn⌋+ ⌊Y n ∧ xn − Y n ∧ xn⌋
= ⌊Y n − xn⌋+ ⌊xn − Y n⌋ ,
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where ⌊z⌋ = z ∨ (−z) denotes the absolute value of z. Since Y n and Y n both
converge to x and X is locally complete, it follows that ⌊Y n − Y n⌋ converges to 0.
Therefore, ⌊Y n − xn⌋ and ⌊xn − Y n⌋ also converge to 0. Because Y n converges to
x, it follows that xn converges to x too. □

Appendix C. Proofs for Sections 2 and 5

In all three auctions described in this section, the bidders’ type and action spaces
are subsets of Euclidean spaces. When required, we equip these spaces with the
Lebesgue σ-algebra and the Lebesgue measure λ. In particular, this means that
density functions on types are absolutely continuous with respect to the Lebesgue
measure. Moreover, under these assumptions, the partial order on strategies in-
duced either by the pointwise supremum or the pointwise infimum is measurable.

C.1. All-pay auction. We first describe the bidder-specific set of strategies Ki.
We then show that, using the sufficient conditions from Lemmas B.2 and B.1, it
satisfies the requirements of Theorem 4.1.

Fix a bidder i. To describe the set Ki, let N+
i denote the set of indexes k such

that the weighted valuation vi(ti, t−i)f(t−i | ti) is nondecreasing on the interval
In
i , that is, define

N+
i = {n : vi(ti, t−i)f(t−i | ti) is nondecreasing over In

i } .
Notice that, given Assumption B.1, N+

i consists of a finite collection of indexes.
Likewise, define N−

i to be the set of indexes k such that the weighted valuation
vi(ti, t−i)f(t−i | ti) is nonincreasing on the interval In

i , that is,
N−

i = {n : vi(ti, t−i)f(t−i | ti) is nonincreasing over In
i } .

We may take N+
i and N−

i to be disjoint. We define Ki to be the set of measurable
functions from Ti = [τ , τ ] to B that are nondecreasing over In

i when n ∈ N+
i and

nonincreasing over In
i when n ∈ N−

i . Formally, define
Ki = {f : f |In

i
is nondecreasing for every n ∈ N+

i

and f |In
i

is nonincreasing for every n ∈ N−
i } .

(1)

As defined, Ki is a closed subset of functions of bounded variation, with a uniform
total variation bound of | ∨ B − ∧B| × (|N+

i | + |N−
i |). Thus, by Helly’s selection

theorem, it is a L1-norm compact subset of measurable functions. The following
lemmas show that Ki satisfies the conditions required to apply Theorem 4.1.

Lemma C.1. The subset of strategies Ki is a locally complete, metric semilattice.

Proof. The set Ki, endowed with the L1-norm, is clearly a metric semilattice. It
only remains to show that it is locally complete. Given Reny (2011, Lemma A.18),
it suffices to show that if gk is a sequence of strategies in Ki converging in the
L1-norm to f , then ∨k≥mgk also converges to g as m goes to infinity. Let gk be
such sequence. Fix n ∈ N+

i and consider the function given by gk1In
i

, where 1E is
the indicator function of E ⊆ Ti. Because gk is nondecreasing on In

i , from Reny
(2011, Lemma A.12), it follows that gk1In

i
converges almost everywhere to g1In

i
.

Applying the same argument to −gk1In
i

for n ∈ N−
i yields that gk1In

i
converges

almost everywhere to g1In
i

for every n ∈ N+
i ∪N−

i . Since there is a finite number
of subintervals, it follows that gk =

∑
n gk1In

i
converges almost everywhere to

g =
∑

n g1In
i

. Given the real numbers are locally complete, applying Reny (2011,
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Lemma A.18) again, it follows that ∨k≥mgk(ti) converges to g(ti) for almost every
ti as m goes to infinity. Therefore, ∨k≥mgk converges to g in the L1-norm. □

In view of Lemma B.1, we record the following corollary of this result.

Corollary C.2. The family H of all finite subsemilattices of Ki is a small hulling.

The next lemma shows that the order intervals of Ki are monotonically con-
tractible.

Lemma C.3. The subset of strategies Ki has monotonically contractible order
intervals.

Proof. Let [g′i, g′′i ] be an order interval in Ki. Define the function h : [0, 1]×[g′i, g
′′
i ] →

[g′i, g
′′
i ] by

h(α, gi) =


g′′i (ti) if ti ∈ Ini with k ∈ N+

i and | ∨ Ini − ti| ≤ α| ∨ Ini − ∧Ini | ,
g′′i (ti) if ti ∈ Ini with k ∈ N−

i and |ti − ∧Ini | ≤ α| ∨ Ini − ∧Ini | ,
gi(ti) otherwise .

The function h is the required monotone contraction. □

As a result of Lemmas B.2 and B.3, we have the following corollary of this result.

Corollary C.4. The subset of strategies Ki is order-convex.

The next two lemmas check that the best response correspondence also satisfies
the conditions of the theorem.

