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Abstract

A single seller faces a sequence of buyers with unit demand. The buyers are

forward-looking and long-lived. The arrival time and the valuation is private

information of each buyer. Any incentive compatible mechanism has to induce

truth-telling about the arrival time and the evolution of the valuation.

We derive the optimal stationary mechanism in closed form and characterize

its qualitative structure. As the arrival time is private information, the buyer

can choose the time at which he reports his arrival. The truth-telling constraint

regarding the arrival time can be represented as an optimal stopping problem.

The stopping time determines the time at which the buyer decides to partici-

pate in the mechanism. The resulting value function of each buyer cannot be

too convex and must be continuously differentiable everywhere, reflecting the

option value of delaying participation. The optimal mechanism thus induces

progressive participation by each buyer: he participates either immediately or

at a future random time.
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1 Introduction

1.1 Motivation

We consider a classic mechanism design problem in a dynamic and stationary environ-

ment. The seller wants to repeatedly sell a good (or service) to buyers with randomly

evolving valuation. The willingness to pay of each buyer is private information of

the buyer and evolves randomly over time. We assume a stationary environment in

which each buyer is replaced at random, and with a constant rate, by a new buyer

whose initial willingness-to-pay is randomly drawn from a given distribution. The ob-

jective of the seller is to find a stationary revenue maximizing policy in this dynamic

environment. The choice of policy or mechanism is unrestricted and may consist of

leasing contracts, sale contracts, or any other form of dynamic contract.

We depart from the earlier analysis of dynamic mechanisms in our treatment of the

participation decision of the buyer. We allow the buyer (he), once he has arrived in the

economy, to choose the time at which he enters into a contract with the seller (she).

While he can sign a contract with the seller immediately upon arrival, he has the

option to postpone the participation decision until a future date. The buyer therefore

has the option to wait and sign any contract only after he has received additional

information about his willingness to pay. In particular, he can time the acceptance

of a contract until he has a sufficiently high willingness to pay. Thus, both the

incentive constraints that are in place after the buyer has signed the contract and the

participation constraints that are in place before the buyer has signed the contract are

fully responsive to the arrival of new information, and are consequently represented

as sequential constraints. In particular, the buyer can enter the contract upon arrival

or at any later time. His participation is therefore determined progressively as he

receives additional information. For brevity, we sometimes refer to the current setting

with interim participation and interim incentive constraints as progressive mechanism

design.

We can contrast this with the received perspective in dynamic mechanism design.

With some notable exceptions, such as Garrett (2016) that we will discuss shortly, the

seller is assumed to know the arrival time of the buyer and the seller can commit herself

to make a single and once-and-for-all offer to the buyer at the moment of arrival. In

2



particular, the seller can commit herself to never make another offer to the buyer in

any future period. These two features: (i) the ability of the seller to time the offer

to the arrival time of the buyer and (ii) the ability to refrain from any future offers

seem likely to be violated in many economic environments of interest. For example,

the consumer clearly has a choice when to sign up for a mobile phone contract, a

gym membership, or a service contract for a kitchen appliance. Importantly, as the

consumer waits, he may receive more information about his willingness to pay for the

product. Thus, relative to the specific assumption in the earlier literature, we allow

the arrival time and the identity of the buyer to be private information to the buyer.

Consequently, the contract or the menu of contracts cannot be timed to the arrival

of the buyer and the contract (or lack of contract) offer cannot be tied to the identity

of the buyer. In a stationary environment in which buyers arrive and depart at a

balanced rate, we restrict attention to the optimal stationary mechanism.

We view the relaxation of the two above mentioned restrictions as necessary steps

to bring the design of dynamic revenue maximizing mechanism closer to many inter-

esting economic applications. To the extent that these restrictions impose additional

constraints on the seller, they directly weaken the power of dynamic mechanism de-

sign. We therefore investigate the impact of these additional constraints on the ability

of the seller to raise revenues from the buyers using dynamic contracts. The addi-

tional constraints for the seller are reflected in a larger set of reporting strategies for

the buyers. A buyer can misreport both his willingness to pay as well as his arrival

time. This creates an option value for the buyer as instead of choosing a contract

immediately he can wait and enter into a contract with the seller when it is most fa-

vorable for him to do so. Given the menu of contracts offered by the seller, the buyer

thus solves an optimal stopping problem to determine when to enter into a contrac-

tual relationship with the seller. From the point of view of the buyer, the choice of

an optimal contract from the menu therefore has an option element. Subject to the

(random) evolution of his type and his willingness to pay, he can choose when to enter

into an agreement with the seller. This suggests that the buyer will receive a larger

information rent than in the standard dynamic mechanism design framework where

the buyer has to sign a contract with the seller immediately.

We develop our analysis in a continuous time setting where the buyer’s willingness

3



to pay follows a geometric Brownian motion. The prior distribution of the willingness

to pay upon arrival is given exogenously, and paired with the renewal rate in the

population, generates an ergodic distribution which forms the stationary environment.

The revenue maximizing static mechanism, i.e. the contract which does not condition

on a buyer’s history, is a leasing contract which offers the good in every period for

the posted price that is optimal given the ergodic distribution of the valuations of the

buyers.

In the absence of the sequential participation constraint, the revenue maximizing

dynamic mechanism would sell the object with probability one and forever at fixed

price (see Bergemann and Strack, 2015). Thus, the object would be sold rather than

leased to all buyers who have an initial willingness to pay above a certain threshold.

Conversely, all buyers whose initial value is below this threshold would not buy the

object, neither at the beginning of time, nor anytime thereafter. In a first pass,

we then restrict attention to a sales price policy, which is optimal in the absence of

sequential participation constraints, and determine the optimal sales price with the

presence of sequential participation constraints. Here, the comparison of thresholds

and prices between dynamic and progressive mechanism design are instructive. We

find that the threshold for the willingness to pay at which a buyer purchases the

object is strictly higher in the progressive model than in the dynamic model without

progressive participation constraint. By contrast, the price at which the buyer can

acquire the object can be either below or above the price charged in the dynamic

setting.

We can gain some initial insight by considering how a buyer would react to the

option to buy at a fixed price. In the dynamic setting, there would be a threshold type

for the buyer who would receive zero expected net surplus at the offered price. In the

progressive setting, this threshold type could and clearly should delay the purchase

until his willingness to pay is sufficiently above the threshold level to guarantee himself

a positive net surplus. Thus, at any threshold level, the seller will be able to extract

less surplus from the buyer than he could in the presence of a static participation

constraint. In response to the weakened ability to extract surplus, the seller has to

adjust her policy along the price and the quantity margin at the same time. We show

that the seller will generally choose to implement a higher threshold for the willingness
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to pay. Thus, there will be fewer initial sales relative to the static participation

constraint. But the seller also adjusts along the dimension of the price and will ask for

a price below the price at which the threshold type would have received zero expected

net surplus. Interestingly, the price with sequential participation constraints may

either be below or above the price charged under the static participation constraint.

Most importantly, a gap now arises between the price paid to receive the object and

the expected value assigned to the object by the threshold type.

Following the analysis of the optimal price policy under sequential participation

constraint, we then show that a single sale price policy is indeed an optimal progressive

mechanism in the class of all possible stationary mechanisms. In other words, a single

sale price as a specific and simple indirect implementation of a direct mechanism

achieves the revenue maximizing optimum. The main challenge for establishing this

result is that it is unclear how to handle the progressive participation constraint. As

our example with the threshold type illustrates, this constraint will always bind for

some type and thus cannot be ignored. This constraint is non-standard as it states

that the value function of the buyer must be the solution to an optimal stopping

problem which itself involves the value function. We relax this problem by restricting

the buyer to a small set of deviations, namely cut-off strategies which are indexed

by the cut-off. This relaxation has the advantage that the buyer’s participation

strategies can be mapped into the real line which allows us to reduce the problem into

a static mechanism design problem. This static problem is a variant of the classical

setup by Mussa and Rosen (1978) with the non-standard feature that each buyer

can (deterministically) increase his type at the cost of multiplicatively decreasing his

interim utility. This additional constraint leads to a failure of the first-order approach.

We show that the resulting mathematical program can be expressed as a Pontryagin

control problem with contact constraints and we develop a verification result for such

problems which might be of independent interest. We illustrate the implications that

the option to wait has for the effectiveness of dynamic mechanism in a concluding

example.
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1.2 Related Literature

The analysis of revenue-maximizing mechanism in an environment where the buyer’s

private information changes over time started with Baron and Besanko (1984) and

Besanko (1985). Since these early contributions, the literature has developed consid-

erably in recent years with notable contributions by Courty and Li (2000), Battaglini

(2005), Eső and Szentes (2007) and Pavan et al. (2014).1 These papers derive in

increasing generality the dynamic revenue maximizing mechanism. The analysis in

these contributions have in common the same set of constraints on the choice of

mechanism. The seller has to satisfy all of the sequential incentive constraints, but

only a single ex-ante participation constraint. In earlier work, Bergemann and Strack

(2015), we considered the same set of constraints in a continuous-time setting where

the stochastic process that describes the evolution of the flow utility was governed by

a Brownian motion. The continuous-time setting allowed us to obtain additional and

explicit results regarding the nature of the optimal allocation policy, which are un-

available in the discrete-time setting. In the present paper, we will use the continuous-

time setting again for very similar reasons.

The literature on dynamic mechanism design largely assumes that the arrival time

of the buyer is known to the seller and that the seller can make a single, take-it-or-

leave-it offer at the moment of the buyer’s arrival. In contrast, there is a separate

literature that analyzes the optimal sales of a durable good with the recurrent entry of

new consumers, and it is directly concerned with the timing of the purchase decision

by the buyers. The seminal contribution by Conlisk et al. (1984) considers a durable

good model with the entry of a new group of consumers in every period, constant in

size and composition. Each buyer has either a low or high value that is persistent.

They consider the subgame perfect equilibrium of the game; thus the seller has no

commitment. The equilibrium displays a cyclic property. Sobel (1991) considers a

durable good model with the entry of new consumers. He extends the equilibrium

analysis of Conlisk et al. (1984) to allow for non-stationary equilibria and this enlarges

the set of attainable equilibria and payoffs. The model remains restricted to binary

and persistent types. The main part of his analysis is concerned with subgame perfect

1Bergemann and Välimäki (2019) provide a survey into the recent developments of dynamic
mechanism design.
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pricing policies by the firm, thus he analyzes the pricing problem for the firm without

commitment. In addition, Sobel (1991) describes the optimal sales policy under

commitment and establishes that a stationary price is the optimal policy (Theorem

4). Board (2008) considers the optimal commitment solution for seller when incoming

demand for a durable good varies over time. He characterizes the optimal sequence

of prices and allocations in an optimal, possibly time-dependent policy. While he

considers a continuum of valuations, he maintains the restriction that the value of each

buyer is perfectly persistent and does not change after arrival.2 Thus, the literature

on newly arriving consumer restricts attention to: (i) a sequence of prices rather than

general allocation mechanisms, and (ii) perfectly persistent values.