Lemma C.5. The intersection of the best response correspondence Bi(β−i) with
Ki is nonempty for every strategy profile of other bidders β−i.

Proof. Fix a profile of strategies for other players β−i. We show that the interim
best response correspondence

Bi(β−i | ti) = argmax
b∈B

Vi(b | ti, β−i)

has a selection in Ki. Consider the selection gi(ti) = ∨Bi(β−i | ti). It is well-defined
because B is finite. Moreover, it is measurable because the pointwise partial order
is measurable. The proof now procedes by contradiction to show that gi is in Ki.
Suppose gi /∈ Ki. Then there exist t′i > ti, both in some subinterval In

i , such that
either (i) gi(ti) > gi(t

′
i) and n ∈ N+

i , or (ii) gi(t
′
i) > gi(ti) and n ∈ N−

i .
Consider case (i). Because gi is defined as the maximum interim best response,

it follows that gi(ti) /∈ Bi(β−i | t′i). Thus

(2) Vi(gi(t
′
i) | t′i, β−i)− Vi(gi(ti) | t′i, β−i) > 0 .

Furthermore,

Vi(gi(ti) | t′i, β−i)− Vi(gi(t
′
i) | t′i, β−i)

=

∫
[τ,τ ]I−1

[αi(gi(ti), β−i(t−i))− αi(gi(t
′
i), β−i(t−i))]vi(t

′
i, t−i)f(t−i | t′i) dt−i

− gi(ti) + gi(t
′
i) .
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Since the allocation mapping αi is positive and nondecreasing in its first argument
and vifi is positive and nondecreasing in bidder i’s signal, it follows that∫

[τ,τ ]I−1

[αi(gi(ti), β−i(t−i))− αi(gi(t
′
i), β−i(t−i))]vi(t

′
i, t−i)f(t−i | t′i) dt−i ≥∫

[τ,τ ]I−1

[αi(gi(ti), β−i(t−i))− αi(gi(t
′
i), β−i(t−i))]vi(t)f(t−i | ti) dt−i ,

and hence

Vi(gi(ti) | t′i, β−i)− Vi(gi(t
′
i) | t′i, β−i) ≥ Vi(gi(ti) | ti, β−i)− Vi(gi(t

′
i) | ti, β−i) ,

However, optimality also implies that

Vi(gi(ti) | ti, β−i)− Vi(gi(t
′
i) | ti, β−i) ≥ 0 ,

and hence
Vi(gi(ti) | t′i, β−i)− Vi(gi(t

′
i) | t′i, β−i) ≥ 0 ,

which contradicts equation (2).
Consider now case (ii). Because gi is defined as the maximum interim best

response, it follows that

(3) Vi(gi(ti) | ti, β−i)− Vi(gi(t
′
i) | ti, β−i) > 0 .

Furthermore,

Vi(gi(t
′
i) | ti, β−i)− Vi(gi(ti) | ti, β−i)

=

∫
[τ,τ ]I−1

[αi(gi(t
′
i), β−i(t−i))− αi(gi(ti), β−i(t−i))]vi(t)f(t−i | ti) dt−i

− gi(t
′
i) + gi(ti) .

Since the allocation mapping αi is positive and nondecreasing in its first argument
and vifi is positive and nonincreasing in bidder i’s signal, it follows that∫

[τ,τ ]I−1

[αi(gi(t
′
i), β−i(t−i))− αi(gi(ti), β−i(t−i))]vi(t)f(t−i | ti) dt−i ≥∫

[τ,τ ]I−1

[αi(gi(t
′
i), β−i(t−i))− αi(gi(ti), β−i(t−i))]vi(t

′
i, t−i)f(t−i | t′i) dt−i ,

and hence

Vi(gi(t
′
i) | ti, β−i)− Vi(gi(ti) | ti, β−i) ≥ Vi(gi(t

′
i) | t′i, β−i)− Vi(gi(ti) | t′i, β−i) ,

However, optimality also implies that

Vi(gi(t
′
i) | t′i, β−i)− Vi(gi(ti) | t′i, β−i) ≥ 0 .

and hence
Vi(gi(t

′
i) | ti, β−i)− Vi(gi(ti) | ti, β−i) ≥ 0 ,

which contradicts equation (3). □

Lemma C.6. The intersection of the best response correspondence Bi(β−i) with
Ki is order-convex for every β−i.
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Proof. Fix β−i. Since the intersection of Bi(β−i) with Ki is a closed subset of
Ki and Ki is locally complete, it follows that Bi(β−i) ∩ Ki is locally complete.
Further, the best response correspondence Bi is closed with respect to the monotone
contraction h constructed in Lemma C.3. Therefore, Bi(β−i) ∩Ki is order-convex
for every β−i. □

Corollaries C.2 and C.4, together with Lemmas C.5 and C.6 imply that the
assumptions of Theorem 4.1 are satisfied for the all-pay auction when Ki is the set
of strategies of bounded variation defined as by equation (1). Therefore, the all-pay
auction has a Bayesian equilibrium in which bidders play strategies in Ki.

C.2. First-price auction with interdependent values. We first describe the
bidder-specific set of strategies Ki, and show that it is order-convex. We then show
that the best responses satisfy the requirements of Theorem 4.1.

Fix a bidder i. For every subset of indexes L ⊆ {1, . . . ,K}, define the following
set of types of bidder i:

TL
i =

{
t ∈ [τ , τ ]K :

∂vi
∂tiℓ

(t) ≥ 0 if ℓ ∈ L and ∂vi
∂tiℓ

(t) < 0 if ℓ /∈ L

}
.

Notice that each TL
i is a (Borel) measurable subset of [τ , τ ]K . Furthermore, they

constitute a partition of bidder i’s type space, since ∪LT
L
i = [τ , τ ]K and TL

i ∩TL′

i =
∅ whenever L ̸= L′. Thus each ti ∈ [τ , τ ]K is an element of TL

i for one and only
one L ⊆ {1, . . . ,K}.

Define Ki to be the set of (equivalence classes of) measurable functions from
[τ , τ ]K to B such that their restriction to each TL

i is nondecreasing in tiℓ if ℓ ∈ L
and nonincreasing in tiℓ if ℓ /∈ L. We consider Ki to be a subset of the set of real-
valued, measurable functions over [τ , τ ]K under the L1-norm topology. We next
show that the subset Ki is compact.

Lemma C.7. The set Ki is L1-norm compact.

Proof. If ∂vi

∂tiℓ
(t) = 0 for every t ∈ [τ , τ ]K , then the result is straightforward. So we

may assume that is not the case. Let gn ∈ Ki be a sequence of functions in Ki.
By the diagonal argument, there exists a subsequence nk such that limnk

gnk
(r) =

h(r) exists for every r in a countable dense subset of [τ , τ ]K . Define the function
g : [τ , τ ]K → B by

g(t) = ∧{h(t̃) : t̃ℓ > tℓ if t ∈ TL
i and ℓ ∈ L, and t̃ℓ < tℓ if t ∈ TL

i and ℓ /∈ L} .

By construction, g ∈ Ki. Moreover, limnk
gnk

(t) = g(t) for continuity points of g.
Theorem 7 of Brunk et al. (1956) and the fact that the set of roots of a nonzero
polynomial function has zero Lebesgue measure imply that the set of of discontinu-
ity points of g has zero Lebesgue measure. And since the distribution of bidder i’s
types is absolutely continuous with respect to the Lebesgue measure, it follows that
gnk

converges to g in the L1-norm. □

Partially order Ki by the almost everywhere pointwise order, whereby

gi ≥ g′i ⇐⇒ gi(ti) ≥ g′i(ti) λ-a.e ,

where λ denotes the Lebesgue measure. With this partial order, the set Ki is a
locally complete semilattice.
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Lemma C.8. The set Ki with the almost everywhere pointwise order is a locally
complete lattice.

Proof. Given Reny (2011, Lemma A.18), it suffices to show that if gn is a sequence
of strategies in Ki converging in the L1-norm to f , then ∨n≥mgn also converges
to g as m goes to infinity. Let gn be such sequence. Fix TL

i and consider the
function given by gn1TL

i
, where 1E is the indicator function of E ⊆ Ti. Because gn

is nondecreasing in tiℓ for ℓ ∈ L and nonincreasing in tiℓ for ℓ /∈ L, from Reny (2011,
Lemma A.12), it follows that gn1TL

i
converges almost everywhere to some g1TL

i
.

Applying the same argument to each L′ ⊆ {1, . . . .K} yields that gn1TL′
i

converges
almost everywhere to g1TL′

i
for every L′. Since there is a finite number of subsets

of {1, . . . ,K}, it follows that gn =
∑

L gn1TL
i

converges almost everywhere to
g =

∑
n g1TL

i
. Given the real numbers are locally complete, applying Reny (2011,

Lemma A.18) again, it follows that ∨n≥mgn(ti) converges to g(ti) for almost every
ti as m goes to infinity. Therefore, ∨n≥mgn converges to g in the L1-norm. □

Let Hi denote the collection of all finite subsemilattices of Ki. The next lemma
shows that Hi is a small hulling.

Lemma C.9. The collection Hi of all finite subsemilattices of Ki is a small hulling.

Proof. It follows from Lemmas C.8 and B.1. □

Finally, we define a monotone realization for Ki. For the purposes of this ex-
ample, a monotone realization is a continuous function h : |Γ| → Ki from order
simplexes in Γ to Ki.

For every L ⊆ {1, . . . ,K} and c ∈ [0, 1], define the following measurable set of
bidder i’s types:
E(c, L) = {t ∈ [τ , τ ]K : tiℓ ≤ (1−c)τ+cτ if ℓ ∈ L, and tiℓ ≥ cτ+(1−c)τ if ℓ /∈ L} .
Notice that the collection {E(c, L) : c ∈ [0, 1]} is an increasing chain of measurable
subsets of bidder i’s type space that reflects the ordering induced by the partial
derivatives of the valuation function in TL

i . Further, the Lebesgue measure of
each set E(c, L) is λ(E(c, L)) = c(τ − τ), E(0, L) is a singleton for every L, and
E(1, L) = [τ , τ ]K for every L. Therefore, it follows that, for every ti ∈ [τ , τ ]K , there
exists one L ⊆ {1, . . . ,K} such that ti ∈ E(1, L) ∩ TL

i = TL
i .