Garrett (2016) offers a notable exception in that he is concerned with unobservable

arrival and allows for stochastic values. He considers a stationary environment in

continuous time in which each buyer arrives and departs at random times. The

private value of each buyer is governed by a Markov process with binary values, low

and high. The seller can commit to any deterministic time-dependent sales price

policy. The seller maximizes the revenue from a representative buyer. Garrett (2016)

provides conditions under which a time-invariant price path is optimal within the

class of deterministic price paths, and he obtains conditions on the binary values

under which a deterministic price cycle prevails in the optimal contract. Garrett

(2016) observes that an optimal policy in the class of all dynamic direct mechanisms,

one that does not restrict attention to deterministic sale price path (and implied

restrictions on reporting types), may lead to very different results and implications.

By contrast, we consider an environment with a continuum of values whose evolu-

tion is governed by a geometric Brownian motion. We allow for a general mechanism

that can depend in arbitrary ways on the reported values once the buyer has entered

the mechanism. We restrict attention to a stationary mechanism. Thus, the seller

commits to renew the mechanism in every future period either for newly arriving

2Besbes and Lobel (2015) consider a related question in a very different environment. They study
the revenue-maximizing pricing policy under commitment in a steady state where the consumers
have private information across two dimension: the valuation and their willingness to wait. The
valuation of the consumer however is constant and the willingness to wait is in terms of a deadline
until the value expires. Thus each consumer faces a finite horizon problem without discounting, and
the seller maximizes her long-run average revenue.
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buyers, or late deciding buyers. In this environment, we establish that a determinis-

tic and time-invariant sale price constitutes a revenue maximizing mechanism in the

class of all stationary mechanisms.

The importance of a privately observed arrival time is also investigated in Deb

(2014) and Garrett (2017). In contrast to the present work, these papers do not

investigate a stationary environment. Instead, while the mechanism starts at time

zero, the buyer may arrive at a later time. The main concern therefore is how to

encourage the early arrivals to contract early. In a setting with either a durable good

or a non-durable good, respectively, these authors find that the optimal mechanism

treats early arriving participants more favorably than late arriving participants. The

late arriving participants face less favorable prices and purchase lower quantities than

the early arrivals. In a recent contribution, Correa et al. (2020) assess the value

of observable against unobservable arrival time. Their setting differs as they allow

for different discount factors for buyer and seller but restrict attention to constant

valuations. They approximate the value of the optimal contract under unobservable

arrival and then establish a revenue bound on the value of observable arrival time by

considering a ratio between the revenue under observable vs. unobservable arrival.

In Gershkov et al. (2015, 2018), the value of each buyer is also constant while the

arrival time is unobservable. In their setting, the seller seeks to incentivize truthful

reporting of the arrival time as it is informative about the aggregate demand.

There are related concerns with the emphasis on the ex-ante participation con-

straints in the literature on dynamic mechanism design that pursue different directions

from the one presented here. Lobel and Paes Leme (2019) question the unlimited abil-

ity of the seller to commit to make only a single offer to the buyer. They suggest that

while the seller may have “positive commitment” power, she may lack in “negative

commitment” power. That is, he can commit to any contractual promise, but may

not be able to commit never to make any further offer in the future. They show

that in a finite horizon model with a sequence of perishable goods, the equilibrium is

long-term efficient and that the seller’s revenue is a function of the buyer’s ex ante

utility under a no commitment model. Skreta (2006, 2015) and Deb and Said (2015)

also investigate the sequential screening under limited commitment by the seller.

A more radical departure from the ex-ante or interim participation constraint to
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ex-post participation constraints is suggested in recent work by Krähmer and Strausz

(2015) and Bergemann et al. (2020). These papers re-consider the sequential screening

model of Courty and Li (2000). In this two-period setting, where information arrives

over time and the allocation of a single object can be made in the second period, they

impose an ex-post participation rather than an ex-ante participation constraint. In

consequence the power of sequential screening is diminished and sometimes the opti-

mal mechanism reduces to the solution of the static mechanism. Ashlagi et al. (2016)

investigate the performance guarantees that can be given with ex-post participation

constraints in a setting where a monopolist sells k items over k periods.

The remainder of the paper proceeds as follows. Section 2 introduces the model

and the design problem. Section 3 shows how the progressive mechanism design

problem can be related to an auxiliary static problem. Section 4 reviews the optimal

mechanism in the environment with observable environment, and shows that the

optimal fails to be incentive compatible in the environment with unobservable arrivals.

Section 5 derives the optimal progressive mechanism. Section 6 offers a detailed

discussion of how the arguments developed generalize beyond geometric Brownian

motion and unit demand and Section 7 concludes. The proofs are collected in the

Appendix.

2 Model

2.1 Payoffs and Allocation

We consider a stationary model with a single seller (she) and a single representative

buyer (he). Time is continuous and indexed by t ∈ [0,∞). The seller and the buyer

discount the future at the same rate r > 0. At each time t, the buyer demands one

unit of the good. The buyer departs and gets replaced with a newly arriving buyer at

rate γ > 0. We denote by i the buyer who arrived i-th to the market. We denote the

random arrival time of buyer i by αi ∈ R+ and the random departure time of buyer

i equals the random arrival time αi+1 ∈ R+ of buyer i+ 1. 3

3An equivalent formulation would consist of a continuum of buyers where each buyer arrives and
departs with rate γ. The average behavior of such a continuum of buyers will match the expected
behavior of a single representative buyer. The main advantage of the representative buyer model is

9



The flow valuation of buyer i at time t ∈ [αi, αi+1] is denoted by θit ∈ R+, the

quantity allocated to buyer i at time t is:

xit ∈ [0, 1].

The flow preferences of the buyer are represented by a (quasi-)linear utility function:

uit = θit x
i
t − pit, (1)

and pit∈ R is the flow payment from the buyer to the seller.

The arrival time αi (and the departure time αi+1) as well as the flow valuations

(θis)s∈[αi,t] are private information held by buyer i at time t. 4

The arrival and departure time of each buyer are assumed to be independent of

his valuation process. The valuation of buyer i, θit ∈ R+, at the time of his arrival

t = αi is distributed according to a cumulative distribution function:

F :
[
0, θ
]
→ R,

with strictly positive, bounded density f(θ) = F ′(θ) > 0 on the support. The prior

distribution F is the same for every buyer i and every arrival time αi.

The valuation of each buyer evolves randomly over time, independent of the val-

uation of other buyers. We assume that each buyer’s valuation (θit)t∈[αi,∞) follows a

geometric Brownian motion:

dθit = σ θitdWt , (2)

where (Wt)t∈R+ is a Brownian motion and σ ∈ R+ is the volatility which measures

the speed of information arrival. The geometric Brownian motion forms a martingale

and consequently the buyer’s best estimate of his valuation at any future time is his

that it avoids technical issues due to integration over a continuum of independent random variables,
which is formally not well defined in standard probability theory, see e.g. Judd (1985).

4We note that as the arrival time is private information to buyer i, the departure time has to be
private information as well, or else the departure of buyer i would be informative of the arrival time
of buyer i+ 1.
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current valuation, i.e. for all s ≥ t :

Et
[
θis
]

= θit .

Furthermore, θit takes only positive values, and so the buyer’s valuation for the good

is always positive. The flow of allocations (xit) and payments (pit) will depend on the

reports of the buyer to the seller to which we turn next.

2.2 Stationary Mechanism

A mechanism specifies after each history a set of messages for each buyer and the allo-

cation as a function of the complete history of messages sent by this buyer. Through-

out, we impose that the allocation–quantity and monetary transfer–are independent

of the identity of buyer i. The quantity process (xt) specifies whether or not the

buyer consumes the good at any time. We assume that the assignment of the object

is reversible, i.e. the seller can give the buyer an object for some time and then take

it away later.

Definition 1 (Mechanism).

A mechanism (x, p) specifies at every time t ∈ R+, where some buyer i is active

t ∈ [αi, αi+1), the allocation xt ((mi
s)αi≤s≤t) as well as the transfer pt ((mi

s)αi≤s≤t) as

a function of the messages (mi
s)αi≤s≤t sent by this buyer prior to time t.

A direct mechanism is a mechanism where the messages of the buyer are his

reported arrival time and his reported flow valuations. We denote the reported arrival

time α̂ and reported valuations (θ̂s)α̂≤s≤t by the circumflex to distinguish true and

reported times and valuations.

Definition 2 (Direct Mechanism).

A direct mechanism (x, p) specifies at every time t ∈ R+, where buyer i is re-

ported present t ∈ [α̂i, α̂i+1), the allocation xt

(
α̂i,
(
θ̂is

)
α̂i≤s≤t

)
and the transfer

pt

(
α̂i,
(
θ̂is

)
α̂i≤s≤t

)
as a function of the reported arrival time α̂i and reported val-

uations
(
θ̂is

)
α̂i≤s≤t

.
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As the payoff environment is stationary, we restrict attention to stationary mech-

anisms where the allocations are independent of the arrival time of the buyer. More

formally, we require that a buyer who arrives at time α and whose valuations follows

the path (θs), receives the same allocation as a buyer who arrives at a different time

α′ and his valuations follows the same path of valuations shifted by the difference in

arrival times, i.e. θ′s = θs+(α−α′). Thus, the seller cannot discriminate the buyer based

on his arrival time.

Definition 3 (Stationary Direct Mechanism).

A direct mechanism (x, p) is stationary if for all arrival times α, α′ and valuation

paths θ:

xt
(
α, (θs)α≤s≤t

)
= xt+(α′−α)

(
α′, (θs)α′≤s≤t+(α′−α)

)
,

pt
(
α, (θs)α≤s≤t

)
= pt+(α′−α)

(
α′, (θs)α′≤s≤t+(α′−α)

)
.

2.3 Progressive Mechanism

By the revelation principle we can, without loss of generality, restrict attention to

direct mechanisms where it is optimal for the buyer to report his arrival time α

and his valuation θt truthfully at every time t. Each buyer i seeks to maximize his

discounted expected net utility given his valuation θiαi at his arrival time αi:

E
[ˆ αi+1

αi

e−r(t−αi)
(
θitx

i
t − pit

)
dt | θiαi , αi

]
.

The seller seeks to maximize the expected discounted net revenue collected from her

interaction with the sequence of all buyers:

E

[
∞∑
i=0

ˆ αi+1

αi

e−r tpit dt

]
. (3)

Define the indirect utility Vα : R+ → R of a buyer who arrives at time α with a
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value of θα and reports his arrival and valuations (θs)α≤s≤t truthfully by:

Vα(θ) = E
[ˆ αi+1

αi

e−r (t−αi)
(
θitx

i
t − pit

)
dt | αi = α, θiαi = θ

]
= E

[ˆ ∞
αi

e−(r+γ) (t−αi)
(
θitx

i
t − pit

)
dt | αi = α, θiαi = θ

]
.