If Y ∈ Γ is a simplex in the order complex of Ki, then Y consists of a finite
chain in Ki. Thus the elements in Y can be identified with the ordered vector
Y = (g1, . . . , gn), with g1 ≤ · · · ≤ gn. And a point x in the geometric realization
|Y | can be written as x = (xg1 , xg2 , . . . , xgn). We can now define the monotone
realization h : |Γ| → Ki by

h(x)(ti) =


g1(ti) if ti ∈ E(xg1 , L) ∩ TL

i ,

g2(ti) if ti ∈ [E(xg1 + xg2 , L) \ E(xg1 , L)] ∩ TL
i ,

· · ·
gn(ti) if ti ∈ [E(1, L) \ E(

∑n−1
k=1 xgk , L)] ∩ TL

i .

That the function h is continuous follows from the Pasting Lemma and the fact
that the distribution of bidders’ types is absolutely continuous with respect to
the Lebesgue measure. The next lemma establishes that h is a local monotone
realization.
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Lemma C.10. The monotone realization h is local.

Proof. It follows from Lemmas C.8 and B.3. □

All that is left to show is that the best response correspondence satisfies the
conditions required by Theorem 4.1. We denote by Vi(b | ti, β−i) bidder i’s interim
payoff, given by

Vi(b | ti, β−i) =

∫
[τ,τ ](N−1)K

ρi(b, β−i(t−i))[vi(t)− b]
∏
j ̸=i

fj(tj) d t−i .

Lemma C.11. Fix a bid profile β−i ∈ K−i of players other than i. If Bi(β−i) is
bidder i’s best response to β−i, then Bi(β−i) ∩Ki is nonempty and order-convex.

Proof. Fix a profile β−i of bids for players other than i. We first show that the
intersection Bi(β−i) ∩ Ki is not empty. Let Bi denote the interim best response
correspondence, defined by

Bi(β−i | ti) = argmax
b∈B

Vi(b | ti, β−i) ,

and consider the selection gi(ti) = ∨Bi(β−i | ti). It is well-defined because B is
finite. Moreover, it is measurable because the pointwise partial order is measurable.

Suppose ti, t
′
i ∈ TL

i are such that tiℓ ≥ t′iℓ for ℓ ∈ L and tiℓ ≤ t′iℓ for ℓ /∈ L.
It suffices to show that if b ≤ b′ and b ∈ Bi(β−i | ti) and b′ ∈ Bi(β−i | t′i), then
b′ ∈ Bi(β−i | ti).

Vi(b
′ | ti, β−i)− Vi(b | ti, β−i) =∫

[ρi(b
′, β−i(t−i))− ρi(b, β−i(t−i))]vi(ti, t−i)

∏
j ̸=i

fj(tj) d t−i

−
∫
[ρi(b

′, β−i(t−i))b
′ − ρi(b, β−i(t−i)b]

∏
j ̸=i

fj(tj) d t−i .

Since vi(ti, t−i) ≥ vi(ti, t−i) for every t−i and ρi(b
′, β−i(t−i))− ρi(b, β−i(t−i)) ≥ 0,

it follows that

Vi(b
′ | ti, β−i)− Vi(b | ti, β−i) ≥∫

[ρi(b
′, β−i(t−i))− ρi(b, β−i(t−i))]vi(t

′
i, t−i)

∏
j ̸=i

fj(tj) d t−i

−
∫
[ρi(b

′, β−i(t−i))b
′ − ρi(b, β−i(t−i)b]

∏
j ̸=i

fj(tj) d t−i .

Therefore,

Vi(b
′ | ti, β−i)− Vi(b | ti, β−i) ≥ Vi(b

′ | t′i, β−i)− Vi(b | t′i, β−i) ≥ 0 .

Because b ∈ Bi(β−i | ti), it follows that b′ ∈ Bi(β−i | ti).
Since the intersection Bi(β−i) ∩Ki is a closed subset of Ki that is closed with

respect to the hulling from Lemma C.9 and with respect to the monotone realization
h from Lemma C.10, it follows that Bi(β−i) ∩Ki is order-convex. □

Therefore, by Theorem 4.1, this auction has an equilibrium in K.
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C.3. First-price auction of imperfect substitutes. Fix a bidder i. To define
the bidder-specific set of strategies Ki, first partition the set of types [0, 1]2 above
and below the diagonal. That is, let [0, 1]2 = T 1

i ∪ T 2
i , where

T 1
i = {t ∈ [0, 1]2 : tA ≥ tB} ,

and
T 2
i = {t ∈ [0, 1]2 : tA < tB} .

Define Ki to be the set of measurable functions βi : [0, 1]
2 → B that satisfy the

following requirement:
(⋆) For every pair of types ti, t

′
i ∈ T k

i , with k = 1, 2, if tAi ≥ t′Ai and tBi ≤ t′Bi ,
then βi(ti)

A ≥ βi(t
′
i)

A and βi(ti)
B ≤ βi(t

′
i)

B .
We consider Ki to be a subset of the set of (equivalence classes of) measurable

functions over [0, 1]2 under the L1-norm topology. We next show that the subset
Ki is compact.

Lemma C.12. The set Ki is is L1-norm compact.

Proof. When restricted to each T k
i , k = 1, 2, the set of functions in Ki satisfies the

assumptions of Lemmas A.10–A.12 in Reny (2011, pp. 538–540), but with mixed
monotonicity in the individual variables. Therefore, the desired result follows. □

Consider the partial order ≥i on Ki whereby g ≥i f whenever for almost every
ti ∈ T 1

i

g(ti)
A ≥ f(ti)

A and g(ti)
B ≤ f(ti)

B ,

and for almost every ti ∈ T 2
i

g(ti)
A ≤ f(ti)

A and g(ti)
B ≥ f(ti)

B .

Under this partial order, the set Ki is locally complete, as the following lemma
establishes.

Lemma C.13. The partially ordered set (Ki,≥i) is locally complete.

Proof. The proof follows closely the proof of Lemma C.8, and is thus omitted. □
Let Hi denote the collection of all finite subsemilattices of Ki according to the

partial order ≥i. The next lemma establishes that Hi is a small hulling.

Lemma C.14. The collection Hi of all finite subsemilattices of Ki under ≥i is a
small hulling.

Proof. The desired result follows from an application of Lemmas C.13 and B.1. □
Finally, we define a monotone realization for Ki. Recall that a monotone realiza-

tion is a continuous function h : |Γ| → Ki, from order simplexes in Γ to Ki. If Y ∈ Γ
is a simplex in the order complex of Ki, then Y consists of a finite chain in Ki.
Thus the elements in Y can be identified with the ordered vector Y = (g1, . . . , gn),
with g1 ≤i · · · ≤i gn. And a point x in the geometric realization |Y | can be written
as x = (xg1 , xg2 , . . . , xgn). Define the monotone realization h : |Γ| → Ki by

h(x)(ti) =


g1(ti) if |tBi − tAi | ≤ xg1 ,

g2(ti) if xg1 < |tBi − tAi | ≤ xg1 + xg2 ,

· · ·
gn(ti) if

∑
ℓ<n xgℓ < |tBi − tAi | ≤ 1 .
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The mapping h will be a piecewise combination of strategies in a chain. For
the case when Y = (g1, g2), Figure 3 illustrates, for three different points in the
geometric realization |Y |, the parts in the domain Ti where h is equal to g1 or g2.
Figure 3a shows the composition of h at the point δg1 = (1, 0) that puts all weight
into strategy g1, in which case h(δg1) = g1. Figure 3b shows the composition of h
at a point αδg1 + (1 − α)δg2 = (α, 1 − α), α ∈ (0, 1), that puts some weight into
strategy g1 and some into strategy g2. In this case

h(αδg1 + (1− α)δg2)(ti) =

{
g1(ti) if |tBi − tAi | ≤ α ,

g2(ti) if |tBi − tAi | > α .

Notice that, since g1 ≤i g2, if tAi ≥ tBi , then gA1 (ti) ≤ gA2 (ti) and gB1 (ti) ≥ gB2 (ti).
Similarly, if tAi ≤ tBi , then gA1 (ti) ≥ gA2 (ti) and gB1 (ti) ≤ gB2 (ti). Therefore, h(αδg1+
(1 − α)δg2) ∈ Ki. Finally, Figure 3c shows the composition of h at the point
δg2 = (0, 1) that puts all weight into strategy g2, in which case h(δg2) = g2.

tAi

tBi

10

1

g1

(a) h(δg1) = g1

tAi

tBi

10

1

g1

g1
g2

g2

(b) h(αδg1 + (1− α)δg2)

tAi

tBi

10

1

g2

(c) h(δg2) = g2

Figure 3. Piecewise composition of the monotone realization
h(|(g1, g2)|)

That the function h is continuous follows from the Pasting Lemma and the
fact that the distribution of bidders types is absolutely continuous with respect
to the Lebesgue measure. The next lemma establishes that h is a local monotone
realization.

Lemma C.15. The monotone realization h is local.

Proof. It follows from Lemmas C.13 and B.3. □
Together, Lemmas C.14 and C.15 imply that Ki is order-convex, which is recorded

in the following corollary.

Corollary C.16. The set Ki is an order-convex subset of strategies of bidder i.

The remaining lemmas establish that the best response correspondence satisfies
the assumptions of Theorem 4.1.

Lemma C.17. Fix a profile β−i of bids of players other than i and a type ti ∈ [0, 1]2

of bidder i. Let Bi(β−i | ti) be bidder i’s interim best response to β−i when her type
is ti. Then the following are true:

(1) If ti ∈ T 1
i and b, d ∈ Bi(β−i | ti), then (bA ∨ dA, bB ∧ dB) ∈ Bi(β−i | ti).