The second equality follows immediately from the law of iterated expectations and

the fact that the departure time αi+1 of the buyer is independent of the arrival time

αi and the valuation process θi and hence of xit, p
i
t .5

It is optimal for the buyer to report truthfully if

Vα(θα) ≥ sup
α̂≥αi,(θ̂t)

E
[ˆ ∞

α̂

e−(r+γ) (t−αi)
(
θit x̂

i
t − p̂it

)
dt | αi = α, θiαi = θ

]
, (IC)

where allocation x̂it = xt(α̂, (θ̂s)α̂≤s≤t) as well as payment p̂it = pt(α̂, (θ̂s)α̂≤s≤t are

functions of the reported arrival time α̂ as well as all subsequently reported valuations

(θ̂s)α̂≤s≤t . We note here that the supremum in (IC) is taken over stopping times α̂ as

the buyer can condition his reported arrival on his current (and past) valuation θt.

We restrict attention to mechanisms where the buyer participates voluntarily, i.e.

for all arrival times α and all initial values θα, the buyer’s expected utility from

participating in the mechanism is non-negative:

Vα(θα) ≥ 0 . (PC)

While imposing incentive compatibility constraints (IC) as well as participation

constraints (PC) is standard in the literature on (dynamic) mechanism design, we

note that the incentive compatibility constraint (IC) imposed here is stronger than

the one usually imposed in the literature. As the arrival time α is not observable, the

seller has to provide incentives for the buyer to report his arrival truthfully. In fact

the incentive constraint (IC) directly implies the participation constraint (PC) as the

buyer can always decide to never report his arrival α̂ = ∞. We denote by M the

set of all incentive compatible stationary mechanisms where every buyer participates

5See Lemma 4 in the Appendix.
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voluntarily.

The seller seeks to maximize her revenue subject to the incentive and participation

constraints, and we refer to it as the progressive mechanism design problem.

3 Aggregation and Revenue Equivalence

As a first and significant step in the analysis, we establish that the progressive mecha-

nism design problem can be related to an auxiliary static problem. The static formu-

lation aggregates the progressive problem over time with suitable weights into static

problem. In the new static problem, the buyer reports only his initial valuation and

the seller chooses an expected and discounted aggregate quantity q ∈ R+ to allocate

to the buyer. We establish that in any incentive compatible progressive mechanism,

both the value of the buyer as well as the revenue of the seller are only a function of

this aggregate quantity.

Towards this end, we first rewrite the revenue of the seller from the sequence of

buyers, given by (3) in terms of the revenue collected from the interaction with a

single buyer i only. After all, in a stationary direct mechanism, the allocation and

transfer depend only on the time which elapsed since the arrival time of buyer i.

Lemma 1 (Expected Revenue).

The expected discounted revenue in the optimal mechanism equals

r + γ

r
max

(x,p)∈M
E
[ˆ αi+1

αi

e−r (t−αi)pitdt

]
, (4)

where i is an arbitrary buyer.

This follows directly from the independence of the values across the buyers. The

formal proofs are all relegated to the Appendix. We can therefore, without loss

of generality, assume that the representative buyer arrives at time zero, αi = 0, to

determine the revenue the seller derives from her interaction with all the buyers. With

the focus on a single instance of buyer i, we can therefore drop the index i indicating

his identity i and his arrival time αi and denote by V (θ0) the indirect utility of the

buyer who arrived at time t = 0 with initial valuation θ0.
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We now define an “aggregate quantity” q : Θ→ R+ which is allocated to a buyer

with initial valuation θ0 by:

q(θ0) , E
[ˆ ∞

0

e−(r+γ) txt
dθt
dθ0

dt | θ0

]
. (5)

The aggregate quantity q(θ0) is the expected discounted integral over the flow quanti-

ties (xt). The flow quantity xt is weighted by a term that represents the information

rent in period t due the initial private information θ0 as we explain next.

The first term inside the integral is simply the discounted quantity in period t:

e−(r+γ) txt.

The second term is the derivative of the valuation θt in period t with respect to the

initial value θ0. We can now use the fact that the geometric Brownian motion can be

explicitly represented as:

θt = θ0 exp

(
−σ

2

2
t+ σWt

)
,

and thus the derivative is given by:

dθt
dθ0

= exp

(
−σ

2

2
t+ σWt

)
.

The above derivative represents the influence that the initial value θ0 has on the future

state θt. In Bergemann and Strack (2015), we referred to it as stochastic flow, and it

is the analogue of the impulse response function in discrete time dynamic mechanism

(see Pavan et al. (2014), Definition 3). We can therefore write the aggregate quantity

q(θ0) more explicitly as:

q(θ0) , E
[ˆ ∞

0

e−(r+γ) txt exp

(
−σ

2

2
t+ σWt

)
dt | θ0

]
. (6)

The expected “aggregate quantity” q(θ0) thus weighs the discounted quantity with

the corresponding stochastic flow, or information rent that originates from the initial

value θ0. As the quantity xt is bounded between 0 and 1 and the exponential term
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is a martingale, it follows that the aggregate quantity is bounded as well, i.e. for all

θ0 ∈ [0, θ] :

0 ≤ q(θ0) ≤ 1

r + γ
. (7)

We complete the description of the static auxiliary problem with the virtual value at

time t = 0:

J(θ0) , θ0 −
1− F (θ0)

f(θ0)
, (8)

the “virtual flow value” of the buyer upon arrival to the mechanism. As in the discrete

time setting, the stochastic flow enters the dynamic version of the virtual utility as

established in Theorem 1 of Bergemann and Strack (2015):

Jt(θt) , θt −
1− F (θ0)

f(θ0)

dθt
dθ0

. (9)

We denote by

θ◦ , inf{θ0 : J(θ0) ≥ 0}, (10)

the lowest type with a non-negative virtual value. We assume that the distribution

of initial valuations is such that θ 7→ min{0, f(θ)J(θ)} is non-decreasing.6

The expected quantity q and the virtual utility J are useful as they completely

summarize the expected discounted revenue of the seller and the value of the buyer:

Proposition 1 (Aggregation and Revenue Equivalence).

In any incentive compatible mechanism, the value of the buyer with initial valuation

θ is:

V (θ) =

ˆ θ

0

q(z)dz + V (0) , (11)

and the expected discounted revenue of the seller is:

E
[ˆ ∞

0

e−(r+γ) tpt dt

]
=

ˆ θ

0

J(θ)q(θ)dF (θ)− V (0) . (12)

6This is a weak technical assumption which is satisfied for most standard distributions like the uni-
form distribution, the exponential distribution, or the log-normal distribution. For example for the

uniform distribution U([0, θ]) we have that f(θ)J(θ) = 2θ−θ
θ

which is increasing in θ. For the expo-

nential distribution with mean µ > 0 we have that min{0, f(θ)J(θ)} = min
{

0,
(
θ
µ − 1

)
exp

(
− 1
µθ
)}

which is also increasing in θ.
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Proposition 1 gives expressions of the objective functions of buyer and seller in

terms of the discounted quantities q only. In earlier work, we obtained a revenue

equivalence result for dynamic allocation problems, see Theorem 1 in Bergemann and

Strack (2015). The new and important insight of Proposition 1 is that we can aggre-

gate the intertemporal allocation (xt) into a single static quantity q(θ0) that serves as

a sufficient statistic for the determination of the indirect utility and the discounted

revenue at the same time. In the presence of the geometric Brownian motion and the

unit demand, Proposition 1 asserts that there is a particularly transparent reduction

given by (5). We should emphasize that the reduction to an auxiliary static program

can be extended to a wide class of stochastic process and allocation problems. We dis-

cuss these generalizations in detail in Section 6. The next result establishes that the

function q must be increasing in the initial valuation θ0 in any incentive compatible

mechanism.

Proposition 2 (Monotonicity of Discounted Quantity).

In any incentive compatible mechanism the aggregate quantity q(θ0) increases in θ0.

Proposition 1 and 2 follow from the the truth-telling constraint at time zero. We

emphasize that the conditions of Proposition 1 and 2 provide only necessary conditions

for incentive compatibility and optimality of the mechanisms as they omit:

(i) the possibility to misreport the arrival time, and

(ii) the buyer’s truth-telling constraints after time zero.

Indeed we will show in the Section 4.2 that the monotonicity of q is not a sufficient

condition for incentive compatibility under unobservable arrival. We find that there

are further restrictions on the shape of the aggregate quantity q(θ0) beyond mono-

tonicity that are due to the above intertemporal incentive constraints (i) and (ii).

These additional restrictions will impose upper bounds on the derivative of aggregate

quantity q(θ0). In consequence, the revenue problem given by (12) is transformed

from what looks like a standard unit demand problem with extremal solutions to an

optimal control problem.

We will derive the revenue maximizing mechanism for the seller when she does

not observe the arrival time of the buyer in Section 5. As a point of reference, it will
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be instructive for us to first understand what the seller would do if the (individual)

arrival time of each buyer would be observable by the seller.

4 Sales Contract

With observable arrival, the optimal direct mechanism can be implemented by a sim-

ple sales contract. We first review these results in Section 4.1 and then investigate

in Section 4.2 how this specific sales contract performs in the environment with un-

observable arrival. In Section 4.3 we determine the sales contract that is the optimal

sales contract with unobservable arrival.

4.1 Optimal Contract with Observable Arrival

With observable arrival time by the buyer, we are in the canonical dynamic mecha-

nism design environment. In Bergemann and Strack (2015), we derived the revenue

maximizing mechanism for the current problem of interest, unit demand with values

governed by a geometric Brownian motion. The optimal mechanism can be imple-

mented by an indirect mechanism that offers the product for sale at an optimally

determined price P , see Proposition 8 of Bergemann and Strack (2015).

We described the revenue of the seller in Proposition 1. It follows the optimal

mechanism awards the object to the buyer if and only if his virtual value is positive

upon arrival:

J(θ0) ≥ 0.

Hence, it is optimal to maximize q(θ0) if J(θ0) ≥ 0 and minimize it otherwise. The

optimal allocation then awards the object to the buyer at all times s ≥ 0 if and only

if his initial valuation θ0 at arrival time t = 0 is sufficiently high:

xs =

1, if θ0 ≥ θ◦;

0, otherwise;
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where the critical value threshold θ◦ is determined by

J(θ◦) = 0.