(2) If ti ∈ T 2
i and b, d ∈ Bi(β−i | ti), then (bA ∧ dA, bB ∨ dB) ∈ Bi(β−i | ti).
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Proof. (1) Suppose ti ∈ T 1
i and b, d ∈ Bi(β−i | ti). Let π(S, b) denote the

probability that bidder i wins S when bidding b, that is,

π(S, b) =

∫
[0,1]2(N−1)

ρi(S, b, β−i(t−i))
∏
j ̸=i

fj(tj) d t−i .

If W (b) =
∑

S⊆{A,B} vi(S, ti)π(S, b), then

W (bA ∨ dA, bB ∧ dB) +W (bA ∧ dA, bB ∨ dB)−W (b)−W (d)

= tBi [π(B, bA ∨ dA, bB ∧ dB) + π(B, bA ∧ dA, bB ∨ dB)− π(B, b)− π(B, d)]

≥ 0 .

Since b, d ∈ Bi(β−i | ti),
W (bA ∨ dA, bB ∧ dB) +W (bA ∧ dA, bB ∨ dB)−W (b)−W (d) ≥ 0

implies that (bA ∨ dA, bB ∧ dB) ∈ Bi(β−i | ti), which completes the proof.
(2) A similar argument, with the roles of A and B reversed, proves (2).

□
Lemma C.18. Fix a profile β−i of bids of players other than i and let Bi(β−i) be
bidder i’s ex ante best response to β−i. The intersection Bi(β−i)∩Ki is nonempty.

Proof. Recall that Bi(β−i | ti) is the interim best response correspondence, defined
by

Bi(β−i | ti) = argmax
b∈B

Vi(b | ti, β−i) ,

and consider the selection

gi(ti) =

{
(∨Bi(β−i | ti)|A,∧Bi(β−i | ti)|B) if ti ∈ T 1

i

(∧Bi(β−i | ti)|A,∨Bi(β−i | ti)|B) if ti ∈ T 2
i

It is well-defined by Lemma C.17 and because B is finite. Moreover, it is measurable
because the pointwise partial order is measurable.

Suppose ti, t
′
i ∈ T 1

i are such that tAi ≥ t′Ai and tBi ≤ t′Bi . It suffices to show that
if b ∈ Bi(β−i | ti) and b′ ∈ Bi(β−i | t′i), then (bA ∨ b′A, bB ∧ b′B) ∈ Bi(β−i | t′i).
Vi(b

A ∨ b′A, bB ∧ b′B | t′i, β−i)− Vi(b
′ | t′i, β−i)

= t′Ai [π(AB ∪A, bA ∨ b′A, bB ∧ b′B)− π(AB ∪A, b′)] + t′Bi [π(B, bA ∨ b′A, bB ∧ b′B)− π(B, b′)]

≥ tAi [π(AB ∪A, bA ∨ b′A, bB ∧ b′B)− π(AB ∪A, b′)] + tBi [π(B, bA ∨ b′A, bB ∧ b′B)− π(B, b′)]

= Vi(b
A ∨ b′A, bB ∧ b′B | ti, β−i)− Vi(b

′ | ti, β−i) .

By the same argument as in Lemma C.17, it follows that
Vi(b

A∨b′A, bB∧b′B | ti, β−i)−Vi(b
′ | ti, β−i)−Vi(b | ti, β−i)+Vi(b

A∧b′A, bB∨b′B | ti, β−i) ≥ 0 .

Because b ∈ Bi(β−i | ti), it follows that
Vi(b

A ∨ b′A, bB ∧ b′B | ti, β−i)− Vi(b
′ | ti, β−i) ≥ 0 ,

and thus b′ ∈ Bi(β−i | t′i).
If ti, t

′
i ∈ T 2

i , then a similar argument, with the roles of A and B reversed,
completes the proof. □
Lemma C.19. Fix a profile β−i of bids of players other than i and let Bi(β−i) be
bidder i’s best response to β−i. The intersection Bi(β−i)∩Ki is closed with respect
to the hulling Hi.



BAYESIAN EQUILIBRIUM WITHOUT COMPLEMENTARITIES 28

Proof. The desired result follows from Lemmas C.17 and C.18. □

Lemma C.20. Fix a profile β−i of bids of players other than i and let Bi(β−i) be
bidder i’s best response to β−i. The intersection Bi(β−i)∩Ki is closed with respect
to the monotone realization h.

Proof. The result follows from the construction of the monotone realization. □

Together, Lemmas C.18-C.20 imply the following corollary, which allows us to
apply Theorem 4.1 to show that this auction has a Bayesian-Nash equilibrium in
K.

Corollary C.21. Fix a profile β−i ∈ K−i of bids of players other than i and
let Bi(β−i) be bidder i’s best response to β−i. The intersection Bi(β−i) ∩ Ki is
non-empty and order-convex.

Appendix D. Proofs for Section 6

D.1. Proof of Theorem 6.1. For convenience, we repeat the assumptions made
in Section 6:

(1) Each player i’s type space Ti = [τ i, τ i]
Mi × [τ i, τ i]

M ′
i is a nondegenerate

Euclidean cube, with the coordinate-wise partial order.
(2) Each player i’s types are distributed according to the probability density

fi over Ti, not necessarily everywhere positive, but independently of other
players’ types.

(3) Each player i’s set of actions Ai = [αi, αi]
Ni × [αi, αi]

N ′
i is an Euclidean

cube, endowed with the coordinate-wise partial order.
(4) Each player i’s payoff function ui : A × T → R is bounded, measurable in

t, and continuous in a.
In addition, Theorem 6.1 makes the following assumptions on each player i’s

payoff function ui : A× T → R.
(a) Take any given a−i ∈ A−i and t ∈ T . If a, a′ ∈ Ai, then

ui(a, a−i; t)− ui((aNi
∧ a′Ni

, aN ′
i
∨ a′N ′

i
), a−i; t) ≥ 0

⇒ ui((aNi
∨ a′Ni

, aN ′
i
∧ a′N ′

i
), a−i; t)− ui(a

′, a−i; t) ≥ 0 .

(b) Take any given a−i ∈ A−i and t−i ∈ T−i. Suppose ai, a
′
i ∈ Ai are such that

aik ≥ a′ik for k ∈ Ni and aik ≤ a′ik for k ∈ N ′
i ; and ti, t

′
i ∈ Ti are such that

tiℓ ≥ t′iℓ for ℓ ∈ Mi and tiℓ ≤ t′iℓ for ℓ ∈ M ′
i , then

ui(ai, a−i; t
′
i, t−i)− ui(a

′
i, a−i; t

′
i, t−i) ≥ 0

⇒ ui(ai, a−i; ti, t−i)− ui(a
′
i, a−i; ti, t−i) ≥ 0 .

With these assumptions in mind, we can now prove Theorem 6.1. Take any
player i. Define Ki to be the set of (equivalence classes of) measurable functions si
from Ti = [τ , τ ]Mi × [τ , τ ]M

′
i to Ai = [α, α]Ni × [α, α]N

′
i that satisfy two conditions:

(1) If k ∈ Ni, then ti 7→ sik(ti) is nondecreasing in tiℓ whenever ℓ ∈ Mi, and
nonincreasing in tiℓ whenever ℓ ∈ M ′

i .
(2) If k ∈ N ′

i , then ti 7→ sik(ti) is nonincreasing in tiℓ whenever ℓ ∈ Mi, and
nondecreasing in tiℓ whenever ℓ ∈ M ′

i .
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Endow Ki with the L1-norm topology. Partially order Ki by the almost everywhere
pointwise order ≥i whereby gi ≥i g

′
i if and only if for µi-almost every ti

gik(ti) ≥ g′ik(ti) if k ∈ Ni , and
gik(ti) ≤ g′ik(ti) if k ∈ N ′

i ,

where gik(ti) denotes the projection of the vector gi(ti) onto the k-th coordinate of
the action space Ai = [α, α]Ni × [α, α]N

′
i .

Lemma D.1. The set Ki is L1-norm compact and locally complete.

Proof. The set Ki is homomorphic and lattice isomorphic13 to the set of monotone
functions from Ti to Ai. By Lemma A.13 in Reny (2011, p. 540), Ki is compact.
By Lemma 7.2, the set Ki is locally complete. □

Let Hi denote the collection of all finite subsemilattices of (Ki,≥i). The next
lemma shows that Hi is a small hulling.

Lemma D.2. The collection Hi of all finite subsemilattices of (Ki,≥i) is a small
hulling.

Proof. It follows from Lemmas D.1 and B.1. □

Finally, we define a monotone realization for Ki. Recall that a monotone re-
alization is a continuous function h : |Γ| → Ki from order simplexes in Γ to Ki.
Let 1M denote the indicator vector, in which the ℓ-th entry is 1 if ℓ ∈ M or 0 if
ℓ /∈ M . Notice that 1M · 1M denotes the number of non-zero entries in M , with
M = Mi,M

′
i . For every c ∈ [0, 1], define the following measurable set of player i’s

types:

E(c) = {ti ∈ Ti : (1Mi −1M ′
i
) · ti ≤ (1− c)(τ − τ)(1Mi ·1Mi)+ c(τ − τ)(1M ′

i
·1M ′

i
)} .

Notice that the collection {E(c) : c ∈ [0, 1]} is an increasing chain of measurable
subsets of bidder i’s type space that reflects the ordering induced by the natural
order of [τ , τ ]Mi and the dual order of [τ , τ ]M

′
i . Further, notice that E(0) is a

singleton, and E(1) = Ti.
If Y ∈ Γ is a simplex in the order complex of Ki, then Y consists of a finite

chain in Ki. Thus the elements in Y can be identified with the ordered vector
Y = (g1, . . . , gn), with g1 ≤i · · · ≤i g

n. And a point x in the geometric realization
|Y | can be written as x = (xg1 , xg2 , . . . , xgn). We can now define the monotone
realization h : |Γ| → Ki by

h(x)(ti) =


g1(ti) if ti ∈ E(xg1) ,

g2(ti) if ti ∈ E(xg1 + xg2) \ E(xg1) ,

· · ·
gn(ti) if ti ∈ E(1) \ E(

∑n−1
k=1 xgk) .