The buyer thus receives the object forever whenever his initial valuation θ0 is above

the threshold value θ◦. With observable arrivals this allocation can be implemented

in a sales contract where the seller charges a sales price of θ◦/(r + γ), which entitles

the buyer to ownership and continued consumption at all future times. An revenue-

equivalent implementation would be to sell the good at time t = 0 and then charge

the buyer a constant flow price of

p◦ = θ◦,

in all future periods, independent of his future value θs, for all s ≥ 0. Thus, the

indirect utility of the buyer when his arrival is observable equals

V (θ0) = max

{
0,
θ0 − θ◦

r + γ

}
.

4.2 Unobservable Arrival and Failure of Incentive Compati-

bility

We now abandon the restrictive informational assumption of observable arrival and

let the arrival time be private information to each buyer. We ask what would happen

if the seller were to maintain the above sales policy at the optimal observable price

p◦, as a stationary contract. Now, any newly arriving buyers with value close to

p◦ would conclude that rather than buy immediately, he should wait until he learns

more about his value, and purchase the object if and only if he learned that he has

a sufficiently high valuation for the object. Thus, the sale would occur (i) later and

(ii) to fewer buyers. Thus the sale price contract fails to remain incentive compatible

in the environment with unobservable arrival times.

Still, we can ask how the buyer would behave when faced with stationary mecha-

nism that offers him the object for sale at flow price p. In the presence of unobservable

arrival, the buyer can determine the optimal purchase time by an optimal stopping

problem. We denote by T the random time at which the buyer leaves the market.
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If the buyer acquires the good at time t with valuation θt at any given price p > 0,

whether it is p = p◦ or not, then his expected continuation utility is:

Et
[ˆ T

t

e−r (s−t) (θs − p) ds

]
= (θt − p) Et

[ˆ T

t

e−r (s−t)ds

]
=
θt − p
r + γ

.

The first equality in the above equation follows from the fact that θ is a martingale

(independent of T ). The buyer’s value at time t is his best estimate of his value at

later points in time. The second equality follows as the time T at which the buyer

leaves the market and thus stops consuming the good is (from a time t perspective)

exponentially distributed with mean t+1/γ. The time τ at which the buyer optimally

purchases the good thus solves the stopping problem:

sup
τ

1

r + γ
E
[
e−r τ 1{τ<T} (θτ − p)

]
.

As the buyer leaves the market with rate γ this problem is equivalent to the problem

where the discount rate is given by (r+γ), i.e. the buyer solves the stopping problem

sup
τ

1

r + γ
E
[
e−(r+γ) τ (θτ − p)

]
. (13)

The stopping problem given in (13) is the classic irreversible investment problem

analyzed in Dixit and Pindyck (1994, Chapter 5, p.135 ff.). For a given sales price p,

it leads to a determination of a threshold w(p) that the buyer’s valuation θτ needs to

reach at the stopping time τ .7

To simplify notation, we define a constant β that summarizes the discount rate r,

the renewal rate γ and the variance σ2 in a manner relevant for the stopping problem

:

β ,
1

2
+

1

2

√
1 + 8

r + γ

σ2
> 1 . (14)

7Dixit and Pindyck (1994) consider an investment problem with a real asset. There, the geometric
Brownian motion may have a positive drift, α > 0. The positive quadratic root in their equation
(16) becomes (14) after setting the growth rate α, the drift of the geometric Brownian, to zero, or
α = 0. Their discount rate ρ becomes in our setting the sum of discount rate and renewal rate,
thus ρ = r + γ, and the difference between discount rate and growth, δ = ρ− α, is then simply the
discount rate, or δ = ρ.
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Figure 1: The value function of the buyer in a sales contract with flow price p = 1
when she has to participate immediately (blue) and when she can delay her arrival
(red) when β = 1.7.

Proposition 3 (Sales Contract).

In a sales contract with flow price p, the buyer acquires the object once his valuation

θ reaches a time independent threshold w(p) given by:

w(p) =
β

β − 1
p . (15)

The buyer’s value in this sales contract is given by

V (θ) =

 1
r+γ

(
θ

w(p)

)β
(w(p)− p) , if θ < w(p);

1
r+γ

(w(p)− p) , if θ ≥ w(p).

We can now illustrate the payoff consequences due to the private information

regarding the arrival time. In Figure 1 we display the value functions of the buyer

across these two informational environments. The blue line depicts the value function

for the buyer in the setting with observable arrival time. The value is zero for all

values below the threshold θ◦ and then a linear function of the initial value. Notably,

the value function has a kink at the threshold level θ◦. The red curve depicts the

value function when the sales contract is offered at the above terms as a stationary

contract. As shown in Proposition 3 the buyer reacts to this contract by reporting
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his arrival only once his value exceeds:

w(p◦) = w(θ◦) =
β

β − 1
θ◦ > θ◦ .

Now, the value function is smooth everywhere, and coincides with blue curve whenever

the initial value weakly exceeds the critical type w(p◦) Importantly, for all values θ0

below w(p◦), the red curve is above the blue curve, which depicts the option value as

expressed by (17). Notably, the value is strictly positive for all initial values which

expresses the fact that the option value guarantees every value θ0 an information

rent, quite distinct from the environment with observable arrival. Hence all buyers

with low valuations would deviate by not reporting their arrival immediately, and the

optimal contract with observable arrivals can not be implemented with unobservable

arrivals.

4.3 Optimal Sales Contract under Unobservable Arrival

Thus, the optimal sales contract under observable arrival fails to remain incentive

compatible in an environment with unobservable arrival. Still, we could ask what is

the best sales contract, thus the best sales price p in the environment with unobserv-

able arrival. Towards this end, we denote by τw(p) the (random) time at which the

buyer purchases the good:

τw(p) , inf{t : θt ≥ w(p)}.

As w(p) > p, the buyer only purchases the good once his valuation is sufficiently

above the price p charged for the object. Thus, a buyer who starts with an initial

value of θ0 below the threshold w(p) expects to wait some random time until he hits

any given threshold w(p). With the geometric Brownian motion, we can explicitly

compute the expected discounted time for a buyer with initial value θ0 to hit any

arbitrary valuation threshold x.
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Lemma 2 (Expected Discounted Time).

The expected discounted time τx = inf{t : θt ≥ x} until a buyer’s valuation exceed a

threshold x conditional on the initial valuation θ0 is given by

E
[
e−(r+γ) τx | θ0

]
= min

{(
θ0

x

)β
, 1

}
. (16)

Thus if the initial value θ0 exceeds the threshold x, then the expected discounted

time is simply 1, in other words there is no waiting at all. By contrast, if the initial

value θ0 is below the threshold x, then the expected discounted time is smaller when

the gap between the initial value θ0 and target threshold x is larger. The magnitude

of the discounting is again determined entirely by the constant β which summarizes

the primitives of the dynamic environment, namely r, γ and σ2, as defined earlier in

(14).

Intuitively, the buyer has an option value of waiting and learning more about his

valuation of the good and only purchases once the forgone utility of not purchasing

the good is sufficiently high. This is in sharp contrast to the dynamic mechanism

design approach where the arrival time of the buyer is observable. When the arrival

time is observable the seller can commit herself to not sell to the buyer in the future if

the buyer does not purchase the good immediately. Thus, the buyer can not delay his

purchasing decision and buys the good immediately if his valuation exceeds the price

p. The information rent that the buyer gains from his ability to delay his purchasing

decision is his “option value”:

E
[
e−(r+γ) τw(p)(w(p)− p)

]
−max {(w(p)− p), 0} . (17)

From a dynamic mechanism design perspective the option value given in (17) corre-

sponds to an additional information rent the buyer receives due to his ability to delay

entering a contractual relation with the seller. As the option value is always positive,

the buyer is, for any fixed mechanism, unambiguously better off if he can delay his

purchasing decision.

In contrast the effect of the buyer’s ability to delay the purchase on the seller’s

revenue is ambiguous in a sales contract. When the buyer delays his purchase the

revenue of the seller decreases. But to the extent, that some types of the buyer who
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would not have bought the object upon arrival will do now later on, and after a

sufficiently large positive shock on their valuation, there are now additional revenues

accruing to the seller.

Using the characterization of the purchase behavior of the buyer in Proposition 3

and standard stochastic calculus arguments, we can completely describe the seller’s

average revenue for a given sales contract.

Proposition 4 (Revenue of Sales Contract).

The flow revenue per time in a sales contract with flow price p is given by

Rsales(p) =
p

r

ˆ ∞
0

min

{(
β − 1

β

θ

p

)β
, 1

}
f(θ) dθ . (18)

Equation (18) reduces the problem of finding an optimal sales contract to a simple

single dimensional maximization problem over the price. It is worth noting that the

revenue up to a linear scaling depends on r, γ, σ only through β which implies that

the optimal sales price is only a function of β and the distribution of initial valuations

F .

The expression inside the integral of (18) represent the expected quantity to be

sold to a buyer with initial value θ. In contrast to a standard revenue function under

unit demand, the realized quantities are not merely 0 or 1. Rather, the seller offers a

positive quantity to all buyers, namely

min

{(
β − 1

β

θ

p

)β
, 1

}
. (19)

This expression reflects the expected discounted time the object is consumed by those

buyers who have an initial value below the optimal purchase threshold w(p) = β
β−1

p

derived in Proposition 3. The complete expression (19) then follow from Lemma 2 as

the expected discounted probability of a sale to a buyer with initial value θ. Thus, an

increase in the sales price p uniform lowers the probability of a sale for every value θ.

The problem for the seller with unobservable arrivals is therefore how to respond to

slower and more selective sales.

Perhaps surprisingly then, using a sequence of relaxation arguments we prove

24



in Section 5, that the optimal mechanism in the space of all incentive compatible

mechanisms when the buyer’s arrival to the mechanism is unobservable remains a

sales contract. Thus, (18) can be used to identify the optimal mechanism. But

importantly, as the current analysis suggests, there is going to be a large gap between

the optimal flow price p and the optimal threshold w(p) with p < w(p).

5 The Optimal Progressive Mechanism

The discussion in the previous section illustrates that the first order approach will

in general fail once the buyer can misreport his arrival time. To solve this problem

we will employ the following strategy: First, we will identify particularly tractable

necessary conditions for the truthful reporting of arrivals, by considering a specific

class of deviations in the arrival time dimension. We then find the optimal mechanisms

for the relaxed problem where we impose only these necessary conditions using a

novel result on optimization theory we develop. Finally, we will verify that in this

mechanism it is indeed optimal to report the arrival time truthfully.

5.1 Truthful Reporting of Arrivals

In the first step we find a necessary condition such that the buyer wants to report

his arrival immediately. Observe that if it were optimal for the buyer to reveal his

presence to the mechanism immediately, then the value from revealing his presence

at any stopping time α̂ must be smaller than revealing his presence at time zero. As

the buyer can condition the time at which he reports his arrival to the mechanism on

his past valuations, the following constraint must hold for all stopping times α̂ which

may depend on the buyers valuation path (θt)t:
8

V (θ0) ≥ sup
α̂

E
[
e−(r+γ) α̂V (θα̂) | θ0

]
. (IC-A)

8This is a version of the revelation principle as the seller can replicate every outcome where
the buyer does not report his arrival immediately in a contract where the buyer reveals his arrival
immediately, but never gets the object before he would have revealed his arrival in the original
contract.

25



We first show that the buyer’s value function V in any incentive compatible mecha-

nism must be continuously differentiable and convex.

Proposition 5 (Convexity of Value Function).

The value function in any incentive compatible mechanism is continuously differen-

tiable and convex.

The discussion in Subsection 4.2 illustrated that the indirect utility need not to

be continuously differentiable in the optimal mechanism if the buyers arrival time

is observable. Intuitively, the constraint that the buyer must find it optimally to

report his arrival immediately, (IC-A) implies that there cannot be kinks in the value

function as this would imply a first order gain for the buyer from the information he

would get by waiting to report his arrival. As the cost of waiting due to discounting

are second order this implies that a mechanism with a kinked indirect utility can

not be incentive compatible. Thus, Proposition (5) strengthens Proposition (2) by

guaranteeing differentiability of the value function.

In the next step, we will relax the problem by restricting the buyer to a small

class of deviations in reporting his arrival. The class of deviations we are going to

consider is to have the buyer report his arrival the first time his valuation crosses a

time independent cut-off x > θ0:

τx = inf{t ≥ 0: θt ≥ x} .

Note, that the optimal deviation of the buyer will not (necessarily) be of this form

for every direct mechanism. By restricting to deviations of this form we hope that in

the optimal mechanism the optimal deviation will be of this form and the restriction

is non-binding.

5.2 Information Rents Associated with Unobservable Arrival

We established in Lemma 2 that the payoff from deviating to τx when reporting the

arrival time, while maintaining to report values truthfully, is given by:

E
[
e−(r+γ) τxV (vτx) | θ0

]
= V (x)

(
θ0

x

)β
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where β > 1 was defined in (14). The term(
θ0

x

)β
captures the discount factor caused by the time the buyer has to wait to reach a

value of x before participating in the mechanism. When the buyer then participates

in the mechanism he receives the indirect utility V (x) of a buyer whose initial value

equals x. Now, in any mechanism where (IC-A) is satisfied the buyer does not want

to deviate to the strategy τx we must have

V (θ0) ≥ V (x)

(
θ0

x

)β
⇔ V (x)x−β ≤ V (θ0)θ−β0 . (20)

As (20) holds for all θ0 and x > θ0, we have that the buyer does not want to deviate to

any reporting strategy (τx)x>θ0 if and only if V (x)x−β is decreasing. Taking derivatives

yields that this is the case whenever9

V ′(x) ≤ β
V (x)

x
. (21)

By the earlier revenue equivalence result, see Proposition 1, the derivative of the value

function V (θ) is equal to the aggregate quantity q(θ). We therefore have the following

proposition that derives a necessary condition on the aggregate quantity q for it to

be optimal for the buyer to report his arrival truthfully.

Proposition 6 (Upper Bound on Discounted Quantities).

The aggregate quantity is bounded from above by

q(θ0) = V ′(θ0) ≤ β
V (θ0)

θ0

(22)

in any mechanism where it is optimal to report arrivals truthfully, i.e. that satisfies

(IC-A).

Intuitively, (22) bounds the discounted quantity a buyer of initial type θ0 can

90 ≥ V ′(x)x−β − βx−β−1V (x)⇒ V ′(x) ≤ β V (x)
x .
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receive. Note, that (22) is always satisfied if the value function of all initial values

θ0 of the buyer from participating in the mechanism is sufficiently high. Intuitively,

due to discounting the buyer does not want to delay reporting his arrival when the

value from participating is high. As we can always increase the value to all types of

the buyer, by possibly offering a subsidy to the lowest type, we can reformulate (22)

as a lower bound on the value V (0) of the lowest type θ0 = 0.

Proposition 7 (Lower Bound on Information Rent).

In any mechanism which satisfies (IC-A) we have that

V (0) ≥ sup
θ∈Θ

(
θq(θ)

β
−
ˆ θ

0

q(z)dz

)
.

The above result establishes a lower bound on the cost of providing the buyer with

incentives to report his arrival time truthfully. This lower bound depends only on

the allocation q. Intuitively, the seller may need to pay subsidies independent of the

buyer’s type to provide incentives for the buyer to report his arrival time truthfully

if the quantity q is too convex and the option value of waiting is thus too high.10

The subsidy would correspond to a payment made to the buyer upon arrival and

independent of his reported value θ0. Such a scheme makes delaying the arrival costly

to the buyer due to discounting and it is potentially very costly as it requires the seller

to pay the buyer just for “showing up”. We will show that in the optimal mechanism

this issue will not be relevant as the optimal mechanism does not reward the buyer

merely for arriving.11

As a consequence of Proposition 7 we get an upper bound on the revenue in any

incentive compatible mechanism.

10An immediate corollary from this formula is that it is infinitely costly to implement a policy
which leads to a value function V that admits a convex kink and thus has an infinite derivative
V ′ = q at some point as argued in Proposition 5.

11Such subsidy schemes were discussed in Gershkov et al. (2015, 2018) in a context where the
buyer’s value does not evolve over time. In Gershkov et al. (2015) such subsidies are sometimes
necessary in order to to incentivize the buyer to report his arrival time truthfully.
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Corollary 1 (Revenue Bound).

An upper bound on the revenue in any incentive compatible mechanism is given by

ˆ θ

0

q(z)J(z)dF (z)− max
θ∈[0,θ]

(
θq(θ)

β
−
ˆ θ

0

q(z)dz

)
. (23)

The upper bound on revenue in (23) is obtained by considering only a small class of

deviations. In particular, the buyer is only allowed to misreport his arrival via simple

threshold strategies, where he enters the mechanism once his valuation is sufficiently

high. Economically,

V (0) = max
θ∈[0,θ]

(
θq(θ)

β
−
ˆ θ

0

q(z)dz

)
is a lower bound on the information rent the buyer must receive to ensure that he

reports his arrival truthfully in a mechanism which implements the allocation q. As

discussed before, this information rent is payed to the buyer in the form of a transfer

that is independent of his consumption and thus even those types receive who never

consume the object. We note that due to the maximum this information rent can not

be rewritten as an expectation and thus is fundamentally different from the classical

information rent term. As a consequence, pointwise maximization can not be used

to find the optimal contract even in the relaxed problem. We next develop the

mathematical tools to deal with this type of non-standard maximization problem.

5.3 The Optimal Progressive Mechanism

We now characterize the optimal mechanism. To do so we proceed by first finding the

allocation q that maximizes the upper bound on revenue (23). Second, we are going

to construct an incentive compatible mechanism that implements this allocation. As

(23) is an upper bound on the revenue, in any incentive compatible mechanism, we

then found a revenue maximizing mechanism.

A mathematical challenge is that, due to the information rent from arrivals, the

relaxed problem (23) is non-local and non-linear in the quantity q. A change of the

quantity for one type can affect the surplus extracted from all higher and lower types.

Consider the relaxed problem of finding the revenue maximizing mechanism such
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that the buyer never wants to misreport his arrival using a cut-off stopping time.

By Proposition 6, the indirect utility V of the buyer in this mechanism solves the

optimization problem:

max
V

ˆ θ

θ

V ′(z)J(z) f(z) dz − V (0), (24)

subject to

V ′(θ) ∈
[
0,

1

r + γ

]
for all θ, (25)

V is convex, (26)

V ′(θ) ≤ β
V (θ)

θ
for all θ∈ (0, 1) . (27)

We will further relax the problem by initially ignoring the convexity constraint

(26) and later verifying that the relaxed solution indeed satisfies the convexity condi-

tion. By the revenue equivalence result, Proposition 1, we can restate the allocation

problem in terms the indirect utility of the buyer. The novel and important restric-

tion is given by the inequality (27) that states that the information rent of the buyer

cannot grow too fast. The inequality thus present an upper bound on the allocated

quantity q(θ) = V ′(θ).12

We could approach the above problem as an optimal control problem where V (θ)

is the state variable and V ′(θ) is the control variable. The presence of the derivative

constraint (27) which combines, in an inequality, the state and the control variable

renders this problem intractable. In particular, to the best of our knowledge the cur-

rent problem is not directly covered by any standard result in optimization theory.13

In particular, while a non-standard version of the Pontryagin maximum principle

with state dependent control constraints could in principle be used to deal with the

derivative constraint (27),14 this approach would lead to a description of the optimal

12At this point we skip a complete formulation of the original problem as we later directly verify
that the solution to the relaxed problem is implementable. We could state the original problem as

a calculus of variation problem where the condition (27) would have to be replaced by V ′′(θ)σ
2θ2

2 ≤
(r + γ)V (θ) under a suitable generalized notion of the second derivative.

13This constraint is fundamentally different from the Border constraint appearing in multi-buyer
mechanism design problems which is a (weak) majorization constraint.

14See for example Evans (1983) for a detailed introduction into the Pontryagin maximum principle.
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policy in terms of a multi-dimensional ordinary differential equation (ODE). There

seems to be no obvious way to infer the optimal policy from the resulting ODE, and

we could make this approach work only in special cases.

To avoid these issues, we adopt a proof technique that has proved useful in stochas-

tic optimal control as established by Peng (1992), see also Karoui et al. (1997) for a

wide range of applications of this technique. A comparison principle asserts a specific

property of a differential inequality if an auxiliary inequality has a certain property.

An important comparison result is Gronwall’s inequality that allows us to bound a

function that is know to satisfy a certain differential inequality by the solution of

the corresponding differential equation. Following standard arguments in the litera-

ture on comparison principles, we use Gronwall’s inequality to establish the following

lemma.

Lemma 3 (Comparison Principle).

Let g, h : [0, θ] → R be absolutely continuous and satisfy g′(θ) ≤ Φ(g(θ), θ) and

h′(θ) ≥ Φ(h(θ), θ) where Φ : R × [0, θ] → R is uniformly Lipschitz continuous in the

first variable. If g(0) ≤ h(0) we have that g(θ) ≤ h(θ) for all θ ∈ [0, θ].

We can then use the comparison principle to apply it the differential inequality

constraint (27) and give a characterization of the optimal solution.

Proposition 8 (State Dependent Control Constraints).

Let Φ : R × [0, θ] → R+ be increasing and uniformly Lipschitz continuous in the

first variable as well as continuous in the second on every interval [a, θ] for a > 0.15

Let J : [0, θ] → R be continuous, satisfy J (0) = −1 and z 7→ min{J (z), 0} be

non-decreasing. Consider the maximization problem:

max
w

ˆ θ

0

J (θ)w′(θ)dθ − w(0) . (28)

over all differentiable functions w : [0, θ]→ R that satisfy w′(θ) ≤ Φ(w(θ), θ). There

15This means that for every a > 0, there exists a constant La <∞ such that |Φ(v, θ)− Φ(w, θ)| ≤
La · |v − w| for all θ ∈ [a, θ].
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exists an optimal policy w to this problem such that for all θ ∈ (0, θ]

w′(θ) = Φ(w(θ), θ) .