That the function h is continuous follows from the Pasting Lemma and the fact
that the distribution of players’ types is absolutely continuous with respect to the
Lebesgue measure. The next lemma establishes that h is a local monotone realiza-
tion.

13If (X,∨,∧) and (X′,∨,∧) are lattices, then a lattice isomorphism is a bijective mapping
κ : X → X′ such that κ(x ∨ y) = κ(x) ∨ κ(y) and κ(x ∧ y) = κ(x) ∧ κ(y).
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Lemma D.3. The monotone realization h is local.

Proof. The desired result follows from an application of Lemmas D.1 and B.3. □

Together, Lemmas D.2 and D.3 imply that Ki is order-convex, which is recorded
in the following corollary.

Corollary D.4. The set (Ki,≥i) is an order-convex subset of strategies of player i.

Assumptions (1)–(4) imply that Assumptions A.1 and A.2 are satisfied. All that
is left to show is that the best response correspondence satisfies the conditions
required by Theorem 4.1. We denote by Vi(a | ti, s−i) player i’s interim payoff,
given by

Vi(a | ti, s−i) =

∫
T−i

ui(a, s−i(t−i); t)
∏
j ̸=i

fj(tj) d t−i .

Lemma D.5. Fix a profile s−i of strategies of players other than i and a type
ti ∈ Ti of bidder i. Let Bi(s−i | ti) be bidder i’s interim best response to s−i when
her type is ti. If a, b ∈ Bi(s−i | ti), then (aNi ∨ bNi , aN ′

i
∧ bN ′

i
) ∈ Bi(s−i | ti).

Proof. Suppose a, b ∈ Bi(s−i | ti). By Assumption (a) of Theorem 6.1,
Vi(b | ti, s−i)− Vi(aNi ∧ bNi , aN ′

i
∨ bN ′

i
| ti, s−i) ≥ 0

implies that
Vi(aNi

∨ bNi
, aN ′

i
∧ bN ′

i
| ti, s−i)− Vi(a | ti, s−i) ≥ 0 .

Since a, b ∈ Bi(s−i | ti), it follows that (aNi
∨ bNi

, aN ′
i
∧ bN ′

i
) ∈ Bi(s−i | ti), which

completes the proof. □

Lemma D.6. Fix a profile s−i of strategies of players other than i and let Bi(s−i)
be player i’s best response to s−i. The intersection Bi(s−i) ∩Ki is nonempty.

Proof. Consider the following selection of the interim best-response Bi(s−i | ti) of
player i given her type ti and strategies of other players s−i:

gi(ti) = {(∨aNi
,∧aN ′

i
) : a ∈ Bi(s−i | ti)} .

It is well-defined because Ai is a compact sublattice of RNi∪N ′
i . Moreover, it is

measurable because the pointwise partial order is measurable.
Suppose ti, t

′
i ∈ Ti are such that tiℓ ≥ t′iℓ for every ℓ ∈ Mi and tiℓ ≤ t′iℓ for

every ℓ ∈ M ′
i . It suffices to show that if a ∈ Bi(s−i | ti) and b ∈ Bi(s−i | t′i), then

(aNi
∨ bNi

, aN ′
i
∧ bN ′

i
) ∈ Bi(s−i | ti). Since b ∈ Bi(s−i | t′i),

Vi(b | t′i, s−i)− Vi(aNi
∧ bNi

, aN ′
i
∨ bN ′

i
| t′i, s−i) ≥ 0 .

By Assumption (b) of Theorem 6.1,
Vi(aNi

∨ bNi
, aN ′

i
∧ bN ′

i
| ti, s−i)− Vi(a | ti, s−i) ≥ 0 .

Since a ∈ Bi(s−i | ti), it follows that (aNi
∨ bNi

, aN ′
i
∧ bN ′

i
) ∈ Bi(s−i | ti), which

completes the proof. □

Lemma D.7. Fix a profile s−i of strategies of players other than i and let Bi(s−i)
be player i’s best response to s−i. The intersection Bi(s−i) ∩ Ki is closed with
respect to the hulling Hi.

Proof. The desired result follows from Lemmas D.5 and D.6. □
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Lemma D.8. Fix a profile s−i of strategies of players other than i and let Bi(s−i)
be player i’s best response to s−i. The intersection Bi(s−i) ∩ Ki is closed with
respect to the monotone realization h.

Proof. This follows from the construction of the monotone realization. □

Together, Lemmas D.6-D.8 imply the following corollary, which allows us to
apply Theorem 4.1 to show that this Bayesian game has an equilibrium in K.

Corollary D.9. Fix a profile s−i ∈ K−i of strategies of players other than i and
let Bi(s−i) be player i’s best response to s−i. The intersection Bi(s−i) ∩ Ki is
nonempty and order-convex.
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