To apply Proposition 8 to the optimization problem given by (24), (25) and (27)

we define

J (θ) , f(θ)J(θ),

and

Ψ(v, θ) , min

{
β
v

θ
,

1

r + γ

}
.

An immediate observation is that J (0) = −1 . Applying Proposition 8 to the op-

timization problem (24)-(27) by ex-post verifying that the solution is non-negative

and convex, and hence feasible, yields the following characterization of the relaxed

optimal mechanism.

Theorem 1 (Optimal Control).

There exists a θ? ∈ [0, θ] such that a solution to the control problem (24)-(27) is given

V (θ) =


(
θ
θ?

)β θ?/β
r+γ

, for θ ≤ θ?,

θ?/β
r+γ

+ θ−θ?
r+γ

, for θ? ≤ θ,
. (29)

We arrived at the optimization problem (24)-(27) by relaxing the original mecha-

nism design problem in two ways. First, we allowed the buyer to misreport his arrival

only using cut-off stopping times. Second, we ignored the monotonicity constraint

associated with truthful reporting of the initial value.

The indirect utility given in (29) is implemented by a sales contract with a flow price

of

p? =
β − 1

β
θ?.

As the revenue with relaxed incentive constraints is an upper bound on the revenue

in the original problem and this upper bound is achieved by some sales contract it

follows that a sales contract is a revenue maximizing mechanism.
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Theorem 2 (Sales Contracts are Revenue Maximizing).

The flow price p? and the associated sales contract is a revenue maximizing mechanism

with unobservable arrivals.

We observe that the optimal allocation gives the object to the buyer forever.

Hence, any irreversibility constraint on the allocation is non-binding and thus the

problem of irreversibly selling the buyer an object yields the same solution.16 Thus,

our optimal mechanism is also revenue maximizing in a problem where the buyer

consumes the object once and immediately, the buyer is privately informed about his

arrival, and the buyer’s valuation evolves over time.

5.4 An Example: The Uniform Prior

We illustrate the results now for the case of the uniform prior, and assume that

θ0 ∼ U [0, 1] throughout this section. With the uniform prior we can then directly

compute from the revenue formula (18) the value threshold θ? and the associated flow

price p? in the optimal progressive participation mechanism:

θ? =
1

2

1 + β

β
,

p? =
1

2

β2 − 1

β2
.

In the dynamic mechanism, the value threshold and the associated price are deter-

mined exclusively by the virtual value at t = 0, and thus under the uniform distribu-

tion, the corresponding threshold and flow price are given by

θ◦ = p◦ =
1

2
.

Thus the price in the progressive mechanism is below the dynamic mechanism whereas

the threshold of the progressive mechanism is above the dynamic mechanism:

p? < p◦ = θ◦ < θ?. (30)

16For the case of observable arrivals this problem was analyzed in Board (2007) and Kruse and
Strack (2015).
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Figure 2: Progressive threshold (red), Dynamic threshold and price (black), and
Progressive price (blue)

In Figure 2 we display the behavior of the thresholds and the prices as a function of β ∈
(1,∞). As β increases, the discounting rate and the renewal rate are increasing, and

the buyer becomes less forward-looking. As β decreases towards one, the gap between

the value threshold θ? and the price p∗ increases. As the option value becomes more

significant, the buyer chooses to wait until his value has reached a higher threshold,

thus he will wait longer to enter into a relationship with the seller. Faced with a more

hesitant buyer, the seller decreases the flow price as β decreases. Yet, the decrease

in the flow price only partially offsets the option value, and the buyer still waits

longer to enter into the relationship with the seller. In contrast, the threshold value,

and the price, in the dynamic mechanism, θ◦ and p◦, respectively remain invariant

with respect to the patience of the buyer β. An important aspect of the progressive

mechanism is that the buyer enters the relationship gradually rather than once and

for all, as in the dynamic mechanism. In Figure 3a we plot the probability that an

initial type drawn from the uniform distribution consumes the object as a function

of the time since his arrival. In the dynamic mechanism, this probability is constant

over time. As all values θ0 above θ◦ = 1/2 buy the object, and all those with initial

values θ0 < θ◦ = 1/2 never buy the object, the probability of consumption does

not change over time, and is always equal to 1/2. By contrast, in the progressive

mechanism, the probability of participation is progressing over time, and thus the

probability of consumption is increasing over time. The geometric Brownian motion

displays sufficient variance, so that eventually every buyer purchases the product.
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Figure 3

We now zoom in on the purchase behavior of the initial types θ0. Figure 3b,

quantity, illustrates the discounted expected consumption quantity q(θ0) as a function

of the initial valuation θ0 for various values of β. We find again that in the dynamic

mechanism there is a sharp distinction in the consumption quantities between the

initial values below and above the threshold of θ◦ = 1/2. By contrast in the progressive

mechanism, the consumption quantity is continuous and monotone increasing in the

initial value θ0. As the buyer becomes more patient, and hence as β decreases, the

slope of the consumption quantity flattens outs and the threshold θ? upon which

consumption occurs immediately is increasing.

The differing thresholds and allocation probabilities give us some indication re-

garding the contrasts in welfare properties between progressive and dynamic mech-

anism. As the price in the progressive mechanism is uniformly lower, this allows

us to immediately conclude that the consumer surplus is larger in the progressive

mechanism than in the corresponding dynamic mechanism. Conversely, as the seller

could have offered the progressive mechanism in the dynamic setting, but did not, it

follows that the revenue of the seller is uniformly lower in the progressive mechanism.

Thus, the option of the buyer to postpone his allocation is indeed valuable and in-

creases the consumer surplus significantly. This leaves open the question as to how

the social surplus is impacted by these different participation constraints. With the
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uniform prior, we can further compute that the social welfare is uniformly larger in

the progressive than in the dynamic mechanism.

Significantly, the social welfare comparison does not extend to all prior distribu-

tions. In particular, if there is only a small amount of private information, so that the

static virtual utility is non-negative for all initial values, then the dynamic mecha-

nism will not distort the allocation, and thus support the first best social welfare. For

example, in the class of uniform distribution on the interval [a, 1], the static virtual

utility:

θ − 1− F (θ)

f(θ)

is positive for all θ∈[a, 1] if the lower bound a in the support of the distribution

is sufficiently large, or a > 1/2. In these circumstances, the seller in the dynamic

environment will cease to discriminate against any initial value, and rather sell the

object forever to all initial types θ∈[a, 1]. By contrast, in the progressive mechanism,

the option value remains an attractive opportunity for all buyers, and thus the seller

will never sell to all buyers irrespective of their initial value θ∈[a, 1]. In consequence,

the revenue maximizing progressive mechanism leads to some initial inefficiency, and

thus will not attain the first best.

6 Discussion

We considered a model where the valuation of a buyer with unit demand evolves

according to a geometric Brownian motion and the seller has a constant marginal cost

of production. A natural question is how our model, methods, and results extend to

more general environments. We now first discuss how our approach can be generalized

and then second the significance of the stationary contract for our analysis.

6.1 Beyond Geometric Brownian Motion and Unit Demand

Our approach worked in the following steps. We decomposed the progressive mecha-

nism problem into an intertemporal participation (entry) problem and an intertem-

poral incentive problem. The novel arguments then centered on the treatment of the
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participation problem. By contrast, we could rely on earlier insights for the optimal

allocation conditional upon entering into the contract.

We approached the participation problem in three steps. First, we considered only

a small subset of deviations in reporting the arrival time, namely reporting the arrival

once the value exceeds some threshold. Second, we proved that this constraint can

be rewritten as a condition bounding the derivative of the value function. Third, we

solved the relaxed optimization problem where we only imposed this constraint and

showed that its solution is implementable.

As we will argue next the first two steps generalize to other stochastic processes

and allocation problems. In the case of the geometric Brownian motion the condition

we obtained in the second step was

V ′(x) ≤ β
V (x)

x
,

for all x ≥ 0, see (22). A similar condition can be obtained in general allocation

problems and for arbitrary diffusion processes. To see this define

φ(x, y) = E
[
e−rτy | θ0 = x

]
where τy = inf{t : θt ≥ y}. Note that φ(x, z) = φ(x, y)φ(y, z) for all x ≤ y ≤ z and

that φ is differentiable. This implies that there exists a function h : R → R+ such

that

φ(x, y) = e−
´ y
x h(s)ds.

Consequently, the constraint that the buyer does not want to deviate by reporting

his arrival once his value is sufficiently high simplifies in a way completely analogous

to Proposition 6, i.e. for all x < y:

V (x) ≤ φ(x, y)V (y) = e−
´ y
x h(s)dsV (y)

⇔ e−
´ x
0 h(s)dsV (x) ≤ e−

´ y
0 h(s)dsV (y)

⇔ V ′(x) ≤ h(x)V (x) . (31)

In the special case of the geometric Brownian motion h(x) = β/x . The above condi-
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tion thus remains necessary for arbitrary processes.

What changes for more general stochastic processes is the expected revenue as a

function of the value of the buyer given in (23) and (24). The particularly simple

multiplicative structure of the virtual value is a consequence of the geometric Brown-

ian motion. For other processes such as the arithmetic Brownian motion, or the mean

reverting Ornstein-Uhlenbeck process, the corresponding virtual value is obtained in

Bergemann and Strack, 2015. Using these virtual values and replacing β/x by h(x),

one obtains a relaxed program that is analogous to (24)-(27). Notably, this provides

a reduction of our original dynamic problem into a completely static problem without

any incentive constraints.

For general processes or models with convex production cost, the resulting prob-

lem will not admit the same simple multiplicatively separable structure. As a conse-

quence, we could not use our Proposition 8 to solve for the optimal mechanism, but

would have to rely on other methods such as the Pontryagin Principle. Yet, when-

ever the solution to this relaxed general program is implementable it will constitute

an optimal mechanism. Whether the restriction we imposed on the buyer that he

can only misreport his arrival using threshold strategies is sufficient to guarantee im-

plementability depends on the details of the environment. A necessary and sufficient

condition for a general martingale with diffusion coefficient σ is that the interim value

of the agent V for all x satisfies17

V ′′(x)
σ2(x)

2
≤ (r + γ)V (x) (32)

i.e. that the agents value is not too convex. For the case of the geometric Brownian

motion without production cost this was the case as the solution to the relaxed

program (24)-(27) is a posted price mechanism in which the interim value is linear

for participating buyers. More generally, this is the case whenever the derivative of the

value function of the buyer, which (roughly) corresponds to the expected discounted

quantity promised to the buyer does not react to strongly to the buyer’s initial type.

We conjecture that this is the case whenever the generalized virtual value of the buyer

(derived in Bergemann and Strack, 2015) does not change too fast as a function of his

17The second derivative here is to be understood in a viscosity sense..
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initial type. Beyond the unit demand model, this might be guaranteed by production

costs that are sufficiently convex.

By contrast, if the virtual value were to react too strongly to the type, then the

stopping constraint (32) may be binding at several disconnected intervals. This would

imply that there is not a single and always lower interval at which the agent would

wait, but rather a collection of disconnected intervals. In each one of these intervals,

the agent would wait until his value leaves the interval, either below or above. In

consequence, the optimal strategy for the agent could not be expressed anymore in

terms of a simple threshold strategy as in the current setting.

6.2 Beyond Stationary Contracts

We derived the incentive constraint (IC-A) for stationary mechanisms when the buyer

has private information about his arrival time and his current value. We motivated the

restriction to stationary mechanism as a standing offer by the seller in a market with

renewal among consumers. In other words, time 0 is not economically meaningful as

new buyers are constantly arriving, and thus it is always time 0 for someone. We did

not analyze whether in the steady state of the environment a stationary mechanism

is optimal in a larger class of feasible mechanism which can be offered in a time and

state dependent fashion.

A general result regarding the optimality of the stationary mechanism is beyond

the scope of this paper and may be difficult to obtain altogether. We now briefly

describe where the difficult issues may arise. Suppose we would consider an optimal

non-stationary mechanism. In particular, the mechanism could then depend on the

calendar time t. Let V (t, θ) be the value of a buyer who arrives at time t with a

valuation of θ. It would remain to be without loss of generality to assume that each

buyer contracts with the seller immediately upon arrival. Formally, the constraint

that the buyer cannot benefit from misreporting her arrival time is given by:

sup
τ≥t

E
[
e−(r+γ)τV (τ, θτ ) | θt = θ

]
= V (t, θ) ,

which is a generalized version of the truthful arrival condition (IC-A). The two step

argument that distinguishes between the utility conditional on entering into a mech-
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anism and the determination of the optimal entry time remains valid in this more

general environment. If the common prior distribution of initial types F is unbounded,

then this constraint can be shown to be equivalent to a partial differential equation:

Vt(t, θt) + Vθθ(t, θ)
σ2θ2

2
≤ (r + γ)V (t, θ) , (33)

where the above equation is to be understood in a viscocity sense (as V need not to be

differentiable). The above inequality generalizes the earlier condition that guarantees

immediate reporting, see (21). We can then reformulate the optimization problem

faced by the seller, described earlier by (24) - (27) for the time-dependent mechanism

problem as follows:

max
V

ˆ ∞
0

e−rt
ˆ ∞

0

J(θ)Vθ(t, θ)dF (θ)dt

s.t.Vθ ∈
[
0,

1

r + γ

]
,

Vθ non-decreasing,

Vt(t, θt) + Vθθ(t, θ)
σ2θ2

2
≤ (r + γ)V (t, θ) .

Thus, while the nature and description of the optimal mechanism has not changed

conceptually, the optimal control problem is now subject to a constraint in the form

of a partial differential equation. In general, it is not know how to obtain a solution

for this form of partial differential equation. On a fundamental level, the difficulty of

this problem is that it is not known how to compute the buyer’s optimal stopping time

as a best response to an arbitrary non-stationary, thus time in-homogenous policy by

the seller (see Peskir and Shiryaev (2006)).

We should add that in special cases of our model we know that a stationary policy

is optimal. For example, when there is only initial private information, and thus the

variance σ of the geometric Brownian motion is zero, Board (2008) shows that a

stationary sale price constitutes the optimal commitment policy. We suspect that as

either the variance is small or the discounting is small, the stationary solution will

remain the uniquely optimal solution. A complete analysis will require additional

arguments to address a host of additional challenges.
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7 Conclusion

We considered a dynamic mechanism problem where each buyer is described by two

dimensions of private information, his willingness to pay (which may change over

time) and his arrival time. We considered a stationary environment – in which the

buyers arrive and depart at random – and a stationary contract. In this arguably

more realistic setting for revenue management, the seller has to guarantee both interim

incentive as well as interim participation constraints. As the buyer has the valuable

option of delaying his participation, the mechanism has to offer incentives to enter

into the relationship.

One challenge in our environment is that the first-order approach and other stan-

dard methods fail as global incentive constraints bind in the optimal contract. We

were able to solve this multi-dimensional incentive problem by rephrasing the partic-

ipation decision of the buyer as a stopping problem, and then solve a new optimal

control problem. More precisely, we decomposed the progressive mechanism problem

into an intertemporal participation (entry) problem and an intertemporal incentive

problem. Given the separability between these two problems, our approach can be

possibly extended to allocation problems beyond the unit demand problem considered

here. There are (at least) three natural directions to extend the analysis. First, the

stochastic evolution of the value was governed by the geometric Brownian motion, and

clearly other stochastic process could be considered. Second, the allocation problem

could be extended to nonlinear allocation problems rather than the unit demand prob-

lem considered here. Third, a natural next step is to extend the techniques developed

here to multi-buyer environments, say competing bidders for a scarce resource. The

final generalization will pose new challenges as we will have to investigate whether

the solution of the individual stopping problem can be decentralized or distributed in

a consistent manner across the buyers. This is a problem similar to the reduced form

auction as posed by Border (1991) but now in dynamic rather than static allocation

problem.
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A Appendix

Lemma 4. We have that

Vα(θ) = E
[ˆ ∞

αi

e−(r+γ) (t−αi)
{
θitx

i
t − pit

}
dt | αi = α, θαi = θ

]
.

Proof. By the law of iterated expectations and the fact that the departure time of

the buyer αi+1 is independent of the arrival time αi and the valuation process θi and

hence of xit, p
i
t and uit = θitx

i
t − pit

E
[ˆ T

αi

e−r (t−αi)uitdt

]
= E

[ˆ ∞
αi

1{T≥t}e
−r (t−αi)uitdt

]
= E

[ˆ ∞
αi

E
[
1{αi+1≥t}

]
e−r (t−αi)uitdt

]
= E

[ˆ ∞
αi

P [T ≥ t] e−r (t−αi)uitdt

]
= E

[ˆ ∞
αi

e−γ (t−αi)e−r (t−αi)uitdt

]
.

Proof of Lemma 1. As each buyer’s allocation is only a function of his own reports

and the willingness to pay is independent between different buyers the law of iterated

expectations implies that the revenue can be rewritten as

E

[
∞∑
i=0

ˆ αi+1

αi

e−r tpitdt

]
= E

[
∞∑
i=0

e−rαiE
[ˆ αi+1

αi

e−r (t−αi)pitdt

]]
.

As buyer are ex-ante identical they are necessarily treated the same in the optimal

mechanism which yields that the revenue equals

max
(x,p)∈M

E

[
∞∑
i=0

ˆ αi+1

αi

e−r tpitdt

]
= max

(x,p)∈M
E
[ˆ αi+1

αi

e−r (t−αi)pitdt

]
E

[
∞∑
i=0

e−rαi

]
.

Note, that αi+1 − αi = τi − αi are independently and identically exponentially dis-
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tributed with rate γ it follows from this that

E

[
∞∑
i=0

e−rαi

]
= E

[
∞∑
i=0

e−rα0

i−1∏
j=0

e−r(αj+1−αj)

]
= E

[
e−rα0

] ∞∑
i=0

i−1∏
j=0

E
[
e−r(αj+1−αj)

]
=
∞∑
i=0

E
[
e−r(αj+1−αj)

]i
=
∞∑
i=0

(
γ

r + γ

)i
=
r + γ

r
.

This yields the result.

Proof of Proposition 1. The first part of the Proposition follows by applying the en-

velope theorem. By the hypothesis of the Proposition, it is optimal for the buyer to

report his initial value θ0 truthfully. Therefore, we can compute the derivative of the

buyer’s indirect utility by treating the allocation (x, p) as independent of the buyer’s

report:

V ′(θ0) =
∂

∂θ0

E
[ˆ ∞

0

e−(r+γ) t {xt θt − pt} dt | θ0

]
= E

[ˆ ∞
0

e−(r+γ) txt

(
∂

∂θ0

θt

)
dt | θ0

]
(34)

As (θt)t≥0 is a geometric Brownian motion, the evolution of θt can be explicitly rep-

resented as:

θt = θ0 exp

(
−σ

2

2
t+ σWt

)
. (35)

We can then insert the derivative ∂θt/∂θ0 and obtain:

V ′(θ0) = E
[ˆ ∞

0

e−(r+γ) txt

(
∂

∂θ0

θt

)
dt | θ0

]
= E

[ˆ ∞
0

e−(r+γ) txt

(
∂

∂θ0

{
θ0 · exp

(
−σ

2

2
t+ σWt

)})
dt | θ0

]
= E

[ˆ ∞
0

e−(r+γ) txt exp

(
−σ

2

2
t+ σWt

)
dt | θ0

]
= q(θ0),

where the last line follows from the definition of the aggregate quantity q(θ0) given

earlier in (5).

Similarly, we can express the revenue of the seller in terms of the dynamic virtual
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value as given earlier in (9):

Jt(θt) , θt −
1− F (θ0)

f(θ0)

dθt
dθ0

,

and we observe that using (35) we can express the derivative equivalently as

dθt
dθ0

=
θt
θ0

.

The expected revenue of the seller can therefore be expressed as:

E
[ˆ ∞

0

e−(r+γ) tptdt

]
= E

[ˆ ∞
0

e−(r+γ) t xt

(
θt −

1− F (θ0)

f(θ0)

dθt
dθ0

)
dt

]
= E

[ˆ ∞
0

e−(r+γ) t xt θt

(
1− 1− F (θ0)

f(θ0)θ0

)
dt

]
= E

[ˆ ∞
0

e−(r+γ) t xt
θt
θ0

(
θ0 −

1− F (θ0)

f(θ0)

)
dt

]
− V (0)

=

ˆ
E
[ˆ ∞

0

e−(r+γ) t xt
θt
θ0

(
θ0 −

1− F (θ0)

f(θ0)

)
dt | θ0

]
f(θ0)dθ0 − V (0)

=

(
θ0 −

1− F (θ0)

f(θ0)

) ˆ
E
[ˆ ∞

0

e−r t xt
θt
θ0

dt | θ0

]
f(θ0)dθ0 − V (0) .

Plugging in the explicit representation of θt given by (35) yields that the expected

revenue satisfies

E
[ˆ ∞

0

e−(r+γ) tptdt

]
=

ˆ θ

0

J(θ0)E
[ˆ ∞

0

e−(r+γ) t xt exp

(
−σ

2

2
t+ σWt

)
dt | θ0

]
︸ ︷︷ ︸

q(θ0)

f(θ0)dθ0 − V (0) .

Proof of Proposition 2. Consider the deviation where the agent of type θ0 reports to

be of type θ̂0 at time 0 and at every later point in time t reports a value of θ̂t = θt
θ̂0
θ0
.

Note that under this deviation the agent’s value evolves as if the agent would have
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been of initial type θ̂0. Thus, this deviation generates a value of

E
[ˆ ∞

0

e−(r+γ) t

(
xtθ0 exp

(
−σ

2

2
t+ σWt

)
− pt

)
dt | θ̂0

]
= θ0q(θ̂0)− T (θ̂0)

where T (θ̂0) = E
[´∞

0
e−(r+γ) tptdt | θ̂0

]
is the total expected transfer made by an

agent of initial type θ̂0. It follows from the monotone selection theorem that q is non-

decreasing whenver truthful reporting of the initial type is incentive compatible.

Proof of Proposition 3. The result follows from Dixit and Pindyck (1994), Section

5.2.

Proof of Lemma 2. For θ0 ≥ x, the buyer stops immediately and thus the statement

is true. For θ0 < x we have that

E
[
e−(r+γ) τx | θ0

]
= E

[
e−(r+γ) τx

(
θτx
θτx

)β
| θ0

]
= E

e−(r+γ) τx

(
θ0e
−σ

2

2
τx+σWτx

x

)β

| θ0


= E

[
e
−
[
(r+γ)−σ

2

2
β
]
τx+βσWτx

(
θ0

x

)β
| θ0

]

= E

[
e
−
[
(r+γ) +σ2

2
β(1−β)

]
τxe−

σ2β2

2
τx+β σWτx

(
θ0

x

)β
| θ0

]
.

As (r+γ) + σ2

2
β− σ2β2

2
= 0 and t 7→ e−

σ2β2

2
t+β σWt is a uniformly integrable martingale

it follows from Doob’s optional sampling theorem that

E
[
e−r τx | θ0

]
= E

[(
θ0

x

)β
| θ0

]
.

Proof of Proposition 4. By Proposition 3 the buyer acquires the object once his val-

uation exceeds θ? = β
β−1

p. By Lemma 1 the expected revenue the seller generates
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from a single buyer with initial valuation θ0 is given by

r + γ

r
E
[ˆ ∞

τθ?

e−(r+γ) tp dt | θ0

]
=

1

r
E
[
e−(r+γ) τθ? p | θ0

]
=
p

r
E
[
e−(r+γ) τθ? | θ0

]
=
p

r
min

{(
θ0

θ?

)β
, 1

}
=
p

r
min

{(
β − 1

β

θ0

p

)β
, 1

}
.

Consequently, the expected discounted revenue from buyer with random initial valu-

ation distributed according to F is given by

p

r

ˆ ∞
0

min

{(
β − 1

β

θ

p

)β
, 1

}
f(θ) dθ .

Proof of Proposition 5. It follows from the envelope theorem that the value function

is continuous and convex in any mechanism where truthfully reporting the initial

valuation is incentive compatible. Furthermore, the envelope theorem implies that

V is absolutely continuous, thus any non-differentiability must take the form of a

convex kink. As it is never optimal to stop in a convex kink it follows that V is

differentiable.

Proof of Proposition 7. By Proposition 1 and 6 we have that IC-A implies that for

all θ

θ q(θ)

β
≤ V (θ) = V (0) +

ˆ θ

0

q(z)dz

⇔ θ q(θ)

β
−
ˆ θ

0

q(z)dz ≤ V (0) .

Taking the supremum over θ yields the results.

Proof of Lemma 3. Define ∆ ≡ g−h. Suppose, that there exists a point θ′ such that

∆(θ′) > 0. As ∆(0) ≤ 0 and by the absolute continuity of ∆ there exists a point θ′′

such that ∆(θ′′) = 0 and as ∆′ ≥ 0 we have that ∆(θ) ≥ 0 for all θ ∈ [θ′′, θ′]. This
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implies that there exists a constant L > 0 such that for all θ ∈ [θ′′, θ′]

∆′(θ) = g′(θ)− h′(θ) ≤ Φ(g(θ), θ)− Φ(h(θ), θ) ≤ |Φ(g(θ), θ)− Φ(h(θ), θ)|

≤ L |g(θ)− h(θ)| = L |∆(θ)| = L∆(θ) .

By Gronwall’s inequality we thus have that ∆(θ′) ≤ ∆(θ′′)eL(θ′−θ′′) = 0 which contra-

dicts the assumption that ∆(θ′) > 0 .

Lemma 5 (Generalized Comparison Principle).

Let g, h : [0, θ] → R be absolutely continuous and satisfy g′(θ) ≤ Φ(g(θ), θ) and

h′(θ) ≥ Φ(h(θ), θ) where Φ : R × [0, θ] → R is uniformly Lipschitz continuous in

the first variable. If g(θ̂) = h(θ̂) we have that g(θ) ≤ h(θ) for all θ ∈ [θ̂, θ] and

g(θ) ≥ h(θ) for all θ ∈ [0, θ̂] .

Proof. The first part of the result follows by considering the functions g̃(s) = g
(
θ̂ + s

)
, h(s) =

ȳ
(
θ̂ + s

)
and applying Lemma 3. The second part follows by considering the func-

tions g̃(s) = −g
(
θ̂ − s

)
, h̃(s) = −h

(
θ̂ − s

)
for s ∈ [0, θ̂] and applying Lemma 3

which implies that for all s ∈ [0, θ̂]

g̃(s) ≤ h̃(s)⇔ −g
(
θ̂ − s

)
≤ −h

(
θ̂ − s

)
⇔ g

(
θ̂ − s

)
≥ h

(
θ̂ − s

)
.

Lemma 6.

Suppose that J : [0, θ] is a non-decreasing function with J (θ) ≤ 0, and g, h : [0, θ]→
R are absolutely continuous with g = h then

ˆ θ

0

J (θ)g′(θ)dt+ J (0)g(0) ≤
ˆ θ

0

J (θ)h′(θ)dθ + J (0)h(0) .
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Proof. The result follows from partial integration, the assumption that J (θ) ≤ 0

ˆ θ

0

J (θ)g′(θ)dt+ J (0)g(0) = [J (θ)g(θ)]θ=θθ=0 −
ˆ θ

0

g(θ)dJ (θ) + J (0)g(0)

= J (θ)g(θ)− J (0)g(0)−
ˆ θ

0

g(θ)dJ (θ) + J (0)g(0)

≤ J (θ)h(θ)− J (0)h(0)−
ˆ θ

0

h(θ)dJ (θ) + J (0)h(0)

= [J (θ)h(θ)]θ=θθ=0 −
ˆ θ

0

h(θ)dJ (θ) + J (0)h(0)

=

ˆ θ

0

J (θ)h′(θ)dθ + J (0)h(0).

Proof of Proposition 8. Let g be an arbitrary feasible policy in the optimization prob-

lem (28). Define θ? = inf{θ : J (θ) ≥ 0}. As J is continuous J (θ?) = 0. Let

h : [0, θ]→ R be the solution to

h′(θ) = Φ(h(θ), θ),

h(θ?) = g(θ?) .

The proof proceeds in two step: first we establish that h leads to a higher value of

the integral (28) above θ? and in the second step we establish the analogous result

below θ?.

Step 1: As g′(θ) ≤ Ψ(g(θ), θ) it follows from Lemma 5 that g(θ) ≤ h(θ) for

θ ∈ [θ?, θ] and g(θ) ≥ h(θ) for θ ∈ [a, θ?] for every a > 0. As g and h are continuous

it follows that g(0) ≥ h(0) . The monotonicity of Φ in the first variable implies that

for θ ≥ θ?

g′(θ) ≤ Φ(g(θ), θ) ≤ Φ(h(θ), θ) = h′(θ) .

As J (θ?) = 0 and θ 7→ min{J (θ), 0} is non-decreasing we have that J (θ) ≥ 0 for

θ ≥ θ? we have that
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ˆ θ

θ?
J (θ)g′(θ)dθ ≤

ˆ θ

θ?
J (θ)h′(θ)dθ . (36)

Step 2: Note, that by Lemma 5 g(θ) ≥ h(θ) for θ ≤ θ?. Furthermore, by definition

of θ? we have that J (θ) = min{J (θ), 0} for θ ≤ θ?. As θ 7→ min{J (θ), 0} is non-

decreasing J (θ) is non-decreasing for θ ≤ θ?. Lemma 6 implies that

ˆ θ?

0

J (θ)g′(θ)dθ + J (0)g(0) ≤
ˆ θ?

0

J (θ)h′(θ)dθ + J (0)h(0) . (37)

Combining the inequalities (36) and (37) with the assumption that J (0) = −1 yields

that ˆ θ

0

J (θ)g′(θ)dt− g(0) ≤
ˆ θ

0

J (θ)h′(θ)dθ − h(0) .

As Φ is continuous in both variables it follows that h is continuously differentiable

and thus feasible and an optimal policy.

Proof of Theorem 1. Define J (θ) = J(θ)f(θ) and recall that θ◦ = min {θ : J (θ) = 0} .
We first note, that J (θ) is negative for θ < θ◦ and J (0) = −1. Consider the problem

of solving

max
V

ˆ θ

0

V ′(z)J (z) dz − V (0) .

subject to V ′(θ) ≤ Ψ(V (θ), θ) for all θ∈
[
θk, θ

]
,

where Ψ(v, θ) = min
{
β v
θ
, 1
r+γ

}
. By Proposition 3 we have that there exists an

optimal policy that solves

V ′(θ) = Ψ(v, θ) (38)

We have that all solutions to the ODE (38) are of the form

V (θ) =


(
θ
θ′

)β
V (θ?) for θ ≤ θ?

V (θ?) + θ−θ?
r+γ

for θ ≤ θ?

52



where 1
r+γ

= V ′(θ?) = β
θ′
V (θ?) . Thus, plugging in V (θ?) yields that

V (θ) =


(
θ
θ?

)β θ?/β
r+γ

for θ ≤ θ?

θ?/β
r+γ

+ θ−θ?
r+γ

for θ ≤ θ?
.

We note that V = 0 and V ′ is increasing. It is thus feasible in the control problem

(24)-(27) and we hence have found an optimal policy.

Proof of Theorem 2. Consider the sales contract where the object is sold at a flow

price of p = β−1
β
θ?. Proposition 3 yields that the buyer’s value in a sales contract if

he reports his arrival optimally is given by

V (θ) =


1

r+γ

(
θ
θ?

)β 1
β
θ? for θ ≤ θ?

1
r+γ

(
θ − β−1

β
θ?
)

for θ ≥ θ?
,

and thus satisfies (29) which establishes that the sales contract is revenue maximizing.
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